WO2017049942A1 - 一种检测环境温度的方法、装置和电子设备 - Google Patents

一种检测环境温度的方法、装置和电子设备 Download PDF

Info

Publication number
WO2017049942A1
WO2017049942A1 PCT/CN2016/083673 CN2016083673W WO2017049942A1 WO 2017049942 A1 WO2017049942 A1 WO 2017049942A1 CN 2016083673 W CN2016083673 W CN 2016083673W WO 2017049942 A1 WO2017049942 A1 WO 2017049942A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ambient temperature
thermal resistance
test point
resistance coefficient
Prior art date
Application number
PCT/CN2016/083673
Other languages
English (en)
French (fr)
Inventor
池林
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017049942A1 publication Critical patent/WO2017049942A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes

Definitions

  • This document relates to, but is not limited to, electronic device detection technology, and in particular to a method, device and electronic device for detecting ambient temperature.
  • the related ambient temperature detecting method is to directly measure the ambient temperature by placing a temperature sensor at the air inlet position of the electronic device, and obtain an electric signal corresponding to the ambient temperature after being processed by the temperature detecting circuit, and provide the relevant circuit for corresponding control.
  • electronic equipment must be installed in an approximately fully enclosed enclosure.
  • the thermal radiation of the internal heating components causes the ambient temperature around the temperature sensor to rise, causing deviations in the ambient temperature detection signal, so product design
  • the temperature sensor must be placed as close as possible to the air inlet.
  • the main problem of the related technology is that due to the heat radiation effect of the internal heating device on the temperature sensor, the temperature around the temperature sensor rises, causing the ambient temperature detection signal to deviate, and the detection signal cannot truly reflect the ambient temperature of the product operation. ;
  • the temperature sensor must be placed close to the air inlet, which will lead to the following problems in the design of electronic products:
  • the heat generating device must be placed away from the ambient temperature detecting sensor because the temperature sensor measurement value is easily affected by the assembly position, such as the temperature measured near the heat generating device is higher than the actual temperature;
  • a strict anti-interference design is required because the temperature sensor must be close to the air inlet, causing the control circuit and the detection circuit to be elongated, which will introduce a large interference signal;
  • Embodiments of the present invention provide a method, a device, and an electronic device for detecting an ambient temperature, which can reduce the heat radiation effect of the internal heat generating device of the electronic device on the temperature sensor, and make the ambient temperature detection signal more accurate.
  • Embodiments of the present invention provide a method for detecting an ambient temperature, which is applied to an electronic device.
  • the method includes: acquiring various working conditions of the electronic device, and thermal resistance of the temperature test point to the heat generating device and the environment under each working condition. a coefficient, a temperature value of the temperature test point, and an ambient temperature; generating mapping logic according to the working condition, a thermal resistance coefficient, a temperature value of the temperature test point, and an ambient temperature; calculating a current environment of the electronic device by using the mapping logic
  • the temperature, the current ambient temperature serves as a basis for controlling the electronic device.
  • various operating conditions of the electronic device are obtained, and a thermal resistance coefficient of the temperature test point to the heat generating device and the environment under each working condition, the temperature value of the temperature test point, and the ambient temperature include: Under each working condition, the thermal resistance coefficient of the temperature test point of the temperature sensor to the heat generating device and the environment is set inside the electronic device; the temperature value detected by each temperature sensor is obtained; and the thermal resistance coefficient and the temperature value are calculated according to the thermal resistance coefficient and the temperature value Precise ambient temperature.
  • the thermal resistance coefficient of the temperature test point inside the electronic device to the heat generating device and the environment is included: in the self-cooling system, the thermal resistance of the first test point to the heat generating device and the environment is measured by using the thermal resistance test principle.
  • the thermal resistance coefficient of the temperature test point inside the electronic device to the heat generating device and the environment is included: in the self-cooling system, the heat of each temperature test point to the heat generating device and the environment is measured by using the thermal resistance test principle.
  • Resistance coefficients Rt 1 , Rt 2 , ..., Rt n ; obtaining temperature values detected by each temperature sensor includes: when the number n of temperature test points is more than two, detecting that the electronic device is under each current working condition
  • the obtained plurality of ambient temperatures T a are calculated by using a selected algorithm to obtain an accurate ambient temperature, including: removing The maximum and minimum values in the ambient temperature, and the remaining temperature values are averaged to obtain an accurate ambient temperature. Or will Average ambient temperature T a to obtain an accurate ambient temperature
  • the thermal resistance coefficient of the temperature test point inside the electronic device to the heat generating device and the environment is included: the thermal resistance coefficients Rt 1 to Rt n under each working condition are tested; and the detected by each temperature sensor is obtained.
  • the temperature value includes: measuring the temperature values T 1 , T 2 , . . . , T n of each temperature test point under each working condition, and calculating the equivalent power consumption P of the heating device under the current working condition;
  • the thermal resistance coefficient from the temperature test point to the heating device and the environment changes with the change of the fan speed.
  • the function of influence, f(P 1 ) is a function of the equivalent power consumption P affecting the thermal resistance coefficient of temperature test point 1
  • f(P 2 ) is the thermal resistance coefficient of equivalent power consumption P to temperature test point 2.
  • f (P n) is a function of power P equivalent impact on thermal resistance temperature coefficient of the test point n; ring according to calculate the exact resistance value and temperature coefficient
  • a device for detecting an ambient temperature comprising: a temperature detecting unit configured to detect a temperature value of each temperature test point and an ambient temperature under the working condition when the electronic device operates under a working condition; mapping a logic unit Provided to obtain various working conditions of the electronic device, and a thermal resistance coefficient of the temperature test point to the heat generating device and the environment under each working condition, and a temperature value of each temperature test point obtained by the temperature detecting unit, and The ambient temperature generating mapping logic is configured to calculate, according to the working condition and the temperature value, a current ambient temperature of the electronic device by using the mapping logic, where the ambient temperature is used as a basis for controlling the electronic device.
  • the temperature detecting unit comprises: temperature sensors disposed at temperature test points at different positions inside the electronic device, respectively placed at the temperature test points; and a temperature collecting module configured to acquire each of the electronic devices
  • the temperature value of the temperature test point converts the ambient temperature into a signal that can be measured
  • the mapping logic unit includes: a thermal resistance coefficient module configured to acquire a temperature test point inside the electronic device to the heat generating device and the environment under each working condition The thermal resistance coefficient
  • the ambient temperature operation processing unit includes: an ambient temperature calculation module configured to calculate an accurate ambient temperature based on the thermal resistance coefficient and the temperature value.
  • the thermal resistance coefficient module includes: a first sub-module of a thermal resistance coefficient, and is configured to measure a thermal resistance coefficient of the first test point to the heating device and the environment by using a thermal resistance test principle in the self-cooling system.
  • Rt 1 a thermal resistance coefficient Rt 2 of the second test point to the heat generating device and the environment
  • the temperature collecting module includes: testing the first sub-module, and setting the electronic device to be tested when the number of temperature monitoring points is two The temperatures T 1 and T 2 of the first test point and the second test point under the current working conditions;
  • the second formula T 2 P*Rt 2 +T a
  • T a is the ambient temperature
  • P is the equivalent power consumption of the heat generating device
  • the ambient temperature calculating module includes: the first sub-module of equivalent power consumption, which is set to be The first formula and the second formula are sub
  • the thermal resistance coefficient module comprises: a second sub-module of thermal resistance coefficient, which is set to measure the thermal resistance of each temperature test point to the heating device and the environment by using a thermal resistance test principle in the self-cooling system.
  • the temperature acquisition module comprises: testing the second sub-module, and setting the electronic device to detect each of the current working conditions when the number n of temperature monitoring points is more than two
  • the ambient temperature calculation module includes: an ambient temperature calculation sub-module, configured to remove The maximum and minimum values in the ambient temperature, and the remaining temperature values are averaged to obtain an accurate ambient temperature. Or will Average ambient temperature T a to obtain an accurate ambient temperature
  • the temperature collecting module includes: testing a third sub-module, configured to measure temperature values T 1 , T 2 , . . . , T n of each temperature test point under each working condition, and calculate The equivalent power consumption P of the heating device under current working conditions;
  • the thermal resistance coefficient module includes: a third sub-module of thermal resistance coefficient, which is set to test the thermal resistance coefficients Rt 1 , Rt 2 , under each working condition... ...,Rt n ; In the air-cooled system, the thermal resistance coefficient from the temperature test point to the heating device and the environment changes with the change of the fan speed.
  • the function of the thermal resistance coefficient of point n produces a function, and f(P n ) is a function of the equivalent power consumption affecting the thermal resistance coefficient of temperature test point n;
  • An electronic device includes a device for detecting an ambient temperature.
  • the beneficial effects of the above technical solutions of the embodiments of the present invention are as follows: the heat radiation effect of the internal heat generating device of the electronic device can be avoided to cause the deviation of the ambient temperature detecting signal and other series of problems caused thereby, and the environmental temperature detecting of the electronic device is improved. accuracy.
  • FIG. 1 is a flow chart showing a method for detecting an ambient temperature according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing a two-point test in an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a multipoint test in an embodiment of the present invention.
  • FIG. 4 is a block diagram of a device for detecting an ambient temperature according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for detecting an ambient temperature, as shown in FIG. 1 , the method includes:
  • the technology provided by the embodiments of the present invention can avoid the deviation of the temperature detection signal caused by the heat radiation effect of the heat generating device inside the electronic device and other series of problems caused thereby, and improve the accuracy of detecting the ambient temperature of the electronic device.
  • the ambient temperature of the working of the electronic device is calculated by using the principle of heat conduction.
  • temperature test points are set at different positions inside the electronic device, and temperature sensors are respectively placed at the temperature test points; first, in the electronic device The method of placing two temperature test points on the board is described, and then the technology is extended to a complex ambient temperature test environment.
  • a temperature first test point and a second test point are respectively placed at positions where the circuit board is close to the heat generating device and away from the heat generating device, and the corresponding temperatures are T 1 and T 2 , respectively, and T a is an ambient temperature.
  • P is the equivalent power consumption of the heating device.
  • the plurality of operating conditions of the electronic device are obtained, and the thermal resistance coefficient of the temperature test point to the heat generating device and the environment under each working condition, and the temperature value of each temperature test point, including:
  • An accurate ambient temperature is calculated based on the thermal resistance coefficient and the temperature value.
  • the precise ambient temperature means that the error between the measured ambient temperature and the actual ambient temperature should be less than a preset temperature error threshold.
  • obtaining the thermal resistance coefficient of the temperature test point inside the electronic device to the heat generating device and the environment includes:
  • the self-cooling system using the thermal resistance measuring principle of a first test point to test the thermal resistance coefficient of the heat generating device and the environment Rt 1, the second test point to the thermal coefficient of the heat generating device and the environment Rt 2;
  • Obtaining the temperature values detected by each temperature sensor includes:
  • the first formula T 1 P*Rt 1 +T a is obtained
  • the second formula T 2 P*Rt 2 +T a
  • T a is the ambient temperature
  • P is the equivalent power consumption of the heating device
  • Calculating the precise ambient temperature based on the thermal resistance coefficient and the temperature value includes:
  • the working condition can be calculated by the ambient temperature calculation formula.
  • the testing principle is in an optional embodiment, the thermal resistance coefficient of the temperature test point inside the electronic device to the heat generating device and the environment is included.
  • the thermal resistance coefficients Rt 1 , Rt 2 , ..., Rt n of each temperature test point to the heating device and the environment are measured by the thermal resistance test principle;
  • Obtaining the temperature values detected by each temperature sensor includes:
  • the temperature values T 1 , T 2 , . . . , T n of each temperature test point of the electronic device under the current working conditions are detected;
  • Calculating the precise ambient temperature based on the thermal resistance coefficient and the temperature value includes:
  • T 1 P*Rt 1 +T a
  • T 2 P*Rt 2 +T a
  • T n (P*Rt n +T a )
  • the obtained plurality of ambient temperatures T a are calculated using a selected algorithm to obtain an accurate ambient temperature.
  • the plurality of ambient temperatures T a obtained are calculated using a selected algorithm to obtain an accurate ambient temperature, including:
  • the specific method used in the design of electronic equipment is determined according to the actual situation of the electronic equipment.
  • Obtaining the thermal resistance coefficients from the temperature test points inside the electronic device to the heating device and the environment includes:
  • Obtaining the temperature values detected by each temperature sensor includes:
  • the thermal resistance coefficient from the temperature test point to the heating device and the environment changes with the change of the fan speed.
  • the thermal resistance coefficient at different fan speeds is
  • Rt 1 f(f 1 )*f(P 1 )
  • Rt 2 f(f 2 )*f(P 2 )
  • f(f 1 ) is a function of the fan speed f affecting the thermal resistance coefficient of the temperature test point 1
  • f(f 2 ) is a function of the influence of the fan speed f on the thermal resistance coefficient of the temperature test point 2
  • f(P 1 ) is a function of the equivalent power consumption P affecting the thermal resistance coefficient of the temperature test point 1
  • f(P 2 ) is The function of the equivalent power consumption P affecting the thermal resistance coefficient of the temperature test point 2
  • f(P n ) is a function of the equivalent power consumption P affecting the thermal resistance coefficient of the temperature test point n;
  • Calculating the exact ambient temperature based on the thermal resistance coefficient and temperature values includes:
  • F( ⁇ ) is a function of the effect of fan speed on ambient temperature
  • F(P) is a function of the equivalent power consumption affecting ambient temperature
  • the ambient temperature detection algorithm is programmed into the application business logic. When working, knowing the fan speed and the working conditions of the electronic device, the accurate ambient temperature can be calculated by applying the algorithm in the business logic.
  • An embodiment of the present invention further provides a computer storage medium, where the computer storage medium is stored Computer executable instructions are stored for performing the above method.
  • An embodiment of the present invention provides a device for detecting an ambient temperature, as shown in FIG. 4, including:
  • a temperature detecting unit configured to detect a temperature value of each temperature test point under the working condition when the electronic device operates under a working condition
  • mapping logic unit configured to obtain a plurality of operating conditions of the electronic device, and a thermal resistance coefficient of the temperature test point to the heat generating device and the environment under each working condition, and each temperature testing point obtained by the temperature detecting unit Temperature value, generating mapping logic with ambient temperature;
  • the ambient temperature operation processing unit is configured to calculate, according to the working condition and the temperature value, a current ambient temperature of the electronic device by using the mapping logic, where the current ambient temperature is used as a basis for controlling the electronic device.
  • the temperature detection unit includes:
  • thermo test points are set at different positions inside the electronic device, and the temperature sensors are respectively placed at the temperature test points;
  • a temperature acquisition module configured to acquire a temperature value of each temperature test point of the electronic device, and convert the ambient temperature into a signal that can be measured
  • the mapping logic unit includes:
  • the thermal resistance coefficient module is configured to obtain a thermal resistance coefficient of the temperature test point inside the electronic device to the heat generating device and the environment under each working condition;
  • the ambient temperature operation processing unit includes:
  • the ambient temperature calculation module is configured to calculate an accurate ambient temperature based on the thermal resistance coefficient and the temperature value.
  • the thermal resistance coefficient module includes:
  • the first sub-module of the thermal resistance coefficient is set to measure the thermal resistance coefficient Rt 1 of the first test point to the heating device and the environment in the self-cooling system, and the heat of the second test point to the heating device and the environment. Resistance coefficient Rt 2 ;
  • the temperature collection module includes:
  • the ambient temperature calculation module includes:
  • the first sub-module of the ambient temperature is set to the equivalent power consumption Substituting the first formula or the second formula to calculate the ambient temperature
  • the thermal resistance coefficient module includes:
  • the second sub-module of the thermal resistance coefficient is set to measure the thermal resistance coefficients Rt 1 , Rt 2 , ..., Rt n of each temperature test point to the heating device and the environment in the self-cooling system using the thermal resistance test principle;
  • the temperature acquisition module includes:
  • the ambient temperature calculation module includes:
  • T 1 P*Rt 1 +T a
  • T 2 P*Rt 2 +T a
  • T n P*Rt n +T a
  • the obtained plurality of ambient temperatures T a are calculated by a selected algorithm to obtain an accurate ambient temperature T a .
  • the second sub-module of the ambient temperature comprises:
  • the ambient temperature calculation module includes:
  • Ambient temperature calculation sub-module set to remove The maximum and minimum values in the ambient temperature, and the remaining temperature values are averaged to obtain an accurate ambient temperature. Or will Average ambient temperature T a to obtain an accurate ambient temperature
  • the temperature acquisition module includes:
  • Test the third sub-module set to measure the temperature values T 1 , T 2 , ..., T n of each temperature test point under each working condition, and calculate the equivalent power consumption of the heating device under the current working conditions. ;
  • the thermal resistance coefficient module includes:
  • the third submodule of the thermal resistance coefficient is set to test the thermal resistance coefficients Rt 1 , Rt 2 , ..., Rt n under each working condition;
  • the thermal resistance coefficient from the temperature test point to the heating device and the environment changes with the change of the fan speed.
  • the thermal resistance coefficient at different fan speeds is
  • Rt 1 f(f 1 )*f(P 1 )
  • Rt 2 f(f 2 )*f(P 2 )
  • f(f 1 ) is a function of the fan speed f affecting the thermal resistance coefficient of the temperature test point 1
  • f(f 2 ) is a function of the influence of the fan speed f on the thermal resistance coefficient of the temperature test point 2
  • f(P 1 ) is a function of the equivalent power consumption P affecting the thermal resistance coefficient of the temperature test point 1
  • f(P 2 ) is equal
  • f(P n ) is a function of the equivalent power consumption affecting the thermal resistance coefficient of the temperature test point n;
  • the ambient temperature calculation module includes:
  • the third sub-module of ambient temperature set to calculate the exact ambient temperature under current operating conditions
  • Ta F( ⁇ )*F(P)
  • F( ⁇ ) is a function of the effect of fan speed on the ambient temperature
  • F(P) is a function of the equivalent power consumption affecting the ambient temperature.
  • Embodiments of the present invention provide an electronic device including a device for detecting an ambient temperature.
  • the advantage after using this scheme is that the ambient temperature detection algorithm is programmed into the software. When working, the precise ambient temperature can be calculated by the algorithm as long as the working conditions of the electronic device are known.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution can avoid the deviation of the ambient temperature detection signal caused by the heat radiation effect of the heat generating device inside the electronic device and other series of problems caused thereby, and improve the accuracy of the environmental temperature detection of the electronic device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种检测环境温度的方法、装置和电子设备,方法包括:获取电子设备的每种工作条件,以及在每一工作条件下,温度测试点到发热器件及环境的热阻系数,所述温度测试点的温度值(TT2......Tn),以及环境温度(Ta)(101);根据所述工作条件、热阻系数、温度测试点的温度值(TT2―..Tn)与环境温度(Ta)生成映射逻辑(102);通过所述映射逻辑计算出电子设备当前的环境温度(Ta),所述环境温度(Ta)作为控制所述电子设备的依据(103)。本方法可以避免由于电子设备内部发热器件的热辐射作用使环境温度(Ta)检测信号产生偏差及由此带来的其他一系列问题并提高电子设备环境温度(Ta)检测的准确性。

Description

一种检测环境温度的方法、装置和电子设备 技术领域
本文涉及但不限于电子设备检测技术,特别是指一种检测环境温度的方法、装置和电子设备。
背景技术
多数电子设备需要在较宽的温度范围内工作以及适应多种气候环境,因此温度是非常重要的工作参数,温度过高或过低都可能导致电子设备的性能恶化,甚至损坏电子设备。因此随着环境温度的变化,必须对这些电子设备的工作状态进行调整,才能使电子设备在宽温度范围内工作的同时满足可靠性,而实现这些功能的前提是对电子设备的环境温度进行检测。
相关的环境温度检测方法是在电子设备的进风口位置放置温度传感器直接检测环境温度,经温度检测电路处理后得到环境温度对应的电信号,提供给相关电路进行相应的控制。而电子设备基于安全、可靠性的原因必须安装在近似全封闭的机壳内,其内部发热器件的热辐射会导致温度传感器周围的环境温度升高,使环境温度检测信号产生偏差,因此产品设计时必须将温度传感器放置在尽量靠近进风口的位置。
相关技术存在的主要问题是:由于电子设备内部发热器件对温度传感器的热辐射作用,导致温度传感器周围的温度升高,使环境温度检测信号产生偏差,检测信号不能真实的反映产品工作的环境温度;
因此必须将温度传感器放置在靠近进风口的位置,这将导致电子产品设计时还面临如下问题:
发热器件必须放在远离环境温度检测传感器的位置,因为温度传感器测量值容易受装配位置影响,如靠近发热器件则测得的温度比实际温度高;
需要进行严格的抗扰设计,因为温度传感器必须靠近进风口,导致控制电路与检测电路的走线拉长,会引入较大的干扰信号;
结构设计上必须进行严格的考量,因为温度传感器所处的装配位置必须不受任何遮挡才能测量真实的环境温度,而进风口容易被灰尘覆盖,影响测试精度。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种检测环境温度的方法、装置和电子设备,能够减小电子设备内部发热器件对温度传感器的热辐射作用,使环境温度检测信号更加准确。
本发明的实施例提供一种检测环境温度的方法,应用于电子设备,方法包括:获取电子设备的多种工作条件,以及在每一工作条件下,温度测试点到发热器件及环境的热阻系数,所述温度测试点的温度值,以及环境温度;根据所述工作条件、热阻系数、温度测试点的温度值与环境温度生成映射逻辑;通过所述映射逻辑计算出电子设备当前的环境温度,所述当前环境温度作为控制所述电子设备的依据。
所述的方法中,获取电子设备的多种工作条件,以及在每一工作条件下,温度测试点到发热器件及环境的热阻系数,所述温度测试点的温度值,以及环境温度包括:在每一个工作条件下,获取电子设备内部设置了温度传感器的温度测试点到发热器件及环境的热阻系数;获取每个温度传感器检测到的温度值;根据所述热阻系数和温度值计算出精确的环境温度。
所述的方法中,获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:在自冷系统中,采用热阻测试原理测出第一测试点到发热器件及环境的热阻系数Rt1,第二测试点到发热器件及环境的热阻系数Rt2;获取每个温度传感器检测到的温度值包括:当温度监测点的数目是两个时,测试出电子设备在当前工作条件下第一测试点和第二测试点的温度T1和T2;根据热阻公式得到第一公式T1=P*Rt1+Ta,第二公式T2=P*Rt2+Ta,Ta为环境温度, P为发热器件的等效功耗;根据所述热阻系数和温度值计算出精确的环境温度包括:将第一公式、第二公式相减T1-T2=(P*Rt1+Ta)-(P*Rt2+Ta)=P*(Rt1-Rt2),变形后得到等效功耗
Figure PCTCN2016083673-appb-000001
将所述等效功耗
Figure PCTCN2016083673-appb-000002
代入第一公式或者第二公式,计算出精确的环境温度
Figure PCTCN2016083673-appb-000003
所述的方法中,获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:在自冷系统中,采用热阻测试原理测出每个温度测试点到发热器件及环境的热阻系数Rt1、Rt2,……,Rtn;获取每个温度传感器检测到的温度值包括:当温度测试点的数目n多于两个时,检测出电子设备在当前工作条件下每个温度测试点的温度值T1,T2,……,Tn;根据所述热阻系数和温度值计算出精确的环境温度包括:在自冷系统中,根据热阻公式T1=PRt1+Ta,T2=PRt2+Ta,……,Tn=(PRtn+Ta),得到
Figure PCTCN2016083673-appb-000004
计算出
Figure PCTCN2016083673-appb-000005
个环境温度Ta,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度。
所述的方法中,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度包括:去除
Figure PCTCN2016083673-appb-000006
个环境温度中的最大值和最小值,剩下的温度值求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000007
或将
Figure PCTCN2016083673-appb-000008
个环境温度Ta求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000009
所述的方法中,获取电子设备内部的温度测试点到发热器件及环境的热 阻系数包括:测试出每种工作条件下的热阻系数Rt1~Rtn;获取每个温度传感器检测到的温度值包括:测出每种工作条件下每个温度测试点的温度值T1,T2,……,Tn,计算出当前的工作条件下发热器件的等效功耗P;在风冷系统中,温度测试点到发热器件及环境的热阻系数随着风扇转速的变化而变化,不同风扇转速下的热阻系数是Rt1=f(f1)*f(P1),Rt2=f(f2)*f(P2),……,Rtn=f(fn)*f(Pn),f(fn)是风扇转速f对温度测试点n的热阻系数产生影响的函数,f(P1)是等效功耗P对温度测试点1的热阻系数产生影响的函数,f(P2)是等效功耗P对温度测试点2的热阻系数产生影响的函数,f(Pn)是等效功耗P对温度测试点n的热阻系数产生影响的函数;根据热阻系数和温度值计算出精确的环境温度包括:计算出不同工作条件下环境温度与风扇转速和等效功耗的函数关系Ta=F(ω)*F(P),F(ω)是风扇转速对环境温度产生影响的函数,F(P)是等效功耗对环境温度产生影响的函数。
一种检测环境温度的装置,包括:温度检测单元,设置为当电子设备工作在一个工作条件下时,在该工作条件下检测到每个温度测试点的温度值,以及环境温度;映射逻辑单元,设置为获取电子设备的多种工作条件,以及每一工作条件下,温度测试点到发热器件及环境的热阻系数,和所述温度检测单元获得的每个温度测试点的温度值,与环境温度生成映射逻辑;环境温度运算处理单元,设置为根据所述工作条件和温度值,通过所述映射逻辑计算出电子设备当前的环境温度,所述环境温度作为控制所述电子设备的依据。
所述的装置中,温度检测单元包括:设置在电子设备内部不同位置的温度测试点上的温度传感器,在所述温度测试点处分别进行放置;温度采集模块,设置为获取电子设备的每个温度测试点的温度值,将环境温度转换成可供测量的信号;映射逻辑单元包括:热阻系数模块,设置为在每一个工作条件下,获取电子设备内部的温度测试点到发热器件及环境的热阻系数;环境温度运算处理单元包括:环境温度计算模块,设置为根据所述热阻系数和温度值计算出精确的环境温度。
所述的装置中,所述热阻系数模块包括:热阻系数第一子模块,设置为 在自冷系统中,采用热阻测试原理测出第一测试点到发热器件及环境的热阻系数Rt1,第二测试点到发热器件及环境的热阻系数Rt2;所述温度采集模块包括:测试第一子模块,设置为当温度监测点的数目是两个时,测试出电子设备在当前工作条件下第一测试点和第二测试点的温度T1和T2;热阻公式第一子模块,设置为根据热阻公式得到第一公式T1=P*Rt1+Ta,第二公式T2=P*Rt2+Ta,Ta为环境温度,P为发热器件的等效功耗;所述环境温度计算模块包括:等效功耗第一子模块,设置为将第一公式、第二公式相减T1-T2=(P*Rt1+Ta)-(P*Rt2+Ta)=P*(Rt1-Rt2),变形后得到等效功耗
Figure PCTCN2016083673-appb-000010
环境温度第一子模块,设置为将所述等效功耗
Figure PCTCN2016083673-appb-000011
代入第一公式或者第二公式算出环境温度
Figure PCTCN2016083673-appb-000012
所述的装置中,所述热阻系数模块包括:热阻系数第二子模块,设置为在自冷系统中,采用热阻测试原理测出每个温度测试点到发热器件及环境的热阻系数Rt1、Rt2,……,Rtn;温度采集模块包括:测试第二子模块,设置为当温度监测点的数目n多于两个时,检测出电子设备在当前工作条件下每个温度测试点的温度值T1,T2,……,Tn;环境温度计算模块包括:环境温度第二子模块,设置为在自冷系统中,根据热阻公式T1=P*Rt1+Ta,T2=P*Rt2+Ta,……,Tn=P*Rtn+Ta,得到
Figure PCTCN2016083673-appb-000013
计算出
Figure PCTCN2016083673-appb-000014
个环境温度Ta,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度Ta
所述的装置中,所述环境温度计算模块包括:环境温度计算子模块,设 置为去除
Figure PCTCN2016083673-appb-000015
个环境温度中的最大值和最小值,剩下的温度值求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000016
或将
Figure PCTCN2016083673-appb-000017
个环境温度Ta求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000018
所述的装置中,所述温度采集模块包括:测试第三子模块,设置为测出每种工作条件下每个温度测试点的温度值T1,T2,……,Tn,计算出当前的工作条件下发热器件的等效功耗P;所述热阻系数模块包括:热阻系数第三子模块,设置为测试出每种工作条件下的热阻系数Rt1、Rt2,……,Rtn;在风冷系统中,温度测试点到发热器件及环境的热阻系数随着风扇转速的变化而变化,不同风扇转速下的热阻系数是Rt1=f(f1)*f(P1),Rt2=f(f2)*f(P2),……,Rtn=f(fn)*f(Pn),f(fn)是风扇转速对温度测试点n的热阻系数产生影响的函数,f(Pn)是等效功耗对温度测试点n的热阻系数产生影响的函数;
所述的装置中,所述环境温度计算模块包括:环境温度第三子模块,设置为计算出当前的工作条件下精确的环境温度Ta=F(ω)*F(P),F(ω)是风扇转速对环境温度产生影响的函数,F(P)是等效功耗对环境温度产生影响的函数。
一种电子设备,包括检测环境温度的装置。
本发明实施例的上述技术方案的有益效果如下:能够避免电子设备内部发热器件的热辐射作用使环境温度检测信号产生的偏差及由此带来的其他一系列问题,提高电子设备环境温度检测的准确性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1表示本发明实施例一种检测环境温度的方法流程图;
图2表示本发明实施例中两点测试的流程图;
图3表示本发明实施例中多点测试的流程图;
图4表示本发明实施例一种检测环境温度的装置模块图。
本发明的实施方式
下面将结合附图及具体实施例进行详细描述。
针对上述电子设备在进风口放置温度传感器直接测量环境温度的缺陷,本发明实施例提供一种检测环境温度的方法,如图1所示,方法包括:
101:获取电子设备的多种工作条件,以及在每一工作条件下,温度测试点到发热器件及环境的热阻系数,每个温度测试点的温度值;
当电子设备工作在一个工作条件下时,在该工作条件下检测每个所述温度测试点的温度值;
102:根据所述工作条件、热阻系数、温度测试点的温度值与环境温度生成映射逻辑;
103:根据所述工作条件和温度值,通过所述映射逻辑计算出电子设备当前的环境温度,所述当前环境温度作为控制所述电子设备的依据。
本发明实施例所提供的技术,能够避免电子设备内部发热器件的热辐射作用导致温度检测信号产生的偏差及由此带来的其他一系列问题,提高了检测电子设备的环境温度的准确性。
本发明实施例中,利用热传导原理来计算电子设备工作的环境温度,为便于理解,在电子设备内部不同位置设置温度测试点,在所述温度测试点处分别放置温度传感器;首先以在电子设备的电路板上安置两个温度测试点的方法进行描述,之后将该技术扩展到复杂的环境温度测试环境中。
如图2所示,在电路板靠近发热器件和远离发热器件的位置分别放置温度第一测试点和第二测试点,其对应温度分别为T1和T2,以及,Ta是环境温度,P是发热器件的等效功耗。在一个可选实施例中,获取电子设备的多种工作条件,以及在每一工作条件下,温度测试点到发热器件及环境的热阻系数,每个温度测试点的温度值,包括:
如图2所示,在每一个工作条件下,获取电子设备内部的温度测试点到发热器件及环境的热阻系数;
获取每个温度测试点上温度传感器检测到的温度值;
根据所述热阻系数和温度值计算出精确的环境温度。精确的环境温度是指所测量出的环境温度与实际的环境温度之间的误差应当小于预先设定的温度误差阈值。
在一个可选实施例中,获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:
在自冷系统中,采用热阻测试原理测出第一测试点到发热器件及环境的热阻系数Rt1,第二测试点到发热器件及环境的热阻系数Rt2
获取每个温度传感器检测到的温度值包括:
当温度测试点的数目是两个时,测试出电子设备在当前工作条件下第一测试点和第二测试点的温度T1和T2
根据热阻公式得到第一公式T1=P*Rt1+Ta,第二公式T2=P*Rt2+Ta,Ta为环境温度,P为发热器件的等效功耗;
根据所述热阻系数和温度值计算出精确的环境温度包括:
将第一公式、第二公式相减T1-T2=(P*Rt1+Ta)-(P*Rt2+Ta)=P*(Rt1-Rt2),变形后得到等效功耗
Figure PCTCN2016083673-appb-000019
将所述等效功耗
Figure PCTCN2016083673-appb-000020
代入第一公式或者第二公式,计算出环境温度
Figure PCTCN2016083673-appb-000021
因此只要在电子设备的每种工作条件下预先测试出Rt1、Rt2值,再测试出电子设备在该工作条件下的T1和T2值,通过环境温度计算公式就能算出该工作条件下电子设备工作的环境温度Ta
利用所描述的测试原理在复杂的电子设备中也能实现精确的环境温度 检测,假设复杂的电子设备中温度监测点为多个,如图3所示,其测试原理在一个可选实施例中,获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:
在自冷系统中,采用热阻测试原理测出每个温度测试点到发热器件及环境的热阻系数Rt1、Rt2,……,Rtn
获取每个温度传感器检测到的温度值包括:
当温度测试点的数目n多于两个时,检测出电子设备在当前工作条件下每个温度测试点的温度值T1,T2,……,Tn
根据所述热阻系数和温度值计算出精确的环境温度包括:
在自冷系统中,根据热阻公式T1=P*Rt1+Ta,T2=P*Rt2+Ta,……,Tn=(P*Rtn+Ta),得到
Figure PCTCN2016083673-appb-000022
计算出
Figure PCTCN2016083673-appb-000023
个环境温度Ta,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度。
算法不限于如下几种。在一个可选实施例中,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度包括:
去除
Figure PCTCN2016083673-appb-000024
个环境温度中的最大值和最小值,剩下的温度值求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000025
或将
Figure PCTCN2016083673-appb-000026
个环境温度Ta求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000027
电子设备设计时具体使用何种方法根据电子设备的实际情况决定。
该方法也适用于风冷系统。在风冷系统的电子设备中,当风扇转速变化时,两个温度测试点之间的热阻系数也发生相应的变化。在一个可选实施例 中,
获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:
测试出多种工作条件下的热阻系数Rt1~Rtn
获取每个温度传感器检测到的温度值包括:
测出每种工作条件下每个温度测试点的温度值T1,T2,……,Tn,计算出当前的工作条件下发热器件的等效功耗P;
在风冷系统中,温度测试点到发热器件及环境的热阻系数随着风扇转速的变化而变化,不同风扇转速下的热阻系数是
Rt1=f(f1)*f(P1)
Rt2=f(f2)*f(P2)
……
Rtn=f(fn)*f(Pn),
f(f1)是风扇转速f对温度测试点1的热阻系数产生影响的函数,f(f2)是风扇转速f对温度测试点2的热阻系数产生影响的函数,f(fn)是风扇转速f对温度测试点n的热阻系数产生影响的函数,f(P1)是等效功耗P对温度测试点1的热阻系数产生影响的函数,f(P2)是等效功耗P对温度测试点2的热阻系数产生影响的函数,f(Pn)是等效功耗P对温度测试点n的热阻系数产生影响的函数;
根据热阻系数和温度值计算出精确的环境温度包括:
计算出不同工作条件下环境温度与风扇转速和等效功耗的函数关系:
Ta=F(ω)*F(P)
F(ω)是风扇转速对环境温度产生影响的函数,F(P)是等效功耗对环境温度产生影响的函数。
将环境温度检测算法进行编程写入应用业务逻辑,工作时,只要知道风扇的转速和电子设备的工作条件就可通过应用业务逻辑中的算法计算出精确的环境温度。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存 储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本发明实施例提供一种检测环境温度的装置,如图4所示,包括:
温度检测单元,设置为当电子设备工作在一个工作条件下时,在该工作条件下检测每个温度测试点的温度值;
映射逻辑单元,设置为获取的电子设备的多种工作条件,以及每一工作条件下,温度测试点到发热器件及环境的热阻系数,和所述温度检测单元获得的每个温度测试点的温度值,与环境温度生成映射逻辑;
环境温度运算处理单元,设置为根据所述工作条件和温度值,通过所述映射逻辑计算出电子设备当前的环境温度,所述当前环境温度作为控制所述电子设备的依据。
应用所提供的技术,能够避免由于电子设备内部发热器件的热辐射作用使温度检测信号产生的偏差及由此带来的其他一系列问题,提高电子设备环境温度检测的准确性。
在一个可选实施例中,
温度检测单元包括:
温度传感器,在电子设备内部不同位置设置温度测试点,在所述温度测试点处分别放置所述温度传感器;
温度采集模块,设置为获取电子设备的每个温度测试点的温度值,将环境温度转换成可供测量的信号;
映射逻辑单元包括:
热阻系数模块,设置为在每一个工作条件下,获取电子设备内部的温度测试点到发热器件及环境的热阻系数;
环境温度运算处理单元包括:
环境温度计算模块,设置为根据所述热阻系数和温度值计算出精确的环境温度。
在一个可选实施例中,
所述热阻系数模块包括:
热阻系数第一子模块,设置为在自冷系统中,采用热阻测试原理测出第 一测试点到发热器件及环境的热阻系数Rt1,第二测试点到发热器件及环境的热阻系数Rt2
所述温度采集模块包括:
测试第一子模块,设置为当温度监测点的数目是两个时,测试出电子设备在当前工作条件下第一测试点和第二测试点的温度T1和T2
热阻公式第一子模块,设置为根据热阻公式得到第一公式T1=P*Rt1+Ta,第二公式T2=P*Rt2+Ta,Ta为环境温度,P为发热器件的等效功耗;
所述环境温度计算模块包括:
等效功耗第一子模块,设置为将第一公式、第二公式相减T1-T2=(P*Rt1+Ta)-(P*Rt2+Ta)=P*(Rt1-Rt2),变形后得到等效功耗
Figure PCTCN2016083673-appb-000028
环境温度第一子模块,设置为将所述等效功耗
Figure PCTCN2016083673-appb-000029
代入第一公式或者第二公式算出环境温度
Figure PCTCN2016083673-appb-000030
在一个可选实施例中,
所述热阻系数模块包括:
热阻系数第二子模块,设置为在自冷系统中,采用热阻测试原理测出每个温度测试点到发热器件及环境的热阻系数Rt1、Rt2,……,Rtn
温度采集模块包括:
测试第二子模块,设置为当温度监测点的数目n多于两个时,检测出电子设备在当前工作条件下每个温度测试点的温度值T1,T2,……,Tn
环境温度计算模块包括:
环境温度第二子模块,设置为在自冷系统中,根据热阻公式T1=P*Rt1+Ta,T2=P*Rt2+Ta,……,Tn=P*Rtn+Ta,得到
Figure PCTCN2016083673-appb-000031
计算出
Figure PCTCN2016083673-appb-000032
个环境温度Ta,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度Ta
在一个可选实施例中,所述环境温度第二子模块包括:
所述环境温度计算模块包括:
环境温度计算子模块,设置为去除
Figure PCTCN2016083673-appb-000033
个环境温度中的最大值和最小值,剩下的温度值求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000034
或将
Figure PCTCN2016083673-appb-000035
个环境温度Ta求平均值得到精确的环境温度
Figure PCTCN2016083673-appb-000036
在一个可选实施例中,所述温度采集模块包括:
测试第三子模块,设置为测出每种工作条件下每个温度测试点的温度值T1,T2,……,Tn,计算出当前的工作条件下发热器件的等效功耗P;
所述热阻系数模块包括:
热阻系数第三子模块,设置为测试出每种工作条件下的热阻系数Rt1、Rt2,……,Rtn
在风冷系统中,温度测试点到发热器件及环境的热阻系数随着风扇转速的变化而变化,不同风扇转速下的热阻系数是
Rt1=f(f1)*f(P1)
Rt2=f(f2)*f(P2)
……
Rtn=f(fn)*f(Pn),
f(f1)是风扇转速f对温度测试点1的热阻系数产生影响的函数,f(f2)是风扇转速f对温度测试点2的热阻系数产生影响的函数,f(fn)是风扇转速对温度测试点n的热阻系数产生影响的函数,f(P1)是等效功耗P对温度测试点1的热阻系数产生影响的函数,f(P2)是等效功耗P对温度测试点2的热阻系数产生影响的函数,f(Pn)是等效功耗对温度测试点n的热阻系数产生影响的函数;
所述环境温度计算模块包括:
环境温度第三子模块,设置为计算出当前的工作条件下精确的环境温度
Ta=F(ω)*F(P),F(ω)是风扇转速对环境温度产生影响的函数,F(P)是等效功耗对环境温度产生影响的函数。
本发明实施例提供一种电子设备,包括检测环境温度的装置。
采用本方案之后的优势是:将环境温度检测算法进行编程写入软件,工作时,只要知道电子设备的工作条件就可通过算法计算出精确的环境温度。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
以上所述是本发明的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
上述技术方案能够避免电子设备内部发热器件的热辐射作用使环境温度检测信号产生的偏差及由此带来的其他一系列问题,提高电子设备环境温度检测的准确性。

Claims (13)

  1. 一种检测环境温度的方法,应用于电子设备,方法包括:
    获取电子设备的多种工作条件,以及在每一工作条件下,温度测试点到发热器件及环境的热阻系数,所述温度测试点的温度值,以及环境温度;
    根据所述工作条件、热阻系数、温度测试点的温度值与环境温度生成映射逻辑;
    通过所述映射逻辑计算出电子设备当前的环境温度,所述当前环境温度作为控制所述电子设备的依据。
  2. 根据权利要求1所述的方法,其中,获取电子设备的多种工作条件,以及在每一工作条件下,温度测试点到发热器件及环境的热阻系数,所述温度测试点的温度值,以及环境温度包括:
    在每一个工作条件下,获取电子设备内部设置了温度传感器的温度测试点到发热器件及环境的热阻系数;
    获取每个温度传感器检测到的温度值;
    根据所述热阻系数和温度值计算出精确的环境温度。
  3. 根据权利要求2所述的方法,其中,
    获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:
    在自冷系统中,采用热阻测试原理测出第一测试点到发热器件及环境的热阻系数Rt1,第二测试点到发热器件及环境的热阻系数Rt2
    获取每个温度传感器检测到的温度值包括:
    当温度监测点的数目是两个时,测试出电子设备在当前工作条件下第一测试点和第二测试点的温度T1和T2
    根据热阻公式得到第一公式T1=P*Rt1+Ta,第二公式T2=P*Rt2+Ta,Ta为环境温度,P为发热器件的等效功耗;
    根据所述热阻系数和温度值计算出精确的环境温度包括:
    将第一公式、第二公式相减T1-T2=(P*Rt1+Ta)-(P*Rt2+Ta)=P*(Rt1-Rt2),变形后得到等效功耗
    Figure PCTCN2016083673-appb-100001
    将所述等效功耗
    Figure PCTCN2016083673-appb-100002
    代入第一公式或者第二公式,计算出精确的环境温度
    Figure PCTCN2016083673-appb-100003
  4. 根据权利要求2所述的方法,其中,
    获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:
    在自冷系统中,采用热阻测试原理测出每个温度测试点到发热器件及环境的热阻系数Rt1、Rt2,……,Rtn
    获取每个温度传感器检测到的温度值包括:
    当温度测试点的数目n多于两个时,检测出电子设备在当前工作条件下每个温度测试点的温度值T1,T2,……,Tn
    根据所述热阻系数和温度值计算出精确的环境温度包括:
    在自冷系统中,根据热阻公式T1=P*Rt1+Ta,T2=P*Rt2+Ta,……,Tn=(P*Rtn+Ta),得到
    Figure PCTCN2016083673-appb-100004
    计算出
    Figure PCTCN2016083673-appb-100005
    个环境温度Ta,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度。
  5. 根据权利要求4所述的方法,其中,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度包括:
    去除
    Figure PCTCN2016083673-appb-100006
    个环境温度中的最大值和最小值,剩下的温度值求平均值得到精确的环境温度
    Figure PCTCN2016083673-appb-100007
    或将
    Figure PCTCN2016083673-appb-100008
    个环境温度Ta求平均值得到精确的环境温度
    Figure PCTCN2016083673-appb-100009
  6. 根据权利要求2所述的方法,其中,获取电子设备内部的温度测试点到发热器件及环境的热阻系数包括:
    测试出每种工作条件下的热阻系数Rt1~Rtn
    获取每个温度传感器检测到的温度值包括:
    测出每种工作条件下每个温度测试点的温度值T1,T2,……,Tn,计算出当前的工作条件下发热器件的等效功耗P;
    在风冷系统中,温度测试点到发热器件及环境的热阻系数随着风扇转速的变化而变化,不同风扇转速下的热阻系数是
    Rt1=f(f1)*f(P1)
    Rt2=f(f2)*f(P2)
    ……
    Rtn=f(fn)*f(Pn),
    f(fn)是风扇转速f对温度测试点n的热阻系数产生影响的函数,f(Pn)是等效功耗P对温度测试点n的热阻系数产生影响的函数;
    根据热阻系数和温度值计算出精确的环境温度包括:
    计算出不同工作条件下环境温度与风扇转速和等效功耗的函数关系
    Ta=F(ω)*F(P)
    F(ω)是风扇转速对环境温度产生影响的函数,F(P)是等效功耗对环境温度产生影响的函数。
  7. 一种检测环境温度的装置,包括:
    温度检测单元,设置为当电子设备工作在一个工作条件下时,在该工作条件下检测到每个温度测试点的温度值,以及环境温度;
    映射逻辑单元,设置为获取电子设备的多种工作条件,以及每一工作条件下,温度测试点到发热器件及环境的热阻系数,和所述温度检测单元获得的每个温度测试点的温度值,与环境温度生成映射逻辑;
    环境温度运算处理单元,设置为根据所述工作条件和温度值,通过所述映射逻辑计算出电子设备当前的环境温度,所述环境温度作为控制所述电子设备的依据。
  8. 根据权利要求7所述的装置,其中,
    温度检测单元包括:
    设置在电子设备内部不同位置的温度测试点上的温度传感器;
    温度采集模块,设置为获取电子设备的每个温度测试点的温度值,将环境温度转换成可供测量的信号;
    映射逻辑单元包括:
    热阻系数模块,设置为在每一个工作条件下,获取电子设备内部的温度测试点到发热器件及环境的热阻系数;
    环境温度运算处理单元包括:
    环境温度计算模块,设置为根据所述热阻系数和温度值计算出精确的环境温度。
  9. 根据权利要求8所述的装置,其中,
    所述热阻系数模块包括:
    热阻系数第一子模块,设置为在自冷系统中,采用热阻测试原理测出第一测试点到发热器件及环境的热阻系数Rt1,第二测试点到发热器件及环境的热阻系数Rt2
    所述温度采集模块包括:
    测试第一子模块,设置为当温度监测点的数目是两个时,测试出电子设备在当前工作条件下第一测试点和第二测试点的温度T1和T2
    热阻公式第一子模块,设置为根据热阻公式得到第一公式T1=P*Rt1+Ta,第二公式T2=P*Rt2+Ta,Ta为环境温度,P为发热器件的等效功耗;
    所述环境温度计算模块包括:
    等效功耗第一子模块,设置为将第一公式、第二公式相减T1-T2=(P*Rt1+Ta)-(P*Rt2+Ta)=P*(Rt1-Rt2),变形后得到等效功耗
    Figure PCTCN2016083673-appb-100010
    环境温度第一子模块,设置为将所述等效功耗
    Figure PCTCN2016083673-appb-100011
    代入第一公式或者第二公式算出环境温度
    Figure PCTCN2016083673-appb-100012
  10. 根据权利要求8所述的装置,其中,
    所述热阻系数模块包括:
    热阻系数第二子模块,设置为在自冷系统中,采用热阻测试原理测出每个温度测试点到发热器件及环境的热阻系数Rt1、Rt2,……,Rtn
    温度采集模块包括:
    测试第二子模块,设置为当温度监测点的数目n多于两个时,检测出电子设备在当前工作条件下每个温度测试点的温度值T1,T2,……,Tn
    环境温度计算模块包括:
    环境温度第二子模块,设置为在自冷系统中,根据热阻公式T1=P*Rt1+Ta,T2=P*Rt2+Ta,……,Tn=P*Rtn+Ta,得到
    Figure PCTCN2016083673-appb-100013
    计算出
    Figure PCTCN2016083673-appb-100014
    个环境温度Ta,将得到的多个环境温度Ta采用选定的算法计算得到精确的环境温度Ta
  11. 根据权利要求10所述的装置,其中,所述环境温度计算模块还包括:
    环境温度计算子模块,设置为去除
    Figure PCTCN2016083673-appb-100015
    个环境温度中的最大值和最小值,剩下的温度值求平均值得到精确的环境温度
    Figure PCTCN2016083673-appb-100016
    或将
    Figure PCTCN2016083673-appb-100017
    个环境温度Ta求平均值得到精确的环境温度
    Figure PCTCN2016083673-appb-100018
  12. 根据权利要求8所述的装置,其中,
    所述温度采集模块包括:
    测试第三子模块,设置为测出每种工作条件下每个温度测试点的温度值T1,T2,……,Tn,计算出当前的工作条件下发热器件的等效功耗P;
    所述热阻系数模块包括:
    热阻系数第三子模块,设置为测试出每种工作条件下的热阻系数Rt1、 Rt2,……,Rtn
    在风冷系统中,温度测试点到发热器件及环境的热阻系数随着风扇转速的变化而变化,不同风扇转速下的热阻系数是
    Rt1=f(f1)*f(P1)
    Rt2=f(f2)*f(P2)
    ……
    Rtn=f(fn)*f(Pn),
    f(fn)是风扇转速对温度测试点n的热阻系数产生影响的函数,f(Pn)是等效功耗对温度测试点n的热阻系数产生影响的函数;
    所述环境温度计算模块包括:
    环境温度第三子模块,设置为计算出当前的工作条件下精确的环境温度Ta=F(ω)*F(P),F(ω)是风扇转速对环境温度产生影响的函数,F(P)是等效功耗对环境温度产生影响的函数。
  13. 一种电子设备,包括权利要求7至12任一项中的检测环境温度的装置。
PCT/CN2016/083673 2015-09-23 2016-05-27 一种检测环境温度的方法、装置和电子设备 WO2017049942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510611651.9A CN106546357B (zh) 2015-09-23 2015-09-23 一种检测环境温度的方法、装置和电子设备
CN201510611651.9 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017049942A1 true WO2017049942A1 (zh) 2017-03-30

Family

ID=58365066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083673 WO2017049942A1 (zh) 2015-09-23 2016-05-27 一种检测环境温度的方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN106546357B (zh)
WO (1) WO2017049942A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138036A (zh) * 2020-01-19 2021-07-20 北京小米移动软件有限公司 温度检测方法及装置、电子设备
CN113252197A (zh) * 2021-05-31 2021-08-13 东风商用车有限公司 一种商用车变速箱油温测量方法及测量系统
CN114968730A (zh) * 2022-08-02 2022-08-30 深圳比特微电子科技有限公司 确定冷却液温度的方法、装置、区块链服务器和存储介质
CN115020832A (zh) * 2022-06-08 2022-09-06 东莞新能安科技有限公司 电芯排布方法、装置、设备及计算机存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107806904A (zh) * 2017-10-31 2018-03-16 宝力马(苏州)传感技术有限公司 壁挂式温湿度变送器及安装墙体温湿度补偿方法
JP7079955B2 (ja) * 2017-12-29 2022-06-03 ナガノサイエンス株式会社 温度特性評価方法
CN110193389A (zh) * 2018-02-27 2019-09-03 株式会社岛津制作所 加热箱
US11428581B2 (en) * 2018-04-25 2022-08-30 Semiconductor Components Industries, Llc Methods and apparatus for predictive modeling in an imaging system
CN108731846A (zh) * 2018-05-21 2018-11-02 出门问问信息科技有限公司 一种环境温度确定方法及装置、存储介质、电子设备
CN109028445A (zh) * 2018-06-19 2018-12-18 珠海格力电器股份有限公司 温湿度传感器的安装方法、空调器及控制方法
CN109990440B (zh) * 2019-04-16 2020-08-14 珠海格力电器股份有限公司 控制器温度补偿方法、装置及控制器
CN113835948A (zh) * 2020-06-23 2021-12-24 华为技术有限公司 温度检测方法、温度检测装置及电子设备
CN113720494A (zh) * 2021-08-09 2021-11-30 Oppo广东移动通信有限公司 温度检测方法、装置、设备及存储介质
CN117723162B (zh) * 2024-02-07 2024-06-21 荣耀终端有限公司 电池温度检测电路、电子设备和电池温度检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157897A (en) * 1997-01-31 2000-12-05 Nec Corporation Apparatus for monitoring ventilation of integrated circuits in electronic apparatus
CN101527274A (zh) * 2008-03-03 2009-09-09 佳能安内华股份有限公司 基板表面温度测量方法、基板处理设备、半导体器件制造方法
CN102192795A (zh) * 2010-02-24 2011-09-21 索尼公司 电子装置和控制电子装置的方法
CN102749151A (zh) * 2007-12-04 2012-10-24 霍尼韦尔国际公司 用于确定周围温度的系统
CN104236736A (zh) * 2013-06-24 2014-12-24 远升科技股份有限公司 用于测定电子装置的环境温度的方法和系统
WO2015107892A1 (ja) * 2014-01-16 2015-07-23 パナソニックIpマネジメント株式会社 電気素子と温度検知器とを備えた電子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495821A (zh) * 2005-03-08 2009-07-29 威尔斯-Cti股份有限公司 集成电路插座中的温度感测与预测
US20080234953A1 (en) * 2007-03-22 2008-09-25 Ignowski James S Power estimation for a semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157897A (en) * 1997-01-31 2000-12-05 Nec Corporation Apparatus for monitoring ventilation of integrated circuits in electronic apparatus
CN102749151A (zh) * 2007-12-04 2012-10-24 霍尼韦尔国际公司 用于确定周围温度的系统
CN101527274A (zh) * 2008-03-03 2009-09-09 佳能安内华股份有限公司 基板表面温度测量方法、基板处理设备、半导体器件制造方法
CN102192795A (zh) * 2010-02-24 2011-09-21 索尼公司 电子装置和控制电子装置的方法
CN104236736A (zh) * 2013-06-24 2014-12-24 远升科技股份有限公司 用于测定电子装置的环境温度的方法和系统
WO2015107892A1 (ja) * 2014-01-16 2015-07-23 パナソニックIpマネジメント株式会社 電気素子と温度検知器とを備えた電子装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138036A (zh) * 2020-01-19 2021-07-20 北京小米移动软件有限公司 温度检测方法及装置、电子设备
CN113138036B (zh) * 2020-01-19 2023-07-18 北京小米移动软件有限公司 温度检测方法及装置、电子设备
CN113252197A (zh) * 2021-05-31 2021-08-13 东风商用车有限公司 一种商用车变速箱油温测量方法及测量系统
CN113252197B (zh) * 2021-05-31 2024-05-24 东风商用车有限公司 一种商用车变速箱油温测量方法及测量系统
CN115020832A (zh) * 2022-06-08 2022-09-06 东莞新能安科技有限公司 电芯排布方法、装置、设备及计算机存储介质
CN115020832B (zh) * 2022-06-08 2024-05-28 东莞新能安科技有限公司 电芯排布方法、装置、设备及计算机存储介质
CN114968730A (zh) * 2022-08-02 2022-08-30 深圳比特微电子科技有限公司 确定冷却液温度的方法、装置、区块链服务器和存储介质
CN114968730B (zh) * 2022-08-02 2022-11-04 深圳比特微电子科技有限公司 确定冷却液温度的方法、装置、区块链服务器和存储介质

Also Published As

Publication number Publication date
CN106546357B (zh) 2020-06-02
CN106546357A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2017049942A1 (zh) 一种检测环境温度的方法、装置和电子设备
JP2002318162A (ja) 異常の検知方法および保護装置、並びに、温度の推定方法および推定装置
WO2021047235A1 (zh) 温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质
US20150050121A1 (en) Fan control system and method for controlling fan speed
US9354126B2 (en) Calibrating thermal behavior of electronics
US9482632B2 (en) Abnormality detection device
JP2013531248A (ja) 赤外線温度測定、及び、その安定化
CN116066344B (zh) 基于igbt的电动压缩机控制方法及装置
CN104990643A (zh) 一种基于双温度传感器的终端环境温度测试方法
TW201818088A (zh) 溫度測定裝置、檢查裝置、及控制方法
JP2018080920A (ja) 温度測定装置、検査装置、および制御方法
van der Broeck et al. Thermal monitoring of power electronic modules with minimal sensing effort
CN206161182U (zh) 一种电子元器件测试恒温系统
CN105157866B (zh) 测量电路
Schulz et al. Correlating NTC-reading and chip-Temperature in power electronic modules
CN101741067A (zh) 电子装置的过热保护装置和方法
US20200117254A1 (en) Thermal environment evaluation and compensation for computer components
SE534904C2 (sv) Temperaturmätningssystem och metod för ett temperaturmätningssystem innefattande åtminstone ett termoelement
CN115468671A (zh) 一种功率半导体器件的芯片结温估算方法、装置、设备及介质
CN105509893B (zh) 热成像在线测温方法
JP6294960B2 (ja) 湿度測定装置
Ishii et al. Development of algorithms for real-time estimation of smartphone surface temperature using embedded processor
TW201326800A (zh) 風扇測試裝置及測試方法
KR101452615B1 (ko) 온도 측정 방법
CN109975684B (zh) 一种芯片测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847824

Country of ref document: EP

Kind code of ref document: A1