CN109543640B - 一种基于图像转换的活体检测方法 - Google Patents

一种基于图像转换的活体检测方法 Download PDF

Info

Publication number
CN109543640B
CN109543640B CN201811447765.4A CN201811447765A CN109543640B CN 109543640 B CN109543640 B CN 109543640B CN 201811447765 A CN201811447765 A CN 201811447765A CN 109543640 B CN109543640 B CN 109543640B
Authority
CN
China
Prior art keywords
image
size
face
living body
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811447765.4A
Other languages
English (en)
Other versions
CN109543640A (zh
Inventor
蒋方玲
刘鹏程
邵枭虎
张宇
周祥东
石宇
程俊
罗代建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
University of Chinese Academy of Sciences
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical University of Chinese Academy of Sciences
Priority to CN201811447765.4A priority Critical patent/CN109543640B/zh
Publication of CN109543640A publication Critical patent/CN109543640A/zh
Application granted granted Critical
Publication of CN109543640B publication Critical patent/CN109543640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • G06V40/45Detection of the body part being alive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Collating Specific Patterns (AREA)

Abstract

本发明涉及一种基于图像转换的活体检测方法,属于图像处理领域。该方法利用图像转换模型将可见光图像转换为近红外图像进行活体人脸和伪造人脸的分类,该方法利用了近红外图像中的反射差异信息,有效的提高了真人人脸和照片、视频、三维面具等伪造人脸的分类准确率和鲁棒性的同时又无需增加新的近红外硬件设备。本发明包含模型训练部分和检测部分。本发明利用近红外图像进行活体检测,方法利用了近红外图像中丰富的分类信息,有效的提高了活体检测的准确性和鲁棒性的同时又无需增加新的昂贵硬件设备;能够同时识别照片、视频、三维面具的攻击,跨数据、攻击类型的鲁棒性强;无需用户交互配合,实现了无感活体检测,用户体验好。

Description

一种基于图像转换的活体检测方法
技术领域
本发明属于图像处理领域,涉及一种基于图像转换的活体检测方法。
背景技术
目前人脸识别技术广泛应用于各类智能身份认证场景。用户身份认证对系统安全性上有较高的要求,然而传统的人脸识别系统并不辨别当前获取的图像中的人脸是活体人脸还是伪造人脸。近年来,人脸照片、人脸视频、三维面具等伪造人脸层出不穷,为了保障系统安全性,人脸活体检测也逐渐成为人脸识别系统中不可或缺的环节。目前常见的人脸活体检测的方法有基于可见光图像处理的方法和基于多光谱图像处理的方法。
基于可见光图像的方法通常分为有感检测和无感检测两大类。有感检测随机指定动作,判断用户是否完成了指定的东西来区分真人人脸和伪造人脸。无感检测通过手工设计算子或者神经网络抽取颜色纹理、微动作、图像质量等信息。有感检测需要用户配合,用户体验不佳。无感检测无需用户配合,用户体验相对较好,但是模型的跨数据迁移能力不佳,抽取的特征不够鲁棒。
基于多光谱的方法常利用近红外、远红外、热红外等多个光谱进行活体检测。真人人脸和伪造人脸的材质在近红外、远红外、热红外光谱下的反射信息有较大差异,为活体检测提供了有效而鲁棒的分类信息,但是此类方法需要增加昂贵的硬件设备,改造已有人脸识别系统的硬件设备,不利于实际的推广应用。
发明内容
有鉴于此,本发明的目的在于提供一种基于图像转换的活体检测方法。
为达到上述目的,本发明提供如下技术方案:
一种基于图像转换的活体检测方法,该方法包括模型训练部分和检测部分;
所述模型训练部分包括图像转换模型的训练和活体检测分类模型的训练;
所述图像转换模型的训练包括以下步骤:
S111:利用可见光近红外光双目摄像头采集活体人脸和伪造人脸的可见光图像和近红外光图像
S112:检测可见光图像和近红外光图像中的人脸,根据数据分辨率将人脸图像进行裁剪,裁剪大小为A,对检测到的人脸图像进行归一化处理;
S113:利用多类别图像转换生成对抗网络结构进行图像转换:多类别图像转换生成对抗网络结构由两个生成器Ga,Gb和两个判别器Da,Db组成;
其中,两个生成器组成循环结构,Ga将源域图像转换为目标域图像,Gb将目标域图像转换为源域图像;
Ga和Da,Gb和Db分别组成两组生成对抗网络;生成器学习图像数据分布,试图生成让判别器无法分辨真假的图像;判别器判断图像的真假,试图识别出所有假图像,并将真实图像分到正确的类别;两者相互博弈,相互迭代学习;
S114:利用循环损失,控制源域图像和经由两个生成器循环生成后的图像一致,目标域图像和经由两个生成器循环生成后的图像一致,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S115:利用像素损失,控制生成器生成的图片和目标图片从像素上一致,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S116:利用特征损失,控制生成器生成的图片和目标图片经由判别器后的特征一致,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S117:利用样式损失,控制生成器生成的图片和目标图片特征相关性一致;特征相关性即图片经由判别器后的特征的平方,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S118:生成器生成大小为A的图像,网络结构使用CycleGAN生成器的网络结构,由三个卷积层、九个残差块、三个反卷积层依次组成;判别器的网络在CycleGAN判别器的网络结构上做调整,前三个卷积层不变,将最后一个卷积层的输出节点改成类别数加一个;生成器和判别器的每个卷积层后接归一化层和ReLU层;生成器和判别器的网络根据实际业务更换;
S119:将可见光图像和近红外光人脸图像输入多类别图像转换生成对抗网络,生成器和判别器依次迭代更新,进行训练;
S1110:保存训练得到的图像转换模型;
所述活体检测分类模型的训练包括以下步骤:
S121:利用常用的可见光摄像头采集活体人脸和伪造人脸的可见光RGB图像;
S122:检测可见光RGB图像的人脸,将人脸图像大小裁剪为A大小,对检测到的人脸图像进行归一化处理;
S123:利用之前训练好的图像转换模型将活体人脸和伪造人脸的可见光人脸图像转换为相应的近红外人脸图像;
S124:将转换后的活体人脸和伪造人脸的近红外人脸图像输入卷积神经网络,利用随机梯度下降法进行训练;网络由5个卷积层和三个全连接层组成,每一层卷积层和前两层全连接层后进行ReLU和批量归一化处理;第一层全连接层后使用dropout舍弃部分参数,以防过拟合的发生;
S125:所述保存训练得到的活体检测分类模型;
所述检测部分包括以下步骤:
S21:利用常用的可见光摄像头采集可见光RGB图像;
S22:检测可见光RGB图像的人脸,将人脸图像大小裁剪为A大小,对检测到的人脸图像进行归一化处理;
S23:利用训练的图像转换模型将可见光人脸图像转换为近红外人脸图像;
S24:将转换后的近红外人脸图像作为活体检测分类模型的输入,运行活体检测分类模型抽取特征进行活体人脸和伪造人脸预测,若模型输出的活体人脸预测概率值大于设定的阈值,则判断输入的人脸图像为活体人脸图像。
进一步,在所述步骤S112中,将人脸图像进行裁剪的大小为256*256、128*128或64*64。
进一步,在所述步骤S124中,卷积神经网络能够替换为Alexnet或Lenet网络。
进一步,在所述步骤S124中,网络结构参数如下:
DataNIR,过滤器和步长为256×256×3;
Conv1,过滤器和步长为5×5×1,输出大小为96×256×256;
Pool1,过滤器和步长为2×2×2,输出大小为96×128×128;
Conv2,过滤器和步长为3×3×1,输出大小为128×64×64;
Pool2,过滤器和步长为2×2×2,输出大小为128×64×64;
Conv3,过滤器和步长为3×3×1,输出大小为192×64×64;
Pool3,过滤器和步长为2×2×2,输出大小为192×32×32;
Conv4,过滤器和步长为3×3×1,输出大小为256×32×32;
Pool4,过滤器和步长为2×2×2,输出大小为256×16×16;
Conv5,过滤器和步长为3×3×1,输出大小为384×16×16;
Pool1,过滤器和步长为2×2×2,输出大小为384×8×8;
FC1,过滤器和步长为8×8×1,输出大小为1024×1×1;
FC2,过滤器和步长为1×1×1,输出大小为512×1×1;
FC3,过滤器和步长为2,输出大小为1×1。
本发明的有益效果在于:
1、利用近红外图像进行活体检测,方法利用了近红外图像中丰富的分类信息,有效的提高了活体检测的准确性和鲁棒性的同时又无需增加新的昂贵硬件设备。
2、能够同时识别照片、视频、三维面具的攻击,跨数据、攻击类型的鲁棒性强。
3、无需用户交互配合,实现了无感活体检测,用户体验好。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明检测部分流程图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
本发明提出了一种基于图像转换的活体检测方法,该方法利用图像转换模型将可见光图像转换为近红外图像进行活体人脸和伪造人脸的分类,该方法利用了近红外图像中的反射差异信息,有效的提高了真人人脸和照片、视频、三维面具等伪造人脸的分类准确率和鲁棒性的同时又无需增加新的近红外硬件设备。本发明的具体内容包含模型训练部分和检测部分,主要内容如下:
模型训练部分:包括图像转换模型的训练和活体检测分类模型的训练。
图像转换模型的训练
S111:利用可见光近红外光双目摄像头采集活体人脸和伪造人脸的可见光图像和近红外光图像。
S112:检测可见光图像和近红外光图像中的人脸,将人脸图像大小裁剪为256*256大小,亦可根据数据分辨率情况裁剪为其他大小,如128*128,64*64。对检测到的人脸图像进行归一化处理。
S113:利用多类别图像转换生成对抗网络结构进行图像转换:多类别图像转换生成对抗网络结构由两个生成器Ga,Gb和两个判别器Da,Db组成。两个生成器组成循环结构。Ga将源域图像转换为目标域图像。Gb将目标域图像转换为源域图像。Ga和Da,Gb和Db分别组成两组生成对抗网络。生成器学习图像数据分布,试图生成让判别器无法分辨真假的图像。判别器判断图像的真假,试图识别出所有假图像,并将真实图像分到正确的类别。两者相互博弈,相互迭代学习。
S114:利用循环损失,控制源域图像和经由两个生成器循环生成后的图像一致,目标域图像和经由两个生成器循环生成后的图像一致,损失函数使用L1损失,亦可根据需要调整为L2等其他损失函数。
S115:利用像素损失,控制生成器生成的图片和目标图片从像素上一致,损失函数使用L1损失,亦可根据需要调整为L2等其他损失函数。
S116:利用特征损失,控制生成器生成的图片和目标图片经由判别器后的特征一致,损失函数使用L1损失,亦可根据需要调整为L2等其他损失函数。
S117:利用样式损失,控制生成器生成的图片和目标图片特征相关性一致。特征相关性即图片经由判别器后的特征的平方,损失函数使用L1损失,亦可根据需要调整为L2等其他损失函数。
S118:生成器生成256*256大小的图像,网络结构使用文献4中的网络结构,由三个卷积层、九个残差块、三个反卷积层依次组成。判别器的网络在文献4中的网络结构上做调整,前三个卷积层不变,将最后一个卷积层的输出节点改成类别数加一个。生成器和判别器的每个卷积层后接归一化层和ReLU层。生成器和判别器的网络可以根据实际业务更换。
S119:将可见光图像和近红外光人脸图像输入多类别图像转换生成对抗网络,生成器和判别器依次迭代更新,进行训练。
S1110:保存训练得到的图像转换模型。
活体检测分类模型的训练
S121:利用常用的可见光摄像头采集活体人脸和伪造人脸的可见光RGB图像。
S122:检测可见光RGB图像的人脸,将人脸图像大小裁剪为256*256大小,对检测到的人脸图像进行归一化处理。
S123:利用之前训练好的图像转换模型将活体人脸和伪造人脸的可见光人脸图像转换为相应的近红外人脸图像。
S124:将转换后的活体人脸和伪造人脸的近红外人脸图像输入卷积神经网络,利用随机梯度下降法进行训练。网络由5个卷积层和三个全连接层组成,每一层卷积层和前两层全连接层后进行ReLU和批量归一化处理。第一层全连接层后使用dropout舍弃部分参数,以防过拟合的发生。具体参数如表1所示,卷积神经网络可以使用其他如Alexnet,Lenet等网络。
表1网络结构示例
Figure BDA0001886086290000051
Figure BDA0001886086290000061
S125:保存训练得到的活体检测分类模型。
检测部分,流程如图1所示。
S21:利用常用的可见光摄像头采集可见光RGB图像。
S22:检测可见光RGB图像的人脸,将人脸图像大小裁剪为256*256大小,对检测到的人脸图像进行归一化处理。
S23:利用训练的图像转换模型将可见光人脸图像转换为近红外人脸图像。
S24:将转换后的近红外人脸图像作为活体检测分类模型的输入,运行活体检测分类模型抽取特征进行活体人脸和伪造人脸预测,若模型输出的活体人脸预测概率值大于设定的阈值,则判断输入的人脸图像为活体人脸图像。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (4)

1.一种基于图像转换的活体检测方法,其特征在于:该方法包括模型训练部分和检测部分;
所述模型训练部分包括图像转换模型的训练和活体检测分类模型的训练;
所述图像转换模型的训练包括以下步骤:
S111:利用可见光近红外光双目摄像头采集活体人脸和伪造人脸的可见光图像和近红外光图像
S112:检测可见光图像和近红外光图像中的人脸,根据数据分辨率将人脸图像进行裁剪,裁剪大小为A,对检测到的人脸图像进行归一化处理;
S113:利用多类别图像转换生成对抗网络结构进行图像转换:多类别图像转换生成对抗网络结构由两个生成器Ga,Gb和两个判别器Da,Db组成;
其中,两个生成器组成循环结构,Ga将源域图像转换为目标域图像,Gb将目标域图像转换为源域图像;
Ga和Da,Gb和Db分别组成两组生成对抗网络;生成器学习图像数据分布,试图生成让判别器无法分辨真假的图像;判别器判断图像的真假,试图识别出所有假图像,并将真实图像分到正确的类别;两者相互博弈,相互迭代学习;
S114:利用循环损失,控制源域图像和经由两个生成器循环生成后的图像一致,目标域图像和经由两个生成器循环生成后的图像一致,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S115:利用像素损失,控制生成器生成的图片和目标图片从像素上一致,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S116:利用特征损失,控制生成器生成的图片和目标图片经由判别器后的特征一致,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S117:利用样式损失,控制生成器生成的图片和目标图片特征相关性一致;特征相关性即图片经由判别器后的特征的平方,损失函数使用L1损失,还能够根据需要调整为其他损失函数L2;
S118:生成器生成大小为A的图像,网络结构使用CycleGAN生成器的网络结构,由三个卷积层、九个残差块、三个反卷积层依次组成;判别器的网络在CycleGAN判别器的网络结构上做调整,前三个卷积层不变,将最后一个卷积层的输出节点改成类别数加一个;生成器和判别器的每个卷积层后接归一化层和ReLU层;生成器和判别器的网络根据实际业务更换;
S119:将可见光图像和近红外光人脸图像输入多类别图像转换生成对抗网络,生成器和判别器依次迭代更新,进行训练;
S1110:保存训练得到的图像转换模型;
所述活体检测分类模型的训练包括以下步骤:
S121:利用常用的可见光摄像头采集活体人脸和伪造人脸的可见光RGB图像;
S122:检测可见光RGB图像的人脸,将人脸图像大小裁剪为A大小,对检测到的人脸图像进行归一化处理;
S123:利用之前训练好的图像转换模型将活体人脸和伪造人脸的可见光人脸图像转换为相应的近红外人脸图像;
S124:将转换后的活体人脸和伪造人脸的近红外人脸图像输入卷积神经网络,利用随机梯度下降法进行训练;网络由5个卷积层和三个全连接层组成,每一层卷积层和前两层全连接层后进行ReLU和批量归一化处理;第一层全连接层后使用dropout舍弃部分参数,以防过拟合的发生;
S125:所述保存训练得到的活体检测分类模型;
所述检测部分包括以下步骤:
S21:利用常用的可见光摄像头采集可见光RGB图像;
S22:检测可见光RGB图像的人脸,将人脸图像大小裁剪为A大小,对检测到的人脸图像进行归一化处理;
S23:利用训练的图像转换模型将可见光人脸图像转换为近红外人脸图像;
S24:将转换后的近红外人脸图像作为活体检测分类模型的输入,运行活体检测分类模型抽取特征进行活体人脸和伪造人脸预测,若模型输出的活体人脸预测概率值大于设定的阈值,则判断输入的人脸图像为活体人脸图像。
2.根据权利要求1所述的一种基于图像转换的活体检测方法,其特征在于:在所述步骤S112中,将人脸图像进行裁剪的大小为256*256、128*128或64*64。
3.根据权利要求1所述的一种基于图像转换的活体检测方法,其特征在于:在所述步骤S124中,卷积神经网络能够替换为Alexnet或Lenet网络。
4.根据权利要求1所述的一种基于图像转换的活体检测方法,其特征在于:在所述步骤S124中,网络结构参数如下:
DataNIR,过滤器和步长为256×256×3;
Conv1,过滤器和步长为5×5×1,输出大小为96×256×256;
Pool1,过滤器和步长为2×2×2,输出大小为96×128×128;
Conv2,过滤器和步长为3×3×1,输出大小为128×64×64;
Pool2,过滤器和步长为2×2×2,输出大小为128×64×64;
Conv3,过滤器和步长为3×3×1,输出大小为192×64×64;
Pool3,过滤器和步长为2×2×2,输出大小为192×32×32;
Conv4,过滤器和步长为3×3×1,输出大小为256×32×32;
Pool4,过滤器和步长为2×2×2,输出大小为256×16×16;
Conv5,过滤器和步长为3×3×1,输出大小为384×16×16;
Pool1,过滤器和步长为2×2×2,输出大小为384×8×8;
FC1,过滤器和步长为8×8×1,输出大小为1024×1×1;
FC2,过滤器和步长为1×1×1,输出大小为512×1×1;
FC3,过滤器和步长为2,输出大小为1×1。
CN201811447765.4A 2018-11-29 2018-11-29 一种基于图像转换的活体检测方法 Active CN109543640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811447765.4A CN109543640B (zh) 2018-11-29 2018-11-29 一种基于图像转换的活体检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811447765.4A CN109543640B (zh) 2018-11-29 2018-11-29 一种基于图像转换的活体检测方法

Publications (2)

Publication Number Publication Date
CN109543640A CN109543640A (zh) 2019-03-29
CN109543640B true CN109543640B (zh) 2022-06-17

Family

ID=65851159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811447765.4A Active CN109543640B (zh) 2018-11-29 2018-11-29 一种基于图像转换的活体检测方法

Country Status (1)

Country Link
CN (1) CN109543640B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110363122B (zh) * 2019-07-03 2022-10-11 昆明理工大学 一种基于多层特征对齐的跨域目标检测方法
CN110472519B (zh) * 2019-07-24 2021-10-29 杭州晟元数据安全技术股份有限公司 一种基于多模型的人脸活体检测方法
CN111046899B (zh) * 2019-10-09 2023-12-08 京东科技控股股份有限公司 身份证真伪识别方法、装置、设备及存储介质
CN110705530B (zh) * 2019-12-13 2020-05-15 珠海亿智电子科技有限公司 双目活体识别同一人脸框的方法、装置、设备及存储介质
CN111104987B (zh) * 2019-12-25 2023-08-01 盛景智能科技(嘉兴)有限公司 人脸识别方法、装置及电子设备
CN111259814B (zh) * 2020-01-17 2023-10-31 杭州涂鸦信息技术有限公司 一种活体检测方法及系统
CN111476353B (zh) * 2020-04-07 2022-07-15 中国科学院重庆绿色智能技术研究院 一种引入显著性的gan图像超分辨率方法
CN111539287B (zh) * 2020-04-16 2023-04-07 北京百度网讯科技有限公司 训练人脸图像生成模型的方法和装置
CN111967296B (zh) * 2020-06-28 2023-12-05 北京中科虹霸科技有限公司 虹膜活体检测方法、门禁控制方法及装置
CN111879724B (zh) * 2020-08-05 2021-05-04 中国工程物理研究院流体物理研究所 基于近红外光谱成像的人皮面具识别方法及系统
CN111881884B (zh) * 2020-08-11 2021-05-28 中国科学院自动化研究所 基于跨模态转化辅助的人脸防伪检测方法、系统及装置
CN112347850B (zh) * 2020-09-30 2024-04-23 新大陆数字技术股份有限公司 红外图像转换方法、活体检测方法、装置、可读存储介质
CN113435408A (zh) * 2021-07-21 2021-09-24 北京百度网讯科技有限公司 人脸活体检测方法、装置、电子设备及存储介质
CN113505722B (zh) * 2021-07-23 2024-01-02 中山大学 一种基于多尺度特征融合的活体检测方法、系统及装置
CN113723243B (zh) * 2021-08-20 2024-05-17 南京华图信息技术有限公司 一种戴面罩的热红外图像人脸识别方法及应用
CN114463859B (zh) * 2021-11-03 2023-08-11 马上消费金融股份有限公司 活体检测的对抗样本生成方法、装置、电子设备及存储介质
CN114596615B (zh) * 2022-03-04 2023-05-05 湖南中科助英智能科技研究院有限公司 基于对抗学习的人脸活体检测方法、装置、设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964056A (zh) * 2010-10-26 2011-02-02 徐勇 一种具有活体检测功能的双模态人脸认证方法和系统
CN104700087A (zh) * 2015-03-23 2015-06-10 上海交通大学 可见光与近红外人脸图像的相互转换方法
CN105069448A (zh) * 2015-09-29 2015-11-18 厦门中控生物识别信息技术有限公司 一种真假人脸识别方法及装置
CN105654028A (zh) * 2015-09-29 2016-06-08 厦门中控生物识别信息技术有限公司 一种真假人脸识别方法及装置
CN106372615A (zh) * 2016-09-19 2017-02-01 厦门中控生物识别信息技术有限公司 一种人脸防伪识别方法以及装置
WO2017049923A1 (zh) * 2015-06-17 2017-03-30 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途
CN108416326A (zh) * 2018-03-27 2018-08-17 百度在线网络技术(北京)有限公司 人脸识别方法和装置
CN109558840A (zh) * 2018-11-29 2019-04-02 中国科学院重庆绿色智能技术研究院 一种特征融合的活体检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140240477A1 (en) * 2013-02-26 2014-08-28 Qualcomm Incorporated Multi-spectral imaging system for shadow detection and attenuation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964056A (zh) * 2010-10-26 2011-02-02 徐勇 一种具有活体检测功能的双模态人脸认证方法和系统
CN104700087A (zh) * 2015-03-23 2015-06-10 上海交通大学 可见光与近红外人脸图像的相互转换方法
WO2017049923A1 (zh) * 2015-06-17 2017-03-30 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途
CN105069448A (zh) * 2015-09-29 2015-11-18 厦门中控生物识别信息技术有限公司 一种真假人脸识别方法及装置
CN105654028A (zh) * 2015-09-29 2016-06-08 厦门中控生物识别信息技术有限公司 一种真假人脸识别方法及装置
CN106372615A (zh) * 2016-09-19 2017-02-01 厦门中控生物识别信息技术有限公司 一种人脸防伪识别方法以及装置
CN108416326A (zh) * 2018-03-27 2018-08-17 百度在线网络技术(北京)有限公司 人脸识别方法和装置
CN109558840A (zh) * 2018-11-29 2019-04-02 中国科学院重庆绿色智能技术研究院 一种特征融合的活体检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Face anti-spoofing with generated near-infrared images;Fangling Jiang 等;《Multimedia Tools and Applications》;20200504;第79卷(第29期);第21299-21323页 *
Face Liveness Detection Using a Flash Against 2D Spoofing Attack;Patrick P. K. Chan 等;《IEEE Transactions on Information Forensics and Security》;20171002(第13期);第521-534页 *
基于SIFT算法的人脸识别研究;贾宁宁;《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》;20160815(第8期);I138-695 *
红外与可见光图像融合的人脸识别算法;李琳莉 等;《内蒙古大学学报(自然科学版)》;20110715;第42卷(第4期);第454-459页 *

Also Published As

Publication number Publication date
CN109543640A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN109543640B (zh) 一种基于图像转换的活体检测方法
George et al. Cross modal focal loss for rgbd face anti-spoofing
George et al. On the effectiveness of vision transformers for zero-shot face anti-spoofing
CN108537743B (zh) 一种基于生成对抗网络的面部图像增强方法
CN110543846B (zh) 一种基于生成对抗网络的多姿态人脸图像正面化方法
Chen et al. A cascade face spoofing detector based on face anti-spoofing R-CNN and improved retinex LBP
CN111274921B (zh) 一种利用姿态掩模进行人体行为识别的方法
CN109360170B (zh) 基于高级特征的人脸修复方法
CN104504362A (zh) 基于卷积神经网络的人脸检测方法
CN110390308B (zh) 一种基于时空对抗生成网络的视频行为识别方法
CN110674677A (zh) 一种多模态多层融合的用于人脸反欺骗的深度神经网络
CN114863499B (zh) 一种基于联邦学习的指静脉与掌静脉识别方法
CN113111806A (zh) 用于目标识别的方法和系统
CN113221655A (zh) 基于特征空间约束的人脸欺骗检测方法
Liu et al. Modern architecture style transfer for ruin or old buildings
Peng et al. Presentation attack detection based on two-stream vision transformers with self-attention fusion
French et al. Multi-spectral pedestrian detection via image fusion and deep neural networks
CN112200075A (zh) 一种基于异常检测的人脸防伪方法
CN111914646A (zh) 一种基于光场图像序列的双流融合网络虹膜活体检测方法
Li et al. A dual-modal face anti-spoofing method via light-weight networks
Hadiprakoso Face anti-spoofing method with blinking eye and hsv texture analysis
Borah et al. ANN based human facial expression recognition in color images
CN114882582A (zh) 基于联邦学习模式的步态识别模型训练方法与系统
CN113553895A (zh) 一种基于人脸正面化的多姿态人脸识别方法
CN111191519B (zh) 一种用于移动供电装置用户接入的活体检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant