WO2017049922A1 - 一种图像信息采集装置、图像采集方法及其用途 - Google Patents

一种图像信息采集装置、图像采集方法及其用途 Download PDF

Info

Publication number
WO2017049922A1
WO2017049922A1 PCT/CN2016/082277 CN2016082277W WO2017049922A1 WO 2017049922 A1 WO2017049922 A1 WO 2017049922A1 CN 2016082277 W CN2016082277 W CN 2016082277W WO 2017049922 A1 WO2017049922 A1 WO 2017049922A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
infrared
module
camera
filter
Prior art date
Application number
PCT/CN2016/082277
Other languages
English (en)
French (fr)
Inventor
皮爱平
Original Assignee
广州市巽腾信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市巽腾信息科技有限公司 filed Critical 广州市巽腾信息科技有限公司
Publication of WO2017049922A1 publication Critical patent/WO2017049922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the invention relates to image information collecting technology, in particular to an image information collecting device, an image collecting method and the use thereof.
  • One of the tasks of the present invention is to provide an image information collecting apparatus having a shooting mode of various functions.
  • An image information collecting device is characterized in that: the image collecting device is provided with a transmission module, a controller and a camera for communicating with an external device, the camera includes a filter and an image sensor, and the external device transmits an instruction through the transmission module.
  • the controller controls the filter to receive light of different wavelengths, and the image sensor converts the image into a digital signal, which is processed by the controller after receiving the signal, and then transmitted through the transmission module.
  • the number of the cameras is one, and the camera includes a filter switcher and/or a focus module and/or a fill light module; or the number of the cameras is two, and one or two of the two cameras Including a filter switcher and/or a focus module and/or a fill light module, the image capture faces of the two cameras are the same On a plane.
  • the controller includes:
  • a mode management module configured to control the focus module, the fill light module, and the filter switch to switch different filters to form different shooting modes
  • the image processing module is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations on the received image data according to different shooting modes, and then send the processed image information to the transmission module for transmission, and/ Or send the received image to the display for preview.
  • the filter of the filter is any one of an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band filter; the filter connected to the filter switch is an infrared cut filter At least one of a sheet, a full-spectrum optical lens, and a near-infrared narrow-band filter.
  • the controller also includes the focus module for controlling the focusing device to adjust imaging sharpness, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the controller further includes the fill light module for adjusting the fill light, the fill light being at least one of a visible light fill light, an infrared fill light, and a near infrared fill light.
  • the mode management module is provided with a developer control shooting module, and the developer accesses the developer control shooting module through the transmission module on the external device, and queries the focus module, the fill light module and the filter switcher of the camera.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the external device is a computer PC, a notebook computer, a tablet computer, a mobile phone, a pad, a police service or a smart TV.
  • the controller also includes or does not include an encryption module.
  • the image sensor is a charge coupled device CCD or a complementary metal oxide semiconductor COMS.
  • the controller is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a field programmable gate array FPGA, a central processing unit CPU, a single chip microcomputer, a system on chip SoC or other equivalent dedicated chip.
  • the transmission module includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and a LED wireless optical communication Lifi communication module.
  • a Wi-Fi module a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and a LED wireless optical communication Lifi communication module.
  • the second task of the present invention provides a method for collecting bio-image information by using the image information collecting device, and can identify whether the photographing object is a living organism, and the number of the cameras of the image information collecting device is two, and the One or both of the two cameras include a filter switcher and/or a focus module, the image acquisition faces of the two cameras are on the same plane, and the filter of the filter is an infrared cut filter, a full-spectrum optical lens and a near-infrared narrow-band filter; the filter connected to the filter switch is at least an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow-band filter One.
  • step (a4) determining whether there is a living body in the near-infrared image, if it is performing step (a5), otherwise performing step (a3);
  • step (a5) determining whether the near-infrared image meets the requirements for bio-image recognition shooting, if step (a6) is performed, otherwise step (a3);
  • the controller transmits the captured image data to the external device through the transmission module.
  • the step (a2) sets the first camera to the near-infrared shooting mode, and sets the second camera to the visible light shooting mode; or, the step (a2) sets the first camera to the near-infrared shooting mode, and sets the second camera to the infrared shooting mode. Mode; or, the step (a2) sets the first camera to a near-infrared shooting mode, and sets the second camera to a near-infrared shooting mode different from the first camera, and the near-infrared wavelength of the second camera is 700 to 2526 nm. Or, the step (a2) sets the first camera to a near-infrared shooting mode, and sets the second camera to a non-working state.
  • the image information collecting apparatus further includes an encryption module, and the step (a6) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, if yes, the controller transmits the captured image data to the encryption module for encryption, and the encrypted image data is sent to the An external device; otherwise, the controller transmits unencrypted image data to the external device through the transmission module.
  • the camera uses a near-infrared wavelength of 700 to 2526 nm in the near-infrared shooting mode.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • the third task of the present invention provides a method for collecting bio-image information by using the image information collecting device, which can identify whether the photographing object is a living organism, and the image information collecting device has only one camera working, and the camera includes filtering.
  • the light film switcher has a built-in near-infrared narrow-band filter connected to the filter switch, and is also connected with an infrared cut filter or/and a full-spectrum optical lens.
  • step (b4) determining whether the infrared light face image or the visible light face image meets the biological image recognition shooting requirement, if it is the running step (b2), otherwise performing the step (b5);
  • the controller controls the filter switcher to switch the near-infrared narrow-band filter to work, so that the camera is in the near-infrared shooting mode
  • step (b8) determining whether the near-infrared face image meets the biological image recognition shooting requirement, if it is the running step (b9), otherwise performing the step (b1);
  • the controller uses the face recognition algorithm to determine the similarity between the visible light face image of step (b3) and the near-infrared face image of step (b7), or the infrared light face image and step of step (b3) (b7) the similarity of the near-infrared face image,
  • step (b10) If the similarity exceeds the set threshold, it is considered to be the same person, and step (b10) is run, otherwise it is considered not to be the same person, and step (b1) is run;
  • the controller transmits the captured visible light face image data and/or the near-infrared face image data to the external device through the transmission module, or the controller takes the captured infrared light face image data and/or near infrared The face image data is transmitted to the external device through the transmission module.
  • the threshold is a value not less than 0.8 and not more than 1.
  • the image information collecting apparatus further includes an encryption module, and the step (b10) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, if yes, the controller transmits the captured image data to the encryption module for encryption, and the encrypted image data is sent to the An external device; otherwise, the controller transmits unencrypted image data to the external device through the transmission module.
  • the camera uses a near-infrared wavelength of 700 to 2526 nm in the near-infrared shooting mode.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • the fourth task of the present invention is to provide a method for performing 3D image capturing by using the image information collecting device, which provides image data acquisition preparation for 3D video and 3D modeling, and the image capturing faces of the two cameras are on the same plane.
  • the two cameras comprise a filter switcher and/or a focus module, the filters of the filter being an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter Any one of the light sheets; the filter connected to the filter switch is at least one of an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter.
  • the controller transmits the captured first visible light image data and the second visible light image data to the external device through the transmission module.
  • the image information collecting apparatus further includes an encryption module, and the step (c3) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, and if yes, the controller transmits the captured first visible light image data and the second visible light image data to the encryption module for encryption, and the encrypted first visible light image data And the second visible light image data is transmitted to the external device through the transmission module; otherwise, the controller transmits the unencrypted first visible light image data and the second visible light image data to the external device through the transmission module.
  • a fifth task of the present invention is to provide a method for capturing an all-focus distance image using the image information collecting device, which solves the problem of clearly capturing a distant object when a close-range object is clearly captured.
  • a method for capturing a full-focus distance image by using the image information collecting device wherein the number of the cameras of the image information collecting device is two, the image capturing faces of the two cameras are on the same plane, and the two cameras
  • One or both of the modules include a focusing module, which is characterized by the following steps:
  • the two cameras one of which is a near focus distance and the other is a far focus distance
  • an image is taken
  • the captured image data is transmitted to an external device through a transmission module
  • the external device photographs the near focus by the camera through a third-party software.
  • the image and the far focus are merged into a panoramic image by the camera; or the image captured by the near focus distance camera and the image captured by the camera from the far focus are processed by the controller, merged into a panoramic image, and then transmitted through the transmission module. Transfer to an external device.
  • the sixth task of the present invention is to provide the use of the image information collecting device, which has a wide range of uses and meets the needs of different users;
  • the number of the cameras of the image information collecting device is one, and the camera includes filtering.
  • the filter of the filter is an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter
  • the filter connected to the filter switch is at least one of an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter.
  • the image information collecting device is used for 2D video communication, 3D video communication, intelligent face recognition, intelligent iris recognition, intelligent finger vein recognition, intelligent palm vein recognition, intelligent ear recognition, full focus distance image, 2D image, 3D image, Image data acquisition for 3D modeling and/or developer mode.
  • the image information collecting device of the present invention forms different combinations by switching the infrared cut filter, the full spectrum optical lens, and the near-infrared narrow band filter in the camera to achieve a plurality of shooting functions and improve the user experience.
  • the method for collecting biological image information wherein the image information collecting device is used, at least one of the two cameras is in a near-infrared shooting mode, and is capable of identifying whether the subject is a living organism, capturing an image of the living organism, or after shooting
  • the bio-image data is encrypted and transmitted; the two cameras synchronously transmit images, and the face image in the infrared shooting mode can be used to verify whether the face image in the visible light mode is an illegal user, thereby improving the security of the user identity authentication.
  • the method for collecting biological image information of the present invention adopts the image information collecting device, the number of cameras is one, and the inner filter switch is connected with a near-infrared narrow-band filter, and an infrared cut filter is also connected
  • the full-spectrum optical lens can identify the living organism in the case of visible light and low illumination, and can further judge the similarity by switching the filter switch to the near-infrared narrow-band filter and the images captured by other filters. To verify whether it is the same person and improve the security of user identity authentication.
  • the method for 3D image capturing of the present invention adopts the image information collecting device, both cameras are in visible light shooting mode, and the image capturing faces of the two cameras are on the same plane, thereby realizing image data collecting for 3D video and 3D modeling. Prepare or encrypt the image data for transmission.
  • the method for capturing a full-focus distance image adopts the image information collecting device, wherein both cameras are in a visible light shooting mode, and the image capturing faces of the two cameras are on the same plane, so that one is a near focus distance, and the other is a near focus distance.
  • Image information collection device has a wide range of uses, mainly used in 2D video communication, 3D video communication, intelligent face recognition, intelligent iris recognition, intelligent finger vein recognition, intelligent palm vein recognition, intelligent ear recognition, full focus distance image, 2D video, 3D video, 3D modeling, developer mode and other functions to meet the needs of different users.
  • FIG. 1 is a schematic diagram of a hardware structure of the present invention
  • FIG. 2 is a second schematic diagram of the hardware structure of the present invention.
  • Figure 3 is a schematic view showing the internal structure of the controller of Figures 1 and 2;
  • FIG. 4 is a flow chart of the 3D image capturing method of FIG. 1;
  • FIG. 5 is a flow chart of the 3D image capturing method including image data encryption in FIG. 1;
  • FIG. 6 is a flow chart of the binocular face recognition image acquisition method of FIG. 1;
  • FIG. 7 is a flow chart of the method for collecting a low-light environment binocular face recognition image of FIG. 1;
  • FIG. 8 is a flow chart of the method for collecting monocular face recognition image information of FIG. 2.
  • the image information collecting apparatus 1 of the present invention is provided with a transmission module 2, a controller 3 and two independent cameras 4 for communicating with external devices, and the image capturing faces of the two cameras 4 are on the same plane; 3 is respectively connected with the two independent cameras 4, the camera 4 includes a filter and an image sensor, and the external device transmits a command to the controller 3 through the transmission module 2 to control the filter to receive light of different wavelengths, and the image sensor converts the image into a digital image.
  • the signal is processed by the controller 3 after receiving the signal, and then transmitted to the external device through the transmission module 2 for processing or display of the display of the external device.
  • One or both of the two cameras 4 include a filter switch and/or a focus module and/or a fill light module.
  • the filter of the filter is an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band Any one of the filters; the filter connected to the filter switch is at least one of an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow band filter.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations on the received image data according to different shooting modes, and then send the processed image information to the transmission module 2 for transmission, and/or Or send the received image to the display for preview.
  • the mode management module 301 is provided with a developer control shooting module.
  • the developer accesses the developer control shooting module through the transmission module 2 on the external device, and queries the focus module 303, the fill light module 304 and the filter switch of each of the two cameras 4.
  • the controller 3 also includes a focus module 303 for controlling the focusing device to adjust the sharpness of the image, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the mechanical components used in the controllable focusing device include MEMS (Micro Motor System), VCM (Voice Circle Motor), and stepper motors.
  • the controller 3 further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near infrared fill light, and the fill light can also be used. For high-spectrum fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated chip.
  • the transmission module 2 includes a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED. Any one or more of the modules of the wireless optical communication Lifi communication module for transmitting the working state information, the control command, the image, the video, the audio and the encrypted data information of the image information collecting device 1.
  • the external device is a computer PC, a laptop, a tablet, a mobile phone, a pad, a police service or a smart TV.
  • the controller 3 is provided with an encryption module 305 or no encryption module 305.
  • a method for collecting biological image information by using the image information collecting apparatus 1 can identify whether a photographing object is a biological living body, and includes the following steps:
  • step (a4) determining whether there is a living body in the near-infrared image, if it is performing step (a5), otherwise performing step (a3);
  • step (a5) determining whether the near-infrared image meets the requirements for bio-image recognition shooting, if step (a6) is performed, otherwise step (a3);
  • the controller transmits the captured image data to the external device through the transmission module.
  • Step (a2) setting the first camera to the near-infrared shooting mode, setting the second camera to the visible light shooting mode; or, step (a2) setting the first camera to the near-infrared shooting mode, and setting the second camera to the infrared shooting mode; or
  • the step (a2) sets the first camera to a near-infrared shooting mode, sets the second camera to a near-infrared shooting mode of a different band from the first camera, and the near-infrared wavelength of the second camera is 700 to 2526 nm; or, the steps (a2) Set the first camera to the near-infrared shooting mode and set the second camera to the inactive state.
  • the image information collecting apparatus further includes an encryption module 305, and the step (a6) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, and if so, the controller transmits the captured image data to the encryption module 305 for encryption, and the encrypted image data is sent to the external through the transmission module. The device; otherwise, the controller transmits the unencrypted image data to the external device through the transmission module.
  • the camera uses a near-infrared wavelength of 700 to 2526 nm in the near-infrared shooting mode.
  • the near-infrared wavelength is 700 to 1100 nm, and is used for living face recognition image acquisition, or / and for live iris recognition image acquisition, or / and for live finger vein recognition image acquisition, or / and for live palm vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • a method for performing 3D image capturing by using an image information collecting device which provides image data acquisition preparation for 3D video and 3D modeling, and includes the following steps:
  • the controller transmits the captured first visible light image data and the second visible light image data to the external device through the transmission module.
  • the image information collecting apparatus 1 further includes an encryption module 305, and the step (c3) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, and if yes, the controller transmits the captured first visible light image data and the second visible light image data to the encryption module for encryption, and the encrypted first visible light image data And the second visible light image data is transmitted to the external device through the transmission module; otherwise, the controller transmits the unencrypted first visible light image data and the second visible light image data to the external device through the transmission module.
  • a method for performing a full-focus distance image capturing by using the image information collecting device wherein the number of the cameras of the image information collecting device is two, and the image capturing faces of the two cameras are on the same plane, and the following steps are included:
  • the two cameras one of which is a near focus distance and the other is a far focus distance
  • an image is taken
  • the captured image data is transmitted to an external device through a transmission module
  • the external device photographs the near focus by the camera through a third-party software.
  • the image and the far focus are merged into a panoramic image by the camera; or the image captured by the near focus distance camera and the image captured by the camera from the far focus are processed by the controller, merged into a panoramic image, and then transmitted through the transmission module. Transfer to an external device.
  • the image information collecting device is widely used to meet the needs of different users; the image information collecting device is used for 2D video communication, 3D video communication, intelligent face recognition, intelligent iris recognition, intelligent finger vein recognition, intelligent palm vein recognition, Intelligent ear recognition, full focus distance imaging, 2D imaging, 3D imaging, 3D modeling, and/or developer mode image data acquisition.
  • the image information collecting apparatus 1 of the present invention is provided with a transmission module 2, a controller 3 and two independent cameras 4 for communicating with external devices, and the image capturing faces of the two cameras 4 are on the same plane; 3 respectively connected to the two independent cameras 4, each of which includes a filter, an image sensor, and a filter switch, one or both of the two cameras 4 including a focus module and/or fill light Module.
  • the external device transmits a command to the controller 3 through the transmission module 2 to control the filter switcher to switch the filter to change the image sensor to receive light of different wavelengths, and the image sensor converts the image into a digital signal, and after receiving the signal, the controller 3 receives the signal
  • the processing is performed, and then transmitted to the external device through the transmission module 2 for processing or display of the display of the external device.
  • Each filter switch has three filters built into it: an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow-band filter.
  • the image information collecting apparatus 1 of the present invention forms different combinations by switching the infrared cut filter, the full spectrum optical lens and the near-infrared narrow band filter of the two independent cameras 4, thereby achieving various shooting functions and improving the user experience.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations on the received image data according to different shooting modes, and then send the processed image information to the transmission module 2 for transmission, and/or Or send the received image to the display for preview.
  • the mode management module 301 is provided with a developer control shooting module.
  • the developer accesses the developer control shooting module through the transmission module 2 on the external device, and queries the focus module 303, the fill light module 304 and the filter switch of each of the two cameras 4.
  • the controller 3 also includes a focus module 303 for controlling the focusing device to adjust the sharpness of the image, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the mechanical components used in the controllable focusing device include MEMS (Micro Motor System), VCM (Voice Circle Motor), and stepper motors.
  • the controller further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near-infrared fill light, and the fill light may also be Hyperspectral fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the transmission module 2 includes any one of a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED wireless optical communication Lifi communication module. Or a plurality of modules for transmitting working state information, control commands, images, video, audio, and encrypted data information of the image information collecting apparatus 1.
  • the external device is a computer PC, a laptop, a tablet, a mobile phone, a pad, a police service or a smart TV.
  • the controller 3 also includes or does not include an encryption module.
  • the controller 3 controls the filter switcher to switch to the near-infrared narrow-band filter operation, so that the first camera 4 is in the near-infrared shooting mode; meanwhile, the controller 3 controls the filter switcher to switch to the infrared cut-off filter. Working, so that the second camera 4 is in the visible light shooting mode, or the controller 3 controls the filter switch to switch to the full spectrum optical lens operation, so that the second camera 4 is in the infrared shooting mode;
  • step (4) determining whether there is a living body in the near-infrared image, if it is performing step (15), otherwise proceeding to step (13);
  • Step (13) determining whether the near-infrared image and/or the visible light image meets the requirements of the biological image recognition shooting, or determining whether the near-infrared image and/or the infrared light image meet the biological image recognition shooting requirement, if the step (16) is performed, otherwise Step (13);
  • the controller 3 transmits the captured visible light image data and/or near-infrared image data to the external device through the transmission module, or the controller 3 transmits the captured infrared light image data and/or the near-infrared image data through the transmission.
  • the module is sent to an external device.
  • the image information collecting device 1 synchronously outputs the visible light face image and the near-infrared face image; If the object to be photographed is a face photo of the user, the image information collecting apparatus 1 synchronously outputs the visible light face image, and the near-infrared image does not have the living human face image, thereby improving the security of the payment verification user identity, and the utility model can be applied to the business payment. Or, identify a living organism.
  • the biological living body is mainly recognized for low-illumination shooting conditions, and the security of identity authentication is improved, which can be applied to business payment, and the principle is as follows.
  • the low illumination ambient binocular face recognition image acquisition mode of the embodiment is mainly recognized for low-illumination shooting conditions, and the security of identity authentication is improved, which can be applied to business payment, and the principle is as follows.
  • the working principle and technical effects are the monocular face recognition image acquisition of the embodiment. Mode or Embodiment 6.
  • step (16) further includes the following steps:
  • the controller 3 Determining whether the mode command of the controller 3 includes an encryption request, and if so, the controller 3 transmits the captured visible light image data and/or near-infrared image data to the encryption module for encryption, or takes a good shot.
  • the infrared light image data and/or the near-infrared image data are transmitted to the encryption module for encryption, and the encrypted image data is transmitted to the external device through the transmission module; otherwise, the controller passes the unencrypted image data
  • the transmission module is sent to an external device.
  • the first camera 4 in the above step (12) uses a near-infrared wavelength of 700 to 2526 nm.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • a method for 3D image capturing performed by the image information collecting apparatus 1 described above includes the following steps:
  • the controller 3 switches the first camera 4 to the visible light shooting mode, and captures the first visible light image data, while the controller 3 switches the second camera 4 to the visible light shooting mode, and captures the second visible light image data;
  • the controller 3 transmits the captured first visible light image data and the second visible light image data to the external device through the transmission module 2.
  • a method for capturing a 3D image by using the image information collecting apparatus 1 described above the controller of the apparatus further includes an encryption module 305, and the method for capturing the 3D image includes the following steps:
  • the controller 3 switches the first camera 4 to the visible light shooting mode, and captures the first visible light image data, while the controller 3 switches the second camera 4 to the visible light shooting mode, and captures the second visible light image data;
  • Step (35) determining whether the mode command includes an encryption request, and if so, the controller 3 transmits the captured first visible light image data and the second visible light image data to the encryption module 305 for encryption, and the step (34) is performed; otherwise, Step (35);
  • the controller 3 transmits the encrypted first visible light image data and the second visible light image data to the external device through the transmission module 2;
  • the controller 3 transmits the unencrypted first visible light image data and the second visible light image data to the external device through the transmission module 2.
  • the image information collecting apparatus 1 has the following shooting modes:
  • the transmission module 2 monitors the signal, and the external terminal device sends a normal shooting mode command to the controller 3 to switch to the normal mode.
  • the mode management module 301 activates the first camera 4, and the second camera 4 is placed in a non-working state, and the filter in the first camera is filtered.
  • the light sheet switcher controls to switch to the infrared cut filter according to the switching instruction of the mode management module 301, and when the light of the object is reflected into the lens, the infrared cut filter absorbs and filters out the infrared light, so that the image sensor CCD or CMOS Received visible light spectral range
  • the light inside is converted into a graphic electrical signal, processed by the graphics processing module 32, and transmitted to the external device through the transmission module 2.
  • the first camera 4 is also in the visible light shooting mode.
  • the mode management module 301 detects whether the current ambient light needs to be turned on by the visible light, and the fill light module 304 performs the visible light fill according to the detection result, so that the camera has a good wide dynamic and a relatively clear image is captured.
  • the focusing module 303 in this mode switches the focus range of the camera 4 to be 1 mm or more.
  • the invention is not limited.
  • the transmission module 2 monitors the signal, and the external device issues a night vision shooting mode command to the controller 3 to switch to the binocular night vision mode, and the mode management module 301 simultaneously activates the first camera 4 and the second camera 4, the first camera 4 and the second
  • the filter switch built in the camera 4 controls switching to the full-spectrum lens according to the switching instruction of the mode management module 31, and the image sensor CCD of the first camera 4 and the second camera 4 when the light of the object is reflected into the lens at night.
  • the CMOS receives the light in the entire spectral range and converts it into a graphic electrical signal, which is processed by the graphics processing module 302 and simultaneously transmitted to the external device through the transmission module 2. At this time, both the first camera 4 and the second camera 4 are in the infrared shooting mode.
  • the mode management module 301 detects whether the current ambient light needs to turn on the infrared fill light, and the fill light module 304 performs infrared light fill light according to the detection result, so that the camera has a good wide dynamic and a relatively clear image is captured.
  • the focusing module 303 in this mode switches the focusing range of the first camera 4 and the second camera 4 to be 1 mm or more.
  • the invention is not limited.
  • the image information collecting device 1 of the present invention is a binocular camera, and the structure is a human eye-like structure, which is embodied as a horizontal distribution and has a certain distance between the two, that is, the captured image has a certain left and right visual field difference, and the human eye imaging structure the same.
  • the transmission module 2 monitors the signal, and the external device issues a 3D shooting mode command to the controller 3 to switch to the 3D video mode.
  • the mode management module 301 simultaneously activates the first camera 4 and the second camera 4, and the filter switchers in the two cameras 4 According to the switching instruction of the mode management module 301, the control switch to the infrared cut filter normally works.
  • the image sensor CCD or CMOS receives the visible light and converts it into a graphic electrical signal. After being processed by the graphics processing module 302, it is transmitted to the display screen outside the image information collecting apparatus 1 through the transmission module 2 for simple preview, that is, both cameras 4 are all switched to the visible light mode.
  • the images captured by the two cameras 4 are synchronously transmitted to the image processing module 302 for processing.
  • the image processing module 302 does not process the image, and directly sends the image data to the output module.
  • the user can use the captured image.
  • the image data is subjected to subsequent processing.
  • the image captured by the camera 4 on the left side is displayed on the left side of the screen, and the image captured by the right camera 4 is displayed on the right side of the screen.
  • 3D glasses the left eye can see the image taken by the left camera 4, while the right eye can see the image taken by the right camera 4, because the pictures taken by the two cameras 4 respectively act on the human eye to achieve 3D visual effects.
  • the mode management module 31 detects whether the current ambient light needs to be turned on, and the fill light module 304 performs visible light fill according to the detection result, so that the camera 4 has better wide dynamics and the shooting is relatively clear. Image.
  • the focusing module 303 in this mode switches the focus range of the camera 4 to be 1 cm or more.
  • the encryption method can completely decrypt the correct decryption method.
  • the information is sufficient, and the invention is not limited.
  • the transmission module 2 monitors the signal, and the external device issues a 3D modeling mode command to the controller 3 to switch to the 3D video mode, and the mode management module 301 simultaneously activates the first camera 4 and the second camera 4, two photos
  • the filter switcher in the head 4 controls the respective switching to the infrared cut filter to operate normally according to the switching command of the mode management module 301. That is, the two cameras 4 are switched to the visible light mode, and the two cameras 4 in the ingestion module are currently cameras that receive visible light.
  • the image processing module 302 transmits the image data to the transmission module 2 for interaction, and the user can perform subsequent processing using the captured image data.
  • the invention is a binocular camera, which is characterized in that the camera is horizontally distributed and has a certain distance between the two, that is, there is a focal length of the main viewpoint and a focal length of the secondary viewpoint, and the necessary condition of the stereo camera is provided, and the three-dimensional modeling manner of the stereo camera is a well-known manner.
  • the specific imaging principles therein are not described in the present invention.
  • the focusing module 303 in this mode switches the focus range of the camera 4 to be 1 cm or more.
  • the transmission module 2 monitors the signal, and the external device issues a monocular face recognition image acquisition mode command to the controller 3 to switch to the monocular live face recognition image acquisition mode, and the mode management module 301 activates the first camera 4 and the second camera 4 is placed in a non-operating state, and the filter switcher in the first camera 4 controls to switch to the infrared absorption filter to operate normally according to the switching instruction of the mode management module 301, that is, to receive the camera in the visible light mode.
  • the face image information collecting method is the image capturing device 1 described above, and the face recognition is performed according to the following steps:
  • S42 The controller 3 switches the first camera 4 to the visible light shooting mode
  • S43 Grab the visible light image data of the first camera 4, and output the unencrypted visible light image data to the display screen for previewing by the user;
  • step S44 determining whether there is a living human face in the visible light image, the image processing module 302 detects that there is a human face in the visible light image in step S43, maintaining the visible light image and running step S45, otherwise running step S43;
  • step S45 determining whether the near-infrared face image and/or the visible light face image meet the bio-image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard. Is to run step S46, otherwise proceed to step S43;
  • the mode management module 301 controls the filter switcher in the first camera 4 to switch to the near-infrared narrow-band filter to work normally, that is, the camera that receives the near-infrared light mode;
  • the mode management module 301 detects whether the current ambient light needs to turn on the near-infrared fill light, and the fill light module 304 performs near-infrared light fill according to the detection result;
  • step S49 The image processing module 302 determines the similarity between the visible light image of step S44 and the near-infrared image of step S48 by using a face recognition algorithm. If the similarity exceeds the set threshold, it is considered to be the same person, and then step S50 is performed; otherwise, If the user is not an illegal user of the same person, step S42 is performed;
  • step S50 determining whether the encryption command is included in the mode command. If yes, the controller 3 transmits the visible light face image data saved in step S44 and/or the near-infrared face image data saved in step S48 to the encryption module 305 for encryption and operation. Step S51, otherwise running step S52;
  • the controller 3 sends the encrypted visible light biological image data and/or the near-infrared biological image data to the external device through the transmission module 2;
  • the controller 3 transmits the unencrypted visible light biological image data and/or the near-infrared biological image data to the external device through the transmission module 2.
  • the face detection of the first camera 4 in step S47 uses a spectrum having a near-infrared wavelength of 700 to 1100 nm, preferably 850 nm.
  • the image processing module 302 also prepares the image captured by the camera 4 in accordance with the face shooting requirement, such as determining whether it is necessary to encrypt the image data according to the encryption instruction in the shooting signal, and performing the captured image data. After the encryption, the transmission can be performed.
  • the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the encrypted image data is transmitted by the transmission module 2 and transmitted to an external device, and the user can perform subsequent processing using the captured image data.
  • the focus module 303 in this mode switches the focus range of the camera to 10 to 100 cm.
  • the method of using the biological image information collecting device of the invention can also be applied to living iris recognition image acquisition, living finger vein recognition image acquisition, living palm vein recognition image acquisition and living body ear recognition image acquisition. .
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • Live palm vein recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 5-30 cm.
  • Live ear recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera captures a focus range of 1-50 cm.
  • Binocular face recognition image acquisition mode
  • the transmission module 2 monitors the signal, and the external device issues a binocular face recognition image acquisition mode command to the controller 3 to switch to the binocular live face recognition image acquisition mode, and the mode management module 301 simultaneously activates the first camera 4 and the second camera 4
  • the filter switcher in the second camera 4 controls to switch to the infrared cut filter according to the switching instruction of the mode management module 301, that is, the camera in the visible light mode; at the same time, the filter in the first camera 4
  • the slice switch controls the switching to the near-infrared narrow-band filter to operate normally according to the switching instruction of the mode management module 301, that is, the camera that receives the near-infrared light mode.
  • the face image information collecting method adopts the above-mentioned image collecting device 1, as shown in FIG. 6, the following steps are performed for face recognition:
  • the controller 3 switches the first camera 4 to the near-infrared shooting mode while switching the second camera 4 to the visible light shooting mode;
  • the image processing module 302 determines whether there is a living human face in the near-infrared image, and using the near-infrared combined light filling method, the image processing module 302 detects that there is a human face in the near-infrared image in step (53), and considers it to be a living human face, and the running step ( 55), otherwise consider non-living human face (such as face photo), run step (53);
  • step (56) determining whether the near-infrared face image and/or the visible light face image meet the bio-image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard. If it is running step (56), otherwise proceed to step (53);
  • the controller 3 determines whether the mode command includes an encryption request, and if so, the controller 3 transmits the captured visible light face image data and/or the near-infrared face image data to the encryption module 305 for encryption, and the operation step (57) Otherwise, run step (58);
  • the controller 3 transmits the encrypted visible light biological image data and/or the near-infrared biological image data to the external device through the transmission module 2;
  • the controller 3 transmits the unencrypted visible light biological image data and/or the near-infrared biological image data to the external device through the transmission module 2.
  • the face detection of the first camera 4 in the step (52) uses a spectrum having a near-infrared wavelength of 700 to 1100 nm, preferably 850 nm.
  • the image processing module 302 also prepares the image captured by the camera 4 in accordance with the face shooting requirement, such as determining whether it is necessary to encrypt the image data according to the encryption instruction in the shooting signal, and performing the captured image data. After the encryption, the transmission can be performed.
  • the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the encrypted image data is transmitted by the transmission module 2 and transmitted to an external device, and the user can perform subsequent processing using the captured image data.
  • the focus module 303 in this mode switches the focus range of the camera to 10 to 100 cm.
  • the method of using the biological image information collecting device of the invention can also be applied to living iris recognition image acquisition, living finger vein recognition image acquisition, living palm vein recognition image acquisition and living body ear recognition image acquisition. .
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • Live palm vein recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 5-30 cm.
  • Live ear recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera captures a focus range of 1-50 cm.
  • the transmission module 2 monitors the signal, and the external device issues a binocular face recognition image acquisition mode command to the controller 3 to switch to the binocular live face recognition image acquisition mode, and the mode management module 301 simultaneously activates the first camera 4 and the second camera 4
  • the filter switcher in the second camera 4 controls to switch to the full-spectrum lens according to the switching instruction of the mode management module 301, that is, the camera that receives the infrared light mode; at the same time, the filter in the first camera 4
  • the switcher controls to switch to the normal operation of the near-infrared narrow-band filter according to the switching instruction of the mode management module 301, that is, the camera that receives the near-infrared light mode.
  • the face image information collecting method adopts the above-mentioned image collecting device 1, and as shown in FIG. 7, the face recognition is performed according to the following steps:
  • the controller 3 switches the first camera 4 to the near-infrared shooting mode while switching the second camera 4 to the infrared light shooting mode;
  • the image processing module 302 determines whether there is a living human face in the near-infrared image, and using the near-infrared combined light filling method, the image processing module 302 detects that there is a human face in the near-infrared image in step (63), and considers it to be a living human face, and the running step ( 65), otherwise consider a non-living face (such as a face photo), run step (63);
  • step (63) determining whether the near-infrared face image and/or the infrared light face image meet the biological image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard. If it is running step (66), otherwise step (63);
  • step (66) determining whether the mode command includes an encryption request, and if so, the controller 3 transmits the captured infrared face image data and/or the near-infrared face image data to the encryption module 305 for encryption, and the operation step (67) ), otherwise run step (68);
  • the controller 3 transmits the encrypted infrared light biological image data and/or the near-infrared biological image data to the external device through the transmission module 2;
  • the controller 3 transmits the unencrypted infrared light biological image data and/or the near-infrared biological image data to the external device through the transmission module 2.
  • the face detection of the first camera 4 in the step (62) uses a spectrum having a near-infrared wavelength of 700 to 1100 nm, preferably 850 nm.
  • the infrared light is used instead of the visible light to achieve image recognition for face recognition in a low illumination environment.
  • the image processing module 302 also prepares the image captured by the camera 4 in accordance with the face shooting requirement, such as determining whether it is necessary to encrypt the image data according to the encryption instruction in the shooting signal, and performing the captured image data. After the encryption, the transmission can be performed.
  • the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the encrypted image data is transmitted by the transmission module 2 and transmitted to an external device, and the user can perform subsequent processing using the captured image data.
  • the focus module 303 in this mode switches the focus range of the camera to 10 to 100 cm.
  • the method of the biological image information collecting device of the present invention is adopted.
  • the method can also be applied to living iris recognition image acquisition, living finger vein recognition image acquisition, living palm vein recognition image acquisition and living body ear recognition image acquisition.
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • Live palm vein recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 5-30 cm.
  • Live ear recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera captures a focus range of 1-50 cm.
  • the shooting of the all-focus distance image is performed by using the two cameras 4, one of which is a near focus distance and the other is a far focus distance, and the captured image data is transmitted to the external device through the transmission module 2, and the external device passes
  • the third-party software combines the image captured by the near-focus distance camera and the image captured by the camera from the far-focus point into a panoramic image; or, the image captured by the near-focus distance camera and the image captured by the camera from the far-focus distance are processed by the controller 3
  • the module 302 processes, merges into a panoramic image, and transmits it to the external device through the transmission module 2.
  • the transmission module 2 monitors the signal, and the external device issues a full focus distance shooting mode command to the controller 3 to switch to the all focus distance shooting mode.
  • the mode management module 301 switches to the corresponding shooting mode according to the control signal, and the two cameras 4 switch to the visible light mode.
  • the mode management module 301 separately controls the spectral filters in the two cameras 4 according to the instructions, so that the two infrared cut filters operate normally, and the CCD or CMOS can only utilize the light in the visible light spectrum range, thereby, the two cameras are 4 Switch to visible light mode.
  • the mode management module 301 controls the focus distance of the focus module 303 of the first camera 4 to be the actual distance of the photographed object. If the focus distance of the focus module 303 of the first camera 4 is a close distance, the focus module 303 of the second camera 4 is controlled. The focusing distance is a long distance. Similarly, if the focusing distance of the focusing module 303 of the first camera 4 is a long distance, the focusing distance of the focusing module 303 of the second camera 4 is controlled to be a close distance.
  • an image sensor CCD or CMOS When the light is reflected into the lens, an image sensor CCD or CMOS receives a visible light image with a clear and distant distance at a close distance, and another image sensor CCD or CMOS receives a visible light image with a clear distance and a long distance, and is processed by the graphic processing module 302. After processing, it is transmitted to the external device through the transmission module 2.
  • the mode management module 31 simultaneously detects whether the visible light is needed, and performs the visible light supplement according to the detection result, so that the camera has a good wide dynamic and a relatively clear image is captured.
  • the image processing module 302 transmits the image data to the transmission module 2 for interaction, and the user can perform subsequent processing using the captured image data.
  • the encryption instruction in the shooting signal it is judged whether the image data needs to be encrypted, and the captured image data is encrypted before being transmitted, and the encryption method can completely decrypt the correct information by the corresponding decryption method.
  • the invention is not limited.
  • the transmission module 2 monitors the signal, and the external device issues a developer shooting mode command to the controller 3 to switch to the developer shooting mode.
  • the developer can query the working state of each camera 4 and the respective focusing module 303, the fill light module 304 and the filter switcher through the transmission module 2; and each camera 4 can be changed by the transmission module 2. And the working states of the respective focusing module 303, the fill light module 304, and the filter switch.
  • the image sensor CCD or CMOS forms a corresponding electronic image signal in the developer's custom working spectrum, focusing distance and fill light environment, and simultaneously transmits the image signals of the two cameras 4 to the external device through the transmission module 2, thus developing
  • the image acquisition device can be developed and utilized according to actual application needs.
  • the multifunctional binocular camera of the present invention allows the camera to switch to different shooting modes without Additional adjustments can meet the needs of multiple functional modes, and the encryption function inside the camera, most of the existing camera products can not achieve this demand, it is obvious that the present invention has very advanced advantages.
  • the image information collecting apparatus 1 is provided with a transmission module 2, a controller 3 and two independent cameras 4 for communicating with an external device.
  • the image capturing faces of the two cameras 4 are on the same plane; the controller 3 respectively Connected to the two independent cameras 4, wherein the first camera 4 includes a filterless switch and a fixed set of near-infrared narrow-band filters, the second camera 4 includes a filter switcher, and the filter switcher has a built-in
  • the connected filter is at least one of an infrared cut filter, a full spectrum optical lens, and a near infrared narrow band filter.
  • the image information collecting device 1 of the present invention forms different combinations by switching the infrared cut filter, the full spectrum optical lens and the near-infrared narrow band filter in the camera 4, thereby achieving various shooting functions and improving the user experience.
  • the external device transmits a command to the controller 3 through the transmission module 2 to control the filter switcher to switch the filter to change the image sensor to receive light of different wavelengths, and the image sensor converts the image into a digital signal, and after receiving the signal, the controller 3 receives the signal
  • the processing is performed, and then transmitted to the external device through the transmission module 2 for processing or display of the display of the external device.
  • One or both of the two cameras 4 include a focus module and/or a fill light module.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations on the received image data according to different shooting modes, and then send the processed image information to the transmission module 2 for transmission, and/or Or send the received image to the display for preview.
  • the mode management module 301 is provided with a developer control shooting module.
  • the developer accesses the developer control shooting module through the transmission module 2 on the external device, and queries the focus modules 303 and ⁇ of the two cameras 4 respectively.
  • the optical module 304 and the filter switch have more than one working state, and/or control one or more working states of the focus module 303, the fill light module 304, and the filter switch of each of the two cameras 4.
  • the controller 3 also includes a focus module 303 for controlling the focusing device to adjust the sharpness of the image, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the mechanical components used in the controllable focusing device include MEMS (Micro Motor System), VCM (Voice Circle Motor), and stepper motors.
  • the controller further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near-infrared fill light, and the fill light may also be Hyperspectral fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the transmission module 2 includes any one of a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED wireless optical communication Lifi communication module. Or a plurality of modules for transmitting working state information, control commands, images, video, audio, and encrypted data information of the image information collecting apparatus 1.
  • the external device is a computer PC, a laptop, a tablet, a mobile phone, a pad, a police service or a smart TV.
  • the controller 3 also includes or does not include an encryption module.
  • the image information collecting apparatus 1 has the following shooting modes:
  • the transmission module 2 monitors the signal, the external terminal device sends a normal shooting mode command to the controller 3, switches to the normal mode, the mode management module 301 activates the second camera 4, the first camera 4 is placed in a non-operating state, and the second camera is filtered.
  • the slice switch controls the switching to the infrared cut filter to operate normally according to the switching instruction of the mode management module 301, and is in the visible light shooting mode. Other functions are the same as those of the camera in the normal mode in Embodiment 2.
  • the transmission module 2 monitors the signal, the external terminal device sends a normal shooting mode command to the controller 3, switches to the normal mode, the mode management module 301 activates the second camera 4, the first camera 4 is placed in a non-operating state, and the second camera is filtered.
  • the slice switch controls the switching to the full spectrum optical lens to operate normally according to the switching instruction of the mode management module 301, and is in the night vision shooting mode.
  • the transmission module 2 monitors the signal, and the external terminal device sends a normal shooting mode command to the controller 3 to switch to the monocular face recognition image acquisition mode.
  • the mode management module 301 activates the second camera 4, and the first camera 4 is placed in a non-working state.
  • the filter switch of the second camera is internally connected with three kinds of filters: an infrared cut filter, a full spectrum optical lens, and a near-infrared narrow band filter, and the corresponding filter is controlled according to the switching instruction of the mode management module 301.
  • the slice works normally, and its working principle is the same as the monocular face recognition image acquisition mode in Embodiment 2 or the monocular face recognition image acquisition method in Embodiment 6.
  • Binocular face recognition image acquisition mode
  • the transmission module 2 monitors the signal, and the external terminal device sends a normal shooting mode command to the controller 3 to switch to the binocular face recognition image acquisition mode.
  • the mode management module 301 activates the first camera 4 and the second camera 4, and the second camera filters
  • the optical switch is internally connected with three kinds of filters: an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow-band filter, and is controlled to switch to the infrared cut filter according to the switching instruction of the mode management module 301. That is, the second camera is in the visible light shooting mode. At this time, its working principle is the binocular face recognition image acquisition mode in Embodiment 2.
  • the transmission module 2 monitors the signal, and the external terminal device sends a normal shooting mode command to the controller 3 to switch to the binocular face recognition image acquisition mode.
  • the mode management module 301 activates the first camera 4 and the second camera 4, and the second camera filters
  • the optical switch is internally connected with three kinds of filters: an infrared cut filter, a full-spectrum optical lens, and a near-infrared narrow-band filter, and is controlled to switch to the full-spectrum optical lens according to the switching instruction of the mode management module 301, that is,
  • the second camera is in infrared light shooting mode.
  • its working principle is as in the low illumination environment binocular face recognition image acquisition mode in Embodiment 2.
  • the developer shooting mode of the image information collecting apparatus 1 of this embodiment operates as the developer shooting mode in the second embodiment.
  • an image information collecting apparatus 1 is provided with a transmission module 2 for communicating with an external device, a controller 3, and two independent cameras 4 of the structure, and the image capturing faces of the two cameras 4 are on the same plane.
  • the controller 3 is respectively connected to the two independent cameras 4, wherein the first camera 4 includes a filter switcher, and the filter switcher is internally connected with a near-infrared narrow-band filter, and the filter switcher is also connected internally.
  • the second camera 4 includes a filterless switch, and a fixed infrared cut filter, a full spectrum optical lens, and no lens.
  • the image information collecting apparatus 1 of the embodiment forms a different combination of shooting modes by cutting the infrared cut filter of the first change camera 4, and the full spectrum optical lens and/or the near-infrared narrow band filter, thereby achieving various shooting functions. To improve the user experience.
  • the imaging mode of the image information collecting apparatus 1 depends on the combination of different types of filters in the two cameras.
  • the external device transmits a command to the controller 3 through the transmission module 2 to control the filter switcher to switch the filter to change the image sensor to receive light of different wavelengths, and the image sensor converts the image into a digital signal, and after receiving the signal, the controller 3 receives the signal
  • the processing is performed, and then transmitted to the external device through the transmission module 2 for processing or display of the display of the external device.
  • One or both of the two cameras 4 include a focus module and/or a fill light module.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations on the received image data according to different shooting modes, and then send the processed image information to the transmission module 2 for transmission, and/or Or send the received image to the display for preview.
  • the mode management module 301 is provided with a developer control shooting module.
  • the developer accesses the developer control shooting module through the transmission module 2 on the external device, and queries the focus module 303, the fill light module 304 and the filter switch of each of the two cameras 4.
  • the controller 3 also includes a focus module 303 for controlling the focusing device to adjust the sharpness of the image, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the mechanical components used in the controllable focusing device include MEMS (Micro Motor System), VCM (Voice Circle Motor), and stepper motors.
  • the controller further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near-infrared fill light, and the fill light may also be Hyperspectral fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the transmission module 2 includes any one of a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED wireless optical communication Lifi communication module. Or a plurality of modules for transmitting working state information, control commands, images, video, audio, and encrypted data information of the image information collecting apparatus 1.
  • the external device is a computer PC, a laptop, a tablet, a mobile phone, a pad, a police service or a smart TV.
  • the controller 3 also includes or does not include an encryption module.
  • an image information collecting apparatus 1 is provided with a transmission module for communicating with an external device. 2.
  • the controller 3 and two independent cameras 4, the image capturing faces of the two cameras 4 are on the same plane; the controller 3 is respectively connected to the two independent cameras 4, and the two cameras 4 each include a filter,
  • the image sensor and the filter switcher are connected to at least one of the two filter switches with a near-infrared narrow-band filter, and one or both of the two cameras 4 include a focus module and/or a fill light module.
  • the image information collecting apparatus 1 of the present invention forms different combinations by switching the infrared cut filter, the full spectrum optical lens and the near-infrared narrow band filter of the two independent cameras 4, thereby achieving various shooting functions and improving the user experience.
  • the imaging mode of the image information collecting apparatus 1 depends on the combination of different types of filters in the two cameras.
  • the external device transmits a command to the controller 3 through the transmission module 2 to control the filter switcher to switch the filter to change the image sensor to receive light of different wavelengths, and the image sensor converts the image into a digital signal, and after receiving the signal, the controller 3 receives the signal
  • the processing is performed, and then transmitted to the external device through the transmission module 2 for processing or display of the display of the external device.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations on the received image data according to different shooting modes, and then send the processed image information to the transmission module 2 for transmission, and/or Or send the received image to the display for preview.
  • the mode management module 301 is provided with a developer control shooting module.
  • the developer accesses the developer control shooting module through the transmission module 2 on the external device, and queries the focus module 303, the fill light module 304 and the filter switch of each of the two cameras 4.
  • the controller 3 also includes a focus module 303 for controlling the focusing device to adjust the sharpness of the image, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the mechanical components used in the controllable focusing device include MEMS (Micro Motor System), VCM (Voice Circle Motor), and stepper motors.
  • the controller further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near-infrared fill light, and the fill light may also be Hyperspectral fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the transmission module 2 includes any one of a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED wireless optical communication Lifi communication module. Or a plurality of modules for transmitting working state information, control commands, images, video, audio, and encrypted data information of the image information collecting apparatus 1.
  • the external device is a computer PC, a laptop, a tablet, a mobile phone, a pad, a police service or a smart TV.
  • the controller 3 also includes or does not include an encryption module.
  • an image information collecting apparatus 1 is provided with a transmission module 2 for communicating with an external device, a controller 3, and a camera 4 connected to the controller.
  • the camera 4 includes a filter and an image sensor, and the outside The device transmits a command to the controller 3 through the transmission module 2 to control the filter to receive light of different wavelengths, and the image sensor converts the image into a digital signal, which is processed by the controller after receiving the signal, and then transmitted through the transmission module 2.
  • the camera 4 includes a filter switcher with a near-infrared narrow-band filter connected thereto, and an infrared cut filter or/and a full-spectrum optical lens.
  • a filter switcher with a near-infrared narrow-band filter connected thereto, and an infrared cut filter or/and a full-spectrum optical lens.
  • the camera 4 further includes a focus module and/or a fill light module, and the focus module 303 switches the focus range of the camera to 10 to 100 cm.
  • the near-infrared light used in the near-infrared narrow band filter has a wavelength of 700 to 2526 nm.
  • the filter switcher is composed of a filter and a power section (which may be an electromagnetic, motor or other power source), and the power section is driven by the controller 3.
  • the controller 3 includes
  • the mode management module 301 is configured to control the focusing module 303, the fill light module 304, and the filter switch to switch different filters to form different shooting modes.
  • the image processing module 302 is configured to receive the captured image data, and then perform the corresponding data processing, encryption, and preparation processing operations on the received image data according to different shooting modes, and then send the processed image information to the transmission module 2 for transmission, and/or Or send the received image to the display for preview.
  • the mode management module 301 is provided with a developer control camera module.
  • the developer accesses the developer control camera module through the transmission module 2 on the external device, and queries the focus module 303, the fill light module 304 and the filter switcher of the camera 4. The above working state, and/or controlling one or more working states of the focusing module 303, the fill light module 304 and the filter switch of the camera 4.
  • the controller 3 also includes a focus module 303 for controlling the focusing device to adjust the sharpness of the image, the focusing device being a fixed focal length device, a controllable focusing device, or an adaptive focusing device.
  • the mechanical components used in the controllable focusing device include MEMS (Micro Motor System), VCM (Voice Circle Motor), and stepper motors.
  • the controller further includes the fill light module 304 for adjusting the fill light, wherein the fill light is at least one of a visible light fill light, an infrared fill light, and a near-infrared fill light, and the fill light may also be Hyperspectral fill light.
  • the image sensor is a charge coupled device (CCD) or a complementary metal oxide semiconductor COMS (Complementary Metal-Oxide Semiconductor).
  • the controller 3 is a digital signal processor DSP, a micro control unit MCU, an embedded computer processor ARM, a Field-Programmable Gate Array (FPGA), a low-power central processing unit CPU, a high-performance single-chip microcomputer, and a system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • DSP digital signal processor
  • MCU micro control unit
  • FPGA Field-Programmable Gate Array
  • CPU central processing unit
  • CPU high-performance single-chip microcomputer
  • SoC system-on-chip SoC. Or other equivalent dedicated integrated chip.
  • the transmission module 2 includes any one of a Wi-Fi module, a Bluetooth module, a short-range wireless communication module NFC, a network communication module, a USB communication module, an IEEE1394 communication module, a wireless Gigabit communication module WiGig, and an LED wireless optical communication Lifi communication module. Or a plurality of modules for transmitting working state information, control commands, images, video, audio, and encrypted data information of the image information collecting apparatus 1.
  • the external device is a computer PC, a laptop, a tablet, a mobile phone, a pad, a police service or a smart TV.
  • the controller 3 also includes or does not include an encryption module.
  • the method for collecting bio-image information by using the image information collecting apparatus 1 described above includes the following steps:
  • the controller 3 controls the filter switcher to switch to the infrared cut filter operation, so that the camera 4 is in the visible light shooting mode, or the controller 3 controls the filter switcher to switch to the full spectrum optical lens Working, so that the second camera 4 is in the infrared shooting mode (ie, night vision shooting mode);
  • step (b4) determining whether the near-infrared face image or the visible light face image meets the biological image recognition shooting requirement, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face on the XYZ axis meet the standard, if Run step (b2), otherwise proceed to step (b5);
  • the controller controls the filter switcher to switch the near-infrared narrow-band filter to work, so that the camera is in the near-infrared shooting mode
  • step (b7) determining whether the near-infrared image has a living human face, that is, the image processing module 302 detects whether there is a human face in the near-infrared image, and if so, considers it to be a living human face, and maintains the near-infrared face image running step (b8), Otherwise, consider a non-living face (such as a photo of a face) and run step (b1);
  • step (b8) determining whether the near-infrared face image meets the requirements of the biological image recognition shooting, and the image processing module 302 determines whether the image face size, the picture quality, and the angle of the face with respect to the XYZ axis meet the standard, if it is the running step (b9) Otherwise, proceed to step (b1);
  • the controller uses the face recognition algorithm to determine the similarity between the visible light face image of step (b3) and the near-infrared face image of step (b7), or the infrared light face image and step of step (b3) (b7) the similarity of the near-infrared face image,
  • step (b10) is run, otherwise it is considered not to be the same person, and step (b1) is run;
  • the controller transmits the captured visible light face image data and/or the near-infrared face image data to the external device through the transmission module, or the controller takes the captured infrared light face image data and/or near infrared The face image data is transmitted to the external device through the transmission module.
  • the image information collecting apparatus 1 further includes an encryption module, and the step (b10) further includes the following steps:
  • the controller Determining whether the mode command of the controller includes an encryption request, if yes, the controller transmits the captured image data to the encryption module for encryption, and the encrypted image data is sent to the An external device; otherwise, the controller transmits unencrypted image data to the external device through the transmission module.
  • the face detection of the camera 4 in the step (b5) uses a spectrum having a near-infrared wavelength of 700 to 1100 nm, preferably 850 nm.
  • the near infrared ray has a wavelength of 700 to 1100 nm, is used for living face recognition image acquisition, or/and for living iris recognition image acquisition, or/and for living body finger vein recognition image acquisition, or/and for living body palm Vein recognition image acquisition, or / and for live ear recognition image acquisition.
  • the image processing module 302 of the controller processes the image similarity to prevent the object photographed in the visible light shooting mode or the night vision shooting mode from being a human face photo of the character A, and switching the near-infrared narrow band.
  • the subject in the near-infrared shooting mode is the living face image of the character B, so that the visible light face image output by the image information collecting device 1 before and after the filter switcher switches the near-infrared narrow-band filter.
  • the near-infrared face image is not the same person, which improves the security of the payment verification user identity.
  • the method of collecting biological image information can be applied to business payment or recognition of living organisms.
  • the monocular face recognition image acquisition method is suitable for monocular face recognition image acquisition in a low illumination environment when the infrared shooting mode is adopted first and then the near infrared shooting mode is adopted.
  • the image processing module 302 also prepares the image captured by the camera 4 in accordance with the face shooting requirement, such as determining whether it is necessary to encrypt the image data according to the encryption instruction in the shooting signal, and performing the captured image data. After the encryption, the transmission can be performed.
  • the encryption method can completely decrypt the correct information only by the corresponding decryption method, and the present invention is not limited.
  • the encrypted image data is transmitted by the transmission module 2 and transmitted to an external device, and the user can perform subsequent processing using the captured image data.
  • the biological image information collection device 1 of the present embodiment can also be applied to living iris recognition image acquisition, living finger vein recognition image acquisition, living palm vein recognition image acquisition, and living ear recognition image acquisition. in.
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • the wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 1-20 cm;
  • Live palm vein recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera shooting focus range is 5-30 cm.
  • Live ear recognition image acquisition The wavelength of the near-infrared spectrum used is preferably 850 nm, and the camera captures a focus range of 1-50 cm.

Abstract

本发明公开了一种图像信息采集装置、图像采集方法及其用途,该装置上设置有与外部装置通信的传输模块、控制器和摄像头,摄像头的数量为一个或两个,两个摄像头的图像采集面在同一平面上;摄像头包括内置连接有红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片的滤光片切换器,外部装置通过传输模块传输指令给控制器控制两摄像头的滤光片切换器切换不同的滤光片,形成不同组合的拍摄模式,提高用户体验。本发明还公开了生物图像信息采集方法,识别拍摄物是否为生物活体,或对识别后的生物图像数据加密传输,本发明还公开了3D影像拍摄的方法,实现为3D视频和3D建模提供图像数据采集准备;本装置的用途广泛,满足不同用户的使用需求。

Description

一种图像信息采集装置、图像采集方法及其用途 技术领域
本发明涉及图像信息采集技术,特别涉及一种图像信息采集装置、图像采集方法及其用途。
背景技术
随着网络技术的日益发展,视频通讯的应用日益成为人们生活的必要通讯手段,在人们对视频通讯习以为常后,更高级的用户体验,例如3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、影像预处理、3D视频、3D建模等多种功能,开始被更多的用户追求,但由于目前用于视频通讯的摄像头都是单镜头的可见光摄像头,成像是平面的,功能单一,使用效果不够理想,无法达到用户的需求,而红外摄像头大多为单一摄像头且应用在专业领域,如安防、军工及检测识别等。因此,迫切需要一种多功能的视频通讯摄像头,提高人们日常视频通讯的用户体验。
发明内容
本发明任务之一提供一种图像信息采集装置,具备多种功能的拍摄模式。
本任务通过下述技术方案来实现:
一种图像信息采集装置,其特征在于:所述图像采集装置上设置有用于和外部装置通信的传输模块、控制器和摄像头,摄像头包括滤光器和图像传感器,外部装置通过传输模块传输指令给控制器控制滤光器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器接收到该信号后对其进行处理,然后通过传输模块进行传输。
进一步的改进方案包括:
所述摄像头的数量为一个,且该摄像头包括滤光片切换器和/或对焦模块和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块,该两个摄像头的图像采集面在同 一平面上。
所述控制器包括有:
模式管理模块,用于控制所述对焦模块、所述补光模块及所述滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到所述传输模块进行传输,和/或将接收的图像发送到显示屏进行预览。
所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
所述控制器还包括用于控制对焦器件调节成像清晰度的所述对焦模块,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。
所述控制器还包括用于调控补光灯的所述补光模块,补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个。
所述模式管理模块设有开发者控制拍摄模块,开发者在所述外部装置上通过所述传输模块访问开发者控制拍摄模块,查询所述摄像头的对焦模块、补光模块和滤光片切换器一种以上的工作状态,并且/或者,控制所述摄像头的对焦模块、补光模块和滤光片切换器一种以上的工作状态。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
所述外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
所述控制器还包括加密模块或不包括加密模块。
所述图像传感器为电荷耦合器件CCD或互补金属氧化物半导体COMS。
所述控制器为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA、中央处理器CPU、单片机、片上系统SoC或其它等同专用芯片。
所述传输模块为包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
本发明的任务之二提供一种利用所述的图像信息采集装置进行生物图像信息采集的方法,可识别拍摄物体是否为生物活体,该图像信息采集装置的所述摄像头数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,该两个摄像头的图像采集面在同一平面上,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
本任务通过下述技术方案来实现:
(a1)启动两个所述摄像头,两个摄像头同步输出图像数据;
(a2)设置至少一个摄像头为近红外拍摄模式;
(a3)抓取图像数据并通过传输模块传输至显示屏给用户预览;
(a4)判断近红外图像是否存在活体,如果是进行步骤(a5),否则进行步骤(a3);
(a5)判断近红外图像是否符合生物图像识别拍摄需求,如果是进行步骤(a6),否则进行步骤(a3);
(a6)控制器把拍摄好的图像数据通过传输模块发送至外部装置。
进一步的改进方案如下:
所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为与第一摄像头不同波段的近红外拍摄模式,所述第二摄像头的近红外波长为700~2526nm;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态。
所述图像信息采集装置还包括加密模块,步骤(a6)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,加密后的图像数据通过所述传输模块被发送至所述外部装置;否则,控制器把未加密的图像数据通过传输模块发送至外部装置。
所述步骤(a2)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
本发明的任务之三提供一种利用所述的图像信息采集装置进行生物图像信息采集的方法,可识别拍摄物体是否为生物活体,所述图像信息采集装置仅有一个摄像头工作,该摄像头包括滤光片切换器,滤光片切换器内置连接有近红外窄带滤光片,还连接有红外截止滤光片或/和全光谱光学透镜。
本任务通过下述技术方案来实现:
(b1)启动摄像头工作,控制器切换该摄像头至可见光拍摄模式或夜视拍摄模式;
(b2)抓取可见光图像或红外光图像数据,并将抓去的图像数据通过传输模块传输至显示屏给用户预览;
(b3)判断可见光图像或红外光图像是否存在人脸,如果是,保持可见光人脸图像或红外光人脸图像运行步骤(b4),否则运行步骤(b2);
(b4)判断红外光人脸图像或可见光人脸图像是否符合生物图像识别拍摄要求,如果是运行步骤(b2),否则进行步骤(b5);
(b5)控制器控制滤光片切换器切换近红外窄带滤光片工作,使得摄像头处于近红外拍摄模式;
(b6)抓取近红外图像数据,并传输至显示屏给用户预览;
(b7)判断近红外光图像是否存在活体人脸,如果是,保持近红外人脸图像运行步骤(b8),否则运行步骤(b1);
(b8)判断近红外人脸图像是否符合生物图像识别拍摄要求,如果是运行步骤(b9),否则进行步骤(b1);
(b9)控制器利用人脸识别算法判断:步骤(b3)的可见光人脸图像与步骤(b7)的近红外人脸图像的相似度,或者,步骤(b3)的红外光人脸图像与步骤(b7)的近红外人脸图像的相似度,
如果该相似度超过设定阈值,则认为是同一个人,运行步骤(b10),否则认为不是同一个人,运行步骤(b1);
(b10)控制器把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据通过传输模块发送至外部装置,或者,控制器把拍摄好的红外光人脸图像数据和/或近红外人脸图像数据通过传输模块发送至外部装置。
进一步的改进方案如下:
所述阈值为不小于0.8不大于1的值。
所述图像信息采集装置还包括加密模块,步骤(b10)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,加密后的图像数据通过所述传输模块被发送至所述外部装置;否则,控制器把未加密的图像数据通过传输模块发送至外部装置。
所述步骤(b5)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
本发明的任务之四是提供一种利用所述的图像信息采集装置进行3D影像拍摄的方法,实现为3D视频和3D建模提供图像数据采集准备,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
本任务通过下述技术方案来实现:
(c1)启动两个所述摄像头,两个摄像头同步输出图像数据;
(c2)设置第一摄像头至可见光拍摄模式,并抓取第一可见光图像数据,同时设置第二摄像头至可见光拍摄模式,并抓取第二可见光图像数据;
(c3)控制器把拍摄好的第一可见光图像数据和第二可见光图像数据通过传输模块发送至外部装置。
进一步的改进方案如下:
所述图像信息采集装置还包括加密模块,步骤(c3)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块进行加密,加密后的第一可见光图像数据和第二可见光图像数据通过传输模块被发送至外部装置;否则,控制器把未加密的第一可见光图像数据和第二可见光图像数据通过传输模块发送至外部装置。
本发明的任务之五是提供一种利用所述的图像信息采集装置进行全焦点距离影像拍摄方法,解决了清晰拍摄近距离物体的时候也能清晰拍摄远距离物体的问题。
本任务通过下述技术方案来实现:
一种利用所述的图像信息采集装置进行全焦点距离影像拍摄方法,该图像信息采集装置的所述摄像头数量为两个,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括对焦模块,其特征在于包括如下步骤:
利用所述两个摄像头,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,拍摄的图像数据通过传输模块传输到外部装置,外部装置通过第三方软件把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过所述控制器处理,融合成一幅全景图像,再通过传输模块传输到外部装置。
本发明的任务之六是提供所述的图像信息采集装置的用途,该装置的用途广泛,满足不同用户的使用需求;该图像信息采集装置的所述摄像头数量为一个,且该摄像头包括滤光片切换器、和/或对焦模块、和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器、和/或 对焦模块、和/或补光模块,该两个摄像头的图像采集面在同一平面上;所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个,所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
所述图像信息采集装置用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模和/或开发者模式的图像数据采集。
本发明的优点:
(1)本发明图像信息采集装置,通过切换摄像头中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。
(2)本发明生物图像信息采集的方法,采用所述图像信息采集装置,两个摄像头至少一个为近红外拍摄模式,能够识别拍摄物是否为生物活体,对生物活体拍摄图像,或对拍摄后的生物图像数据进行加密传输;两个摄像头同步传输图像,可通过红外拍摄模式下的人脸图像来验证可见光模式下的人脸图像是否为非法用户,提高用户身份认证的安全性。
(3)本发明生物图像信息采集的方法,采用所述图像信息采集装置,摄像头数量为一个,其内滤光片切换器连接有近红外窄带滤光片,还连接有红外截止滤光片或全光谱光学透镜,可以在可见光情况下和低照度情况下,识别生物活体,进一步可以通过将滤光片切换器切换近红外窄带滤光片与其它滤光片前后抓取的图像进行相似性判断,验证是否为同一个人,提高用户身份认证的安全性。
(4)本发明3D影像拍摄的方法,采用所述图像信息采集装置,两摄像头都为可见光拍摄模式,两摄像头的图像采集面在同一平面上,实现为3D视频和3D建模提供图像数据采集准备,或对图像数据进行加密传输。
(5)本发明全焦点距离影像拍摄方法,采用所述图像信息采集装置,两摄像头都为可见光拍摄模式,且该两个摄像头的图像采集面在同一平面上,使得一个为近焦点距离,另一个为远焦点距离,将拍得的图形进行融合,解决了清 晰拍摄近距离物体的时候也能清晰拍摄远距离物体的问题。
(6)图像信息采集装置的用途广泛,主要应用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模、开发者模式等多种功能,满足不同用户的使用需求。
附图说明
图1为本发明的硬件结构示意图之一;
图2为本发明的硬件结构示意图之二;
图3为图1和图2控制器的内部结构示意图;
图4为图1的3D影像拍摄方法的流程图;
图5为图1包含图像数据加密的3D影像拍摄方法流程图;
图6为图1双目人脸识别图像采集方法的流程图;
图7为图1低照度环境双目人脸识别图像采集方法的流程图;
图8为图2单目人脸识别图像信息采集方法流程图。
具体实施方式
实施例1
如图1,本发明图像信息采集装置1上设置有用于和外部装置通信的传输模块2、控制器3和两个独立摄像头4,这两个摄像头4的图像采集面在同一平面上;控制器3分别与这两个独立摄像头4连接,摄像头4包括滤光器和图像传感器,外部装置通过传输模块2传输指令给控制器3控制滤光器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器3接收到该信号后对其进行处理,然后通过传输模块2传输到外部装置进行处理或外部装置的显示屏进行显示。
所述两个摄像头4中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块。
所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带 滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到传输模块2进行传输,和/或将接收的图像发送到显示屏进行预览。
模式管理模块301设有开发者控制拍摄模块,开发者在外部装置上通过传输模块2访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的对焦模块303,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。可控对焦器件采用的机械器件有MEMS(微电机系统)、VCM(音圈马达)以及步进电机之类等。
控制器3还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用芯片。
传输模块2包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED 无线光通信Lifi通讯模块中任一种或多种模块,用于传输图像信息采集装置1的工作状态信息、控制指令、图像、视频、音频及加密数据信息。
外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
控制器3设有加密模块305或不设置加密模块305。
一种利用所述的图像信息采集装置1进行生物图像信息采集的方法,可识别拍摄物体是否为生物活体,包括如下步骤:
(a1)启动两个所述摄像头,两个摄像头同步输出图像数据;
(a2)设置至少一个摄像头为近红外拍摄模式;
(a3)抓取图像数据并通过传输模块传输至显示屏给用户预览;
(a4)判断近红外图像是否存在活体,如果是进行步骤(a5),否则进行步骤(a3);
(a5)判断近红外图像是否符合生物图像识别拍摄需求,如果是进行步骤(a6),否则进行步骤(a3);
(a6)控制器把拍摄好的图像数据通过传输模块发送至外部装置。
步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式;或者,步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为与第一摄像头不同波段的近红外拍摄模式,所述第二摄像头的近红外波长为700~2526nm;或者,步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态。
所述图像信息采集装置还包括加密模块305,步骤(a6)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到加密模块305进行加密,加密后的图像数据通过所述传输模块被发送至所述外部装置;否则,控制器把未加密的图像数据通过传输模块发送至外部装置。
所述步骤(a2)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者 /和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
一种利用的图像信息采集装置进行3D影像拍摄的方法,实现为3D视频和3D建模提供图像数据采集准备,包括如下步骤:
(c1)启动两个所述摄像头,两个摄像头同步输出图像数据;
(c2)设置第一摄像头至可见光拍摄模式,并抓取第一可见光图像数据,同时设置第二摄像头至可见光拍摄模式,并抓取第二可见光图像数据;
(c3)控制器把拍摄好的第一可见光图像数据和第二可见光图像数据通过传输模块发送至外部装置。
图像信息采集装置1还包括加密模块305,步骤(c3)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块进行加密,加密后的第一可见光图像数据和第二可见光图像数据通过传输模块被发送至外部装置;否则,控制器把未加密的第一可见光图像数据和第二可见光图像数据通过传输模块发送至外部装置。
一种利用所述的图像信息采集装置进行全焦点距离影像拍摄方法,该图像信息采集装置的所述摄像头数量为两个,且该两个摄像头的图像采集面在同一平面上,包括如下步骤:
利用所述两个摄像头,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,拍摄的图像数据通过传输模块传输到外部装置,外部装置通过第三方软件把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过所述控制器处理,融合成一幅全景图像,再通过传输模块传输到外部装置。
图像信息采集装置的用途广泛,满足不同用户的使用需求;所述图像信息采集装置用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模和/或开发者模式的图像数据采集。
实施例2
如图1,本发明图像信息采集装置1上设置有用于和外部装置通信的传输模块2、控制器3和两个独立摄像头4,这两个摄像头4的图像采集面在同一平面上;控制器3分别与这两个独立摄像头4连接,这两个摄像头4各自包括滤光器、图像传感器以及滤光片切换器,这两个摄像头4中的一个或两个包括对焦模块和/或补光模块。外部装置通过传输模块2传输指令给控制器3控制滤光片切换器切换滤光片改变图像传感器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器3接收到该信号后对其进行处理,然后通过传输模块2传输到外部装置进行处理或外部装置的显示屏进行显示。
每个滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片。本发明图像信息采集装置1通过切换两个独立摄像头4中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到传输模块2进行传输,和/或将接收的图像发送到显示屏进行预览。
模式管理模块301设有开发者控制拍摄模块,开发者在外部装置上通过传输模块2访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的对焦模块303,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。可控对焦器件采用的机械器件有MEMS(微电机系统)、VCM(音圈马达)以及步进电机之类等。
控制器还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
传输模块2包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块,用于传输图像信息采集装置1的工作状态信息、控制指令、图像、视频、音频及加密数据信息。
外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
控制器3还包括加密模块或不包括加密模块。
一种利用上述的图像信息采集装置1进行生物图像信息采集方法,包括如下步骤:
(11)启动两个所述摄像头,两个摄像头同步输出图像数据;
(12)控制器3控制滤光片切换器切换至近红外窄带滤光片工作,使得第一摄像头4处于近红外拍摄模式;同时,控制器3控制滤光片切换器切换至红外截止滤光片工作,使得第二摄像头4处于可见光拍摄模式,或者,控制器3控制滤光片切换器切换至全光谱光学透镜工作,使得第二摄像头4处于红外拍摄模式;
(13)抓取近第一摄像头4的近红外图像数据并通过传输模块传输至显示屏给用户预览,同时抓取第二摄像头4的可见光图像数据或红外光图像数据并通过传输模块传输至显示屏给用户预览;
(14)判断近红外图像是否存在活体,如果是进行步骤(15),否则进行步骤(13);
(15)判断近红外图像和/或可见光图像是否符合生物图像识别拍摄需求,或者,判断近红外图像和/或红外光图像是否符合生物图像识别拍摄需求,如果是进行步骤(16),否则进行步骤(13);
(16)控制器3把拍摄好的可见光图像数据和/或近红外图像数据通过传输模块发送至外部装置,或者,控制器3把拍摄好的红外光图像数据和/或近红外图像数据通过传输模块发送至外部装置。
在设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式情况下,如果拍摄的是生物活体人脸,图像信息采集装置1同步输出的可见光人脸图像和近红外人脸图像;如果拍摄的对象是用户的人脸照片,图像信息采集装置1同步输出可见光人脸图像,近红外图像不存在活体人脸图像,从而提高支付验证用户身份的安全性,即可应用于商务支付,或者,识别生物活体。
在设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式情况下,主要针对低照度的拍摄情况下识别生物活体,提高身份认证的安全性,可应用于商务支付,原理如本实施例的低照度环境双目人脸识别图像采集模式。
在设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态情况下,即为单目生物识别图像采集模式,其工作原理和技术效果如本实施例的单目人脸识别图像采集模式或实施例6。
图像信息采集装置1在包括加密模块的情况下,步骤(16)还包括如下步骤:
判断所述控制器3的模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的可见光图像数据和/或近红外图像数据传送到所述加密模块进行加密,或者,把拍摄好的红外光图像数据和/或近红外图像数据传送到所述加密模块进行加密,加密后的图像数据通过所述传输模块被发送至所述外部装置;否则,控制器把未加密的图像数据通过传输模块发送至外部装置。
上述步骤(12)中所述第一摄像头4在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
如图4,采用上述的图像信息采集装置1进行的一种3D影像拍摄的方法,包括如下步骤:
(21)启动两个摄像头4,两个摄像头4同步输出图像数据;
(22)控制器3切换第一摄像头4至可见光拍摄模式,并抓取第一可见光图像数据,同时控制器3切换第二摄像头4至可见光拍摄模式,并抓取第二可见光图像数据;
(23)控制器3把拍摄好的第一可见光图像数据和第二可见光图像数据通过传输模块2发送至外部装置。
如图5,采用上述的图像信息采集装置1进行的一种3D影像拍摄的方法,该装置的控制器还包括加密模块305,该3D影像拍摄的方法包括如下步骤:
(31)启动两个摄像头4,两个摄像头4同步输出图像数据;
(32)控制器3切换第一摄像头4至可见光拍摄模式,并抓取第一可见光图像数据,同时控制器3切换第二摄像头4至可见光拍摄模式,并抓取第二可见光图像数据;
(33)判断模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块305进行加密,运行步骤(34),否则进行步骤(35);
(34)控制器3把加密后的第一可见光图像数据和第二可见光图像数据通过传输模块2发送至外部装置;
(35)控制器3把未加密的第一可见光图像数据和第二可见光图像数据通过传输模块2发送至外部装置。
本图像信息采集装置1有以下拍摄模式:
普通模式
传输模块2监听信号,外部终装置发出普通拍摄模式指令给控制器3,切换成普通模式,模式管理模块301启动第一摄像头4,第二摄像头4置于非工作状态,第一摄像头内的滤光片切换器根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,当所拍摄物体的光反射进镜头时,红外截止滤光片将吸收过滤掉红外线,使得图像传感器CCD或CMOS接收到可见光光谱范围 内的光线并将其转化成图形电信号,经图形处理模块32处理后通过传输模块2传输至外部装置。此时,第一摄像头4也即处于可见光拍摄模式下。
可见光摄像头进行拍摄时,模式管理模块301检测当前环境光是否需要开启可见光灯补光,补光模块304根据检测结果进行可见光补光,使摄像头有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换摄像头4对焦范围为大于等于1mm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
双目夜视模式:
传输模块2监听信号,外部装置发出夜视拍摄模式指令给控制器3,切换成双目夜视模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,第一摄像头4和第二摄像头4内置的滤光片切换器根据模式管理模块31的切换指令控制切换至全光谱透镜正常工作,夜晚当所拍摄物体的光反射进镜头时,第一摄像头4和第二摄像头4的图像传感器CCD或CMOS接收到全部光谱范围内的光线并将其转化成图形电信号,经图形处理模块302处理后通过传输模块2同时传输至外部装置。此时,第一摄像头4和第二摄像头4均处于红外拍摄模式下。
模式管理模块301检测当前环境光是否需要开启红外补光,补光模块304根据检测结果进行红外光补光,使摄像头有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换第一摄像头4和第二摄像头4对焦范围为大于等于1mm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
3D视频模式:
本发明图像信息采集装置1为双目摄像头,结构为仿人眼的构造,具体表现为水平分布且二者之间有若干距离,即拍摄的图片有一定的左右视野差距,与人眼成像构造相同。
传输模块2监听信号,外部装置发出3D拍摄模式指令给控制器3,切换成3D视频模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,两摄像头4内的滤光片切换器根据模式管理模块301的切换指令各自控制切换至红外截止滤光片正常工作,当所拍摄物体的光反射进镜头时,图像传感器CCD或CMOS接收到可见光的光线并将其转化成图形电信号,经图形处理模块302处理后通过传输模块2传输至图像信息采集装置1外的显示屏进行简单预览,也即两摄像头4全部切换到可见光模式下。
将两个摄像头4拍摄的图像同步传输到图像处理模块302进行处理,当前为左右3D视频拍摄模式,图像处理模块302不对图像作处理,直接把图像数据同步发送到输出模块;用户可以利用拍摄的图像数据进行后续的加工处理,如用户使用外部装置通过传输模块2接收到图像数据后,把左边的摄像头4拍摄的图像显示在屏幕左边,把右边摄像头4拍摄的图像显示在屏幕右边,通过左右3D眼镜,左眼可以看见左边摄像头4拍摄的图像,同时右眼可以看见右边摄像头4拍摄的图像,由于两个摄像头4拍摄的图片分别作用于人眼成像并实现3D视觉效果。
上述两个摄像头4进行拍摄时,模式管理模块31检测当前环境光是否需要开启可见光补光,补光模块304根据检测结果进行可见光补光,使摄像头4有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换摄像头4对焦范围为大于等于1cm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对3D视频图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
3D建模模式:
传输模块2监听信号,外部装置发出3D建模模式指令给控制器3,切换成3D视频模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,两摄 像头4内的滤光片切换器根据模式管理模块301的切换指令控制各自切换至红外截止滤光片正常工作。即两个摄像头4切换至可见光模式,摄入模块中的两个摄像头4当前均为接收可见光的摄像头。
图像处理模块302将图像数据传输到传输模块2进行交互,用户可以利用拍摄的图像数据进行后续的加工处理。
本发明为双目摄像头,具体表现为摄像头水平分布且二者之间有若干距离,即存在主视点焦距和次视点焦距,具备立体照相机的必须条件,而立体照相机的三维建模方式为公知方式,本发明不再阐述其中的具体成像原理。可见光摄像头进行拍摄时,模式管理模块301检测当前环境光是否需要开启可见光补光,补光模块304根据检测结果进行可见光补光,使摄像头4有较好的宽动态,拍摄到比较清晰的图像。
本模式下的对焦模块303切换摄像头4对焦范围为大于等于1cm。
本模式下,可以根据拍摄信号中的加密指令判断是否需要对3D建模图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
单目人脸识别图像采集模式:
传输模块2监听信号,外部装置发出单目人脸识别图像采集模式指令给控制器3,切换成单目活体人脸识别图像采集模式,模式管理模块301启动第一摄像头4,并把第二摄像头4置于非工作状态,第一摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至红外吸收滤光片正常工作,即接收可见光模式的摄像头。
本模式下,人脸图像信息采集方法是采用上述的图像采集装置1,按照以下步骤进行人脸识别:
S41:启动第一摄像头4,并把第二摄像头4置于非工作状态;
S42:控制器3切换第一摄像头4至可见光拍摄模式;
S43:抓取近第一摄像头4的可见光图像数据,并输出非加密的可见光图像数据至显示屏给用户预览;
S44:判断可见光图像是否存在活体人脸,图像处理模块302检测到步骤S43可见光图像中存在人脸,保持可见光图像并运行步骤S45,否则运行步骤S43;
S45:判断近红外人脸图像和/或可见光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤S46,否则进行步骤S43;
S46:模式管理模块301控制第一摄像头4内的滤光片切换器切换至近红外窄带滤光片正常工作,即接收近红外光模式的摄像头;
S47:模式管理模块301检测当前环境光是否需要开启近红外补光,补光模块304根据检测结果进行近红外补光;
S48:抓取近第一摄像头4的近红外光图像数据,图像处理模块302检测近红外图像中是否存在人脸,则认为是活体人脸,保持近红外图像并运行步骤S49,否则认为非活体人脸(如人脸照片),运行步骤S42;
S49:图像处理模块302利用人脸识别算法判断步骤S44的可见光图像和步骤S48的近红外图像的相似度,如果该相似度超过设定阈值,则认为是同一个人,则执行步骤S50,否则认为不是同一个人的非法用户,执行步骤S42;
S50:判断模式指令中是否包含加密请求,如果包含,则控制器3把步骤S44保存的可见光人脸图像数据和/或步骤S48保存的近红外人脸图像数据传送到加密模块305进行加密,运行步骤S51,否则运行步骤S52;
S51:控制器3把加密后的可见光生物图像数据和/或近红外生物图像数据通过传输模块2发送至外部装置;
S52:控制器3把未加密的可见光生物图像数据和/或近红外生物图像数据通过传输模块2发送至外部装置。
步骤S47中第一摄像头4的人脸检测使用近红外波长为700~1100nm,优选为850nm的光谱。
由于可见光人脸检测容易受到照片、雕塑等的假冒物体影响,使用近红外光源拍摄成像则避免了这种假冒的情况,所以近红外图像人脸检测的技术优势比可见光人脸检测更大,并且由于不受环境光影响,拍摄的图像质量更加高,人脸特征点也更加清晰准确,具有更高的可用性,提高活体人脸检测的准确度,这是一般普通的网络摄像头所不具备的功能。
此外,图像处理模块302还将摄像头4所拍摄的符合人脸拍摄需求的图像进行传输前的准备,如根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
最后,利用传输模块2,将加密后的图像数据进行数据传输,发送到外部装置,用户可以利用拍摄的图像数据进行后续的加工处理。
本模式下的对焦模块303切换摄像头对焦范围为10~100cm。
活体人脸识别图像采集模式下,采用本发明的生物图像信息采集装置的方法也可以应用于活体虹膜识别图像采集、活体指静脉识别图像采集、活体掌静脉识别图像采集及活体耳朵识别图像采集中。
活体虹膜识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体指静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体掌静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为5‐30厘米。
活体耳朵识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐50厘米。
双目人脸识别图像采集模式:
传输模块2监听信号,外部装置发出双目人脸识别图像采集模式指令给控制器3,切换成双目活体人脸识别图像采集模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,第二摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,即接收可见光模式的摄像头;与此同时,第一摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至近红外窄带滤光片正常工作,即接收近红外光模式的摄像头。
本模式下,人脸图像信息采集方法是采用上述的图像采集装置1,如图6,按照以下步骤进行人脸识别:
(51)启动两个摄像头4,两个摄像头同步输出图像数据;
(52)控制器3切换第一摄像头4至近红外拍摄模式,同时切换第二摄像头4至可见光拍摄模式;
(53)抓取近第一摄像头4的近红外图像数据,同时抓取第二摄像头4的可见光图像数据,并输出非加密的近红外图像数据和可见光图像数据至显示屏给用户预览;
(54)判断近红外图像是否存在活体人脸,利用近红外结合补光的方法,图像处理模块302检测到步骤(53)近红外图像中存在人脸,则认为是活体人脸,运行步骤(55),否则认为非活体人脸(如人脸照片),运行步骤(53);
(55)判断近红外人脸图像和/或可见光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(56),否则进行步骤(53);
(56)判断模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据传送到加密模块305进行加密,运行步骤(57),否则运行步骤(58);
(57)控制器3把加密后的可见光生物图像数据和/或近红外生物图像数据通过传输模块2发送至外部装置;
(58)控制器3把未加密的可见光生物图像数据和/或近红外生物图像数据通过传输模块2发送至外部装置。
步骤(52)中第一摄像头4的人脸检测使用近红外波长为700~1100nm,优选为850nm的光谱。
由于可见光人脸检测容易受到照片、雕塑等的假冒物体影响,使用近红外光源拍摄成像则避免了这种假冒的情况,所以近红外图像人脸检测的技术优势比可见光人脸检测更大,并且由于不受环境光影响,拍摄的图像质量更加高,人脸特征点也更加清晰准确,具有更高的可用性,提高活体人脸检测的准确度,这是一般普通的网络摄像头所不具备的功能。
此外,图像处理模块302还将摄像头4所拍摄的符合人脸拍摄需求的图像进行传输前的准备,如根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
最后,利用传输模块2,将加密后的图像数据进行数据传输,发送到外部装置,用户可以利用拍摄的图像数据进行后续的加工处理。
本模式下的对焦模块303切换摄像头对焦范围为10~100cm。
活体人脸识别图像采集模式下,采用本发明的生物图像信息采集装置的方法也可以应用于活体虹膜识别图像采集、活体指静脉识别图像采集、活体掌静脉识别图像采集及活体耳朵识别图像采集中。
活体虹膜识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体指静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体掌静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为5‐30厘米。
活体耳朵识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐50厘米。
低照度环境双目人脸识别图像采集模式:
传输模块2监听信号,外部装置发出双目人脸识别图像采集模式指令给控制器3,切换成双目活体人脸识别图像采集模式,模式管理模块301同时启动第一摄像头4和第二摄像头4,第二摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至全光谱透镜正常工作,即接收红外光模式的摄像头;与此同时,第一摄像头4内的滤光片切换器根据模式管理模块301的切换指令控制切换至近红外窄带滤光片正常工作,即接收近红外光模式的摄像头。
本模式下,人脸图像信息采集方法是采用上述的图像采集装置1,如图7,按照以下步骤进行人脸识别:
(61)启动两个摄像头4,两个摄像头同步输出图像数据;
(62)控制器3切换第一摄像头4至近红外拍摄模式,同时切换第二摄像头4至红外光拍摄模式;
(63)抓取近第一摄像头4的近红外图像数据,同时抓取第二摄像头4的红外光图像数据,并输出非加密的近红外图像数据和红外光图像数据至显示屏给用户预览;
(64)判断近红外图像是否存在活体人脸,利用近红外结合补光的方法,图像处理模块302检测到步骤(63)近红外图像中存在人脸,则认为是活体人脸,运行步骤(65),否则认为非活体人脸(如人脸照片),运行步骤(63);
(65)判断近红外人脸图像和/或红外光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(66),否则进行步骤(63);
(66)判断模式指令中是否包含加密请求,如果包含,则控制器3把拍摄好的可红外人脸图像数据和/或近红外人脸图像数据传送到加密模块305进行加密,运行步骤(67),否则运行步骤(68);
(67)控制器3把加密后的红外光生物图像数据和/或近红外生物图像数据通过传输模块2发送至外部装置;
(68)控制器3把未加密的红外光生物图像数据和/或近红外生物图像数据通过传输模块2发送至外部装置。
步骤(62)中第一摄像头4的人脸检测使用近红外波长为700~1100nm,优选为850nm的光谱。
由于在低照度环境,尤其是黑夜的情况下,由于光线的不足无法形成可作人脸识别用的可见光图像,因此,通过红外光代替可见光,达到在低照度环境的人脸识别的图像采集工作。
此外,图像处理模块302还将摄像头4所拍摄的符合人脸拍摄需求的图像进行传输前的准备,如根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
最后,利用传输模块2,将加密后的图像数据进行数据传输,发送到外部装置,用户可以利用拍摄的图像数据进行后续的加工处理。
本模式下的对焦模块303切换摄像头对焦范围为10~100cm。
活体人脸识别图像采集模式下,采用本发明的生物图像信息采集装置的方 法也可以应用于活体虹膜识别图像采集、活体指静脉识别图像采集、活体掌静脉识别图像采集及活体耳朵识别图像采集中。
活体虹膜识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体指静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体掌静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为5‐30厘米。
活体耳朵识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐50厘米。
全焦点距离拍摄模式
全焦点距离影像的拍摄,利用所述的两个摄像头4,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,拍摄的图像数据通过传输模块2传输到外部装置,外部装置通过第三方软件把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过控制器3的图像处理模块302处理,融合成一幅全景图像,再通过传输模块2传输到外部装置。
单目摄像头在对焦的时候,由于只有一个焦点距离,如果焦点距离较近,则能清晰地拍摄近距离的物体,而远距离物体成像则模糊图像;相反,如果焦点距离较远,则能拍摄近距离的物体变得模糊,而远距离物体成像则变得清晰图像,二者不能得兼。利用双摄像头各自焦点距离不同拍摄图像,然后融合成一幅图像,则能很好解决了清晰拍摄近距离物体的时候也能清晰拍摄远距离物体的问题。
传输模块2监听信号,外部装置发出全焦点距离拍摄模式指令给控制器3,切换成全焦点距离拍摄模式,模式管理模块301根据控制信号切换至对应的拍摄模式,两个摄像头4切换至可见光模式。模式管理模块301根据指令分别控制两个摄像头4中的光谱滤光片,使两个红外截止滤光片正常工作,CCD或CMOS只能利用可见光光谱范围内的光线,由此,将两个摄像头4切换至可见光模式。
模式管理模块301控制第一摄像头4的对焦模块303的对焦距离为拍摄物体的实际距离,如果第一摄像头4的对焦模块303的对焦距离为近距离,则控制第二摄像头4的对焦模块303的对焦距离为远距离;同理,如果第一摄像头4的对焦模块303的对焦距离为远距离,则控制第二摄像头4的对焦模块303的对焦距离为近距离。
当光反射进镜头时,使得一个图像传感器CCD或CMOS接收到近距离清晰远距离模糊的可见光图像,另一个图像传感器CCD或CMOS接收到近距离模糊远距离清晰的可见光图像,经图形处理模块302处理后通过传输模块2传输至外部装置。
可见光摄像头进行拍摄时,模式管理模块31同时检测是否需要可见光补光,并根据检测结果进行可见光补光,使摄像头有较好的宽动态,拍摄到比较清晰的图像。图像处理模块302将图像数据传输到传输模块2进行交互,用户可以利用拍摄的图像数据进行后续的加工处理。
本模式下,根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
开发者拍摄模式
传输模块2监听信号,外部装置发出开发者拍摄模式指令给控制器3,切换成开发者拍摄拍摄模式。
在此模式下,开发者可以通过传输模块2查询关于每个摄像头4以及各自的对焦模块303、补光模块304和滤光片切换器的工作状态;并且可以通过传输模块2改变每个摄像头4以及各自的对焦模块303、补光模块304和滤光片切换器的工作状态。
图像传感器CCD或CMOS在开发者自定义的工作光谱、对焦距离和补光环境,形成与之相应的电子图像信号,经过传输模块2把两个摄像头4的图像信号同步传输到外部装置,这样开发者可以根据实际应用需要对本图像采集装置进行开发利用。
本发明中的多功能双目摄像头允许摄像头切换成不同的拍摄模式,不需要 额外的调整即可满足多种功能模式的需求,且在摄像头内部具有加密功能,现有的摄像头产品绝大部分无法实现此需求,显见本发明具有非常先进的优势。
实施例3
如图1,图像信息采集装置1上设置有用于和外部装置通信的传输模块2、控制器3和两个独立摄像头4,这两个摄像头4的图像采集面在同一平面上;控制器3分别与这两个独立摄像头4连接,其中第一摄像头4包括无滤光片切换器且固定设置的近红外窄带滤光片,第二摄像头4包括滤光片切换器,且滤光器切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。本发明图像信息采集装置1通过切换摄像头4中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。
外部装置通过传输模块2传输指令给控制器3控制滤光片切换器切换滤光片改变图像传感器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器3接收到该信号后对其进行处理,然后通过传输模块2传输到外部装置进行处理或外部装置的显示屏进行显示。
该两个摄像头4中的一个或两个包括对焦模块和/或补光模块。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到传输模块2进行传输,和/或将接收的图像发送到显示屏进行预览。
模式管理模块301设有开发者控制拍摄模块,开发者在外部装置上通过传输模块2访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补 光模块304和滤光片切换器一种以上的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的对焦模块303,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。可控对焦器件采用的机械器件有MEMS(微电机系统)、VCM(音圈马达)以及步进电机之类等。
控制器还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
传输模块2包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块,用于传输图像信息采集装置1的工作状态信息、控制指令、图像、视频、音频及加密数据信息。
外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
控制器3还包括加密模块或不包括加密模块。
本图像信息采集装置1有以下拍摄模式:
普通模式
传输模块2监听信号,外部终装置发出普通拍摄模式指令给控制器3,切换成普通模式,模式管理模块301启动第二摄像头4,第一摄像头4置于非工作状态,第二摄像头的滤光片切换器根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,处于可见光拍摄模式下。其它功能与实施例2中普通模式下摄像头的结构功能一样。
单目夜视模式
传输模块2监听信号,外部终装置发出普通拍摄模式指令给控制器3,切换成普通模式,模式管理模块301启动第二摄像头4,第一摄像头4置于非工作状态,第二摄像头的滤光片切换器根据模式管理模块301的切换指令控制切换至全光谱光学透镜正常工作,处于夜视拍摄模式下。
单目人脸识别图像采集模式:
传输模块2监听信号,外部终装置发出普通拍摄模式指令给控制器3,切换成单目人脸识别图像采集模式,模式管理模块301启动第二摄像头4,第一摄像头4置于非工作状态,第二摄像头的滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,根据模式管理模块301的切换指令控制切换相应的滤光片正常工作,其工作原理如实施例2中的单目人脸识别图像采集模式或实施例6中的单目人脸识别图像采集方法一样。
双目人脸识别图像采集模式:
传输模块2监听信号,外部终装置发出普通拍摄模式指令给控制器3,切换成双目人脸识别图像采集模式,模式管理模块301启动第一摄像头4和第二摄像头4,第二摄像头的滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,根据模式管理模块301的切换指令控制切换至红外截止滤光片正常工作,即第二摄像头处于可见光拍摄模式下。此时,其工作原理如实施例2中的双目人脸识别图像采集模式。
低照度环境双目人脸识别图像采集模式:
传输模块2监听信号,外部终装置发出普通拍摄模式指令给控制器3,切换成双目人脸识别图像采集模式,模式管理模块301启动第一摄像头4和第二摄像头4,第二摄像头的滤光片切换器内置连接三种滤光片分别为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,根据模式管理模块301的切换指令控制切换至全光谱光学透镜正常工作,即第二摄像头处于红外光拍摄模式下。此时,其工作原理如实施例2中的低照度环境双目人脸识别图像采集模式。
开发者拍摄模式
本实施例图像信息采集装置1的开发者拍摄模式,其工作原理如实施例2中的开发者拍摄模式。
实施例4
如图1,一种图像信息采集装置1上设置有用于和外部装置通信的传输模块2、控制器3和所述结构的两个独立摄像头4,这两个摄像头4的图像采集面在同一平面上;控制器3分别与这两个独立摄像头4连接,其中第一摄像头4包括滤光片切换器,且滤光器切换器内置连接近红外窄带滤光片,滤光器切换器内置还连接有红外截止滤光片和/或全光谱光学透镜,第二摄像头4包括无滤光片切换器,且固定设置的红外截止滤光片、全光谱光学透镜及不设置透镜的任一种。本实施例图像信息采集装置1通过切第一换摄像头4中红外截止滤光片,以及全光谱光学透镜和/或近红外窄带滤光片,形成不同组合的拍摄模式,达到具备多种拍摄功能,提高用户体验。本图像信息采集装置1的拍摄模式,根据两个摄像头内不同种类滤光片的组合而定。
外部装置通过传输模块2传输指令给控制器3控制滤光片切换器切换滤光片改变图像传感器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器3接收到该信号后对其进行处理,然后通过传输模块2传输到外部装置进行处理或外部装置的显示屏进行显示。
该两个摄像头4中的一个或两个包括对焦模块和/或补光模块。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到传输模块2进行传输,和/或将接收的图像发送到显示屏进行预览。
模式管理模块301设有开发者控制拍摄模块,开发者在外部装置上通过传输模块2访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的对焦模块303,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。可控对焦器件采用的机械器件有MEMS(微电机系统)、VCM(音圈马达)以及步进电机之类等。
控制器还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
传输模块2包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块,用于传输图像信息采集装置1的工作状态信息、控制指令、图像、视频、音频及加密数据信息。
外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
控制器3还包括加密模块或不包括加密模块。
实施例5
如图1,一种图像信息采集装置1上设置有用于和外部装置通信的传输模块 2、控制器3和两个独立摄像头4,这两个摄像头4的图像采集面在同一平面上;控制器3分别与这两个独立摄像头4连接,这两个摄像头4各自包括滤光器、图像传感器以及滤光片切换器,这两个滤光片切换器至少一个连接有近红外窄带滤光片,这两个摄像头4中的一个或两个包括对焦模块和/或补光模块。本发明图像信息采集装置1通过切换两个独立摄像头4中红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片,形成不同的组合,达到具备多种拍摄功能,提高用户体验。本图像信息采集装置1的拍摄模式,根据两个摄像头内不同种类滤光片的组合而定。
外部装置通过传输模块2传输指令给控制器3控制滤光片切换器切换滤光片改变图像传感器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器3接收到该信号后对其进行处理,然后通过传输模块2传输到外部装置进行处理或外部装置的显示屏进行显示。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到传输模块2进行传输,和/或将接收的图像发送到显示屏进行预览。
模式管理模块301设有开发者控制拍摄模块,开发者在外部装置上通过传输模块2访问开发者控制拍摄模块,查询两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态,并且/或者,控制该两个摄像头4各自的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的对焦模块303,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。可控对焦器件采用的机械器件有MEMS(微电机系统)、VCM(音圈马达)以及步进电机之类等。
控制器还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
传输模块2包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块,用于传输图像信息采集装置1的工作状态信息、控制指令、图像、视频、音频及加密数据信息。
外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
控制器3还包括加密模块或不包括加密模块。
实施例6
如图2,一种图像信息采集装置1,其上设置有用于和外部装置通信的传输模块2、控制器3以及与控制器连接的一个摄像头4,摄像头4包括滤光器和图像传感器,外部装置通过传输模块2传输指令给控制器3控制滤光器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器接收到该信号后对其进行处理,然后通过传输模块2进行传输。
该摄像头4包括滤光片切换器,滤光片切换器内置连接有近红外窄带滤光片,还连接有红外截止滤光片或/和全光谱光学透镜。通过切换摄像头4中红外截止滤光片或/和全光谱光学透镜以及近红外窄带滤光片,达到具备多种拍摄功能,提高用户体验。本图像信息采集装置1的拍摄模式,根据该摄像头内不同种类滤光片的组合而定。
该摄像头4还包括对焦模块和/或补光模块,对焦模块303切换摄像头对焦范围为10~100cm。
所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
滤光片切换器由滤光片和动力部分(可以是电磁、电机或其它动力源)构成的,动力部分由控制器3驱动。
如图3,控制器3包括有
模式管理模块301,用于控制对焦模块303、补光模块304及滤光片切换器切换不同滤光片形成不同的拍摄模式;
图像处理模块302,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到传输模块2进行传输,和/或将接收的图像发送到显示屏进行预览。
模式管理模块301设有开发者控制拍摄模块,开发者在外部装置上通过传输模块2访问开发者控制拍摄模块,查询该摄像头4的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态,并且/或者,控制该摄像头4的对焦模块303、补光模块304和滤光片切换器一种以上的工作状态。
控制器3还包括用于控制对焦器件调节成像清晰度的对焦模块303,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。可控对焦器件采用的机械器件有MEMS(微电机系统)、VCM(音圈马达)以及步进电机之类等。
控制器还包括用于调控补光灯的所述补光模块304,其中补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个,补光灯还可以为高光谱补光灯。
图像传感器为电荷耦合器件CCD(Charge Coupled Device)或互补金属氧化物半导体COMS(Complementary Metal‐Oxide Semiconductor)。
控制器3为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA(Field-Programmable Gate Array)、低能耗中央处理器CPU、高性能单片机、片上系统SoC或其它等同专用集成芯片。
传输模块2包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块,用于传输图像信息采集装置1的工作状态信息、控制指令、图像、视频、音频及加密数据信息。
外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
控制器3还包括加密模块或不包括加密模块。
如图8,采用上述图像信息采集装置1进行生物图像信息采集的方法,即单目人脸识别图像采集方法,包括如下步骤:
(b1)启动摄像头工作,控制器3控制滤光片切换器切换至红外截止滤光片工作,使得摄像头4处于可见光拍摄模式,或者,控制器3控制滤光片切换器切换至全光谱光学透镜工作,使得第二摄像头4处于红外拍摄模式(即夜视拍摄模式);
(b2)抓取可见光图像或红外光图像数据,并将抓去的图像数据通过传输模块2传输至显示屏给用户预览;
(b3)判断可见光图像或红外光图像是否存在人脸,如果是,保持可见光人脸图像或红外光人脸图像运行步骤(b4),否则运行步骤(b2);
(b4)判断近红外人脸图像或可见光人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(b2),否则进行步骤(b5);
(b5)控制器控制滤光片切换器切换近红外窄带滤光片工作,使得摄像头处于近红外拍摄模式;
(b6)抓取近红外图像数据,并传输至显示屏给用户预览;
(b7)判断近红外图像是否存在活体人脸,即图像处理模块302检测近红外图像中是否存在人脸,如果是,则认为是活体人脸,保持近红外人脸图像运行步骤(b8),否则认为非活体人脸(如人脸照片),运行步骤(b1);
(b8)判断近红外人脸图像是否符合生物图像识别拍摄要求,主要由图像处理模块302判断图片人脸大小、图片质量、人脸关于XYZ轴的角度是否符合标准,如果是运行步骤(b9),否则进行步骤(b1);
(b9)控制器利用人脸识别算法判断:步骤(b3)的可见光人脸图像与步骤(b7)的近红外人脸图像的相似度,或者,步骤(b3)的红外光人脸图像与步骤(b7)的近红外人脸图像的相似度,
如果该相似度超过设定阈值,阈值为不小于0.8不大于1的值,则认为是同一个人,运行步骤(b10),否则认为不是同一个人,运行步骤(b1);
(b10)控制器把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据通过传输模块发送至外部装置,或者,控制器把拍摄好的红外光人脸图像数据和/或近红外人脸图像数据通过传输模块发送至外部装置。
图像信息采集装置1还包括加密模块,步骤(b10)还包括如下步骤:
判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,加密后的图像数据通过所述传输模块被发送至所述外部装置;否则,控制器把未加密的图像数据通过传输模块发送至外部装置。
步骤(b5)中摄像头4的人脸检测使用近红外波长为700~1100nm,优选为850nm的光谱。所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
所述步骤(b9)中,控制器的图像处理模块302对图像相似度的处理是为了防止在可见光拍摄模式下或夜视拍摄模式下拍摄的对象是人物甲的人脸照片,切换近红外窄带滤光片后,在近红外拍摄模式下的拍摄对象是人物乙的活体人脸图像,使得滤光片切换器切换近红外窄带滤光片前后,图像信息采集装置1输出的可见光人脸图像和近红外人脸图像不是同一个人,提高支付验证用户身份的安全性。本生物图像信息采集的方法可以应用于商务支付或识别生物活体。
本实施例中单目人脸识别图像采集方法,当先采用红外拍摄模式,后采用近红外拍摄模式时,适用于低照度环境的单目人脸识别图像采集。
由于可见光人脸检测容易受到照片、雕塑等的假冒物体影响,使用近红外光源拍摄成像则避免了这种假冒的情况,所以近红外图像人脸检测的技术优势比可见光人脸检测更大,并且由于不受环境光影响,拍摄的图像质量更加高,人脸特征点也更加清晰准确,具有更高的可用性,提高活体人脸检测的准确度, 这是一般普通的网络摄像头所不具备的功能。
此外,图像处理模块302还将摄像头4所拍摄的符合人脸拍摄需求的图像进行传输前的准备,如根据拍摄信号中的加密指令判断是否需要对图像数据进行加密,对拍摄好的图像数据进行加密后方可进行传输,加密方式只需对应的解密方式能完整解密出正确的信息即可,本发明不做限制。
最后,利用传输模块2,将加密后的图像数据进行数据传输,发送到外部装置,用户可以利用拍摄的图像数据进行后续的加工处理。
单目人脸识别图像采集模式下,采用本实施例的生物图像信息采集装置1也可以应用于活体虹膜识别图像采集、活体指静脉识别图像采集、活体掌静脉识别图像采集及活体耳朵识别图像采集中。
活体虹膜识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体指静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐20厘米;
活体掌静脉识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为5‐30厘米。
活体耳朵识别图像采集:使用的近红外光谱的波长优选为850nm,摄像头拍摄对焦范围为1‐50厘米。
以上所述,仅为本发明的部分具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可以轻易想到变化或替换,都在本发明的保护范围之内。

Claims (27)

  1. 一种图像信息采集装置,其特征在于:所述图像采集装置上设置有用于和外部装置通信的传输模块、控制器和摄像头,摄像头包括滤光器和图像传感器,传输模块接收外部装置信号控制并传输指令给控制器控制滤光器接收不同波长的光线,图像传感器将图像转换为数字信号,控制器接收到该信号后对其进行处理,然后通过传输模块进行传输。
  2. 根据权利要求1所述的图像信息采集装置,其特征在于:所述摄像头的数量为一个,且该摄像头包括滤光片切换器和/或对焦模块和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块,该两个摄像头的图像采集面在同一平面上。
  3. 根据权利要求2所述的图像信息采集装置,其特征在于所述控制器包括有:
    模式管理模块,用于控制所述对焦模块、所述补光模块及所述滤光片切换器切换不同滤光片形成不同的拍摄模式;
    图像处理模块,能够接收拍摄的图像数据,再将接收的图像数据按照不同拍摄模式进行相应的数据处理、加密及准备处理操作后把处理后的图像信息发送到所述传输模块进行传输,和/或将接收的图像发送到显示屏进行预览。
  4. 根据权利要求2所述的图像信息采集装置,其特征在于:所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个。
  5. 根据权利要求2所述的图像信息采集装置,其特征在于:所述控制器还包括用于控制对焦器件调节成像清晰度的所述对焦模块,对焦器件采为定焦距器件、可控对焦器件或自适应对焦器件。
  6. 根据权利要求2所述的图像信息采集装置,其特征在于:所述控制器还包括用于调控补光灯的所述补光模块,补光灯分别为可见光补光灯、红外补光灯和近红外补光灯中的至少一个。
  7. 根据权利要求3所述的图像信息采集装置,其特征在于:所述模式管理模块设有开发者控制拍摄模块,开发者在所述外部装置上通过所述传输模块访问开发者控制拍摄模块,查询所述摄像头的对焦模块、补光模块和滤光片切换器一种以上的工作状态,并且/或者,控制所述摄像头的对焦模块、补光模块和滤光 片切换器一种以上的工作状态。
  8. 根据权利要求4所述的图像信息采集装置,其特征在于:所述近红外窄带滤光片使用的近红外线的波长为700~2526nm。
  9. 根据权利要求1‐8中任一项权利要求所述的图像信息采集装置,其特征在于:所述外部装置为计算机PC、笔记本电脑、平板电脑、手机、pad、警务通或智能电视。
  10. 根据权利要求1‐8中任一项权利要求所述的图像信息采集装置,其特征在于:所述控制器设有加密模块。
  11. 根据权利要求10所述的图像信息采集装置,其特征在于:所述图像传感器为电荷耦合器件CCD或互补金属氧化物半导体COMS。
  12. 根据权利要求10所述的图像采集装置,其特征在于:所述控制器为数字信号处理器DSP、微控制单元MCU、嵌入式计算机处理器ARM、现场可编程门阵列FPGA、中央处理器CPU、单片机、片上系统SoC或其它等同专用芯片。
  13. 根据权利要求10所述的图像信息采集装置,其特征在于:所述传输模块为包含Wi‐Fi模块、蓝牙模块、近距离无线通讯模块NFC、网络通讯模块、USB通讯模块、IEEE1394通讯模块、无线千兆比特通讯模块WiGig、LED无线光通信Lifi通讯模块中任一种或多种模块。
  14. 一种利用权利要求1‐8中任一项权利要求所述的图像信息采集装置进行生物图像信息采集的方法,该图像信息采集装置的所述摄像头数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,该两个摄像头的图像采集面在同一平面上,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个;其特征在于包含如下处理步骤:
    (a1)启动两个所述摄像头,两个摄像头同步输出图像数据;
    (a2)设置至少一个摄像头为近红外拍摄模式;
    (a3)抓取图像数据并通过传输模块传输至显示屏给用户预览;
    (a4)判断近红外图像是否存在活体,如果是进行步骤(a5),否则进行步骤(a3);
    (a5)判断近红外图像是否符合生物图像识别拍摄需求,如果是进行步骤(a6),否则进行步骤(a3);
    (a6)控制器把拍摄好的图像数据通过传输模块发送至外部装置。
  15. 根据权利要求14所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于:所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为可见光拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为红外拍摄模式;或者,所述步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为与第一摄像头不同波段的近红外拍摄模式,所述第二摄像头的近红外波长为700~2526nm;或者,步骤(a2)设置第一摄像头为近红外拍摄模式,设置第二摄像头为非工作状态。
  16. 根据权利要求15所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于图像信息采集装置还包括加密模块,步骤(a6)还包括如下步骤:
    判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,加密后的图像数据通过所述传输模块被发送至所述外部装置;否则,控制器把未加密的图像数据通过传输模块发送至外部装置。
  17. 根据权利要求14所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于:所述步骤(a2)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
  18. 根据权利要求17所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于:所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
  19. 利用权利要求1所述的图像信息采集装置进行生物图像信息采集的方法,所述图像信息采集装置仅有一个摄像头工作,该摄像头包括滤光片切换器,滤光片切换器内置连接有近红外窄带滤光片,还连接有红外截止滤光片或/和全光谱光学透镜,其特征在于所述生物图像信息采集的方法包括如下步骤:
    (b1)启动摄像头工作,所述控制器切换该摄像头至可见光拍摄模式或夜视拍摄模式;
    (b2)抓取可见光图像或红外光图像数据,并将抓取的图像数据通过传输模块传输至显示屏给用户预览;
    (b3)判断可见光图像或红外光图像是否存在人脸,如果是,保持可见光人脸图像或红外光人脸图像运行步骤(b4),否则运行步骤(b2);
    (b4)判断红外光人脸图像或可见光人脸图像是否符合生物图像识别拍摄要求,如果是运行步骤(b2),否则进行步骤(b5);
    (b5)控制器控制滤光片切换器切换近红外窄带滤光片工作,使得摄像头处于近红外拍摄模式;
    (b6)抓取近红外图像数据,并传输至显示屏给用户预览;
    (b7)判断近红外光图像是否存在活体人脸,如果是,保持近红外人脸图像运行步骤(b8),否则运行步骤(b1);
    (b8)判断近红外人脸图像是否符合生物图像识别拍摄要求,如果是运行步骤(b9),否则进行步骤(b1);
    (b9)控制器利用人脸识别算法判断:步骤(b3)的可见光人脸图像与步骤(b7)的近红外人脸图像的相似度,或者,步骤(b3)的红外光人脸图像与步骤(b7)的近红外人脸图像的相似度,
    如果该相似度超过设定阈值,则认为是同一个人,运行步骤(b10),否则认为不是同一个人,运行步骤(b1);
    (b10)控制器把拍摄好的可见光人脸图像数据和/或近红外人脸图像数据通过传输模块发送至外部装置,或者,控制器把拍摄好的红外光人脸图像数据和/或近红外人脸图像数据通过传输模块发送至外部装置。
  20. 根据权利要求19所述的利用权利要求1所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于:所述阈值为不小于0.8不大于1的值。
  21. 根据权利要求19所述的利用权利要求1所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于所述图像信息采集装置还包括加密模块,步骤(b10)还包括如下步骤:
    判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的图像数据传送到所述加密模块进行加密,加密后的图像数据通过所述传输模块被发送至所述外部装置;否则,控制器把未加密的图像数据通过传输模块发送至外部装置。
  22. 根据权利要求19所述的利用权利要求1所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于:所述步骤(b5)中所述摄像头在近红外拍摄模式下,使用的近红外线的波长为700~2526nm。
  23. 根据权利要求22所述的利用权利要求1所述的图像信息采集装置进行生物图像信息采集的方法,其特征在于:所述近红外线的波长为700~1100nm,用于活体人脸识别图像采集,或者/和用于活体虹膜识别图像采集,或者/和用于活体指静脉识别图像采集,或者/和用于活体掌静脉识别图像采集,或者/和用于活体耳朵识别图像采集。
  24. 一种利用权利要求1‐8中任一项权利要求所述的图像信息采集装置进行3D影像拍摄的方法,该图像信息采集装置的所述摄像头数量为两个,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块,所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个;所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个,其特征在于包含如下处理步骤:
    (c1)启动两个所述摄像头,两个摄像头同步输出图像数据;
    (c2)设置第一摄像头至可见光拍摄模式,并抓取第一可见光图像数据,同时设置第二摄像头至可见光拍摄模式,并抓取第二可见光图像数据;
    (c3)控制器把拍摄好的第一可见光图像数据和第二可见光图像数据通过传输模块发送至外部装置。
  25. 根据权利要求24所述的利用权利要求1‐8中任一项权利要求所述的图像信息采集装置进行3D影像拍摄的方法,其特征在于所述图像信息采集装置还包括加密模块,步骤(c3)还包括如下步骤:
    判断所述控制器的模式指令中是否包含加密请求,如果包含,则控制器把拍摄好的第一可见光图像数据和第二可见光图像数据传送到加密模块进行加 密,加密后的第一可见光图像数据和第二可见光图像数据通过传输模块被发送至外部装置;否则,控制器把未加密的第一可见光图像数据和第二可见光图像数据通过传输模块发送至外部装置。
  26. 权利要求1‐8中任一项权利要求所述的图像信息采集装置进行全焦点距离影像拍摄方法,该图像信息采集装置的所述摄像头数量为两个,该两个摄像头的图像采集面在同一平面上,且该两个摄像头中的一个或两个包括对焦模块,其特征在于包括如下步骤:
    利用所述两个摄像头,其中一个为近焦点距离,另一个为远焦点距离,进行拍摄图像,拍摄的图像数据通过传输模块传输到外部装置,外部装置通过第三方软件把近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像,融合成一幅全景图像;或者,将近焦点距离摄像头拍摄的图像和远焦点距离摄像头拍摄的图像经过所述控制器处理,融合成一幅全景图像,再通过传输模块传输到外部装置。
  27. 权利要求1‐8中任一项权利要求所述的图像信息采集装置的用途,该图像信息采集装置的所述摄像头数量为一个,且该摄像头包括滤光片切换器和/或对焦模块和/或补光模块;或所述摄像头的数量为两个,且该两个摄像头中的一个或两个包括滤光片切换器和/或对焦模块和/或补光模块,该两个摄像头的图像采集面在同一平面上;所述滤光器的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的任一个,所述滤光片切换器内置连接的滤光片为红外截止滤光片、全光谱光学透镜以及近红外窄带滤光片中的至少一个,其特征在于:所述图像信息采集装置用于2D视频通讯、3D视频通讯、智能人脸识别、智能虹膜识别、智能指静脉识别、智能掌静脉识别、智能耳朵识别、全焦点距离影像、2D影像、3D影像、3D建模和/或开发者模式的图像数据采集。
PCT/CN2016/082277 2015-06-17 2016-05-17 一种图像信息采集装置、图像采集方法及其用途 WO2017049922A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510338158 2015-06-17
CN201510618174.9A CN105187727A (zh) 2015-06-17 2015-09-24 一种图像信息采集装置、图像采集方法及其用途
CN201510618174.9 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017049922A1 true WO2017049922A1 (zh) 2017-03-30

Family

ID=54909553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082277 WO2017049922A1 (zh) 2015-06-17 2016-05-17 一种图像信息采集装置、图像采集方法及其用途

Country Status (2)

Country Link
CN (1) CN105187727A (zh)
WO (1) WO2017049922A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633244A (zh) * 2017-11-13 2018-01-26 姜茂清 人体正面图像采集装置、包含它的图像采集系统及其应用
CN107958147A (zh) * 2018-01-15 2018-04-24 长沙舍同智能科技有限责任公司 一种身份多维智能识别装置及系统
CN111259858A (zh) * 2020-02-14 2020-06-09 上海闻泰信息技术有限公司 指静脉识别系统、方法、装置、电子设备及存储介质
CN112329624A (zh) * 2020-11-05 2021-02-05 北京地平线信息技术有限公司 活体检测方法和装置、存储介质、电子设备
CN112954138A (zh) * 2021-02-20 2021-06-11 东营市阔海水产科技有限公司 水产经济动物图像采集方法、终端设备及可移动料台
CN114942072A (zh) * 2022-06-02 2022-08-26 广州睿芯微电子有限公司 多光谱成像芯片及对象识别系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105187727A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种图像信息采集装置、图像采集方法及其用途
CN105187726B (zh) * 2015-06-17 2021-05-18 巽腾(广东)科技有限公司 一种多功能移动图像处理装置、处理方法
CN105760841B (zh) * 2016-02-22 2021-06-04 桂林航天工业学院 一种身份识别方法及系统
CN106529382A (zh) * 2016-03-28 2017-03-22 杭州康坦通生物科技有限公司 一种多用途虹膜采集摄像头
CN105956538A (zh) * 2016-04-26 2016-09-21 乐视控股(北京)有限公司 基于rgb摄像头和虹膜摄像头的图像呈现装置和方法
CN107438165A (zh) * 2016-05-25 2017-12-05 鸿富锦精密电子(郑州)有限公司 具有自拍辅助功能的电子装置及自拍辅助方法
CN106131426A (zh) * 2016-07-28 2016-11-16 北京小米移动软件有限公司 摄像头的控制方法、装置及终端
CN107277318B (zh) * 2017-06-26 2020-07-14 苏州佳世达电通有限公司 影像撷取装置及影像撷取方法
CN108875472B (zh) * 2017-06-26 2021-08-24 北京旷视科技有限公司 图像采集装置及基于该图像采集装置的人脸身份验证方法
WO2019095155A1 (zh) * 2017-11-15 2019-05-23 华为技术有限公司 一种疲劳提示方法和终端
CN107883881A (zh) * 2017-11-22 2018-04-06 殷周平 一种图像采集装置及方法
CN107948472A (zh) * 2017-11-29 2018-04-20 北京星云环影科技有限责任公司 智能监控摄像头及安防系统
CN108040238A (zh) * 2017-12-28 2018-05-15 浙江德景电子科技有限公司 摄像头模组及智能终端实现双摄的辅助摄像头及虹膜主摄像头的方法
CN108200102A (zh) * 2018-03-15 2018-06-22 贵州电网有限责任公司 一种基于屏幕字符识别的数据安全获取系统
CN108694389A (zh) * 2018-05-15 2018-10-23 Oppo广东移动通信有限公司 基于前置双摄像头的安全验证方法及电子设备
CN109963086B (zh) * 2018-07-30 2020-06-16 华为技术有限公司 时分复用补光成像装置和方法
CN110871735B (zh) * 2018-08-31 2023-04-18 比亚迪股份有限公司 车载传感器和具有其的车辆
CN110490042B (zh) * 2019-05-31 2022-02-11 杭州海康威视数字技术股份有限公司 人脸识别装置和门禁设备
CN111586300B (zh) * 2020-05-09 2022-02-08 展讯通信(上海)有限公司 颜色校正方法、装置及可读存储介质
CN112836598A (zh) * 2021-01-18 2021-05-25 盛视科技股份有限公司 生物特征识别方法、装置及系统
CN113038017A (zh) * 2021-03-24 2021-06-25 重庆中科云从科技有限公司 图像采集方法、装置及计算机可读存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030755A1 (en) * 2000-09-11 2002-03-14 Fumiko Uchino Digital image sensing apparatus, image processing system, and digital image sensing method
JP2005277643A (ja) * 2004-03-24 2005-10-06 Fujinon Corp 撮像装置
CN101902326A (zh) * 2009-05-25 2010-12-01 汉王科技股份有限公司 电子钥匙身份认证方法和装置
CN202395858U (zh) * 2011-12-14 2012-08-22 深圳市中控生物识别技术有限公司 一种双目摄像装置
CN103908063A (zh) * 2014-04-03 2014-07-09 安徽海聚信息科技有限责任公司 一种矫正坐姿的智能书桌及其矫正方法
CN104155312A (zh) * 2014-08-11 2014-11-19 华北水利水电大学 基于近红外计算机视觉的粮粒内部害虫检测方法和装置
CN104333703A (zh) * 2014-11-28 2015-02-04 广东欧珀移动通信有限公司 使用双摄像头拍照的方法和终端
CN105187727A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种图像信息采集装置、图像采集方法及其用途
CN105187726A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途
CN204948210U (zh) * 2015-09-24 2016-01-06 广州市巽腾信息科技有限公司 一种图像信息采集装置
CN205017431U (zh) * 2015-09-24 2016-02-03 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710225B (zh) * 2009-06-12 2011-03-16 深圳市卡美特电子技术有限公司 成像传感器用滤光片切换装置
CN101964056B (zh) * 2010-10-26 2012-06-27 徐勇 一种具有活体检测功能的双模态人脸认证方法和系统
CN103856704B (zh) * 2012-11-29 2018-08-10 联想(北京)有限公司 一种移动终端3d拍摄的方法和装置
CN103152517B (zh) * 2013-02-06 2018-06-22 北京中科虹霸科技有限公司 用于移动虹膜识别设备的成像模组及移动设备
CN103870805B (zh) * 2014-02-17 2017-08-15 北京释码大华科技有限公司 一种移动终端生物特征成像方法和装置
CN104394311B (zh) * 2014-09-15 2015-08-05 贵阳科安科技有限公司 用于移动终端的虹膜识别成像模组及图像获取方法
CN104580854A (zh) * 2014-12-23 2015-04-29 南昌欧菲光电技术有限公司 成像装置及移动终端

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030755A1 (en) * 2000-09-11 2002-03-14 Fumiko Uchino Digital image sensing apparatus, image processing system, and digital image sensing method
JP2005277643A (ja) * 2004-03-24 2005-10-06 Fujinon Corp 撮像装置
CN101902326A (zh) * 2009-05-25 2010-12-01 汉王科技股份有限公司 电子钥匙身份认证方法和装置
CN202395858U (zh) * 2011-12-14 2012-08-22 深圳市中控生物识别技术有限公司 一种双目摄像装置
CN103908063A (zh) * 2014-04-03 2014-07-09 安徽海聚信息科技有限责任公司 一种矫正坐姿的智能书桌及其矫正方法
CN104155312A (zh) * 2014-08-11 2014-11-19 华北水利水电大学 基于近红外计算机视觉的粮粒内部害虫检测方法和装置
CN104333703A (zh) * 2014-11-28 2015-02-04 广东欧珀移动通信有限公司 使用双摄像头拍照的方法和终端
CN105187727A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种图像信息采集装置、图像采集方法及其用途
CN105187726A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途
CN204948210U (zh) * 2015-09-24 2016-01-06 广州市巽腾信息科技有限公司 一种图像信息采集装置
CN205017431U (zh) * 2015-09-24 2016-02-03 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633244A (zh) * 2017-11-13 2018-01-26 姜茂清 人体正面图像采集装置、包含它的图像采集系统及其应用
CN107958147A (zh) * 2018-01-15 2018-04-24 长沙舍同智能科技有限责任公司 一种身份多维智能识别装置及系统
CN111259858A (zh) * 2020-02-14 2020-06-09 上海闻泰信息技术有限公司 指静脉识别系统、方法、装置、电子设备及存储介质
CN112329624A (zh) * 2020-11-05 2021-02-05 北京地平线信息技术有限公司 活体检测方法和装置、存储介质、电子设备
CN112954138A (zh) * 2021-02-20 2021-06-11 东营市阔海水产科技有限公司 水产经济动物图像采集方法、终端设备及可移动料台
CN114942072A (zh) * 2022-06-02 2022-08-26 广州睿芯微电子有限公司 多光谱成像芯片及对象识别系统

Also Published As

Publication number Publication date
CN105187727A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2017049922A1 (zh) 一种图像信息采集装置、图像采集方法及其用途
WO2017049923A1 (zh) 一种多功能移动图像处理装置、处理方法及用途
CN204948210U (zh) 一种图像信息采集装置
CN205017431U (zh) 一种多功能移动图像处理装置
US9374529B1 (en) Enabling multiple field of view image capture within a surround image mode for multi-LENS mobile devices
CN109544618B (zh) 一种获取深度信息的方法及电子设备
WO2017173847A1 (zh) 视频眼镜的眼球追踪模组
WO2017132903A1 (zh) 与可见光复用的生物特征复合成像系统和方法
CN217849511U (zh) 图像捕捉装置、设备和系统以及集成传感器光学部件配件
CN206301289U (zh) Vr终端设备
CN106952252B (zh) 一种基于三光谱的皮肤成像系统
CN102075683A (zh) 数字图像处理设备和数字图像处理设备的拍摄方法
TWI739096B (zh) 資料處理方法和電子設備
US20140368695A1 (en) Control device and storage medium
JP2016527769A (ja) 虹彩撮像のためのマルチモード画像獲得用の装置及び方法
KR20220145321A (ko) 카메라의 초점을 변경하는 방법 및 장치
CN106611164A (zh) 虹膜识别方法、装置及电子设备
CN107517340B (zh) 一种摄像模组及电子设备
WO2018145261A1 (zh) 多功能相机及其控制方法、穿戴设备、云台、飞行器
KR102344104B1 (ko) 이미지의 표시 효과를 제어할 수 있는 전자 장치 및 영상 표시 방법
WO2021238351A1 (zh) 一种图像校正方法与电子设备
WO2022267464A1 (zh) 一种对焦的方法及相关设备
WO2020082968A1 (zh) 摄像头、电子设备和身份验证方法
CN113747028A (zh) 一种拍摄方法及电子设备
CN105227810B (zh) 一种基于bibavr算法的自动聚焦头盔摄像机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16847804

Country of ref document: EP

Kind code of ref document: A1