WO2017049531A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2017049531A1
WO2017049531A1 PCT/CN2015/090556 CN2015090556W WO2017049531A1 WO 2017049531 A1 WO2017049531 A1 WO 2017049531A1 CN 2015090556 W CN2015090556 W CN 2015090556W WO 2017049531 A1 WO2017049531 A1 WO 2017049531A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
symbols
unit
length
transmitting
Prior art date
Application number
PCT/CN2015/090556
Other languages
English (en)
French (fr)
Inventor
李超君
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201580083025.5A priority Critical patent/CN108029019B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15904418.9A priority patent/EP3343969B1/en
Priority to CN201910407100.9A priority patent/CN110224800B/zh
Priority to PCT/CN2015/090556 priority patent/WO2017049531A1/zh
Priority to AU2015409983A priority patent/AU2015409983A1/en
Priority to BR112018005804-1A priority patent/BR112018005804B1/pt
Priority to RU2018114960A priority patent/RU2682916C1/ru
Priority to CN202110187607.5A priority patent/CN113037447B/zh
Priority to EP20203015.1A priority patent/EP3840447B1/en
Publication of WO2017049531A1 publication Critical patent/WO2017049531A1/zh
Priority to US15/933,633 priority patent/US10880909B2/en
Priority to AU2020201895A priority patent/AU2020201895B2/en
Priority to US17/100,558 priority patent/US11601958B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications technologies, and more particularly to a data transmission method and apparatus.
  • a transmission time interval is a length of one subframe.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • ACK acknowledgement
  • negative acknowledgement negative acknowledgement
  • the physical uplink control channel (PUCCH) of the NACK is designed according to the TTI length of one subframe.
  • latency is one of the important factors affecting the user experience.
  • the existing TTI transmission mechanism cannot meet the needs of low-latency services.
  • the present invention provides a data communication method and apparatus for meeting the needs of low latency services.
  • an embodiment of the present application provides a network device, including: a processing unit, configured to determine a transmission resource that transmits the data, where the time domain resource occupied by the transmission resource in the time domain is N time domain resources. In one of the N time domain resources, the time length of the time domain resource is less than 1 millisecond, where N is a positive integer, and the transceiver unit is configured to use the transmission resource determined by the processing unit. On, data transmission with the terminal device.
  • an embodiment of the present application provides a data transmission method, including:
  • the network device determines a transmission resource for transmitting the data, where the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any one of the N time domain resources Domain capital
  • the time length of the source is less than 1 millisecond, wherein N is a positive integer; the network device performs data transmission with the terminal device on the determined transmission resource.
  • an embodiment of the present application provides a terminal device, including: a processing unit, configured to determine a transmission resource that transmits the data, where the time domain resource occupied by the transmission resource in the time domain is N time domains.
  • a processing unit configured to determine a transmission resource that transmits the data, where the time domain resource occupied by the transmission resource in the time domain is N time domains.
  • One of the resources, the time length of any one of the N time domain resources is less than 1 millisecond, wherein N is a positive integer
  • the transceiver unit is configured to use the transmission determined by the processing unit Resources, data transmission with network devices.
  • an embodiment of the present application provides a data transmission method, including:
  • the terminal device determines a transmission resource for transmitting the data, where the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any one of the N time domain resources
  • the time length of the domain resource is less than 1 millisecond, where N is a positive integer; the terminal device performs data transmission with the network device on the determined transmission resource.
  • At least one time domain resource less than 1 ms is introduced, so that the transmission time interval is shortened, thereby effectively reducing the data transmission delay, thereby satisfying the low time. Deferred business needs.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the N time domain resources include a time length of 1 symbol, 2 symbols, 3 symbols, 4 symbols, or 1 slot. At least one time domain resource, the 1 time slot comprising 6 or 7 symbols.
  • the data transmitted by the transceiver unit when the transmission resource occupies at least 2 symbols in the time domain, the data transmitted by the transceiver unit includes a physical channel and a physical signal, and the physical signal and the The physical channels are respectively located in different ones of the at least two symbols. That is to say, when uplink transmission is performed between the network device and the terminal device, since the physical channel and the physical signal are time-divisional, that is, occupy different symbols, the single-carrier characteristic of the uplink can be maintained, thereby not affecting the efficiency of the power amplifier, and is particularly suitable. In the scenario where the uplink power is limited.
  • the 4 symbols include: Symbols used to transmit physical signals and Symbol for transmitting a physical channel, Less than 4.
  • the two symbols for transmitting physical signals when When equal to 2, are located in the middle 2 symbols or the first 2 symbols within the 4 symbols; or when When it is equal to 1, the one symbol for transmitting the physical signal is located in the first symbol or the second symbol in the four symbols. Since the symbol of the transmitted physical signal is located in front of the 4 symbols, channel estimation is performed faster based on the physical signal.
  • the 3 symbols include: Symbols for transmitting physical signals and 3-described Symbol for transmitting a physical channel, Less than 3.
  • the one symbol for transmitting the physical signal is located in the first symbol or the second symbol in the three symbols.
  • the 2 symbols when the transmission resource determined by the processing unit occupies 2 symbols in the time domain, the 2 symbols include 1 symbol for transmitting a physical signal.
  • the one symbol for transmitting the physical signal is located in the first symbol or the second symbol in the two symbols.
  • the 1 symbol is used to transmit a physical channel.
  • the transmission resource determined by the processing unit occupies 1 slot in the time domain: when 1 slot contains 7 symbols, the 1 slot includes Symbols used to transmit physical signals and Symbol for transmitting a physical channel, Less than 7; or when 1 slot contains 6 symbols, the 1 slot includes Symbols for transmitting physical signals and Symbol for transmitting a physical channel, Less than 6.
  • the data may include a physical signal and a physical channel, and the physical channel and the physical signal are located at different resource granularities RE in the transmission resource.
  • the physical signal overhead can be reduced, but since the physical channel and the physical signal are frequency-divided, and thus do not have the single-carrier characteristic, it is suitable for the scenario of downlink transmission and power-unlimited uplink transmission.
  • the physical channel can be used for transmitting the physical channel. More resources, suitable for low-speed scenes.
  • the determined transmission resource includes at least one short resource block, and any one of the at least one short resource block includes REs occupying continuous frequency in the frequency domain Subcarriers occupying consecutive N sym symbols in the time domain, the N sym being equal to the number of symbols occupied by the transmission resource in the time domain, the N sym sum Is a positive integer; includes any one of the short resource blocks RE for transmitting the physical signal, The REs for transmitting the physical signals are discontinuously distributed or comb-shaped in the frequency domain, Is a positive integer.
  • the time domain resource occupied by the determined transmission resource in the time domain is one time unit of M time units included in one subframe, Any one of the M time units is one of the N time domain resources.
  • the four time units are sequentially the first time unit, the second time unit, and the first a three time unit and a fourth time unit, wherein the four time units included in the one subframe include:
  • the four time units included in the one subframe include: for uplink transmission, when the last symbol in the one subframe is used for transmitting the sounding RS
  • the four time units included in the one subframe are arranged in the time domain according to the sorting four, sorting five or sorting seven configurations.
  • the four time units included in the one subframe include: when a slot contains 7 symbols, when the physical control format indicates the control of the channel PCFICH bearer
  • the format indicates that the number of PDCCH symbols indicated by the CFI or the high layer signaling is 0 or 1
  • the four time units included in the one subframe are arranged in the time domain by one or four, or when one slot contains seven symbols.
  • the number of PDCCH symbols indicated by the CFI or the high layer signaling is 2, 3, or 4
  • the 4 time units included in the one subframe are sorted in the time domain, ranked three, or ranked five. Configuration.
  • the transmission resource occupies one time unit of M time units in the time domain. Therefore, the location of the transmission resource is limited to one subframe, and thus is not distributed over the two subframes, thereby avoiding the complexity of increasing the scheduler of the apparatus.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a transmission resource occupying 4 symbols in a time domain according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a transmission resource occupying three symbols in a time domain according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a transmission resource occupying two symbols in a time domain according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a transmission resource including 2 or 4 REs according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an RE in a short resource block according to an embodiment of the present disclosure.
  • FIG. 7 is another schematic structural diagram of an RE in a short resource block according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another structure of an RE in a short resource block according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another structure of an RE in a short resource block according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another structure of an RE in a short resource block according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic structural diagram of an RE in a short resource block according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another structure of an RE in a short resource block according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another structure of an RE in a short resource block according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a location of a transmission resource in a subframe according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the LTE system is taken as an example in the foregoing background, the person skilled in the art should know that the present invention is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as the Global System for Global System (Global System for Mobile System). Mobile Communication, GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) system, and new network systems.
  • GSM Global System for Global System
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • the terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station (Remote). Station), Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment (User Equipment).
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station (Remote). Station), Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment (User Equipment).
  • the network device involved in the embodiments of the present invention may be a base station, or an access point, or may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE. This application is not limited.
  • each radio frame is composed of 10 subframes of 1 millisecond (ms) length, and each subframe may include 2 slots.
  • normal CP normal cyclic prefix
  • extended CP extended cyclic prefix
  • each subframe consists of 14 symbols
  • extended CP extended CP
  • the symbols are divided into uplink symbols and downlink symbols, the uplink symbols are called single carrier-frequency division multiple access (SC-FDMA) symbols, and the downlink symbols are called orthogonal frequency division multiplexing (orthogonal frequency division multiplexing). Multiplexing, OFDM) symbol.
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal frequency division multiplexing
  • OFDM orthogonal frequency division multiplexing
  • the physical channel involved in the embodiment of the present invention carries data information from a higher layer, and the physical channel may be a physical uplink share channel (PUSCH), A physical uplink control channel (PUCCH) or a physical downlink shared channel (PDSCH).
  • the physical signal involved in the embodiment of the present invention is used for the physical layer, and does not carry data information from a higher layer.
  • the physical signal may be a reference signal (Reference Signal, RS), for example, a demodulation reference signal for uplink (Demodulation Reference Signal, DMRS), Cell-specific Reference Signal (CRS) for downlink, UE-specific Reference Signal (URS) for downlink, or group-specific reference signal for downlink (Group) -specific Reference Signal, GRS).
  • RS Reference Signal
  • DMRS demodulation Reference Signal
  • CRS Cell-specific Reference Signal
  • URS UE-specific Reference Signal
  • GRS group-specific reference signal for downlink
  • GRS group-specific Reference Signal
  • the DMRS used for PUCCH demodulation is called PUCCH DMRS
  • the DMRS used for PUSCH demodulation is called PUSCH DMRS.
  • the CRS is an RS configured by the network device to all terminal devices in the cell
  • the GRS is an RS configured by the network device to a group of terminal devices
  • the URS is an RS configured for a specific terminal device.
  • the physical signals mentioned below are similar to the physical channels and are not illustrated one by one.
  • the techniques described herein may be applicable to LTE systems, or other wireless communication systems employing various wireless technologies. It is also applicable to the subsequent evolution systems using the LTE system, such as the fifth generation 5G system. For the sake of clarity, only the LTE system is taken as an example here.
  • data transmission is performed between the network device and the terminal device.
  • short TTI data transmission i.e., data transmission less than 1 ms
  • all embodiments of the present invention are applied to short TTI data data transmission between the network device and the terminal device.
  • the transmission time of each subframe is less than 1 ms, and the data transmission is at least less than 1 ms. Therefore, all embodiments of the present invention are applied to data data transmission between the network device and the terminal device for less than 1 ms.
  • An embodiment of the present invention is that a network device determines a transmission resource for transmitting data, and the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any one of the N time domain resources.
  • the time length of the time domain resource is less than 1 millisecond. Compared with the existing transmission that can only support one time length equal to 1 millisecond, at least one time domain resource less than 1 ms is introduced, so that the transmission time interval is shortened, and the data transmission can be effectively reduced. Delay, so that the needs of low-latency services can be met.
  • N time domain resources may be pre-defined by the network device and the terminal device; or specified by the protocol; or configured by the network device, and then notified to the terminal device by signaling. Configure N different time domain resources to meet the requirements of different system bandwidths, different system loads, different coverage requirements, different user locations, or different service types.
  • this embodiment provides a data transmission method, which may include the following steps.
  • Step 101 The network device determines a transmission resource used for transmitting the data, where the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any one of the N time domain resources The length of the domain resource is less than 1 millisecond, where N is a positive integer.
  • the N time domain resources involved in the embodiments of the present invention may include N time domain resources whose time lengths are less than 1 millisecond; or the N time domain resources may include At least one time domain resource having a time length less than 1 millisecond; or the N time domain resources may include at least two time domain resources having unequal lengths of time.
  • the existing transmission that can only support one time length equal to 1 millisecond at least one time domain resource less than 1 ms is introduced to shorten the transmission time interval.
  • N when N is greater than or equal to 2, it can be 1 ms. At least two schedules are performed internally, so the data transmission delay can be effectively reduced.
  • the network device can adaptively determine the time domain resources occupied by the transmission resources in the time domain according to system bandwidth, load, coverage requirement, user location or service type, etc., to adapt to system gain (the smaller the bandwidth, the short TTI data transmission gain) The less the system overhead (the smaller the bandwidth, the larger the proportion of overhead in short TTI data transmission), the coverage requirement (the more edge users, the more limited the short TTI data transmission coverage), or the QoS requirements (hour extension service).
  • a transmission resource configured by a network device for different terminal devices, different services, different loads, or different coverage scenarios has different time domain resources occupied in the time domain.
  • the network device may notify, by using high layer signaling or physical layer signaling, which one or more of the N time domain resources the time domain resource that the terminal device can be configured. It should be noted that the network device can change the time domain resources that can be configured as needed. Further, the network device determines to be used for transmission The time domain resource occupied by the transmission resource of the data in the time domain is one of the time domain resources that can be configured.
  • the terminal device also needs to determine a transmission resource for transmitting the data, and the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any one of the N time domain resources The length of the domain resource is less than 1 millisecond, where N is a positive integer.
  • the terminal device also needs to determine a transmission resource that transmits the data, and the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and at least one of the N time domain resources The length of the resource is less than 1 millisecond, where N is a positive integer.
  • the terminal device may determine, according to the high layer signaling or physical layer signaling sent by the network device, that the transmission resource of the transmission data is one of the configurable time domain resources, where the high layer signaling or physical layer The signaling indicates which one or which of the N time domain resources the time domain resource that can be configured is.
  • the terminal device may also report information to the network device, where the information indicates which one or which of the N time domain resources the terminal device wishes to use. Then, the network device configures, according to the information, that the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources.
  • the terminal device may need to receive or send services with different delay requirements at the same time. If the services required by different delays are transmitted on one serving cell, on the one hand, the scheduler of the network device is very complicated, and another On the other hand, it is also difficult to meet the delay requirements of the hourly business.
  • the embodiment of the present invention provides the following technical solutions:
  • the network device determines a first transmission resource for transmitting the first data, where the time domain resource occupied by the first transmission resource in the time domain is N time domain resources.
  • the time length of any one of the N time domain resources is less than 1 millisecond, where N is a positive integer, and the first transmission resource is located in a first serving cell; the network device determines And a second transmission resource for transmitting the second data, where the second transmission resource occupies 1 ms or 1 subframe in the time domain, and the second transmission resource is located in the second serving cell.
  • the first serving cell and the second serving cell are located on different carriers, that is, the first transmission resource is located on the first carrier, the second transmission resource is located on the second carrier, and the terminal device can simultaneously receive the first serving cell.
  • the first data on the first data and the second data on the second serving cell may simultaneously receive the first data on the first carrier and the second data on the second carrier. It should be noted that all the solutions provided by the embodiments of the present invention are applicable to the first data and the first transmission resource.
  • the terminal device when the terminal device supports carrier aggregation, the terminal device determines a first transmission resource for transmitting the first data, and the time domain resource occupied by the first transmission resource in the time domain is one of N time domain resources.
  • the time length of any one of the N time domain resources is less than 1 millisecond, where N is a positive integer, the first transmission resource is located in a first serving cell; the terminal device determines to be used for transmission
  • the second transmission resource of the second data the second transmission resource occupies 1 ms or 1 subframe in the time domain, and the second transmission resource is located in the second serving cell.
  • the scheduling of the network device is simpler and more flexible, that is, services with different delay requirements can be configured in different serving cells.
  • the network device can configure the hourly delay service in the first serving cell.
  • the hourly extension service is configured in the second serving cell.
  • Step 102 The network device performs data transmission with the terminal device on the determined transmission resource.
  • the network device when the data is uplink data, the network device receives the uplink data sent by the terminal device on the transmission resource; or when the data is downlink data, the network device sends the uplink data to the terminal device on the transmission resource.
  • the downlink data when the data is uplink data, the network device receives the uplink data sent by the terminal device on the transmission resource; or when the data is downlink data, the network device sends the uplink data to the terminal device on the transmission resource.
  • the downlink data when the data is uplink data, the network device receives the uplink data sent by the terminal device on the transmission resource; or when the data is downlink data, the network device sends the uplink data to the terminal device on the transmission resource.
  • the downlink data when the data is uplink data, the network device receives the uplink data sent by the terminal device on the transmission resource; or when the data is downlink data, the network device sends the uplink data to the terminal device on the transmission resource.
  • the downlink data when the data is uplink data, the network device
  • the terminal device after determining, by the terminal device, the transmission resource for transmitting the data, when the data is uplink data, the terminal device sends the uplink data on the transmission resource; or when the data is downlink data, the terminal device is The transmission resource receives downlink data sent by the network device.
  • the network device determines a transmission resource that transmits the data, and the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any one of the N time domain resources
  • the time length of the resource is less than 1 millisecond.
  • at least one time domain resource less than 1 ms is introduced to shorten the transmission time interval, which can effectively reduce the data transmission delay. To meet the needs of low latency business.
  • the network device determines a transmission resource for transmitting the data by using the following manner, and the terminal device is also determined by:
  • the transmission resource used to transmit the data as follows:
  • the N types of time domain resources mentioned above may include at least one time domain resource of a time length of 1 symbol, 2 symbols, 3 symbols, 4 symbols, or 1 slot.
  • the gap can include 6 or 7 symbols.
  • the two time domain resources may include a time domain resource with a length of 3 symbols and a time domain resource with a length of 4 symbols.
  • the one type of time domain resource is a time domain resource whose time length may be 1 symbol, 2 symbols, 3 symbols, 4 symbols, or 1 slot.
  • the foregoing N kinds of time domain resources may include a time length of 1 symbol, 2 symbols, 3 symbols, 4 symbols, or 1 slot or at least one of 1 subframes.
  • the N time domain resources mentioned above may include at least one time domain resource of a length of time d ms or 1 ms, where d is less than 1 and greater than 0.
  • the transmission resource when the transmission resource can occupy at least 2 symbols in the time domain, the data can include a physical channel and a physical signal, the physical signal and the physical channel being respectively located in different symbols of the at least two symbols. That is to say, when uplink transmission is performed between the network device and the terminal device, since the physical channel and the physical signal are time-divisional, that is, occupy different symbols, the uplink single carrier characteristic can be maintained, which is particularly suitable for uplink power limitation. Scenes.
  • the data may include a PUCCH and a PUCCH DMRS, where the PUCCH and the PUCCH DMRS are located in different symbols; or, for PUSCH transmission, The data may include a PUSCH and a PUSCH DMRS, the PUSCH and the PUSCH DMRS being located in different symbols.
  • the above is merely an example of an embodiment of the present invention, and the present invention is not limited thereto.
  • the 4 symbols may include: Symbols for transmitting physical signals and 4- a symbol for transmitting a physical channel, Less than 4.
  • the two symbols for transmitting the physical signal when When equal to 2, may be located in the middle 2 symbols or the first 2 symbols within the 4 symbols; or as shown in (c) or (d) of FIG. 2, when When it is equal to 1, the one symbol for transmitting the physical signal may be located in the first symbol or the second symbol within the four symbols.
  • the symbol for transmitting the physical signal is located in the front position among the respective symbols exemplified below, channel estimation can be performed more quickly from the reference signal.
  • the four symbols are four symbols occupied by the transmission resource in the time domain.
  • the 4 symbols may include 2 symbols for transmitting PUCCH DMRS and 2 symbols for transmitting PUCCH.
  • SRB short resource block
  • the data transmission is PUCCH transmission
  • the data carried by the PUCCH is channel state information (CSI)
  • CSI channel state information
  • the 4 symbols may include 1 symbol for transmitting PUCCH DMRS and 3 symbols for transmitting PUCCH. In this way, more bits of CSI may be carried on the PUCCH.
  • the 4 symbols may include 1 symbol for transmitting the PUSCH DMRS and 3 symbols for transmitting the PUSCH. In this manner, more bits of data can be carried on the PUSCH.
  • the 3 symbols include: Symbols for transmitting physical signals and 3- a symbol for transmitting a physical channel, Less than 3.
  • the two symbols for transmitting physical signals may be located in the first two symbols within the three symbols; or as shown in (b) or (c) of FIG. 3, when When it is equal to 1, the one symbol for transmitting the physical signal is located in the second symbol or the first symbol in the three symbols.
  • the three symbols are three symbols occupied by the transmission resource in the time domain.
  • the Equal to 1 that is, the 3 symbols may include 1 symbol for transmitting PUCCH DMRS and 2 symbols for transmitting PUCCH.
  • the 3 symbols may include 1 symbol for transmitting the PUSCH DMRS and 2 symbols for transmitting the PUSCH. In this manner, more bits of data may be carried on the PUSCH.
  • the 2 symbols may include: 1 A symbol for transmitting a physical signal and a symbol for transmitting a physical channel, and the symbol for transmitting the physical signal may be located at the first symbol or the second symbol within the two symbols.
  • the 1 symbol when it is determined that the transmission resource for transmitting the data occupies 1 symbol in the time domain, the 1 symbol may not include a symbol for transmitting a physical signal, that is, the 1 symbol can only be used.
  • the 1 symbol For physical channel transmission, preferably, if the physical channel is PUCCH, the 1 symbol is only applicable to PUCCH transmission.
  • the HARQ information carried by the PUCCH is NACK
  • the resource number of the PUCCH is the first resource number
  • the HARQ information carried by the PUCCH is ACK
  • the resource number of the PUCCH is the first Two resource numbers.
  • the first resource number and the second resource number are different, that is, the PUCCH carrying the NACK and the PUCCH carrying the ACK are different in code sequence and/or the frequency domain resources are different.
  • the network device transmits the PUCCH on the 1 symbol; when the HARQ information indicates the NACK, the network device does not send the PUCCH.
  • the 1 slot when it is determined that the transmission resource for transmitting the data occupies 1 slot in the time domain, and 1 slot can include 7 symbols, the 1 slot includes Symbols used to transmit physical signals and a symbol for transmitting a physical channel, Less than 7; or when it is determined that the transmission resource for transmitting the data occupies 1 slot in the time domain, and 1 slot can include 6 symbols, the 1 slot includes Symbols used to transmit physical signals and a symbol for transmitting a physical channel, Less than 6.
  • the physical signal is a PUSCH DMRS and the physical channel is a PUSCH
  • the 1 slot can include one symbol for transmitting a PUSCH DMRS and six uses. a symbol for transmitting a PUSCH, where Equal to 1; or the 1 slot may include 2 symbols for transmitting PUSCH DMRS and 5 symbols for transmitting PUSCH, where Equal to 2.
  • the network device can flexibly configure the number of symbols of the physical signal according to requirements, for example, the network device can send signaling to the terminal device, and the signaling can be used to indicate Equal to 1, or the signaling can be used to indicate Equal to 2; for example, when doing frequency offset estimation or in high-speed application scenarios, network devices can be configured Equal to 2, otherwise the network device can be configured Equal to 1; wherein the signaling may be high layer signaling or physical layer signaling.
  • the physical signal is a PUSCH DMRS and the physical channel is a PUSCH.
  • the one slot may include one symbol for transmitting a PUSCH DMRS and five uses. a symbol for transmitting a PUSCH, where Equal to 1; or the 1 slot may include 2 symbols for transmitting PUSCH DMRS and 4 symbols for transmitting PUSCH, where Equal to 2.
  • the network device can send signaling to the terminal device, which can be used to indicate Equal to 1, or the signaling can be used to indicate Equal to 2, where the signaling is high layer signaling or physical layer signaling.
  • the physical signal is a PUCCH DMRS and the physical channel is a PUCCH.
  • the 1 slot can include 2 symbols for transmitting PUCCH DMRS and 5 uses. For transmitting the symbol of the PUCCH, Equal to 2; or the 1 slot may include 3 symbols for transmitting PUCCH DMRS and 4 symbols for transmitting PUCCH, Equal to 3.
  • the physical signal is a PUCCH DMRS and the physical channel is a PUCCH
  • the 1 slot may include 2 symbols for transmitting PUCCH DMRS and 4 for transmission.
  • PUCCH symbol, the Equal to 2; or the 1 slot may include 3 symbols for transmitting PUCCH DMRS and 3 symbols for transmitting PUCCH, Equal to 3.
  • the N types of time domain resources mentioned above may include at least one time domain resource of a time length of 1 symbol, 2 symbols, 3 symbols, 4 symbols, or 1 slot.
  • the slot may include 6 or 7 symbols.
  • the data when the transmission resource can occupy at least 2 symbols in the time domain, the data may include a physical channel and a physical signal, where the physical signal and the physical channel are respectively located at the The case of different symbols in two symbols is explained. For a better understanding of the solution of the present invention, another case is described below, that the data may include a physical signal and a physical channel, the physical channel and the physical signal. A different RE located in the transmission resource.
  • the physical signal is discontinuously distributed or comb-shaped in the frequency domain.
  • the transmission resource includes at least 2 REs.
  • the transmission resource may include RE, that is, the transmission resource occupies in the frequency domain Subcarriers occupy consecutive N sym symbols in the time domain, where N RB is a positive integer. Is a positive integer, preferably,
  • the overhead of the physical signal can be reduced, but since the physical channel and the physical signal are frequency-divided and thus do not have the single-carrier characteristic, it is suitable for the scenario of downlink transmission and power-unlimited uplink transmission.
  • the physical channel can be used for transmitting the physical channel. More resources, suitable for low-speed scenes.
  • the data may include a PDSCH and a downlink (DL) reference signal, the PDSCH and the DL reference
  • the signals are located in different REs.
  • the DL reference signal may be a CRS, a GRS, or a URS.
  • the physical signal may be an example of the RS. However, this is only an example of the embodiment of the present invention, and the present invention is not limited thereto.
  • the data may include PUCCH and PUCCH DMRS, where the PUCCH and PUCCH DMRS are located in different REs; for PUSCH transmission
  • the data may include a PUSCH and a PUSCH DMRS, the PUSCH and the PUSCH DMRS being located in different REs.
  • the transmission resource may include at least one short resource block, and any one of the at least one short resource block includes REs occupying continuous frequency in the frequency domain Subcarriers occupy consecutive N sym symbols in the time domain, the N sym being equal to the number of symbols occupied by the transmission resource in the time domain, the N sym sum Is a positive integer; includes any one of the short resource blocks RE for transmitting the physical signal, the REs are discontinuous or comb-shaped in the frequency domain, Is a positive integer.
  • the number of transmit antennas is the number of transmit antennas supported by the terminal device.
  • the number of transmit antennas is the number of transmit antennas supported by the network device. The following describes the number of different antennas:
  • the short resource block may include 2 or 4 for transmitting physical signals (such as RS).
  • RE as shown in (a) or (b) of Figure 5, when Equal to 2, the two REs for transmitting the RS are located in the first symbol or the third symbol in the short resource block, and the two REs are separated by 5 REs.
  • the 4 REs for transmitting the RS include 2 REs on the 1st symbol in the short resource block and 2 REs on the 3rd symbol, and between 2 REs on each symbol 5 REs apart.
  • the short resource block may include 2 or 4 for transmitting the first transmit antenna.
  • two REs for transmitting the RS of the first transmitting antenna and two REs for transmitting the RS of the second transmitting antenna are located in the short resource block. 1 symbol or 3rd symbol.
  • the RE of the RS for transmitting the first transmitting antenna and the RE of the RS for transmitting the second transmitting antenna are located in the first symbol and in the short resource block. The third symbol.
  • the short resource block may include 2 or 4 for transmitting the first transmitting antenna.
  • RE of the physical signal 2 or 4 REs for transmitting the physical signal of the second transmitting antenna, 2 or 4 REs for transmitting the physical signal of the third transmitting antenna, 2 or 4 for transmitting the fourth The RE of the physical signal of the root transmit antenna.
  • two REs for transmitting the RS of the first transmitting antenna and two REs for transmitting the RS of the second transmitting antenna are located in the first symbol or the third symbol in the short resource block
  • the RE of the two RSs for transmitting the third transmitting antenna and the REs of the two RSs for transmitting the fourth transmitting antenna are located in the second symbol or the fourth symbol in the short resource block.
  • four REs for transmitting the RS of the first transmit antenna and four REs for transmitting the RS of the second transmit antenna are located in short-term
  • the first symbol and the third symbol in the source block, the RE of the RS for transmitting the third transmitting antenna, and the RE of the RS for transmitting the fourth transmitting antenna are located in the short resource block 2 symbols and 4th symbol.
  • the RE of the RS for transmitting the first transmit antenna and the RE of the RS for transmitting the second transmit antenna are located in the first symbol and the third symbol in the short resource block, 2
  • the RE of the RS for transmitting the third transmitting antenna and the RE of the two RSs for transmitting the fourth transmitting antenna are located in the second symbol or the fourth symbol in the short resource block.
  • the physical signal may be a CRS and a URS/GRS
  • the first symbol in the short resource block may include greater than or equal to 2 for transmitting the CRS.
  • the RE, the third symbol in the short resource block may include greater than or equal to 2 REs for transmitting the URS/GRS, where the CRS is a CRS transmitted by the network device on a single transmit antenna, the URS /GRS is the URS/GRS that the network device transmits on a single transmit antenna.
  • the single transmit antenna corresponding to the CRS and the single transmit antenna corresponding to the URS/GRS may have the same or different antenna port numbers, but all correspond to the same transmit antenna.
  • the terminal device can perform the same root based on the CRS and the URS/GRS. Channel estimation of the transmit antenna.
  • the antenna port number is a virtual number, and even if the antenna port number is different, it can represent the same transmitting antenna.
  • the physical signal may be a CRS and a URS/GRS
  • the first symbol in the short resource block may include greater than or equal to 4 for transmitting the CRS.
  • the RE, the third symbol in the short resource block may include greater than or equal to 4 REs for transmitting the URS/GRS.
  • the CRS includes a CRS transmitted by the network device on two transmit antennas, where the URS/GRS includes a URS/GRS transmitted by the network device on two transmit antennas.
  • the antenna ports of the two transmit antennas corresponding to the CRS and the two transmit antennas corresponding to the URS/GRS may be the same or different, but all correspond to the same two transmit antennas. Therefore, the terminal device may be based on CRS and URS/GRS. Channel estimation corresponding to the same two transmit antennas is performed.
  • the physical signal may be CRS and URS/GRS
  • the first symbol and the second symbol in the short resource block may include greater than or equal to 8
  • the third symbol and the fourth symbol in the short resource block may be included
  • the CRS includes a CRS transmitted by the network device on four transmit antennas
  • the URS/GRS includes a URS/GRS transmitted by the network device on four transmit antennas.
  • the four transmit antennas corresponding to the CRS and the four transmit antennas corresponding to the URS/GRS may have the same or different antenna port numbers, but all correspond to the same four transmit antennas. Therefore, the terminal device can perform based on CRS and URS/GRS. Corresponding to the channel estimates of the same four transmit antennas.
  • the physical signal may be a CRS and a URS/GRS
  • the first symbol and the second symbol in the short resource block may include greater than or equal to 8.
  • the RE for transmitting the CRS, the third symbol or the fourth symbol in the short resource block may include greater than or equal to 4 REs for transmitting the URS/GRS.
  • the CRS includes a CRS transmitted by the network device on four transmit antennas, where the URS/GRS includes a URS/GRS transmitted by the network device on two transmit antennas.
  • the two transmit antennas of the four transmit antennas corresponding to the CRS and the two transmit antennas corresponding to the URS/GRS may have the same or different antenna port numbers, but all correspond to the same two transmit antennas. Therefore, the terminal device may be based on The CRS and URS/GRS perform channel estimation corresponding to the same two transmit antennas.
  • the short resource block may include 2 or 4 REs for transmitting the RS, as shown in the figure. (a) or (b) in 7 Equal to 2, the two REs for transmitting the RS are located in the first symbol or the third symbol in the short resource block, and the two REs are separated by 5 REs; as shown in (c) of FIG. 7, when Equal to 4, the 4 REs for transmitting the RS include 2 REs on the 1st symbol in the short resource block and 2 REs on the 3rd symbol, and between 2 REs on each symbol 5 REs apart.
  • the short resource block may include 2 or 4 RSs for transmitting the first transmit antenna.
  • RE and includes 2 or 4 REs for transmitting the RS of the second transmit antenna.
  • two REs for transmitting the RS of the first transmitting antenna and two for transmission The RE of the RS of the second transmit antenna is located in the first symbol or the third symbol in the short resource block.
  • the REs of the four RSs for transmitting the first transmitting antenna and the REs of the four RSs for transmitting the second transmitting antenna are located in the first symbol and in the short resource block. The third symbol.
  • the short resource block may include 2 or 4 for transmitting the first transmitting antenna.
  • RE of the RS 2 or 4 REs of the RS for transmitting the second transmitting antenna, 2 REs for transmitting the RS of the third transmitting antenna, and 2 REs for transmitting the RS of the fourth transmitting antenna .
  • two REs for transmitting the RS of the first transmitting antenna and two REs for transmitting the RS of the second transmitting antenna are located in the first symbol or the third symbol in the short resource block
  • Two REs for transmitting the RS of the third transmitting antenna and two REs for transmitting the RS of the fourth transmitting antenna are located in the second symbol in the short resource block; for example, four are used for transmitting the first
  • the RE of the RS of the root transmit antenna and the RE of the RS for transmitting the second transmit antenna are located in the first symbol and the third symbol in the short resource block
  • the two RSs for transmitting the third transmit antenna The RE of the RE and the two RSs for transmitting the fourth transmit antenna are located in the second symbol within the short resource block.
  • the physical signal may be a CRS and a URS/GRS
  • the first symbol in the short resource block may include greater than or equal to 2 for transmitting the CRS.
  • the RE, the third symbol in the short resource block may include greater than or equal to 2 REs for transmitting the URS/GRS, where the CRS is a CRS transmitted by the network device on a single transmit antenna, the URS /GRS is the URS/GRS that the network device transmits on a single transmit antenna.
  • the terminal device may perform channel estimation corresponding to the same transmit antenna based on the CRS and the URS/GRS.
  • the physical signal may be CRS and URS/GRS
  • the first symbol in the short resource block may include greater than or equal to 4 for transmission.
  • the RE of the CRS, the third symbol in the short resource block may include greater than or equal to 4 REs for transmitting the URS/GRS.
  • the CRS includes a CRS transmitted by the network device on two transmit antennas, where the URS/GRS includes a URS/GRS transmitted by the network device on two transmit antennas.
  • the terminal device may perform channel estimation corresponding to the same two transmit antennas based on the CRS and the URS/GRS.
  • the physical signal may be a CRS and a URS/GRS
  • the first symbol and the second symbol in the short resource block may include greater than or equal to 8.
  • the RE for transmitting the CRS the third symbol in the short resource block may include greater than or equal to 4 REs for transmitting the URS/GRS.
  • the CRS includes a CRS transmitted by the network device on four transmit antennas, where the URS/GRS includes a URS/GRS transmitted by the network device on two transmit antennas.
  • the two transmit antennas of the four transmit antennas corresponding to the CRS and the two transmit antennas corresponding to the URS/GRS may have the same or different antenna port numbers, but all correspond to the same two transmit antennas. Therefore, the terminal device may be based on the CRS.
  • the channel estimates of the two transmit antennas corresponding to the URS/GRS are performed.
  • the short resource block may include 2 or 4 REs for transmitting physical signals, as shown in FIG. 9.
  • the two REs for transmitting the RS are located in the first symbol or the second symbol in the short resource block, and the two REs are separated by 5 REs; as shown in (c) of FIG. 9, when When equal to 4, the 4 REs for transmitting the RS include 2 REs on the 1st symbol in the short resource block and 2 REs on the 2nd symbol, and 2 REs on each symbol 5 REs apart.
  • the short resource block may include 2 or 4 REs for transmitting the physical signals of the first transmit antenna, and 2 or 4 REs for transmitting the physical signals of the second transmit antenna.
  • the short resource block may include 2 or 3 for transmitting the first transmitting antenna.
  • RE of physical signal 2 or 3 REs for transmitting physical signals of the second transmitting antenna, 2 or 3 REs for transmitting physical signals of the third transmitting antenna, 2 or 3 for transmission
  • the fourth RE of the physical signal of the transmitting antenna may include 2 or 3 for transmitting the first transmitting antenna.
  • the short resource block may include 2, 3 or 4 REs for transmitting physical signals.
  • the short resource block may include 2, 3 or 4 RE for transmitting the physical signal of the first transmit antenna, and 2, 3 or 4 REs for transmitting the physical signal of the second transmit antenna.
  • four transmitting antennas may not be configured.
  • the short resource block may include 4, 6 or 8 REs for transmitting RS.
  • the 4 REs for transmitting the RS are located in the 1st symbol and the 5th symbol in the short resource block; or, when Equal to 6, the 6 REs used to transmit the RS are located in the 1st symbol, the 3rd symbol and the 5th symbol in the short resource block; or, when Equal to 8, the 8 REs used to transmit the RS are located in the 1st symbol, the 3rd symbol, the 5th symbol, and the 7th symbol in the short resource block.
  • the short resource block may include 4, 6 or 8 REs for transmitting the RS of the first transmit antenna. And 4, 6 or 8 REs for transmitting the RS of the second transmitting antenna.
  • 4 REs for transmitting the RS of the first transmitting antenna and 4 REs for transmitting the RS of the second transmitting antenna are located in the short resource block.
  • the first symbol and the fifth symbol; or, the RE of the RS for transmitting the RS of the first transmitting antenna and the RE of the RS for transmitting the second transmitting antenna are located in the first of the short resource blocks a symbol, a third symbol and a fifth symbol; or, an RE of 8 RSs for transmitting the first transmitting antenna and 8 REs for transmitting the RS of the second transmitting antenna are located in the short resource block 1 symbol, 3rd symbol, 5th symbol and 7th symbol.
  • the short resource block may include four RSs for transmitting the first transmit antenna.
  • RE, 4 REs for transmitting the RS of the second transmitting antenna, 2 or 4 REs for transmitting the RS of the third transmitting antenna, 2 or 4 REs for transmitting the RS of the fourth transmitting antenna when 1 slot includes 7 symbols, the RE of 4 RSs for transmitting the first transmitting antenna and the REs of 4 RSs for transmitting the second transmitting antenna are located in the first of the short resource blocks.
  • two REs for transmitting the RS of the third transmitting antenna and two REs for transmitting the RS of the fourth transmitting antenna are located in the second symbol in the short resource block; or, 4
  • the REs of the RSs for transmitting the first transmitting antenna and the REs of the RSs for transmitting the second transmitting antenna are located in the first symbol and the fifth symbol in the short resource block, and four are used for transmission.
  • the RE of the RS of the three transmitting antennas and the RE of the RSs for transmitting the fourth transmitting antenna are located in the second symbol and the sixth symbol in the short resource block.
  • the physical signal may be CRS and URS/GRS
  • the first symbol in the short resource block may include greater than or equal to 12 REs for transmitting the CRS
  • the sixth symbol in the short resource block may include greater than or equal to 4 for transmitting the
  • the CRS includes a CRS transmitted by the network device on four transmit antennas, where the URS/GRS includes a URS/GRS transmitted by the network device on two transmit antennas.
  • the two transmit antennas of the four transmit antennas corresponding to the CRS and the two transmit antennas corresponding to the URS/GRS may have the same or different antenna port numbers, but all correspond to the same two transmit antennas. Therefore, the terminal device may be based on the CRS.
  • the channel estimates of the two transmit antennas corresponding to the URS/GRS are performed.
  • the physical signal can be CRS and URS/GRS
  • the first symbol in the short resource block The 2 symbols and the 4th symbol may include greater than or equal to 12 REs for transmitting the CRS, and the 5th symbol in the short resource block may include greater than or equal to 4 for transmitting the URS/GRS.
  • the CRS includes a CRS transmitted by a network device on four transmit antennas
  • the URS/GRS Includes URS/GRS transmitted by network devices on two transmit antennas.
  • the terminal device can perform channel estimation corresponding to the same two transmit antennas based on the CRS and the URS/GRS.
  • the network device may send signaling to the terminal device, the signaling including indicating whether to configure the URS/GRS.
  • the signaling is physical layer signaling or higher layer signaling.
  • the physical signal includes a URS/GRS, as shown in the embodiment related to the URS/GRS.
  • the time domain resource occupied by the transmission resource occupied by the data transmission in the time domain is one of the N time domain resources, and thus the transmission resource is less than one subframe or 1 ms. Further, it is necessary to define the location of the transmission resource in one subframe, as follows:
  • the time domain resource occupied by the determined transmission resource in the time domain may be one time unit of M time units (TUs) included in one subframe, and any one of the M time units The time unit is one of the N time domain resources.
  • M time units TUs
  • a subframe may be divided into M time units, and the length of each time unit is less than or equal to the length of the subframe, that is, the number of symbols included in each time unit is less than or equal to the number of symbols included in the subframe.
  • the number of symbols included in the plurality of time units may be different.
  • the location of the transmission resource is limited to one subframe, and thus is not distributed over two subframes, thereby avoiding the complexity of increasing the network device scheduler.
  • the two time units included in the subframe include a first time unit and a second time unit, where the first time unit is located in the first slot of the subframe, and the second time unit is located.
  • the four time units included in the subframe may include a first time unit, a second time unit, a third time unit, and a fourth time unit, and the four time units are included in the subframe.
  • the time unit can be sorted according to any of the following sorting examples, but this is only an example of the present invention, the present invention The inclusion includes not limited to this. It should be noted that the length of time of one subframe is equal to or greater than the sum of time lengths of four time units.
  • the length of time of the first time unit is 4 symbols
  • the length of time of the second time unit is 3 symbols
  • the length of time of the third time unit is 4 symbols
  • the length of time of the fourth time unit It is 3 symbols; for example, taking 1 subframe as an example, 1 frame is composed of 14 symbols, namely ⁇ #0, #1, #2, #3, #4, #5, #6, #7,# 8, #9, #10, #11, #12, #13 ⁇
  • the order of the time units included in the 1 subframe may be: the first time unit is located in the first symbol set ⁇ # 0, #1, #2, #3 ⁇ , the second time unit is located in the second symbol set ⁇ #4, #5, #6 ⁇ , and the third time unit is located in the third symbol set ⁇ #7, #8,# 9, #10 ⁇
  • the fourth time element is located in the fourth symbol set ⁇ #11, #12, #13 ⁇ ; or,
  • the order of the time units included in the 1 subframe may be: the first time unit is located in the first symbol set ⁇ # 0, #1, #2 ⁇ , the second time unit is located in the second symbol set ⁇ #3, #4, #5, #6 ⁇ , and the third time unit is located in the third symbol set ⁇ #7, #8, #9 ⁇ , the fourth time unit is located in the fourth symbol set ⁇ #10, #11, #12, #13 ⁇ ; or,
  • the order of time units included in the 1 subframe may be: the first time unit is located in the first symbol set ⁇ # 0, #1, #2 ⁇ , the second transmission unit is located in the second symbol set ⁇ #3, #4, #5, #6 ⁇ , and the third transmission unit is located in the third symbol set ⁇ #7, #8, #9,#10 ⁇ , the fourth transmission unit is located in the fourth symbol set ⁇ #11, #12, #13 ⁇ ; or,
  • the length of time of the first time unit is 4 symbols
  • the length of time of the second time unit is 3 symbols
  • the length of time of the third time unit is 3 symbols
  • the length of time of the fourth time unit For 3 symbols, for example, 1 subframe, 1 frame consists of 14 symbols, namely ⁇ #0, #1, #2, #3, #4, #5, #6, #7, #8 , #9, #10, #11, #12, #13 ⁇
  • the order of time units included in the 1 subframe may be: the first time unit is located in the first symbol set ⁇ #0 , #1, #2, #3 ⁇ , the second time unit is located in the second symbol set ⁇ #4, #5, #6 ⁇ , and the third time unit is located in the third symbol set ⁇ #7, #8, #9 ⁇
  • the fourth time unit is located in the fourth symbol set ⁇ #10, #11, #12 ⁇ ; or,
  • the order of time units included in the 1 subframe may be: the first time unit is located in the first symbol set ⁇ #0 , #1, #2 ⁇ , the second time unit is located in the second symbol set ⁇ #3, #4, #5, #6 ⁇ , and the third time unit is located in the third symbol set ⁇ #7, #8, #9 ⁇
  • the fourth time unit is located in the fourth symbol set ⁇ #10, #11, #12 ⁇ ; or,
  • the length of time of the first time unit is 3 symbols
  • the length of time of the second time unit is 3 symbols
  • the length of time of the third time unit is 3 symbols
  • the length of time of the fourth time unit For 3 symbols, for example, 1 subframe, 1 frame consists of 14 symbols, namely ⁇ #0, #1, #2, #3, #4, #5, #6, #7, #8 , #9, #10, #11, #12, #13 ⁇
  • the order of time units included in the 1 subframe may be: the first time unit is located in the first symbol set ⁇ #0 , #1, #2 ⁇ , the second time unit is located in the second symbol set ⁇ #3, #4, #5 ⁇ , and the third time unit is located in the third symbol set ⁇ #6, #7, #8 ⁇ , fourth The time unit is located in the fourth symbol set ⁇ #9, #10, #11 ⁇ ; or,
  • the length of time of the first time unit is 3 symbols
  • the length of time of the second time unit is 3 symbols
  • the length of time of the third time unit is 3 symbols
  • the fourth time list The time length of the element is 2 symbols, for example, 1 subframe is taken as an example, and 1 frame is composed of 14 symbols, namely ⁇ #0, #1, #2, #3, #4, #5, #6,# 7, #8, #9, #10, #11, #12, #13 ⁇
  • the order of the time units included in the 1 subframe may be: the first time unit is located in the first symbol Set ⁇ #0, #1, #2 ⁇ , the second time unit is located in the second symbol set ⁇ #3, #4, #5 ⁇ , and the third time unit is located in the third symbol set ⁇ #6, #7, #8 ⁇ , the fourth time unit is located in the fourth symbol set ⁇ #9, #10 ⁇ .
  • one subframe may be configured according to the sorting 4, the sorting 5, or the sorting 7 in the time domain.
  • Four time units may be included; for a subframe that is not used for transmitting RS SRS, one subframe may be configured in one of seven sorts in the time domain, and may include four time units.
  • the foregoing “the last symbol in the subframe is used to transmit the SRS” refers to at least one of the following four cases: Case 1, the last symbol transmission of the terminal device in the subframe.
  • the subframe is a subframe configured with a cell-specific SRS, and the bandwidth occupied by the specific SRS of the cell and the bandwidth portion occupied by the data in the frequency domain Or all overlaps; or, in the third case, the subframe is a terminal device-specific aperiodic SRS subframe, and the terminal device may transmit the SRS on the last symbol of the subframe on the serving cell where the data is located; or Case 4: When the terminal device is configured with multiple timing advance groups (TAGs), the subframe is a terminal device-specific periodic SRS subframe, and the terminal device is located on the serving cell where the data is located. The SRS can be transmitted on the last symbol of the subframe.
  • TAGs timing advance groups
  • the PUCCH carries the HARQ feedback information, where the HARQ feedback information indicates the reception status of the PDSCH.
  • the PDCCH when considering that the first 1, 2, 3 or 4 symbols in the downlink subframe can be used.
  • the PDCCH is transmitted and there are multiple symbols for transmitting the PDCCH, the The number of resources that can be used for PDSCH transmission in the first time unit in the downlink subframe is small, and therefore, the number of users that can be scheduled in the first time unit is small, so that the first one in the downlink subframe
  • the first time unit in the uplink subframe corresponding to the time unit needs to transmit a PUCCH with a small number of users. Therefore, the length of the first time unit may be three symbols, for example, may be sorted in the time domain. Three or five configurations
  • One subframe includes four time units, that is, the first time unit of the second, third, or fifth order has a length of three symbols.
  • the physical control format indicates that the control format of the channel PCFICH bearer indicates CFI or higher layer signaling.
  • the number of indicated PDCCH symbols is 0 or 1
  • one subframe may be configured in the time domain according to the order one or the fourth order includes 4 time units; or the subframe includes 4 time units, and 1 slot contains 6 symbols.
  • the number of PDCCH symbols indicated by the CFI or the high layer signaling is 2, 3, or 4
  • one subframe may be configured in the time domain according to the order 2, the sort 3 or the sort 5 to include 4 time units.
  • the time domain resource occupied by the transmission resource determined by the network device in the time domain is one of the M time units included in one subframe.
  • the network device determines the one time unit according to the following method:
  • the one time unit is a time unit occupied by first downlink control information (DCI), and the first DCI may include information for indicating downlink data transmission.
  • the network device transmits the first DCI to the terminal device. or,
  • the one time unit is the Kth time unit after the time unit occupied by the second DCI, where K is an integer greater than or equal to 4, and the second DCI may include an implicit indication.
  • Information for uplink data transmission is the network device transmits a second DCI to the terminal device before, after or at the same time as determining the one time unit.
  • the PUCCH when the data transmission is a PUCCH transmission, the PUCCH carries HARQ feedback information, and the HARQ feedback information indicates a reception status of the PDSCH,
  • the one time unit is the Kth time unit after the time unit occupied by the second DCI, where K is an integer greater than or equal to 4, the second DCI includes information indicating PDSCH transmission; and, for example, when the data transmission For PUCCH transmission, the PUCCH carries HARQ feedback information, and the HARQ feedback information indicates a receiving state of downlink Semi-Persistent Scheduling (SPS) release signaling, where the one time unit is the time unit after the second DCI is occupied.
  • SPS Semi-Persistent Scheduling
  • the second DCI is a DCI for indicating SPS release signaling; and, for example, the data transmission is a PUSCH transmission, the one time unit being occupied by the second DCI
  • the network device transmits the second DCI on the first time unit in the subframe with the subframe number 0, and the network device can determine the subframe with the subframe number 1
  • the second DCI the network device may determine that the second time unit in the subframe with the subframe number 2 is the one time unit.
  • the one time unit is a Kth time unit after a time unit occupied by a physical hybrid ARQ indicator channel (PHICH), where K is greater than or equal to 4. Integer.
  • the network device transmits the PHICH to the terminal device.
  • the PUCCH when the data transmission is a PUCCH transmission, the PUCCH carries HARQ feedback information, where the HARQ feedback information indicates a reception status of the PDSCH, where the one time unit is a Kth time unit after a time unit occupied by the PDSCH, where K is An integer greater than or equal to 4.
  • the network device transmits the PDSCH to the terminal device before, after or at the same time as determining the one time unit.
  • the terminal device determines that the transmission resource for transmitting the data may include:
  • the time domain resource occupied by the transmission resource determined by the terminal device in the time domain is one of M time units included in one subframe. Specifically, the terminal device determines the one time unit according to the following method:
  • the terminal device receives the first DCI transmitted by the network device before or at the same time as determining the one time unit.
  • the one time unit is a time unit occupied by the first downlink control information (DCI), and the first DCI may include information used to indicate downlink data transmission; or
  • the terminal device Before determining the one time unit, the terminal device receives the second DCI sent by the network device.
  • the one time unit is the Kth time unit after the time unit occupied by the second DCI, where K is an integer greater than or equal to 4, and the second DCI may include an implicit indication.
  • Information for uplink data transmission is the Kth time unit after the time unit occupied by the second DCI, where K is an integer greater than or equal to 4, and the second DCI may include an implicit indication.
  • the terminal device receives the PHICH sent by the network device before or at the same time as determining the one time unit.
  • the one time unit is a Kth time unit after a time unit occupied by a Physical Hybrid ARQ indicator channel (PHICH), where K is an integer greater than or equal to 4.
  • PHICH Physical Hybrid ARQ indicator channel
  • the terminal device receives the PDSCH sent by the network device.
  • the PUCCH carries HARQ feedback information indicating a reception status of the PDSCH, where the one time unit is a Kth time unit after a time unit occupied by the PDSCH, where K is greater than or equal to 4 The integer.
  • the network device determines a transmission resource for transmitting the data (referred to as a first transmission resource for convenience of later description), and the time domain resource occupied in the time domain is one of M time units included in one subframe. Unit (referred to as the ith time unit here for convenience of description).
  • the network device may further determine a third transmission resource for transmitting the data, where the time domain resource occupied by the third transmission resource in the time domain is the jth time of the M time units included in one subframe. unit.
  • the first transmission resource and the third transmission resource carry the same data. Because in the third transmission resource Repeated transmission of the same data, so can improve the performance of data transmission, thereby increasing the coverage of data transmission.
  • the terminal device determines a transmission resource for transmitting the data (referred to as a first transmission resource for convenience of later description), and the time domain resource occupied in the time domain is M time units included in one subframe.
  • a time unit (referred to herein as the ith time unit for convenience of description).
  • the terminal device may further determine a third transmission resource for transmitting the data, where the time domain resource occupied by the third transmission resource in the time domain is the jth time of the M time units included in one subframe. unit.
  • the first transmission resource and the third transmission resource carry the same data.
  • j i+1, that is, the ith time unit is the previous time unit of the jth time unit.
  • the first transmission resource and the third transmission resource occupy different frequency domain resources, so that the frequency diversity gain can be obtained.
  • the first transmission resource occupies the first time unit in one subframe in the time domain, and the third transmission resource occupies the second time unit in the one subframe in the time domain; or
  • the first transmission resource occupies a third time unit in one subframe in the time domain, and the third transmission resource occupies a fourth time unit in the one subframe in the time domain.
  • the network device may send signaling to the terminal device, where the signaling includes information for indicating the third transmission resource, where the signaling is high layer signaling or physical layer signaling. It should be noted that the determination of the first transmission resource and the first transmission resource does not have a clear timing relationship.
  • the coverage of the transmission can be enhanced, and is particularly applicable to a scenario in which uplink coverage is limited due to limited transmission power of the terminal device.
  • the network device performing data transmission with the terminal device on the determined transmission resource may include:
  • the network device receives the uplink data sent by the terminal device on the transmission resource;
  • the network device sets to the terminal on the transmission resource.
  • the downstream data is sent.
  • the terminal device when the data transmission is uplink data transmission, the terminal device sends uplink data to the network device on the transmission resource; or, when the data transmission is downlink data transmission, the terminal device receives the network on the transmission resource.
  • the downlink data sent by the device when the data transmission is uplink data transmission, the terminal device sends uplink data to the network device on the transmission resource; or, when the data transmission is downlink data transmission, the terminal device receives the network on the transmission resource.
  • the network device When the terminal device supports carrier aggregation, the network device also determines a second transmission resource condition for transmitting the second data, as follows:
  • the network device receives the first uplink data sent by the terminal device on the first transmission resource, and receives the second uplink data on the second transmission resource.
  • the second uplink data sent by the terminal device or
  • the network device sends the first downlink data to the terminal device on the first transmission resource, where the second downlink resource The second downlink data is sent to the terminal device.
  • the terminal device when the first data is the first uplink data and the second data is the second uplink data, the terminal device sends the first uplink data to the network device on the first transmission resource, where the second uplink resource is Sending second uplink data to the network device; or
  • the terminal device receives the first downlink data sent by the network device on the first transmission resource, where the second transmission is performed.
  • the resource receives the second downlink data sent by the network device.
  • the third transmission resource condition for transmitting the data is also determined for the network device, and the step 102 may include:
  • the network device receives the uplink data sent by the terminal device on the first transmission resource and the third transmission resource;
  • the network device When the data transmission is downlink data transmission, the network device sends the downlink data to the terminal device on the first transmission resource and the third transmission resource.
  • the terminal device also determines a third transmission resource condition for transmitting the data, and when the data transmission is uplink data transmission, the terminal device is in the first transmission resource and the third transmission resource. Sending uplink data on the uplink; or, when the data transmission is downlink data transmission, the terminal device receives the downlink data on the first transmission resource and the third transmission resource.
  • An embodiment of the present invention is mainly used by a network device to determine a transmission resource for transmitting the data, and the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any of the N time domain resources
  • the time length of a time domain resource is less than 1 millisecond. Compared with a transmission that can only support one time length equal to 1 millisecond, at least one time domain resource less than 1 ms is introduced, so that the transmission time interval is shortened, which can effectively reduce Data transmission delays to meet the needs of low latency services.
  • FIG. 15 is a network device, which may be used to perform the method shown in FIG. 1 , where the network device includes a processing unit 1501 and a transceiver unit 1502.
  • the processing unit 1501 is configured to determine a transmission resource that transmits the data, where the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and any one of the N time domain resources.
  • the time domain resource has a duration of less than 1 millisecond, where N is a positive integer.
  • the transceiver unit 1502 is configured to perform data transmission with the terminal device on the transmission resource determined by the processing unit.
  • the N time domain resources include at least one time domain resource of a time length of 1 symbol, 2 symbols, 3 symbols, 4 symbols, or 1 slot.
  • the time slots include 6 or 7 symbols.
  • the data transmitted by the transceiver unit 1502 includes a physical channel and a physical signal, where the physical signal and the physical channel are respectively located at the Different symbols in the two symbols.
  • the specific process and beneficial effects please refer to the example shown in FIG. 2 above. It should be understood that these cases are merely examples of the embodiments of the present invention, and the present invention is not limited thereto.
  • the 4 symbols include: Symbols for transmitting physical signals and 4- Symbols for transmitting physical channels, Less than 4.
  • the two symbols for transmitting physical signals are located in the middle 2 symbols or the first 2 symbols within the 4 symbols; or when When it is equal to 1, the one symbol for transmitting the physical signal is located in the first symbol or the second symbol in the four symbols.
  • the 3 symbols include: Symbols for transmitting physical signals and 3- a symbol for transmitting a physical channel, Less than 3.
  • the 3 symbols include: Symbols for transmitting physical signals and 3- a symbol for transmitting a physical channel, Less than 3.
  • the two symbols for transmitting physical signals may be located in the first two symbols within the three symbols; or, when When it is equal to 1, the one symbol for transmitting the physical signal is located in the first symbol or the second symbol in the three symbols.
  • the 2 symbols include 1 symbol for transmitting a physical signal, where the 1 symbol for transmitting the physical signal is located.
  • the first symbol or the second symbol within two symbols.
  • the 1 symbol is used to transmit the physical channel.
  • the transmission resource determined by the processing unit 1501 occupies 1 slot in the time domain: when 1 slot contains 7 symbols, the 1 slot includes Symbols used to transmit physical signals and a symbol for transmitting a physical channel, Less than 7; or when 1 slot contains 6 symbols, the 1 slot includes Symbols used to transmit physical signals and a symbol for transmitting a physical channel, Less than 6.
  • the processing resource determined by the processing unit 1501 includes at least two REs, where the data includes a physical signal and a physical channel, and the physical channel and the physical signal are located in different REs.
  • the data includes a physical signal and a physical channel
  • the physical channel and the physical signal are located in different REs.
  • the transmission resource determined by the processing unit 1501 includes at least one short resource block, and any one of the at least one short resource block includes REs occupying continuous frequency in the frequency domain Subcarriers occupy consecutive N sym symbols in the time domain, the N sym being equal to the number of symbols occupied by the transmission resource in the time domain, the N sym sum Is a positive integer; includes any one of the short resource blocks RE for transmitting the physical signal, the The REs for transmitting the physical signal are discontinuously distributed or comb-shaped in the frequency domain, Is a positive integer.
  • the time domain resource occupied by the transmission resource determined by the processing unit 1501 in the time domain is one time unit of M time units included in one subframe, and any one of the M time units Is one of the N time domain resources.
  • any one of the M time units Is one of the N time domain resources.
  • the four time units included in the one subframe are the first time unit, the second time unit, the third time unit, and the fourth time unit, respectively.
  • the four time units included in the one subframe are similar to those in the foregoing method embodiment, and are not described herein again.
  • the four time units included in the one subframe include: for the uplink transmission, when the last symbol in the one subframe is used to transmit the sounding RS SRS, the four time units included in the one subframe are Sorting in the time domain according to the foregoing description, sorting five or sorting seven configurations; or, the four time units included in the one subframe include: when one slot contains 7 symbols, when the physical control format indicates the channel PCFICH bearer Control format indicating CFI or higher layer signaling When the number of PDCCH symbols is 0 or 1, the four time units included in the one subframe are arranged in the time domain according to the order one or the fourth order; or when one slot contains 7 symbols, when the CFI or the high layer signaling indicates the PDCCH When the number of symbols is 2, 3 or 4, the 4 time units included in the one subframe are arranged in the time domain according to the foregoing ordering 2, sorting three or sorting five configurations.
  • the processing unit 1501 is specifically configured to: determine the transmission resource.
  • One of the M time units is occupied in the time domain.
  • the one time unit determined by the processing unit 1501 is a time unit occupied by the first DCI, and the first DCI includes information for indicating downlink data transmission.
  • the one time unit determined by the processing unit 1501 is the Kth time unit after the time unit occupied by the second DCI, where K is greater than or equal to An integer of 4, the second DCI including information for implicitly indicating uplink data transmission.
  • the transceiver unit 1502 is specifically configured to: when the data transmission is uplink data transmission, receive uplink data sent by the terminal device on the transmission resource determined by the processing unit 1501; or when the data transmission is downlink data. At the time of transmission, the downlink data is transmitted to the terminal device on the transmission resource determined by the processing unit 1501.
  • the lengths of the at least two time domain resources of the N time domain resources are unequal.
  • FIG. 15 is a schematic diagram of a possible structure of a network device involved in the foregoing embodiment.
  • the network device includes a processing unit 1501 and a transceiver unit 1502.
  • the processing unit according to the embodiment of the present invention corresponds to
  • the physical device may be a processor, and the physical device corresponding to the transceiver unit involved in the embodiment of the present invention may also be a transceiver.
  • the processor and transceiver only show a simplified design of the network device, in which the network device can include any number of transceivers, processors, controllers, memories, etc., all of which can implement the present invention. Network devices are within the scope of the present invention.
  • FIG. 16 is a schematic diagram of a terminal device, which may be used to perform the method shown in FIG. 1 .
  • the network device includes a processing unit 1601 and a transceiver unit 1602.
  • the processing unit 1601 is configured to determine a transmission resource that transmits the data, where the time domain resource occupied by the transmission resource in the time domain is one of N time domain resources, and the N time domain resources are The length of any one of the time domain resources is less than 1 millisecond, where N is a positive integer;
  • the transceiver unit 1602 is configured to perform data transmission with the network device on the transmission resource determined by the processing unit.
  • the N time domain resources include at least one time domain resource of a time length of 1 symbol, 2 symbols, 3 symbols, 4 symbols, or 1 slot.
  • the one time slot includes six or seven symbols.
  • the data transmitted by the transceiver unit 1602 includes a physical channel and a physical signal, the physical signal and the physical channel. Different symbols located in the at least two symbols, respectively.
  • the specific process and beneficial effects please refer to the example shown in FIG. 2 above. It should be understood that these cases are merely examples of the embodiments of the present invention, and the present invention is not limited thereto.
  • the 4 symbols include: Symbols for transmitting physical signals and 4-described Symbol for transmitting a physical channel, Less than 4.
  • the two symbols for transmitting physical signals are located in the middle 2 symbols or the first 2 symbols within the 4 symbols; or when When it is equal to 1, the one symbol for transmitting the physical signal is located in the first symbol or the second symbol in the four symbols.
  • the 3 symbols include: Symbols for transmitting physical signals and 3-described Symbol for transmitting a physical channel, Less than 3.
  • the 3 symbols include: Symbols for transmitting physical signals and 3-described Symbol for transmitting a physical channel, Less than 3.
  • the one symbol for transmitting the physical signal is located in the first symbol or the second symbol in the three symbols; or, when When equal to 2, the two symbols for transmitting physical signals may be located in the first two symbols within the three symbols;
  • the 2 symbols include 1 symbol for transmitting a physical signal, and the 1 symbol is used for transmitting a physical signal.
  • the symbol is located in the first symbol or the second symbol within the two symbols.
  • the 1 symbol is used to transmit a physical channel.
  • the transmission resource determined by the processing unit 1601 occupies 1 slot in the time domain: when 1 slot contains 7 symbols, the 1 slot includes Symbols used to transmit physical signals and Symbol for transmitting a physical channel, Less than 7; or when 1 slot contains 6 symbols, the 1 slot includes Symbols used to transmit physical signals and Symbol for transmitting a physical channel, Less than 6.
  • the foregoing solution from the time domain describes that the N time domain resources may include at least one symbol, two symbols, three symbols, four symbols, or one slot.
  • a time domain resource, the 1 time slot may include 6 or 7 symbols, and another case is introduced from the perspective of a frequency domain, that is, the data may include a physical signal and a physical channel, and the physical channel And the physical signal is located in a different RE of the transmission resource.
  • the data may include a physical signal and a physical channel, and the physical channel And the physical signal is located in a different RE of the transmission resource.
  • FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10, FIG. 11, FIG. 12 or FIG. 13 it can be understood that these cases are only the present invention.
  • the invention includes and is not limited thereto.
  • the transmission resource determined by the processing unit 1601 includes at least one short resource block, and any one of the at least one short resource block includes: REs occupying continuous frequency in the frequency domain Subcarriers occupying consecutive N sym symbols in the time domain, the N sym being equal to the number of symbols occupied by the transmission resource in the time domain, the N sym sum Is a positive integer; includes any one of the short resource blocks RE for transmitting the physical signal, The REs for transmitting the physical signals are discontinuously distributed or comb-shaped in the frequency domain, Is a positive integer.
  • the time domain resource occupied by the transmission resource determined by the processing unit 1601 in the time domain is one of M time units included in one subframe, and any one of the M time units.
  • the time unit is one of the N time domain resources.
  • the four time units included are the same as those in the foregoing method embodiments, and are not described here.
  • the four time units included in the one subframe include: for uplink transmission, when the last symbol in the one subframe is used to transmit the sounding RS SRS, the four subframes include four
  • the time units are sorted in the time domain according to the foregoing description by four, sorted five or sorted seven configurations.
  • the four time units included in the one subframe include: when one slot contains 7 symbols, when the physical control format indicates that the control format of the channel PCFICH bearer indicates that the number of PDCCH symbols indicated by the CFI or the high layer signaling is When 0 or 1, the four time units included in the one subframe are arranged in the time domain according to the order one or the fourth order; or when one slot contains 7 symbols, when the number of PDCCH symbols indicated by the CFI or the high layer signaling is 2, 3 or 4, the four time units included in the one subframe are arranged in the time domain according to the foregoing ordering, sorting three or sorting five configurations.
  • the processing unit 1601 is specifically configured to: determine that the transmission resource occupies one time unit of the M time units in the time domain.
  • the location of the transmission resource is limited to one subframe, and thus is not distributed over two subframes, thereby avoiding the complexity of increasing the scheduler of the device.
  • the one time unit determined by the processing unit 1601 is a time unit occupied by the first DCI, and the first The DCI includes information for indicating downlink data transmission; or, when the data transmission by the transceiver unit 1602 is uplink data transmission, the one time unit determined by the processing unit 1601 is after the time unit occupied by the second DCI.
  • the transceiver unit 1602 is specifically configured to: when the data transmission is uplink data transmission, receive the uplink data sent by the terminal device on the transmission resource determined by the processing unit 1601; or, when When the data transmission is downlink data transmission, the downlink data is sent to the terminal device on the transmission resource determined by the processing unit 1601.
  • the time lengths of at least two of the N time domain resources are not equal. This makes it possible to occupy time domain resources more efficiently.
  • FIG. 16 is a schematic diagram of a possible structure of a terminal device involved in the foregoing embodiment, where the terminal device includes a processing unit and a transceiver unit, wherein, in particular, the entity corresponding to the processing unit involved in the embodiment of the present invention is required.
  • the device may be a processor, and the physical device corresponding to the transceiver unit involved in the embodiment of the present invention may also be a transceiver. It can be understood that the processor and the transceiver unit only show a simplified design of the terminal device. In practical applications, the terminal device can include any number of transceivers, processors, controllers, memories, etc., and all can implement the present invention.
  • the terminal devices are all within the scope of the present invention.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及移动通信领域,尤其涉及无线通信系统中的传输资源确定技术。在一种数据传输方法中,网络设备通过确定用于传输该数据的传输资源,该网络设备在确定的该传输资源上,与终端设备进行数据传输。其中,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒。采用这种方法,可有效降低数据传输时延,从而可以满足低时延业务的需求。

Description

数据传输方法及装置 技术领域
本发明涉及通信技术领域,尤指一种数据传输方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)系统中,一个子帧的时长为1毫秒(ms),每个子帧又被分为两个0.5ms的时隙(slot)。LTE系统中,传输时间间隔(transmission time interval,TTI)为一个子帧的长度。例如,承载下行数据的物理下行共享信道(physical downlink shared channel,PDSCH),承载上行数据的物理上行共享信道(physical uplink shared channel,PUSCH)和承载应答消息(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)的物理上行控制信道(physical uplink control channel,PUCCH)都是按照1个子帧的TTI长度进行设计。
无线通信系统中,时延(latency)是影响用户体验的重要因素之一,但是,现有的TTI的传输机制已无法满足低时延业务的需求。
发明内容
本发明提供了一种数据通信方法和装置,用以满足低时延业务的需求。
一方面,本申请的实施例提供了一种网络设备,包括:处理单元,用于确定传输所述数据的传输资源,所述传输资源在时域上占用的时域资源为N种时域资源中的一种,所述N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数;收发单元,用于在所述处理单元确定的所述传输资源上,与终端设备进行数据传输。
另一方面,本申请的实施例提供了一种数据传输方法,包括:
网络设备确定用于传输所述数据的传输资源,所述传输资源在时域上占用的时域资源为N种时域资源中的一种,所述N种时域资源中的任一种时域资 源的时间长度小于1毫秒,其中,N为正整数;所述网络设备在确定的所述传输资源上,与终端设备进行数据传输。
另一方面,本申请的实施例提供了一种终端设备,包括:处理单元,用于确定传输所述数据的传输资源,所述传输资源在时域上占用的时域资源为N种时域资源中的一种,所述N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数;收发单元,用于在所述处理单元确定的所述传输资源上,与网络设备进行数据传输。
另一方面,本申请的实施例提供了一种数据传输方法,包括:
终端设备确定用于传输所述数据的传输资源,所述传输资源在时域上占用的时域资源为N种时域资源中的一种,所述N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数;所述终端设备在确定的所述传输资源上,与网络设备进行数据传输。
与现有只能支持一种时间长度等于1毫秒的传输相比,引入至少一种小于1ms的时域资源,使传输时间间隔缩短,因此,可有效降低数据传输时延,从而可以满足低时延业务的需求。
在上述本申请提供的实施例,在一个可能的设计中,上述处理单元可以是处理器,收发单元可以是收发器。
在上述本申请提供的实施例,在一个可能的设计中,所述N种时域资源包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,所述1个时隙包括6个或7个符号。
在上述本申请提供的实施例,在一个可能的设计中,当传输资源在时域上占用至少2个符号时,所述收发单元传输的数据包括物理信道和物理信号,所述物理信号和所述物理信道分别位于所述至少两个符号中的不同符号。也就是说,在网络设备与终端设备之间进行上行传输时,因为物理信道和物理信号是时分的,即占用不同的符号,所以可以保持上行的单载波特性,从而不影响功放效率,特别适合于上行功率受限的场景。
在上述本申请提供的实施例,在一个可能的设计中,当所述传输资源在时域上占用4个符号时,所述4个符号包括:
Figure PCTCN2015090556-appb-000001
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000002
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000003
小于4。
在上述本申请提供的实施例,在一个可能的设计中,上述提到的4个符号中,当所述
Figure PCTCN2015090556-appb-000004
等于2时,所述2个用于传输物理信号的符号位于所述4个符号内的中间2个符号或前2个符号;或者当所述
Figure PCTCN2015090556-appb-000005
等于1时,所述1个用于传输物理信号的符号位于所述4个符号内的第1个符号或第2个符号。因为传输物理信号的符号位于4个符号的前面,从而更快的根据物理信号进行信道估计。
在上述本申请提供的实施例,在一个可能的设计中,当所述传输资源在时域上占用3个符号时,所述3个符号包括:
Figure PCTCN2015090556-appb-000006
个用于传输物理信号的符号和3-所述
Figure PCTCN2015090556-appb-000007
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000008
小于3。
在上述本申请提供的实施例,在一个可能的设计中,上述提到的所述3个符号中,当所述
Figure PCTCN2015090556-appb-000009
等于1时,所述1个用于传输物理信号的符号位于所述3个符号内的第1个符号或第2个符号。
在上述本申请提供的实施例,在一个可能的设计中,当所述处理单元确定的传输资源在时域上占用2个符号时,所述2个符号包括1个用于传输物理信号的符号,所述1个用于传输物理信号的符号位于所述2个符号内的第1个符号或第2个符号。
在上述本申请提供的实施例,在一个可能的设计中,当所述确定的传输资源在时域上占用1个符号时,所述1个符号用于传输物理信道。
在上述本申请提供的实施例,在一个可能的设计中,如果所述处理单元确定的传输资源在时域上占用1个slot:当1个slot包含7个符号时,所述1个slot包括
Figure PCTCN2015090556-appb-000010
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000011
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000012
小于7;或者当1个slot包含6个符号时,所述1个slot包括
Figure PCTCN2015090556-appb-000013
个 用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000014
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000015
小于6。
在上述本申请提供的实施例,在一个可能的设计中,所述数据可以包括物理信号和物理信道,所述物理信道和所述物理信号位于所述传输资源中的不同的资源粒度RE。采用这种设计,可以减少物理信号的开销,但是因为物理信道和物理信号是频分的,因而不具备单载波特性,所以适合进行下行传输和功率不受限的上行传输的场景。另外,物理信号包括的RE数多时,即物理信号开销大时,信道估计的准确度较高,适合于高速场景;物理信号包括的RE数少时,即物理信号开销小时,可用于传输物理信道的资源较多,适合于低速场景。
在上述本申请提供的实施例,在一个可能的设计中,所述确定的传输资源包括至少一个短资源块,所述至少一个短资源块中任意一个短资源块包括
Figure PCTCN2015090556-appb-000016
个RE,在频域上占用连续的
Figure PCTCN2015090556-appb-000017
个子载波,在时域上占用连续的Nsym个符号,所述Nsym等于所述传输资源在时域上占用的符号数,所述Nsym
Figure PCTCN2015090556-appb-000018
为正整数;所述任意一个短资源块中包括
Figure PCTCN2015090556-appb-000019
个用于传输所述物理信号的RE,所述
Figure PCTCN2015090556-appb-000020
个用于传输所述物理信号的RE在频域上是非连续分布或者是梳齿状分布,所述
Figure PCTCN2015090556-appb-000021
为正整数。
在上述本申请提供的实施例,在一个可能的设计中,所述确定的传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元,所述M个时间单元中任一个时间单元为所述N种时域资源中的一种。
在上述本申请提供的实施例,在一个可能的设计中,所述一个子帧中包含M=4个时间单元时,所述4个时间单元依次为第一时间单元、第二时间单元、第三时间单元和第四时间单元,所述一个子帧中包含的4个时间单元包括:
排序一:所述第一时间单元的时间长度为4个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为4个符号,所述第四时 间单元的时间长度为3个符号;或者,排序二:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为4个符号;或者,排序三:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为4个符号,所述第四时间单元的时间长度为3个符号;或者,排序四:所述第一时间单元的时间长度为4个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者,排序五:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者,排序六:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者,排序七:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为2个符号。
在上述本申请提供的实施例,在一个可能的设计中,所述一个子帧中包含的4个时间单元包括:对于上行传输,当所述一个子帧中的最后一个符号用于传输探测RS SRS时,所述一个子帧包含的4个时间单元在时域上按照排序四、排序五或排序七配置。
在上述本申请提供的实施例,在一个可能的设计中,所述一个子帧中包含的4个时间单元包括:当1个slot包含7个符号时,当物理控制格式指示信道PCFICH承载的控制格式指示CFI或者高层信令指示的PDCCH符号数为0或1时,所述一个子帧包含的4个时间单元在时间域按照排序一或排序四配置;或者当1个slot包含7个符号时,当CFI或者高层信令指示的PDCCH符号数为2、3或4时,所述一个子帧包含的4个时间单元在时间域按照排序二、排序三或排序五 配置。
在上述本申请提供的实施例,在一个可能的设计中,确定所述传输资源在时域上占用M个时间单元中的一个时间单元。从而使传输资源的位置被限定在一个子帧中,因而不会分布在两个子帧上,避免了增加本装置调度器的复杂度。
在上述本申请提供的实施例,在一个可能的设计中,当N大于等于2时,所述N种时域资源中至少两种时域资源的时间长度不相等。从而可以更高效的占用时域资源。
附图说明
图1为本发明实施例提供的一种数据传输方法的流程示意图;
图2为本发明实施例提供的传输资源在时域上占用4个符号的结构示意图;
图3为本发明实施例提供的传输资源在时域上占用3个符号的结构示意图;
图4为本发明实施例提供的传输资源在时域上占用2个符号的结构示意图;
图5为本发明实施例提供的传输资源包括2或4个RE的一种结构示意图;
图6为本发明实施例提供的短资源块中RE的一种结构示意图;
图7为本发明实施例提供的短资源块中RE的另一种结构示意图;
图8为本发明实施例提供的短资源块中RE的另一种结构示意图;
图9为本发明实施例提供的短资源块中RE的另一种结构示意图;
图10为本发明实施例提供的短资源块中RE的另一种结构示意图;
图11为本发明实施例提供的短资源块中RE的另一种结构示意图;
图12为本发明实施例提供的短资源块中RE的另一种结构示意图;
图13为本发明实施例提供的短资源块中RE的另一种结构示意图;
图14为本发明实施例中传输资源在一个子帧中位置的结构示意图;
图15为本发明实施例提供的一种网络设备的结构示意图;
图16为本发明实施例提供的另一种终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
虽然在前述背景技术部分以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本发明不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications Systemc,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,以及新的网络系统等。下面以LTE系统为例进行具体实施例的介绍。
本发明实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote  Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本发明实施例所涉及的网络设备,可以是基站,或者接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本申请并不限定。
对于现有技术而言,LTE系统中,每个无线帧由10个1毫秒(ms)长度的子帧组成,每个子帧可以包括2个时隙(slot)。对于普通循环前缀(normal cyclic prefix,normal CP),1个slot由7个符号组成;对于扩展循环前缀(extended cyclic prefix,extended CP),1个slot由6个符号组成。换言之,对于normal CP,每个子帧由14个符号组成,对于extended CP,每个子帧由12个符号组成。
其中,符号分为上行符号和下行符号,上行符号称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号,下行符号称为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。需要说明的是,若后续技术引入正交频分多址接入(orthogonal frequency division multiple access,OFDMA)的上行多址方式,上行符号也可以称为OFDM符号。而在本发明实施例中,上行符号和下行符号都简称为符号,在此不再赘述。
本发明实施例中所涉及的物理信道承载来自高层的数据信息,该物理信道可以为物理上行共享信道(physical uplink share channel,PUSCH)、物 理上行控制信道(physical uplink control channel,PUCCH)或物理下行共享信道(physical downlink shared channel,PDSCH)。本发明实施例所涉及的物理信号用于物理层,不承载来自高层的数据信息,该物理信号可以为参考信号(Reference Signal,RS),例如用于上行的解调参考信号(Demodulation Reference Signal,DMRS)、用于下行的小区特定参考信号(Cell-specific Reference Signal,CRS)、用于下行的终端设备特定参考信号(UE-specific Reference Signal,URS)或用于下行的组特定参考信号(Group-specific Reference Signal,GRS)。其中,用于PUCCH解调的DMRS称为PUCCH DMRS,用于PUSCH解调的DMRS称为PUSCH DMRS。其中,CRS是网络设备配置给小区内的所有终端设备的RS,GRS是网络设备配置给一组终端设备的RS,URS是配置给一个特定终端设备的RS。下述提及的物理信号与物理信道类似,不一一举例说明。
下面结合附图在各具体实施例中对各种可能的实现方式进行介绍。
本发明描述的技术可以适用于LTE系统,或其他采用各种无线技术的无线通信系统。此外还适用于使用LTE系统后续的演进系统,如第五代5G系统等。为了清楚起见,这里仅以LTE系统为例进行说明,在LTE系统中,网络设备和终端设备之间进行数据传输。例如,LTE系统中,为了减小时延,引入了短TTI数据传输(即小于1ms的数据传输),所以本发明所有实施例都应用于网络设备和终端设备之间进行短TTI数据数据传输。又例如,5G(Generation)系统中,每个子帧的传输时间小于1ms,进而数据传输至少小于1ms,所以本发明所有实施例都应用于网络设备和终端设备之间进行小于1ms的数据数据传输。
本发明的一个实施例是网络设备确定传输数据的传输资源,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,与现有只能支持一种时间长度等于1毫秒的传输相比,引入至少一种小于1ms的时域资源,使传输时间间隔缩短,可有效降低数据传输时延,从而可以满足低时延业务的需求。
需要特别说明的是,该N种时域资源可以是网络设备与终端设备预先定义好的;或者是协议规定的;或者是网络设备配置的,然后通过信令通知给终端设备的。配置N种不同的时域资源,可以满足不同系统带宽,不同系统负荷,不同覆盖需求,不同用户位置或不同业务种类的需求。
如图1所示,本实施例提供了一种数据传输方法,该方法可以包括以下步骤。
步骤101、网络设备确定用于传输该数据的传输资源,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数。
需要特别说明的是,当N大于等于2时,本发明实施例所涉及的N种时域资源可以包括N种时间长度都小于1毫秒的时域资源;或者,该N种时域资源可以包括至少一种时间长度小于1毫秒的时域资源;或者,该N种时域资源可以包括至少两种时间长度不相等的时域资源。与现有只能支持一种时间长度等于1毫秒的传输相比,引入至少一种小于1ms的时域资源,使传输时间间隔缩短,对于一个终端设备,当N大于等于2时,可以在1ms内进行至少两次调度,因此,可有效降低数据传输时延。
网络设备可以根据系统带宽、负荷、覆盖需求、用户位置或业务种类等,自适应地确定传输资源在时域上占用的时域资源,以适配系统增益(带宽越小,短TTI数据传输增益越少),系统开销(带宽越小,短TTI数据传输中开销占比越大),覆盖需求(越边缘用户,短TTI数据传输覆盖越受限),或QoS需求(小时延业务)。例如:网络设备为不同的终端设备、不同的业务、不同的负载或不同的覆盖场景配置的传输资源在时域上占用的时域资源不同。可选地,网络设备可以通过高层信令或物理层信令通知终端设备可被配置的时域资源为N种时域资源中的哪一种或哪几种。需要说明的是,网络设备可以根据需要适时变更可被配置的时域资源。进一步地,网络设备确定用于传输 该数据的传输资源在时域上占用的时域资源为可被配置的时域资源中的一种。
相应的,终端设备也需要确定传输该数据的传输资源,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数。或者,终端设备也需要确定传输该数据的传输资源,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的至少一种时域资源的时间长度小于1毫秒,其中,N为正整数。可选地,所述终端设备可以根据网络设备发送的高层信令或物理层信令确定传输数据的传输资源为可被配置的时域资源中的一种,其中,该高层信令或物理层信令指示可被配置的时域资源为N种时域资源中的哪一种或哪几种。可选地,终端设备也可以向网络设备上报信息,该信息指示该终端设备希望使用N种时域资源中的哪一种或哪几种。然后,网络设备根据该信息配置该传输资源在时域上占用的时域资源为N种时域资源中的一种。
在具体实现时,终端设备可能需要同时接收或发送不同时延需求的业务,如果不同时延需求的业务都在一个服务小区上传输,一方面,会导致网络设备的调度器非常复杂,另一方面,也很难满足小时延业务的时延需求。
为了解决这个技术问题,本发明实施例提供了如下技术方案:
当终端设备支持载波聚合(carrier aggregation,CA)时,网络设备确定用于传输第一数据的第一传输资源,该第一传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数,该第一传输资源位于第一服务小区(serving cell);网络设备确定用于传输第二数据的第二传输资源,第二传输资源在时域上占用1ms或1个子帧,第二传输资源位于第二服务小区。其中,第一服务小区和第二服务小区位于不同的载波,即第一传输资源位于第一载波,第二传输资源位于第二载波,终端设备可以同时接收第一服务小区 上的第一数据和第二服务小区上的第二数据,即可以同时接收第一载波上的第一数据和第二载波上的第二数据。需要说明的是,本发明实施例所提供的所有方案都适用于第一数据和第一传输资源。
相应的,当终端设备支持载波聚合时,终端设备确定用于传输第一数据的第一传输资源,该第一传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数,该第一传输资源位于第一服务小区(serving cell);终端设备确定用于传输第二数据的第二传输资源,第二传输资源在时域上占用1ms或1个子帧,第二传输资源位于第二服务小区。
通过采用上述方案,网络设备的调度更简单且更具灵活性,即可以在不同的服务小区配置不同时延需求的业务,例如,网络设备可以把小时延业务配置在第一服务小区,把非小时延业务配置在第二服务小区。
步骤102、该网络设备在确定的该传输资源上,与终端设备进行数据传输。
具体为,当该数据为上行数据时,该网络设备在该传输资源上接收该终端设备发送的上行数据;或者当该数据为下行数据时,该网络设备在该传输资源上向该终端设备发送所述下行数据。
相应的,终端设备确定用于传输该数据的传输资源后,当该数据为上行数据时,该终端设备在该传输资源上发送该上行数据;或者当该数据为下行数据时,该终端设备在该传输资源上接收网络设备发送的下行数据。
通过上述处理,网络设备确定传输该数据的传输资源,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,与现有只能支持一种时间长度等于1毫秒的传输相比,引入至少一种小于1ms的时域资源,使传输时间间隔缩短,可有效降低数据传输时延,从而满足低时延业务的需求。
下面对上述实施例的一些具体实现方案进行详细描述。网络设备通过下述方式,确定用于传输该数据的传输资源,终端设备也通过下述方式,确定 用于传输该数据的传输资源,具体情况如下:
前述提到的该N种时域资源可以包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,该1个时隙可以包括6个或7个符号。例如,当N等于2时,该2种时域资源可以包括时间长度为3个符号的时域资源和时间长度为4个符号的时域资源。例如,当N等于1时,该1种时域资源为时间长度可以为1个符号、2个符号、3个符号、4个符号或1个时隙的时域资源。下面举例对传输资源的一些情况进行描述。或者,前述提到的该N种时域资源可以包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)或1个子帧中至少一种时域资源。或者,前述提到的该N种时域资源可以包括时间长度为d ms或1ms中至少一种时域资源,其中,d小于1且大于0。
一种情况是,当该传输资源在时域上可以占用至少2个符号时,该数据可以包括物理信道和物理信号,该物理信号和该物理信道分别位于该至少两个符号中的不同符号。也就是说,在网络设备与终端设备之间进行上行传输时,因为物理信道和物理信号是时分的,即占用不同的符号,所以可以保持上行的单载波特性,特别适合于上行功率受限的场景。
具体的,例如,针对该传输资源在时域上占用至少2个符号的场景,对于PUCCH传输,该数据可以包括PUCCH和PUCCH DMRS,该PUCCH和PUCCH DMRS位于不同的符号;或者,对于PUSCH传输,该数据可以包括PUSCH和PUSCH DMRS,该PUSCH和PUSCH DMRS位于不同的符号。上述仅是本发明实施例所举的例子,本发明包括并不限于此。
在一个示例中,当确定用于传输该数据的传输资源在时域上占用4个符号时,该4个符号可以包括:
Figure PCTCN2015090556-appb-000022
个用于传输物理信号的符号和4-该
Figure PCTCN2015090556-appb-000023
个用于传输物理信道的符号,该
Figure PCTCN2015090556-appb-000024
小于4。
具体的,如图2中(a)或(b)所示,当该
Figure PCTCN2015090556-appb-000025
等于2时,该2个用于传 输物理信号的符号可以位于该4个符号内的中间2个符号或前2个符号;或者如图2中(c)或(d)所示,当该
Figure PCTCN2015090556-appb-000026
等于1时,该1个用于传输物理信号的符号可以位于该4个符号内的第1个符号或第2个符号。当传输物理信号的符号位于下述举例的各个符号中靠前位置时,能够可以更快地根据参考信号进行信道估计。需要说明的是,该4个符号为该传输资源在时域上占用的4个符号。
如上所述,当数据传输为PUCCH传输,且PUCCH承载的数据为混合自动重传请求(hybrid automatic repeat request,HARQ)信息时,可选地,
Figure PCTCN2015090556-appb-000027
等于2,即该4个符号可以包括2个用于传输PUCCH DMRS的符号和2个用于传输PUCCH的符号。这样,对于一个短资源块(short resource block,SRB),最大可以复用12个终端设备的PUCCH传输(因为PUCCH和PUCCHDMRS在时域都占用2个符号,所以时域可以有2个正交码,而频域有6个移位序列,所以总共支持2x6=12个正交资源)。
可选的,当
Figure PCTCN2015090556-appb-000028
等于1或3时,一个SRB上最大只能复用6个终端设备的PUCCH传输(因为PUCCH或PUCCHDMRS在时域只占用1个符号,进而时域只有1个正交码,而频域有6个移位序列,所以总共支持1x6=6个正交资源)。
如上所述,当数据传输为PUCCH传输,且PUCCH承载的数据为信道状态信息(channel state information,CSI)时,可选地,
Figure PCTCN2015090556-appb-000029
等于1,即该4个符号可以包括1个用于传输PUCCH DMRS的符号和3个用于传输PUCCH的符号,采用这种方式,可以使PUCCH上承载更多比特的CSI。
如上所述,当数据传输为PUSCH传输时,可选地,
Figure PCTCN2015090556-appb-000030
等于1,即该4个符号可以包括1个用于传输PUSCH DMRS的符号和3个用于传输PUSCH的符号,采用这种方式,可以使PUSCH上可以承载更多比特的数据。
在另一个示例中,确定用于传输该数据的传输资源在时域上占用3个符号时,该3个符号包括:
Figure PCTCN2015090556-appb-000031
个用于传输物理信号的符号和3-该
Figure PCTCN2015090556-appb-000032
个用于 传输物理信道的符号,该
Figure PCTCN2015090556-appb-000033
小于3。
具体的,如图3中的(a)所示,当该
Figure PCTCN2015090556-appb-000034
等于2时,该2个用于传输物理信号的符号可以位于该3个符号内的前2个符号;或者如图3中的(b)或(c)所示,当该
Figure PCTCN2015090556-appb-000035
等于1时,该1个用于传输物理信号的符号位于该3个符号内的第2个符号或第1个符号。需要说明的是,该3个符号为该传输资源在时域上占用的3个符号。
如上所述,当数据传输为PUCCH传输,且PUCCH承载的数据为HARQ信息或者CSI时,优选地,该
Figure PCTCN2015090556-appb-000036
等于1,即该3个符号可以包括1个用于传输PUCCH DMRS的符号和2个用于传输PUCCH的符号,采用这种方式,对于一个短资源块,最大可以复用6个终端设备的PUCCH传输(因为PUCCH DMRS在时域只占用1个符号,进而时域只有1个正交码,而频域有6个移位序列,所以总共支持1x6=6个正交资源),从而使PUCCH上可以承载更多比特的CSI或HARQ反馈信息。
如上所述,当数据传输为PUSCH传输时,优选地,
Figure PCTCN2015090556-appb-000037
等于1,即该3个符号可以包括1个用于传输PUSCH DMRS的符号和2个用于传输PUSCH的符号,采用这种方式,可以使PUSCH上承载更多比特的数据。
在另一个示例中,当确定用于传输该数据的传输资源在时域上占用2个符号时,如图4中的(a)或(b)所示,该2个符号可以包括:1个用于传输物理信号的符号和1个用于传输物理信道的符号,该1个用于传输物理信号的符号可以位于该2个符号内的第1个符号或第2个符号。
在另一个示例中,当确定用于传输该数据的传输资源在时域上占用1个符号时,该1个符号可以不包括用于传输物理信号的符号,即,该1个符号只能用于物理信道传输,优选的,如果物理信道为PUCCH,该1个符号只适用于PUCCH传输。具体地,当PUCCH承载的HARQ信息为NACK时,PUCCH的资源号为第一资源号;当PUCCH承载的HARQ信息为ACK时,PUCCH的资源号为第 二资源号。其中,第一资源号和第二资源号不同,即承载NACK的PUCCH和承载ACK的PUCCH的码序列不同和/或频域资源不同。可选地,HARQ信息指示ACK时,网络设备在该1个符号上传输PUCCH;HARQ信息指示NACK时,网络设备不发送PUCCH。
在另一个示例中,当确定用于传输该数据的传输资源在时域上占用1个slot时,且1个slot可以包括7个符号时,该1个slot包括
Figure PCTCN2015090556-appb-000038
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000039
个用于传输物理信道的符号,该
Figure PCTCN2015090556-appb-000040
小于7;或者当确定用于传输该数据的传输资源在时域上占用1个slot,且1个slot可以包括6个符号时,该1个slot包括
Figure PCTCN2015090556-appb-000041
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000042
个用于传输物理信道的符号,该
Figure PCTCN2015090556-appb-000043
小于6。
具体的,对于1个slot可以包括7个符号的情况,以该物理信号为PUSCH DMRS和该物理信道为PUSCH为例,该1个slot可以包括1个用于传输PUSCH DMRS的符号和6个用于传输PUSCH的符号,其中该
Figure PCTCN2015090556-appb-000044
等于1;或者该1个slot可以包括2个用于传输PUSCH DMRS的符号和5个用于传输PUSCH的符号,其中该
Figure PCTCN2015090556-appb-000045
等于2。
如上所述,网络设备可以根据需要灵活配置物理信号的符号数,比如网络设备可以向终端设备发送信令,该信令可以用于指示
Figure PCTCN2015090556-appb-000046
等于1,或者,该信令可以用于指示
Figure PCTCN2015090556-appb-000047
等于2;又比如,当做频偏估计时或在高速应用场景下,网络设备可以配置
Figure PCTCN2015090556-appb-000048
等于2,否则网络设备可以配置
Figure PCTCN2015090556-appb-000049
等于1;其中,该信令可以为高层信令或物理层信令。
具体的,对于1个slot可以包括6个符号的情况,以该物理信号为PUSCH DMRS和该物理信道为PUSCH为例,该1个slot可以包括1个用于传输PUSCH DMRS的符号和5个用于传输PUSCH的符号,其中该
Figure PCTCN2015090556-appb-000050
等于1;或者该1个slot可以包括2个用于传输PUSCH DMRS的符号和4个用于传输PUSCH的符号, 其中该
Figure PCTCN2015090556-appb-000051
等于2。
如上所述,例如,网络设备可以向终端设备发送信令,该信令可以用于指示
Figure PCTCN2015090556-appb-000052
等于1,或者,该信令可以用于指示
Figure PCTCN2015090556-appb-000053
等于2,其中该信令为高层信令或物理层信令。
具体的,对于1个slot可以包括7个符号的情况,以该物理信号为PUCCH DMRS和该物理信道为PUCCH为例,该1个slot可以包括2个用于传输PUCCH DMRS的符号和5个用于传输PUCCH的符号,该
Figure PCTCN2015090556-appb-000054
等于2;或者该1个slot可以包括3个用于传输PUCCH DMRS的符号和4个用于传输PUCCH的符号,该
Figure PCTCN2015090556-appb-000055
等于3。
具体的,对于1个slot包括6个符号的情况,该物理信号为PUCCH DMRS和该物理信道为PUCCH为例,该1个slot可以包括2个用于传输PUCCH DMRS的符号和4个用于传输PUCCH的符号,该
Figure PCTCN2015090556-appb-000056
等于2;或者该1个slot可以包括3个用于传输PUCCH DMRS的符号和3个用于传输PUCCH的符号,该
Figure PCTCN2015090556-appb-000057
等于3。
上述提到的该N种时域资源可以包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,该1个时隙可以包括6个或7个符号,特别的,对该传输资源在时域上可以占用至少2个符号时,该数据可以包括物理信道和物理信号,该物理信号和该物理信道分别位于该至少两个符号中的不同符号的情况进行说明,为了更好了的理解本发明的方案,下述介绍另一种情况,即,该数据可以包括物理信号和物理信道,该物理信道和该物理信号位于该传输资源中的不同的RE。
优选地,该物理信号在频域上是非连续分布或者是梳齿状分布。该传输资源包括至少2个RE。
优选地,传输资源可以包括
Figure PCTCN2015090556-appb-000058
个RE,即该传输资源在频域上占用
Figure PCTCN2015090556-appb-000059
个子载波,在时域上占用连续的Nsym个符号,其中,NRB为正整 数,
Figure PCTCN2015090556-appb-000060
为正整数,优选地,
Figure PCTCN2015090556-appb-000061
采用这种方式,可以减少物理信号的开销,但是因为物理信道和物理信号是频分的,因而不具备单载波特性,所以适合进行下行传输和功率不受限的上行传输的场景。
另外,物理信号包括的RE数多时,即物理信号开销大时,信道估计的准确度较高,适合于高速场景;物理信号包括的RE数少时,即物理信号开销小时,可用于传输物理信道的资源较多,适合于低速场景。
具体的,例如,针对该物理信道和该物理信号位于该传输资源中的不同的RE场景,对于PDSCH传输,该数据可以包括PDSCH和下行链路(downlink,DL)参考信号,该PDSCH和DL参考信号位于不同的RE。其中,DL参考信号可以是CRS、GRS或URS,为了下述论述方便,物理信号可以为RS为例进行说明,当然这仅是本发明实施例所举的例子,本发明包括并不限于此。
具体的,例如,针对该物理信道和该物理信号位于该传输资源中的不同的RE场景,对于PUCCH传输,该数据可以包括PUCCH和PUCCH DMRS,该PUCCH和PUCCH DMRS位于不同的RE;对于PUSCH传输,该数据可以包括PUSCH和PUSCH DMRS,该PUSCH和PUSCH DMRS位于不同的RE。
在一个示例中,当确定的传输资源中可以包括至少2个RE时,该传输资源可以包括至少一个短资源块,该至少一个短资源块中任意一个短资源块包括
Figure PCTCN2015090556-appb-000062
个RE,在频域上占用连续的
Figure PCTCN2015090556-appb-000063
个子载波,在时域上占用连续的Nsym个符号,该Nsym等于该传输资源在时域上占用的符号数,该Nsym
Figure PCTCN2015090556-appb-000064
为正整数;该任意一个短资源块中包括
Figure PCTCN2015090556-appb-000065
个用于传输该物理信号的RE,该
Figure PCTCN2015090556-appb-000066
个RE在频域上是非连续分布或者是梳齿状分布,该
Figure PCTCN2015090556-appb-000067
为正整数。
相应的,对于上行传输,发射天线根数为终端设备支持的发射天线根数,对于下行传输,发射天线根数为网络设备支持的发射天线根数,下面针对不同的天线根数进行说明:
比如,当确定用于传输该数据的传输资源在时域上占用4个符号时,且当支持单根发射天线时,该短资源块内可以包括2或4个用于传输物理信号(比如RS)的RE,如图5中的(a)或(b)所示,当
Figure PCTCN2015090556-appb-000068
等于2,该2个用于传输RS的RE位于短资源块内的第1个符号或第3个符号,且该2个RE间相隔5个RE。如图5中的(c)所示,当
Figure PCTCN2015090556-appb-000069
等于4,该4个用于传输RS的RE包括位于短资源块内的第1个符号上的2个RE和第3个符号上的2个RE,且在每个符号上的2个RE间相隔5个RE。
又比如,当确定用于传输该数据的传输资源在时域上占用4个符号,且支持两根发射天线时,该短资源块内可以包括2或4个用于传输第一根发射天线的物理信号的RE,和2或4个用于传输第二根发射天线的物理信号的RE。如图6中(a)或(b)所示,2个用于传输第一根发射天线的RS的RE和2个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号或第3个符号。如图6中(c)所示,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号和第3个符号。
再比如,当确定用于传输该数据的传输资源在时域上占用4个符号,且支持四根发射天线时,该短资源块内可以包括2或4个用于传输第一根发射天线的物理信号的RE,2或4个用于传输第二根发射天线的物理信号的RE,2或4个用于传输第三根发射天线的物理信号的RE,2或4个用于传输第四根发射天线的物理信号的RE。
具体的,例如,2个用于传输第一根发射天线的RS的RE和2个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号或第3个符号,2个用于传输第三根发射天线的RS的RE和2个用于传输第四根发射天线的RS的RE位于短资源块内的第2个符号或第4个符号。又例如,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资 源块内的第1个符号和第3个符号,4个用于传输第三根发射天线的RS的RE和4个用于传输第四根发射天线的RS的RE位于短资源块内的第2个符号和第4个符号。再例如,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号和第3个符号,2个用于传输第三根发射天线的RS的RE和2个用于传输第四根发射天线的RS的RE位于短资源块内的第2个符号或第4个符号。
进一步,当该传输资源在时域上占用4个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号上可以包括大于或等于2个用于传输该CRS的RE,该短资源块内的第3个符号上可以包括大于或等于2个用于传输该URS/GRS的RE,其中,该CRS为网络设备在单根发射天线上发射的CRS,该URS/GRS为网络设备在单根发射天线上发射的URS/GRS。CRS对应的单根发射天线和URS/GRS对应的单根发射天线的天线端口号可以相同也可以不同,但是都对应同一根发射天线,因此,终端设备可以基于CRS和URS/GRS进行对应同一根发射天线的信道估计。需要说明的是,天线端口号为虚拟号,即使天线端口号不同,也可以代表同一根发射天线。
进一步,当该传输资源在时域上占用4个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号上可以包括大于或等于4个用于传输该CRS的RE,该短资源块内的第3个符号上可以包括大于或等于4个用于传输该URS/GRS的RE。其中,该CRS包括网络设备在两根发射天线上发射的CRS,该URS/GRS包括网络设备在两根发射天线上发射的URS/GRS。该CRS对应的两根发射天线和该URS/GRS对应的两根发射天线的天线端口号可以相同也可以不同,但是都对应相同的两根发射天线,因此,终端设备可以基于CRS和URS/GRS进行对应相同的两根发射天线的信道估计。
进一步,当该传输资源在时域上占用4个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号和第2符号上可以包括大于或等于8个用于传输该CRS的RE,该短资源块内的第3个符号和第4个符号上可以包 括大于或等于8个用于传输该URS/GRS的RE。其中,该CRS包括网络设备在四根发射天线上发射的CRS,该URS/GRS包括网络设备在四根发射天线上发射的URS/GRS。该CRS对应的四根发射天线和URS/GRS对应的四根发射天线的天线端口号可以相同也可以不同,但是都对应相同的四根发射天线,因此,终端设备可以基于CRS和URS/GRS进行对应相同的四根发射天线的信道估计。
可选的,当该传输资源在时域上占用4个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号和第2符号上可以包括大于或等于8个用于传输该CRS的RE,该短资源块内的第3个符号或第4个符号可以包括大于或等于4个用于传输该URS/GRS的RE。其中,该CRS包括网络设备在四根发射天线上发射的CRS,该URS/GRS包括网络设备在两根发射天线上发射的URS/GRS。该CRS对应的四根发射天线中的两根发射天线和URS/GRS对应的两根发射天线的天线端口号可以相同也可以不同,但是都对应相同的两根发射天线,因此,终端设备可以基于CRS和URS/GRS进行对应相同的两根发射天线的信道估计。
比如,当网络设备确定用于传输该数据的传输资源在时域上占用3个符号,当支持单发射天线时,该短资源块内可以包括2或4个用于传输RS的RE,如图7中的(a)或(b)所示,当
Figure PCTCN2015090556-appb-000070
等于2,该2个用于传输RS的RE位于短资源块内的第1个符号或第3个符号,且该2个RE间相隔5个RE;如图7中的(c)所示,当
Figure PCTCN2015090556-appb-000071
等于4,该4个用于传输RS的RE包括位于短资源块内的第1个符号上的2个RE和第3个符号上的2个RE,且在每个符号上的2个RE间相隔5个RE。
又比如:确定用于传输该数据的传输资源在时域上占用3个符号,且支持两根发射天线,该短资源块内可以包括2或4个用于传输第一根发射天线的RS的RE,且包括2或4个用于传输第二根发射天线的RS的RE。如图8中(a)或(b)所示,2个用于传输第一根发射天线的RS的RE和2个用于传输 第二根发射天线的RS的RE位于短资源块内的第1个符号或第3个符号。如图8中(c)所示,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号和第3个符号。
再比如:确定用于传输该数据的传输资源在时域上占用3个符号时,且支持四根发射天线时,该短资源块内可以包括2或4个用于传输第一根发射天线的RS的RE,2或4个用于传输第二根发射天线的RS的RE,2个用于传输第三根发射天线的RS的RE,2个用于传输第四根发射天线的RS的RE。
具体的,例如,2个用于传输第一根发射天线的RS的RE和2个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号或第3个符号,2个用于传输第三根发射天线的RS的RE和2个用于传输第四根发射天线的RS的RE位于短资源块内的第2个符号;又例如,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号和第3个符号,2个用于传输第三根发射天线的RS的RE和2个用于传输第四根发射天线的RS的RE位于短资源块内的第2个符号。
进一步,当该传输资源在时域上占用3个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号上可以包括大于或等于2个用于传输该CRS的RE,该短资源块内的第3个符号上可以包括大于或等于2个用于传输该URS/GRS的RE,其中,该CRS为网络设备在单根发射天线上发射的CRS,该URS/GRS为网络设备在单根发射天线上发射的URS/GRS。终端设备可以基于CRS和URS/GRS进行对应同一根发射天线的信道估计。
可选的,当该传输资源在时域上占用3个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号上可以包括大于或等于4个用于传输该CRS的RE,该短资源块内的第3个符号上可以包括大于或等于4个用于传输该URS/GRS的RE。其中,该CRS包括网络设备在两根发射天线上发射的CRS,该URS/GRS包括网络设备在两根发射天线上发射的URS/GRS。终端设备可以基于CRS和URS/GRS进行对应相同的两根发射天线的信道估计。
可选的,当该传输资源在时域上占用3个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号和第2符号上可以包括大于或等于8个用于传输该CRS的RE,该短资源块内的第3个符号可以包括大于或等于4个用于传输该URS/GRS的RE。其中,该CRS包括网络设备在四根发射天线上发射的CRS,该URS/GRS包括网络设备在两根发射天线上发射的URS/GRS。CRS对应的四根发射天线中的两根发射天线和URS/GRS对应的两根发射天线的天线端口号可以相同也可以不同,但是都对应相同的两根发射天线,因此,终端设备可以基于CRS和URS/GRS进行对应相同的两根发射天线的信道估计。
比如,当确定用于传输该数据的传输资源在时域上占用2个符号,且支持单发射天线时,该短资源块内可以包括2或4个用于传输物理信号的RE,如图9中的(a)或(b)所示,
Figure PCTCN2015090556-appb-000072
等于2,该2个用于传输RS的RE位于短资源块内的第1个符号或第2个符号,且该2个RE间相隔5个RE;如图9中的(c)所示,当
Figure PCTCN2015090556-appb-000073
等于4时,该4个用于传输RS的RE包括位于短资源块内的第1个符号上的2个RE和第2个符号上的2个RE,且在每个符号上的2个RE间相隔5个RE。
又比如,当确定用于传输该数据的传输资源在时域上占用2个符号,且支持两根发射天线时,如图10中的(a)、(b)或(c)所示,该短资源块内可以包括2或4个用于传输第一根发射天线物理信号的RE,2或4个用于传输第二根发射天线物理信号的RE。
再比如,当确定用于传输该数据的传输资源在时域上占用2个符号,且支持四根发射天线时,该短资源块内可以包括2或3个用于传输第一根发射天线的物理信号的RE,2或3个用于传输第二根发射天线的物理信号的RE,2个或3个用于传输第三根发射天线的物理信号的RE,2个或3个用于传输第四根发射天线物理信号的RE。
比如,当确定用于传输该数据的传输资源在时域上占用1个符号时,且 支持单发射天线时,如图11中(a)、(b)或(c)所示,该短资源块内可以包括2、3或4个用于传输物理信号的RE。
又比如,当确定用于传输该数据的传输资源在时域上占用1个符号时,且支持两根发射天线时,如图12所示,该短资源块内可以包括2、3或4个用于传输第一根发射天线的物理信号的RE,且2、3或4个用于传输第二根发射天线的物理信号的RE。
可选地,当确定用于传输该数据的传输资源在时域上占用1个符号时,可以不配置四根发射天线。
比如,当该传输资源在时域上占用1个slot时,且支持单发射天线,该短资源块内可以包括4个、6个或8个用于传输RS的RE。
具体的,当1个slot包括7个符号时,当
Figure PCTCN2015090556-appb-000074
等于4,该4个用于传输RS的RE位于短资源块内的第1个符号和第5个符号;或者,当
Figure PCTCN2015090556-appb-000075
等于6,该6个用于传输RS的RE位于短资源块内的第1个符号,第3个符号和第5个符号;或者,当
Figure PCTCN2015090556-appb-000076
等于8,该8个用于传输RS的RE位于短资源块内的第1个符号,第3个符号,第5个符号和第7个符号。
又比如,当该传输资源在时域上占用1个slot时,且支持两根发射天线时,该短资源块内可以包括4、6或8个用于传输第一根发射天线的RS的RE,且4、6或8个用于传输第二根发射天线的RS的RE。
具体的,例如,当1个slot包括7个符号时,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号和第5个符号;或者,6个用于传输第一根发射天线的RS的RE和6个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号,第3个符号和第5个符号;或者,8个用于传输第一根发射天线的RS的RE和8个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号,第3个符号,第5个符号和第7个符号。
再比如,当该传输资源在时域上占用1个slot时,支持四根发射天线时,如图13所示,该短资源块内可以包括4个用于传输第一根发射天线的RS的RE,4个用于传输第二根发射天线的RS的RE,2或4个用于传输第三根发射天线的RS的RE,2或4个用于传输第四根发射天线的RS的RE。例如,当1个slot包括7个符号时,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号和第5个符号,2个用于传输第三根发射天线的RS的RE和2个用于传输第四根发射天线的RS的RE位于短资源块内的第2个符号;或者,4个用于传输第一根发射天线的RS的RE和4个用于传输第二根发射天线的RS的RE位于短资源块内的第1个符号和第5个符号,4个用于传输第三根发射天线的RS的RE和4个用于传输第四根发射天线的RS的RE位于短资源块内的第2个符号和第6个符号。
优选的,当该传输资源在时域上占用1个slot时,且1个slot可以包括7个符号时,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号、第2个符号和第5个符号上可以包括大于或等于12个用于传输该CRS的RE,该短资源块内的第6个符号上可以包括大于或等于4个用于传输该
URS/GRS的RE。其中,该CRS包括网络设备在四根发射天线上发射的CRS,该URS/GRS包括网络设备在两根发射天线上发射的URS/GRS。CRS对应的四根发射天线中的两根发射天线和URS/GRS对应的两根发射天线的天线端口号可以相同也可以不同,但是都对应相同的两根发射天线,因此,终端设备可以基于CRS和URS/GRS进行对应相同的两根发射天线的信道估计。
优选的,当该传输资源在时域上占用1个slot时,且1个slot可以包括6个符号,该物理信号可以是CRS和URS/GRS,该短资源块内的第1个符号、第2个符号和第4个符号上可以包括大于或等于12个用于传输该CRS的RE,该短资源块内的第5个符号上可以包括大于或等于4个用于传输该URS/GRS的RE。其中,该CRS包括网络设备在四根发射天线上发射的CRS,该URS/GRS 包括网络设备在两根发射天线上发射的URS/GRS。同上,终端设备可以基于CRS和URS/GRS进行对应相同的两根发射天线的信道估计。
对于上述涉及到URS/GRS的实施例,在网络设备确定用于传输该数据的传输资源之前或同时,网络设备可以向终端设备发送信令,该信令包括用于指示是否配置URS/GRS的信息,该信令为物理层信令或高层信令。当该信令指示配置URS/GRS,该物理信号包括URS/GRS,具体如涉及到URS/GRS的实施例所示。
如前所述,数据传输所占用的传输资源在时域上占用的时域资源为N种时域资源中的一种,因此传输资源小于一个子帧或1ms。进一步地,需要定义该传输资源在一个子帧中的位置,具体如下所述:
在一个示例中,确定的传输资源在时域上占用的时域资源可以为一个子帧中包含的M个时间单元(time unit,TU)中的一个时间单元,该M个时间单元中任一个时间单元为该N种时域资源中的一种。
一个子帧可以划分为M个时间单元,每个时间单元的长度小于或等于子帧的长度,也即每个时间单元所包含的符号数小于或等于子帧中包含的符号数。当一个子帧中包含多个时间单元时,这些多个时间单元包含的符号数可以不同。在传输数据时,可以在每个时间单元上进行传输,即可以在时域上以时间单元为粒度进行数据传输。
采用上述方案,传输资源的位置被限定在一个子帧中,因而不会分布在两个子帧上,避免了增加网络设备调度器的复杂度。
可选地,当M=2时,该子帧中包含的2个时间单元包括第一时间单元和第二时间单元,第一时间单元位于该子帧的第一个slot,第二时间单元位于该子帧的第二个slot。
可选的,当M=4时,该子帧中包含的4个时间单元可以包括第一时间单元、第二时间单元、第三时间单元和第四时间单元,该子帧中包含的4个时间单元可以按如下任一排序示例进行排序,但这仅是本发明举的例子,本发 明包括并不限于此。需要说明的是,一个子帧的时间长度等于或大于四个时间单元的时间长度总和。
排序一:该第一时间单元的时间长度为4个符号,该第二时间单元的时间长度为3个符号,该第三时间单元的时间长度为4个符号,该第四时间单元的时间长度为3个符号;例如,以1个子帧为例,1个帧由14个符号组成,即{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13},那么,在具体实现时,该1个子帧所包含的时间单元的排序可以为:第一时间单元位于第一符号集{#0,#1,#2,#3},第二时间单元位于第二符号集{#4,#5,#6},第三时间单元为位于第三符号集{#7,#8,#9,#10},第四时间元位于第四符号集{#11,#12,#13};或者,
排序二:该第一时间单元的时间长度为3个符号,该第二时间单元的时间长度为4个符号,该第三时间单元的时间长度为3个符号,该第四时间单元的时间长度为4个符号,例如:以1个子帧为例,1个帧由14个符号组成,即{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13},那么,在具体实现时,该1个子帧所包含的时间单元的排序可以为:第一时间单元位于第一符号集{#0,#1,#2},第二时间单元位于第二符号集{#3,#4,#5,#6},第三时间单元位于第三符号集{#7,#8,#9},第四时间单元位于第四符号集{#10,#11,#12,#13};或者,
排序三:该第一时间单元的时间长度为3个符号,该第二时间单元的时间长度为4个符号,该第三时间单元的时间长度为4个符号,该第四时间单元的时间长度为3个符号,例如以1个子帧为例,1个帧由14个符号组成,即{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13},那么,在具体实现时,该1个子帧所包含的时间单元的排序可以为:第一个时间单元位于第一符号集{#0,#1,#2},第二个传输单元位于第二符号集{#3,#4,#5,#6},第三个传输单元位于第三符号集{#7,#8,#9,#10},第四个传输单元位于第四符号集{#11,#12,#13};或者,
排序四:该第一时间单元的时间长度为4个符号,该第二时间单元的时间长度为3个符号,该第三时间单元的时间长度为3个符号,该第四时间单元的时间长度为3个符号,例如以1个子帧为例,1个帧由14个符号组成,即{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13},那么,在具体实现时,该1个子帧所包含的时间单元的排序可以为:第一时间单元位于第一符号集{#0,#1,#2,#3},第二时间单元位于第二符号集{#4,#5,#6},第三时间单元位于第三符号集{#7,#8,#9},第四时间单元位于第四符号集{#10,#11,#12};或者,
排序五:该第一时间单元的时间长度为3个符号,该第二时间单元的时间长度为4个符号,该第三时间单元的时间长度为3个符号,该第四时间单元的时间长度为3个符号,例如以1个子帧为例,1个帧由14个符号组成,即{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13},那么,在具体实现时,该1个子帧所包含的时间单元的排序可以为:第一时间单元位于第一符号集{#0,#1,#2},第二时间单元位于第二符号集{#3,#4,#5,#6},第三时间单元位于第三符号集{#7,#8,#9},第四时间单元位于第四符号集{#10,#11,#12};或者,
排序六:该第一时间单元的时间长度为3个符号,该第二时间单元的时间长度为3个符号,该第三时间单元的时间长度为3个符号,该第四时间单元的时间长度为3个符号,例如以1个子帧为例,1个帧由14个符号组成,即{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13},那么,在具体实现时,该1个子帧所包含的时间单元的排序可以为:第一时间单元位于第一符号集{#0,#1,#2},第二时间单元位于第二符号集{#3,#4,#5},第三时间单元位于第三符号集{#6,#7,#8},第四时间单元位于第四符号集{#9,#10,#11};或者,
排序七:该第一时间单元的时间长度为3个符号,该第二时间单元的时间长度为3个符号,该第三时间单元的时间长度为3个符号,该第四时间单 元的时间长度为2个符号,例如以1个子帧为例,1个帧由14个符号组成,即{#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13},那么,在具体实现时,该1个子帧所包含的时间单元的排序可以为:第一时间单元位于第一符号集{#0,#1,#2},第二时间单元位于第二符号集{#3,#4,#5},第三时间单元位于第三符号集{#6,#7,#8},第四时间单元位于第四符号集{#9,#10}。
上述描述了一个子帧包含的四个时间单元的七种排序方式,本领域技术人员通过上述七种排序方式可以很容易地想到,对于上述任意时间单元的排序所对应的具体实现。因此不再对各种排序一一进行详细描述。
对于上行传输,在具体实现时,当该子帧中包含4个时间单元,且最后一个符号用于传输探测RS SRS时,可以在时域上按照排序四、排序五或排序七配置一个子帧可以包括4个时间单元;对于不用于传输RS SRS的子帧,可以在时域上按照七种排序中的一种排序配置一个子帧可以包括4个时间单元。需要说明的是,前述提到的“子帧中的最后一个符号用于传输SRS”指的是如下4种情况中的至少一种:情况一、终端设备在该子帧中的最后一个符号发送SRS,该SRS和该数据位于同一个服务小区;或者,情况二、该子帧为配置了小区特定SRS的子帧,且该小区特定SRS占用的带宽和该数据在频域上占用的带宽部分或全部重叠;或者,情况三、该子帧为终端设备特定的非周期SRS子帧,在该数据位于的服务小区上,该终端设备可能会在该子帧的最后一个符号上传输SRS;或者,情况四、当该终端设备被配置了多个定时提前组(timing advance group,TAG)时,该子帧为终端设备特定的周期SRS子帧,在该数据位于的服务小区上,该终端设备可以在该子帧的最后一个符号上传输SRS。当然,这四种情况仅是本发明举的例子,本发明包括并不限于此。
另外,对于上行PUCCH传输,该PUCCH承载HARQ反馈信息,该HARQ反馈信息指示PDSCH的接收状态,在具体实现时,当考虑到下行子帧中的前1、2、3或4个符号可以用于传输PDCCH,且有多个符号用于传输PDCCH时,该 下行子帧中的第一个时间单元中可以用于进行PDSCH传输的资源较少,因此,在该第一时间单元中可被调度的用户数较少,从而使该下行子帧中的第一时间单元所对应的上行子帧中的第一个时间单元需要传输PUCCH的用户数较少,因此,第一个时间单元的时间长度可以是三个符号,例如可以在时域上按照排序二、三或五配置一个子帧包括4个时间单元,即排序二、三或五的第一个时间单元的时间长度为三个符号。
可选的,当M=4时,该子帧中包含4个时间单元,1个slot包含7个符号,在具体实现时,当物理控制格式指示信道PCFICH承载的控制格式指示CFI或者高层信令指示的PDCCH符号数为0或1时,可以在时间域按照排序一或排序四配置一个子帧包括4个时间单元;或者,该子帧中包含4个时间单元,1个slot包含6个符号,在具体实现时,当CFI或者高层信令指示的PDCCH符号数为2、3或4时,可以在时间域按照排序二、排序三或排序五配置一个子帧包括4个时间单元。
对于网络设备,具体的,网络设备所确定的传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元。具体地,网络设备按照下列方法确定该一个时间单元:
当该数据传输为下行数据传输,该一个时间单元为第一下行控制信息(downlink control information,DCI)占用的时间单元,该第一DCI可以包括用于指示下行数据传输的信息。另外,在确定该一个时间单元之后或同时,网络设备向终端设备发送第一DCI。或者,
当该数据传输为上行数据传输,该一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,该第二DCI可以包括用于隐式指示上行数据传输的信息。另外,在确定该一个时间单元之前,之后或同时,网络设备向终端设备发送第二DCI。
对应上述提到的情况,在具体实现时,例如,当该数据传输为PUCCH传输,该PUCCH承载HARQ反馈信息,该HARQ反馈信息指示PDSCH的接收状态, 该一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,该第二DCI包括用于指示PDSCH传输的信息;又例如,当该数据传输为PUCCH传输,该PUCCH承载HARQ反馈信息,该HARQ反馈信息指示下行半持续调度(Semi-Persistent Scheduling,SPS)释放信令的接收状态,该一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,该第二DCI为用于指示SPS释放信令的DCI;再例如,该数据传输为PUSCH传输,该一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,该第二DCI包括用于指示PUSCH传输的信息。
对应上述提到的情况,在具体实现时,如图14所示,对于上行传输,如PUCCH传输或PUSCH传输,该第二DCI占用时间单元n,那么网络设备确定时间单元n+K为该一个时间单元,其中,时间单元n+K为时间单元n往后数的第K个时间单元,K为正整数,可选地,K=4。假设一个子帧包括4个时间单元且K=4,网络设备在子帧号为0的子帧内的第一个时间单元上发送第二DCI,网络设备可以确定子帧号为1的子帧内的第1个时间单元为该一个时间单元;或者,假设一个子帧包括2个传输单元,且K=4,网络设备在子帧号为0的子帧内的第2个时间单元上发送第二DCI,网络设备可以确定子帧号为2的子帧内的第2个时间单元为该一个时间单元。
可选地,当该数据传输为PUSCH传输,该一个时间单元为物理HARQ指示信道(Physical hybrid ARQ indicator channel,PHICH)占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数。另外,在确定该一个时间单元之后或同时,网络设备向终端设备发送PHICH。
可选地,当该数据传输为PUCCH传输,该PUCCH承载HARQ反馈信息,该HARQ反馈信息指示PDSCH的接收状态,该一个时间单元为PDSCH占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数。另外,在确定该一个时间单元之前,之后或同时,网络设备向终端设备发送PDSCH。
对于终端设备,具体的,终端设备确定传输该数据的传输资源可以包括:
终端设备所确定的传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元。具体地,终端设备按照下列方法确定该一个时间单元:
在确定该一个时间单元之前或同时,终端设备接收网络设备发送的第一DCI。当该数据传输为下行数据传输,该一个时间单元为第一下行控制信息(downlink control information,DCI)占用的时间单元,该第一DCI可以包括用于指示下行数据传输的信息;或者,
在确定该一个时间单元之前,终端设备接收网络设备发送的第二DCI。当该数据传输为上行数据传输,该一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,该第二DCI可以包括用于隐式指示上行数据传输的信息。
可选地,在确定该一个时间单元之前或同时,终端设备接收网络设备发送的PHICH。当该数据传输为PUSCH传输,该一个时间单元为物理HARQ指示信道(Physical hybrid ARQ indicator channel,PHICH)占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数。
可选地,在确定该一个时间单元之前,终端设备接收网络设备发送的PDSCH。当该数据传输为PUCCH传输,该PUCCH承载HARQ反馈信息,该HARQ反馈信息指示PDSCH的接收状态,该一个时间单元为PDSCH占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数。
网络设备确定用于传输该数据的传输资源(为方便后面描述,此处称为第一传输资源)在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元(为方便后面描述,此处称为第i时间单元)。可选地,网络设备还可以确定用于传输该数据的第三传输资源,该第三传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的第j时间单元。其中,第一传输资源和第三传输资源上承载相同的数据。因为在第三传输资源 上重复传输相同的数据,所以可以提升数据传输的性能,进而提高数据传输的覆盖范围。
相应地,终端设备确定用于传输该数据的传输资源(为方便后面描述,此处称为第一传输资源)在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元(为方便后面描述,此处称为第i时间单元)。可选地,终端设备还可以确定用于传输该数据的第三传输资源,该第三传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的第j时间单元。其中,第一传输资源和第三传输资源上承载相同的数据。
优选地,j=i+1,即第i时间单元为第j时间单元的前一个时间单元。
优选地,第一传输资源和第三传输资源占用不同的频域资源,这样可以获得频率分集增益。
具体的,当M=4时,第一传输资源在时域上占用一个子帧中的第一时间单元,第三传输资源在时域上占用该一个子帧中的第二时间单元;或者,第一传输资源在时域上占用一个子帧中的第三时间单元,第三传输资源在时域上占用该一个子帧中的第四时间单元。
可选地,网络设备可以向终端设备发送信令,该信令包括用于指示第三传输资源的信息,该信令为高层信令或物理层信令。需要说明的是,第一传输资源和第一传输资源的确定没有明确时序关系。
采用上述方式,当同一个数据可以在两个传输资源上传输时,可以增强传输的覆盖范围,尤其适用于因为终端设备的发射功率有限导致的上行覆盖受限的场景。
对于步骤102,该网络设备在确定的该传输资源上,与终端设备进行数据传输可以包括:
当该数据传输为上行数据传输,该网络设备在该传输资源上接收该终端设备发送的上行数据;或者,
当该数据传输为下行数据传输,该网络设备在该传输资源上向该终端设 备发送该下行数据。
对于终端设备,当该数据传输为上行数据传输,该终端设备在该传输资源上向网络设备发送的上行数据;或者,当该数据传输为下行数据传输,该终端设备在该传输资源上接收网络设备发送的该下行数据。
当终端设备支持载波聚合时,网络设备还确定了用于传输第二数据的第二传输资源情况,如下所述:
当该第一数据为第一上行数据和第二数据为第二上行数据时,该网络设备在该第一传输资源上接收该终端设备发送的第一上行数据,在该第二传输资源上接收该终端设备发送的第二上行数据;或者,
当该第一数据为第一下行数据和第二数据为第二下行数据时,该网络设备在该第一传输资源上向该终端设备发送该第一下行数据,在该第二传输资源上向该终端设备发送该第二下行数据。
相应地,当该第一数据为第一上行数据和第二数据为第二上行数据时,该终端设备在该第一传输资源上向网络设备发送第一上行数据,在该第二传输资源上向网络设备发送第二上行数据;或者,
当该第一数据为第一下行数据和第二数据为第二下行数据时,该终端设备在该第一传输资源上接收该网络设备发送的该第一下行数据,在该第二传输资源上接收该网络设备发送的该第二下行数据。
针对网络设备还确定了用于传输该数据的第三传输资源情况,步骤102可以包括:
当该数据传输为上行数据传输,该网络设备在该第一传输资源和该第三传输资源上接收该终端设备发送的上行数据;或者,
当该数据传输为下行数据传输,该网络设备在该第一传输资源和该第三传输资源上向该终端设备发送该下行数据。
相应的,终端设备也确定了用于传输该数据的第三传输资源情况,当该数据传输为上行数据传输,该终端设备在该第一传输资源和该第三传输资源 上发送上行数据;或者,当该数据传输为下行数据传输,该终端设备在该第一传输资源和该第三传输资源上接收该下行数据。
本发明的一个实施例主要是网络设备确定传输该数据的传输资源,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,与现有只能支持一种时间长度等于1毫秒的传输相比,引入至少一种小于1ms的时域资源,使传输时间间隔缩短,可有效降低数据传输时延,从而满足低时延业务的需求。
图15为本发明实施例提供的一种网络设备,该网络设备可以用于执行上述图1所示的方法,该网络设备包括处理单元1501和收发单元1502。
其中,处理单元1501,用于确定传输该数据的传输资源,该传输资源在时域上占用的时域资源为N种时域资源中的一种,该N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数。
其中,收发单元1502,用于在该处理单元确定的该传输资源上,与终端设备进行数据传输。
本发明实施例的有益效果与图1所示实施例类似,在此不再赘述。
在本发明实施例中,该N种时域资源包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,该1个时隙包括6个或7个符号。
在一个示例中,当该处理单元1501确定的传输资源在时域上占用至少2个符号时,该收发单元1502传输的数据包括物理信道和物理信号,该物理信号和该物理信道分别位于该至少两个符号中的不同符号。具体过程和有益效果请参照前述图2所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
具体来说,当该处理单元1501确定的传输资源在时域上占用4个符号时,该4个符号包括:
Figure PCTCN2015090556-appb-000077
个用于传输物理信号的符号和4-该
Figure PCTCN2015090556-appb-000078
个用于传输物 理信道的符号,该
Figure PCTCN2015090556-appb-000079
小于4。
例如,当该
Figure PCTCN2015090556-appb-000080
等于2时,该2个用于传输物理信号的符号位于该4个符号内的中间2个符号或前2个符号;或者当该
Figure PCTCN2015090556-appb-000081
等于1时,该1个用于传输物理信号的符号位于该4个符号内的第1个符号或第2个符号。
具体来说,当该处理单元1501确定的传输资源在时域上占用3个符号时,该3个符号包括:
Figure PCTCN2015090556-appb-000082
个用于传输物理信号的符号和3-该
Figure PCTCN2015090556-appb-000083
个用于传输物理信道的符号,该
Figure PCTCN2015090556-appb-000084
小于3。具体过程和有益效果请参照前述图3所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
例如,当该
Figure PCTCN2015090556-appb-000085
等于2时,该2个用于传输物理信号的符号可以位于该3个符号内的前2个符号;或者,当该
Figure PCTCN2015090556-appb-000086
等于1时,该1个用于传输物理信号的符号位于该3个符号内的第1个符号或第2个符号。
具体来说,当该处理单元1501确定的传输资源在时域上占用2个符号时,该2个符号包括1个用于传输物理信号的符号,该1个用于传输物理信号的符号位于该2个符号内的第1个符号或第2个符号。具体过程和有益效果请参照前述图4所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
具体来说,当该处理单元1501确定的传输资源在时域上占用1个符号时,该1个符号用于传输物理信道。
具体来说,如果该处理单元1501确定的传输资源在时域上占用1个slot:当1个slot包含7个符号时,该1个slot包括
Figure PCTCN2015090556-appb-000087
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000088
个用于传输物理信道的符号,该
Figure PCTCN2015090556-appb-000089
小于7;或者当1个slot包含6个符号时,该1个slot包括
Figure PCTCN2015090556-appb-000090
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000091
个用于传输物理信道的符号,该
Figure PCTCN2015090556-appb-000092
小于6。
在另一个示例中,该处理单元1501确定的传输资源中包括至少2个RE,该数据包括物理信号和物理信道,该物理信道和该物理信号位于不同的RE。具体过程和有益效果请参照前述图5、图6、图7、图8、图9、图10、图11、图12或图13所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
具体来说,该处理单元1501确定的传输资源包括至少一个短资源块,该至少一个短资源块中任意一个短资源块包括
Figure PCTCN2015090556-appb-000093
个RE,在频域上占用连续的
Figure PCTCN2015090556-appb-000094
个子载波,在时域上占用连续的Nsym个符号,该Nsym等于该传输资源在时域上占用的符号数,该Nsym
Figure PCTCN2015090556-appb-000095
为正整数;该任意一个短资源块中包括
Figure PCTCN2015090556-appb-000096
个用于传输该物理信号的RE,该
Figure PCTCN2015090556-appb-000097
个用于传输该物理信号的RE在频域上是非连续分布或者是梳齿状分布,该
Figure PCTCN2015090556-appb-000098
为正整数。
在另一个示例中,该处理单元1501确定的传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元,该M个时间单元中任一个时间单元为该N种时域资源中的一种。具体过程和有益效果请参照前述图14所示的例子,可以理解的是,这仅是本发明实施例举的例子,本发明包括并不限于此。
具体来说,当一个子帧中包含M=4个时间单元,该一个子帧中包含的4个时间单元依次为第一时间单元、第二时间单元、第三时间单元和第四时间单元,该一个子帧中包含的4个时间单元与前述方法实施例中的排序类似,在此不再赘述。
可选的,该一个子帧中包含的4个时间单元包括:对于上行传输,当该一个子帧中的最后一个符号用于传输探测RS SRS时,该一个子帧包含的4个时间单元在时域上按照前述描述的排序四、排序五或排序七配置;或者,该一个子帧中包含的4个时间单元包括:当1个slot包含7个符号时,当物理控制格式指示信道PCFICH承载的控制格式指示CFI或者高层信令指示的 PDCCH符号数为0或1时,该一个子帧包含的4个时间单元在时间域按照排序一或排序四配置;或者当1个slot包含7个符号时,当CFI或者高层信令指示的PDCCH符号数为2、3或4时,该一个子帧包含的4个时间单元在时间域按照前述描述的排序二、排序三或排序五配置。
相应的,当该处理单元确定的传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元时,该处理单元1501具体用于:确定该传输资源在时域上占用M个时间单元中的一个时间单元。
相应的,当该收发单元1502进行的数据传输为下行数据传输时,该处理单元1501确定的该一个时间单元为第一DCI占用的时间单元,该第一DCI包括用于指示下行数据传输的信息;或者,当该收发单元1502进行的数据传输为上行数据传输时,该处理单元1501确定的该一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,该第二DCI包括用于隐式指示上行数据传输的信息。
在本发明实例中,该收发单元1502具体用于当该数据传输为上行数据传输,在该处理单元1501确定的传输资源上接收该终端设备发送的上行数据;或者,当该数据传输为下行数据传输时,在该处理单元1501确定的传输资源上向该终端设备发送该下行数据。
在本发明实施例中,当N种时资源大于等于2时,该N种时域资源中至少两种时域资源的时间长度是不相等的。
图15示出了上述实施例中所涉及网络设备的一种可能的结构示意图,网络设备包括处理单元1501与收发单元1502,其中,需要特别说的是,本发明实施例所涉及的处理单元对应的实体设备可以为处理器,本发明实施例所涉及的收发单元对应的实体设备还可以为收发器。可以理解的是处理器和收发器仅仅示出了网络设备的简化设计,在实际应用中,网络设备可以包含任意数量的收发器、处理器、控制器、存储器等,而所有的可以实现本发明的网络设备都在本发明保护的范围之内。
图16为本发明实施例提供了一种终端设备,包括该网络设备可以用于执行上述图1所示的方法,该网络设备包括处理单元1601和收发单元1602。
其中,处理单元1601,用于确定传输所述数据的传输资源,所述传输资源在时域上占用的时域资源为N种时域资源中的一种,所述N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数;
收发单元1602,用于在所述处理单元确定的所述传输资源上,与网络设备进行数据传输。
本发明实施例的有益效果与图1所示实施例类似,在此不再赘述。
在本发明实施例中,所述N种时域资源包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,所述1个时隙包括6个或7个符号。
在一个示例中,当所述处理单元1601确定的传输资源在时域上占用至少2个符号时,所述收发单元1602传输的数据包括物理信道和物理信号,所述物理信号和所述物理信道分别位于所述至少两个符号中的不同符号。具体过程和有益效果请参照前述图2所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
具体来说,当所述处理单元1601确定的传输资源在时域上占用4个符号时,所述4个符号包括:
Figure PCTCN2015090556-appb-000099
个用于传输物理信号的符号和4-所述
Figure PCTCN2015090556-appb-000100
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000101
小于4。
例如,当所述
Figure PCTCN2015090556-appb-000102
等于2时,所述2个用于传输物理信号的符号位于所述4个符号内的中间2个符号或前2个符号;或者当所述
Figure PCTCN2015090556-appb-000103
等于1时,所述1个用于传输物理信号的符号位于所述4个符号内的第1个符号或第2个符号。
具体来说,当所述处理单元1601确定的传输资源在时域上占用3个符号时,所述3个符号包括:
Figure PCTCN2015090556-appb-000104
个用于传输物理信号的符号和3-所述
Figure PCTCN2015090556-appb-000105
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000106
小于3。具体过程和有益效果请参照前述图 3所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
例如,当所述
Figure PCTCN2015090556-appb-000107
等于1时,所述1个用于传输物理信号的符号位于所述3个符号内的第1个符号或第2个符号;或者,当该
Figure PCTCN2015090556-appb-000108
等于2时,该2个用于传输物理信号的符号可以位于该3个符号内的前2个符号;
具体来说,当所述处理单元1601确定的传输资源在时域上占用2个符号时,所述2个符号包括1个用于传输物理信号的符号,所述1个用于传输物理信号的符号位于所述2个符号内的第1个符号或第2个符号。具体过程和有益效果请参照前述图4所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
具体来说,当所述处理单元1601确定的传输资源在时域上占用1个符号时,所述1个符号用于传输物理信道。
具体来说,如果所述处理单元1601确定的传输资源在时域上占用1个slot:当1个slot包含7个符号时,所述1个slot包括
Figure PCTCN2015090556-appb-000109
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000110
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000111
小于7;或者当1个slot包含6个符号时,所述1个slot包括
Figure PCTCN2015090556-appb-000112
个用于传输物理信号的符号和
Figure PCTCN2015090556-appb-000113
个用于传输物理信道的符号,所述
Figure PCTCN2015090556-appb-000114
小于6。
在另一个示例中,前述从时域的解度介绍了N种时域资源可以包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,所述1个时隙可以包括6个或7个符号,下面从频域的角度介绍另一种情况,即,所述数据可以包括物理信号和物理信道,所述物理信道和所述物理信号位于所述传输资源中的不同的RE。具体过程和有益效果请参照前述图5、图6、图7、图8、图9、图10、图11、图12或图13所示的例子,可以理解的是,这些情况仅是本发明实施例举的例子,本发明包括并不限于此。
具体来说,所述处理单元1601确定的传输资源包括至少一个短资源块, 所述至少一个短资源块中任意一个短资源块包括
Figure PCTCN2015090556-appb-000115
个RE,在频域上占用连续的
Figure PCTCN2015090556-appb-000116
个子载波,在时域上占用连续的Nsym个符号,所述Nsym等于所述传输资源在时域上占用的符号数,所述Nsym
Figure PCTCN2015090556-appb-000117
为正整数;所述任意一个短资源块中包括
Figure PCTCN2015090556-appb-000118
个用于传输所述物理信号的RE,所述
Figure PCTCN2015090556-appb-000119
个用于传输所述物理信号的RE在频域上是非连续分布或者是梳齿状分布,所述
Figure PCTCN2015090556-appb-000120
为正整数。
在另一个示例中,所述处理单元1601确定的传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元,所述M个时间单元中任一个时间单元为所述N种时域资源中的一种。
具体来说,所述M=4,所述一个子帧中包含的4个时间单元依次为第一时间单元、第二时间单元、第三时间单元和第四时间单元,所述一个子帧中包含的4个时间单元与前述方法实施例中的排序方式类以,在此不再赘述。
可选的,所述一个子帧中包含的4个时间单元包括:对于上行传输,当所述一个子帧中的最后一个符号用于传输探测RS SRS时,所述一个子帧包含的4个时间单元在时域上按照前述描述的排序四、排序五或排序七配置。
相应的,所述一个子帧中包含的4个时间单元包括:当1个slot包含7个符号时,当物理控制格式指示信道PCFICH承载的控制格式指示CFI或者高层信令指示的PDCCH符号数为0或1时,所述一个子帧包含的4个时间单元在时间域按照排序一或排序四配置;或者当1个slot包含7个符号时,当CFI或者高层信令指示的PDCCH符号数为2、3或4时,所述一个子帧包含的4个时间单元在时间域按照前述描述的排序二、排序三或排序五配置。
相应的,所述处理单元1601具体用于:确定所述传输资源在时域上占用M个时间单元中的一个时间单元。采用上述设计,传输资源的位置被限定在一个子帧中,因而不会分布在两个子帧上,避免了增加本装置调度器的复杂度。
相应的,当所述收发单元1602进行的数据传输为下行数据传输时,所述处理单元1601确定的所述一个时间单元为第一DCI占用的时间单元,所述第一 DCI包括用于指示下行数据传输的信息;或者,当所述收发单元1602进行的数据传输为上行数据传输时,所述处理单元1601确定的所述一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,所述第二DCI包括用于隐式指示上行数据传输的信息。
在本发明实施例中,所述收发单元1602具体用于:当所述数据传输为上行数据传输,在所述处理单元1601确定的传输资源上接收所述终端设备发送的上行数据;或者,当所述数据传输为下行数据传输时,在所述处理单元1601确定的传输资源上向所述终端设备发送所述下行数据。
在本发明实施例中,当N大于等于2时,所述N种时域资源中至少两种时域资源的时间长度不相等。从而可以更高效的占用时域资源。
图16示出了上述实施例中所涉及终端设备的一种可能的结构示意图,终端设备包括处理单元与收发单元,其中,需要特别说的是,本发明实施例所涉及的处理单元对应的实体设备可以为处理器,本发明实施例所涉及的收发单元对应的实体设备还可以为收发器。可以理解的是处理器与收发单元仅仅示出了终端设备的简化设计,在实际应用中,终端设备可以包含任意数量的收发器、处理器、控制器、存储器等,而所有的可以实现本发明的终端设备都在本发明保护的范围之内。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (30)

  1. 一种网络设备,其特征在于,包括:
    处理单元,用于确定传输所述数据的传输资源,所述传输资源在时域上占用的时域资源为N种时域资源中的一种,所述N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数;
    收发单元,用于在所述处理单元确定的所述传输资源上,与终端设备进行数据传输。
  2. 根据权利要求1所述的网络设备,其特征在于,所述N种时域资源包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,所述1个时隙包括6个或7个符号。
  3. 根据权利要求2所述的网络设备,其特征在于,当所述处理单元确定的传输资源在时域上占用至少2个符号时,所述收发单元传输的数据包括物理信道和物理信号,所述物理信号和所述物理信道分别位于所述至少两个符号中的不同符号。
  4. 根据权利要求3所述的网络设备,其特征在于,当所述处理单元确定的传输资源在时域上占用4个符号时,所述4个符号包括:
    Figure PCTCN2015090556-appb-100001
    个用于传输物理信号的符号和
    Figure PCTCN2015090556-appb-100002
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100003
    小于4。
  5. 根据权利要求4所述的网络设备,其特征在于,当所述
    Figure PCTCN2015090556-appb-100004
    等于2时,所述2个用于传输物理信号的符号位于所述4个符号内的中间2个符号或前2个符号;或者
    当所述
    Figure PCTCN2015090556-appb-100005
    等于1时,所述1个用于传输物理信号的符号位于所述4个符号内的第1个符号或第2个符号。
  6. 根据利要求3所述的网络设备,其特征在于,当所述处理单 元确定的传输资源在时域上占用3个符号时,所述3个符号包括:
    Figure PCTCN2015090556-appb-100006
    个用于传输物理信号的符号和3-所述
    Figure PCTCN2015090556-appb-100007
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100008
    小于3。
  7. 根据权利要求6所述的网络设备,其特征在于,当所述
    Figure PCTCN2015090556-appb-100009
    等于1时,所述1个用于传输物理信号的符号位于所述3个符号内的第1个符号或第2个符号。
  8. 根据权利要求3所述的网络设备,其特征在于,如果所述处理单元确定的传输资源在时域上占用1个slot:
    当1个slot包含7个符号时,所述1个slot包括
    Figure PCTCN2015090556-appb-100010
    个用于传输物理信号的符号和
    Figure PCTCN2015090556-appb-100011
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100012
    小于7;或者
    当1个slot包含6个符号时,所述1个slot包括
    Figure PCTCN2015090556-appb-100013
    个用于传输物理信号的符号和
    Figure PCTCN2015090556-appb-100014
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100015
    小于6。
  9. 根据权利要求2所述的网络设备,其特征在于,所述处理单元确定的传输资源中包括至少2个资源粒度RE,所述数据包括物理信号和物理信道,所述物理信道和所述物理信号位于不同的RE。
  10. 根据权利要求1-9任一所述的网络设备,其特征在于,所述处理单元确定的传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元,所述M个时间单元中任一个时间单元为所述N种时域资源中的一种。
  11. 根据权利要求10所述的网络设备,其特征在于,所述M=4,所述一个子帧中包含的4个时间单元依次为第一时间单元、第二时间单元、第三时间单元和第四时间单元,所述一个子帧中包含的4个时 间单元包括:
    排序一:所述第一时间单元的时间长度为4个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为4个符号,所述第四时间单元的时间长度为3个符号;或者
    排序二:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为4个符号;或者
    排序三:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为4个符号,所述第四时间单元的时间长度为3个符号;或者
    排序四:所述第一时间单元的时间长度为4个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者
    排序五:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者
    排序六:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者
    排序七:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为2个符号。
  12. 根据权利要求10或11所述的网络设备,其特征在于,所述处理单元具体用于:
    确定所述传输资源在时域上占用M个时间单元中的一个时间单 元。
  13. 根据权利要求12所述的网络设备,其特征在于,当所述收发单元进行的数据传输为下行数据传输时,所述处理单元确定的所述一个时间单元为第一DCI占用的时间单元,所述第一DCI包括用于指示下行数据传输的信息;或者,
    当所述收发单元进行的数据传输为上行数据传输时,所述处理单元确定的所述一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,所述第二DCI包括用于隐式指示上行数据传输的信息。
  14. 根据权利要求1-13任一所述的网络设备,其特征在于,所述收发单元具体用于:
    当所述数据传输为上行数据传输,在所述处理单元确定的传输资源上接收所述终端设备发送的上行数据;或者,
    当所述数据传输为下行数据传输时,在所述处理单元确定的传输资源上向所述终端设备发送所述下行数据。
  15. 根据权利要求1至14任一权利要求所述的网络设备,其特征在于,当N大于等于2时,所述N种时域资源中至少两种时域资源的时间长度不相等。
  16. 一种数据传输方法,其特征在于,包括:
    网络设备确定用于传输所述数据的传输资源,所述传输资源在时域上占用的时域资源为N种时域资源中的一种,所述N种时域资源中的任一种时域资源的时间长度小于1毫秒,其中,N为正整数;
    所述网络设备在确定的所述传输资源上,与终端设备进行数据传输。
  17. 根据权利要求16所述的方法,其特征在于,所述N种时域 资源包括时间长度为1个符号、2个符号、3个符号、4个符号或1个时隙(slot)中至少一种时域资源,所述1个时隙包括6个或7个符号。
  18. 根据权利要求17所述的方法,其特征在于,当所述传输资源在时域上占用至少2个符号时,所述数据包括物理信道和物理信号,所述物理信号和所述物理信道分别位于所述至少两个符号中的不同符号。
  19. 根据权利要求18所述的方法,其特征在于,当所述传输资源在时域上占用4个符号时,所述4个符号包括:
    Figure PCTCN2015090556-appb-100016
    个用于传输物理信号的符号和4-所述
    Figure PCTCN2015090556-appb-100017
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100018
    小于4。
  20. 根据权利要求18所述的方法,其特征在于,当所述
    Figure PCTCN2015090556-appb-100019
    等于2时,所述2个用于传输物理信号的符号位于所述4个符号内的中间2个符号或前2个符号;或者
    当所述
    Figure PCTCN2015090556-appb-100020
    等于1时,所述1个用于传输物理信号的符号位于所述4个符号内的第1个符号或第2个符号。
  21. 根据利要求18所述的方法,其特征在于,当所述传输资源在时域上占用3个符号时,所述3个符号包括:
    Figure PCTCN2015090556-appb-100021
    个用于传输物理信号的符号和3-所述
    Figure PCTCN2015090556-appb-100022
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100023
    小于3。
  22. 根据权利要求21所述的方法,其特征在于,当所述
    Figure PCTCN2015090556-appb-100024
    等于1时,所述1个用于传输物理信号的符号位于所述3个符号内的第1个符号或第2个符号。
  23. 根据权利要求18所述的方法,其特征在于,如果所述传输 资源在时域上占用1个slot:
    当1个slot包含7个符号时,所述1个slot包括
    Figure PCTCN2015090556-appb-100025
    个用于传输物理信号的符号和
    Figure PCTCN2015090556-appb-100026
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100027
    小于7;或者
    当1个slot包含6个符号时,所述1个slot包括
    Figure PCTCN2015090556-appb-100028
    个用于传输物理信号的符号和
    Figure PCTCN2015090556-appb-100029
    个用于传输物理信道的符号,所述
    Figure PCTCN2015090556-appb-100030
    小于6。
  24. 根据权利要求17所述的方法,其特征在于,所述网络设备确定的传输资源中包括至少2个RE,所述数据包括物理信号和物理信道,所述物理信道和所述物理信号位于不同的RE。
  25. 根据权利要求16-24任一所述的方法,其特征在于,所述传输资源在时域上占用的时域资源为一个子帧中包含的M个时间单元中的一个时间单元,所述M个时间单元中任一个时间单元为所述N种时域资源中的一种。
  26. 根据权利要求25所述的方法,其特征在于,所述M=4,所述一个子帧中包含的4个时间单元包括第一时间单元、第二时间单元、第三时间单元和第四时间单元,所述一个子帧中包含的4个时间单元包括:
    排序一:所述第一时间单元的时间长度为4个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为4个符号,所述第四时间单元的时间长度为3个符号;或者
    排序二:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为4个符号;或者
    排序三:所述第一时间单元的时间长度为3个符号,所述第二时 间单元的时间长度为4个符号,所述第三时间单元的时间长度为4个符号,所述第四时间单元的时间长度为3个符号;或者
    排序四:所述第一时间单元的时间长度为4个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者
    排序五:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为4个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者
    排序六:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为3个符号;或者
    排序七:所述第一时间单元的时间长度为3个符号,所述第二时间单元的时间长度为3个符号,所述第三时间单元的时间长度为3个符号,所述第四时间单元的时间长度为2个符号。
  27. 根据权利要求25或26所述的方法,其特征在于,所述网络设备确定传输资源,包括:
    所述网络设备确定所述传输资源在时域上占用M个时间单元中的一个时间单元。
  28. 根据权利要求27所述的方法,其特征在于,
    当所述数据传输为下行数据传输,所述一个时间单元为第一DCI占用的时间单元,所述第一DCI包括用于指示下行数据传输的信息;或者,
    当所述数据传输为上行数据传输,所述一个时间单元为第二DCI占用的时间单元之后的第K个时间单元,其中K为大于或等于4的整数,所述第二DCI包括用于隐式指示上行数据传输的信息。
  29. 根据权利要求16-28任一所述的方法,其特征在于,所述网络设备在所述传输资源上与终端设备进行数据传输,包括:
    当所述数据传输为上行数据传输,所述网络设备在所述传输资源上接收所述终端设备发送的上行数据;或者,
    当所述数据传输为下行数据传输,所述网络设备在所述传输资源上向所述终端设备发送所述下行数据。
  30. 根据权利要求16至29任一权利要求所述的方法,其特征在于,当N大于等于2时,所述N种时域资源中至少两种时域资源的时间长度不相等。
PCT/CN2015/090556 2015-09-24 2015-09-24 数据传输方法及装置 WO2017049531A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR112018005804-1A BR112018005804B1 (pt) 2015-09-24 2015-09-24 Dispositivo de rede, dispositivo terminal, método de transmissão de dados e meio de armazenamento legível por computador
EP15904418.9A EP3343969B1 (en) 2015-09-24 2015-09-24 Data transmission method and apparatus
CN201910407100.9A CN110224800B (zh) 2015-09-24 2015-09-24 数据传输方法及装置
PCT/CN2015/090556 WO2017049531A1 (zh) 2015-09-24 2015-09-24 数据传输方法及装置
AU2015409983A AU2015409983A1 (en) 2015-09-24 2015-09-24 Data transmission method and apparatus
CN201580083025.5A CN108029019B (zh) 2015-09-24 2015-09-24 数据传输方法及装置
RU2018114960A RU2682916C1 (ru) 2015-09-24 2015-09-24 Способ и устройство передачи данных
CN202110187607.5A CN113037447B (zh) 2015-09-24 2015-09-24 数据传输方法及装置
EP20203015.1A EP3840447B1 (en) 2015-09-24 2015-09-24 Data transmission method and apparatus
US15/933,633 US10880909B2 (en) 2015-09-24 2018-03-23 Data transmission method and apparatus
AU2020201895A AU2020201895B2 (en) 2015-09-24 2020-03-16 Data transmission method and apparatus
US17/100,558 US11601958B2 (en) 2015-09-24 2020-11-20 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090556 WO2017049531A1 (zh) 2015-09-24 2015-09-24 数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/933,633 Continuation US10880909B2 (en) 2015-09-24 2018-03-23 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017049531A1 true WO2017049531A1 (zh) 2017-03-30

Family

ID=58385590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090556 WO2017049531A1 (zh) 2015-09-24 2015-09-24 数据传输方法及装置

Country Status (7)

Country Link
US (2) US10880909B2 (zh)
EP (2) EP3840447B1 (zh)
CN (3) CN113037447B (zh)
AU (2) AU2015409983A1 (zh)
BR (1) BR112018005804B1 (zh)
RU (1) RU2682916C1 (zh)
WO (1) WO2017049531A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151398A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 通信方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10637701B2 (en) * 2015-06-04 2020-04-28 Electronics And Telecommunications Research Institute Method and apparatus for transmitting physical uplink control channel
CN107889222B (zh) * 2016-09-29 2022-03-08 华为技术有限公司 信号传输方法、终端设备、网络设备和通信系统
US10582397B2 (en) * 2016-11-09 2020-03-03 Qualcomm Incorporated Beam refinement reference signal transmissions during control symbol
US11671968B2 (en) * 2017-01-20 2023-06-06 Ntt Docomo, Inc. User terminal and radio communication method
WO2020062100A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 一种信息通知的方法和装置
CN112292827B (zh) * 2018-10-19 2022-07-29 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN114122725B (zh) * 2021-11-04 2024-07-26 中国联合网络通信集团有限公司 一种分布式网络架构的天线角度自适应方法及装置
CN114071682B (zh) * 2021-11-04 2023-05-16 中国联合网络通信集团有限公司 一种分布式网络架构的功率选择方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777332A (zh) * 2004-11-04 2006-05-24 三星电子株式会社 为软切换区的移动台调度上行链路数据传输的方法和装置
CN1905428A (zh) * 2005-07-25 2007-01-31 上海原动力通信科技有限公司 一种具有低时延特性的时分双工移动通信系统的传输方法
CN101414849A (zh) * 2007-10-16 2009-04-22 大唐移动通信设备有限公司 一种tdd系统中实现上行跳频传输的方法及装置
WO2015012927A1 (en) * 2013-07-26 2015-01-29 Qualcomm Incorporated Transmission time interval (tti) bundling for physical downlink shared channel (pdsch)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005229670B2 (en) * 2004-11-04 2008-01-24 Samsung Electronics Co., Ltd. Method and apparatus for scheduling uplink data transmission for mobile station in soft handover region in a mobile communication system
CN102611533B (zh) 2007-01-05 2016-06-01 Lg电子株式会社 在考虑了频率偏移的情况下设定循环移位的方法
JP4481316B2 (ja) 2007-01-09 2010-06-16 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置および送信方法
CN101247166A (zh) * 2007-02-16 2008-08-20 北京三星通信技术研究有限公司 传输调度请求信息的设备和方法
CN101183896A (zh) * 2007-10-31 2008-05-21 中兴通讯股份有限公司 时分双工系统中上行控制信令的发射方法
CN101599817B (zh) * 2008-06-03 2013-01-16 中兴通讯股份有限公司 一种提高同步非自适应混合自动重传性能的方法
KR101530717B1 (ko) * 2009-01-08 2015-06-23 엘지전자 주식회사 무선통신 시스템에서 제어신호 전송방법
US8743823B2 (en) * 2009-02-12 2014-06-03 Qualcomm Incorporated Transmission with collision detection and mitigation for wireless communication
US8693429B2 (en) 2009-03-31 2014-04-08 Qualcomm Incorporated Methods and apparatus for generation and use of reference signals in a communications system
KR101761610B1 (ko) * 2009-08-26 2017-07-26 엘지전자 주식회사 시간-슬롯 기반으로 다중 αck/nack을 전송하는 방법
CN102006623B (zh) * 2009-09-02 2013-11-06 华为技术有限公司 发送和接收数据的方法、装置及系统
US8873439B2 (en) * 2010-03-25 2014-10-28 Qualcomm Incorporated Subframe dependent physical uplink control channel (PUCCH) region design
EP3694128A1 (en) * 2012-01-15 2020-08-12 LG Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
CN103220103B (zh) * 2012-01-21 2018-11-09 中兴通讯股份有限公司 增强物理下行控制信道的传输方法及装置
WO2013115502A1 (ko) * 2012-01-30 2013-08-08 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 위한 자원을 할당하는 방법 및 이를 위한 장치
JP5894346B2 (ja) * 2012-10-14 2016-03-30 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて受信確認応答送信方法及び装置
CN103997788B (zh) * 2013-02-18 2019-01-11 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及用户设备、网络侧设备
US10727983B2 (en) 2014-10-29 2020-07-28 Qualcomm Incorporated Variable length transmission time intervals (TTI)
US10009153B2 (en) * 2015-01-30 2018-06-26 Motorola Mobility Llc Apparatus and method for reception and transmission of control channels
US20160345311A1 (en) * 2015-05-22 2016-11-24 Qualcomm Incorporated Techniques for scheduling data communications with shortened time duration
CN106550459B (zh) * 2015-09-18 2020-03-13 中兴通讯股份有限公司 一种下行控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777332A (zh) * 2004-11-04 2006-05-24 三星电子株式会社 为软切换区的移动台调度上行链路数据传输的方法和装置
CN1905428A (zh) * 2005-07-25 2007-01-31 上海原动力通信科技有限公司 一种具有低时延特性的时分双工移动通信系统的传输方法
CN101414849A (zh) * 2007-10-16 2009-04-22 大唐移动通信设备有限公司 一种tdd系统中实现上行跳频传输的方法及装置
WO2015012927A1 (en) * 2013-07-26 2015-01-29 Qualcomm Incorporated Transmission time interval (tti) bundling for physical downlink shared channel (pdsch)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151398A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
EP3840447A1 (en) 2021-06-23
CN108029019B (zh) 2021-02-12
EP3840447B1 (en) 2023-11-01
CN108029019A (zh) 2018-05-11
EP3343969A1 (en) 2018-07-04
AU2020201895B2 (en) 2021-06-24
AU2015409983A1 (en) 2018-04-19
BR112018005804A2 (zh) 2018-10-16
CN110224800A (zh) 2019-09-10
US10880909B2 (en) 2020-12-29
EP3343969B1 (en) 2020-11-04
RU2682916C1 (ru) 2019-03-22
CN113037447A (zh) 2021-06-25
US20180213548A1 (en) 2018-07-26
BR112018005804B1 (pt) 2023-10-31
EP3343969A4 (en) 2018-12-05
CN113037447B (zh) 2022-07-19
AU2020201895A1 (en) 2020-04-02
US11601958B2 (en) 2023-03-07
CN110224800B (zh) 2020-10-27
US20210153224A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2017049531A1 (zh) 数据传输方法及装置
EP3512282A1 (en) Method for transmitting information, terminal device, and network device
JP7298969B2 (ja) 通信方法及びネットワークデバイス
WO2017075807A1 (zh) 数据传输方法、网络设备及终端设备
WO2017193827A1 (zh) Srs的发送处理方法及装置和发送方法、装置及系统
CN109076513A (zh) 下行控制信息的发送方法、检测方法和设备
WO2017128296A1 (zh) 一种参考信号的传输方法、装置和系统
WO2019015468A1 (zh) 数据传输方法、网络设备和终端设备
WO2017132969A1 (zh) 传输参考信号的方法和装置
JP7481437B2 (ja) 復調参照信号の構成情報取得方法、構成方法、および装置
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
WO2016169479A1 (zh) 一种数据传输方法及设备
EP4325759A1 (en) Transmission processing method and apparatus in carrier switching
WO2017121208A1 (zh) 传输时间间隔tti的确定方法及装置
WO2017198067A1 (zh) 一种参考解调导频的处理方法及设备、计算机存储介质
RU2701383C1 (ru) Способ и устройство передачи данных
WO2021031778A1 (zh) 传输方法、配置pucch的方法和设备
CN115315930B (zh) 保护间隔的确定方法、设备及存储介质
WO2023024930A1 (zh) 信道调度方法、设备、装置及存储介质
WO2019047902A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015904418

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018005804

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015409983

Country of ref document: AU

Date of ref document: 20150924

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018114960

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112018005804

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180323