WO2017049923A1 - 一种多功能移动图像处理装置、处理方法及用途 - Google Patents

一种多功能移动图像处理装置、处理方法及用途 Download PDF

Info

Publication number
WO2017049923A1
WO2017049923A1 PCT/CN2016/082278 CN2016082278W WO2017049923A1 WO 2017049923 A1 WO2017049923 A1 WO 2017049923A1 CN 2016082278 W CN2016082278 W CN 2016082278W WO 2017049923 A1 WO2017049923 A1 WO 2017049923A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
infrared
module
camera
image data
Prior art date
Application number
PCT/CN2016/082278
Other languages
English (en)
French (fr)
Inventor
皮爱平
Original Assignee
广州市巽腾信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市巽腾信息科技有限公司 filed Critical 广州市巽腾信息科技有限公司
Publication of WO2017049923A1 publication Critical patent/WO2017049923A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the invention relates to image information collecting technology, in particular to a multifunctional moving image processing device, a processing method and a use thereof.
  • One of the tasks of the present invention is to provide a moving image processing apparatus having a shooting mode with multiple functions.
  • a multifunctional moving image processing device includes a controller and a display screen connected to the controller, wherein the moving image processing device further comprises a camera connected to the controller, and the camera includes a filter And an image sensor, the controller receives an instruction sent by a virtual button or a physical button on the device, controls an image sensor that receives light of different wavelengths through the filter, converts the image into a digital signal, processes it, and then processes the processed image Image data output.
  • the number of the cameras is one, and the camera includes a filter switcher and/or a focus module and/or a fill light module; or the number of the cameras is two, and one or two of the two cameras
  • the filter switcher and/or the focus module and/or the fill light module are included, and the image acquisition faces of the two cameras are on the same plane.
  • the controller includes:
  • a mode management module configured to control the focus module, the fill light module, and the filter switch to switch different filters to form different shooting modes
  • the image processing module is capable of receiving the captured image data, and then transmitting the received image data to the data interface module according to different data processing modes, performing corresponding data processing, encryption, and preparation processing operations, and/or passing the received image data through the data interface.
  • the module is delivered to the display for previewing;
  • a data interface module for receiving an instruction sent to the controller and outputting image data of the image processing module.
  • the filter of the filter is any one of an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band filter; the filter connected to the filter switch is an infrared cut filter At least one of a sheet, a full-spectrum optical lens, and a near-infrared narrow-band filter.
  • the controller also includes the focus module for controlling the focusing device to adjust imaging sharpness, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the controller further includes the fill light module for adjusting the fill light, the fill light being at least one of a visible light fill light, an infrared fill light, and a near infrared fill light.
  • the mode management module is provided with a developer control shooting module, and the developer accesses the developer control shooting module through the controller, and queries the focus module, the fill light module and the filter switch of the camera for more than one working state. And/or controlling one or more operating states of the focus module, the fill light module, and the filter switch of the camera.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the mobile image processing device is a mobile phone, a tablet computer, a notebook computer, a PDA, a police service or a smart TV.
  • the controller is provided with an encryption module.
  • the image sensor is a charge coupled device CCD or a complementary metal oxide semiconductor COMS.
  • the controller is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a field programmable gate array FPGA, a central processing unit CPU, a single chip microcomputer, a system on chip SoC or other equivalent dedicated chip.
  • the controller is further connected with a transmission module, which is a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED wireless device. Any one or more modules in the Lifi communication module.
  • a second object of the present invention is to provide a biological image information processing method using the moving image processing apparatus, which can recognize whether a photographed object is a living organism.
  • a method for processing a biological image information by using the moving image processing apparatus the number of the cameras of the moving image processing apparatus is two, and one or both of the two cameras includes a filter switcher and/or Or a focusing module, the image capturing faces of the two cameras are on the same plane, and the filter of the filter is any one of an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter;
  • the filter connected to the filter switch is at least one of an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter;
  • step (a4) judging whether there is a living body in the near-infrared image, if it is performing step (a5),
  • step (a5) determining whether the near-infrared image meets the requirements for bio-image recognition shooting, if step (a6) is performed, otherwise step (a3);
  • the controller outputs the captured image data to the image data.
  • the step (a2) sets the first camera to the near-infrared shooting mode, and sets the second camera to the visible light shooting mode; or, the step (a2) sets the first camera to the near-infrared shooting mode, and sets the second camera to the infrared shooting mode. Mode; or, the step (a2) sets the first camera to a near-infrared shooting mode, and sets the second camera to a near-infrared shooting mode different from the first camera, and the near-infrared wavelength of the second camera is 700 to 2526 nm. Or, step (a2) sets the first camera to the near-infrared shooting mode, and sets the second camera to the non-working state.
  • the mobile image processing apparatus further includes an encryption module, and the step (a6) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, if yes, the controller transmits the captured image data to the encryption module for encryption, and performs image data output on the encrypted image data; otherwise, the controller The unencrypted image data is output as image data.
  • the camera uses a near-infrared wavelength of 700 to 2526 nm in the near-infrared shooting mode.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • a third aspect of the present invention provides a biological image information processing method using the moving image processing apparatus, which can recognize whether a photographed object is a living organism.
  • a method for processing a biological image information by using the moving image processing apparatus the moving image processing apparatus having only one camera working, the camera comprising a filter switcher, and the filter switcher having a built-in near-infrared narrow-band filter
  • the light sheet is further connected with an infrared cut filter or/and a full spectrum optical lens, characterized in that the method for collecting biological image information comprises the following steps:
  • step (b4) determining whether the visible light face image or the near-infrared face image meets the biological image recognition shooting requirement, if it is the running step (b2), otherwise performing the step (b5);
  • the controller controls the filter switcher to switch the near-infrared narrow-band filter to work, so that the camera is in the near-infrared shooting mode
  • Step (b8) Determine whether the near-infrared face image meets the requirements for biological image recognition shooting, if it is running Step (b9), otherwise proceeding to step (b1);
  • the controller uses the face recognition algorithm to determine the similarity between the visible light face image of step (b3) and the near-infrared face image of step (b7), or the infrared light face image and step of step (b3) (b7) the similarity of the near-infrared face image,
  • step (b10) If the similarity exceeds the set threshold, it is considered to be the same person, and step (b10) is run, otherwise it is considered not to be the same person, and step (b1) is run;
  • the controller outputs the captured visible light face image data and/or the near-infrared face image data for image data, or the controller takes the captured infrared light face image data and/or the near-infrared face image.
  • the data is output as image data.
  • the threshold is a value not less than 0.8 and not more than 1.
  • the mobile image processing apparatus further includes an encryption module, and the step (b10) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, if yes, the controller transmits the captured image data to the encryption module for encryption, and performs image data output on the encrypted image data; otherwise, the controller The unencrypted image data is output as image data.
  • the camera uses a near-infrared wavelength of 700 to 2526 nm in the near-infrared shooting mode.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • a fourth task of the present invention is to provide a method for performing 3D image capturing using the moving image processing device, which provides image data acquisition preparation for 3D video and 3D modeling.
  • a method for performing 3D image capturing by using the moving image processing device wherein the number of the cameras of the moving image processing device is two, and the image capturing faces of the two cameras are on the same plane, and the two cameras are One or both of the filter switch and/or the focus module, the filter of the filter being any one of an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow band filter;
  • the filter connected to the filter switch is at least one of an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band filter; and the method includes the following processing steps:
  • the controller outputs the captured first visible light image data and the second visible light image data to the image data.
  • the mobile image processing apparatus further includes an encryption module, and the step (c3) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, and if so, the controller transmits the captured first visible light image data and the second visible light image data to the encryption module for encryption, and the encrypted first visible light image The data and the second visible light image data are subjected to image data output; otherwise, the controller outputs the unencrypted first visible light image data and the second visible light image data to the image data.
  • a fifth task of the present invention is to provide a method for performing an all-focus distance image capturing using the moving image processing device, which solves the problem of clearly capturing a distant object when a close-up object is clearly captured.
  • a method for performing full-focus distance image capturing by using the moving image processing device wherein the number of the cameras of the moving image processing device is two, the image capturing faces of the two cameras are on the same plane, and the two cameras
  • One or both of the modules include a focusing module, which is characterized by the following steps:
  • the two cameras one of which is a near focus distance and the other is a far focus distance
  • an image is taken to transmit the captured image data to an external device
  • the external device uses a third-party software to image the near-focus distance of the camera and
  • the image captured by the camera from the far focus is merged into a panoramic image; or the image captured by the near focus distance camera and the image captured by the camera from the far focus are processed by the controller, merged into a panoramic image, and then the image is imaged by the panoramic image.
  • a sixth aspect of the present invention is to provide the use of the mobile image processing apparatus described above, which has a wide range of uses and meets the needs of different users.
  • the filter of the device is any one of an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow-band filter, and the filter connected to the filter switch is an infrared cut filter, full spectrum At least one of an optical lens and a near-infrared narrow band filter; characterized in that:
  • the mobile image processing device is used for 2D video communication, 3D video communication, intelligent face recognition, intelligent iris recognition, intelligent finger vein recognition, intelligent palm vein recognition, intelligent ear recognition, full focus distance image, 2D image, 3D image, Image data acquisition for 3D modeling and/or developer mode.
  • the multi-function moving image processing device of the present invention forms different combinations by switching the infrared cut filter, the full-spectrum optical lens, and the near-infrared narrow-band filter in the camera, thereby achieving various shooting functions and improving the user experience.
  • the moving image processing device uses at least one of the two cameras to be in a near-infrared shooting mode, capable of recognizing whether the subject is a living creature, capturing an image of the living body, or after shooting
  • the bio-image data is encrypted and transmitted; the two cameras synchronously transmit images, and the face image in the infrared shooting mode can be used to verify whether the face image in the visible light mode is an illegal user, thereby improving the security of the user identity authentication.
  • the moving image processing device adopts one of the number of cameras, wherein the inner filter switch is connected with a near-infrared narrow-band filter, and an infrared cut filter or
  • the full-spectrum optical lens can identify the living organism in the case of visible light and low illumination, and can further judge the similarity by switching the filter switch to the near-infrared narrow-band filter and the images captured by other filters. To verify whether it is the same person and improve the security of user identity authentication.
  • the method for 3D image capturing of the present invention adopts the moving image processing device, both cameras are in visible light shooting mode, and the image capturing faces of the two cameras are on the same plane, which is realized as 3D video and 3D modeling provides image data acquisition preparation or encrypted transmission of image data.
  • the full-focus distance image capturing method of the present invention adopts the moving image processing device, both cameras are in a visible light shooting mode, and the image capturing faces of the two cameras are on the same plane, so that one is a near focus distance, and the other A far focus distance blends the captured images to solve the problem of clear shooting of distant objects when shooting close-up objects.
  • the mobile image processing device of the present invention is widely used, mainly for 2D video communication, 3D video communication, intelligent face recognition, intelligent iris recognition, intelligent finger vein recognition, intelligent palm vein recognition, intelligent ear recognition, and full focus distance.
  • Various functions such as image, 2D image, 3D image, 3D modeling, developer mode, etc., to meet the needs of different users.
  • FIG. 1 is a schematic diagram of a hardware structure diagram of the present invention
  • FIG. 2 is a second schematic diagram of a hardware structure diagram of the present invention.
  • Figure 3 is a schematic view showing the internal structure of the controller of Figures 1 and 2;
  • FIG. 4 is a flow chart of the 3D image capturing method of FIG. 1;
  • FIG. 5 is a flow chart of the 3D image capturing method including image data encryption in FIG. 1;
  • FIG. 6 is a flow chart of the method for processing binocular face recognition image information of FIG. 1;
  • FIG. 7 is a flow chart of the method for processing low-illuminance environment binocular face recognition image information of FIG. 1;
  • FIG. 8 is a flow chart of the method for processing the information of the monocular face recognition image information of FIG. 2.
  • a multifunctional moving image processing apparatus 1 includes a controller 3 and a display screen 5 connected to the controller 3.
  • the moving image processing apparatus is further provided with a camera 4 connected to the controller 3.
  • the camera 4 includes The filter and the image sensor, the controller 3 receives an instruction sent by a virtual button or a physical button on the device, controls an image sensor that receives light of different wavelengths through the filter, converts the image into a digital signal, and processes it, and then The processed image data is output.
  • the number of the cameras 4 is two, and one or both of the two cameras 4 include a filter switcher and/or a focus module 303 and/or a fill light module 304, and image acquisition of the two cameras 4 The faces are on the same plane.
  • the filter of the filter is any one of an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band filter; the filter connected to the filter switch is an infrared cut filter At least one of a sheet, a full-spectrum optical lens, and a near-infrared narrow-band filter.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes:
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding encryption, preparation processing operations according to different shooting modes, and then send the data to the data interface module 306, and/or pass the received image data through the data interface module. 306 is sent to the display screen 5 for previewing;
  • the data interface module 306 is configured to receive an instruction sent to the controller 3 and output image data of the image processing module 302.
  • the mode management module 301 is provided with a developer control shooting module.
  • the developer accesses the developer control shooting module through the transmission module 2 on the external device, and queries the focus module 303, the fill light module 304 and the filter switch of each of the two cameras 4.
  • the controller 3 also includes a focus module 303 for controlling the focusing device to adjust the sharpness of the image, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the controller further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near-infrared fill light, and the fill light may also be Hyperspectral fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated chip.
  • the controller 3 is also connected with a transmission module 2, which includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED. Any one or more of the modules of the wireless optical communication Lifi communication module for transmitting the working state information, the control command, the image, the video, the audio, and the encrypted data information of the moving image processing apparatus 1.
  • a transmission module 2 which includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED. Any one or more of the modules of the wireless optical communication Lifi communication module for transmitting the working state information, the control command, the image, the video, the audio, and the encrypted data information of the moving image processing apparatus 1.
  • the mobile image processing apparatus 1 is a mobile phone, a tablet computer, a notebook computer, a PDA, a police service, or a smart TV.
  • the controller 3 is provided with an encryption module or no encryption module.
  • a method for collecting biological image information by using the moving image processing apparatus 1 can identify whether a photographed object is a biological living body, and includes the following processing steps:
  • step (a4) determining whether there is a living body in the near-infrared image, if it is performing step (a5), otherwise performing step (a3);
  • step (a5) determining whether the near-infrared image meets the requirements for bio-image recognition shooting, if step (a6) is performed, otherwise step (a3);
  • the controller outputs the captured image data to the image data.
  • Step (a2) setting the first camera to the near-infrared shooting mode, setting the second camera to the visible light shooting mode; or, step (a2) setting the first camera to the near-infrared shooting mode, and setting the second camera to the infrared shooting mode; or
  • the step (a2) sets the first camera to a near-infrared shooting mode, sets the second camera to a near-infrared shooting mode of a different band from the first camera, and the near-infrared wavelength of the second camera is 700 to 2526 nm; or, the steps (a2) Set the first camera to the near-infrared shooting mode and set the second camera to the inactive state.
  • the mobile image processing apparatus 1 further includes an encryption module 305, and the step (a6) further includes the following steps:
  • the controller 3 Determining whether the mode command of the controller 3 includes an encryption request, and if so, the controller 3 transmits the captured image data to the encryption module 305 for encryption, and performs image data output on the encrypted image data; otherwise, the controller Image data is output without unencrypted image data.
  • the near-infrared wavelength of the camera 4 used in the near-infrared shooting mode is 700 to 2526 nm.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • a method for performing 3D image capturing by the moving image processing apparatus 1 provides image data acquisition preparation for 3D video and 3D modeling, and includes the following steps:
  • the controller outputs the captured first visible light image data and the second visible light image data to the image data.
  • the mobile image processing apparatus 1 further includes an encryption module 305, and the step (c3) further includes the following steps:
  • the controller 3 Determining whether the mode command of the controller 3 includes an encryption request, and if so, the controller 3 transmits the captured first visible light image data and the second visible light image data to the encryption module 305 for encryption, and the encrypted first visible light The image data and the second visible light image data are subjected to image data output; otherwise, the controller 3 outputs the unencrypted first visible light image data and the second visible light image data to the image data.
  • a method for photographing a full-focus distance image by using the moving image processing apparatus 1 includes the following steps: using the two cameras, one of which is a near focus distance and the other is a far focus distance, and an image is taken, which will be photographed.
  • the image data is transmitted to an external device, and the external device merges the image captured by the near focus to the camera and the image captured by the camera from the far focus to a panoramic image through a third-party software; or the image captured by the near focus and the far focus distance camera
  • the captured image is processed by the controller, merged into a panoramic image, and then image data is output to the panoramic image.
  • the image information collecting device is widely used to meet the needs of different users; the image information collecting device is used for 2D video communication, 3D video communication, intelligent face recognition, intelligent iris recognition, intelligent finger vein recognition, intelligent palm vein recognition, Intelligent ear recognition, full focus distance imaging, 2D imaging, 3D imaging, 3D modeling, and/or developer mode image data acquisition.
  • the present invention discloses a multifunctional moving image processing apparatus 1 including a controller 3 and a display screen 5 connected to the controller 3; the moving image processing apparatus 1 is further provided with a controller 3 respectively connected thereto.
  • Two independent cameras 4 the image capturing faces of the two cameras 4 are on the same plane, the camera 4 includes an image sensor and a filter switch, and one or both of the two cameras 4 include a focusing module 30 and/or Fill light module.
  • the controller 3 receives an instruction sent by a virtual button or a physical button on the device, controls the filter switch to switch the filter to change the image sensor to receive light of different wavelengths, and the image sensor converts the image into a digital signal, and the controller 3 receives the signal. This signal is then processed and the processed image data is output.
  • Each filter switch has three filters built into it: an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow-band filter.
  • the image information collecting apparatus 1 of the present invention forms different combinations by switching the infrared cut filter, the full spectrum optical lens and the near-infrared narrow band filter of the two independent cameras 4, thereby achieving various shooting functions and improving the user experience.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations according to different shooting modes, and then send the data to the data interface module 306, and/or pass the received image data.
  • the data interface module 306 is sent to the display screen 5 for previewing;
  • the data interface module 306 is configured to receive an instruction sent to the controller 3 and output image data of the image processing module 302 to a corresponding application or display screen 5.
  • the application is executable code running on the moving image processing apparatus 1, including an operating system, a driver, a service process, an application process, a virtual machine, an operating system running on the virtual machine,
  • the driver running on the virtual machine, the service process running on the virtual machine, the application process running on the virtual machine, and the like are not limited by the present invention.
  • the mode management module 301 is provided with a developer control shooting module, and the developer accesses the developer control shooting module through the controller 3 to query the work of the focus module 303, the fill light module 304 and/or the filter switch of each of the two cameras 4.
  • the state, and/or, controls the operating states of the respective focus module 303, fill light module 304, and/or filter switch of the two cameras 4.
  • the controller 3 also includes the focus module 303 for controlling the focusing device to adjust imaging sharpness, the focusing device employing a fixed focus device, a manual focusing device, a controllable focusing device, or an adaptive focusing device.
  • the controller 3 further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near infrared fill light, and the fill light can also be used. For high-spectrum fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the controller 3 is also connected with a transmission module 2 for external communication, and the transmission module 2 includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, and a wireless gigabit.
  • the communication module WiGig LED wireless optical communication Lifi communication module.
  • the mobile image processing apparatus 1 is a mobile phone, a tablet computer, a notebook computer, a PDA, a police service, or a smart TV.
  • the controller 3 is a stand-alone device, or shares a controller inside a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart TV.
  • the two cameras 4 are embedded in a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart phone. On the TV.
  • the controller 3 is also connected with a fill light, which is a visible light fill light, an infrared fill light and/or a near-infrared fill light, and the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • a fill light which is a visible light fill light, an infrared fill light and/or a near-infrared fill light
  • the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • the controller 3 is provided with an encryption module or no encryption module.
  • the controller 3 switches the first camera 4 to the near-infrared shooting mode, and the controller 3 switches the second camera 4 to the visible light shooting mode;
  • step (4) determining whether there is a living body in the near-infrared image, if it is performing step (15), otherwise proceeding to step (13);
  • step (16) determining whether the near-infrared image and/or the visible light image meets the requirements for bio-image recognition shooting, if step (16) is performed, otherwise step (13);
  • the image processing module 302 outputs the captured visible light image data and/or near-infrared image data through the data interface module 306.
  • the moving image processing device 1 synchronously outputs the visible light face image and the near-infrared face image. If the object to be photographed is the face photo of the user, the moving image processing apparatus 1 synchronously outputs the visible light face image, and the near-infrared image does not have the living face image, thereby improving the security of the payment verification user identity, and can be applied to the business payment. Or, identify a living organism.
  • the biological living body is mainly recognized for low-illumination shooting conditions, and the security of identity authentication is improved, which can be applied to business payment, and the principle is as follows.
  • the low illumination ambient binocular face recognition image acquisition mode of the embodiment is mainly recognized for low-illumination shooting conditions, and the security of identity authentication is improved, which can be applied to business payment, and the principle is as follows.
  • the working principle and technical effects are the monocular face recognition image acquisition of the embodiment. Mode or Embodiment 6.
  • the mobile image processing apparatus 1 further includes an encryption module 305, and the step (a6) further includes the following steps:
  • the controller 3 Determining whether the mode command of the controller 3 includes an encryption request, and if so, the controller 3 transmits the captured image data to the encryption module 305 for encryption, and performs image data output on the encrypted image data; otherwise, the controller 3 The unencrypted image data is output as image data.
  • the first camera 4 in the above step (12) uses a near-infrared wavelength of 700 to 2526 nm.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • a method for 3D image capturing performed by the moving image processing apparatus 1 described above includes the following steps:
  • the controller 3 switches the first camera 4 to the visible light shooting mode, and captures the first visible light image data, while the controller 3 switches the second camera 4 to the visible light shooting mode, and captures the second visible light image data;
  • the image processing module 302 outputs the captured first visible light image data and the second visible light image data through the data interface module 306.
  • a method for 3D image capturing is performed by the above-described moving image processing apparatus 1.
  • the controller of the apparatus further includes an encryption module 305.
  • the method for capturing 3D images includes the following steps:
  • the controller 3 switches the first camera 4 to the visible light shooting mode, and captures the first visible light image data, while the controller 3 switches the second camera 4 to the visible light shooting mode, and captures the second visible light image data;
  • Step (35) determining whether the mode command includes an encryption request, and if so, the controller 3 transmits the captured first visible light image data and the second visible light image data to the encryption module 305 for encryption, and the step (34) is performed; otherwise, Step (35);
  • the controller 3 outputs the encrypted first visible light image data and the second visible light image data through the data interface module 306;
  • the controller 3 outputs the unencrypted first visible light image data and the second visible light image data through the data interface module 306.
  • the moving image processing apparatus 1 has the following shooting modes:
  • the data interface module 306 monitors the signal, and the controller 3 receives the normal shooting mode command sent by the third-party application running on the moving image processing device 1 to switch to the normal mode, and the mode management module 301 activates the first camera 4 and the second camera. 4 is placed in a non-working state, the filter switcher in the first camera is controlled to switch to the infrared cut filter according to the switching instruction of the mode management module 301, and the infrared cut filter is filtered when the light of the object is reflected into the lens.
  • the sheet will absorb and filter out the infrared rays, so that the image sensor CCD or CMOS receives the light in the visible light spectrum and converts it into a graphic electrical signal, which is processed by the graphics processing module 32 and sent to the corresponding application through the data interface module 306.
  • the first camera 4 is also in the visible light shooting mode.
  • the mode management module 301 detects whether the current ambient light needs to be turned on by the visible light, and the fill light module 304 performs the visible light fill according to the detection result, so that the camera has a good wide dynamic and a relatively clear image is captured.
  • the focusing module 303 in this mode switches the focus range of the camera 4 to be 1 mm or more.
  • the invention is not limited.
  • the data interface module 306 monitors the signal, and the controller 3 receives the switching night vision mode command sent by the third-party application running on the mobile image processing apparatus 1 to switch to the night vision mode, and the mode management module 301 activates the first camera 4 and the first The second camera 4, the filter switch built in the first camera 4 and the second camera 4 is controlled to switch to the full-spectrum lens according to the switching instruction of the mode management module 31, and when the light of the object is reflected into the lens at night, the first The image sensor CCD or CMOS of the camera 4 and the second camera 4 receives the light in the entire spectral range and converts it into a graphic electrical signal, which is processed by the graphics processing module 302 and sent to the corresponding application through the data interface module 306.
  • the mode management module 301 detects whether the current ambient light needs to turn on the infrared fill light, and the fill light module 304 performs infrared light fill light according to the detection result, so that the camera has a good wide dynamic and a relatively clear image is captured.
  • the focusing module 303 in this mode switches the focusing range of the first camera 4 and the second camera 4 to be 1 mm or more.
  • the invention is not limited.
  • the moving image processing device 1 of the present invention is a binocular camera, and the structure is a human eye-like structure, which is embodied as a horizontal distribution and has a certain distance between the two, that is, the captured image has a certain left and right visual field difference, and the human eye imaging structure the same.
  • the data interface module 306 monitors the signal, and the controller 3 receives the 3D shooting mode command sent by the third-party application running on the moving image processing device 1 to switch to the 3D video mode, and the mode management module 301 simultaneously activates the first camera 4 and the first The two camera 4, the filter switch in the two cameras 4 respectively control the switching to the infrared cut filter according to the switching instruction of the mode management module 301, and the image sensor CCD or CMOS receives when the light of the object is reflected into the lens.
  • the light to visible light is converted into a graphic electrical signal, processed by the graphics processing module 302, transmitted to the display screen 5 for simple preview, and the data interface module 306 is sent to the corresponding application, that is, the two cameras 4 are all switched to the visible light mode. under.
  • the images captured by the two cameras 4 are synchronously transmitted to the image processing module 302 for processing.
  • the image processing module 302 does not process the image, and directly sends the image data to the output module.
  • the user can use the captured image.
  • the image data is subjected to subsequent processing.
  • the image captured by the camera 4 on the left side is displayed on the left side of the screen, and the image captured by the right camera 4 is displayed on the right side of the screen.
  • 3D glasses the left eye can see the image taken by the left camera 4, while the right eye can see the image taken by the right camera 4, because the pictures taken by the two cameras 4 respectively act on the human eye to achieve 3D visual effects.
  • the mode management module 31 detects whether the current ambient light needs to be turned on, and the fill light module 304 performs visible light fill according to the detection result, so that the camera 4 has better wide dynamics and the shooting is relatively clear. Image.
  • the focusing module 303 in this mode switches the focus range of the camera 4 to be 1 cm or more.
  • the encryption it is possible to determine whether the number of 3D video images is required according to the encryption command in the shooting signal.
  • the captured image data is encrypted and then transmitted, and the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the invention is not limited.
  • the data interface module 306 monitors the signal, and the controller 3 receives the 3D modeling mode command sent by the third-party application running on the mobile image processing apparatus 1 to switch to the 3D video mode, and the mode management module 301 simultaneously starts the first camera 4 and In the second camera 4, the filter switches in the two cameras 4 control the respective switching to the infrared cut filter to operate normally according to the switching instruction of the mode management module 301. That is, the two cameras 4 are switched to the visible light mode, and the two cameras 4 in the ingestion module are currently cameras that receive visible light.
  • the image processing module 302 transmits the image data to the data interface module 306 for interaction, and the user can perform subsequent processing using the captured image data.
  • the invention is a binocular camera, which is characterized in that the camera is horizontally distributed and has a certain distance between the two, that is, there is a focal length of the main viewpoint and a focal length of the secondary viewpoint, and the necessary condition of the stereo camera is provided, and the three-dimensional modeling manner of the stereo camera is a well-known manner.
  • the specific imaging principles therein are not described in the present invention.
  • the focusing module 303 in this mode switches the focus range of the camera 4 to be 1 cm or more.
  • the data interface module 306 monitors the signal, and the controller 3 receives the unary face recognition image acquisition mode command sent by the third-party application running on the mobile image processing apparatus 1, and switches to the monocular face recognition image acquisition mode, mode management.
  • the module 301 activates the first camera 4, and places the second camera 4 in a non-operating state.
  • the filter switcher in the first camera 4 controls switching to the infrared absorption filter according to the switching instruction of the mode management module 301. That is, the camera that receives the visible light mode.
  • the face image information processing method adopts the above-described moving image processing device 1, and performs face recognition according to the following steps:
  • S42 The controller 3 switches the first camera 4 to the visible light shooting mode
  • S43 Grab the visible light image data of the first camera 4, and output the unencrypted visible light image data to the display screen 5 for previewing by the user;
  • step S44 determining whether there is a living human face in the visible light image, the image processing module 302 detects that there is a human face in the visible light image in step S43, maintaining the visible light image and running step S45, otherwise running step S43;
  • step S45 determining whether the near-infrared face image and/or the visible light face image meet the bio-image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard. Is to run step S46, otherwise proceed to step S43;
  • the mode management module 301 controls the filter switcher in the first camera 4 to switch to the near-infrared narrow-band filter to work normally, that is, the camera that receives the near-infrared light mode;
  • the mode management module 301 detects whether the current ambient light needs to turn on the near-infrared fill light.
  • the fill light module 304 performs near-infrared light fill according to the detection result
  • the image processing module 302 determines the visible light image of step S44 by using a face recognition algorithm.
  • step S48 The similarity of the near-infrared image of step S48, if the similarity exceeds the set threshold, it is considered to be the same person, then step S50 is performed, otherwise it is considered that it is not an illegal user of the same person, step S42 is performed;
  • step S50 determining whether the encryption command is included in the mode command. If yes, the controller 3 transmits the visible light face image data saved in step S44 and/or the near-infrared face image data saved in step S48 to the encryption module 305 for encryption and operation. Step S51, otherwise running step S52;
  • the controller 3 outputs the encrypted visible light biological image data and/or the near-infrared biological image data through the data interface module 306;
  • the controller 3 outputs the unencrypted visible light biological image data and/or the near infrared biological image data through the data interface module 306.
  • the face detection of the first camera 4 in step S47 uses a near-infrared wavelength of 700 to 1100 nm, preferably It is a spectrum of 850 nm.
  • Binocular face recognition image acquisition mode
  • the data interface module 306 monitors the signal, and the controller 3 receives the face recognition image acquisition mode command sent by the third-party application running on the mobile image processing apparatus 1 to switch to the binocular live-face recognition image acquisition mode, and the mode management module 301 simultaneously activates the first camera 4 and the second camera 4, and the filter switcher in the second camera 4 controls to switch to the normal operation of the infrared cut filter according to the switching instruction of the mode management module 301, that is, the camera that receives the visible light mode; At the same time, the filter switcher in the first camera 4 controls to switch to the near-infrared narrow-band filter to operate normally according to the switching command of the mode management module 301, that is, to receive the camera in the near-infrared mode.
  • the face image information processing method adopts the above-described moving image processing device 1, and performs face recognition according to the following steps:
  • the controller 3 switches the first camera 4 to the near-infrared shooting mode while switching the second camera 4 to the visible light shooting mode;
  • the image processing module 302 determines whether there is a living human face in the near-infrared image, and using the near-infrared combined light filling method, the image processing module 302 detects that there is a human face in the near-infrared image in step (53), and considers it to be a living human face, and the running step ( 55), otherwise consider non-living human face (such as face photo), run step (53);
  • step (56) determining whether the near-infrared face image and/or the visible light face image meet the bio-image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard. If it is running step (56), otherwise proceed to step (53);
  • the controller 3 determines whether the mode command includes an encryption request, and if so, the controller 3 transmits the captured visible light face image data and/or the near-infrared face image data to the encryption module 305 for encryption, and the operation step (57) Otherwise, run step (58);
  • the controller 3 outputs the encrypted visible light biological image data and/or the near-infrared biological image data to the display screen 5 or the corresponding third-party application through the data interface module 306;
  • the controller 3 outputs unencrypted visible light biological image data and/or near infrared biological image data to the display screen 5 or a corresponding third party application through the data interface module 306.
  • the face detection of the first camera 4 in the step (52) uses a spectrum having a near-infrared wavelength of 700 to 1100 nm, preferably 850 nm.
  • the image processing module 302 also prepares the image captured by the camera 4 in accordance with the face shooting requirement, such as determining whether it is necessary to encrypt the image data according to the encryption instruction in the shooting signal, and performing the captured image data. After the encryption, the transmission can be performed.
  • the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the unencrypted or encrypted face image data is transmitted by the transmission module 2 and transmitted to the mobile image processing apparatus 1, and the user can perform subsequent processing using the captured image data.
  • the focus module 303 in this mode switches the focus range of the camera to 10 to 100 cm.
  • the method of using the biological image information collecting device of the invention can also be applied to living iris recognition image acquisition, living finger vein recognition image acquisition, living palm vein recognition image acquisition and living body ear recognition image acquisition. .
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • Live palm vein recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 5-30 cm.
  • Live ear recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera captures a focus range of 1-50 cm.
  • the data interface module 306 monitors the signal, and the controller 3 receives the low-light environment binocular face recognition image acquisition mode command sent by the third-party application running on the moving image processing device 1, and switches to the low-light environment binocular face recognition.
  • the mode management module 301 simultaneously activates the first camera 4 and the second camera 4, and the filter switch in the second camera 4 controls switching to the full spectrum lens according to the switching instruction of the mode management module 301, that is, receiving In the infrared light mode camera; at the same time, the filter switcher in the first camera 4 controls switching to the near-infrared narrow-band filter according to the switching instruction of the mode management module 301, that is, the camera receiving the near-infrared light mode.
  • the face image information processing method adopts the above-described moving image processing device 1, and as shown in FIG. 7, the face recognition is performed as follows:
  • the controller 3 switches the first camera 4 to the near-infrared shooting mode while switching the second camera 4 to the infrared light shooting mode;
  • the image processing module 302 determines whether there is a living human face in the near-infrared image, and using the near-infrared combined light filling method, the image processing module 302 detects that there is a human face in the near-infrared image in step (63), and considers it to be a living human face, and the running step ( 65), otherwise consider a non-living face (such as a face photo), run step (63);
  • step (63) determining whether the near-infrared face image and/or the infrared light face image meet the biological image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard. If it is running step (66), otherwise step (63);
  • step (66) determining whether the mode command includes an encryption request, and if so, the controller 3 transmits the captured infrared face image data and/or the near-infrared face image data to the encryption module 305 for encryption, and the operation step (67) ), otherwise run step (68);
  • the controller 3 outputs the encrypted infrared photo biometric image data and/or the near infrared biometric image data to the display screen 5 or the corresponding third party application through the data interface module 306;
  • the controller 3 outputs the unencrypted infrared light biological image data and/or the near-infrared biological image data to the display screen 5 or the corresponding third party application through the data interface module 306.
  • the face detection of the first camera 4 in the step (62) uses a spectrum having a near-infrared wavelength of 700 to 1100 nm, preferably 850 nm.
  • the infrared light is used instead of the visible light to achieve image recognition for face recognition in a low illumination environment.
  • the image processing module 302 also prepares the image captured by the camera 4 in accordance with the face shooting requirement, such as determining whether it is necessary to encrypt the image data according to the encryption instruction in the shooting signal, and performing the captured image data. After the encryption, the transmission can be performed.
  • the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the encrypted image data is transmitted by the transmission module 2 and transmitted to an external device, and the user can perform subsequent processing using the captured image data.
  • the focus module 303 in this mode switches the focus range of the camera to 10 to 100 cm.
  • the method of using the biological image information collecting device of the invention can also be applied to living iris recognition image acquisition, living finger vein recognition image acquisition, living palm vein recognition image acquisition and living body ear recognition image acquisition. .
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • Live palm vein recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 5-30 cm.
  • Live ear recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera captures a focus range of 1-50 cm.
  • the shooting of the all-focus distance image is performed by using the two cameras 4, one of which is a near focus distance and the other is a far focus distance, and the captured image data is sent to the corresponding third party application through the data interface module 306.
  • Program a third-party application that combines the image captured by the near focus with the camera and the image of the far focus from the camera into a panoramic image; or, near the focal length
  • the image taken from the camera and the image taken by the camera from the far focus are processed by the image processing module 302 of the controller 3, fused into a panoramic image, and transmitted to the display 5 of the moving image processing apparatus 1.
  • the data interface module 306 monitors the signal, and the controller 3 receives the all-focus distance shooting mode command sent by the third-party application running on the moving image processing apparatus 1 to switch to the all-focus distance shooting mode, and the mode management module 301 switches to the control signal according to the control signal.
  • the two cameras 4 are switched to the visible light mode.
  • the mode management module 301 separately controls the spectral filters in the two cameras 4 according to the instructions, so that the two infrared cut filters operate normally, and the CCD or CMOS can only utilize the light in the visible light spectrum range, thereby, the two cameras are 4 Switch to visible light mode.
  • the mode management module 301 controls the focus distance of the focus module 303 of the first camera 4 to be the actual distance of the photographed object. If the focus distance of the focus module 303 of the first camera 4 is a close distance, the focus module 303 of the second camera 4 is controlled. The focusing distance is a long distance. Similarly, if the focusing distance of the focusing module 303 of the first camera 4 is a long distance, the focusing distance of the focusing module 303 of the second camera 4 is controlled to be a close distance.
  • one image sensor CCD or CMOS When the light is reflected into the lens, one image sensor CCD or CMOS receives visible light image data with clear distance and long distance blur, and the other image sensor CCD or CMOS receives visible light image data with close distance and clear distance, and is processed by graphics.
  • the module 302 is processed and sent to the corresponding third party application via the data interface module 306.
  • the mode management module 301 When the visible light camera performs the shooting, the mode management module 301 simultaneously detects whether the visible light is needed, and performs the visible light supplement according to the detection result, so that the camera has a good wide dynamic and a relatively clear image is captured.
  • the image processing module 302 transmits the image data to the corresponding third-party application through the data interface module 306 for interaction or transmission to the display screen 5. The user can perform subsequent processing using the captured image data.
  • the image data it is determined whether the image data needs to be encrypted according to an encryption instruction in the shooting signal.
  • the image data can be transmitted after being encrypted, and the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the data interface module 306 monitors the signal, and the controller 3 receives the developer shooting mode command transmitted by the third party application running on the moving image processing apparatus 1, and switches to the developer shooting shooting mode.
  • the developer can query the working status of each camera 4 and the respective focusing module 303, the fill light module 304 and the filter switcher through the controller 3; and each camera can be changed by the data interface module 306. 4 and the working states of the respective focusing module 303, the fill light module 304, and the filter switch.
  • the image sensor CCD or CMOS forms a corresponding electronic image signal in the developer's custom working spectrum, focusing distance and fill light environment, and simultaneously transmits the image signals of the two cameras 4 to the display screen 5 through the controller 3, so that The developer can develop and utilize the mobile image processing apparatus 1 according to actual application needs.
  • the multi-function binocular camera of the invention allows the camera to switch to different shooting modes, can meet the needs of multiple functional modes without additional adjustments, and has encryption function inside the camera, and most of the existing camera products cannot be To achieve this, it is apparent that the present invention has very advanced advantages.
  • the present invention discloses a multifunctional moving image processing apparatus 1 including a controller 3 and a display screen 5 connected to the controller 3; the moving image processing apparatus 1 is further provided with a controller 3 respectively connected thereto.
  • Two independent cameras 4 the image capturing faces of the two cameras 4 are on the same plane, wherein the first camera 4 includes a filterless switch and a fixed set of near-infrared narrow-band filters, and the second camera 4 includes a filter.
  • the slice switch, and the filter connected to the filter switch is at least one of an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band filter.
  • the moving image processing apparatus 1 of the present invention forms different combinations by switching the infrared cut filter, the full-spectrum optical lens, and the near-infrared narrow-band filter in the second camera 4, thereby achieving various shooting functions and improving the user experience.
  • the controller 3 receives an instruction sent by a virtual button or a physical button on the device, and controls the filter switch to switch the filter of the second camera to change the image sensor to receive light of different wavelengths, and the image sensing
  • the device converts the image into a digital signal, and the controller 3 receives the digital signals of the above two cameras to process it, and then outputs the processed image data to the display screen 5.
  • One or both of the two cameras 4 include a focus module and/or a fill light module.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations according to different shooting modes, and then send the data to the data interface module 306, and/or pass the received image data.
  • the data interface module 306 is sent to the display screen 5 for previewing;
  • the data interface module 306 is configured to receive an instruction sent to the controller 3 and output image data of the image processing module 302 to a corresponding application or display screen 5.
  • the application is executable code running on the mobile image processing apparatus 1, including an operating system, a driver, a service process, an application process, a virtual machine, an operating system running on the virtual machine, and a driver running on the virtual machine.
  • the program, the service process running on the virtual machine, the application process running on the virtual machine, and the like, are not limited by the present invention.
  • the mode management module 301 is provided with a developer control shooting module, and the developer accesses the developer control shooting module through the controller 3 to query the work of the focus module 303, the fill light module 304 and/or the filter switch of each of the two cameras 4.
  • the state, and/or, controls the operating states of the respective focus module 303, fill light module 304, and/or filter switch of the two cameras 4.
  • the controller 3 also includes the focus module 303 for controlling the focusing device to adjust imaging sharpness, the focusing device employing a fixed focus device, a manual focusing device, a controllable focusing device, or an adaptive focusing device.
  • the controller 3 further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near infrared fill light, and the fill light can also be used. For high-spectrum fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the controller 3 is also connected with a transmission module 2 for external communication, and the transmission module 2 includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, and a wireless gigabit.
  • the communication module WiGig LED wireless optical communication Lifi communication module.
  • the mobile image processing apparatus 1 is a mobile phone, a PDA, a police service, a smart TV, a tablet or a notebook computer.
  • the controller 3 is a stand-alone device, or shares a controller inside a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart TV.
  • the two cameras 4 are embedded in a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart phone. On the TV.
  • the controller 3 is also connected with a fill light, which is a visible light fill light, an infrared fill light and/or a near-infrared fill light, and the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • a fill light which is a visible light fill light, an infrared fill light and/or a near-infrared fill light
  • the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • the controller 3 is provided with an encryption module or no encryption module.
  • the moving image processing apparatus 1 has the following shooting modes:
  • the data interface module 306 monitors the signal, the controller 3 receives the normal mode command sent by the third-party application running on the mobile image processing apparatus 1, and switches to the normal mode.
  • the mode management module 301 activates the second camera 4, and the first camera 4 In the non-working state, the filter switcher of the second camera controls to switch to the infrared cut filter according to the switching instruction of the mode management module 301 to operate normally, and is in the visible light shooting mode.
  • Other functions are the same as those of the camera in the normal mode in Embodiment 2.
  • the data interface module 306 monitors the signal, the controller 3 receives the monocular night vision mode command sent by the third party application running on the mobile image processing apparatus 1, switches to the monocular night vision mode, and the mode management module 301 starts the second camera. 4, the first camera 4 is placed in a non-working state, the second camera is filtered The light sheet switcher controls to switch to the full spectrum optical lens to operate normally according to the switching instruction of the mode management module 301, and is in the night vision shooting mode.
  • the data interface module 306 monitors the signal, and the controller 3 receives the unary face recognition image acquisition mode command sent by the third-party application running on the mobile image processing apparatus 1, and switches to the monocular face recognition image acquisition mode, mode management.
  • the module 301 activates the second camera 4, the first camera 4 is placed in a non-operating state, and the filter switch of the second camera is internally connected with three kinds of filters: an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band.
  • the filter controls the switching of the corresponding filter according to the switching instruction of the mode management module 301, and the working principle is as follows: the monocular face recognition image acquisition mode in the embodiment 2 or the monocular face recognition in the embodiment 6.
  • the image acquisition method is the same.
  • Binocular face recognition image acquisition mode
  • the data interface module 306 monitors the signal, and the controller 3 receives the binocular face recognition image acquisition mode command sent by the third party application running on the moving image processing device 1, and switches to the binocular face recognition image acquisition mode, mode management.
  • the module 301 activates the first camera 4 and the second camera 4, and the filter switch of the second camera is internally connected with three kinds of filters: an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter, according to The switching instruction of the mode management module 301 controls to switch to the normal operation of the infrared cut filter, that is, the second camera is in the visible light shooting mode.
  • the transmission module 2 monitors the signal, and the external terminal device sends a normal shooting mode command to the controller 3 to switch to the binocular face recognition image acquisition mode.
  • the mode management module 301 activates the first camera 4 and the second camera 4, and the second camera filters
  • the optical switch is internally connected with three kinds of filters: an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow-band filter, and is controlled to switch to the full-spectrum optical lens according to the switching instruction of the mode management module 301, that is,
  • the second camera is in infrared light shooting mode.
  • its working principle is as in the low illumination environment binocular face recognition image acquisition mode in Embodiment 2.
  • the developer shooting mode of the moving image processing apparatus 1 of the present embodiment operates as the developer shooting mode in the second embodiment.
  • a multifunctional moving image processing apparatus 1 includes a controller 3 and a display screen 5 connected to the controller 3.
  • the moving image processing apparatus is further provided with a camera 4 connected to the controller 3.
  • the camera 4 includes The filter and the image sensor, the controller 3 receives an instruction sent by a virtual button or a physical button on the device, controls an image sensor that receives light of different wavelengths through the filter, converts the image into a digital signal, and processes it, and then The processed image data is output.
  • the number of the cameras 4 is two, and the image capturing faces of the two cameras 4 are on the same plane; wherein the first camera 4 includes a filter switcher, and the filter switcher is internally connected with a near-infrared narrow band filter.
  • the filter switcher is also internally connected with an infrared cut filter and/or a full spectrum optical lens
  • the second camera 4 includes a filterless switch, and a fixed infrared cut filter, a full spectrum optical lens and No one of the lenses is provided.
  • the moving image processing apparatus 1 of the present embodiment forms a different combination of shooting modes by cutting the infrared cut filter in the first change camera 4, and the full-spectrum optical lens and/or the near-infrared narrow-band filter to achieve multiple shooting functions. To improve the user experience.
  • the imaging mode of the moving image processing apparatus 1 is determined by a combination of different types of filters in the two cameras.
  • One or both of the two cameras 4 include a focus module and/or a fill light module.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations according to different shooting modes, and then send the data to the data interface module 306, and/or pass the received image data.
  • the data interface module 306 is sent to the display screen 5 for previewing;
  • the data interface module 306 is configured to receive an instruction sent to the controller 3 and output image data of the image processing module 302 to a corresponding application or display screen 5.
  • the application is executable code running on the mobile image processing apparatus 1, including an operating system, a driver, a service process, an application process, a virtual machine, an operating system running on the virtual machine, and a driver running on the virtual machine.
  • the program, the service process running on the virtual machine, the application process running on the virtual machine, and the like, are not limited by the present invention.
  • the mode management module 301 is provided with a developer control shooting module, and the developer accesses the developer control shooting module through the controller 3 to query the work of the focus module 303, the fill light module 304 and/or the filter switch of each of the two cameras 4.
  • the state, and/or, controls the operating states of the respective focus module 303, fill light module 304, and/or filter switch of the two cameras 4.
  • the controller 3 also includes the focus module 303 for controlling the focusing device to adjust imaging sharpness, the focusing device employing a fixed focus device, a manual focusing device, a controllable focusing device, or an adaptive focusing device.
  • the controller 3 further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near infrared fill light, and the fill light can also be used. For high-spectrum fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the controller 3 is also connected with a transmission module 2 for external communication, and the transmission module 2 includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, and a wireless gigabit.
  • the communication module WiGig LED wireless optical communication Lifi communication module.
  • the mobile image processing apparatus 1 is a mobile phone, a PDA, a police service, a smart TV, a tablet or a notebook computer.
  • the controller 3 is a stand-alone device, or shares a controller inside a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart TV.
  • the two cameras 4 are embedded in a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart phone. On the TV.
  • the controller 3 is also connected with a fill light, which is a visible light fill light, an infrared fill light and/or a near infrared Fill light, fill light can also be high-spectrum fill light, respectively embedded in mobile phones, tablets, laptops, PDAs, police services or smart TV.
  • a fill light which is a visible light fill light, an infrared fill light and/or a near infrared Fill light
  • fill light can also be high-spectrum fill light, respectively embedded in mobile phones, tablets, laptops, PDAs, police services or smart TV.
  • the controller 3 is provided with an encryption module or no encryption module 305.
  • a multifunctional moving image processing apparatus 1 includes a controller 3 and a display screen 5 connected to the controller 3.
  • the moving image processing apparatus is further provided with a camera 4 connected to the controller 3.
  • the camera 4 includes The filter and the image sensor, the controller 3 receives an instruction sent by a virtual button or a physical button on the device, controls an image sensor that receives light of different wavelengths through the filter, converts the image into a digital signal, and processes it, and then The processed image data is output.
  • the number of the cameras 4 is two, and the image capturing faces of the two cameras 4 are on the same plane; the two cameras 4 each include a filter, an image sensor, and a filter switcher, the two filters At least one of the switches is connected to a near-infrared narrow band filter.
  • the moving image processing apparatus 1 of the present embodiment forms different combinations by switching the infrared cut filter, the full spectrum optical lens, and the near-infrared narrow band filter of the two independent cameras 4, thereby achieving various shooting functions and improving the user experience. .
  • the photographing mode of the moving image processing apparatus 1 of the present embodiment is determined according to the combination of different kinds of filters in the two cameras.
  • One or both of the two cameras 4 include a focus module and/or a fill light module.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations according to different shooting modes, and then send the data to the data interface module 306, and/or pass the received image data.
  • the data interface module 306 is sent to the display screen 5 for previewing;
  • the data interface module 306 is configured to receive an instruction sent to the controller 3 and output image data of the image processing module 302 to a corresponding application or display screen 5.
  • the application is executable code running on the mobile image processing apparatus 1, including an operating system, a driver, a service process, an application process, a virtual machine, an operating system running on the virtual machine, and a driver running on the virtual machine.
  • the program, the service process running on the virtual machine, the application process running on the virtual machine, and the like, are not limited by the present invention.
  • the mode management module 301 is provided with a developer control shooting module, and the developer accesses the developer control shooting module through the controller 3 to query the work of the focus module 303, the fill light module 304 and/or the filter switch of each of the two cameras 4.
  • the state, and/or, controls the operating states of the respective focus module 303, fill light module 304, and/or filter switch of the two cameras 4.
  • the controller 3 also includes the focus module 303 for controlling the focusing device to adjust imaging sharpness, the focusing device employing a fixed focus device, a manual focusing device, a controllable focusing device, or an adaptive focusing device.
  • the controller 3 further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near infrared fill light, and the fill light can also be used. For high-spectrum fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the controller 3 is also connected with a transmission module 2 for external communication, and the transmission module 2 includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, and a wireless gigabit.
  • the communication module WiGig LED wireless optical communication Lifi communication module.
  • the mobile image processing apparatus 1 is a mobile phone, a PDA, a police service, a smart TV, a tablet or a notebook computer.
  • the controller 3 is a stand-alone device, or shares a controller inside a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart TV.
  • the two cameras 4 are embedded in a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart phone. On the TV.
  • the controller 3 is also connected with a fill light, which is a visible light fill light, an infrared fill light and/or a near-infrared fill light, and the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • a fill light which is a visible light fill light, an infrared fill light and/or a near-infrared fill light
  • the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • the controller 3 is provided with an encryption module or no encryption module.
  • a multifunctional moving image processing apparatus 1 includes a controller 3 and a display screen 5 connected to the controller 3.
  • the moving image processing apparatus is further provided with a camera 4 connected to the controller 3.
  • the camera 4 includes The filter and the image sensor, the controller 3 receives an instruction sent by a virtual button or a physical button on the device, controls an image sensor that receives light of different wavelengths through the filter, converts the image into a digital signal, and processes it, and then The processed image data is output.
  • the number of the cameras 4 is one.
  • the camera 4 includes a filter switcher, and the filter switcher is internally connected with a near-infrared narrow-band filter, and is also connected with an infrared cut filter or/and a full-spectrum optical lens.
  • the filter switcher is internally connected with a near-infrared narrow-band filter, and is also connected with an infrared cut filter or/and a full-spectrum optical lens.
  • the camera 4 further includes a focus module and/or a fill light module, and the focus module 303 switches the focus range of the camera to 10 to 100 cm.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations according to different shooting modes, and then send the data to the data interface module 306, and/or pass the received image data.
  • the data interface module 306 is sent to the display screen 5 for previewing;
  • the data interface module 306 is configured to receive an instruction sent to the controller 3 and output image data of the image processing module 302 to a corresponding application or display screen 5.
  • the application is executable code running on the moving image processing apparatus 1, including an operating system, a driver, a service process, an application process, a virtual machine, an operating system running on the virtual machine,
  • the driver running on the virtual machine, the service process running on the virtual machine, the application process running on the virtual machine, and the like are not limited by the present invention.
  • the mode management module 301 is provided with a developer control shooting module, and the developer accesses the developer control shooting module through the controller 3 to query the working state of the focusing module 303, the fill light module 304 and/or the filter switch of the camera 4, And/or, the operating states of the focusing module 303, the fill light module 304, and/or the filter switch of the camera 4 are controlled.
  • the controller 3 also includes the focus module 303 for controlling the focusing device to adjust imaging sharpness, the focusing device employing a fixed focus device, a manual focusing device, a controllable focusing device, or an adaptive focusing device.
  • the controller 3 further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near infrared fill light, and the fill light can also be used. For high-spectrum fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the controller 3 is also connected with a transmission module 2 for external communication, and the transmission module 2 includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, and a wireless gigabit.
  • the communication module WiGig LED wireless optical communication Lifi communication module.
  • the mobile image processing apparatus 1 is a mobile phone, a tablet computer, a notebook computer, a PDA, a police service, or a smart TV.
  • the controller 3 is a stand-alone device, or shares a controller inside a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart TV.
  • the two cameras 4 are embedded in a mobile phone, a tablet computer, a laptop computer, a PDA, a police service, or a smart phone. On the TV.
  • the controller 3 is also connected with a fill light, which is a visible light fill light, an infrared fill light and/or a near-infrared fill light, and the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • a fill light which is a visible light fill light, an infrared fill light and/or a near-infrared fill light
  • the fill light can also be a high-resolution fill light, which is respectively embedded in the mobile phone and the tablet computer. , laptop, PDA, police service or smart TV.
  • the controller 3 is provided with an encryption module or no encryption module.
  • the method for performing bio-image information processing by using the above-described moving image processing apparatus 1, that is, the monocular face recognition image collecting method includes the following steps:
  • the controller 3 controls the filter switcher to switch to the infrared cut filter operation, so that the camera 4 is in the visible light shooting mode, or the controller 3 controls the filter switcher to switch to the full spectrum optical lens Working, so that the second camera 4 is in the infrared shooting mode (ie, night vision shooting mode);
  • step (b4) determining whether the near-infrared face image or the visible light face image meets the biological image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard, if Run step (b2), otherwise proceed to step (b5);
  • the controller controls the filter switcher to switch the near-infrared narrow-band filter to work, so that the camera is in the near-infrared shooting mode
  • step (b7) determining whether the near-infrared image has a living human face, that is, the image processing module 302 detects whether there is a human face in the near-infrared image, and if so, considers it to be a living human face, and maintains the near-infrared face image running step (b8), Otherwise, consider a non-living face (such as a photo of a face) and run step (b1);
  • step (b8) determining whether the near-infrared face image meets the requirements of the biological image recognition shooting, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face with respect to the XYZ axis meet the standard, if it is the running step (b9) Otherwise, proceed to step (b1);
  • the controller uses the face recognition algorithm to determine the similarity between the visible light face image of step (b3) and the near-infrared face image of step (b7), or the infrared light face image and step of step (b3) (b7) the similarity of the near-infrared face image,
  • step (b10) is run, otherwise it is considered not to be the same person, and step (b1) is run;
  • the controller outputs the captured visible light face image data and/or the near-infrared face image data to the display screen 5 through the data interface module 306, or the controller takes the captured infrared light face image data and The near-infrared face image data is output to the display screen 5 through the data interface module 306.
  • the moving image processing apparatus 1 further includes an encryption module, and the step (b10) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request. If yes, the controller transmits the captured image data to the encryption module 305 for encryption, and the encrypted image data is output to the display screen through the data interface module 306. Otherwise, the controller outputs the unencrypted image data to the display screen 5 through the data interface module 306.
  • the face detection of the camera 4 in the step (b5) uses a spectrum having a near-infrared wavelength of 700 to 1100 nm, preferably 850 nm.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • the image processing module 302 of the controller processes the image similarity to prevent the object photographed in the visible light shooting mode or the night vision shooting mode from being a human face photo of the character A, and switching the near-infrared narrow band.
  • the subject in the near-infrared shooting mode is the living face image of the character B, so that the filter switcher switches the visible light face image outputted by the image processing device 1 before and after switching the near-infrared narrow-band filter.
  • the near-infrared face image is not the same person, which improves the security of the payment verification user identity.
  • the method of collecting biological image information can be applied to business payment or recognition of living organisms.
  • the monocular face recognition image acquisition method is suitable for monocular face recognition image acquisition in a low illumination environment when the infrared shooting mode is adopted first and then the near infrared shooting mode is adopted.
  • the image processing module 302 also prepares the image captured by the camera 4 in accordance with the face shooting requirement, such as determining whether the image data needs to be input according to the encryption instruction in the shooting signal.
  • Line encryption which can be transmitted after the captured image data is encrypted, and the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the encrypted image data is transmitted by the transmission module 2 and transmitted to an external device, and the user can perform subsequent processing using the captured image data.
  • the moving image processing apparatus 1 of the present embodiment can also be applied to living iris recognition image acquisition, living finger vein recognition image acquisition, living palm vein recognition image acquisition, and living body ear recognition image acquisition.
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • Live palm vein recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 5-30 cm.
  • Live ear recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera captures a focus range of 1-50 cm.

Abstract

本发明公开了一种移动图像处理装置、处理方法及其用途,该装置上设置有与外部装置通信的传输模块、控制器和摄像头,摄像头的数量为一个或两个,两个摄像头的图像采集面在同一平面上;摄像头包括内置连接有红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片的滤光片切换器,控制器控制两摄像头的滤光片切换器切换不同的滤光片,形成不同组合的拍摄模式,提高用户体验。本发明还公开了生物图像信息处理方法,识别拍摄物是否为生物活体,或者对识别后的生物图像数据加密传输,本发明还公开了3D影像拍摄的方法,实现为3D视频和3D建模提供图像数据采集准备;本装置的用途广泛,满足不同用户的使用需求。

Description

一种多功能移动图像处理装置、处理方法及用途 技术领域
本发明涉及图像信息采集技术,特别涉及一种多功能移动图像处理装置、处理方法及用途。
背景技术
随着网络技术的日益发展,移动视频通讯的应用日益成为人们生活的必要通讯手段,在人们对视频通讯习以为常后,更高级的用户体验,例如3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、影像预处理、3D视频、3D建模等多种功能,开始被更多的用户追求,但由于目前用于移动视频通讯的摄像头都是单镜头的可见光摄像头,成像是平面的,使用效果不够理想,无法达到用户的需求,而红外或近红外摄像头没有应用到移动视频设备当中。因此,迫切需要一种带有多功能视频通讯摄像头的移动图像处理装置,提高人们日常视频通讯的用户体验。
发明内容
本发明任务之一提供一种移动图像处理装置,具备多种功能的拍摄模式。
本任务通过下述技术方案来实现:
一种多功能移动图像处理装置,包括控制器以及与控制器连接的的显示屏,其特征在于:所述移动图像处理装置上还设有与所述控制器连接的摄像头,摄像头包括滤光器和图像传感器,控制器接收到本装置上虚拟按键或实体按键发送的指令,控制通过滤光器接收不同波长光线的图像传感器将图像转换为数字信号,并对其进行处理,然后将处理后的图像数据输出。
所述摄像头的数量为一个,且该摄像头包括滤光片切换器和/或对焦模块和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块,该两个摄像头的图像采集面在同一平面上。
所述控制器包括有:
模式管理模块,用于控制所述对焦模块、所述补光模块及所述滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后发送到数据接口模块,和/或将接收的图像数据通过数据接口模块输送至显示屏进行预览;
数据接口模块,用于接收发送给控制器的指令,以及输出图像处理模块的图像数据。
所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
所述控制器还包括用于控制对焦器件调节成像清晰度的所述对焦模块,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。
所述控制器还包括用于调控补光灯的所述补光模块,补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个。
所述模式管理模块设有开发者控制拍摄模块,开发者通过所述控制器访问开发者控制拍摄模块,查询所述摄像头的对焦模块、补光模块和滤光片切换器一种以上的工作状态,并且/或者,控制所述摄像头的对焦模块、补光模块和滤光片切换器一种以上的工作状态。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
所述移动图像处理装置为手机、平板电脑、笔记本电脑、PDA、警务通或智能电视。
所述控制器设有加密模块。
所述图像传感器为电荷耦合器件CCD或互补金属氧化物半导体COMS。
所述控制器为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA、中央处理器CPU、单片机、片上系统SoC或其它等同专用芯片。
所述控制器还连接有传输模块,传输模块为Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
本发明的任务之二提供一种利用所述的移动图像处理装置进行生物图像信息处理方法,可识别拍摄物体是否为生物活体。
本任务的技术方案如下:
一种利用所述的移动图像处理装置进行生物图像信息处理方法,该移动图像处理装置的所述摄像头数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,该两个摄像头的图像采集面在同一平面上,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个;
其特征在于包含如下处理步骤:
(a1)启动两个所述摄像头,两个摄像头同步输出图像数据;
(a2)设置至少一个摄像头为近红外拍摄模式;
(a3)抓取图像数据并传输至显示屏给用户预览;
(a4)判断近红外图像是否存在活体,如果是进行步骤(a5),
否则进行步骤(a3);
(a5)判断近红外图像是否符合生物图像识别拍摄需求,如果是进行步骤(a6),否则进行步骤(a3);
(a6)控制器把拍摄好的图像数据进行图像数据输出。
进一步的改进方案如下:
所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为与第一摄像头不同波段的近红外拍摄模式,所述第二摄像头的近红外波长为700~2526nm;或者,步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态。
所述移动图像处理装置还包括加密模块,步骤(a6)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,对加密后的图像数据进行图像数据输出;否则,控制器把未加密的图像数据进行图像数据输出。
所述步骤(a2)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
本发明的任务之三提供一种利用所述的移动图像处理装置进行生物图像信息处理方法,可识别拍摄物体是否为生物活体。
本任务的技术方案如下:
一种利用所述的移动图像处理装置进行生物图像信息处理方法,所述移动图像处理装置仅有一个摄像头工作,该摄像头包括滤光片切换器,滤光片切换器内置连接有近红外窄带滤光片,还连接有红外截止滤光片或/和全光谱光学透镜,其特征在于所述生物图像信息采集的方法包括如下步骤:
(b1)启动摄像头工作,所述控制器切换该摄像头至可见光拍摄模式或夜视拍摄模式;
(b2)抓取可见光图像或红外光图像数据,并将抓取的图像数据传输至显示屏给用户预览;
(b3)判断可见光图像或红外光图像是否存在人脸,如果是,保持可见光人脸图像或红外光人脸图像运行步骤(b4),否则运行步骤(b2);
(b4)判断可见光人脸图像或近红外人脸图像是否符合生物图像识别拍摄要求,如果是运行步骤(b2),否则进行步骤(b5);
(b5)控制器控制滤光片切换器切换近红外窄带滤光片工作,使得摄像头处于近红外拍摄模式;
(b6)抓取近红外图像数据,并传输至显示屏给用户预览;
(b7)判断近红外光图像是否存在活体人脸,如果是,保持近红外人脸图像运行步骤(b8),否则运行步骤(b1);
(b8)判断近红外人脸图像是否符合生物图像识别拍摄要求,如果是运行 步骤(b9),否则进行步骤(b1);
(b9)控制器利用人脸识别算法判断:步骤(b3)的可见光人脸图像与步骤(b7)的近红外人脸图像的相似度,或者,步骤(b3)的红外光人脸图像与步骤(b7)的近红外人脸图像的相似度,
如果该相似度超过设定阈值,则认为是同一个人,运行步骤(b10),否则认为不是同一个人,运行步骤(b1);
(b10)控制器把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据进行图像数据输出,或者,控制器把拍摄好的红外光人脸图像数据和/或近红外人脸图像数据进行图像数据输出。
进一步的改进方案如下:
所述阈值为不小于0.8不大于1的值。
所述移动图像处理装置还包括加密模块,步骤(b10)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,对加密后的图像数据进行图像数据输出;否则,控制器把未加密的图像数据进行图像数据输出。
所述步骤(b5)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
本发明的任务之四是提供一种利用所述的移动图像处理装置进行3D影像拍摄的方法,实现为3D视频和3D建模提供图像数据采集准备。
本任务的技术方案如下:
一种利用所述的移动图像处理装置进行3D影像拍摄的方法,该移动图像处理装置的所述摄像头数量为两个,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个;其特征在于包含如下处理步骤:
(c1)启动两个所述摄像头,两个摄像头同步输出图像数据;
(c2)设置第一摄像头至可见光拍摄模式,并抓取第一可见光图像数据,同时设置第二摄像头至可见光拍摄模式,并抓取第二可见光图像数据;
(c3)控制器把拍摄好的第一可见光图像数据和第二可见光图像数据进行图像数据输出。
进一步的改进方案如下:
所述移动图像处理装置还包括加密模块,步骤(c3)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块进行加密,对加密后的第一可见光图像数据和第二可见光图像数据进行图像数据输出;否则,控制器把未加密的第一可见光图像数据和第二可见光图像数据进行图像数据输出。
本发明的任务之五是提供一种利用所述的移动图像处理装置进行全焦点距离影像拍摄方法,解决了清晰拍摄近距离物体的时候也能清晰拍摄远距离物体的问题。
本任务的技术方案如下:
一种利用所述的移动图像处理装置进行全焦点距离影像拍摄方法,该移动图像处理装置的所述摄像头数量为两个,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括对焦模块,其特征在于包括如下步骤:
利用所述两个摄像头,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,将拍摄的图像数据传输到外部装置,外部装置通过第三方软件把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过所述控制器处理,融合成一幅全景图像,再对全景图像进行图像数据输出。
本发明的任务之六是提供所述的移动图像处理装置的用途,该装置的用途广泛,满足不同用户的使用需求。
本任务的技术方案如下:
所述的移动图像处理装置的用途,该移动图像处理装置的所述摄像头数量为一个,且该摄像头包括滤光片切换器和/或对焦模块和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块,该两个摄像头的图像采集面在同一平面上;所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个,所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个;其特征在于:
所述移动图像处理装置用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模和/或开发者模式的图像数据采集。
本发明的优点:
(1)本发明多功能移动图像处理装置,通过切换摄像头中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。
(2)本发明生物图像信息处理的方法,采用所述移动图像处理装置,两个摄像头至少一个为近红外拍摄模式,能够识别拍摄物是否为生物活体,对生物活体拍摄图像,或对拍摄后的生物图像数据进行加密传输;两个摄像头同步传输图像,可通过红外拍摄模式下的人脸图像来验证可见光模式下的人脸图像是否为非法用户,提高用户身份认证的安全性。
(3)本发明生物图像信息采集的方法,采用所述移动图像处理装置,摄像头数量为一个,其内滤光片切换器连接有近红外窄带滤光片,还连接有红外截止滤光片或全光谱光学透镜,可以在可见光情况下和低照度情况下,识别生物活体,进一步可以通过将滤光片切换器切换近红外窄带滤光片与其它滤光片前后抓取的图像进行相似性判断,验证是否为同一个人,提高用户身份认证的安全性。
(4)本发明3D影像拍摄的方法,采用所述移动图像处理装置,两摄像头都为可见光拍摄模式,两摄像头的图像采集面在同一平面上,实现为3D视频和 3D建模提供图像数据采集准备,或对图像数据进行加密传输。
(5)本发明全焦点距离影像拍摄方法,采用所述移动图像处理装置,两摄像头都为可见光拍摄模式,且该两个摄像头的图像采集面在同一平面上,使得一个为近焦点距离,另一个为远焦点距离,将拍得的图形进行融合,解决了清晰拍摄近距离物体的时候也能清晰拍摄远距离物体的问题。
(6)本发明移动图像处理装置的用途广泛,主要应用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模、开发者模式等多种功能,满足不同用户的使用需求。
附图说明
图1为本发明硬件结构图示意图之一;
图2为本发明硬件结构图示意图之二;
图3为图1和图2控制器的内部结构示意图;
图4为图1的3D影像拍摄方法的流程图;
图5为图1包含图像数据加密的3D影像拍摄方法流程图;
图6为图1双目人脸识别图像信息处理方法的流程图;
图7为图1低照度环境双目人脸识别图像信息处理方法的流程图;
图8为图2单目人脸识别图像信息信息处理方法流程图。
具体实施方式
实施例1:
如图1,一种多功能移动图像处理装置1,包括控制器3以及与控制器3连接的的显示屏5,移动图像处理装置上还设有与控制器3连接的摄像头4,摄像头4包括滤光器和图像传感器,控制器3接收到本装置上虚拟按键或实体按键发送的指令,控制通过滤光器接收不同波长光线的图像传感器将图像转换为数字信号,并对其进行处理,然后将处理后的图像数据输出。
所述摄像头4的数量为两个,且该两个摄像头4中的一个或两个包括滤光片切换器和/或对焦模块303和/或补光模块304,该两个摄像头4的图像采集面在同一平面上。
所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,所述控制器3包括有:
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的加密、准备处理操作后发送到数据接口模块306,和/或将接收的图像数据通过数据接口模块306输送至显示屏5进行预览;
数据接口模块306,用于接收发送给控制器3的指令,以及输出图像处理模块302的图像数据。
模式管理模块301设有开发者控制拍摄模块,开发者在外部装置上通过传输模块2访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的对焦模块303,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。
控制器还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用芯片。
控制器3还连接有传输模块2,传输模块2包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块,用于传输移动图像处理装置1的工作状态信息、控制指令、图像、视频、音频及加密数据信息。
移动图像处理装置1为手机、平板电脑、笔记本电脑、PDA、警务通或智能电视。
控制器3设有加密模块或不设置加密模块。
一种利用所述的移动图像处理装置1进行生物图像信息采集的方法,可识别拍摄物体是否为生物活体,包含如下处理步骤:
(a1)启动两个所述摄像头,两个摄像头同步输出图像数据;
(a2)设置至少一个摄像头为近红外拍摄模式;
(a3)抓取图像数据并通过传输模块传输至显示屏给用户预览;
(a4)判断近红外图像是否存在活体,如果是进行步骤(a5),否则进行步骤(a3);
(a5)判断近红外图像是否符合生物图像识别拍摄需求,如果是进行步骤(a6),否则进行步骤(a3);
(a6)控制器把拍摄好的图像数据进行图像数据输出。
步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式;或者,步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为与第一摄像头不同波段的近红外拍摄模式,所述第二摄像头的近红外波长为700~2526nm;或者,步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态。
移动图像处理装置1还包括加密模块305,步骤(a6)还包括如下步骤:
判断控制器3的模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的图像数据传送到加密模块305进行加密,对加密后的图像数据进行图像数据输出;否则,控制器把未加密的图像数据进行图像数据输出。
所述步骤(a2)中摄像头4在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
一种利用的移动图像处理装置1进行3D影像拍摄的方法,实现为3D视频和3D建模提供图像数据采集准备,包括如下步骤:
(c1)启动两个摄像头4,两个摄像头4同步输出图像数据;
(c2)设置第一摄像头至可见光拍摄模式,并抓取第一可见光图像数据,同时设置第二摄像头至可见光拍摄模式,并抓取第二可见光图像数据;
(c3)控制器把拍摄好的第一可见光图像数据和第二可见光图像数据进行图像数据输出。
移动图像处理装置1还包括加密模块305,步骤(c3)还包括如下步骤:
判断控制器3的模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块305进行加密,对加密后的第一可见光图像数据和第二可见光图像数据进行图像数据输出;否则,控制器3把未加密的第一可见光图像数据和第二可见光图像数据进行图像数据输出。
一种利用的移动图像处理装置1进行全焦点距离影像的拍摄方法,包括如下步骤:利用所述两个摄像头,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,将拍摄的图像数据传输到外部装置,外部装置通过第三方软件把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过所述控制器处理,融合成一幅全景图像,再对全景图像进行图像数据输出。
图像信息采集装置的用途广泛,满足不同用户的使用需求;所述图像信息采集装置用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模和/或开发者模式的图像数据采集。
实施例2:
如图1,本发明公开了一种多功能移动图像处理装置1,包括控制器3以及与控制器3连接的的显示屏5;移动图像处理装置1上还设有分别与控制器3连接的两个独立摄像头4,这两个摄像头4的图像采集面在同一平面上,摄像头4包括图像传感器和滤光片切换器,这两个摄像头4中的一个或两个包括对焦模块30和/或补光模块。
控制器3接收到该装置上虚拟按键或实体按键发送的指令,控制滤光片切换器切换滤光片改变图像传感器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器3接收到该信号后对其进行处理,然后将处理后的图像数据输出。
每个滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片。本发明图像信息采集装置1通过切换两个独立摄像头4中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后发送到数据接口模块306,和/或将接收的图像数据通过数据接口模块306输送至显示屏5进行预览;
数据接口模块306,用于接收发送给控制器3的指令,以及输出图像处理模块302的图像数据到对应的应用程序或显示屏5。
应用程序为运行在所述移动图像处理装置1上的可执行代码,包括操作系统、驱动程序、服务进程、应用进程、虚拟机、运行在虚拟机上的操作系统、 运行在虚拟机上的驱动程序、运行在虚拟机上的服务进程、运行在虚拟机上的应用进程等,本发明不做限制。
模式管理模块301设有开发者控制拍摄模块,开发者通过控制器3访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的所述对焦模块303,对焦器件采用固定焦距器件、手动对焦器件、可控对焦器件或自适应对焦器件。
控制器3还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
控制器3还连接有用于对外通讯的传输模块2,传输模块2为包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
移动图像处理装置1为手机、平板电脑、笔记本电脑、PDA、警务通或智能电视。控制器3为独立器件,或共用手机、平板电脑、笔记本电脑、PDA、警务通或智能电视内部的控制器,两个摄像头4嵌入手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3还连接有补光灯,分别为可见光补光灯、红外补光灯和/或近红外补光灯,补光灯还可以为高光谱补光灯,分别嵌置在手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3设有加密模块或不设置加密模块。
一种生物图像信息处理方法,采用上述的移动图像处理装置1检测生物活体,其包括如下步骤:
(11)启动两个摄像头4,两个摄像头4同步输出图像数据;
(12)控制器3切换第一摄像头4至近红外拍摄模式,同时控制器3切换第二摄像头4至可见光拍摄模式;
(13)抓取第一摄像头4的近红外图像传输至显示屏5给用户预览,同时抓取第二摄像头4的可见光图像传输至显示屏5给用户预览;
(14)判断近红外图像是否存在活体,如果是进行步骤(15),否则进行步骤(13);
(15)判断近红外图像和/或可见光图像是否符合生物图像识别拍摄需求,如果是进行步骤(16),否则进行步骤(13);
(16)图像处理模块302把拍摄好的可见光图像数据和/或近红外图像数据通过数据接口模块306进行输出。
在设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式情况下,如果拍摄的是生物活体人脸,移动图像处理装置1同步输出的是可见光人脸图像和近红外人脸图像;如果拍摄的对象是用户的人脸照片,移动图像处理装置1同步输出可见光人脸图像,近红外图像不存在活体人脸图像,从而提高支付验证用户身份的安全性,即可应用于商务支付,或者,识别生物活体。
在设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式情况下,主要针对低照度的拍摄情况下识别生物活体,提高身份认证的安全性,可应用于商务支付,原理如本实施例的低照度环境双目人脸识别图像采集模式。
在设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态情况下,即为单目生物识别图像采集模式,其工作原理和技术效果如本实施例的单目人脸识别图像采集模式或实施例6。
移动图像处理装置1还包括加密模块305,步骤(a6)还包括如下步骤:
判断控制器3的模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的图像数据传送到加密模块305进行加密,对加密后的图像数据进行图像数据输出;否则,控制器3把未加密的图像数据进行图像数据输出。
上述步骤(12)中所述第一摄像头4在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
如图4,采用上述的移动图像处理装置1进行的一种3D影像拍摄的方法,包括如下步骤:
(21)启动两个摄像头4,两个摄像头4同步输出图像数据;
(22)控制器3切换第一摄像头4至可见光拍摄模式,并抓取第一可见光图像数据,同时控制器3切换第二摄像头4至可见光拍摄模式,并抓取第二可见光图像数据;
(23)图像处理模块302把拍摄好的第一可见光图像数据和第二可见光图像数据通过数据接口模块306进行输出。
如图5,采用上述的移动图像处理装置1进行的一种3D影像拍摄的方法,该装置的控制器还包括加密模块305,该3D影像拍摄的方法包括如下步骤:
(31)启动两个摄像头4,两个摄像头4同步输出图像数据;
(32)控制器3切换第一摄像头4至可见光拍摄模式,并抓取第一可见光图像数据,同时控制器3切换第二摄像头4至可见光拍摄模式,并抓取第二可见光图像数据;
(33)判断模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块305进行加密,运行步骤(34),否则进行步骤(35);
(34)控制器3把加密后的第一可见光图像数据和第二可见光图像数据通过数据接口模块306进行输出;
(35)控制器3把未加密的第一可见光图像数据和第二可见光图像数据通过通过数据接口模块306进行输出。
本移动图像处理装置1有以下拍摄模式:
普通模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的普通拍摄模式指令,切换成普通模式,模式管理模块301启动第一摄像头4,第二摄像头4置于非工作状态,第一摄像头内的滤光片切换器根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,当所拍摄物体的光反射进镜头时,红外截止滤光片将吸收过滤掉红外线,使得图像传感器CCD或CMOS接收到可见光光谱范围内的光线并将其转化成图形电信号,经图形处理模块32处理后通过数据接口模块306发送至对应的应用程序。此时,第一摄像头4也即处于可见光拍摄模式下。
可见光摄像头进行拍摄时,模式管理模块301检测当前环境光是否需要开启可见光灯补光,补光模块304根据检测结果进行可见光补光,使摄像头有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换摄像头4对焦范围为大于等于1mm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
双目夜视模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的切换夜视模式指令,切换成夜视模式,模式管理模块301启动第一摄像头4和第二摄像头4,第一摄像头4和第二摄像头4内置的滤光片切换器根据模式管理模块31的切换指令控制切换至全光谱透镜正常工作,夜晚当所拍摄物体的光反射进镜头时,第一摄像头4和第二摄像头4的图像传感器CCD或CMOS接收到全部光谱范围内的光线并将其转化成图形电信号,经图形处理模块302处理后通过数据接口模块306发送至对应的应用程序。
模式管理模块301检测当前环境光是否需要开启红外补光,补光模块304根据检测结果进行红外光补光,使摄像头有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换第一摄像头4和第二摄像头4对焦范围为大于等于1mm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
3D视频模式:
本发明移动图像处理装置1为双目摄像头,结构为仿人眼的构造,具体表现为水平分布且二者之间有若干距离,即拍摄的图片有一定的左右视野差距,与人眼成像构造相同。
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的3D拍摄模式指令,切换成3D视频模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,两摄像头4内的滤光片切换器根据模式管理模块301的切换指令各自控制切换至红外截止滤光片正常工作,当所拍摄物体的光反射进镜头时,图像传感器CCD或CMOS接收到可见光的光线并将其转化成图形电信号,经图形处理模块302处理后传输至显示屏5进行简单预览并数据接口模块306发送至对应的应用程序,也即两摄像头4全部切换到可见光模式下。
将两个摄像头4拍摄的图像同步传输到图像处理模块302进行处理,当前为左右3D视频拍摄模式,图像处理模块302不对图像作处理,直接把图像数据同步发送到输出模块;用户可以利用拍摄的图像数据进行后续的加工处理,如用户使用外部装置通过传输模块2接收到图像数据后,把左边的摄像头4拍摄的图像显示在屏幕左边,把右边摄像头4拍摄的图像显示在屏幕右边,通过左右3D眼镜,左眼可以看见左边摄像头4拍摄的图像,同时右眼可以看见右边摄像头4拍摄的图像,由于两个摄像头4拍摄的图片分别作用于人眼成像并实现3D视觉效果。
上述两个摄像头4进行拍摄时,模式管理模块31检测当前环境光是否需要开启可见光补光,补光模块304根据检测结果进行可见光补光,使摄像头4有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换摄像头4对焦范围为大于等于1cm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对3D视频图像数 据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
3D建模模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的3D建模模式指令,切换成3D视频模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,两摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制各自切换至红外截止滤光片正常工作。即两个摄像头4切换至可见光模式,摄入模块中的两个摄像头4当前均为接收可见光的摄像头。
图像处理模块302将图像数据传输到数据接口模块306进行交互,用户可以利用拍摄的图像数据进行后续的加工处理。
本发明为双目摄像头,具体表现为摄像头水平分布且二者之间有若干距离,即存在主视点焦距和次视点焦距,具备立体照相机的必须条件,而立体照相机的三维建模方式为公知方式,本发明不再阐述其中的具体成像原理。可见光摄像头进行拍摄时,模式管理模块301检测当前环境光是否需要开启可见光补光,补光模块304根据检测结果进行可见光补光,使摄像头4有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换摄像头4对焦范围为大于等于1cm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对3D建模图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
单目人脸识别图像采集模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的单目人脸识别图像采集模式指令,切换成单目人脸识别图像采集模式,模式管理模块301启动第一摄像头4,并把第二摄像头4置于非工作状态,第一摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至红外吸收滤光片正常工作,即接收可见光模式的摄像头。
本模式下,人脸图像信息处理方法是采用上述的移动图像处理装置1,按照以下步骤进行人脸识别:
S41:启动第一摄像头4,并把第二摄像头4置于非工作状态;
S42:控制器3切换第一摄像头4至可见光拍摄模式;
S43:抓取近第一摄像头4的可见光图像数据,并输出非加密的可见光图像数据至显示屏5给用户预览;
S44:判断可见光图像是否存在活体人脸,图像处理模块302检测到步骤S43可见光图像中存在人脸,保持可见光图像并运行步骤S45,否则运行步骤S43;
S45:判断近红外人脸图像和/或可见光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤S46,否则进行步骤S43;
S46:模式管理模块301控制第一摄像头4内的滤光片切换器切换至近红外窄带滤光片正常工作,即接收近红外光模式的摄像头;
S47:模式管理模块301检测当前环境光是否需要开启近红外补光,
补光模块304根据检测结果进行近红外补光;
S48:抓取近第一摄像头4的近红外光图像数据,图像处理模块302检测近红外图像中是否存在人脸,则认为是活体人脸,保持近红外图像并运行步骤S49,否则认为非活体人脸(如人脸照片),运行步骤S42;
S49:图像处理模块302利用人脸识别算法判断步骤S44的可见光图像和
步骤S48的近红外图像的相似度,如果该相似度超过设定阈值,则认为是同一个人,则执行步骤S50,否则认为不是同一个人的非法用户,执行步骤S42;
S50:判断模式指令中是否包含加密请求,如果包含,则控制器3把步骤S44保存的可见光人脸图像数据和/或步骤S48保存的近红外人脸图像数据传送到加密模块305进行加密,运行步骤S51,否则运行步骤S52;
S51:控制器3把加密后的可见光生物图像数据和/或近红外生物图像数据通过数据接口模块306进行输出;
S52:控制器3把未加密的可见光生物图像数据和/或近红外生物图像数据通过数据接口模块306进行输出。
步骤S47中第一摄像头4的人脸检测使用近红外波长为700~1100nm,优选 为850nm的光谱。
双目人脸识别图像采集模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的人脸识别图像采集模式指令,切换成双目活体人脸识别图像采集模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,第二摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,即接收可见光模式的摄像头;与此同时,第一摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至近红外窄带滤光片正常工作,即接收近红外光模式的摄像头。
如图6,本模式下,人脸图像信息处理方法是采用上述的移动图像处理装置1,按照以下步骤进行人脸识别:
(51)启动两个摄像头4,两个摄像头同步输出图像数据;
(52)控制器3切换第一摄像头4至近红外拍摄模式,同时切换第二摄像头4至可见光拍摄模式;
(53)抓取近第一摄像头4的近红外图像数据,同时抓取第二摄像头4的可见光图像数据,并输出非加密的近红外图像数据和可见光图像数据至显示屏5给用户预览;
(54)判断近红外图像是否存在活体人脸,利用近红外结合补光的方法,图像处理模块302检测到步骤(53)近红外图像中存在人脸,则认为是活体人脸,运行步骤(55),否则认为非活体人脸(如人脸照片),运行步骤(53);
(55)判断近红外人脸图像和/或可见光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(56),否则进行步骤(53);
(56)判断模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据传送到加密模块305进行加密,运行步骤(57),否则运行步骤(58);
(57)控制器3把加密后的可见光生物图像数据和/或近红外生物图像数据通过数据接口模块306输出至显示屏5或对应的第三方应用程序;
(58)控制器3把未加密的可见光生物图像数据和/或近红外生物图像数据通过数据接口模块306输出至显示屏5或对应的第三方应用程序。
步骤(52)中第一摄像头4的人脸检测使用近红外波长为700~1100nm,优选为850nm的光谱。
由于可见光人脸检测容易受到照片、雕塑等的假冒物体影响,使用近红外光源拍摄成像则避免了这种假冒的情况,所以近红外图像人脸检测的技术优势比可见光人脸检测更大,并且由于不受环境光影响,拍摄的图像质量更加高,人脸特征点也更加清晰准确,具有更高的可用性,提高活体人脸检测的准确度,这是一般普通的网络摄像头所不具备的功能。
此外,图像处理模块302还将摄像头4所拍摄的符合人脸拍摄需求的图像进行传输前的准备,如根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
最后,利用传输模块2,将未加密或加密后的人脸图像数据进行数据传输,发送到移动图像处理装置1外,用户可以利用拍摄的图像数据进行后续的加工处理。
本模式下的对焦模块303切换摄像头对焦范围为10~100cm。
活体人脸识别图像采集模式下,采用本发明的生物图像信息采集装置的方法也可以应用于活体虹膜识别图像采集、活体指静脉识别图像采集、活体掌静脉识别图像采集及活体耳朵识别图像采集中。
活体虹膜识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体指静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体掌静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为5‐30厘米。
活体耳朵识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐50厘米。
低照度环境双目人脸识别图像采集模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的低照度环境双目人脸识别图像采集模式指令,切换成低照度环境双目人脸识别图像采集模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,第二摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至全光谱透镜正常工作,即接收红外光模式的摄像头;与此同时,第一摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至近红外窄带滤光片正常工作,即接收近红外光模式的摄像头。
本模式下,人脸图像信息处理方法是采用上述的移动图像处理装置1,如图7,按照以下步骤进行人脸识别:
(61)启动两个摄像头4,两个摄像头同步输出图像数据;
(62)控制器3切换第一摄像头4至近红外拍摄模式,同时切换第二摄像头4至红外光拍摄模式;
(63)抓取近第一摄像头4的近红外图像数据,同时抓取第二摄像头4的红外光图像数据,并输出非加密的近红外图像数据和红外光图像数据至显示屏5给用户预览;
(64)判断近红外图像是否存在活体人脸,利用近红外结合补光的方法,图像处理模块302检测到步骤(63)近红外图像中存在人脸,则认为是活体人脸,运行步骤(65),否则认为非活体人脸(如人脸照片),运行步骤(63);
(65)判断近红外人脸图像和/或红外光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(66),否则进行步骤(63);
(66)判断模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的可红外人脸图像数据和/或近红外人脸图像数据传送到加密模块305进行加密,运行步骤(67),否则运行步骤(68);
(67)控制器3把加密后的红外光生物图像数据和/或近红外生物图像数据通过数据接口模块306进行输出至显示屏5或对应的第三方应用程序;
(68)控制器3把未加密的红外光生物图像数据和/或近红外生物图像数据通过数据接口模块306进行输出至显示屏5或对应的第三方应用程序。
步骤(62)中第一摄像头4的人脸检测使用近红外波长为700~1100nm,优选为850nm的光谱。
由于在低照度环境,尤其是黑夜的情况下,由于光线的不足无法形成可作人脸识别用的可见光图像,因此,通过红外光代替可见光,达到在低照度环境的人脸识别的图像采集工作。
此外,图像处理模块302还将摄像头4所拍摄的符合人脸拍摄需求的图像进行传输前的准备,如根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
最后,利用传输模块2,将加密后的图像数据进行数据传输,发送到外部装置,用户可以利用拍摄的图像数据进行后续的加工处理。
本模式下的对焦模块303切换摄像头对焦范围为10~100cm。
活体人脸识别图像采集模式下,采用本发明的生物图像信息采集装置的方法也可以应用于活体虹膜识别图像采集、活体指静脉识别图像采集、活体掌静脉识别图像采集及活体耳朵识别图像采集中。
活体虹膜识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体指静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体掌静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为5‐30厘米。
活体耳朵识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐50厘米。
全焦点距离拍摄模式
全焦点距离影像的拍摄,利用所述的两个摄像头4,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,拍摄的图像数据通过数据接口模块306发送至对应的第三方应用程序,第三方应用程序把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距 离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过控制器3的图像处理模块302处理,融合成一幅全景图像,传输至移动图像处理装置1的显示屏5。
单目摄像头在对焦的时候,由于只有一个焦点距离,如果焦点距离较近,则能清晰地拍摄近距离的物体,而远距离物体成像则模糊图像;相反,如果焦点距离较远,则能拍摄近距离的物体变得模糊,而远距离物体成像则变得清晰图像,二者不能得兼。利用双摄像头各自焦点距离不同拍摄图像,然后融合成一幅图像,则能很好解决了清晰拍摄近距离物体的时候也能清晰拍摄远距离物体的问题。
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的全焦点距离拍摄模式指令,切换成全焦点距离拍摄模式,模式管理模块301根据控制信号切换至对应的拍摄模式,两个摄像头4切换至可见光模式。模式管理模块301根据指令分别控制两个摄像头4中的光谱滤光片,使两个红外截止滤光片正常工作,CCD或CMOS只能利用可见光光谱范围内的光线,由此,将两个摄像头4切换至可见光模式。
模式管理模块301控制第一摄像头4的对焦模块303的对焦距离为拍摄物体的实际距离,如果第一摄像头4的对焦模块303的对焦距离为近距离,则控制第二摄像头4的对焦模块303的对焦距离为远距离;同理,如果第一摄像头4的对焦模块303的对焦距离为远距离,则控制第二摄像头4的对焦模块303的对焦距离为近距离。
当光反射进镜头时,使得一个图像传感器CCD或CMOS接收到近距离清晰远距离模糊的可见光图像数据,另一个图像传感器CCD或CMOS接收到近距离模糊远距离清晰的可见光图像数据,经图形处理模块302处理后通过数据接口模块306发送至对应的第三方应用程序。
可见光摄像头进行拍摄时,模式管理模块301同时检测是否需要可见光补光,并根据检测结果进行可见光补光,使摄像头有较好的宽动态,拍摄到比较清晰的图像。图像处理模块302将图像数据传通过数据接口模块306发送至对应的第三方应用程序进行交互或者传输到显示屏5,用户可以利用拍摄的图像数据进行后续的加工处理。
本模式下,根据拍摄信号中的加密指令判断是否需要对图像数据进行加密, 对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
开发者拍摄模式
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的开发者拍摄模式指令,切换成开发者拍摄拍摄模式。
在此模式下,开发者可以通过控制器3查询关于每个摄像头4以及各自的对焦模块303、补光模块304和滤光片切换器的工作状态;并且可以通过数据接口模块306改变每个摄像头4以及各自的对焦模块303、补光模块304和滤光片切换器的工作状态。
图像传感器CCD或CMOS在开发者自定义的工作光谱、对焦距离和补光环境,形成与之相应的电子图像信号,经过控制器3把两个摄像头4的图像信号同步传输到显示屏5,这样开发者可以根据实际应用需要对移动图像处理装置1进行开发利用。
本发明中的多功能双目摄像头允许摄像头切换成不同的拍摄模式,不需要额外的调整即可满足多种功能模式的需求,且在摄像头内部具有加密功能,现有的摄像头产品绝大部分无法实现此需求,显见本发明具有非常先进的优势。
实施例3:
如图1,本发明公开了一种多功能移动图像处理装置1,包括控制器3以及与控制器3连接的的显示屏5;移动图像处理装置1上还设有分别与控制器3连接的两个独立摄像头4,这两个摄像头4的图像采集面在同一平面上,其中第一摄像头4包括无滤光片切换器且固定设置的近红外窄带滤光片,第二摄像头4包括滤光片切换器,且滤光器切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。本发明移动图像处理装置1通过切换第二摄像头4中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。
控制器3接收到本装置上虚拟按键或实体按键发送的指令,控制滤光片切换器切换第二摄像头的滤光片改变图像传感器接收不同波长的光线,图像传感 器将图像转换为数字信号,控制器3接收到上述两个摄像头的数字信号对其进行处理,然后将处理后的图像数据输出到显示屏5。
该两个摄像头4中的一个或两个包括对焦模块和/或补光模块。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后发送到数据接口模块306,和/或将接收的图像数据通过数据接口模块306输送至显示屏5进行预览;
数据接口模块306,用于接收发送给控制器3的指令,以及输出图像处理模块302的图像数据到对应的应用程序或显示屏5。
应用程序为运行在所述移动图像处理装置1上的可执行代码,包括操作系统、驱动程序、服务进程、应用进程、虚拟机、运行在虚拟机上的操作系统、运行在虚拟机上的驱动程序、运行在虚拟机上的服务进程、运行在虚拟机上的应用进程等,本发明不做限制。
模式管理模块301设有开发者控制拍摄模块,开发者通过控制器3访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的所述对焦模块303,对焦器件采用固定焦距器件、手动对焦器件、可控对焦器件或自适应对焦器件。
控制器3还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
控制器3还连接有用于对外通讯的传输模块2,传输模块2为包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
移动图像处理装置1为手机、PDA、警务通、智能电视、平板电脑或笔记本电脑。控制器3为独立器件,或共用手机、平板电脑、笔记本电脑、PDA、警务通或智能电视内部的控制器,两个摄像头4嵌入手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3还连接有补光灯,分别为可见光补光灯、红外补光灯和/或近红外补光灯,补光灯还可以为高光谱补光灯,分别嵌置在手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3设有加密模块或不设置加密模块。
移动图像处理装置1有以下拍摄模式:
普通模式
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的普通模式指令,切换成普通模式,模式管理模块301启动第二摄像头4,第一摄像头4置于非工作状态,第二摄像头的滤光片切换器根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,处于可见光拍摄模式下。其它功能与实施例2中普通模式下摄像头的结构功能一样。
单目夜视模式
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的单目夜视模式指令,切换成单目夜视模式,模式管理模块301启动第二摄像头4,第一摄像头4置于非工作状态,第二摄像头的滤 光片切换器根据模式管理模块301的切换指令控制切换至全光谱光学透镜正常工作,处于夜视拍摄模式下。
单目人脸识别图像采集模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的单目人脸识别图像采集模式指令,切换成单目人脸识别图像采集模式,模式管理模块301启动第二摄像头4,第一摄像头4置于非工作状态,第二摄像头的滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,根据模式管理模块301的切换指令控制切换相应的滤光片正常工作,其工作原理如实施例2中的单目人脸识别图像采集模式或实施例6中的单目人脸识别图像采集方法一样。
双目人脸识别图像采集模式:
数据接口模块306监听信号,控制器3接收到运行在移动图像处理装置1上的第三方应用程序发送的双目人脸识别图像采集模式指令,切换成双目人脸识别图像采集模式,模式管理模块301启动第一摄像头4和第二摄像头4,第二摄像头的滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,即第二摄像头处于可见光拍摄模式下。
此时,其工作原理如实施例2中的双目人脸识别图像采集模式。
低照度环境双目人脸识别图像采集模式:
传输模块2监听信号,外部终装置发出普通拍摄模式指令给控制器3,切换成双目人脸识别图像采集模式,模式管理模块301启动第一摄像头4和第二摄像头4,第二摄像头的滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,根据模式管理模块301的切换指令控制切换至全光谱光学透镜正常工作,即第二摄像头处于红外光拍摄模式下。此时,其工作原理如实施例2中的低照度环境双目人脸识别图像采集模式。
开发者拍摄模式
本实施例移动图像处理装置1的开发者拍摄模式,其工作原理如实施例2中的开发者拍摄模式。
实施例4:
如图1,一种多功能移动图像处理装置1,包括控制器3以及与控制器3连接的的显示屏5,移动图像处理装置上还设有与控制器3连接的摄像头4,摄像头4包括滤光器和图像传感器,控制器3接收到本装置上虚拟按键或实体按键发送的指令,控制通过滤光器接收不同波长光线的图像传感器将图像转换为数字信号,并对其进行处理,然后将处理后的图像数据输出。
所述摄像头4的数量为两个,这两个摄像头4的图像采集面在同一平面上;其中第一摄像头4包括滤光片切换器,且滤光器切换器内置连接近红外窄带滤光片,滤光器切换器内置还连接有红外截止滤光片和/或全光谱光学透镜,第二摄像头4包括无滤光片切换器,且固定设置的红外截止滤光片、全光谱光学透镜及不设置透镜的任一种。本实施例移动图像处理装置1通过切第一换摄像头4中红外截止滤光片,以及全光谱光学透镜和/或近红外窄带滤光片,形成不同组合的拍摄模式,达到具备多种拍摄功能,提高用户体验。本移动图像处理装置1的拍摄模式,根据两个摄像头内不同种类滤光片的组合而定。
该两个摄像头4中的一个或两个包括对焦模块和/或补光模块。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后发送到数据接口模块306,和/或将接收的图像数据通过数据接口模块306输送至显示屏5进行预览;
数据接口模块306,用于接收发送给控制器3的指令,以及输出图像处理模块302的图像数据到对应的应用程序或显示屏5。
应用程序为运行在所述移动图像处理装置1上的可执行代码,包括操作系统、驱动程序、服务进程、应用进程、虚拟机、运行在虚拟机上的操作系统、运行在虚拟机上的驱动程序、运行在虚拟机上的服务进程、运行在虚拟机上的应用进程等,本发明不做限制。
模式管理模块301设有开发者控制拍摄模块,开发者通过控制器3访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的所述对焦模块303,对焦器件采用固定焦距器件、手动对焦器件、可控对焦器件或自适应对焦器件。
控制器3还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
控制器3还连接有用于对外通讯的传输模块2,传输模块2为包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
移动图像处理装置1为手机、PDA、警务通、智能电视、平板电脑或笔记本电脑。控制器3为独立器件,或共用手机、平板电脑、笔记本电脑、PDA、警务通或智能电视内部的控制器,两个摄像头4嵌入手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3还连接有补光灯,分别为可见光补光灯、红外补光灯和/或近红外 补光灯,补光灯还可以为高光谱补光灯,分别嵌置在手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3设有加密模块或不设置加密模块305。
实施例5
如图1,一种多功能移动图像处理装置1,包括控制器3以及与控制器3连接的的显示屏5,移动图像处理装置上还设有与控制器3连接的摄像头4,摄像头4包括滤光器和图像传感器,控制器3接收到本装置上虚拟按键或实体按键发送的指令,控制通过滤光器接收不同波长光线的图像传感器将图像转换为数字信号,并对其进行处理,然后将处理后的图像数据输出。
所述摄像头4的数量为两个,这两个摄像头4的图像采集面在同一平面上;这两个摄像头4各自包括滤光器、图像传感器以及滤光片切换器,这两个滤光片切换器至少一个连接有近红外窄带滤光片。本实施例的移动图像处理装置1通过切换两个独立摄像头4中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。本实施例的移动图像处理装置1的拍摄模式,根据两个摄像头内不同种类滤光片的组合而定。
这两个摄像头4中的一个或两个包括对焦模块和/或补光模块。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后发送到数据接口模块306,和/或将接收的图像数据通过数据接口模块306输送至显示屏5进行预览;
数据接口模块306,用于接收发送给控制器3的指令,以及输出图像处理模块302的图像数据到对应的应用程序或显示屏5。
应用程序为运行在所述移动图像处理装置1上的可执行代码,包括操作系统、驱动程序、服务进程、应用进程、虚拟机、运行在虚拟机上的操作系统、运行在虚拟机上的驱动程序、运行在虚拟机上的服务进程、运行在虚拟机上的应用进程等,本发明不做限制。
模式管理模块301设有开发者控制拍摄模块,开发者通过控制器3访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和/或滤光片切换器的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的所述对焦模块303,对焦器件采用固定焦距器件、手动对焦器件、可控对焦器件或自适应对焦器件。
控制器3还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
控制器3还连接有用于对外通讯的传输模块2,传输模块2为包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
移动图像处理装置1为手机、PDA、警务通、智能电视、平板电脑或笔记本电脑。控制器3为独立器件,或共用手机、平板电脑、笔记本电脑、PDA、警务通或智能电视内部的控制器,两个摄像头4嵌入手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3还连接有补光灯,分别为可见光补光灯、红外补光灯和/或近红外补光灯,补光灯还可以为高光谱补光灯,分别嵌置在手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3设有加密模块或不设置加密模块。
实施例6
如图2,一种多功能移动图像处理装置1,包括控制器3以及与控制器3连接的的显示屏5,移动图像处理装置上还设有与控制器3连接的摄像头4,摄像头4包括滤光器和图像传感器,控制器3接收到本装置上虚拟按键或实体按键发送的指令,控制通过滤光器接收不同波长光线的图像传感器将图像转换为数字信号,并对其进行处理,然后将处理后的图像数据输出。
所述摄像头4的数量为一个,该摄像头4包括滤光片切换器,滤光片切换器内置连接有近红外窄带滤光片,还连接有红外截止滤光片或/和全光谱光学透镜。通过切换摄像头4中红外截止滤光片或/和全光谱光学透镜以及近红外窄带滤光片,达到具备多种拍摄功能,提高用户体验。本移动图像处理装置1的拍摄模式,根据该摄像头内不同种类滤光片或其组合而定。
该摄像头4还包括对焦模块和/或补光模块,对焦模块303切换摄像头对焦范围为10~100cm。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后发送到数据接口模块306,和/或将接收的图像数据通过数据接口模块306输送至显示屏5进行预览;
数据接口模块306,用于接收发送给控制器3的指令,以及输出图像处理模块302的图像数据到对应的应用程序或显示屏5。
应用程序为运行在所述移动图像处理装置1上的可执行代码,包括操作系统、驱动程序、服务进程、应用进程、虚拟机、运行在虚拟机上的操作系统、 运行在虚拟机上的驱动程序、运行在虚拟机上的服务进程、运行在虚拟机上的应用进程等,本发明不做限制。
模式管理模块301设有开发者控制拍摄模块,开发者通过控制器3访问开发者控制拍摄模块,查询该摄像头4的对焦模块303、补光模块304和/或滤光片切换器的工作状态,并且/或者,控制该摄像头4的对焦模块303、补光模块304和/或滤光片切换器的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的所述对焦模块303,对焦器件采用固定焦距器件、手动对焦器件、可控对焦器件或自适应对焦器件。
控制器3还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
控制器3还连接有用于对外通讯的传输模块2,传输模块2为包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
移动图像处理装置1为手机、平板电脑、笔记本电脑、PDA、警务通或智能电视。控制器3为独立器件,或共用手机、平板电脑、笔记本电脑、PDA、警务通或智能电视内部的控制器,两个摄像头4嵌入手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3还连接有补光灯,分别为可见光补光灯、红外补光灯和/或近红外补光灯,补光灯还可以为高光谱补光灯,分别嵌置在手机、平板电脑、笔记本电脑、PDA、警务通或智能电视上。
控制器3设有加密模块或不设置加密模块。
如图8,采用上述移动图像处理装置1进行生物图像信息处理的方法,即单目人脸识别图像采集方法,包括如下步骤:
(b1)启动摄像头工作,控制器3控制滤光片切换器切换至红外截止滤光片工作,使得摄像头4处于可见光拍摄模式,或者,控制器3控制滤光片切换器切换至全光谱光学透镜工作,使得第二摄像头4处于红外拍摄模式(即夜视拍摄模式);
(b2)抓取可见光图像或红外光图像数据,并将抓去的图像数据通过传输模块2传输至显示屏给用户预览;
(b3)判断可见光图像或红外光图像是否存在人脸,如果是,保持可见光人脸图像或红外光人脸图像运行步骤(b4),否则运行步骤(b2);
(b4)判断近红外人脸图像或可见光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(b2),否则进行步骤(b5);
(b5)控制器控制滤光片切换器切换近红外窄带滤光片工作,使得摄像头处于近红外拍摄模式;
(b6)抓取近红外图像数据,并传输至显示屏给用户预览;
(b7)判断近红外图像是否存在活体人脸,即图像处理模块302检测近红外图像中是否存在人脸,如果是,则认为是活体人脸,保持近红外人脸图像运行步骤(b8),否则认为非活体人脸(如人脸照片),运行步骤(b1);
(b8)判断近红外人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(b9),否则进行步骤(b1);
(b9)控制器利用人脸识别算法判断:步骤(b3)的可见光人脸图像与步骤(b7)的近红外人脸图像的相似度,或者,步骤(b3)的红外光人脸图像与步骤(b7)的近红外人脸图像的相似度,
如果该相似度超过设定阈值,阈值为不小于0.8不大于1的值,则认为是同一个人,运行步骤(b10),否则认为不是同一个人,运行步骤(b1);
(b10)控制器把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据通过数据接口模块306进行输出至显示屏5,或者,控制器把拍摄好的红外光人脸图像数据和/或近红外人脸图像数据通过数据接口模块306进行输出至显示屏5。
移动图像处理装置1还包括加密模块,步骤(b10)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到加密模块305进行加密,加密后的图像数据通过数据接口模块306进行输出至显示屏5;否则,控制器把未加密的图像数据通过数据接口模块306进行输出至显示屏5。
步骤(b5)中摄像头4的人脸检测使用近红外波长为700~1100nm,优选为850nm的光谱。所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
所述步骤(b9)中,控制器的图像处理模块302对图像相似度的处理是为了防止在可见光拍摄模式下或夜视拍摄模式下拍摄的对象是人物甲的人脸照片,切换近红外窄带滤光片后,在近红外拍摄模式下的拍摄对象是人物乙的活体人脸图像,使得滤光片切换器切换近红外窄带滤光片前后,移动图像处理装置1输出的可见光人脸图像和近红外人脸图像不是同一个人,提高支付验证用户身份的安全性。本生物图像信息采集的方法可以应用于商务支付或识别生物活体。
本实施例中单目人脸识别图像采集方法,当先采用红外拍摄模式,后采用近红外拍摄模式时,适用于低照度环境的单目人脸识别图像采集。
由于可见光人脸检测容易受到照片、雕塑等的假冒物体影响,使用近红外光源拍摄成像则避免了这种假冒的情况,所以近红外图像人脸检测的技术优势比可见光人脸检测更大,并且由于不受环境光影响,拍摄的图像质量更加高,人脸特征点也更加清晰准确,具有更高的可用性,提高活体人脸检测的准确度,这是一般普通的网络摄像头所不具备的功能。
此外,图像处理模块302还将摄像头4所拍摄的符合人脸拍摄需求的图像进行传输前的准备,如根据拍摄信号中的加密指令判断是否需要对图像数据进 行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
最后,利用传输模块2,将加密后的图像数据进行数据传输,发送到外部装置,用户可以利用拍摄的图像数据进行后续的加工处理。
单目人脸识别图像采集模式下,本实施例的移动图像处理装置1也可以应用于活体虹膜识别图像采集、活体指静脉识别图像采集、活体掌静脉识别图像采集及活体耳朵识别图像采集中。
活体虹膜识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体指静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体掌静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为5‐30厘米。
活体耳朵识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐50厘米。
以上所述,仅为本发明的部分具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可以轻易想到变化或替换,都在本发明的保护范围之内。

Claims (27)

  1. 一种多功能移动图像处理装置,包括控制器以及与控制器连接的的显示屏,其特征在于:所述移动图像处理装置上还设有与所述控制器连接的摄像头,摄像头包括滤光器和图像传感器,控制器接收到本装置上虚拟按键或实体按键发送的指令,控制通过滤光器接收不同波长光线的图像传感器将图像转换为数字信号,并对其进行处理,然后将处理后的图像数据输出。
  2. 根据权利要求1所述的移动图像处理装置,其特征在于:所述摄像头的数量为一个,且该摄像头包括滤光片切换器和/或对焦模块和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块,该两个摄像头的图像采集面在同一平面上。
  3. 根据权利要求2所述的移动图像处理装置,其特征在于所述控制器包括有:
    模式管理模块,用于控制所述对焦模块、所述补光模块及所述滤光片切换器切换不同滤光片形成不同的拍摄模式;
    图像处理模块,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后发送到数据接口模块,和/或将接收的图像数据通过数据接口模块输送至显示屏进行预览;
    数据接口模块,用于接收发送给控制器的指令,以及输出图像处理模块的图像数据。
  4. 根据权利要求2所述的移动图像处理装置,其特征在于:所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
  5. 根据权利要求2所述的移动图像处理装置,其特征在于:所述控制器还包括用于控制对焦器件调节成像清晰度的所述对焦模块,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。
  6. 根据权利要求2所述的移动图像处理装置,其特征在于:所述控制器还包括用于调控补光灯的所述补光模块,补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个。
  7. 根据权利要求3所述的移动图像处理装置,其特征在于:所述模式管理模块设有开发者控制拍摄模块,开发者通过所述控制器访问开发者控制拍摄模块, 查询所述摄像头的对焦模块、补光模块和滤光片切换器一种以上的工作状态,并且/或者,控制所述摄像头的对焦模块、补光模块和滤光片切换器一种以上的工作状态。
  8. 根据权利要求4所述的移动图像处理装置,其特征在于:所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
  9. 根据权利要求1‐8中任一项权利要求所述的移动图像处理装置,其特征在于:所述移动图像处理装置为手机、平板电脑、笔记本电脑、PDA、警务通或智能电视。
  10. 根据权利要求1‐8中任一项权利要求所述的移动图像处理装置,其特征在于:所述控制器设有加密模块。
  11. 根据权利要求10所述的移动图像处理装置,其特征在于:所述图像传感器为电荷耦合器件CCD或互补金属氧化物半导体COMS。
  12. 根据权利要求10所述的移动图像处理装置,其特征在于:所述控制器为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA、中央处理器CPU、单片机、片上系统SoC或其它等同专用芯片。
  13. 根据权利要求10所述的移动图像处理装置,其特征在于:所述控制器还连接有传输模块,传输模块为Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
  14. 一种利用权利要求1‐‐8中任一权利要求所述的移动图像处理装置进行生物图像信息处理方法,该移动图像处理装置的所述摄像头数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,该两个摄像头的图像采集面在同一平面上,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个;
    其特征在于包含如下处理步骤:
    (a1)启动两个所述摄像头,两个摄像头同步输出图像数据;
    (a2)设置至少一个摄像头为近红外拍摄模式;
    (a3)抓取图像数据并传输至显示屏给用户预览;
    (a4)判断近红外图像是否存在活体,如果是进行步骤(a5),否则进行步骤(a3);
    (a5)判断近红外图像是否符合生物图像识别拍摄需求,如果是进行步骤(a6),否则进行步骤(a3);
    (a6)控制器把拍摄好的图像数据进行图像数据输出。
  15. 一种利用权利要求1‐8中任一权利要求所述的移动图像处理装置进行生物图像信息处理方法,其特征在于:所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为与第一摄像头不同波段的近红外拍摄模式,所述第二摄像头的近红外波长为700~2526nm;或者,步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态。
  16. 根据权利要求15所述的移动图像处理装置进行生物图像信息处理方法,其特征在于移动图像处理装置还包括加密模块,步骤(a6)还包括如下步骤:
    判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,对加密后的图像数据进行图像数据输出;否则,控制器把未加密的图像数据进行图像数据输出。
  17. 根据权利要求14所述的移动图像处理装置进行生物图像信息处理方法,其特征在于:所述步骤(a2)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
  18. 根据权利要求17所述的移动图像处理装置进行生物图像信息处理方法,其特征在于:所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
  19. 利用权利要求1所述的移动图像处理装置进行生物图像信息处理方法,所述移动图像处理装置仅有一个摄像头工作,该摄像头包括滤光片切换器,滤光片切换器内置连接有近红外窄带滤光片,还连接有红外截止滤光片或/和全光谱光学透镜,其特征在于所述生物图像信息采集的方法包括如下步骤:
    (b1)启动摄像头工作,所述控制器切换该摄像头至可见光拍摄模式或夜视拍摄模式;
    (b2)抓取可见光图像或红外光图像数据,并将抓取的图像数据传输至显示屏给用户预览;
    (b3)判断可见光图像或红外光图像是否存在人脸,如果是,保持可见光人脸图像或红外光人脸图像运行步骤(b4),否则运行步骤(b2);
    (b4)判断可见光人脸图像或红外人脸图像是否符合生物图像识别拍摄要求,如果是运行步骤(b2),否则进行步骤(b5);
    (b5)控制器控制滤光片切换器切换近红外窄带滤光片工作,使得摄像头处于近红外拍摄模式;
    (b6)抓取近红外图像数据,并传输至显示屏给用户预览;
    (b7)判断近红外光图像是否存在活体人脸,如果是,保持近红外人脸图像运行步骤(b8),否则运行步骤(b1);
    (b8)判断近红外人脸图像是否符合生物图像识别拍摄要求,如果是运行步骤(b9),否则进行步骤(b1);
    (b9)控制器利用人脸识别算法判断:步骤(b3)的可见光人脸图像与步骤(b7)的近红外人脸图像的相似度,或者,步骤(b3)的红外光人脸图像与步骤(b7)的近红外人脸图像的相似度,
    如果该相似度超过设定阈值,则认为是同一个人,运行步骤(b10),否则认为不是同一个人,运行步骤(b1);
    (b10)控制器把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据进行图像数据输出,或者,控制器把拍摄好的红外光人脸图像数据和/或近红外人脸图像数据进行图像数据输出。
  20. 根据权利要求19所述的利用权利要求1所述的移动图像处理装置进行生物图像信息处理方法,其特征在于:所述阈值为不小于0.8不大于1的值。
  21. 根据权利要求19所述的利用权利要求1所述的移动图像处理装置进行生物图像信息处理方法,其特征在于所述移动图像处理装置还包括加密模块,步骤(b10)还包括如下步骤:
    判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,对加密后的图像数据进行图像数据输出;否则,控制器把未加密的图像数据进行图像数据输出。
  22. 根据权利要求19所述的利用权利要求1所述的移动图像处理装置进行生物图像信息处理方法,其特征在于:所述步骤(b5)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
  23. 根据权利要求22所述的利用权利要求1所述的所述的移动图像处理装置进行生物图像信息处理方法,其特征在于:所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
  24. 一种利用权利要求1‐8中任一项权利要求所述的移动图像处理装置进行3D影像拍摄的方法,该移动图像处理装置的所述摄像头数量为两个,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个,其特征在于包含如下处理步骤:
    (c1)启动两个所述摄像头,两个摄像头同步输出图像数据;
    (c2)设置第一摄像头至可见光拍摄模式,并抓取第一可见光图像数据,同时设置第二摄像头至可见光拍摄模式,并抓取第二可见光图像数据;
    (c3)控制器把拍摄好的第一可见光图像数据和第二可见光图像数据进行图像数据输出。
  25. 根据权利要求24所述的利用权利要求1‐8中任一项权利要求所述的移动图像处理装置进行3D影像拍摄的方法,其特征在于所述移动图像处理装置还包括加密模块,步骤(c3)还包括如下步骤:
    判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块进行加密,对加密后的第一可见光图像数据和第二可见光图像数据进行图像数据输出; 否则,控制器把未加密的第一可见光图像数据和第二可见光图像数据进行图像数据输出。
  26. 权利要求1‐8中任一项权利要求所述的移动图像处理装置进行全焦点距离影像拍摄方法,该移动图像处理装置的所述摄像头数量为两个,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括对焦模块,其特征在于包括如下步骤:
    利用所述两个摄像头,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,将拍摄的图像数据传输到外部装置,外部装置通过第三方软件把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过所述控制器处理,融合成一幅全景图像,再对全景图像进行图像数据输出。
  27. 权利要求1‐8中任一项权利要求所述的移动图像处理装置的用途,该移动图像处理装置的所述摄像头数量为一个,且该摄像头包括滤光片切换器和/或对焦模块和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块,该两个摄像头的图像采集面在同一平面上;所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个,所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个;其特征在于:所述移动图像处理装置用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模和/或开发者模式的图像数据采集。
PCT/CN2016/082278 2015-06-17 2016-05-17 一种多功能移动图像处理装置、处理方法及用途 WO2017049923A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510338512 2015-06-17
CN201510618083.5A CN105187726B (zh) 2015-06-17 2015-09-24 一种多功能移动图像处理装置、处理方法
CN201510618083.5 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017049923A1 true WO2017049923A1 (zh) 2017-03-30

Family

ID=54909552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082278 WO2017049923A1 (zh) 2015-06-17 2016-05-17 一种多功能移动图像处理装置、处理方法及用途

Country Status (2)

Country Link
CN (1) CN105187726B (zh)
WO (1) WO2017049923A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107220623A (zh) * 2017-05-27 2017-09-29 湖南德康慧眼控制技术股份有限公司 一种人脸识别方法及系统
CN107888288A (zh) * 2017-11-07 2018-04-06 华南理工大学 一种基于移动终端的短距离可见光通信方法及其硬件系统
CN109005325A (zh) * 2018-08-29 2018-12-14 浙江科技学院 基于交互式智能补光人脸摄像装置及方法
CN109543640A (zh) * 2018-11-29 2019-03-29 中国科学院重庆绿色智能技术研究院 一种基于图像转换的活体检测方法
CN109766806A (zh) * 2018-12-28 2019-05-17 深圳奥比中光科技有限公司 高效的人脸识别方法及电子设备
CN110248109A (zh) * 2019-06-28 2019-09-17 深圳市长龙鑫电子有限公司 一种成像信息处理方法、系统及存储介质
CN110287860A (zh) * 2019-06-21 2019-09-27 深圳金士盾科技实业有限公司 一种带有脸部识别的手机安全支付方法
CN111103922A (zh) * 2018-10-26 2020-05-05 华为技术有限公司 摄像头、电子设备和身份验证方法
CN111950541A (zh) * 2020-08-04 2020-11-17 北京汉王国粹科技有限责任公司 手持式读取器
CN112954272A (zh) * 2021-01-29 2021-06-11 上海商汤临港智能科技有限公司 相机模组、数据传输方法及装置、存储介质和车辆
CN113360447A (zh) * 2021-07-06 2021-09-07 浙江天铂云科光电股份有限公司 一种实现红外数据、温感数据和其他数据的传输方法
US11390164B2 (en) * 2018-10-23 2022-07-19 Ford Global Technologies, Llc Vehicle interface having electromagnetic communications
CN114827435A (zh) * 2021-01-28 2022-07-29 深圳绿米联创科技有限公司 免IR-Cut的视频流处理方法及装置、智能门锁及介质

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187727A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种图像信息采集装置、图像采集方法及其用途
CN105187726B (zh) * 2015-06-17 2021-05-18 巽腾(广东)科技有限公司 一种多功能移动图像处理装置、处理方法
CN105678215A (zh) * 2015-12-28 2016-06-15 北京天诚盛业科技有限公司 成像模组、成像装置和移动终端
CN108886563B (zh) * 2016-03-29 2020-09-11 华为技术有限公司 图像处理方法、图像处理装置、便携式多功能设备
CN106250839B (zh) * 2016-07-27 2019-06-04 徐鹤菲 一种虹膜图像透视校正方法、装置和移动终端
CN106254766A (zh) * 2016-07-28 2016-12-21 北京小米移动软件有限公司 后置摄像头的控制方法、装置及终端
CN106131426A (zh) * 2016-07-28 2016-11-16 北京小米移动软件有限公司 摄像头的控制方法、装置及终端
CN106250851B (zh) * 2016-08-01 2020-03-17 徐鹤菲 一种身份认证方法、设备及移动终端
CN106355169B (zh) * 2016-11-11 2023-11-21 重庆环宇星科信息技术有限公司 红外活体人脸图像采集装置、识别装置及其处理方法
CN108347556A (zh) * 2017-01-21 2018-07-31 盯盯拍(东莞)视觉设备有限公司 全景图像拍摄方法、全景图像显示方法、全景图像拍摄装置以及全景图像显示装置
CN108347557A (zh) * 2017-01-21 2018-07-31 盯盯拍(东莞)视觉设备有限公司 全景图像拍摄装置、显示装置、拍摄方法以及显示方法
JP6975896B2 (ja) * 2017-02-03 2021-12-01 パナソニックIpマネジメント株式会社 撮像装置の制御方法及び撮像装置
CN108429886A (zh) * 2017-02-13 2018-08-21 中兴通讯股份有限公司 一种拍照方法及终端
KR102371211B1 (ko) * 2017-03-24 2022-03-07 삼성전자 주식회사 복수의 카메라를 이용하여 생체 정보를 인증하는 방법 및 장치
CN107423703B (zh) * 2017-07-21 2020-12-08 山东大学 基于人脸、指纹和指静脉特征的多模态识别装置及方法
CN107392152A (zh) * 2017-07-21 2017-11-24 青岛海信移动通信技术股份有限公司 一种获取虹膜图像的方法及装置
CN107808148B (zh) * 2017-11-17 2020-06-02 广州广电运通金融电子股份有限公司 一种采集指静脉图像的设备、装置和方法
CN107862952A (zh) * 2017-12-11 2018-03-30 大连高马艺术设计工程有限公司 一种显示不同频率光波的学习教具系统
CN108074949B (zh) * 2017-12-26 2019-08-23 Oppo广东移动通信有限公司 电子装置
CN108200345A (zh) * 2018-01-24 2018-06-22 华东师范大学 高速实时多路视频采集处理装置
CN108200102A (zh) * 2018-03-15 2018-06-22 贵州电网有限责任公司 一种基于屏幕字符识别的数据安全获取系统
CN108830229A (zh) * 2018-06-20 2018-11-16 哈尔滨理工大学 一种基于caffe框架下结合人脸检测的活体识别方法
CN209390111U (zh) * 2018-11-05 2019-09-13 华为技术有限公司 一种摄像机及电子设备
CN111416920A (zh) * 2019-01-07 2020-07-14 富泰华工业(深圳)有限公司 移动图像处理装置、方法及计算机可读存储介质
CN109858463B (zh) * 2019-02-22 2021-03-26 成都云鼎丝路信息技术有限公司 一种双引擎用户识别方法、系统及终端
CN110008878B (zh) * 2019-03-27 2021-07-30 熵基科技股份有限公司 一种人脸检测的防假方法及具备防假功能的人脸识别装置
CN110084983A (zh) * 2019-04-28 2019-08-02 北京意锐新创科技有限公司 一种基于滤光原理的支付装置及其人机互动方法
CN111901502A (zh) * 2019-05-06 2020-11-06 三赢科技(深圳)有限公司 相机模组
CN110266932A (zh) * 2019-07-20 2019-09-20 福建医科大学附属协和医院 手术中识别甲状旁腺的手机影像装置及其使用方法
CN111160246A (zh) * 2019-12-28 2020-05-15 广东智冠信息技术股份有限公司 一种移动终端及其掌静脉识别方法、系统
CN111259858B (zh) * 2020-02-14 2023-03-14 闻泰通讯股份有限公司 指静脉识别系统、方法、装置、电子设备及存储介质
CN112235567A (zh) * 2020-10-14 2021-01-15 歌尔科技有限公司 摄像头测试方法、装置、系统与计算机可读存储介质
CN113038017A (zh) * 2021-03-24 2021-06-25 重庆中科云从科技有限公司 图像采集方法、装置及计算机可读存储介质
CN114500816A (zh) * 2022-03-24 2022-05-13 杭州普维云技术有限公司 一种双联座ir-cut和摄像头模组
CN115604572B (zh) * 2022-09-02 2023-12-01 荣耀终端有限公司 图像的获取方法、电子设备及计算机可读存储介质
CN116978104A (zh) * 2023-08-11 2023-10-31 泰智达(北京)网络科技有限公司 一种人脸识别系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128189A1 (fr) * 2006-05-08 2007-11-15 Beijing Athletic Sports International Economical Conference Service Center Caméra numérique
CN101902326A (zh) * 2009-05-25 2010-12-01 汉王科技股份有限公司 电子钥匙身份认证方法和装置
CN202395858U (zh) * 2011-12-14 2012-08-22 深圳市中控生物识别技术有限公司 一种双目摄像装置
CN103207502A (zh) * 2013-04-16 2013-07-17 南昌欧菲光电技术有限公司 摄像头模组及成像方法
CN103908063A (zh) * 2014-04-03 2014-07-09 安徽海聚信息科技有限责任公司 一种矫正坐姿的智能书桌及其矫正方法
CN203734738U (zh) * 2014-02-28 2014-07-23 北京中科虹霸科技有限公司 一种用于移动终端的虹膜识别摄像头模组
CN104155312A (zh) * 2014-08-11 2014-11-19 华北水利水电大学 基于近红外计算机视觉的粮粒内部害虫检测方法和装置
CN104333703A (zh) * 2014-11-28 2015-02-04 广东欧珀移动通信有限公司 使用双摄像头拍照的方法和终端
CN204258901U (zh) * 2014-04-15 2015-04-08 深圳市中科微光医疗器械技术有限公司 用于移动终端的手掌静脉识别装置和包括它的智能手机
CN105187727A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种图像信息采集装置、图像采集方法及其用途
CN105187726A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100057983A (ko) * 2008-11-24 2010-06-03 한국전자통신연구원 생체 인식 시스템의 다중 영상 획득 장치
CN101710225B (zh) * 2009-06-12 2011-03-16 深圳市卡美特电子技术有限公司 成像传感器用滤光片切换装置
CN101964056B (zh) * 2010-10-26 2012-06-27 徐勇 一种具有活体检测功能的双模态人脸认证方法和系统
CN103856704B (zh) * 2012-11-29 2018-08-10 联想(北京)有限公司 一种移动终端3d拍摄的方法和装置
CN103152517B (zh) * 2013-02-06 2018-06-22 北京中科虹霸科技有限公司 用于移动虹膜识别设备的成像模组及移动设备
CN103870805B (zh) * 2014-02-17 2017-08-15 北京释码大华科技有限公司 一种移动终端生物特征成像方法和装置
CN104394311B (zh) * 2014-09-15 2015-08-05 贵阳科安科技有限公司 用于移动终端的虹膜识别成像模组及图像获取方法
CN104580854A (zh) * 2014-12-23 2015-04-29 南昌欧菲光电技术有限公司 成像装置及移动终端
CN205017431U (zh) * 2015-09-24 2016-02-03 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128189A1 (fr) * 2006-05-08 2007-11-15 Beijing Athletic Sports International Economical Conference Service Center Caméra numérique
CN101902326A (zh) * 2009-05-25 2010-12-01 汉王科技股份有限公司 电子钥匙身份认证方法和装置
CN202395858U (zh) * 2011-12-14 2012-08-22 深圳市中控生物识别技术有限公司 一种双目摄像装置
CN103207502A (zh) * 2013-04-16 2013-07-17 南昌欧菲光电技术有限公司 摄像头模组及成像方法
CN203734738U (zh) * 2014-02-28 2014-07-23 北京中科虹霸科技有限公司 一种用于移动终端的虹膜识别摄像头模组
CN103908063A (zh) * 2014-04-03 2014-07-09 安徽海聚信息科技有限责任公司 一种矫正坐姿的智能书桌及其矫正方法
CN204258901U (zh) * 2014-04-15 2015-04-08 深圳市中科微光医疗器械技术有限公司 用于移动终端的手掌静脉识别装置和包括它的智能手机
CN104155312A (zh) * 2014-08-11 2014-11-19 华北水利水电大学 基于近红外计算机视觉的粮粒内部害虫检测方法和装置
CN104333703A (zh) * 2014-11-28 2015-02-04 广东欧珀移动通信有限公司 使用双摄像头拍照的方法和终端
CN105187727A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种图像信息采集装置、图像采集方法及其用途
CN105187726A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107220623A (zh) * 2017-05-27 2017-09-29 湖南德康慧眼控制技术股份有限公司 一种人脸识别方法及系统
CN107888288A (zh) * 2017-11-07 2018-04-06 华南理工大学 一种基于移动终端的短距离可见光通信方法及其硬件系统
CN109005325A (zh) * 2018-08-29 2018-12-14 浙江科技学院 基于交互式智能补光人脸摄像装置及方法
CN109005325B (zh) * 2018-08-29 2023-11-07 浙江科技学院 基于交互式智能补光人脸摄像装置及方法
US11390164B2 (en) * 2018-10-23 2022-07-19 Ford Global Technologies, Llc Vehicle interface having electromagnetic communications
CN111103922B (zh) * 2018-10-26 2023-08-25 华为技术有限公司 摄像头、电子设备和身份验证方法
CN111103922A (zh) * 2018-10-26 2020-05-05 华为技术有限公司 摄像头、电子设备和身份验证方法
CN109543640B (zh) * 2018-11-29 2022-06-17 中国科学院重庆绿色智能技术研究院 一种基于图像转换的活体检测方法
CN109543640A (zh) * 2018-11-29 2019-03-29 中国科学院重庆绿色智能技术研究院 一种基于图像转换的活体检测方法
CN109766806A (zh) * 2018-12-28 2019-05-17 深圳奥比中光科技有限公司 高效的人脸识别方法及电子设备
CN110287860A (zh) * 2019-06-21 2019-09-27 深圳金士盾科技实业有限公司 一种带有脸部识别的手机安全支付方法
CN110248109A (zh) * 2019-06-28 2019-09-17 深圳市长龙鑫电子有限公司 一种成像信息处理方法、系统及存储介质
CN111950541A (zh) * 2020-08-04 2020-11-17 北京汉王国粹科技有限责任公司 手持式读取器
CN114827435A (zh) * 2021-01-28 2022-07-29 深圳绿米联创科技有限公司 免IR-Cut的视频流处理方法及装置、智能门锁及介质
CN112954272A (zh) * 2021-01-29 2021-06-11 上海商汤临港智能科技有限公司 相机模组、数据传输方法及装置、存储介质和车辆
CN112954272B (zh) * 2021-01-29 2023-10-24 上海商汤临港智能科技有限公司 相机模组、数据传输方法及装置、存储介质和车辆
CN113360447A (zh) * 2021-07-06 2021-09-07 浙江天铂云科光电股份有限公司 一种实现红外数据、温感数据和其他数据的传输方法

Also Published As

Publication number Publication date
CN105187726A (zh) 2015-12-23
CN105187726B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2017049923A1 (zh) 一种多功能移动图像处理装置、处理方法及用途
WO2017049922A1 (zh) 一种图像信息采集装置、图像采集方法及其用途
CN204948210U (zh) 一种图像信息采集装置
CN205017431U (zh) 一种多功能移动图像处理装置
WO2017173847A1 (zh) 视频眼镜的眼球追踪模组
CN109544618B (zh) 一种获取深度信息的方法及电子设备
WO2017132903A1 (zh) 与可见光复用的生物特征复合成像系统和方法
EP3067746B1 (en) Photographing method for dual-camera device and dual-camera device
EP3011495B1 (en) Multiple mode image acquisition for iris imaging
KR102458344B1 (ko) 카메라의 초점을 변경하는 방법 및 장치
CN102055834B (zh) 一种移动终端的双摄像头拍照方法
CN106952252B (zh) 一种基于三光谱的皮肤成像系统
TWI739096B (zh) 資料處理方法和電子設備
US20140368695A1 (en) Control device and storage medium
CN102075683A (zh) 数字图像处理设备和数字图像处理设备的拍摄方法
KR102344104B1 (ko) 이미지의 표시 효과를 제어할 수 있는 전자 장치 및 영상 표시 방법
WO2018148897A1 (zh) 一种驾驶员身份识别方法及装置
CN113747028A (zh) 一种拍摄方法及电子设备
CN107317958A (zh) 一种具有红外夜视搜索功能的警用执法仪
JP5880506B2 (ja) 処理装置
CN205986976U (zh) 一种红外光源前置手机
WO2016141561A1 (zh) 虹膜身份认证附件及系统
CN113741681B (zh) 一种图像校正方法与电子设备
KR20200107167A (ko) 자연광 환경에서 적외선을 이용하여 얼굴 인식이 가능한 이미지를 생성할 수 있는 얼굴인식장치 및 그 인식방법
CN112558847B (zh) 控制界面显示的方法及头戴式显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16847805

Country of ref document: EP

Kind code of ref document: A1