TWM549371U - 電腦系統 - Google Patents

電腦系統 Download PDF

Info

Publication number
TWM549371U
TWM549371U TW106208433U TW106208433U TWM549371U TW M549371 U TWM549371 U TW M549371U TW 106208433 U TW106208433 U TW 106208433U TW 106208433 U TW106208433 U TW 106208433U TW M549371 U TWM549371 U TW M549371U
Authority
TW
Taiwan
Prior art keywords
operating
processor
junction temperature
computer system
temperature
Prior art date
Application number
TW106208433U
Other languages
English (en)
Inventor
思傳 孫
Original Assignee
華碩電腦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華碩電腦股份有限公司 filed Critical 華碩電腦股份有限公司
Priority to TW106208433U priority Critical patent/TWM549371U/zh
Publication of TWM549371U publication Critical patent/TWM549371U/zh

Links

Landscapes

  • Power Sources (AREA)

Description

電腦系統
本新型創作是有關於一種電腦系統。
在電腦系統架構中,中央處理器(Central Processing Unit,CPU)的工作頻率高低對系統效能的影響甚鉅,而處理器超頻技術便是讓中央處理器在一定時間內進行超頻,以提供處理器晶片所能承受的最大超頻幅度,進而提升電腦系統的效能。
特別是,提升工作頻率使得電腦系統在運作時散發出來的熱能也愈來愈多。以筆記型電腦為例,由於其機殼散熱空間有限,因此在利用超頻技術來提升系統效能,且其處理器處於高速運作時,需要消耗大量的能源且產生大量的熱量,因此容易造成處理器與內部元件的溫度過高。為了確保重要元件能正常工作而不至於因高溫而燒毀,電腦系統通常具有溫度監控機制以在系統溫度在上升至溫度門檻值後,執行一降頻操作以降低處理器的工作頻率。然而,所述降頻操作將會導致電腦系統的效能被大幅壓低。換言之,目前的溫度監控機制較難在電腦系統的溫度及效能表現上取得平衡,而容易對使用者的操作感受造成負面影響。
此外,在傳統的超頻技術中,使用者必須要手動設定電腦系統的工作參數(例如,工作頻率與工作電壓)來增強其電腦系統的效能。然而,不同的電腦系統可能會具有不同的最佳工作參數;或者,對一個電腦系統而言,執行不同的應用程式時亦可能會具有不同的可超頻程度。因此,導致使用者每次設定電腦系統的工作參數時,必須要做相當程度的測試才能夠確保所設定之工作參數的可用性,進而使得使用者的操作便利性下降。
本新型創作提供一種電腦系統,可避免電腦系統之處理器的溫度過高後便難以提升其效能的情況。
本新型創作提供一種電腦系統,包括:處理器,以及耦接至所述處理器的輸入裝置、運算電路與顯示器。處理器執行應用程式,且產生實際接面溫度;輸入裝置接收對應處理器的預期接面溫度;運算電路計算用以將所述實際接面溫度達到所述預期接面溫度的多組工作參數,其中所述多組工作參數包括多個工作頻率與所述工作頻率分別對應的工作電壓;以及顯示器顯示對應所述預期接面溫度的工作參數表,其中所述工作參數表提示處理器的實際接面溫度達到預期接面溫度時的所述多組工作參數。
基於上述,本新型創作是以預期接面溫度控制電腦系統之處理器的溫度上限,並且根據處理器所執行的應用程式與預期接面溫度提供使用者對應電腦系統所能發揮之高效能的工作參數。據此能確保系統整體溫度或處理器溫度不致過熱同時提高系統效能,而達到兼顧電腦系統之效能及溫度表現的目的。
為讓本新型創作的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
在使用電腦系統的過程中,處理器之功率對系統效能及溫度有相當直接的影響。由於系統會經常監測處理器的功率與溫度,因此在對處理器進行超頻而提高系統效能之餘,若能在監測到功率上升或系統溫度過高時,系統會隨即做出對應處理,例如,執行降低處理器之工作頻率的操作,因此,使得電腦系統在效能與溫度表現上難以取得平衡。本新型創作便是基於上述觀點進而發展出的一種電腦系統,為了使本新型創作之內容更為明瞭,以下特舉實施例作為本新型創作確實能夠據以實施的範例。
圖1是根據本新型創作的一實施例所繪示的電腦系統的方塊圖。請參照圖1,電腦系統100包括處理器110,以及耦接至處理器110的輸入裝置120、顯示器130、溫度感測器140、運算電路150、控制電路160與儲存裝置170。本實施例之電腦系統100例如是桌上型電腦、筆記型電腦、個人數位助理(Personal Digital Assistant,PDA)、平板電腦等電子裝置系統。
處理器110例如是具有單核心或多核心的中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)或其他類似元件或上述元件的組合。在本實施例中,處理器110用以控管電腦系統100的整體運作。
輸入裝置120可例如是實體的鍵盤(keyboard)、滑鼠(mouse)、按鈕(button)或觸控板(touchpad)等,諸如此類的實體元件。或者,輸入裝置120也可例如是屬於軟體元件的輸入介面(input interface)。顯示器130可例如是具有觸控功能的顯示器。顯示器130可呈現輸入介面的影像資訊,以提供使用者可藉由觸控顯示裝置130的方式來輸入電腦系統的相關設定參數。或者,使用者也可透過額外的實體鍵盤來輸入電腦系統的相關設定參數,本新型創作並不加以限制。
溫度感測器140用以偵測處理器110的接面溫度(Junction temperature),以做為溫度監控的基準,在此,所述處理器110的接面溫度例如為電腦系統100中半導體的實際工作溫度。然而,本新型創作並不以此為限。例如,在其他實施例中,溫度感測器140更用以偵測儲存裝置170的溫度與電腦系統100的表面溫度等,並將其做為溫度監控的基準。舉例來說,溫度感測器140可包括數個感測器,並分別置於處理器110以及儲存裝置170等元件的四周以偵測其溫度。
儲存裝置170用以儲存各種資料、程式碼或待處理及處理後的資料。舉例而言,儲存裝置170可以是任何型態的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、固態硬碟(Solid State Drive,SSD)或類似元件或上述元件的組合。
在本新型創作實施例中,運算電路150會自動地計算處理器110的接面溫度達到特定溫度時,此特定溫度下電腦系統100之整體運作的工作頻率與其對應之工作電壓的所有可能性;或者,運算電路150會自動地計算所述特定溫度下之處理器110執行某個特定應用程式時的工作頻率與其對應之工作電壓的所有可能性。電腦系統100可透過顯示器130以列表的方式顯示上述工作頻率與其對應之工作電壓的所有可能性,以及透過儲存裝置170儲存此列表。在此,所述特定溫度可由使用者透過輸入裝置120來輸入。控制電路160例如是嵌入式控制器(Embedded Controller,EC),用以控管電腦系統100的電源與輸入裝置120,並可接收運算電路150的運算結果。特別是,本實施例之控制電路160會控制處理器110在所述特定溫度下以運算電路150所計算之一組工作頻率與工作電壓下運作,且此組工作頻率與工作電壓可由使用者來選擇。如此一來,不僅使得電腦系統100在特定溫度下發揮更高的效能,且確保處理器110不會發生超頻的情況,更提高使用者的操作便利性。
圖2A是依照本新型創作一實施例所繪示的工作頻率控制介面。圖2B是依照本新型創作一實施例所繪示的電腦系統搭配工作頻率控制介面的運作流程圖。請同時參照圖1、圖2A與圖2B,本實施例的發揮處理器之高效能的方法適用於上述的電腦系統100,以下即搭配圖1中電腦系統100的各項元件,說明本實施例的詳細流程。
具體而言,電腦系統100會透過顯示器130顯示工作頻率控制介面200(如圖2A所示),進而提供使用者利用工作頻率控制介面200來設定處理器110的工作參數(即,工作頻率與工作電壓)。首先,在步驟S201中,處理器110執行應用程式,且產生實際接面溫度。具體來說,當處理器110執行應用程式時,處理器110會因為對應地執行關於應用程式的運算操作,並且在運作操作的過程中,處理器110本身會開始產生熱能使處理器110的接面溫度上升。在執行應用程式的過程中,溫度感測器140會持續地偵測處理器110當前的接面溫度。此接面溫度即為處理器110的所述實際接面溫度。
在步驟S202中,輸入裝置120會接收對應處理器110的預期接面溫度。詳言之,由於當控制電路160判斷處理器110的實際接面溫度大於溫度門檻值(例如,100℃)時,控制電路160會執行降頻操作以降低處理器110的工作頻率,因此,透過將處理器110的實際接面溫度控制在一個接近溫度門檻值且小於溫度門檻值的預期接面溫度,既可使得處理器110不會發生溫度過高而降頻的情況,亦可確保處理器110發揮高效能的運作。
在本新型創作實施例中,使用者可透過輸入裝置120在工作頻率控制介面200中的預期接面溫度欄位202輸入其所期望之處理器110所能達到的預期接面溫度。例如,在此範例中,使用者所輸入的預期接面溫度為90℃。
在步驟S203中,運算電路150會計算用以將所述實際接面溫度達到所述預期接面溫度的多組工作參數。即,為了讓處理器110執行應用程式的實際接面溫度可達到預期接面溫度,運算電路150會計算對應所述應用程式的多組工作參數。在此,所述多組工作參數包括多個工作頻率與此些工作頻率分別對應的工作電壓。換句話說,若將處理器110控制在此些工作參數下運作,則處理器110的實際接面溫度會達到使用者所設定的預期接面溫度。具體而言,對於一個電腦系統而言,執行不同的應用程式時,處理器可能會具有不同的最佳工作參數。據此,在本新型創作實施例中,使用者可透過應用程式選項204來選擇不同的應用程式,進而瞭解各個應用程式在預期接面溫度下之工作參數的所有可能性,例如,透過點選程式選項204可開啟檔案選擇視窗,以供使用者選擇所欲執行的應用程式,並且當使用者選擇欲執行的應用程式時,計算對應的多組工作參數。此外,所述應用程式亦可包括任何類型的測試程式。然而,本新型創作並不限於此,例如,使用者亦可以不選擇任何應用程式,並透過直接選擇確定選項206以使得運算電路150計算電腦系統100之整體運作的工作頻率與其對應之工作電壓的所有可能性。
接著,在步驟S205中,顯示器130會顯示對應上述預期接面溫度(即,90℃)的工作參數表210,此工作參數表210即是提示若處理器110的實際接面溫度達到預期接面溫度時的所述多組工作參數,亦即,工作參數表210提示在步驟S203中運算電路150所計算之處理器110在預期接面溫度下執行某個應用程式之工作參數的所有可能性,或者電腦系統100在預期接面溫度下之整體運作的工作頻率與其對應之工作電壓的所有可能性。
特別是,在本新型創作實施例中,儲存裝置170會進一步記錄上述工作參數表210。需注意的是,由於工作參數表是提供處理器110在預期接面溫度下執行某個應用程式之工作參數的所有可能性,或者電腦系統100在預期接面溫度下之整體運作的工作頻率與其對應之工作電壓的所有可能性。因此,不同的工作參數表會對具有不同的應用程式與預期接面溫度。據此,儲存裝置170例如會以應用程式的識別碼與其對應的預期接面溫度對每一工作參數表進行索引編號,以區別儲存裝置170中所記錄之不同的工作參數表。
之後,使用者可透過輸入裝置120從工作參數表210中所記錄的A~I組中的工作參數中選擇一組工作參數,即可輕易地設定處理器110的工作頻率與工作電壓。詳言之,在步驟S207中,控制電路160會根據輸入裝置120所接收的選擇訊號控制處理器110在所述多組工作參數中對應選擇訊號的一工作頻率(亦稱為目標工作頻率)與此目標工作頻率所對應的一工作電壓(亦稱為目標工作電壓)下運作。例如,使用者透過輸入裝置120選擇第A組的工作參數,則所述選擇訊號會指示工作頻率為“4600MHz”, 工作電壓為“1.281V”,因此,控制電路160會控制處理器110以“4600MHz”的工作頻率與“1.281V” 的工作電壓來運作。
值得一提的是,使用者可能會頻繁地操作某個應用程式,並且希望電腦系統100至少發揮處理器之實際接面溫度達到預期接面溫度為90℃時所對應的效能,並且,由於儲存裝置170會記錄運算電路150所計算出的每一個工作參數表,因此,在本新型創作實施例中,運算電路150更用以在計算處理器110執行使用者所選擇之應用程式時的所述多組工作參數之前,判斷對應使用者所所選擇之應用程式與對應使用者所輸入之預期接面溫度的工作參數表是否已儲存於儲存裝置170中。
圖3是依照本新型創作另一實施例所繪示的電腦系統搭配工作頻率控制介面的運作流程圖。
請參照圖3,步驟S301、步驟S302、步驟S303、步驟S305與步驟S307是相同於圖2中的步驟S201、步驟S202、步驟S203、步驟S205與步驟S207,不同之處在於,在此實施例中,運算電路150更用以在使用者選擇應用程式以及輸入裝置120接收使用者所輸入的預期接面溫度之後(即,步驟S301之後),於步驟S309中,判斷對應此應用程式與此預期接面溫度的工作參數表是否已儲存於儲存裝置170中。
具體而言,倘若使用者是第一次執行所述應用程式,則儲存裝置170中並不會記錄有對應此應用程式的工作參數表,因此,運算電路150會進一步執行步驟S303以計算處理器110執行使用者所選擇之應用程式時的所述多組工作參數(用以將實際接面溫度達到所述預期接面溫度的多組工作參數)。
反之,倘若使用者並非是第一次執行所述應用程式且先前執行此應用程式所設定的預期接面溫度相同與此次輸入的預期接面溫度,則算處理器110會根據應用程式的識別碼與使用者此次輸入的預期接面溫度從儲存裝置170中搜尋具有對應之索引編號的工作參數表。接著,在步驟S311中,運算電路150可直接從儲存裝置170中讀取所述工作參數表(即,所搜尋到的對應所述應用程式與設定的預期接面溫度的工作參數表)。在此,由於步驟S305與步驟S307相同於步驟S205與步驟S207,因此,步驟S305與步驟S307的詳細說明請見前述關於步驟S205與步驟S207的說明。
以下將更清楚地說明在步驟S303(步驟S203)中,本新型創作的運算電路150是如何計算出對應使用者所選擇之應用程式與使用者所輸入之預期接面溫度的多組工作參數。具體而言,在使用電子系統100的過程中,處理器110的工作頻率、工作電壓、效能、消耗功率與溫度之間有相當直接的影響,因此,在本新型創作實施例中,運算電路150是透過一個工作參數-溫度對應方程式來估測工作參數,所述工作參數-溫度對應方程式是由一半導體電晶體切換功耗方程式(semiconductor transistor switching power dissipation formula)與一積體電路接面到環境熱阻方程式(IC junction-to-ambient thermal resistance formula)所推算而得。
以下方程式(1)與方程式(2)分別為所述半導體電晶體功耗方程式與積體電路接面到環境熱阻方程式。
…方程式(1)
其中, P d為消耗功率, C為電荷電容, U為供應電壓(亦稱為工作電壓),以及 f為切換頻率(亦稱為工作頻率)。
…方程式(2)
其中, T J為接面溫度, P d為消耗功率,θ JA為接面到環境熱阻,以及 T A為環境溫度。
詳言之,方程式(2)經整理後可表示為 ,因此,結合方程式(1)與方程式(2)可得到 。接著,將結合後的方程式(1)與方程式(2)中的 以變數 k取代,則可得到以下方程式(3)(亦稱為工作參數-溫度對應方程式)。
…方程式(3)
在本新型創作實施例中,若運算電路150在步驟S309中,判斷使用者所選擇之應用程式與使用者所輸入之預期接面溫度所對應的工作參數表並未儲存於儲存裝置170中,則代表所述應用程式是第一次被執行。
在此情況下,控制電路160會先控制處理器110在兩組工作參數下運作所述應用程式,而運算電路150會分別採集處理器110在所述兩組工作參數下執行所述應用程式後的接面溫度。表1為取得兩組工作參數下執行應用程式後之接面溫度的一個範例。 <TABLE border="1" borderColor="#000000" width="_0007"><TBODY><tr><td>   </td><td> 工作頻率<i>f</i> (MHz) </td><td> 工作電壓<i>U</i>(V) </td><td> 接面溫度<i>T</i><i>J</i>(℃) </td></tr><tr><td> 第一組 </td><td> 3500 </td><td> 1.1 </td><td> 60 </td></tr><tr><td> 第二組 </td><td> 3800 </td><td> 1.3 </td><td> 80 </td></tr></TBODY></TABLE>表1
請參照表1,運算電路150例如是在處理器110以第一工作頻率(即,3500 MHz)與第一工作電壓(即,1.1V)下運作所述應用程式時獲得第一接面溫度(即,60℃),以及在處理器110以第二工作頻率(即,3800 MHz)與第二工作電壓(即,1.3V)下運作所述應用程式時獲得第二接面溫度(即,80℃)。
更詳細地說,控制電路160會控制處理器110以上述第一工作頻率與第一工作電壓執行一次應用程式,而運算電路150會採集此狀態下溫度感測器140所偵測到之處理器110的第一接面溫度;接著,控制電路160會控制處理器110以上述第二工作頻率與第二工作電壓再執行一次應用程式,而運算電路150會採集此狀態下溫度感測器140所偵測到之處理器110的第二接面溫度。
如此一來,運算電路150可進一步將上述第一工作頻率、第一工作電壓、第一接面溫度代入工作參數-溫度對應方程式(3),以及將上述第二工作頻率、第二工作電壓、第二接面溫度亦代入工作參數-溫度對應方程式(3),而得到 。因此,運算電路150可透過解聯立方程式,取得環境溫度 T A=21℃(亦稱為第一環境溫度),以及變數 k= ℃/MHz(亦稱為第一變數)。
之後,運算電路150會根據第一變數(即, ℃/MHz)、第一環境溫度(即,21℃)與使用者所輸入的預期接面溫度(例如,90℃)計算若處理器110的實際接面溫度達到預期接面溫度時的所有可能的工作頻率與此些工作頻率所對應的工作電壓。更詳細地說,若將第一變數“ ℃/MHz”、第一環境溫度“21℃”與預期接面溫度“90℃”代入工作參數-溫度對應方程式(3)中,則可得到 ,即,
如此一來,運算電路150即可根據經整理後的工作參數-溫度對應方程式(即, )計算出如圖2A所示之工作參數表210中所記錄的A~I組工作參數。在此,以第A組工作參數為例,將工作頻率 “4600MHz”代入 ,可得到 ,即, 。換言之,在工作頻率為“4600MHz”時的工作頻率為“1.284V”。類似地,運算電路150會以相同的方式取得第B~I組中不同工作頻率下的工作頻率。
此外,應理解,圖2A所示的工作參數表210僅為一個範例工作參數表,而非用以限制本新型創作。具體而言,在本新型創作實施例中,A~I組中的工作頻率各相差100MHz,且A~I組之工作參數的排列方式是以工作頻率逐漸遞減的方式來排列,然而,本新型創作並不限於此。例如,在另一實施例中,A~I組中的工作頻率可各相差大於或小於100MHz的任何數值,A~I組之工作參數的排列方式可以工作頻率逐漸遞增的方式來排列,且工作參數表210所列出之工作參數的組數亦會因運算電路150實際的計算結果而有增減。
特別是,倘若使用者並非是第一次執行其所選擇的應用程式,則儲存裝置170中會記錄有對應此應用程式的工作參數表,因此,運算電路150不須執行上述計算處理器110執行使用者所選擇之應用程式時的所述多組工作參數。換言之,運算電路150可直接從儲存裝置170中讀取工作參數表,因此,處理器110不用在兩組工作參數下預先執行兩次應用程式,且運算電路150亦不須執行上述解聯立方程式與計算所有可能的工作參數的操作,由此有效地減少處理器110與運算電路150所處理的資料量與運算,進而提升電腦系統100的整體效能。此外,在本新型創作實施例中,運算電路150所執行的所有運算操作,亦可由處理器110來執行。
需注意的是,在上述使用者選擇應用程式的操作中,由於不同的應用程式所能讓處理器110達到的負載程度並不相同,據此,使用者可透過選擇能夠讓處理器110之運作達到的100%負載的應用程式或測試程式,進而瞭解當前電腦系統100之效能的極限。也就是說,透過讓處理器110運作能使處理器110達到100%負載的應用程式所獲得的工作參數可以適用於大部分的應用程式或測試程式,如此一來,使用者便能瞭解當前的電腦系統100所至少能發揮的效能。
圖4是依照本新型創作另一實施例所繪示的工作頻率控制介面。
請參照圖4,圖4中所示的工作頻率控制介面400類似於圖2A中所示的工作頻率控制介面200,其中,應用程式選項404的功能與確定選項406的功能分別相同於應用程式選項204的功能與確定選項206的功能,在此不再重述。特別是,工作頻率控制介面400更包括一最佳化選項408,在此實施例中,使用者可不從工作參數表410中選擇A~I的其中之一組工作參數,且僅需透過選擇最佳化選項408,控制電路160則會根據最佳化選項被觸發所產生的觸發訊號控制處理器110在所述多組工作參數中對應觸發訊號的最佳工作頻率與最佳工作頻率所對應的目標工作電壓下運作,例如,第A組中的工作頻率“4600MHz”大於工作參數表中的其他工作頻率,因此,“4600MHz”會被作為最佳工作頻率,而其對應的工作電壓“1.281V”會被作為最佳工作電壓。
或者,在另一實施例中,使用者可不輸入預期接面溫度,並且透過直接選取最佳化選項408,運算電路150會反應於所述最佳化選項408被選取的操作,進而將預期接面溫度至少設為90℃,並模擬出處理器110在此預期接面溫度下執行能使處理器110達到100%負載的應用程式的所有工作參數。
綜上所述,本新型創作所述之電腦系統及能在系統效能與溫度間取得平衡。進一步來說,由於電腦系統通常具有溫度監控機制以在系統溫度在上升至溫度門檻值後,執行降頻操作以達到降溫的效果,而透過將電腦系統之處理器的溫度上限控制在小於所述溫度門檻值的預期接面溫度,並根據處理器所執行的應用程式與預期接面溫度提供使用者電腦系統所能發揮之高效能的工作參數,則可確保處理器可維持長時間的高速運作,同時將電腦系統的熱源控制在一定程度之內。
據此,使得電腦系統在不失去系統效能的同時而有更佳的溫度表現。另一方面,本新型創作更提供一工作頻率控制介面,工作頻率控制介面可顯示上述對應電腦系統所能發揮之高效能的多組工作參數供使用者進行設定,如此一來,使用者每次設定電腦系統的工作參數時,不需要多次測試才能夠確保所設定之工作參數的可用性,進而大大地提升使用者的操作便利性。
雖然本新型創作已以實施例揭露如上,然其並非用以限定本新型創作,任何所屬技術領域中具有通常知識者,在不脫離本新型創作的精神和範圍內,當可作些許的更動與潤飾,故本新型創作的保護範圍當視後附的申請專利範圍所界定者為準。
100‧‧‧電腦系統
110‧‧‧處理器
120‧‧‧輸入裝置
130‧‧‧顯示器
140‧‧‧溫度感測器
150‧‧‧運算電路
160‧‧‧控制電路
170‧‧‧儲存裝置
200、400‧‧‧工作頻率控制介面
210、410‧‧‧工作參數表
202、402‧‧‧預期接面溫度欄位
204、404‧‧‧應用程式選項
206、406‧‧‧確定選項
S201、S203、S205、S207、S301、S303、S305、S307、S309、S311‧‧‧電腦系統搭配工作頻率控制介面的運作步驟
408‧‧‧最佳化選項
圖1是根據本新型創作的一實施例所繪示的電腦系統的方塊圖。 圖2A是依照本新型創作一實施例所繪示的工作頻率控制介面。 圖2B是依照本新型創作一實施例所繪示的電腦系統搭配工作頻率控制介面的運作流程圖。 圖3是依照本新型創作另一實施例所繪示的電腦系統搭配工作頻率控制介面的運作流程圖。 圖4是依照本新型創作另一實施例所繪示的工作頻率控制介面。
100‧‧‧電腦系統
110‧‧‧處理器
120‧‧‧輸入裝置
130‧‧‧顯示器
140‧‧‧溫度感測器
150‧‧‧運算電路
160‧‧‧控制電路
170‧‧‧儲存裝置

Claims (10)

  1. 一種電腦系統,包括: 一處理器,執行一應用程式,且產生一實際接面溫度; 一輸入裝置,耦接該處理器,用以接收對應該處理器的一預期接面溫度; 一運算電路,耦接該處理器,計算用以將該實際接面溫度達到該預期接面溫度的多組工作參數,該每一組工作參數包括一工作頻率與一對應該工作頻率的工作電壓;以及 一顯示器,耦接該處理器,用以顯示對應該預期接面溫度的一工作參數表,其中該工作參數表包含該些工作參數。
  2. 如申請專利範圍第1項所述的電腦系統,更包括一控制電路,耦接該處理器,用以根據該輸入裝置所接收的一選擇訊號控制該處理器在所述多組工作參數中對應該選擇訊號的一目標工作頻率與該目標工作頻率所對應的一目標工作電壓下運作。
  3. 如申請專利範圍第1項所述的電腦系統,其中該顯示器更用以顯示一最佳化選項,且該電腦系統更包括一控制電路,用以根據該最佳化選項被觸發所產生的一觸發訊號控制該處理器在所述多組工作參數中對應該觸發訊號的一最佳工作頻率與該最佳工作頻率所對應的一目標工作電壓下運作,其中該最佳工作頻率大於該工作參數表中該最佳工作頻率以外的其他工作頻率。
  4. 如申請專利範圍第1項所述的電腦系統,其中該運算電路更用以在該處理器以一第一工作頻率與一第一工作電壓下運作該應用程式時獲得一第一接面溫度,以及該運算電路更用以在該處理器以一第二工作頻率與一第二工作電壓下運作該應用程式時獲得一第二接面溫度。
  5. 如申請專利範圍第4項所述的電腦系統,其中該運算電路更用以將該第一工作頻率、該第一工作電壓、該第一接面溫度,以及該第二工作頻率、該第二工作電壓、該第二接面溫度分別代入一工作參數-溫度對應方程式,以獲得一第一變數與一第一環境溫度。
  6. 如申請專利範圍第5項所述的電腦系統,其中該運算電路更用以根據該第一變數、該第一環境溫度與該預期接面溫度計算該處理器的該實際接面溫度達到該預期接面溫度時的該些工作頻率與該些工作頻率分別對應的工作電壓, 其中在該工作參數-溫度對應方程式中該第一變數、每一該些工作頻率與每一該些工作電壓的乘積正相關於該預期接面溫度與該第一環境溫度的差值。
  7. 如申請專利範圍第1項所述的電腦系統,更包括一溫度感測器,耦接該處理器,用以偵測該處理器的該實際接面溫度。
  8. 如申請專利範圍第7項所述的電腦系統,更包括一控制電路,耦接該處理器,其中當該控制電路判斷該處理器的該實際接面溫度大於一溫度門檻值時,該控制電路更用以執行一降頻操作以降低該處理器的工作頻率,其中該預期接面溫度小於該溫度門檻值。
  9. 如申請專利範圍第1項所述的電腦系統,更包括一儲存裝置,用以記錄對應該預期接面溫度的該工作參數表。
  10. 如申請專利範圍第9項所述的電腦系統,其中該運算電路更用以在計算該處理器執行該應用程式時的所述多組工作參數之前,判斷對應該應用程式與該預期接面溫度的該工作參數表是否已儲存於該儲存裝置中。
TW106208433U 2017-06-12 2017-06-12 電腦系統 TWM549371U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106208433U TWM549371U (zh) 2017-06-12 2017-06-12 電腦系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106208433U TWM549371U (zh) 2017-06-12 2017-06-12 電腦系統

Publications (1)

Publication Number Publication Date
TWM549371U true TWM549371U (zh) 2017-09-21

Family

ID=60765417

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106208433U TWM549371U (zh) 2017-06-12 2017-06-12 電腦系統

Country Status (1)

Country Link
TW (1) TWM549371U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11379337B2 (en) 2018-06-21 2022-07-05 Hewlett-Packard Development Company, L.P. Increasing CPU clock speed to improve system performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11379337B2 (en) 2018-06-21 2022-07-05 Hewlett-Packard Development Company, L.P. Increasing CPU clock speed to improve system performance
TWI771593B (zh) * 2018-06-21 2022-07-21 美商惠普發展公司有限責任合夥企業 自動超頻系統及方法及與其相關之機器可讀媒體

Similar Documents

Publication Publication Date Title
US10488873B2 (en) Monitoring surface temperature of devices
JP6162262B2 (ja) 最適な電力レベルを予測するために熱抵抗値を使用したポータブルコンピューティングデバイスにおける熱管理のためのシステムおよび方法
JP5805881B2 (ja) 漏洩電流の測定値から熱管理ポリシーを決定するためのシステムおよび方法
JP6162350B1 (ja) 性能を最大化し、チップ温度および電力を低減する好ましいコア順序付けのためのアルゴリズム
US9945576B2 (en) System and method for detecting the presence of alternate cooling systems
TWI546709B (zh) 基於使用者存在檢測的可變觸控螢幕掃描速率之技術
KR20130110459A (ko) 시스템-온 칩, 이를 포함하는 전자 시스템 및 그 제어 방법
JP2007328761A (ja) 電子コンポーネントのための温度制御方法及び温度制御システム
TWI509517B (zh) An electronic device that can be started in a low temperature environment and a method of starting it
TW201327120A (zh) 計算機及其智慧型風扇的控制方法
US9341190B2 (en) Thermal control system based on nonlinear zonal fan operation and optimized fan power
JP2017502383A (ja) ポータブルコンピューティングデバイスにおけるシステムオンチップのマルチ相関学習型熱管理のためのシステムおよび方法
JP6926185B2 (ja) コンピューティングデバイスにおける温度緩和のための較正を提供する回路および方法
JP2012256223A5 (zh)
JP2018511877A (ja) 作業負荷検出に基づくコンピューティングデバイスにおける熱管理
TW201835716A (zh) 半導體裝置、動作控制方法及程式
JP6252333B2 (ja) 装置
WO2016197651A1 (zh) 一种实现发热控制的方法及终端
TWM549371U (zh) 電腦系統
TW201428632A (zh) 表格驅動之多重被動跳脫平台被動熱管理技術
Park et al. Accurate prediction of smartphones' skin temperature by considering exothermic components
WO2019024204A1 (zh) 一种温度采集方法、终端及存储介质
CN112965551A (zh) 扬声器的发热控制方法和装置
JP2004164530A (ja) ポータブルコンピュータのオペレーションシステムによる電池状態読み取り方法
TWI723332B (zh) 電腦系統管理方法與電腦系統