WO2017121208A1 - 传输时间间隔tti的确定方法及装置 - Google Patents

传输时间间隔tti的确定方法及装置 Download PDF

Info

Publication number
WO2017121208A1
WO2017121208A1 PCT/CN2016/108570 CN2016108570W WO2017121208A1 WO 2017121208 A1 WO2017121208 A1 WO 2017121208A1 CN 2016108570 W CN2016108570 W CN 2016108570W WO 2017121208 A1 WO2017121208 A1 WO 2017121208A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
symbols
control channel
ttis
consecutive subframes
Prior art date
Application number
PCT/CN2016/108570
Other languages
English (en)
French (fr)
Inventor
韩祥辉
夏树强
戴博
张雯
石靖
任敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017121208A1 publication Critical patent/WO2017121208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for determining a Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • TTI is downlink and The basic unit of uplink transmission scheduling in the time domain.
  • LTE Long Term Evolution
  • LTE-A Frequency Division Duplex
  • the time dimension is divided into radio frames of length 10 ms, wherein each radio frame includes 10 subframes, and the TTI length is equal to the subframe.
  • the length is 1ms.
  • Each subframe includes two slots, each of which has a length of 0.5 ms.
  • Each downlink time slot contains 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols (6 OFDM symbols under the extended cyclic prefix); each uplink time slot contains 7 single carrier frequency divisions.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier-Frequency Division Multiplexing Access
  • the related art adopts a TTI length in units of subframes.
  • TTI length is 7 symbols
  • one subframe contains two short TTIs.
  • the conventional CP is 3, 4, 5 or 6 symbol lengths for the TTI, the downlink transmission or the uplink cannot be included in the subframe only for one TTI length.
  • the design complexity of the system will be increased, which is not conducive to unified channel design, unified reference symbol design, and unified hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, referred to as Timing for HARQ). It can be seen that there is currently no effective solution to the above problems in the related art.
  • the embodiment of the invention provides a method and a device for determining a transmission time interval TTI, so as to solve at least the problem that the TTI of 1 ms length in the related art is difficult to meet the requirement and the TTI design in the subframe unit causes the system complexity to be high.
  • a method for determining a transmission time interval TTI including: acquiring M consecutive subframes in a time domain, where the M consecutive subframes contain N complete TTIs, At least one TTI of the N complete TTIs spans two consecutive subframes; the transport block is sent by one or more TTIs of the N complete TTIs, where M is an integer greater than or equal to 2,
  • the length of the TTI is L symbols, L is one of integers between 2 and 7, and N is a positive integer, and N symbol is the number of symbols contained in one subframe.
  • the transport block when the TTI of the transport block spans the two consecutive subframes, the transport block is cross-subframe by a physical downlink control channel PDCCH of a second subframe of the two consecutive subframes.
  • Scheduling, or by a specified downlink control channel scheduling within a TTI wherein the designated downlink control channel is located in a first time domain symbol within a TTI, or the designated downlink control channel occupies multiple time domain symbols within a TTI, And the frequency of the transmission data is reused for a part of the system bandwidth.
  • the transport block is scheduled by the physical downlink control channel PDCCH of the subframe in which the subframe is located, or by Specifying a downlink control channel scheduling in a TTI, where the specified downlink control channel is located in a first time domain symbol in a TTI, or the designated downlink control channel occupies multiple time domain symbols in a TTI, and is transmitted
  • the data frequency is reused as part of the system bandwidth.
  • the transport block in the TTI with the index #0 is The physical downlink control channel PDCCH of the first one of the two consecutive subframes is scheduled, or is scheduled by a designated downlink control channel, where the designated downlink control channel is located in the first time domain symbol in the TTI, or The specified downlink control channel occupies multiple time domain symbols in the TTI, and is frequency-multiplexed with the transmission data for a part of the system bandwidth;
  • the transport block in the TTI with indexes #1, #2, #5, #6 is The downlink control channel scheduling is specified;
  • the transport block in the TTI with the index #3 is scheduled by the PDCCH of the second subframe of the two consecutive subframes, or is scheduled by the specified downlink control channel;
  • the index is #
  • the transport block in the TTI of 4 is scheduled by the PDCCH of the second subframe of the 2 consecutive subframes, or is
  • the location of the downlink demodulation reference signal DMRS includes: The DMRS in the TTI of #0 is located on the last two symbols in the TTI; the index is #1, the DMRS in the TTI of #2 is located on the second and third symbols in the TTI; the short TTI index is #3 The DMRS is located on the first two symbols in the TTI; the DMRS in the short TTI with index #4 is located on the first two symbols in the TTI, or the last two symbols; the short TTI indexed as #5 The inner DMRS is located on the first two symbols in the TTI, or on the first and last symbols; the DMRS in the short TTI with index #6 is located on the last two symbols in the TTI, or the first sum On the third symbol; or, all DMRSs in the TTI index are located on the first two symbols in the TTI; where
  • all TTIs on the uplink shared channel contain only one reference symbol, wherein the one reference symbol is located on the second symbol in each transmission time interval.
  • the TTI on the uplink control channel contains one or two reference symbols; when the reference symbol is included in the TTI, the one reference symbol is located on the second symbol of the TTI; and the TTI is included in the TTI. When two reference symbols are present, the two reference symbols are respectively located on the second and third symbols of the TTI.
  • the number of subcarriers in the frequency allocation resource in each TTI in the shared channel is at least 36 subcarriers, or the number of subcarriers in the frequency domain allocation resource in each TTI is at least 48 subcarriers.
  • N symbol 14
  • N 14.
  • the transport block in the TTI with index #0 Scheduling by the PDCCH of the first one of the three consecutive subframes, or by the designated downlink control channel, where the designated downlink control channel is located in the first time domain symbol in the TTI, or the designated downlink
  • the control channel occupies multiple time domain symbols within the TTI and is frequency-multiplexed with the transmitted data for a portion of the system bandwidth; the transport block within the TTI with index #5, the second subframe of the three consecutive subframes
  • the PDCCH is scheduled or scheduled by the specified downlink control channel;
  • the transport block in the TTI with index #10 is scheduled by the PDCCH of the third subframe of the three consecutive subframes, or by the specified downlink Control channel scheduling;
  • the transport block in the TTI with the index #4 is scheduled by the PDCCH of the second subframe of the three consecutive subframes
  • the time domain symbol positions of the downlink demodulation reference symbols DMRS in the N complete TTIs are not completely the same; wherein, the DMRSs in the same time domain symbol are 8 subcarriers in the frequency domain, or 10 Subcarriers.
  • only one reference symbol is included in all TTIs on the uplink shared channel and the uplink control channel, where the one reference symbol is located on the second symbol in each short TTI.
  • the number of subcarriers in the frequency allocation resource in each TTI in the shared channel is at least 48 subcarriers, or the number of subcarriers in the frequency resource allocation resource in each TTI is at least 60 subcarriers.
  • the downlink HARQ timing and the uplink HARQ timing comprise: the downlink hybrid automatic request retransmission HARQ timing value and the uplink HARQ timing value are both n+4, or the downlink HARQ timing value and the uplink The HARQ timing values are all n+3, where n is a positive integer.
  • part or all of the TTI may be set as a handover TTI, wherein the handover TTI includes a guard interval GP.
  • the TTI of some or all of the two consecutive sub-frames is set to a special handover TTI, wherein the special handover TTI only contains GP, or only GP and downlink, or only GP and uplink.
  • apparatus for determining a transmission time interval TTI comprising: an obtaining module, configured to acquire M consecutive subframes in a time domain, wherein the M consecutive subframes include N complete TTIs, at least one of the N complete TTIs spans two consecutive subframes at the same time; the sending module is configured to send the transport block by using one or more of the N complete TTIs, Wherein M is an integer greater than or equal to 2, the length of the TTI is L symbols, L is one of integers between 2 and 7, and N is a positive integer, and N symbol is the number of symbols contained in one subframe.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • M consecutive subframes in the time domain where the M consecutive subframes contain N complete TTIs, and at least one of the N complete TTIs spans two consecutive subframes simultaneously;
  • One or more of the N complete TTIs transmit a transport block, where M is an integer greater than or equal to 2, the length of the TTI is L symbols, and L is one of integers between 2 and 7, N is a positive integer, and N symbol is the number of symbols contained in one subframe.
  • the M consecutive subframes that have N complete TTIs and at least one TTI of the N complete TTIs spans two consecutive subframes are obtained, and pass through the N complete TTIs.
  • One or more TTIs transmit a transport block, so that when the TTI becomes shorter, the downlink transmission or the uplink transmission still only contains one TTI length, which solves the problem that the TTI of 1 ms length in the related art is difficult to meet the requirements and the TTI design is performed in units of subframes.
  • the problem of high system complexity achieves the effect of unified channel design.
  • FIG. 1 is a flowchart of a method of determining a transmission time interval TTI according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a determining apparatus for transmitting a time interval TTI according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a TTI cross-subframe design with a downlink transmission TTI length of 4 symbols and a corresponding downlink control channel according to the present optional embodiment
  • FIG. 4 is a schematic diagram of a TTI cross-subframe design and a downlink reference symbol design when a TTI length is 4 symbols according to an optional embodiment of the present invention
  • FIG. 5 is a schematic diagram of a TTI cross-subframe design and an uplink shared channel design when a TTI length is 3 symbols according to an optional embodiment of the present invention
  • FIG. 6 is a schematic diagram of a TTI cross-subframe design and an uplink control channel design when a TTI length is 4 symbols according to an optional embodiment of the present invention
  • FIG. 7 is a schematic diagram of a cross-subframe design when a TTI length is 4 symbols in a TDD system according to an alternative embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for determining a transmission time interval TTI according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 Obtain M consecutive subframes in the time domain, where the M consecutive subframes contain N complete TTIs, and at least one TTI of the N complete TTIs spans two consecutive subframes at the same time;
  • Step S104 Send a transport block by using one or more TTIs in the N complete TTIs, where M is an integer greater than or equal to 2, the length of the TTI is L symbols, and L is one of integers between 2 and 7.
  • M is an integer greater than or equal to 2
  • the length of the TTI is L symbols
  • L is one of integers between 2 and 7.
  • N is a positive integer
  • N symbol is the number of symbols contained in one subframe;
  • M consecutive subframes with N complete TTIs and at least one TTI of the N complete TTIs spanning two consecutive subframes are obtained, and pass through the N complete TTIs.
  • One or more TTIs transmit a transport block, so that when the TTI becomes shorter, the downlink transmission or the uplink transmission still only contains one TTI length, which solves the problem that the TTI of 1 ms length in the related art is difficult to meet the requirements and the TTI design is performed in units of subframes.
  • the problem of high system complexity has achieved the effect of unified channel design.
  • the transport block involved in this embodiment performs cross-subframe scheduling by the control channel of the second subframe of the two consecutive subframes, or is scheduled by the downlink control channel in the TTI, where the downlink is specified.
  • the control channel is located in the first time domain symbol in the TTI, or the designated downlink control channel occupies multiple time domain symbols within the TTI, and is frequency-multiplexed with the transmission data for a portion of the system bandwidth.
  • the transport block is scheduled across the subframe by the physical downlink control channel PDCCH of the second subframe of the two consecutive subframes.
  • the transport block is scheduled by the physical downlink control channel PDCCH of the subframe in which the subframe is located, or is scheduled by the downlink control channel in the TTI.
  • the downlink control channel is consistent with the downlink control channel involved above.
  • the transport block in the TTI with index #0 is scheduled by the physical downlink control channel PDCCH of the first subframe of the two consecutive subframes, or by Specifying downlink control channel scheduling; transport blocks within the TTI with indices #1, #2, #5, #6 are scheduled by the designated downlink control channel; transport blocks within the TTI with index #3 are from 2 consecutive subframes
  • the PDCCH of the second subframe is scheduled across subframes, or scheduled by a designated downlink control channel; the transport block within the TTI with index #4 is scheduled by the PDCCH of the second subframe of the two consecutive subframes, or by Specifies downlink control channel scheduling.
  • the DMRS in the TTI with the index #0 is located on the last two symbols in the TTI; the DMRS in the TTI with the index #1, #2 is located in the TTI.
  • the DMRS in the short TTI with index #3 is located on the first two symbols in the TTI; the DMRS in the short TTI with index #4 is located in the first two of the TTI On the symbol, or on the last two symbols; the DMRS in the short TTI with index #5 is located on the first two symbols in the TTI, or on the first and last symbols; the short TTI indexed as #6
  • the inner DMRS is located on the last two symbols in the TTI, or on the first and third symbols; wherein, the DMRS on the same time domain symbol has an interval of 6 subcarriers in the frequency domain, or 8 subcarriers.
  • all TTIs on the uplink shared channel contain only one reference symbol, wherein one reference symbol is located on the second symbol in each transmission time interval.
  • the TII on the uplink control channel contains one or two reference symbols; when the reference symbol is included in the TTI, one reference symbol is located on the second symbol of the TTI; and two reference symbols are included in the TTI. The two reference symbols are located on the second and third symbols of the TTI, respectively.
  • the number of subcarriers allocated in the frequency domain allocation resource in each TTI is at least 36 subcarriers in the shared channel, or the number of subcarriers in the frequency domain allocation resource in each TTI is at least 48 subcarriers
  • the shared channel includes Uplink shared channel and downlink shared channel.
  • the transport block in the TTI with the index #0 is scheduled by the PDCCH of the first subframe of the three consecutive subframes, or by specifying the downlink.
  • Control channel scheduling a transport block within a TTI with index #5, scheduled by a PDCCH of a second one of three consecutive subframes, or scheduled by a designated downlink control channel; within a TTI with index #10 a transport block, scheduled by a PDCCH of a third subframe of three consecutive subframes, or scheduled by a designated downlink control channel; a transport block within a TTI with index #4, by a second of three consecutive subframes
  • the PDCCH of the subframe is scheduled across the subframe, or is scheduled by the designated downlink control channel; in the transport block in the TTI with index #9, the PDCCH is scheduled by the PDCCH of the third subframe of the three consecutive subframes, Or scheduled by the specified downlink control channel; short TTIs for other indexes than index
  • the DMRS is completed in N
  • the time domain symbol positions in the entire TTI are not completely the same; wherein, the DMRS on the same time domain symbol has an interval of 8 subcarriers in the frequency domain, or 10 subcarriers.
  • all TTIs on the uplink shared channel and the uplink control channel only contain one reference symbol, wherein one reference symbol is located on the second symbol in each short TTI.
  • the number of subcarriers included in the frequency allocation resource in each TTI of the shared channel is at least 48 subcarriers, or the number of subcarriers allocated in the frequency domain allocation resource in each TTI is at least 60 subcarriers.
  • the downlink HARQ timing and the uplink HARQ timing are: the downlink HARQ timing value and the uplink HARQ timing value are both n+4, that is, the uplink data received by the base station at the TTI index n.
  • the transmission corresponds to feedback ACK/NACK in the TTI whose downlink index is n+4.
  • the downlink data transmission received by the terminal at the TTI index n is corresponding to the feedback ACK/NACK in the TTI with the uplink index being n+4; or the downlink HARQ timing value and the uplink HARQ timing value are both n+3, that is, the base station receives at the TTI index n.
  • the uplink data transmission corresponds to feedback ACK/NACK in a TTI with a downlink index of n+3.
  • the downlink data transmission received by the terminal at the TTI index n corresponds to the feedback ACK/NACK in the TTI with the uplink index of n+3.
  • some or all of the TTIs may be set as the switching TTI, wherein the switching TTIs all contain the guard interval GP. Further, the TTI of some or all of the two consecutive sub-frames may be set to a special handover TTI, wherein the special handover TTI includes only the GP, or only the GP and the downlink, or only the GP and the uplink.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a device for determining a transmission time interval TTI is provided.
  • the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: an obtaining module 22 configured to acquire M consecutive subframes existing in a time domain, where The M consecutive subframes contain N complete TTIs, and at least one TTI of the N complete TTIs spans two consecutive subframes at the same time; the sending module 24 is coupled to the acquiring module 22 and configured to pass N complete TTIs.
  • One or more TTI transmission transport blocks where M is an integer greater than or equal to 2, the length of the TTI is L symbols, L is one of integers between 2 and 7, and N is a positive integer, and N symbol is the number of symbols contained in one subframe.
  • each of the foregoing modules may be implemented by software or hardware.
  • the above modules are all located in the same processor; or, the above modules are respectively located in multiple processors.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 is a schematic diagram of a TTI cross-subframe design with a downlink transmission TTI length of 4 symbols and a corresponding downlink control channel according to the optional embodiment. As shown in FIG. 3, two consecutive subframes have a total of 7 complete TTIs. The length of the TTI is 4 symbols, and the TTI with the index #3 spans two subframes at the same time. In FIG. 3, the short TTI and the traditional 1 ms TTI data occupy different system bandwidths for frequency division multiplexing.
  • the legacy control region of each subframe is located in the first 2 OFDM symbols of the subframe.
  • the transport block in the TTI with index #0 is scheduled using the PDCCH of the first one of the two consecutive subframes.
  • the transport blocks in the TTIs with indices #1, #2, #4, #5, #6 are scheduled using a specific downlink control channel, wherein two types of control channels are given in Figure 3, one is with TTI
  • the data is time-multiplexed sPDCCH channel, and the other is an sEPDCCH channel that is frequency-multiplexed with TTI data, and the frequency domain does not cover the entire system bandwidth.
  • the transport block in the TTI with index #3 is scheduled across the subframe using the PDCCH of the second subframe of the two consecutive subframes.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 4 is a schematic diagram of a TTI cross-subframe design and a downlink reference symbol design when the TTI length is 4 symbols according to an optional embodiment of the present invention.
  • two consecutive subframes have a total of 7 complete short TTIs.
  • the length of the TTI is 4 symbols, and the TTI with the index #3 spans two subframes at the same time.
  • the minimum resource allocation granularity in the frequency domain is 48 subcarriers, and the frequency domain interval of the downlink demodulation reference signal is 8 subcarriers.
  • the number of antenna ports in FIG. 4 is 1 or 2, the time domain symbol positions in the DMRS in each TTI are not completely the same, and the DMRSs are all on the OFDM symbols without the cell-specific reference symbols, that is, in the short TTI with the index #0.
  • the DMRS is located on the last two symbols within the TTI; for the DMRS within the short TTI with index #1, #2 is located on the second and third symbols within the TTI; for short TTI within the index #3, #4
  • the DMRS is located on the first two symbols in the TTI; the DMRS in the short TTI with index #5 is located on the first and last symbols in the TTI; the DMRS in the short TTI with index #6 is located On the first and third symbols in the TTI.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 5 is a schematic diagram of a TTI cross-subframe design and an uplink shared channel design when the TTI length is 3 symbols according to an optional embodiment of the present invention.
  • the TTI length is 3 SC-FDMA symbols, wherein the TTIs with indices #4 and #9 span two subframes at the same time.
  • each TTI contains an uplink demodulation reference signal, and both are in the TTI. Two symbols.
  • the uniform TTI length design across sub-frames enables a uniform uplink shared channel structure to be obtained, which helps to reduce system complexity.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • TTI cross-subframe design and an uplink control channel when a TTI length is 4 symbols according to an optional embodiment of the present invention. As shown in FIG. 6, two consecutive subframes contain a total of seven complete short TTIs, and the length of the TTI is four SC-FDMA symbols, wherein the TTI with index #3 spans two subframes at the same time.
  • each TTI includes an uplink demodulation reference signal, and both are located on the second symbol in the TTI, and the SRS is set on the last symbol of the subframe in the TTI in which the SRS needs to be sent.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 7 is a schematic diagram of a cross-subframe design when a TTI length is 4 symbols in a TDD system according to an alternative embodiment of the present invention. As shown in FIG. 7, four consecutive subframes have a total of 14 complete short TTIs, and a TTI length. Each of the four symbols, wherein each two consecutive sub-frames are numbered, and the TTI with index #3 in every two consecutive sub-frames spans two sub-frames simultaneously.
  • the uplink-downlink ratio is increased, and the dynamic uplink and downlink service changes are more flexibly adapted.
  • the four special handover TTIs in FIG. 7 only include the GP and the Upstream, all the uplink TTI lengths in Figure 7 contain 4 available symbols, which is beneficial to balance the uplink data and reference symbol overhead.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S1 Obtain M consecutive subframes in the time domain, where M consecutive subframes contain N complete TTIs, and at least one TTI of the N complete TTIs spans two consecutive subframes simultaneously;
  • Step S2 transmitting a transport block by using one or more TTIs of the N complete TTIs, where M is an integer greater than or equal to 2, the length of the TTI is L symbols, and L is one of integers between 2 and 7.
  • M is an integer greater than or equal to 2
  • the length of the TTI is L symbols
  • L is one of integers between 2 and 7.
  • N is a positive integer
  • N symbol is the number of symbols contained in one subframe;
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the M consecutive subframes that have N complete TTIs and at least one TTI of the N complete TTIs spans two consecutive subframes are obtained, and pass through the N complete TTIs.
  • One or more TTIs transmit a transport block, so that when the TTI becomes shorter, the downlink transmission or the uplink transmission still only contains one TTI length, which solves the problem that the TTI of 1 ms length in the related art is difficult to meet the requirements and the TTI design is performed in units of subframes.
  • the problem of high system complexity achieves the effect of unified channel design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种传输时间间隔TTI的确定方法及装置,其中,该方法包括:获取时域上M个连续子帧,其中,M个连续子帧内含有N个完整的TTI,N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且N=(Nsymbol·M)/L, Nsymbol为一个子帧内含有的符号个数;通过本发明,解决了相关技术中1ms长度的TTI难以满足需求且以子帧为单位进行TTI设计导致系统复杂度高的问题,达到了统一信道设计的效果。

Description

传输时间间隔TTI的确定方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种传输时间间隔(Transmission Time Interval,简称为TTI)的确定方法及装置。
背景技术
在第三代合作伙伴项目(3rd Generation Partnership Project,简称为3GPP)长期演进(Long Term Evolution,简称为LTE)及高级长期研究(LTE-Advanced,简称为LTE-A)系统中,TTI是下行和上行传输调度在时域上的基本单位。如在LTE/LTE-A频分双工(Frequency Division Duplex,简称为FDD)系统中,时间维度上被分成长度为10ms的无线电帧,其中每个无线电帧包括10个子帧,TTI长度等于子帧长度为1ms。每个子帧包括两个时隙,每一个时隙的长度为0.5ms。每个下行时隙含有7个正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号(扩展循环前缀下为6个OFDM符号);每个上行时隙含有7个单载波频分复用(Single Carrier-Frequency Division Multiplexing Access,简称为SC-FDMA)符号(扩展循环前缀下为6个SC-FDMA符号)。
在3GPP后续演进如第五代移动通信系统(5G)中将支持超低时延业务,现有1ms长度的TTI将不再满足需求。针对该问题,相关技术中采用的是以子帧为单位设计TTI长度,如对于常规CP下,TTI长度为7个符号时一个子帧内含有两个短TTI。然而,常规CP下对于TTI为3、4、5或6个符号长度时,则无法以子帧为单位使得下行传输或上行只含有一种TTI长度。而如果下行传输或者上行传输含有多种TTI长度将会增加系统的设计复杂度,即不利于统一的信道设计、统一的参考符号图样设计以及统一的混合自动重传请求(Hybrid Automatic Repeat reQuest,简称为HARQ)定时。可见,针对相关技术中的上述问题,目前尚未存在有效的解决方案。
发明内容
本发明实施例提供了一种传输时间间隔TTI的确定方法及装置,以至少解决相关技术中1ms长度的TTI难以满足需求且以子帧为单位进行TTI设计导致系统复杂度高的问题。
根据本发明实施例的一个方面,提供了一种传输时间间隔TTI的确定方法,包括:获取时域上M个连续子帧,其中,所述M个连续子帧内含有N个完整的TTI,所述N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;通过所述N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,所述TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
Figure PCTCN2016108570-appb-000001
Nsymbol为一个子帧内含有的符号个数。
可选地,在所述传输块所在的TTI跨度所述两个连续子帧时,所述传输块由所述两个连续子帧中的第二个子帧的物理下行控制信道PDCCH进行跨子帧调度,或由在TTI内的指定下行控制信道调度,其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分。
可选地,在所述传输块所在的TTI只在所述M个连续子帧内的其中之一子帧内时,所述传输块由所在子帧的物理下行控制信道PDCCH进行调度,或由在TTI内的指定下行控制信道调度,其其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分。
可选地,下行解调参考符号DMRS在所述N个完整TTI内的时域符号位置不完全相同;其中,在子帧内含有的符号数Nsymbol=14时,M=2,L=4,或者,M=3,L=3。
可选地,在子帧内含有的符号数Nsymbol=14,且M=2,L=4时,所述M个连续子帧内TTI的个数为N=7。
可选地,在所述M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1时,索引为#0的TTI内的传输块,由2个连续子帧中的第一个子帧的物理下行控制信道PDCCH进行调度,或者由指定下行控制信道调度,其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分;索引为#1,#2,#5,#6的TTI内的传输块由所述指定下行控制信道调度;索引为#3的TTI内的传输块由2个连续子帧中的第二个子帧的PDCCH进行跨子帧调度,或者由所述指定下行控制信道调度;索引为#4的TTI内的传输块由2个连续子帧中的第二个子帧的PDCCH进行调度,或者,由所述指定下行控制信道调度。
可选地,在所述M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1时,下行解调参考信号DMRS的位置包括:索引为#0的TTI内的DMRS位于TTI内的最后两个符号上;索引为#1,#2的TTI内的DMRS位于TTI内的第二和第三个符号上;索引为#3的短TTI内的DMRS位于TTI内的最前面的两个符号上;索引为#4的短TTI内的DMRS位于TTI内的最前面的两个符号上,或者最后两个符号上;索引为#5的短TTI内的DMRS位于TTI内的最前面的两个符号上,或者第一个和最后一个符号上;索引为#6的短TTI内的DMRS位于TTI内的最后两个符号上,或者第一个和第三个符号上;或者,所有TTI索引内的DMRS均位于TTI内的前两个符号上;其中,同一时域符号上的DMRS在频域上的间隔为6个子载波,或者为8个子载波。
可选地,上行共享信道上的所有TTI内均只含有一个参考符号,其中,所述一个参考符号位于每个传输时间间隔内的第二个符号上。
可选地,上行控制信道上的TTI内含有一个或两个参考符号;在所述TTI内含有一个参考符号时,所述一个参考符号位于TTI的第二个符号上;在所述TTI内含有两个参考符号时,所述两个参考符号分别位于TTI的第二个和第三个符号上。
可选地,共享信道中每个TTI内频域分配资源所含子载波数至少为36个子载波,或者,每个TTI内频域分配资源所含子载波数至少为48个子载波。
可选地,在子帧内含有的符号数Nsymbol=14,且M=3,L=3时,所述M个连续子帧内短TTI的个数为N=14。
可选地,在所述M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1时,在索引为#0的TTI内的传输块,由3个连续子帧中的第一个子帧的PDCCH进行调度,或者由指定下行控制信道调度,其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分;在索引为#5的TTI内的传输块,由3个连续子帧中的第二个子帧的PDCCH进行调度,或者由所述指定下行控制信道调度;在索引为#10的TTI内的传输块,由3个连续子帧中的第三个子帧的PDCCH进行调度,或者由所述指定下行控制信道调度;在索引为#4的TTI内的传输块,由3个连续子帧中的第二个子帧的PDCCH进行跨子帧调度,或者由所述指定下行控制信道调度;在索引为#9的TTI内的传输块,由3个连续子帧中的第三个子帧的PDCCH进行跨子帧调度,或者由所述指定下行控制信道调度;对于除索引为#0、#5、#10、#4、#9之外的其他索引的短TTI由所述指定下行控制信道调度。
可选地,下行解调参考符号DMRS在所述N个完整TTI内的时域符号位置不完全相同;其中,同一时域符号上的DMRS在频域上的间隔为8个子载波,或者为10个子载波。
可选地,在上行共享信道和上行控制信道上所有TTI内的均只含有一个参考符号,其中,所述一个参考符号位于每个短TTI内的第二个符号上。
可选地,共享信道中每个TTI内频域分配资源所含子载波数至少为48个子载波,或者每个TTI内频域分配资源所含子载波数至少为60个子载波。
可选地,在频分双工FDD系统中,下行HARQ定时和上行HARQ定时包括:下行混合自动请求重传HARQ定时值和上行HARQ定时值均为n+4,或者,下行HARQ定时值和上行HARQ定时值均为n+3,其中,n为正整数。
可选地,在时分双工TDD系统中,可将部分或全部TTI设为切换TTI,其中,所述切换TTI内均含有保护间隔GP。
可选地,将部分或全部同时跨度两个连续子帧的TTI设置为特殊切换TTI,其中,所述特殊切换TTI内只含有GP,或只含有GP和下行,或只含有GP和上行。
根据本发明实施例的另一个方面,提供了一种传输时间间隔TTI的确定装置,包括:获取模块,设置为获取时域上M个连续子帧,其中,所述M个连续子帧内含有N个完整的TTI,所述N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;发送模块,设置为通过所述N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,所述TTI 的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
Figure PCTCN2016108570-appb-000002
Nsymbol为一个子帧内含有的符号个数。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
获取时域上M个连续子帧,其中,所述M个连续子帧内含有N个完整的TTI,所述N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;通过所述N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,所述TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
Figure PCTCN2016108570-appb-000003
Nsymbol为一个子帧内含有的符号个数。。
在本发明实施例中,采用获取含有N个完整的TTI且N个完整的TTI中至少有一个TTI同时跨度两个连续子帧的M个连续子帧,并通过该N个完整的TTI中的一个或多个TTI发送传输块,使得在TTI变短时下行传输或者上行传输仍只含有一种TTI长度,解决了相关技术中1ms长度的TTI难以满足需求且以子帧为单位进行TTI设计导致系统复杂度高的问题,达到了统一信道设计的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的传输时间间隔TTI的确定方法的流程图;
图2是根据本发明实施例的传输时间间隔TTI的确定装置的结构框图;
图3是根据本可选实施例的下行传输TTI长度恒为4个符号的TTI跨子帧设计及对应下行控制信道示意图;
图4是根据本发明可选实施例的TTI长度为4个符号时TTI跨子帧设计及下行参考符号设计示意图;
图5是根据本发明可选实施例的TTI长度为3个符号时TTI跨子帧设计及上行共享信道设计示意图;
图6是根据本发明可选实施例的TTI长度为4个符号时TTI跨子帧设计及上行控制信道设计示意图;
图7是根据本发明可选实施例的TDD系统下TTI长度为4个符号时的跨子帧设计示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种传输时间间隔TTI的确定方法,图1是根据本发明实施例的传输时间间隔TTI的确定方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102:获取时域上M个连续子帧,其中,M个连续子帧内含有N个完整的TTI,N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;
步骤S104:通过N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
Figure PCTCN2016108570-appb-000004
Nsymbol为一个子帧内含有的符号个数;
通过上述步骤S102和步骤S104,采用获取含有N个完整的TTI且N个完整的TTI中至少有一个TTI同时跨度两个连续子帧的M个连续子帧,并通过该N个完整的TTI中的一个或多个TTI发送传输块,使得在TTI变短时下行传输或者上行传输仍只含有一种TTI长度,解决了相关技术中1ms长度的TTI难以满足需求且以子帧为单位进行TTI设计导致系统复杂度高的问题,达到了统一信道设计的效果。
需要说明的是,本实施例中涉及到的传输块由两个连续子帧中的第二个子帧的控制信道进行跨子帧调度,或者,由TTI内指定下行控制信道调度,其中,指定下行控制信道位于TTI内的第一个时域符号,或指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分。
当传输块所在的TTI跨度两个连续子帧时,传输块由两个连续子帧中的第二个子帧的物理下行控制信道PDCCH进行跨子帧调度。当传输块所在的TTI只在M个连续子帧内的其中之一子帧内时,传输块由所在子帧的物理下行控制信道PDCCH进行调度,或者由所在TTI内指定下行控制信道调度,该下行控制信道与上述涉及到的下行控制信道一致。
此外,本实施例中涉及到的M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1。
在本实施例的可选实施方式中,下行解调参考符号DMRS在N个完整TTI内的时域符号位置不完全相同;其中,在子帧内含有的符号数Nsymbol=14时,M=2,L=4,或者,M=3,L=3。
方式一:在子帧内含有的符号数Nsymbol=14,且M=2,L=4时,M个连续子帧内TTI的个 数为N=7。
在本实施例的可选实施方式中,对于下行控制信道,索引为#0的TTI内的传输块由2个连续子帧中的第一个子帧的物理下行控制信道PDCCH进行调度,或者由指定下行控制信道调度;索引为#1,#2,#5,#6的TTI内的传输块由指定下行控制信道调度;索引为#3的TTI内的传输块由2个连续子帧中的第二个子帧的PDCCH进行跨子帧调度,或者由指定下行控制信道调度;索引为#4的TTI内的传输块由2个连续子帧中的第二个子帧的PDCCH进行调度,或者,由指定下行控制信道调度。
在本实施例的另一个可选实施方式中,对于DMRS,索引为#0的TTI内的DMRS位于TTI内的最后两个符号上;索引为#1,#2的TTI内的DMRS位于TTI内的第二和第三个符号上;索引为#3的短TTI内的DMRS位于TTI内的最前面的两个符号上;索引为#4的短TTI内的DMRS位于TTI内的最前面的两个符号上,或者最后两个符号上;索引为#5的短TTI内的DMRS位于TTI内的最前面的两个符号上,或者第一个和最后一个符号上;索引为#6的短TTI内的DMRS位于TTI内的最后两个符号上,或者第一个和第三个符号上;其中,同一时域符号上的DMRS在频域上的间隔为6个子载波,或者为8个子载波。
在本实施例的再一个可选实施方式中,上行共享信道上的所有TTI内均只含有一个参考符号,其中,一个参考符号位于每个传输时间间隔内的第二个符号上。
而对于上行控制信道,上行控制信道上的TII内含有一个或两个参考符号;在TTI内含有一个参考符号时,一个参考符号位于TTI的第二个符号上;在TTI内含有两个参考符号时,两个参考符号分别位于TTI的第二个和第三个符号上。
此外,在共享信道中每个TTI内频域分配资源所含子载波数至少为36个子载波,或者,每个TTI内频域分配资源所含子载波数至少为48个子载波,该共享信道包括上行共享信道和下行共享信道。
方式二:在子帧内含有的符号数Nsymbol=14,且M=3,L=3时,M个连续子帧内短TTI的个数为N=14。
在本实施例的可选实施方式中,对于下行控制信道,在索引为#0的TTI内的传输块,由3个连续子帧中的第一个子帧的PDCCH进行调度,或者由指定下行控制信道调度;在索引为#5的TTI内的传输块,由3个连续子帧中的第二个子帧的PDCCH进行调度,或者由指定下行控制信道调度;在索引为#10的TTI内的传输块,由3个连续子帧中的第三个子帧的PDCCH进行调度,或者由指定下行控制信道调度;在索引为#4的TTI内的传输块,由3个连续子帧中的第二个子帧的PDCCH进行跨子帧调度,或者由指定下行控制信道调度;在索引为#9的TTI内的传输块,由3个连续子帧中的第三个子帧的PDCCH进行跨子帧调度,或者由指定下行控制信道调度;对于除索引为#0、#5、#10、#4、#9之外的其他索引的短TTI由指定下行控制信道调度。
在本实施例的另一个可选实施方式中,对于下行解调参考符号DMRS,DMRS在N个完 整TTI内的时域符号位置不完全相同;其中,同一时域符号上的DMRS在频域上的间隔为8个子载波,或者为10个子载波。
在本实施例的又一个可选实施方式,在上行共享信道和上行控制信道上所有TTI内的均只含有一个参考符号,其中,一个参考符号位于每个短TTI内的第二个符号上。
而对于共享信道中每个TTI内频域分配资源所含子载波数至少为48个子载波,或者每个TTI内频域分配资源所含子载波数至少为60个子载波。
在本实施例的一个可选实施方式,对于FDD系统中,下行HARQ定时和上行HARQ定时为:下行HARQ定时值和上行HARQ定时值均为n+4,即基站在TTI索引n接收的上行数据传输对应在下行索引为n+4的TTI内反馈ACK/NACK。终端在TTI索引n接收的下行数据传输对应在上行索引为n+4的TTI内反馈ACK/NACK;或者,下行HARQ定时值和上行HARQ定时值均为n+3,即基站在TTI索引n接收的上行数据传输对应在下行索引为n+3的TTI内反馈ACK/NACK。终端在TTI索引n接收的下行数据传输对应在上行索引为n+3的TTI内反馈ACK/NACK。
而对于TDD系统,可将部分或全部TTI设为切换TTI,其中,切换TTI内均含有保护间隔GP。进一步,可将部分或全部同时跨度两个连续子帧的TTI设置为特殊切换TTI,其中,包括,特殊切换TTI内只含有GP,或者只含有GP和下行,或者只含有GP和上行。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种传输时间间隔TTI的确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的传输时间间隔TTI的确定装置的结构框图,如图2所示,该装置包括:获取模块22,设置为获取时域上存在的M个连续子帧,其中,M个连续子帧内含有N个完整的TTI,N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;发送模块24,与获取模块22耦合连接,设置为通过N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
Figure PCTCN2016108570-appb-000005
Nsymbol为一个子帧内含有的符号个数。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以 下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本发明的可选实施例对本发明进行举例说明;
实施例一:
图3是根据本可选实施例的下行传输TTI长度恒为4个符号的TTI跨子帧设计及对应下行控制信道示意图,如图3所示,两个连续子帧共含有7个完整的TTI,TTI长度均为4个符号,其中索引为#3的TTI同时跨度两个子帧,图3中短TTI和传统1ms TTI数据占用不同系统带宽以频分复用。
此外,在图3中,每个子帧的传统控制区域位于子帧的前2个OFDM符号。在索引为#0的TTI内的传输块采用2个连续子帧中的第一个子帧的PDCCH进行调度。在索引为#1,#2,#4,#5,#6的TTI内的传输块采用特定下行控制信道调度,其中,图3中给出了两种类型的控制信道,一种是与TTI数据时分复用的sPDCCH信道,一种是与TTI数据频分复用的sEPDCCH信道,其频域并未覆盖整个系统带宽。在索引为#3的TTI内的传输块采用2个连续子帧中的第二个子帧的PDCCH进行跨子帧调度。
实施例二:
图4是根据本发明可选实施例的TTI长度为4个符号时TTI跨子帧设计及下行参考符号设计示意图,如图4所示,两个连续子帧共含有7个完整的短TTI,TTI长度均为4个符号,其中,索引为#3的TTI同时跨度两个子帧,图4中频域最小资源分配颗粒度为48个子载波,下行解调参考信号的频域间隔为8个子载波。
图4中天线端口数为1或2,每个TTI内的DMRS所在时域符号位置不完全相同,以及DMRS均处于没有小区特定参考符号的OFDM符号上,即索引为#0的短TTI内的DMRS位于TTI内的最后两个符号上;对于索引为#1,#2的短TTI内的DMRS位于TTI内的第二和第三个符号上;对于索引为#3,#4的短TTI内的DMRS位于TTI内的最前面的两个符号上;对于索引为#5的短TTI内的DMRS位于TTI内的第一个和最后一个符号上;对于索引为#6的短TTI内的DMRS位于TTI内的第一个和第三个符号上。
实施例三:
图5是根据本发明可选实施例的TTI长度为3个符号时TTI跨子帧设计及上行共享信道设计示意图,如图5所示,两个连续子帧共含有14个完整的短TTI,TTI长度均为3个SC-FDMA符号,其中索引为#4和#9的TTI同时跨度了两个子帧,另外,每个TTI内均含有一个上行解调参考信号,且均处于TTI内的第二个符号上。跨子帧的统一的TTI长度设计使得可以获得统一的上行共享信道结构,有助于降低系统复杂度。
实施例四:
图6是根据本发明可选实施例的TTI长度为4个符号时TTI跨子帧设计及上行控制信道 设计示意图,如图6所示,两个连续子帧共含有7个完整的短TTI,TTI长度均为4个SC-FDMA符号,其中,索引为#3的TTI同时跨度了两个子帧。
以及每个TTI内均含有一个上行解调参考信号,且均处于TTI内的第二个符号上,另外在需要发送SRS的TTI内将SRS设在该子帧的最后一个符号上。
实施例五:
图7是根据本发明可选实施例的TDD系统下TTI长度为4个符号时的跨子帧设计示意图,如图7所示,四个连续子帧共含有14个完整的短TTI,TTI长度均为4个符号,其中对每两个连续子帧分别编号,每两个连续子帧中索引为#3的TTI同时跨度了两个子帧。
以及,通过将2个跨子帧的TTI设为特殊切换TTI,增加了上下行配比,更灵活的适应动态的上下行业务变化,另外图7中的4个特殊切换TTI内只含有GP和上行,使得图7中所有上行TTI长度均含有4个可用符号,有利于上行数据和参考符号开销的平衡。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1:获取时域上M个连续子帧,其中,M个连续子帧内含有N个完整的TTI,N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;
步骤S2:通过N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
Figure PCTCN2016108570-appb-000006
Nsymbol为一个子帧内含有的符号个数;
其中,M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,采用获取含有N个完整的TTI且N个完整的TTI中至少有一个TTI同时跨度两个连续子帧的M个连续子帧,并通过该N个完整的TTI中的一个或多个TTI发送传输块,使得在TTI变短时下行传输或者上行传输仍只含有一种TTI长度,解决了相关技术中1ms长度的TTI难以满足需求且以子帧为单位进行TTI设计导致系统复杂度高的问题,达到了统一信道设计的效果。

Claims (19)

  1. 一种传输时间间隔TTI的确定方法,包括:
    获取时域上M个连续子帧,其中,所述M个连续子帧内含有N个完整的TTI,所述N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;
    通过所述N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,所述TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
    Figure PCTCN2016108570-appb-100001
    Nsymbol为一个子帧内含有的符号个数。
  2. 根据权利要求1所述的方法,其中,在所述传输块所在的TTI跨度所述两个连续子帧时,所述传输块由所述两个连续子帧中的第二个子帧的物理下行控制信道PDCCH进行跨子帧调度;或,所述传输块由在TTI内的指定下行控制信道调度,其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分。
  3. 根据权利要求1所述的方法,其中,在所述传输块所在的TTI只在所述M个连续子帧内的其中之一子帧内时,所述传输块由所在子帧的物理下行控制信道PDCCH进行调度,或由在TTI内的指定下行控制信道调度,其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分。
  4. 根据权利要求1所述的方法,其中,
    在子帧内含有的符号数Nsymbol=14时,M=2,L=4,或者,M=3,L=3。
  5. 根据权利要求4所述的方法,其中,
    在子帧内含有的符号数Nsymbol=14,且M=2,L=4时,所述M个连续子帧内TTI的个数为N=7。
  6. 根据权利要求2、3、或5所述的方法,其中,在所述M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1时,
    索引为#0的TTI内的传输块,由2个连续子帧中的第一个子帧的物理下行控制信道PDCCH进行调度,或者由指定下行控制信道调度,其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分;
    索引为#1,#2,#5,#6的TTI内的传输块由所述指定下行控制信道调度;
    索引为#3的TTI内的传输块由2个连续子帧中的第二个子帧的PDCCH进行跨子帧调度,或者由所述指定下行控制信道调度;
    索引为#4的TTI内的传输块由2个连续子帧中的第二个子帧的PDCCH进行调度,或者,由所述指定下行控制信道调度。
  7. 根据权利要求5所述的方法,其中,在所述M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1时,下行解调参考信号DMRS的位置包括:
    索引为#0的TTI内的DMRS位于TTI内的最后两个符号上;
    索引为#1,#2的TTI内的DMRS位于TTI内的第二和第三个符号上;
    索引为#3的短TTI内的DMRS位于TTI内的最前面的两个符号上;
    索引为#4的短TTI内的DMRS位于TTI内的最前面的两个符号上,或者最后两个符号上;
    索引为#5的短TTI内的DMRS位于TTI内的最前面的两个符号上,或者第一个和最后一个符号上;
    索引为#6的短TTI内的DMRS位于TTI内的最后两个符号上,或者第一个和第三个符号上;
    或者,所有TTI索引内的DMRS均位于TTI内的前两个符号上;
    其中,同一时域符号上的DMRS在频域上的间隔为6个子载波,或者为8个子载波。
  8. 根据权利要求5所述的方法,其中,
    上行共享信道上的所有TTI内均只含有一个参考符号,其中,所述一个参考符号位于每个传输时间间隔内的第二个符号上。
  9. 根据权利要求5所述的方法,其中,
    上行控制信道上的TTI内含有一个或两个参考符号;
    在所述TTI内含有一个参考符号时,所述一个参考符号位于TTI的第二个符号上;
    在所述TTI内含有两个参考符号时,所述两个参考符号分别位于TTI的第二个和第三个符号上。
  10. 根据权利要求5所述的方法,其中,
    共享信道中每个TTI内频域分配资源所含子载波数至少为36个子载波,或者,每个TTI内频域分配资源所含子载波数至少为48个子载波。
  11. 根据权利要求4所述的方法,其中,
    在子帧内含有的符号数Nsymbol=14,且M=3,L=3时,所述M个连续子帧内短TTI的个数为N=14。
  12. 根据权利要求2、3、或11所述的方法,其中,在所述M个连续子帧内N个完整TTI的索引标记为#i,i=0,1,2,…N-1时,
    在索引为#0的TTI内的传输块,由3个连续子帧中的第一个子帧的PDCCH进行调度,或者由所述指定下行控制信道调度,其中,所述指定下行控制信道位于TTI内的第一个时域符号,或所述指定下行控制信道占用TTI内的多个时域符号,且与传输数据频分复用于系统带宽的一部分;
    在索引为#5的TTI内的传输块,由3个连续子帧中的第二个子帧的PDCCH进行调度,或者由所述指定下行控制信道调度;
    在索引为#10的TTI内的传输块,由3个连续子帧中的第三个子帧的PDCCH进行调度,或者由所述指定下行控制信道调度;
    在索引为#4的TTI内的传输块,由3个连续子帧中的第二个子帧的PDCCH进行跨子帧调度,或者由所述指定下行控制信道调度;
    在索引为#9的TTI内的传输块,由3个连续子帧中的第三个子帧的PDCCH进行跨子帧调度,或者由所述指定下行控制信道调度;
    对于除索引为#0、#5、#10、#4、#9之外的其他索引的短TTI由所述指定下行控制信道调度。
  13. 根据权利要求11所述的方法,其中,
    下行解调参考符号DMRS在所述N个完整TTI内的时域符号位置不完全相同;其中,同一时域符号上的DMRS在频域上的间隔为8个子载波,或者为10个子载波。
  14. 根据权利要求10所述的方法,其中,
    在上行共享信道和上行控制信道上所有TTI内的均只含有一个参考符号,其中,所述一个参考符号位于每个短TTI内的第二个符号上。
  15. 根据权利要求10所述的方法,其中,
    所述共享信道中每个TTI内频域分配资源所含子载波数至少为48个子载波,或者每个TTI内频域分配资源所含子载波数至少为60个子载波。
  16. 根据权利要求1所述的方法,其中,在频分双工FDD系统中,下行HARQ定时和上行HARQ定时包括:
    下行混合自动请求重传HARQ定时值和上行HARQ定时值均为n+4,或者,下行HARQ定时值和上行HARQ定时值均为n+3,其中,n为正整数。
  17. 根据权利要求1所述的方法,其中,在时分双工TDD系统中,可将部分或全部TTI设为切换TTI,其中,所述切换TTI内均含有保护间隔GP。
  18. 根据权利要求17所述的方法,其中,将部分或全部同时跨度两个连续子帧的TTI设置为特殊切换TTI,其中,所述特殊切换TTI内只含有GP,或只含有GP和下行,或只含有GP和上行。
  19. 一种传输时间间隔TTI的确定装置,包括:
    获取模块,设置为获取时域上M个连续子帧,其中,所述M个连续子帧内含有N个完整的TTI,所述N个完整的TTI中至少有一个TTI同时跨度两个连续子帧;
    发送模块,设置为通过所述N个完整的TTI中的一个或多个TTI发送传输块,其中,M为大于等于2的整数,所述TTI的长度为L个符号,L为2到7之间的整数之一,N为正整数,且
    Figure PCTCN2016108570-appb-100002
    Nsymbol为一个子帧内含有的符号个数。
PCT/CN2016/108570 2016-01-15 2016-12-05 传输时间间隔tti的确定方法及装置 WO2017121208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029460.6A CN106982466A (zh) 2016-01-15 2016-01-15 传输时间间隔tti的确定方法及装置
CN201610029460.6 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017121208A1 true WO2017121208A1 (zh) 2017-07-20

Family

ID=59310810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108570 WO2017121208A1 (zh) 2016-01-15 2016-12-05 传输时间间隔tti的确定方法及装置

Country Status (2)

Country Link
CN (1) CN106982466A (zh)
WO (1) WO2017121208A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109688623B (zh) * 2017-10-18 2023-03-31 中国电信股份有限公司 无线帧结构及其配置方法和配置装置及物理信道结构
CN110098903B (zh) * 2018-01-30 2021-10-22 普天信息技术有限公司 一种上行导频传输方法、用户设备和基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415227A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 支持高速移动传输的传输时间间隔配置方法、装置及系统
WO2009082120A2 (en) * 2007-12-20 2009-07-02 Lg Electronics Inc. Method for transmitting data in wireless communication system
CN104854801A (zh) * 2012-10-22 2015-08-19 Lg电子株式会社 配置用户设备的无线帧的方法、用户设备、配置基站的无线帧的方法和基站
CN104883237A (zh) * 2014-02-28 2015-09-02 中兴通讯股份有限公司 一种数据传输方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415227A (zh) * 2007-10-15 2009-04-22 大唐移动通信设备有限公司 支持高速移动传输的传输时间间隔配置方法、装置及系统
WO2009082120A2 (en) * 2007-12-20 2009-07-02 Lg Electronics Inc. Method for transmitting data in wireless communication system
CN104854801A (zh) * 2012-10-22 2015-08-19 Lg电子株式会社 配置用户设备的无线帧的方法、用户设备、配置基站的无线帧的方法和基站
CN104883237A (zh) * 2014-02-28 2015-09-02 中兴通讯股份有限公司 一种数据传输方法、装置及系统

Also Published As

Publication number Publication date
CN106982466A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
JP6073514B2 (ja) アップリンクリソース割当のための方法及び装置
JP5932931B2 (ja) 不連続的なアップリンクリソース割当のための方法及び装置
KR102127535B1 (ko) 무선통신시스템에서 제어정보 전송/획득 방법 및 장치
EP2720392B1 (en) Method for transmitting and receiving control information of a mobile communication system
US20220278800A1 (en) Method and device for wireless communication
CN111082915B (zh) 一种无线通信中的方法和装置
JP7309625B2 (ja) 無線通信システムにおいて無線信号の送受信方法及び装置
US10686571B2 (en) Method and apparatus for signaling configuration
AU2020201895B2 (en) Data transmission method and apparatus
CN110740519A (zh) 一种无线传输中的方法和装置
WO2013048108A2 (ko) 무선통신시스템에서 제어정보 획득 방법 및 장치
CN103516474A (zh) 物理上行控制信道资源确定方法及用户设备
US10270563B2 (en) Method and network node for allocating resources of an uplink subframe
JP6882479B2 (ja) 無線通信システムにおいて端末と基地局の間の信号を送受信する方法及びそれを支援する装置
EP3595223A1 (en) Method and device for sending demodulation reference signal, demodulation method and device
WO2013012283A2 (ko) 무선접속시스템에서 향상된 물리하향링크제어채널 할당 방법 및 장치
WO2017121208A1 (zh) 传输时间间隔tti的确定方法及装置
US11356220B2 (en) Uplink transmission method, terminal, and base station
CN107733621B (zh) 一种无线通信中的方法和装置
CN107484253B (zh) 信息发送方法及装置、用户设备和基站
CN106559195B (zh) 测量参考信号发送方法和装置
WO2022056844A1 (en) Method and apparatus for multiple transmissions scheduled by one dci format
WO2017075905A1 (zh) 参考信号的发送方法及装置、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884760

Country of ref document: EP

Kind code of ref document: A1