WO2021047235A1 - 温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质 - Google Patents

温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质 Download PDF

Info

Publication number
WO2021047235A1
WO2021047235A1 PCT/CN2020/097360 CN2020097360W WO2021047235A1 WO 2021047235 A1 WO2021047235 A1 WO 2021047235A1 CN 2020097360 W CN2020097360 W CN 2020097360W WO 2021047235 A1 WO2021047235 A1 WO 2021047235A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
external environment
component
detected
interval
Prior art date
Application number
PCT/CN2020/097360
Other languages
English (en)
French (fr)
Inventor
李涛
陈万兴
唐政清
钟金扬
韦国全
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021047235A1 publication Critical patent/WO2021047235A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers

Definitions

  • the present disclosure relates to the technical field of temperature detection, and in particular to a temperature detection device and method, electrical equipment, and non-transitory computer-readable storage media.
  • the ambient temperature is detected by setting a temperature sensor inside the device.
  • a temperature detection device including: a housing with an opening provided on the housing; a first temperature sensor, a component located in the housing and arranged inside the housing One side of the component is configured to detect the peripheral temperature of the component; and, the second temperature sensor, located in the housing and arranged at the opening, is configured to detect the temperature of the external environment, wherein the peripheral temperature of the component is The temperature of the environment is used to determine the corrected temperature of the external environment.
  • the temperature detection device further includes a calculation component configured to determine the corrected temperature of the external environment according to the peripheral temperature of the component and the temperature of the external environment.
  • the calculation component is further configured to: calculate the temperature difference between the detected peripheral temperature of the component and the detected temperature of the external environment; obtain each interval of the preset temperature difference, each interval of the peripheral temperature, And the corresponding relationship of the compensation data; based on the corresponding relationship, according to the interval of the calculated temperature difference and the interval of the detected component's surrounding temperature, find the corresponding compensation data; and, according to the detected external environment temperature and corresponding Compensation data to determine the corrected temperature of the external environment.
  • the distance between the first temperature sensor and the preset component of the multiple components is greater than the distance from other components; and the preset component is Determined based on at least one of temperature factors or distance factors.
  • a circuit board is arranged inside the housing, and the components are arranged on the circuit board; and at least one of the first temperature sensor or the second temperature sensor is arranged on the circuit board.
  • the second temperature sensor when the second temperature sensor is disposed on the circuit board, the second temperature sensor is located in a non-copper-clad area of the circuit board.
  • a slot is provided around the area where the second temperature sensor is located.
  • the opening is located at the bottom of the housing.
  • the temperature detection device further includes: components located inside the housing.
  • an electrical device including any one of the aforementioned temperature detection devices.
  • the electrical equipment is an air conditioner or a refrigerator.
  • a temperature detection method including: acquiring the peripheral temperature of a detected component, wherein the component is located in a housing of the temperature detection device; and acquiring an opening in the housing The temperature of the external environment detected at the location; and, based on the detected peripheral temperature of the component and the detected temperature of the external environment, determine the corrected temperature of the external environment.
  • determining the corrected temperature of the external environment according to the detected peripheral temperature of the component and the detected temperature of the external environment includes: calculating the temperature difference between the detected peripheral temperature of the component and the detected temperature of the external environment ; Obtain each interval of the preset temperature difference, each interval of the surrounding temperature, and the corresponding relationship of the compensation data; based on the corresponding relationship, according to the interval of the calculated temperature difference and the interval of the detected component's surrounding temperature To find the corresponding compensation data; and, according to the detected temperature of the external environment and the corresponding compensation data, determine the corrected temperature of the external environment.
  • the corrected temperature of the external environment has a positive correlation with the detected temperature of the external environment, and has a negative correlation with the peripheral temperature of the detected component.
  • the calculation formula for the corrected temperature corresponding to the interval includes the sum of the first calculation part, the second calculation part, and the third calculation part;
  • the first calculation part is the detected outside world The product of the temperature of the environment and the first coefficient corresponding to the interval, and the first coefficient is a positive number;
  • the second calculation part is the product of the peripheral temperature of the detected component and the second coefficient corresponding to the interval, and the second coefficient is a negative number;
  • the third calculation part includes a third coefficient corresponding to the interval, and the third coefficient is a negative number.
  • the temperature difference corresponding to each interval has a positive correlation with the first coefficient corresponding to the interval, and the second coefficient and the third coefficient corresponding to the interval have a negative correlation.
  • the following formula is used to determine the corrected temperature of the external environment:
  • T′ represents the corrected temperature
  • T1 represents the peripheral temperature of the detected component
  • T2 represents the temperature of the external environment detected by the second temperature sensor
  • ⁇ T represents the temperature difference
  • ⁇ T T1-T2.
  • the temperature detection method further includes: detecting the surrounding temperature of the component; and detecting the temperature of the external environment at the opening.
  • a temperature detection device including: a memory; and, a processor coupled to the memory, and the processor is configured to execute any one of the foregoing based on instructions stored in the memory.
  • a processor coupled to the memory, and the processor is configured to execute any one of the foregoing based on instructions stored in the memory.
  • a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, any one of the aforementioned temperature detection methods is implemented.
  • Some of the embodiments in the above disclosure have the following advantages or beneficial effects: by using the peripheral temperature of the component to correct the ambient temperature detected at the opening, the temperature increase caused by the heating of the component is eliminated. Thereby, the corrected temperature of the external environment is obtained, so that the finally obtained environmental temperature is closer to the real environmental temperature, and the accuracy of the detection of the environmental temperature is improved.
  • Fig. 1 shows a schematic structural diagram of a temperature detection device according to some embodiments of the present disclosure.
  • Fig. 2 shows a schematic structural diagram of components in a temperature detection device according to some embodiments of the present disclosure.
  • FIG. 3 shows a schematic table of temperature relationship comparison according to some embodiments of the present disclosure.
  • Fig. 4 shows a schematic structural diagram of a circuit board in a temperature detection device according to some embodiments of the present disclosure.
  • Fig. 5 shows a schematic structural diagram of an electrical device according to some embodiments of the present disclosure.
  • FIG. 6 shows a schematic flowchart of a temperature detection method according to some embodiments of the present disclosure.
  • FIG. 7 shows a schematic flowchart of a temperature correction method according to some embodiments of the present disclosure.
  • Fig. 8 shows a schematic structural diagram of a temperature detection device according to other embodiments of the present disclosure.
  • Fig. 9 shows a schematic structural diagram of a temperature detection device according to further embodiments of the present disclosure.
  • a thermostat is installed in an air conditioner, and a temperature sensor is installed in the thermostat. Therefore, the air conditioner can perform corresponding temperature control based on the detected ambient temperature to meet people's comfort requirements.
  • the temperature sensor there are a large number of other components in the thermostat, and the high heat of each component will affect the accuracy of the temperature sensor in detecting the ambient temperature.
  • some related technologies use a lead wire to draw a temperature sensor for detecting the ambient temperature out of the housing of the thermostat, and set it directly outside the thermostat.
  • the inventor found that the accuracy of the ambient temperature detected by the related technology is low.
  • a technical problem to be solved by the embodiments of the present disclosure is: how to improve the accuracy of detecting the ambient temperature.
  • Fig. 1 shows a schematic structural diagram of a temperature detection device according to some embodiments of the present disclosure.
  • the temperature detection device 10 of this embodiment includes:
  • a housing 111, the housing 111 is provided with an opening 113;
  • the first temperature sensor 121 is located in the housing 111 and arranged on the periphery of the component 112 in the housing 111, and is configured to detect the peripheral temperature of the component 112;
  • the second temperature sensor 122 is located in the housing 111 and disposed at the opening 113, and is configured to detect the temperature of the external environment.
  • the ambient temperature of the component 112 detected by the first temperature sensor 121 and the temperature of the external environment detected by the second temperature sensor 122 are used to determine the corrected temperature of the external environment.
  • the component 112 is a heating device inside the device with temperature detection function, which generates high heat during operation; the opening 113 is provided on the housing 111 of the device with temperature detection function, Holes used to directly contact the ambient air.
  • the "external environment” mentioned in the present disclosure refers to the environment directly contacted by the outside of the device.
  • the high heat generated by the component 112 will affect the detection of the second temperature sensor 122, so that the measured ambient temperature is higher than the actual external ambient temperature.
  • the first temperature sensor 121 arranged on the periphery of the component 112 detects the surrounding temperature of the component 112, so that the ambient temperature detected by the second temperature sensor 122 is corrected according to the temperature around the component 112, thus eliminating the occurrence of the component 112. Temperature increase from the tropics. Therefore, by obtaining the corrected temperature of the external environment, the finally obtained environment temperature is closer to the real environment temperature, and the accuracy of the detection of the environment temperature is improved.
  • the temperature sensor is located inside the housing of the temperature detection device, which reduces the possibility of the temperature sensor being impacted by external forces and corroded by the external environment, thereby increasing the service life of the equipment.
  • the temperature detection device further includes a calculation component configured to obtain the corrected temperature of the external environment according to the peripheral temperature of the component and the temperature of the external environment.
  • Fig. 2 shows a schematic structural diagram of components in a temperature detection device according to some embodiments of the present disclosure.
  • the calculation component 223 is respectively connected to the first temperature sensor 221 and the second temperature sensor 222, and receives the peripheral temperature of the component detected by the first temperature sensor 221 and the external environment detected by the second temperature sensor 222 According to these two temperatures, the corrected temperature of the external environment is obtained.
  • the calculation component 223 is further configured to: calculate the temperature difference ⁇ T between the peripheral temperature T1 of the component and the temperature T2 of the external environment; obtain each interval of the preset temperature difference, each interval of the peripheral temperature, And the corresponding relationship of the compensation data; based on the corresponding relationship, according to the interval of the calculated temperature difference ⁇ T and the interval of the peripheral temperature T1 of the component, find the corresponding compensation data; according to the temperature T2 of the external environment, the corresponding compensation data, Determine the corrected temperature of the external environment.
  • the computing component 223 is a chip, such as a DSP (Digital Signal Processor) chip, a CPU (central processing unit, central processing unit) and other components with computing capabilities.
  • DSP Digital Signal Processor
  • CPU central processing unit, central processing unit
  • the compensation data is a compensation temperature value or a compensation temperature coefficient according to the usage scenario and calculation method.
  • the corrected temperature of the external environment is the difference between T2 and the absolute value of the compensation temperature, or the product of T2 and the compensation temperature coefficient.
  • the inventor found through statistical analysis of a large amount of data that the difference between the temperature detected by the second temperature sensor and the actual ambient temperature, and the temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor The difference in the temperature is correlated.
  • the calculation component calculates the value of ⁇ T and obtains the preset corresponding relationship. By determining the interval between ⁇ T and T1, the corresponding compensation data can be found. Then the corresponding calculation is performed on T2 and the compensation data, and the calculated result is the corrected temperature of the external environment.
  • the temperature detection device in the present disclosure is applied to an air conditioner.
  • the temperature detection device includes a housing, components located in the housing, a first temperature sensor, a second temperature sensor, and a calculation component.
  • the components are power supplies.
  • An opening is provided at the bottom of the shell.
  • the first temperature sensor is arranged at a position 5 mm away from the component and is used to detect the peripheral temperature of the component.
  • the second temperature sensor is arranged at the opening for detecting the temperature of the external environment.
  • the calculation component is used to correct the temperature of the external environment according to the peripheral temperature of the component to obtain the corrected temperature of the external environment.
  • An exemplary experimental process includes the following three steps:
  • the actual environment is detected by using other simple temperature measuring devices such as a thermometer temperature;
  • the piecewise function is obtained by induction, and the piecewise function includes the compensation temperature.
  • An exemplary temperature relationship comparison table established according to the corresponding relationship is shown in FIG. 3, where the corrected temperature is the temperature close to the real ambient temperature after being adjusted by the formula.
  • the modified temperature is the dependent variable of the piecewise function, and the temperature of the external environment and the surrounding temperature of the component are the independent variables of the piecewise function.
  • the corrected temperature of the external environment is positively correlated with the detected temperature of the external environment, and negatively correlated with the peripheral temperature of the detected component.
  • the calculation formula for the corrected temperature corresponding to the interval includes the sum of the first calculation part, the second calculation part, and the third calculation part;
  • the first calculation part is the detected outside world The product of the temperature of the environment and the first coefficient corresponding to the interval, and the first coefficient is a positive number;
  • the second calculation part is the product of the peripheral temperature of the detected component and the second coefficient corresponding to the interval, and the second coefficient is a negative number;
  • the third calculation part includes a third coefficient corresponding to the interval, and the third coefficient is a negative number.
  • the temperature difference corresponding to each interval has a positive correlation with the first coefficient corresponding to the interval, and the second coefficient and the third coefficient corresponding to the interval have a negative correlation.
  • the upper limit of the temperature difference corresponding to interval 1 is smaller than the lower limit of the temperature difference corresponding to interval 2, it means that the temperature difference corresponding to interval 1 is smaller than the temperature difference corresponding to interval 2, so that the first interval corresponding to interval 1 The coefficient is smaller than the first coefficient corresponding to interval 2.
  • the piecewise function corresponding to FIG. 3 is expressed by formula (1).
  • T′ represents the corrected temperature
  • T1 represents the peripheral temperature of the detected component
  • T2 represents the temperature of the external environment detected by the second temperature sensor
  • ⁇ T represents the temperature difference
  • ⁇ T T1-T2.
  • the temperature detection process it is assumed that the temperature T1 detected by the first temperature sensor is 11°C, and the temperature T2 detected by the second temperature sensor is 10°C. Then ⁇ T is 1°C, which falls into the interval of 0.5 ⁇ T ⁇ 1.5, and T1 also falls into the interval of 5 ⁇ T ⁇ 15. Therefore, if the corresponding compensation temperature is 0.5+ ⁇ T/5, the correction temperature is 9.3°C.
  • the temperature is collected at intervals of 5° C. with reference to T1, which is only an exemplary value method for enumerating. This interval can also be further reduced, and more data will be collected accordingly, making the analysis results more accurate, and the corrected temperature will be closer to the real ambient temperature.
  • the distance between the first temperature sensor and the preset component of the multiple components is greater than the distance from other components.
  • the preset components are determined according to at least one of the temperature factor or the distance factor.
  • the first temperature sensor is placed closer to the component with the highest temperature, such as a certain set length away from the component; or, considering the heat generation of each component, the first temperature sensor To select the setting location.
  • the selection of the location of the first sensor will not have a substantial impact on the solution proposed in the present disclosure, because the principle of the entire temperature correction process is to rely on the summed-up surrounding temperature of the heating device, the detected external ambient temperature and the actual environment The relationship between the temperature and the three temperatures is to correct the detected ambient temperature.
  • the different setting position of the first sensor may result in different surrounding temperatures of the detected heating device, which may cause slight changes in the relationship between the three temperature parameters, but the correction method has not changed, and the final correction result will not be affected.
  • the temperature is recognized by devices such as infrared thermometers to determine the components with the highest temperature.
  • the functional device is fixed on the circuit board.
  • a circuit board is arranged inside the housing, and the components may be arranged on the circuit board, for example, at least one of the first temperature sensor or the second temperature sensor is arranged on the circuit board.
  • the second temperature sensor when the second temperature sensor is disposed on the circuit board, the second temperature sensor is located in a non-copper-clad area of the circuit board.
  • the thermal conduction of the copper coating will cause temperature measurement errors.
  • the second temperature sensor is arranged on the circuit board, the accuracy of the temperature measurement is improved by making the surroundings of the second temperature sensor not coated with copper.
  • a slot is provided around the area where the second temperature sensor is located. Therefore, the influence on the second temperature sensor caused by the heat conduction of the components through the circuit board is reduced.
  • Slotting is a common term in related technologies in this field. In the design and production process of the circuit board, by digging a part of the circuit board to form a groove or through hole, the heat conduction between the components is reduced, the creepage distance between the conductors is also increased, and the safety is improved. See FIG. 4 for an exemplary slotting method of some embodiments.
  • FIG. 4 shows a schematic structural diagram of a circuit board in a temperature detection device according to some embodiments of the present disclosure. As shown in FIG.
  • a second sensor 43 is provided on the circuit board 41, and a second sensor 43 is provided on the circuit board. ⁇ 42.
  • the groove in FIG. 4 is only used as an example, and its specific shape should be designed according to the actual circuit board structure, and those skilled in the art can make adaptive adjustments using related technologies.
  • the opening on the housing of the temperature detection device is provided at the bottom of the housing, that is, on the side facing the ground. Therefore, the entry of dust and water vapor is relatively reduced, the possibility of damage to the second temperature sensor arranged near the opening is reduced, the service life of the temperature detection device is prolonged, and the aesthetics of the device is also improved.
  • the temperature detection device provided by the present disclosure is a thermostat, which is used in conjunction with electrical equipment such as air conditioners or refrigerators.
  • Fig. 5 shows a schematic structural diagram of an electrical device according to some embodiments of the present disclosure. As shown in FIG. 5, the electrical equipment 5 of this embodiment includes a temperature detection device 50. For a specific implementation of the temperature detection device 50, refer to any of the foregoing embodiments, which will not be repeated here.
  • the electrical equipment 5 is an air conditioner or a refrigerator.
  • FIG. 6 shows a schematic flowchart of a temperature detection method according to some embodiments of the present disclosure.
  • the temperature detection method is applied to the temperature detection device in any of the foregoing embodiments.
  • the temperature detection method of this embodiment includes steps S602 to S606.
  • step S602 the peripheral temperature of the detected component is acquired, where the component is located in the housing of the temperature detection device.
  • the temperature detection method before acquiring the ambient temperature, the temperature detection method further includes: detecting the ambient temperature of the component.
  • step S604 the temperature of the external environment detected at the opening of the housing is acquired.
  • the temperature detection method before acquiring the detected temperature of the external environment, the temperature detection method further includes: detecting the temperature of the external environment at the opening.
  • step S606 the corrected temperature of the external environment is determined according to the detected peripheral temperature of the component and the detected temperature of the external environment.
  • the peripheral temperature of the component By using the peripheral temperature of the component to correct the ambient temperature detected at the opening, the temperature increase caused by the heating of the component is eliminated. Thereby, the corrected temperature of the external environment is obtained, so that the finally obtained environmental temperature is closer to the real environmental temperature, and the accuracy of the detection of the environmental temperature is improved.
  • the ambient temperature is corrected according to the preset correspondence relationship.
  • FIG. 7 shows a schematic flowchart of a temperature correction method according to some embodiments of the present disclosure. As shown in FIG. 7, the temperature correction method of this embodiment includes steps S702-708.
  • step S702 the temperature difference ⁇ T between the detected peripheral temperature T1 of the component and the detected temperature T2 of the external environment is calculated.
  • step S704 each interval of the preset temperature difference, each interval of the surrounding temperature, and the corresponding relationship of the compensation data are acquired.
  • step S706 based on the correspondence relationship, search for corresponding compensation data according to the interval where the calculated temperature difference ⁇ T is located and the interval where the peripheral temperature T1 of the detected component is located.
  • step S708 the corrected temperature of the external environment is determined according to the detected temperature T2 of the external environment and the corresponding compensation data.
  • the compensation data is a compensation temperature value or a compensation temperature coefficient.
  • FIG. 8 is an exemplary structure diagram of a temperature detection device according to still other embodiments of the present disclosure.
  • the apparatus 800 of this embodiment includes a memory 810 and a processor 820 coupled to the memory 810.
  • the processor 820 is configured to execute any of the foregoing embodiments based on instructions stored in the memory 810.
  • the temperature detection method is configured to execute any of the foregoing embodiments based on instructions stored in the memory 810. The temperature detection method.
  • the memory 810 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), and other programs.
  • FIG. 9 is an exemplary structure diagram of a temperature detection device according to still other embodiments of the present disclosure.
  • the apparatus 900 of this embodiment includes a memory 910 and a processor 920, and may also include an input/output interface 930, a network interface 940, a storage interface 950, and the like. These interfaces 930, 940, 950, and the memory 910 and the processor 920 may be connected via a bus 960, for example.
  • the input and output interface 930 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, and a touch screen.
  • the network interface 940 provides a connection interface for various networked devices.
  • the storage interface 950 provides a connection interface for external storage devices such as SD cards and U disks.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, characterized in that, when the program is executed by a processor, any one of the aforementioned temperature detection methods is implemented.
  • each part of the present disclosure can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application-specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种温度检测装置(10),包括:壳体(111),壳体(111)上设置有开孔(113),并且壳体(111)内部具有元器件(112);第一温度传感器(121),位于壳体(111)内、并且设置于元器件(112)的一侧,被配置为检测元器件(112)的周边温度;以及第二温度传感器(122),位于壳体(111)内、并且设置于开孔(113)处,被配置为检测外界环境的温度,其中,元器件(112)的周边温度和外界环境的温度用于确定外界环境的修正温度。还公开了温度检测方法、电器设备以及非瞬时性计算机可读存储介质。

Description

温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质
相关申请的交叉引用
本申请是以CN申请号为201910857704.3,申请日为2019年9月9日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及温度检测技术领域,具体涉及一种温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质。
背景技术
许多设备,比如电器设备,需要基于环境温度进行相应的处理。在相关技术中,通过在设备内部设置温度传感器来检测环境温度。
发明内容
根据本公开一些实施例的第一个方面,提供一种温度检测装置,包括:壳体,壳体上设置有开孔;第一温度传感器,位于壳体内、并且设置于壳体内部的元器件的一侧,被配置为检测元器件的周边温度;以及,第二温度传感器,位于壳体内、并且设置于开孔处,被配置为检测外界环境的温度,其中,元器件的周边温度和外界环境的温度用于确定外界环境的修正温度。
在一些实施例中,温度检测装置还包括:计算部件,被配置为根据元器件的周边温度和外界环境的温度确定外界环境的修正温度。
在一些实施例中,计算部件进一步被配置为:计算检测的元器件的周边温度与检测的外界环境的温度的温度差值;获取预设的温度差值的各个区间、周边温度的各个区间、以及补偿数据的对应关系;基于对应关系,根据计算的温度差值所在的区间、以及检测的元器件的周边温度所在的区间,查找对应的补偿数据;以及,根据检测的外界环境的温度、对应的补偿数据,确定外界环境的修正温度。
在一些实施例中:在元器件的数量为多个的情况下,第一温度传感器与多个元器件中的预设元器件的距离大于与其他元器件的距离;以及,预设元器件是根据温度因 素、或者距离因素中的至少一个确定的。
在一些实施例中:壳体内部设置有电路板,元器件设置于电路板上;以及,第一温度传感器、或者第二温度传感器中的至少一个设置于电路板上。
在一些实施例中,在第二温度传感器设置于电路板上的情况下,第二温度传感器位于电路板的非覆铜区域。
在一些实施例中,在电路板上,第二温度传感器所在区域周边设置有开槽。
在一些实施例中,开孔位于壳体的底部。
在一些实施例中,温度检测装置还包括:元器件,位于壳体内部。
根据本公开一些实施例的第二个方面,提供一种电器设备,包括:前述任意一种温度检测装置。
在一些实施例中,电器设备为空调或冰箱。
根据本公开一些实施例的第三个方面,提供一种温度检测方法,包括:获取检测的元器件的周边温度,其中,元器件位于温度检测装置的壳体中;获取在壳体的开孔处检测的外界环境的温度;以及,根据检测的元器件的周边温度和检测的外界环境的温度,确定外界环境的修正温度。
在一些实施例中,根据检测到的元器件的周边温度和检测到的外界环境的温度确定外界环境的修正温度包括:计算检测的元器件的周边温度与检测的外界环境的温度的温度差值;获取预设的温度差值的各个区间、周边温度的各个区间、以及补偿数据的对应关系;基于对应关系,根据计算的温度差值所在的区间、以及检测的元器件的周边温度所在的区间,查找对应的补偿数据;以及,根据检测的外界环境的温度、对应的补偿数据,确定外界环境的修正温度。
在一些实施例中,外界环境的修正温度与检测的外界环境的温度成正相关关系、与检测的元器件的周边温度成负相关关系。
在一些实施例中,对于温度差值所在的每个区间:区间对应的修正温度的计算公式包括第一计算部分、第二计算部分和第三计算部分之和;第一计算部分是检测的外界环境的温度与区间对应的第一系数的乘积,并且第一系数为正数;第二计算部分是检测的元器件的周边温度与区间对应的第二系数的乘积,并且第二系数为负数;以及,第三计算部分包括区间对应的第三系数,并且第三系数为负数。
在一些实施例中,每个区间对应的温度差值与区间对应的第一系数成正相关关系、与区间对应的第二系数和第三系数成负相关关系。
在一些实施例中,采用以下公式确定外界环境的修正温度:
Figure PCTCN2020097360-appb-000001
其中,T′表示修正温度,T1表示检测到的元器件的周边温度,T2表示第二温度传感器检测到的外界环境的温度,ΔT表示温度差值并且ΔT=T1-T2。
在一些实施例中,温度检测方法还包括:检测元器件的周边温度;以及,在开孔处检测外界环境的温度。
根据本公开一些实施例的第四个方面,提供一种温度检测装置,包括:存储器;以及,耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行前述任意一种温度检测方法。
根据本公开一些实施例的第五个方面,提供一种非瞬时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述任意一种温度检测方法。
上述公开中的一些实施例具有如下优点或有益效果:通过采用元器件的周边温度对在开孔处检测到的环境温度进行修正,排除了元器件发热带来的温度增量。从而得到了外界环境的修正温度,使最终得到的环境温度更接近真实的环境温度,提高了对环境温度检测的准确性。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本公开一些实施例的温度检测装置的结构示意图。
图2示出了根据本公开一些实施例的温度检测装置中的部件的结构示意图。
图3示出了根据本公开一些实施例的温度关系对照示意表。
图4示出了根据本公开一些实施例的温度检测装置中的电路板的结构示意图。
图5示出了根据本公开一些实施例的电器设备的结构示意图。
图6示出了根据本公开一些实施例的温度检测方法的流程示意图。
图7示出了根据本公开一些实施例的温度修正方法的流程示意图。
图8示出了根据本公开另一些实施例的温度检测装置的结构示意图。
图9示出了根据本公开又一些实施例的温度检测装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将对本公开的技术方案进行详细的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本公开所保护的范围。
许多设备,比如电器设备,需要基于环境温度进行相应的处理。除了温度传感器以外,设备内部可能会设置一些其它的元器件,这些元器件在工作时通常会发热。元器件的发热会导致温度传感器检测到的温度高于实际的环境温度,降低了环境温度检测的准确性,进而会影响基于环境温度进行的后续处理。例如,空调中会设置温控器,温控器中设置有温度传感器。从而空调可以基于检测到的环境温度进行相应的温度控制,以满足人们的舒适度需求。但温控器中除了温度传感器以外,还有大量的其它元器件,各元器件的高发热量会影响温度传感器对环境温度检测的准确性。
为了减少发热器件对温度采集的影响,一些相关技术将用于检测环境温度的温度传感器利用引线引出温控器的壳体,直接设置在温控器外部。
发明人经过分析后发现,相关技术检测到的环境温度准确性较低。
本公开的实施例所要解决的一个技术问题是:如何提高对环境温度检测的准确性。
图1示出了根据本公开一些实施例的温度检测装置的结构示意图。
如图1所示,本实施例的温度检测装置10包括:
壳体111,壳体111上设置有开孔113;
第一温度传感器121,位于壳体111内、并且设置于壳体111内的元器件112的周边,被配置为检测元器件112的周边温度;
第二温度传感器122,位于壳体111内、并且设置于开孔113处,被配置为检测外界环境的温度。第一温度传感器121检测的元器件112的周边温度和第二温度传感 器122检测的外界环境的温度用于确定外界环境的修正温度。
在此实施例中,元器件112是具有温度检测功能的装置内部的一个发热器件,在工作时会产生较高的热量;开孔113是具有温度检测功能的装置的壳体111上设置的、用以直接接触外界环境空气的孔洞。本公开中提到的“外界环境”指的都是装置外部直接接触到的环境。
在温度检测装置工作时,元器件112所产生的高热量会对第二温度传感器122的检测造成影响,使其测量到的环境温度高于实际的外界环境温度。设置在元器件112的周边的第一温度传感器121检测到元器件112的周边温度,使得第二温度传感器122检测到的环境温度根据元器件112周围的温度得到修正,因此排除了元器件112发热带来的温度增量。从而,通过获得外界环境的修正温度,使最终得到的环境温度更接近真实的环境温度,提高了对环境温度检测的准确性。
并且,温度传感器位于温度检测装置的壳体内部,降低了温度传感器遭受外力碰撞、外界环境侵蚀的可能性,从而设备的使用寿命得到了提高。
在一些实施例中,温度检测装置还包括计算部件,被配置为根据元器件的周边温度和外界环境的温度得到外界环境的修正温度。
图2示出了根据本公开一些实施例的温度检测装置中的部件的结构示意图。如图2所示,计算部件223分别与第一温度传感器221和第二温度传感器222相连接,接收第一温度传感器221检测到的元器件的周边温度和第二温度传感器222检测到的外界环境的温度,进而根据这两个温度得到外界环境的修正温度。
在一些实施例中,计算部件223进一步被配置为:计算元器件的周边温度T1与外界环境的温度T2的温度差值ΔT;获取预设的温度差值的各个区间、周边温度的各个区间、以及补偿数据的对应关系;基于对应关系,根据计算的温度差值ΔT所在的区间以及元器件的周边温度T1所在的区间,查找对应的补偿数据;根据外界环境的温度T2、对应的补偿数据,确定外界环境的修正温度。
在一些实施例中,计算部件223为芯片,例如DSP(Digital Signal Processor,数字信号处理器)芯片、CPU(central processing unit,中央处理器)等具有计算能力的部件。
在一些实施例中,根据使用场景和计算方式,补偿数据为补偿温度值或补偿温度系数。相应地,根据T2、补偿数据得到外界环境的修正温度的具体实现方式也有多种。在一些实施例中,外界环境的修正温度为T2与补偿温度值的绝对值的差值,或者为 T2与补偿温度系数的乘积。
在实验的过程中,发明人通过对大量数据进行统计分析后发现,第二温度传感器检测到的温度和实际的环境温度的差值、与第一温度传感器检测到的温度和第二温度传感器检测到的温度的差值具有相关关系。在一些实施例中,这种关系被归纳为分段函数的形式,将分段函数中的常量设定为补偿数据,并且设定第一温度传感器检测到的元器件的周边温度为T1、第二温度传感器检测到的外界环境的温度为T2、两者的差值ΔT=T1-T2。根据数据统计结果,确定了ΔT的各个区间、T1的各个区间、补偿数据之间的对应关系。
在一些实施例中,第一温度传感器和第二温度传感器检测到当前的温度并发送给计算部件后,计算部件计算出ΔT的值,并获取预设的对应关系。通过确定ΔT和T1所在的区间,查找到对应的补偿数据。再对T2和补偿数据进行对应的计算,得到的计算结果即为外界环境的修正温度。
在一些实施例中,将本公开中的温度检测装置应用于一种空调设备当中。温度检测装置包括壳体、位于壳体内的元器件、第一温度传感器、第二温度传感器和计算部件。元器件为电源。壳体底部设置有开孔。第一温度传感器设置在距元器件5mm的位置处,用于检测元器件的周边温度。第二温度传感器设置于开孔处,用于检测外界环境的温度。计算部件用于根据元器件的周边温度,对外界环境的温度进行修正,得到外界环境的修正温度。
在实验阶段,通过同时检测T1、T2和实际的环境温度,得到大量实验数据,经过统计分析得到了三者之间的关系。
一个示例性的实验过程包括以下三个步骤:
1.以5℃的间隔,记录元器件从-10℃到45℃的温升的过程中的温度(该温度区间基本已经满足使用极限条件),该温度是通过第一温度传感器检测的元器件周围的温度T1;
2.在记录T1的同时,记录第二温度传感器检测的、各个T1对应的外界环境的温度T2和实际的环境温度,在一些实施例中,通过使用温度计等其它简单测温装置来检测实际环境温度;
3.对以上数据进行统计分析,归纳得到第一温度传感器检测的元器件周围的温度T1、外界环境的温度T2、实际的环境温度之间的对应关系,并建立表格。
经分析发现,第二温度传感器检测到的温度T2和实际的环境温度的差值与第一 温度传感器检测到的元器件周围温度T1和第二温度传感器检测到的环境温度T2的差值具有线性相关关系。因此,在一些实施例中,通过归纳得到分段函数,分段函数中包括补偿温度。根据对应关系建立的示例性的温度关系对照表如图3所示,其中,修正温度即为通过公式调整后,接近真实环境温度的温度。
在一些实施例中,修正温度为分段函数的因变量,外界环境的温度和元器件的周边温度为分段函数的自变量。
通过分析实验数据,在一些实施例中,外界环境的修正温度与检测的外界环境的温度成正相关关系、与检测的元器件的周边温度成负相关关系。
在一些实施例中,对于温度差值所在的每个区间:区间对应的修正温度的计算公式包括第一计算部分、第二计算部分和第三计算部分之和;第一计算部分是检测的外界环境的温度与区间对应的第一系数的乘积,并且第一系数为正数;第二计算部分是检测的元器件的周边温度与区间对应的第二系数的乘积,并且第二系数为负数;第三计算部分包括区间对应的第三系数,并且第三系数为负数。
在一些实施例中,每个区间对应的温度差值与区间对应的第一系数成正相关关系、与区间对应的第二系数和第三系数成负相关关系。例如,设区间1对应的温度差值的区间上限小于区间2对应的温度差值的区间下限,则说明区间1对应的温度差值小于区间2对应的温度差值,从而区间1对应的第一系数小于区间2对应的第一系数。
在一些实施例中,图3对应的分段函数使用公式(1)表示。
Figure PCTCN2020097360-appb-000002
在公式(1)中,T′表示修正温度,T1表示检测到的元器件的周边温度,T2表示第二温度传感器检测到的外界环境的温度,ΔT表示温度差值并且ΔT=T1-T2。
在温度检测过程中,假定第一温度传感器检测到的温度T1为11℃,第二温度传感器检测到的温度T2为10℃。则ΔT为1℃,落入0.5<ΔT≤1.5这个区间,并且T1也落入5<T≤15这个区间。所以选择对应的补偿温度为0.5+ΔT/5,修正温度即为9.3℃。
本实施例中参照T1以5℃的间隔对温度进行收集,这仅为列举的一种示例性的取值方式。也可以进一步缩小此间隔,相应的会收集到更多的数据,使得分析结果的精 度更高,修正温度也就更接近真实的环境温度。
在一些实施例中,在元器件的数量为多个的情况下,第一温度传感器与多个元器件中的预设元器件的距离大于与其他元器件的距离。预设元器件是根据温度因素、或者距离因素中的至少一个确定的。
在一些应用场景中,温度检测装置中设置有不止一个发热器件,因此可能有多个器件都存在发热现象。在一些实施例中,将第一温度传感器设置在更靠近温度最高的元器件的位置,比如距离此元器件某个设定长度的位置;或者,综合考虑各器件的发热情况对第一温度传感器的设置位置进行选择。
第一传感器的设置位置的选择对本公开所提出的方案并不会产生实质性的影响,因为整个温度修正的过程的原理在于依靠总结出的发热器件周边温度、检测到的外界环境温度和实际环境温度三个温度之间的关系,对检测到的外界环境温度进行修正。第一传感器的设置位置不同可能会导致检测到的发热器件周边温度不同,从而引起三个温度参数之间关系的细微变化,但修正方式没有改变,最终修正的结果也不会受到影响。
本领域技术人员可以根据本领域的知识判断哪些器件是发热器件,例如电源等。在存在多个发热器件的情况下,在一些实施例中,通过红外测温仪等装置识别温度,以判定温度最高的元器件。
在一些实施例中,功能器件固定在电路板上。在一些实施例中,壳体内部设置有电路板,元器件可以设置于电路板上,例如,第一温度传感器、或者第二温度传感器中的至少一个设置于电路板上。
在一些实施例中,在第二温度传感器设置于电路板上的情况下,第二温度传感器位于电路板的非覆铜区域。
在电路板制作过程中,往往有覆铜的需求,覆铜的热传导会带来温度测量误差。当第二温度传感器设置于电路板上时,通过令第二温度传感器的周围不覆铜,提升了温度测量的准确度。
在一些实施例中,第二温度传感器对应的设置所在区域周边设置有开槽。从而,减少了由于元器件的热量通过电路板进行热传导而对第二温度传感器造成的影响。“开槽”是本领域相关技术中的常见术语。在电路板的设计生产过程中,通过挖去电路板上的一部分形成凹槽或通孔,减少了元器件间的热传导,也增大了导体间的爬电距离,提高安全性。一些实施例的示例性的开槽方式参见图4。图4示出了根据本公 开一些实施例的温度检测装置中的电路板的结构示意图,如图4所示,电路板41上设置有第二传感器43,电路板上第二传感器43旁设置有凹槽42。图4中的凹槽仅作为一个示例,其具体的形状要根据实际的电路板上的结构进行设计,本领域技术人员可以利用相关技术做出适应性调整。
在一些实施例中,温度检测装置的壳体上的开孔设置在壳体底部,即朝向地面的一侧。从而,相对地减少了灰尘和水汽的进入,降低了设置在开孔附近的第二温度传感器受到损伤的可能性,延长了温度检测装置的使用寿命,同时还提高了装置的美观性。
在一些实施例中,本公开提供的温度检测装置为温控器,配合空调或冰箱等电器设备使用。图5示出了根据本公开一些实施例的电器设备的结构示意图。如图5所示,该实施例的电器设备5包括温度检测装置50,温度检测装置50的具体实施方式参考前述任意一个实施例,这里不再赘述。
在一些实施例中,电器设备5为空调或者冰箱。
图6示出了根据本公开一些实施例的温度检测方法的流程示意图。在一些实施例中,该温度检测方法应用于前述任一实施例中的温度检测装置中。如图6所示,该实施例的温度检测方法包括步骤S602~S606。
在步骤S602中,获取检测的元器件的周边温度,其中,元器件位于温度检测装置的壳体中。
在一些实施例中,在获取周边温度之前,温度检测方法还包括:检测元器件的周边温度。
在步骤S604中,获取在壳体的开孔处检测的外界环境的温度。
在一些实施例中,在获取检测的外界环境的温度之前,温度检测方法还包括:在所述开孔处检测外界环境的温度。
在步骤S606中,根据检测到的元器件的周边温度和检测到的外界环境的温度,确定外界环境的修正温度。
通过采用元器件的周边温度对在开孔处检测到的环境温度进行修正,排除了元器件发热带来的温度增量。从而得到了外界环境的修正温度,使最终得到的环境温度更接近真实的环境温度,提高了对环境温度检测的准确性。在一些实施例中,根据预设的对应关系,对环境温度进行修正。下面参考图7描述本公开温度修正方法的实施例。
图7示出了根据本公开一些实施例的温度修正方法的流程示意图。如图7所示, 该实施例的温度修正方法包括步骤S702~708。
在步骤S702中,计算检测的元器件的周边温度T1与检测的外界环境的温度T2的温度差值ΔT。
在步骤S704中,获取预设的温度差值的各个区间、周边温度的各个区间、以及补偿数据的对应关系。
在步骤S706中,基于对应关系,根据计算的温度差值ΔT所在的区间、以及检测的元器件的周边温度T1所在的区间,查找对应的补偿数据。
在步骤S708中,根据检测的外界环境的温度T2、对应的补偿数据,确定外界环境的修正温度。
在一些实施例中,补偿数据为补偿温度值或者补偿温度系数,具体实施方式可以参考上述任一实施例,此处不再赘述。
图8为根据本公开又一些实施例的温度检测装置的示例性结构图。如图8所示,该实施例的装置800包括:存储器810以及耦接至该存储器810的处理器820,处理器820被配置为基于存储在存储器810中的指令,执行前述任意一些实施例中的温度检测方法。
在一些实施例中,存储器810例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
图9为根据本公开再一些实施例的温度检测装置的示例性结构图。如图9所示,该实施例的装置900包括:存储器910以及处理器920,还可以包括输入输出接口930、网络接口940、存储接口950等。这些接口930,940,950以及存储器910和处理器920之间例如可以通过总线960连接。在一些实施例中,输入输出接口930为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口940为各种联网设备提供连接接口。存储接口950为SD卡、U盘等外置存储设备提供连接接口。
本公开的实施例还提供一种非瞬时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现前述任意一种温度检测方法。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本公开的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本公开的描述中,除非另有说明,“多 个”的含义是指至少两个。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种温度检测装置,包括:
    壳体,所述壳体上设置有开孔;
    第一温度传感器,位于所述壳体内、并且设置于所述壳体内部的元器件的一侧,被配置为检测所述元器件的周边温度;以及
    第二温度传感器,位于所述壳体内、并且设置于所述开孔处,被配置为检测外界环境的温度,其中,所述元器件的周边温度和所述外界环境的温度用于确定所述外界环境的修正温度。
  2. 根据权利要求1所述的温度检测装置,还包括:
    计算部件,被配置为根据所述元器件的周边温度和所述外界环境的温度确定所述外界环境的修正温度。
  3. 根据权利要求2所述的温度检测装置,其中,所述计算部件进一步被配置为:
    计算检测的所述元器件的周边温度与检测的所述外界环境的温度的温度差值;
    获取预设的温度差值的各个区间、周边温度的各个区间、以及补偿数据的对应关系;
    基于所述对应关系,根据计算的所述温度差值所在的区间、以及检测的所述元器件的周边温度所在的区间,查找对应的补偿数据;以及
    根据检测的所述外界环境的温度、所述对应的补偿数据,确定所述外界环境的修正温度。
  4. 根据权利要求1所述的温度检测装置,其中:
    在所述元器件的数量为多个的情况下,所述第一温度传感器与所述多个元器件中的预设元器件的距离大于与其他元器件的距离;以及
    所述预设元器件是根据温度因素、或者距离因素中的至少一个确定的。
  5. 根据权利要求1所述的温度检测装置,其中:
    所述壳体内部设置有电路板,所述元器件设置于所述电路板上;以及,
    所述第一温度传感器、或者所述第二温度传感器中的至少一个设置于所述电路板上。
  6. 根据权利要求5所述的温度检测装置,其中,在所述第二温度传感器设置于所述电路板上的情况下,所述第二温度传感器位于所述电路板的非覆铜区域。
  7. 根据权利要求6所述的温度检测装置,其中,在所述电路板上,所述第二温度传感器所在区域周边设置有开槽。
  8. 根据权利要求1所述的温度检测装置,所述开孔位于所述壳体的底部。
  9. 根据权利要求1所述的温度检测装置,还包括:
    元器件,位于所述壳体内部。
  10. 一种电器设备,包括:
    权利要求1~9中任一项所述的温度检测装置。
  11. 根据权利要求10所述的电器设备,其中,所述电器设备为空调或冰箱。
  12. 一种温度检测方法,包括:
    获取检测的元器件的周边温度,其中,所述元器件位于温度检测装置的壳体中;
    获取在所述壳体的开孔处检测的外界环境的温度;以及,
    根据检测的所述元器件的周边温度和检测的所述外界环境的温度,确定所述外界环境的修正温度。
  13. 根据权利要求12所述的温度检测方法,其中,所述根据检测到的所述元器件的周边温度和检测到的所述外界环境的温度确定所述外界环境的修正温度包括:
    计算检测的所述元器件的周边温度与检测的所述外界环境的温度的温度差值;
    获取预设的温度差值的各个区间、周边温度的各个区间、以及补偿数据的对应关系;
    基于所述对应关系,根据计算的所述温度差值所在的区间、以及检测的所述元器件的周边温度所在的区间,查找对应的补偿数据;以及
    根据检测的所述外界环境的温度、所述对应的补偿数据,确定所述外界环境的修正温度。
  14. 根据权利要求13所述的温度检测方法,其中,所述外界环境的修正温度与检测的所述外界环境的温度成正相关关系、与检测的所述元器件的周边温度成负相关关系。
  15. 根据权利要求13所述的温度检测方法,其中,对于所述温度差值所在的每个区间:
    所述区间对应的修正温度的计算公式包括第一计算部分、第二计算部分和第三计算部分之和;
    所述第一计算部分是检测的所述外界环境的温度与所述区间对应的第一系数的 乘积,并且所述第一系数为正数;
    所述第二计算部分是检测的所述元器件的周边温度与所述区间对应的第二系数的乘积,并且所述第二系数为负数;以及,
    所述第三计算部分包括所述区间对应的第三系数,并且所述第三系数为负数。
  16. 根据权利要求15所述的温度检测方法,其中,每个区间对应的温度差值与所述区间对应的第一系数成正相关关系、与所述区间对应的第二系数和第三系数成负相关关系。
  17. 根据权利要求16所述的温度检测方法,其中,采用以下公式确定所述外界环境的修正温度:
    Figure PCTCN2020097360-appb-100001
    其中,T′表示修正温度,T1表示检测到的元器件的周边温度,T2表示第二温度传感器检测到的外界环境的温度,ΔT表示温度差值并且ΔT=T1-T2。
  18. 根据权利要求12所述的温度检测方法,还包括:
    检测元器件的周边温度;以及,
    在所述开孔处检测外界环境的温度。
  19. 一种温度检测装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求12-17中任一项所述的温度检测方法。
  20. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求12-17中任一项所述的温度检测方法。
PCT/CN2020/097360 2019-09-09 2020-06-22 温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质 WO2021047235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910857704.3A CN110553758A (zh) 2019-09-09 2019-09-09 温度检测装置和方法
CN201910857704.3 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021047235A1 true WO2021047235A1 (zh) 2021-03-18

Family

ID=68739957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097360 WO2021047235A1 (zh) 2019-09-09 2020-06-22 温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110553758A (zh)
WO (1) WO2021047235A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553758A (zh) * 2019-09-09 2019-12-10 珠海格力电器股份有限公司 温度检测装置和方法
EP3835740B1 (en) * 2019-12-11 2024-02-07 ABB Schweiz AG A temperature determination device
CN114034400A (zh) * 2020-07-21 2022-02-11 浙江宇视科技有限公司 一种人体红外测温方法、装置、介质及电子设备
CN111966142A (zh) * 2020-08-14 2020-11-20 深圳市欧瑞博科技股份有限公司 智能温度检测方法、装置及智能控制装置
CN114136447B (zh) * 2020-09-04 2024-06-18 华为技术有限公司 一种测量温度的方法、电子设备及计算机可读存储介质
TWI818208B (zh) * 2020-11-20 2023-10-11 神雲科技股份有限公司 溫度修正方法與伺服器
CN113339942B (zh) * 2021-06-11 2022-03-18 珠海格力电器股份有限公司 空调及其检测环境温度的修正方法
CN113503987B (zh) * 2021-06-25 2024-05-28 深圳感臻智能股份有限公司 一种优化内置温度传感器准确度的方法及系统
CN113820042A (zh) * 2021-09-09 2021-12-21 超越科技股份有限公司 一种基于国产化单片机的疫情防控实时测温系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238900A (zh) * 2008-10-03 2011-11-09 拜尔健康护理有限责任公司 用于预测液体分析仪环境温度的系统和方法
CN104990643A (zh) * 2015-06-29 2015-10-21 山东超越数控电子有限公司 一种基于双温度传感器的终端环境温度测试方法
CN207662532U (zh) * 2018-01-22 2018-07-27 四川艾巴适环境科技有限公司 高精度温度检测装置
CN109340991A (zh) * 2019-01-04 2019-02-15 新誉轨道交通科技有限公司 空调温度采集修正方法、装置及电子设备
CN110207335A (zh) * 2019-06-24 2019-09-06 广东美的暖通设备有限公司 控制设备、检测方法、空调器系统和可读存储介质
CN110553758A (zh) * 2019-09-09 2019-12-10 珠海格力电器股份有限公司 温度检测装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818966A1 (en) * 2013-06-24 2014-12-31 Advanced Digital Broadcast S.A. A method and system for determining ambient temperature of an electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238900A (zh) * 2008-10-03 2011-11-09 拜尔健康护理有限责任公司 用于预测液体分析仪环境温度的系统和方法
CN104990643A (zh) * 2015-06-29 2015-10-21 山东超越数控电子有限公司 一种基于双温度传感器的终端环境温度测试方法
CN207662532U (zh) * 2018-01-22 2018-07-27 四川艾巴适环境科技有限公司 高精度温度检测装置
CN109340991A (zh) * 2019-01-04 2019-02-15 新誉轨道交通科技有限公司 空调温度采集修正方法、装置及电子设备
CN110207335A (zh) * 2019-06-24 2019-09-06 广东美的暖通设备有限公司 控制设备、检测方法、空调器系统和可读存储介质
CN110553758A (zh) * 2019-09-09 2019-12-10 珠海格力电器股份有限公司 温度检测装置和方法

Also Published As

Publication number Publication date
CN110553758A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2021047235A1 (zh) 温度检测装置和方法、电器设备以及非瞬时性计算机可读存储介质
CN108541363B (zh) 用于管理传感器异常的方法及计算机系统
US8009418B2 (en) Information processing apparatus
US9732759B2 (en) Method and apparatus for controlling subrack fans
US10890892B2 (en) Abnormality determination apparatus, non-transitory computer readable medium encoded with a program, abnormality determination system and abnormality determination method
US10817399B2 (en) Printed circuit board, main board, and system and method for monitoring temperature
WO2017161501A1 (zh) 指纹图像的校正方法、装置和终端
US9399997B2 (en) Method for detecting heat-dissipating air flow and electronic device using the same
US20150050121A1 (en) Fan control system and method for controlling fan speed
CN103884439B (zh) 电子装置及应用该装置的检测环境温度的方法
JP6944405B2 (ja) 建築物判定システム
US10863653B2 (en) Thermal testing system and method of thermal testing
WO2018094929A1 (zh) 一种估算温度的方法及装置
TW201428488A (zh) 基板管理控制器更新系統及更新方法
CN114401621A (zh) 一种服务器的入风温度的确定方法、装置、设备和介质
TW202221454A (zh) 溫度修正方法與伺服器
CN110849644A (zh) 一种检测散热器安装异常的方法、检测装置及存储介质
CN210664817U (zh) 讯号判读装置
US9659115B2 (en) Thermal analysis for tiered semiconductor structure
US8639375B2 (en) Enhancing investigation of variability by inclusion of similar objects with known differences to the original ones
WO2021136038A1 (zh) 一种时间戳记录设备、系统、方法及装置
CN211178799U (zh) 温度传感器用计量装置
US11449374B2 (en) Method and apparatus for proactively countering the effects of storage device failure
CN116665397B (zh) 火灾烟雾报警方法及报警装置、报警器与可读存储介质
TWM549371U (zh) 電腦系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863099

Country of ref document: EP

Kind code of ref document: A1