WO2017075807A1 - 数据传输方法、网络设备及终端设备 - Google Patents

数据传输方法、网络设备及终端设备 Download PDF

Info

Publication number
WO2017075807A1
WO2017075807A1 PCT/CN2015/094001 CN2015094001W WO2017075807A1 WO 2017075807 A1 WO2017075807 A1 WO 2017075807A1 CN 2015094001 W CN2015094001 W CN 2015094001W WO 2017075807 A1 WO2017075807 A1 WO 2017075807A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical channel
reference signal
symbol
symbols
occupied
Prior art date
Application number
PCT/CN2015/094001
Other languages
English (en)
French (fr)
Inventor
李超君
马莎
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15907649.6A priority Critical patent/EP3364700B1/en
Priority to PCT/CN2015/094001 priority patent/WO2017075807A1/zh
Priority to BR112018008898A priority patent/BR112018008898A8/pt
Priority to CN201580082252.6A priority patent/CN107852710B/zh
Priority to JP2018522640A priority patent/JP2018538729A/ja
Publication of WO2017075807A1 publication Critical patent/WO2017075807A1/zh
Priority to US15/971,961 priority patent/US10554357B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method, a network device, and a terminal device.
  • LTE Long Term Evolution
  • 3GPP The 3rd Generation Partnership Projec
  • TTI Transmission Time Interval
  • the base station In wireless communication systems, latency is one of the important factors that affect the user experience.
  • the base station After receiving the information of the Physical Uplink Share Channel (PDSCH), the base station needs to feed back the reception result to the terminal device after a certain time, for example, receiving the correct feedback confirmation character, (Acknowledgement, Referred to as ACK), receiving negative feedback acknowledgment characters (NACK).
  • ACK the correct feedback confirmation character
  • NACK negative feedback acknowledgment characters
  • the base station interprets the data packet for a relatively long time.
  • the minimum time interval between retransmitting the data packet and initializing the data packet is It is also long, causing a large delay in data transmission, which affects the user experience.
  • the purpose of the embodiments of the present invention is to provide a data transmission method, a network device, and a terminal device, which can solve the problem of large data transmission delay.
  • a data transmission method comprising:
  • the terminal device receives the first reference signal and the first physical channel that are sent by the first terminal device, where the first reference signal is located in an i-th symbol in a time slot, and i is a positive integer less than 7, the first The physical channel occupies n symbols in the time slot, n is 1, or n is 2, or n is 3;
  • the terminal device demodulates the first physical channel according to the first reference signal.
  • the time slot includes 7 symbols, The i is 4, and the first physical channel is located in the first symbol set or the second symbol set;
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • the receiving, by the terminal device, the first reference signal and the first physical channel that are sent by the first terminal device Previously it also included:
  • the terminal device sends first downlink control information to the first terminal device, where the first downlink control information includes configuration information for indicating the first reference signal.
  • the first reference signal occupies a continuous frequency domain a subcarrier, where the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel;
  • the first reference signal occupies an odd-numbered subcarrier or an even-numbered subcarrier in the frequency domain, and the first reference signal occupies twice the number of subcarriers greater than or equal to the first physical channel occupied. The number of subcarriers.
  • the terminal device receives the first sent by the first terminal device After the reference signal and the first physical channel, the method further includes:
  • the terminal device demodulates the second physical channel according to the first reference signal.
  • the time slot includes 7 symbols, and the i is 4, where the second physical channel occupies The symbol is different from the symbol occupied by the first physical channel, including:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set;
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols.
  • the second set of symbols includes a fifth symbol and a sixth symbol of the seven symbols.
  • the first reference signal occupies consecutive sub-bands in the frequency domain a carrier, the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and the number of subcarriers occupied by the first reference signal is greater than or equal to that occupied by the second physical channel. Number of subcarriers; or,
  • the first reference signal occupies an even numbered subcarrier or an odd numbered subcarrier in the frequency domain, and the first reference signal occupies twice the number of subcarriers greater than or equal to the first physical channel occupation.
  • the number of subcarriers, the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel.
  • the method further includes:
  • the terminal device receives a second reference signal and a third physical channel information that are sent by the second terminal device, where the second reference signal is located in the ith symbol in the time slot, and i is a positive value less than 7.
  • the symbol occupied by the first physical channel is different from the symbol occupied by the third physical channel.
  • the terminal device sends second downlink control information to the second terminal device, where the second downlink control information includes configuration information for indicating the second reference signal.
  • the first reference signal occupies an odd number in the frequency domain Subcarriers, the second reference signal occupying an even number of subcarriers in the frequency domain;
  • the second reference signal occupies an odd-numbered subcarrier in a frequency domain, and the first reference signal occupies an even-numbered subcarrier in a frequency domain;
  • the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and the number of subcarriers occupied by the second reference signal is greater than or equal to the third.
  • the time slot includes 7 symbols, and the i is 4, where the symbol occupied by the first physical channel and the third physical channel occupy Different symbols, including:
  • the first physical channel is located in the first symbol set, the third physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the third physical channel is located in the first symbol set;
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • the terminal device is configured according to the first reference signal Demodulating the first physical channel, including:
  • the terminal device generates a base sequence, where the length of the base sequence is equal to or greater than the number of subcarriers occupied by the first physical channel;
  • the terminal device performs interval sampling on the initial reference signal sequence to obtain the first reference signal sequence
  • the terminal device demodulates the first physical channel according to the first reference signal sequence.
  • a data transmission method including:
  • the terminal device configures a first reference signal and a first physical channel, where the first reference signal is located in an ith symbol in one slot, i is a positive integer less than 7, and the first physical channel occupies the time n symbols in the gap, n is 1, or n is 2, or n is 3;
  • the time slot includes 7 symbols, and the i is 4, the first physical channel is located in the first symbol set or the second symbol set.
  • the first set of symbols includes the first three of the seven symbols;
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or
  • the second set of symbols includes a fifth symbol and a sixth symbol of the seven symbols.
  • the second possible implementation in the second aspect further includes: before the configuring, by the terminal device, the first reference signal and the first physical channel,
  • the terminal device receives the first downlink control information that is sent by the terminal device, where the first downlink control information includes configuration information that is used to indicate the first reference signal.
  • the first reference signal occupies a continuous subcarrier
  • the number of subcarriers occupied by the first reference signal is equal to or greater than the number of subcarriers occupied by the first physical channel.
  • the first reference signal is occupied by an odd number in the frequency domain.
  • the subcarriers are evenly numbered subcarriers, and the number of subcarriers occupied by the first reference signal is equal to or greater than the number of subcarriers occupied by the first physical channel.
  • the terminal device configuring the first reference signal includes:
  • the terminal device generates the first reference signal sequence
  • the terminal device maps the first reference signal sequence to an even-numbered subcarrier or an odd-numbered subcarrier.
  • the terminal device generates the first reference signal sequence, including:
  • the terminal device generates a base sequence, where the length of the base sequence is equal to or greater than the number of subcarriers occupied by the first physical channel;
  • the terminal device cyclically shifts the base sequence to obtain an initial reference signal sequence
  • the terminal device performs interval sampling on the initial reference signal sequence to obtain the first reference signal sequence.
  • the first reference signal may be used for the second physics Channel demodulation, the method further includes:
  • the terminal device configures a second physical channel, where the second physical channel occupies m symbols in the time slot, m is 1, or m is 2, or m is 3, and the symbol occupied by the second physical channel Not the same as the symbol occupied by the first physical channel;
  • the terminal device sends the second physical channel to the terminal device.
  • the time slot includes 7 symbols, and the i is 4, and the symbol occupied by the second physical channel is different from the symbol occupied by the first physical channel, and includes:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set;
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • a network where the network device includes:
  • a first receiving unit configured to receive a first reference signal and a first physical channel that are sent by the first terminal device, where the first reference signal is located in an i-th symbol in a time slot, and i is a positive integer less than 7.
  • the first physical channel occupies n symbols in the time slot, n is 1, or n is 2, or n is 3;
  • a first processing unit configured to demodulate the first physical channel according to the first reference signal.
  • the time slot includes 7 symbols, the i is 4, and the first physical channel is located in the first symbol set or the second symbol set.
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • the device further includes a first sending unit, configured to receive, at the first receiving unit Before the first reference signal and the first physical channel that are sent by the terminal device, send, to the first terminal device, first downlink control information, where the first downlink control information is used to indicate the first reference signal Configuration information.
  • the first reference signal occupies a continuous frequency domain a subcarrier, where the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel;
  • the first reference signal occupies an odd-numbered subcarrier or an even-numbered subcarrier in the frequency domain, and the first reference signal occupies twice the number of subcarriers greater than or equal to the first physical channel occupied. The number of subcarriers.
  • the first receiving unit is further configured to: after receiving the first reference signal sent by the first terminal device and the first physical channel, receive the first sending by the first terminal device a second physical channel, where the second physical channel occupies m symbols in the time slot, m is 1, or m is 2, or m is 3, and the symbol occupied by the second physical channel is A physical channel occupies a different symbol;
  • the first processing unit is further configured to demodulate the second physical channel according to the first reference signal.
  • the time slot includes 7 symbols, and the i is 4, the symbol occupied by the second physical channel Different from the symbols occupied by the first physical channel, including:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set;
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • the first reference signal occupies a continuous subcarrier in a frequency domain, the first reference The number of subcarriers occupied by the signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel; or
  • the first reference signal occupies an even numbered subcarrier or an odd numbered subcarrier in the frequency domain, and the first reference signal occupies twice the number of subcarriers greater than or equal to the first physical channel occupation.
  • the number of subcarriers, the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel.
  • the first receiving unit is further configured to receive the second terminal a second reference signal and a third physical channel information sent by the device, where the second reference signal is located in the ith symbol in the time slot, i is a positive integer less than 7, and the third physical channel Occending p symbols in the time slot, p is 1, or p is 2, or p is 3;
  • the symbol occupied by the first physical channel is different from the symbol occupied by the third physical channel.
  • the first sending unit is further configured to: before the first receiving unit receives the second reference signal and the second physical channel that are sent by the second terminal device, send the second downlink control information to the second terminal device, where the second downlink is The control information includes configuration information for indicating the second reference signal.
  • the first reference signal occupying an odd number in the frequency domain Subcarriers
  • the second reference signal occupies an even number of subcarriers in the frequency domain
  • the second reference signal occupies an odd-numbered subcarrier in a frequency domain, and the first reference signal occupies an even-numbered subcarrier in a frequency domain;
  • the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and the number of subcarriers occupied by the second reference signal is greater than or equal to the third.
  • the time slot includes a symbol, where i is 4, the symbol occupied by the first physical channel is different from the symbol occupied by the third physical channel, and includes:
  • the first physical channel is located in the first symbol set, the third physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the third physical channel is located in the first symbol set;
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • the first processing unit is further configured to:
  • Generating a base sequence the length of the base sequence being equal to or greater than the number of subcarriers occupied by the first physical channel
  • a fourth aspect provides a terminal device, where the terminal device includes:
  • a second processing unit configured to configure a first reference signal and a first physical channel, where the first reference signal is located in an i-th symbol in a time slot, and i is a positive integer less than 7, the first physical When the channel occupies the time n symbols in the gap, n is 1, or n is 2, or n is 3;
  • a second sending unit configured to send the first reference signal and the first physical channel to the terminal device.
  • the time slot includes 7 symbols, and the i is 4, the first physical channel is located in the first symbol set or the second symbol set.
  • the first set of symbols includes the first three of the seven symbols;
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or
  • the second set of symbols includes a fifth symbol and a sixth symbol of the seven symbols.
  • the device further includes a second receiving unit, configured to configure the first reference in the second processing unit Receiving the first downlink control information sent by the terminal device, so that the processing unit configures the first reference signal according to the first downlink control information, where the first The row control information includes configuration information for indicating the first reference signal.
  • the first reference signal occupies a continuous subcarrier,
  • the number of subcarriers occupied by the first reference signal is equal to or greater than the number of subcarriers occupied by the first physical channel.
  • the first reference signal is occupied by the number in the frequency domain.
  • the odd subcarriers or the even numbered subcarriers, the number of subcarriers occupied by the first reference signal is equal to or greater than the number of subcarriers occupied by the first physical channel.
  • the second processing unit is further configured to:
  • the first reference signal sequence is mapped to an even numbered subcarrier or an odd numbered subcarrier.
  • the second processing unit is further configured to:
  • Generating a base sequence the length of the base sequence being equal to or greater than the number of subcarriers occupied by the first physical channel
  • the first reference signal sequence is obtained by performing interval sampling on the initial reference signal sequence.
  • the seventh possible implementation manner of the fourth aspect if the first reference signal is further used for the second physics Channel demodulation, then:
  • the second processing unit is further configured to configure a second physical channel, where the second physical channel occupies m symbols in the time slot, m is 1, or m is 2, or m is 3, the second The symbol occupied by the physical channel is different from the symbol occupied by the first physical channel;
  • the second sending unit is further configured to send the second physical channel to the terminal device.
  • the time slot includes 7 symbols, and the i is 4, the symbol occupied by the second physical channel Different from the symbols occupied by the first physical channel, including:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set;
  • the first symbol set includes the first three symbols of the seven symbols
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • the embodiment of the invention provides a data transmission method, which can compress the TTI of the uplink transmission into 3 symbols or 4 symbols. Therefore, the transmission time interval is shortened, and the number of scheduling times per unit time can be increased for one terminal device. Therefore, the data transmission delay can be effectively reduced. In addition, only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • Figure 1 is a schematic structural diagram of a common time slot
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a reference signal and a physical channel in a normal CP according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a first reference signal and a first physical channel in a normal CP according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a reference signal and a physical channel of a normal CP according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing reference signals and physical channels of a normal CP according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing reference signals and physical channels in a normal CP according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a network device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a data transmission method, which may be implemented by a terminal device and a network device.
  • the terminal device may also be referred to as a user equipment (User Equipment, referred to as "UE") or a mobile station (Mobile). Station (referred to as “MS”), mobile terminal, etc., the terminal device can communicate with one or more core networks via a radio access network (Radio Access Network, hereinafter referred to as "RAN”), for example, a terminal
  • RAN Radio Access Network
  • the device may be a mobile phone (or “cellular” phone), a computer with a mobile terminal, and the like.
  • the terminal device may be a portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile device that is connected to the wireless device.
  • the network device may be a base station (Base Transceiver Station, abbreviated as "BTS”) in GSM or CDMA, or a base station (NodeB, abbreviated as “NB”) in WCDMA, or an evolved base station in LTE (Evolutional Node B, referred to as "eNB or e-NodeB” for short.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station in LTE
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UDD Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • OFDM orthogonal frequency division
  • the application environment of the embodiment of the present invention is briefly described below, and the LTE system is taken as an example.
  • the application environment of the embodiment of the present invention is not limited to the LTE system, and any wireless communication system that performs data transmission by scheduling may adopt the solution provided by the embodiment of the present invention. .
  • each radio frame is composed of 10 subframes of 1 ms duration, and each subframe includes 2 slots in the time domain.
  • each slot consists of 7 symbols, that is, each slot is numbered ⁇ #0, #1, #2, #3, #4,# 5, #6 ⁇ symbol composition;
  • extended CP Extended CP
  • each slot consists of 6 symbols, that is, each slot is numbered ⁇ #0, #1, #2 , #3, #4, #5 ⁇ symbol composition.
  • FIG. 1 is a schematic structural diagram of a time slot.
  • the horizontal direction represents the time domain and the vertical direction represents the frequency domain.
  • the time slot shown in FIG. 1 is a time slot of a normal CP, the horizontal direction is the time domain, the vertical direction is the frequency domain, and each vertical line represents one symbol, and each horizontal line represents one subcarrier.
  • the time slot includes 7 symbols in the time domain and only 4 subcarriers are schematically shown in the frequency domain.
  • the uplink symbol is called a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol, and the downlink symbol is called an Orthogonal Frequency Division Multiplexing (OFDM) symbol. If the subsequent technology introduces an orthogonal multiple access method of Orthogonal Frequency Division Multiple Access (OFDMA), the uplink symbol may also be referred to as an OFDM symbol. In the embodiment of the present invention, the uplink symbol and the downlink symbol are collectively referred to as a symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • a physical channel carries data information from higher layers, and is implemented by the present invention.
  • the physical channel is a physical uplink shared channel (PUSCH) or a PUCCH (physical uplink control channel).
  • the physical signal is used for the physical layer and does not carry the data information from the upper layer.
  • the physical signal is a reference signal (referred to as RS), for example, a demodulation reference for uplink.
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • the network device configures an RS for each physical channel, performs channel estimation based on the RS, and demodulates the physical channel according to the estimated channel value.
  • Short TTI data transmission is in the frequency domain and can be continuously distributed or non-continuously distributed. For the discontinuous distribution, the short TTI data transmission is distributed on the N cluster subcarrier sets, the N cluster subcarrier sets are discontinuous, the subcarriers in each subcarrier set are continuously distributed, and any two subcarrier sets in the N cluster subcarrier sets are consecutively distributed.
  • RB resource block
  • the embodiment of the present invention provides a data configuration method.
  • the configured data is mainly a reference signal and a physical channel.
  • the data transmission delay can be reduced by configuring the reference signal and the physical channel.
  • the embodiment of the present invention provides a configuration scenario of three reference signals and a physical channel.
  • the first configuration scenario is that one terminal device corresponds to one reference signal, and the one reference signal is used to demodulate one physical channel;
  • the second configuration scenario is One terminal device corresponds to one reference signal, and the one reference signal is used to demodulate two physical channels;
  • the third configuration scenario is that two terminal devices respectively correspond to two reference signals, and the two reference signals are respectively used for demodulation Two physical channels corresponding to the two terminal devices.
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 2, the method is applied to a network device, and the method is applied to the first configuration scenario, that is, one terminal device corresponds to one a reference signal for demodulating a physical channel, the method comprising:
  • Step 201 The network device receives the first reference signal and the first physical channel that are sent by the first terminal device.
  • the first reference signal is located in an i-th symbol in a time slot, i is a positive integer less than 7, and the first physical channel occupies n symbols in the time slot, n is 1, or n is 2 , or n is 3.
  • the first physical channel is a PUSCH
  • the first reference signal is an RS corresponding to the PUSCH.
  • This RS can be used as a PUSCH DMRS and/or SRS.
  • the first reference signal is an RS corresponding to the PUCCH.
  • This RS can be used as a PUCCH DMRS and/or SRS.
  • the first set of symbols includes the first three symbols of the seven symbols of the time slot, or that the first set of symbols consists of three symbols of the time slots with numbers #0, #1, and #2. .
  • the second set of symbols includes a fifth symbol, a sixth symbol, and a seventh symbol of the seven symbols, or the second symbol set includes a fifth symbol of the seven symbols and The sixth symbol.
  • the second symbol set is composed of 3 symbols with the numbers #4, #5 and #6 in the time slot, or the second symbol set is numbered #4 in the time slot.
  • #5 consists of 2 symbols.
  • the second symbol set includes 3 symbols in the slot, but when the last symbol in the slot is used to transmit the SRS, the second symbol set may include 2 symbols in the slot.
  • the second set of symbols described above includes a fifth symbol and a sixth symbol.
  • "the last symbol in the time slot is used to transmit the SRS" includes at least one of the following four conditions:
  • Condition 1 The terminal device transmits the SRS in the last symbol in the time slot, and the SRS and the physical channel are located in the same serving cell.
  • the time slot is the second time slot in the cell-specific subframe for transmitting the SRS, and the bandwidth occupied by the physical channel and the bandwidth occupied by the cell-specific SRS partially or completely overlap.
  • the time slot is the second time slot in the terminal device-specific aperiodic SRS subframe.
  • the terminal device may transmit the SRS on the last symbol of the time slot.
  • the time slot is the second time slot in the terminal device-specific periodic SRS subframe, where the physical channel is located.
  • the terminal device can transmit the SRS on the last symbol of the time slot.
  • the method of the embodiment of the invention can also be applied to a long CP.
  • one slot includes 6 symbols in the time domain.
  • the first physical channel is located in the first set of symbols or the second set of symbols.
  • the first symbol set includes the first two symbols of the six symbols, or the first symbol set is The two symbols in the slot are numbered #0 and #1.
  • the second set of symbols includes a fourth symbol, a fifth symbol, and a sixth symbol of the six symbols, or the second set of symbols includes a fourth one of the six symbols and The fifth symbol.
  • the second symbol set is composed of 3 symbols with the numbers #3, #4 and #5 in the time slot, or the second symbol set is numbered #3 in the time slot. #4 consists of 2 symbols.
  • the second symbol set includes 3 symbols in the time slot, and when the last symbol in the time slot is used to transmit the SRS, the second symbol set may include 2 symbols in the time slot.
  • the second symbol set described above includes the fourth symbol and the fifth symbol.
  • the conditions including the “last symbol in the time slot for transmitting the SRS” are as described above, and are not described herein again.
  • the first reference signal is one of the following three types of reference signals.
  • the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, that is, or among them, Is the sequence length of the first reference signal, The number of subcarriers occupied by the first physical channel.
  • the first reference signal occupies consecutive subcarriers in the frequency domain, or the first reference signal occupies a non-contiguous set of N cluster subcarriers in the frequency domain (described in detail above) and occupies consecutive sub-carriers in each subcarrier set. Carrier.
  • the subcarrier occupied by the first reference signal includes all the subcarriers occupied by the first physical channel, that is, all the subcarriers occupied by the first physical channel are part or all of the subcarriers occupied by the first reference signal.
  • the first reference signal can be used for both physical channel demodulation and channel quality detection, that is, the first reference signal can be used both as a DMRS and as an SRS.
  • the sequence of the first reference signal is generated by a cyclic shift of the base sequence, ie among them, Is the sequence of the first reference signal, For the base sequence, ⁇ is a cyclic shift, For the sequence length of the first reference signal, u is the group number, and v is the base sequence number within a group.
  • the base sequence is a special quadratic phase shift key (QPSK) based sequence searched by a computer.
  • QPSK quadratic phase shift key
  • the base sequence when When it is greater than or equal to 36, preferably, the base sequence is long a sequence of a Zadoff-Chu (ZC) sequence that is cyclically expanded, wherein Is not greater than The largest prime number.
  • ZC Zadoff-Chu
  • the maximum prime number not greater than 48 is 47, ie That is The RS sequence of 48 is obtained by cyclic extension of a ZC sequence of length 47.
  • the base sequence is generated according to the following formula 1.
  • the base sequence is optionally a ZC sequence, or the length is The ZC sequence is truncated to generate a sequence, Is not less than The smallest prime number.
  • FIG. 3 is a schematic diagram of a reference signal and a physical channel in a normal CP according to an embodiment of the present invention. As shown in FIG. 3, the horizontal direction is a time domain and the vertical direction is a frequency domain.
  • the reference signal 301 occupies the 4th symbol, the reference signal 301 occupies consecutive subcarriers, the physical channel is located in the first symbol set 302, and the first symbol set occupies the 1st to 3rd symbols.
  • Physical channel 302 also occupies consecutive subcarriers.
  • the first reference signal is separated by (k-1) subcarriers between any two adjacent subcarriers occupied by the first frequency reference signal, and the k times of the number of subcarriers occupied by the first reference signal is greater than or equal to The number of subcarriers occupied by the first physical channel, where k is an integer greater than one.
  • the first reference signal occupies an even numbered subcarrier or an odd numbered subcarrier in the frequency domain, and the first reference signal occupies twice the number of subcarriers is greater than or equal to the first physical channel.
  • the number of subcarriers occupied, ie or among them, Is the sequence length of the first reference signal,
  • the RB occupied by the first reference signal includes all the RBs occupied by the first physical channel, that is, all the RBs occupied by the first physical channel are part or all of the RBs occupied by the first reference signal.
  • the first reference signal can be used for both physical channel demodulation and channel quality detection, that is, the first reference signal can be used both as a DMRS and as an SRS. It should be noted that, as long as at least one subcarrier in one RB is occupied by the first reference signal, the RB is also considered to be occupied by the first reference signal.
  • the sequence of the first reference signal may be generated according to any one of the following two methods:
  • the first method of generating a sequence of reference signals is a first method of generating a sequence of reference signals:
  • the sequence of the first reference signal is a sequence obtained by sampling the initial RS sequence.
  • the initial RS sequence can be generated by cyclic shifting of the base sequence.
  • the method for generating the initial RS sequence is the same as the method for generating the first reference signal sequence in the reference signal type one, and details are not described herein again.
  • the initial RS sequence length is equal to or greater than the number of subcarriers occupied by the physical channel.
  • the sequence of the first reference signal is a sequence obtained after the initial RS sequence is subjected to discontinuous sampling.
  • the sequence of the first reference signal Initial RS sequence Sequence obtained after interval sampling, ie among them, Is the sequence length of the first reference signal, For the initial RS sequence length, a 0 or 1.
  • the RS sequence obtained by the interval sampling of the initial RS sequence still maintains the characteristics of the better ZC sequence, for example, a low Cubic metric (CM) characteristic, a low cross-correlation property, and the like.
  • CM Cubic metric
  • the RS of cell one is mapped to consecutive subcarriers (for 1 ms TTI data transmission) and the RS of cell 2 is mapped to the spacer subcarrier (for short TTI data transmission), even if the cell 1 and the cell 2
  • the RSs partially overlap or overlap completely, and a low cross-correlation can also be achieved between the two RSs.
  • the RS sequence is generated by cyclic shifting of the base sequence
  • the base sequence is a special QPSK-based sequence searched by computer.
  • the base sequence is generated according to the formula 1 (as described above), or the base sequence is generated according to the following formula 2.
  • FIG. 4 is a schematic diagram of a first reference signal and a first physical channel in a normal CP according to an embodiment of the present invention.
  • the horizontal direction is a time domain
  • the vertical direction is a frequency domain
  • each vertical line represents a symbol.
  • a horizontal line represents a subcarrier.
  • the first reference signal 401 occupies a fourth symbol in the time domain
  • the first reference signal 401 occupies an even-numbered subcarrier in the frequency domain
  • the first physical channel is located in the second symbol set 403
  • the second symbol set 403 occupies the fifth symbol. Up to 7 symbols, the first physical channel 403 occupies consecutive subcarriers.
  • FIG. 4 the horizontal direction is a time domain
  • the vertical direction is a frequency domain
  • each vertical line represents a symbol.
  • a horizontal line represents a subcarrier.
  • the first reference signal 401 occupies a fourth symbol in the time domain
  • the first reference signal 401 occupies an even-numbered subcarrier in the frequency domain
  • the first physical channel
  • the number of subcarriers occupied by the first reference signal 401 is 6, and the number of subcarriers occupied by the first physical channel 403 is 12.
  • Subcarrier occupied by the first reference signal 401 The number of waves is twice as large as 12, which is equal to the number of subcarriers occupied by the first physical channel.
  • the first reference signal occupies a continuous transmission unit in the frequency domain, or the first reference signal occupies a non-contiguous transmission unit in the frequency domain.
  • the transmission unit occupied by the first reference signal includes all transmission units occupied by the first physical channel, that is, all transmission units occupied by the first physical channel are part or all of the transmission units occupied by the first reference signal. In this way, the first reference signal can be used for both physical channel demodulation and channel quality.
  • the sequence of the first reference signal is concatenated by N RS unit sequences.
  • the unit sequence i is generated by cyclic shifting of the base sequence, ie Where 0 ⁇ i ⁇ N RS ,
  • ⁇ i is a cyclic shift of the unit sequence i, Is the length of the unit sequence i.
  • the generation method of the unit sequence i is the same as the sequence generation method of the first reference signal in the reference signal type 1, and will not be described herein.
  • the N RS unit sequences use the same base sequence, different or identical cyclic shifts.
  • the method further includes:
  • the network device sends first downlink control information (Downlink Control Information, DCI for short) to the first terminal device, where the first downlink control information includes configuration information for indicating the first reference signal.
  • the configuration information of the first reference signal includes at least one of the following information:
  • the DCI includes 1 bit of information for indicating the transmission comb of the RS, for example: “0” indicates an even number subcarrier, “1” indicates an odd number subcarrier; or “1” indicates an even number subcarrier, “0” Indicates an odd number subcarrier.
  • the DCI includes 1 bit for indicating the type of the RS, for example: “0” indicates that the RS is used as the DMRS, “1” indicates that the RS is used as the DMRS and the SRS; or “1” indicates that the RS is used as the DMRS, and “0” indicates RS is used as DMRS and SRS.
  • the DCI includes 2 bits for indicating the type of the RS, where one state indicates that the RS is used as the DMRS, another state indicates that the RS is used as the SRS, and another state indicates that the RS is used as the DMRS and the SRS. It should be noted that the RS in this paragraph refers to the first reference signal.
  • Step 202 The network device demodulates the first physical channel according to the first reference signal.
  • Demodulation is the process of recovering information from a modulated signal carrying information.
  • demodulation is the process by which the network device recovers information from the received first physical channel.
  • the recovered information is information carried by the PUSCH, for example, data information included in an uplink shared channel (UL-SCH, Uplink Shared Channel), and/or HARQ-ACK information, and/or , Channel State Information (CSI).
  • the first physical channel is a PUCCH
  • the recovered information is information carried by the PUCCH, such as: HARQ-ACK information, and/or channel state information (CSI).
  • the HARQ-ACK information may be used to indicate the receiving state of the downlink data, and may also be referred to as HARQ-ACK feedback information, including ACK, NACK, or DTX (Discontinuous Transmission).
  • the network device demodulates the first physical channel according to the first reference signal, that is, the network device demodulates the received first physical channel according to the first reference signal, where the received first physical channel is the network.
  • the first physical channel sent by the terminal device received by the device.
  • the first physical channel sent by the received terminal device may be affected by the wireless channel, such as shadow fading and frequency selective fading, etc., and if there is no correction technology, the network device directly demodulates the received first
  • the physical channel has a high probability of causing errors in the demodulation result.
  • the network device needs to estimate the wireless channel (ie, perform channel estimation), and then demodulate the received first physical channel according to the channel estimation value.
  • the channel estimation is channel estimation based on the reference signal, that is, the network device performs channel estimation based on the first reference signal. Therefore, optionally, step 202 may include: the network device generates a first reference signal; and the network device demodulates the first physical channel according to the first reference signal.
  • step 202 may include:
  • the network device generates a base sequence, where the length of the base sequence is equal to or greater than the number of subcarriers occupied by the first physical channel;
  • the network device cyclically shifts the base sequence to obtain a sequence of the first reference signal
  • the network device demodulates the first physical channel according to a sequence of first reference signals.
  • step 202 may include:
  • the network device generates a base sequence, where the length of the base sequence is equal to or greater than the number of subcarriers occupied by the first physical channel;
  • the network device cyclically shifts the base sequence to obtain an initial reference signal sequence
  • the network device performs interval sampling on the initial reference signal sequence to obtain a sequence of the first reference signal
  • the network device demodulates the first physical channel according to a sequence of the first reference signal.
  • a terminal is configured with a reference signal for demodulating a physical channel. Since the reference signal occupies one symbol, the physical channel occupies 2 or 3 symbols, so the TTI of the uplink transmission is 3 symbols or 4 symbols, therefore, the transmission time interval is shortened, and the number of times of scheduling per unit time can be increased for one terminal device, so the data transmission delay can be effectively reduced. In addition, only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • the embodiment of the present invention provides a data transmission method, which is applied to a network device.
  • the first terminal device corresponds to one reference signal, and one reference signal is used to demodulate two physical channels, which are respectively the first physics. Channel and second physical channel.
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • Step 501 The network device receives the first reference signal, the first physical channel, and the second physical channel that are sent by the first terminal device.
  • Step 502 The network device demodulates the first physical channel and the second physical channel according to the first reference signal.
  • the first reference signal is located in the i-th symbol in one slot, i is a positive integer less than 7, the first physical channel occupies n symbols in the slot, n is 1, or n is 2, or n is 3; the second physical channel occupies m symbols in the time slot, m is 1, or m is 2, or m is 3, and the symbol occupied by the second physical channel is The symbols occupied by the first physical channel are different.
  • the symbols occupied by the first symbol set and the second symbol set are as described in step 201 of the foregoing embodiment, and details are not described herein again.
  • the symbol occupied by the second physical channel is different from the symbol occupied by the first physical channel, including:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set.
  • the symbol occupied by the second physical channel is different from the symbol occupied by the first physical channel, including:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again. It should be noted that the relationship between the first reference signal and the first physical channel described in step 201 and step 202 is also applicable to the first reference signal and the second physical channel.
  • the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel.
  • the first reference signal occupies an even numbered subcarrier or an odd numbered subcarrier, and the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and Two times the number of subcarriers occupied by a reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel.
  • FIG. 6 is a schematic diagram of a reference signal and a physical channel of a normal CP according to an embodiment of the present invention.
  • the reference signal 601 occupies a fourth symbol in the time domain and occupies consecutive subcarriers in the frequency domain.
  • the first physical channel occupies a first set of symbols 602 and the second physical channel occupies a second set of symbols 603.
  • FIG. 7 is a schematic diagram of a reference signal and a physical channel of a normal CP according to an embodiment of the present invention.
  • the reference signal 701 occupies the fourth symbol in the time domain and occupies the even-numbered subcarrier in the frequency domain. That is, a total of 6 subcarriers are occupied, the first physical channel occupies the first symbol set 602, and 12 subcarriers, and the second physical channel occupies the second symbol set 603 and 12 subcarriers.
  • the method further includes:
  • the network device sends first downlink control information to the first terminal device, where the first downlink control information includes configuration information for indicating the first reference signal.
  • the configuration information of the first reference signal is as described in step 201, and details are not described herein again.
  • a terminal is configured with a reference signal for demodulating two physical channels. Since the reference signal occupies one symbol, the physical channel occupies 2 or 3 symbols, so the TTI of the uplink transmission is 3 symbols. Or 4 symbols, therefore, the transmission time interval is shortened, and the number of times of scheduling per unit time can be increased for one terminal device, so the data transmission delay can be effectively reduced. In addition, only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment of the present invention, where the method is applied to a network device
  • the network device can communicate with two terminal devices respectively, where the two terminal devices respectively correspond to two reference signals, and the two reference signals are respectively a first reference signal and a second reference signal, wherein the first reference signal For demodulation of the first physical channel, the second reference signal is used for demodulation of the third physical channel.
  • Step 801 The network device receives the first reference signal and the first physical channel that are sent by the first terminal device, and receives the second reference signal and the third physical channel that are sent by the second terminal device.
  • Step 802 The network device demodulates the first physical channel according to the first reference signal, and demodulates the third physical channel according to the second reference signal.
  • the first reference signal and the second reference signal are both located in the i-th symbol in one slot, and i is a positive integer less than 7, that is, the first reference signal and the second reference signal are located in the same symbol.
  • the first physical channel occupies n symbols in the time slot, n is 1, or n is 2, or n is 3; the third physical channel occupies p symbols in the time slot, p is 1, Or p is 2, or p is 3, and the symbol occupied by the third physical channel is different from the symbol occupied by the first physical channel.
  • the symbol occupied by the third physical channel is different from the symbol occupied by the first physical channel, and includes:
  • the first physical channel is located in the first symbol set, the third physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the third physical channel is located in the first symbol set.
  • the symbols occupied by the first symbol set and the second symbol set are as described in step 201 of the foregoing embodiment, and details are not described herein again.
  • the first physical channel and the third physical channel completely overlap or partially overlap in the frequency domain.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again.
  • the second reference signal is one of the three types of reference signals described in step 201 (as long as the first reference signal is replaced with the second reference signal), and details are not described herein again.
  • the relationship between the first reference signal and the first physical channel described in step 201 and step 202 is also applicable to the second reference signal and the third physical channel, that is, the “first reference signal” in step 201. Switched to "second reference signal”, "first physical channel” is replaced by "third physical channel”.
  • the type of the first reference signal and the second reference signal is reference signal type one.
  • the first reference signal and the second reference signal occupy the same symbol and the same subcarrier.
  • the first RS and the second RS use the same base sequence but different cyclic shifts.
  • the first RS and the second RS are located in the same cell, or two cells supporting the uplink CoMP. Since the orthogonality between the two sequences after cyclic shifting of the same base sequence is good, the network device can guarantee the demodulation performance or channel quality detection performance of the physical channel.
  • the types of the first reference signal and the second reference signal are reference signal type two.
  • the first reference signal and the second reference signal occupy the same symbol but occupy different subcarriers.
  • the first reference signal and the second reference signal use different transmission combs, ie the terminal device configures the first RS and the second RS to use different transmission combs.
  • the transmission comb indicates an even numbered subcarrier or an odd numbered subcarrier.
  • the first RS corresponds to an even number of subcarriers
  • the second RS corresponds to an odd number of subcarriers
  • the first RS corresponds to an odd number of subcarriers
  • the second RS corresponds to an even number of subcarriers.
  • the reference signal type 2 is more flexible than the reference signal type one, and does not need to strictly limit the first RS to be as long as the second RS.
  • FIG. 9 is a schematic diagram of a reference signal and a physical channel in a normal CP according to an embodiment of the present invention.
  • the first reference signal occupies the fourth symbol in the time domain and occupies the even-numbered subcarrier in the frequency domain.
  • the first physical channel occupies the first set of symbols 902 in the time domain.
  • the second reference signal occupies a fourth symbol in the time domain, occupies an odd numbered subcarrier in the frequency domain, and the third physical channel occupies a second symbol set 903 in the time domain.
  • the types of the first reference signal and the second reference signal are reference signal type three.
  • the first reference signal and the second reference signal occupy the same symbol in the time domain and occupy exactly the same or partially identical transmission units in the frequency domain.
  • the first RS and the second RS are located in the same cell, or two cells supporting the uplink CoMP.
  • the unit sequence corresponding to the first reference signal and the unit sequence corresponding to the second reference signal are the same, and the cyclic shift is different. Since the orthogonality between the two sequences after cyclic shifting of the same base sequence is good, the network device can guarantee the demodulation performance or channel quality detection performance of the physical channel.
  • the RS configuration mechanism 3 does not need to strictly limit the length of the first RS and the second RS, so it is more flexible than the RS configuration mechanism. However, when the RS includes at least 2 unit sequences, the CM will increase, affecting the efficiency of the power amplifier of the terminal.
  • the network device receives the first reference signal and the first physical channel that are sent by the first terminal device, and before receiving the second reference signal and the third physical channel that are sent by the second terminal device, the network device further includes:
  • the network device sends the first downlink control information to the first terminal device, and sends the second downlink control information to the second terminal device, where the first downlink control information includes The configuration information of the signal, the second downlink control information includes configuration information for indicating the second reference signal.
  • the configuration information of the first reference signal and the configuration information of the second reference signal are as described in step 201, and details are not described herein again.
  • two terminal devices that communicate with the same network device respectively send two reference signals and two physical channels, and two reference signals are respectively used to demodulate two physical channels, and two references of two terminals
  • the signal occupies only one symbol, and the two physical channels occupy 2 or 3 symbols. Therefore, the TTI of the uplink transmission is 3 symbols or 4 symbols. Therefore, the transmission time interval is shortened, and is scheduled for one terminal device per unit time. The number of times can be increased, so the data transmission delay can be effectively reduced.
  • only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • the embodiment of the present invention further discloses a data transmission method, which is applied to the terminal device. As shown in FIG. 10, the method includes:
  • Step 1001 The terminal device configures the first reference signal and the first physical channel.
  • the first reference signal is located in the i-th symbol in one slot, i is a positive integer less than 7, the first physical channel occupies n symbols in the slot, n is 1, or n is 2 , or n is 3.
  • the terminal device configuring the first reference signal may include: the terminal device configuring the first reference signal according to the configuration information of the first reference signal.
  • Step 1002 The terminal device sends the first reference signal and the first physical channel to the network device.
  • the first physical channel is a PUSCH
  • the first reference signal is an RS corresponding to the PUSCH.
  • This RS can be used as a PUSCH DMRS and/or SRS.
  • the first reference signal is an RS corresponding to the PUCCH.
  • This RS can be used as a PUCCH DMRS and/or SRS.
  • the first and second sets of symbols may be referred to in step 201 of the foregoing embodiment, and details are not described herein again.
  • the method further includes:
  • the terminal device receives the first downlink control information that is sent by the network device, where the first downlink control information includes configuration information that is used to indicate the first reference signal.
  • the first downlink control information includes configuration information that is used to indicate the first reference signal.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again.
  • the first reference signal occupies consecutive subcarriers, and the number of subcarriers occupied by the first reference signal is equal to or greater than the number of subcarriers occupied by the first physical channel.
  • the first reference signal occupies an even number of subcarriers or an odd numbered subcarrier, and the number of subcarriers occupied by the first reference signal is equal to or greater than the number of subcarriers occupied by the first physical channel.
  • the terminal device configures the first reference signal, including:
  • the terminal device generates a sequence of the first reference signal
  • the terminal device maps the sequence of the first reference signal to an even-numbered subcarrier or an odd-numbered subcarrier.
  • the terminal device generates a sequence of the first reference signal, including:
  • the terminal device generates a base sequence, where the length of the base sequence is equal to or greater than the number of subcarriers occupied by the first physical channel;
  • the terminal device cyclically shifts the base sequence to obtain an initial reference signal sequence
  • the terminal device performs interval sampling on the initial reference signal sequence to obtain a sequence of the first reference signal.
  • a terminal is configured with a reference signal, and is used by the network device to demodulate a physical channel. Since the reference signal occupies one symbol, the physical channel occupies 2 or 3 symbols, and therefore, the TTI of the uplink transmission is 3 Symbol or 4 symbols, and the transmission time interval is shortened. For a terminal device, the number of times of scheduling per unit time can be increased, so that the data transmission delay can be effectively reduced. In addition, only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • one reference signal is used for demodulation of one physical channel.
  • one reference signal can be used for demodulation of two physical channels, that is, can be used for the first physical channel and the second. Demodulation of the physical channel.
  • the method further includes:
  • the terminal device configures a second physical channel, where the second physical channel occupies m symbols in the time slot, m is 1, or m is 2, or m is 3, and the symbol occupied by the second physical channel Not the same as the symbol occupied by the first physical channel;
  • the terminal device sends the second physical channel to the network device.
  • the i is 4.
  • the i is 3.
  • the symbol occupied by the second physical channel is different from the symbol occupied by the first physical channel, and includes:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set.
  • the symbols occupied by the first symbol set and the second symbol set are as described in step 201 of the foregoing embodiment, and details are not described herein again.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again. It should be noted that the relationship between the first reference signal and the first physical channel described in step 201 and step 202 is also applicable to the first reference signal and the second physical channel.
  • the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel.
  • the first reference signal occupies an even numbered subcarrier or an odd numbered subcarrier, and the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, and Two times the number of subcarriers occupied by a reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel.
  • a terminal is configured with a reference signal for demodulating two physical channels. Since the reference signal occupies one symbol, the physical channel occupies 2 or 3 symbols, so the TTI of the uplink transmission is 3 symbols. Or 4 symbols, therefore, the transmission time interval is shortened, and the number of times of scheduling per unit time can be increased for one terminal device, so the data transmission delay can be effectively reduced. In addition, only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • FIG. 11 is a schematic diagram of a network device according to an embodiment of the present invention, where a network device can communicate with multiple terminal devices.
  • the network device includes a first receiving unit 1101, a first processing unit 1102, and a first transmitting unit 1103.
  • the first receiving unit 1101 is configured to receive a first reference signal and a first physical channel that are sent by the first terminal device, where the first reference signal is located in an ith symbol in a time slot, and i is a positive value less than 7.
  • the first processing unit 1102 is configured to demodulate the first physical channel according to the first reference signal.
  • the first physical channel is a PUSCH
  • the first reference signal is an RS corresponding to the PUSCH.
  • the RS can be used as PUSCH DMRS and / or SRS.
  • the first reference signal is an RS corresponding to the PUCCH.
  • This RS can be used as a PUCCH DMRS and/or SRS.
  • the first and second sets of symbols may be referred to in step 201 of the foregoing embodiment, and details are not described herein again.
  • the first sending unit 1103 is configured to send the first downlink control to the first terminal device before the first receiving unit receives the first reference signal and the first physical channel that are sent by the first terminal device.
  • Information, the first downlink control information includes configuration information used to indicate the first reference signal. For detailed configuration information, refer to the description in step 201, and details are not described herein again.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again. It should be noted that the relationship between the first reference signal and the first physical channel described in step 201 and step 202 is also applicable to the first reference signal and the second physical channel.
  • the first reference signal occupies consecutive subcarriers in the frequency domain, and the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel;
  • the first reference signal occupies an even number of subcarriers or an odd numbered subcarrier, and the number of subcarriers occupied by the first reference signal is greater than or equal to the subcarrier occupied by the first physical channel. number.
  • the first receiving unit 1101 is further configured to: after receiving the first reference signal and the first physical channel sent by the first terminal device 1002, receive the second physical channel sent by the first terminal device 1002, where The second physical channel occupies m symbols in the time slot, where m is 1, or m is 2, or m is 3. The symbol occupied by the second physical channel is occupied by the first physical channel. Different symbols;
  • the first processing unit 1102 is further configured to demodulate the second physical channel according to the first reference signal.
  • the symbol occupied by the second physical channel is different from the symbol occupied by the first physical channel, and includes:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set.
  • the symbols occupied by the first symbol set and the second symbol set are as described in step 201 of the foregoing embodiment, and details are not described herein again.
  • the first reference signal occupies consecutive subcarriers in the frequency domain, and the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the first physical channel, where the first The number of subcarriers occupied by the reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel; or
  • the first reference signal occupies an even numbered subcarrier or an odd numbered subcarrier in the frequency domain, and the first reference signal occupies twice the number of subcarriers greater than or equal to the first physical channel occupation.
  • the number of subcarriers, the number of subcarriers occupied by the first reference signal is greater than or equal to the number of subcarriers occupied by the second physical channel.
  • the first receiving unit 1101 is further configured to receive the second reference signal and the third physical channel information that are sent by the second terminal device 1003, where the second reference signal is located in the time slot.
  • the i-th symbol, i is a positive integer less than 7, the third physical channel occupies p symbols in the time slot, p is 1, or p is 2, or p is 3;
  • the network device demodulates the third physical channel according to the second reference signal
  • the symbol occupied by the first physical channel is different from the symbol occupied by the third physical channel.
  • the first sending unit is further configured to: before the first receiving unit receives the second reference signal and the second physical channel that are sent by the second terminal device, send the second downlink control information to the second terminal device, where
  • the second downlink control information includes configuration information for indicating the second reference signal.
  • the configuration information of the second reference signal is as described in step 201, and details are not described herein again.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again.
  • the second reference signal is one of the three types of reference signals described in step 201 (as long as the first reference signal is replaced by the second reference signal, the content of the invention is unchanged), and details are not described herein again.
  • the relationship between the first reference signal and the first physical channel described in step 201 and step 202 is also applicable to the second reference signal and the third physical channel, that is, the “first reference signal” in step 201. Switched to "second reference signal”, "first physical channel” is replaced by "third physical channel”.
  • the type of the first reference signal and the second reference signal is reference signal type one.
  • the first reference signal and the second reference signal occupy the same symbol and the same subcarrier.
  • the first RS and the second RS use the same base sequence but different cyclic shifts.
  • the types of the first reference signal and the second reference signal are reference signal type two.
  • the first reference signal and the second reference signal occupy the same symbol but occupy different subcarriers.
  • the first reference signal and the second reference signal use different transmission combs, that is, the terminal device configures the first RS and the first The two RSs use different transmission combs.
  • the transmission comb indicates an even numbered subcarrier or an odd numbered subcarrier.
  • the first RS corresponds to an even number of subcarriers
  • the second RS corresponds to an odd number of subcarriers
  • the first RS corresponds to an odd number of subcarriers
  • the second RS corresponds to an even number of subcarriers.
  • the reference signal type 2 is more flexible than the reference signal type one, and does not need to strictly limit the first RS to be as long as the second RS.
  • the types of the first reference signal and the second reference signal are reference signal type three.
  • the first reference signal and the second reference signal occupy the same symbol in the time domain and occupy exactly the same or partially identical transmission units in the frequency domain.
  • the unit sequence corresponding to the first reference signal and the unit sequence corresponding to the second reference signal are the same, and the cyclic shift is different.
  • the i is 4.
  • the i is 3.
  • the symbol occupied by the first physical channel is different from the symbol occupied by the third physical channel, and includes:
  • the first physical channel is located in the first symbol set, the third physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the third physical channel is located in the first symbol set.
  • the symbols occupied by the first symbol set and the second symbol set are as described in step 201 of the foregoing embodiment, and details are not described herein again.
  • the first physical channel and the third physical channel completely overlap or partially overlap in the frequency domain.
  • the first processing unit 1102 includes:
  • Generating a base sequence the length of the base sequence being equal to or greater than the number of subcarriers occupied by the first physical channel
  • the first sending unit 1103 sends the first downlink control information to the first terminal device, and then the first receiving unit 1101 receives the first reference signal and the first physical channel that are sent by the first terminal device, where the first processing is performed.
  • the unit 1102 demodulates the first physical channel according to the first reference signal.
  • the first processing unit 1102 may simultaneously demodulate the first physical channel and the second physical channel according to the first reference signal.
  • the first sending unit 1103 sends the first downlink control information to the first terminal device, and simultaneously sends the second downlink control information to the second interrupt device, and the first receiving unit 1101 receives the first terminal.
  • the first reference signal and the first physical channel sent by the device, the first receiving unit 1101 also receives the second reference signal and the third physical channel sent by the second interrupting device, and then the first processing unit 1102 respectively processes the first physical channel. And demodulating with the third physical channel.
  • the network device of the embodiment of the present invention performs the foregoing, because the reference signal occupies one symbol, and the physical channel occupies 2 or 3 symbols. Therefore, the TTI of the uplink transmission is 3 symbols or 4 symbols.
  • the process may be that the time interval of data transmission is shortened, and the number of times of scheduling per unit time may be increased for one terminal device, thereby effectively reducing the data transmission delay.
  • only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • FIG. 12 is a schematic diagram of a terminal device according to an embodiment of the present invention. As shown in FIG. 12, the terminal device includes:
  • a second processing unit 1201 configured to configure a first reference signal and a first physical channel, where the first reference signal is located in an i-th symbol in a time slot, and i is a positive integer less than 7, the first The physical channel occupies n symbols in the time slot, n is 1, or n is 2, or n is 3;
  • the second sending unit 1202 is configured to send the first reference signal and the first physical channel to a network device.
  • the first physical channel is a PUSCH
  • the first reference signal is an RS corresponding to the PUSCH.
  • This RS can be used as a PUSCH DMRS and/or SRS.
  • the first reference signal is an RS corresponding to the PUCCH.
  • This RS can be used as a PUCCH DMRS and/or SRS.
  • the first and second sets of symbols may be referred to in step 201 of the foregoing embodiment, and details are not described herein again.
  • the terminal device further includes a second receiving unit 1203, configured to receive the first downlink control information sent by the network device 1001 before the second processing unit 1201 configures the first reference signal and the first physical channel.
  • the first downlink control information includes configuration information for indicating the first reference signal. For detailed configuration information, refer to the description in step 201, and details are not described herein again.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again.
  • the first reference signal occupies consecutive subcarriers, and the number of subcarriers occupied by the first reference signal is equal to or greater than the number of subcarriers occupied by the first physical channel.
  • the first reference signal occupies an even number of subcarriers or an odd numbered subcarrier, and the number of subcarriers occupied by the first reference signal is equal to or greater than a subcarrier occupied by the first physical channel. Number of carriers.
  • the second processing unit 1201 configures the first reference signal, including:
  • the first reference signal sequence is mapped to an even numbered subcarrier or an odd numbered subcarrier.
  • the second processing unit 1201 is further configured to:
  • Generating a base sequence the length of the base sequence being equal to or greater than the number of subcarriers occupied by the first physical channel
  • the first reference signal sequence is obtained by performing interval sampling on the initial reference signal sequence.
  • the first reference signal is further used for the second physical channel demodulation, then:
  • the second processing unit 1201 is further configured to configure a second physical channel, where the second physical channel occupies m symbols in the time slot, m is 1, or m is 2, or m is 3, where the The symbol occupied by the two physical channels is different from the symbol occupied by the first physical channel;
  • the second sending unit is further configured to send the second physical channel to the network device.
  • the i is 4.
  • the i is 3.
  • the symbol occupied by the second physical channel is different from the symbol occupied by the first physical channel, and includes:
  • the first physical channel is located in the first symbol set, the second physical channel is located in the second symbol set, or the first physical channel is located in the second symbol set, and the first physical channel is located in the first symbol set.
  • the symbols occupied by the first symbol set and the second symbol set are as described in step 201 of the foregoing embodiment, and details are not described herein again.
  • the first reference signal is one of the three reference signal types described in step 201, and details are not described herein again. It should be noted that the relationship between the first reference signal and the first physical channel described in step 201 and step 202 is also applicable to the first reference signal and the second physical channel.
  • the second receiving unit 1203 receives downlink control information sent by the network device, the second processing unit 1201 configures the first reference signal and the first physical channel, and the second sending unit 1202 sends the first reference signal to the base station.
  • the second sending unit 1202 may also send the base station Send a second physical channel.
  • the reference device occupies one symbol, and the physical channel occupies 2 or 3 symbols. Therefore, the TTI of the uplink transmission is 3 symbols or 4 symbols. Therefore, the terminal device in the embodiment of the present invention performs the foregoing.
  • the process can shorten the time interval of data transmission, and the number of times of scheduling per unit time can be increased for one terminal device, thereby effectively reducing the data transmission delay.
  • only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • the embodiment of the invention discloses a data transmission method, a network device and a terminal device, which can compress the TTI of the uplink transmission into 3 symbols or 4 symbols, so the transmission time interval is shortened, for one terminal device, per unit time
  • the number of times of scheduling can be increased, so the data transmission delay can be effectively reduced.
  • only one symbol in one slot is used to transmit the reference signal, and the overhead of the reference signal is not increased due to the shortening of the TTI.
  • the system embodiment since it basically corresponds to the method embodiment, it can be referred to the partial description of the method embodiment.
  • the system embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种数据传输方法、网络设备及终端,所述数据传输方法包括:网络设备接收第一终端设备发送的第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;所述网络设备根据所述第一参考信号对所述第一物理信道进行解调。本发明能降低数据传输的时延。

Description

数据传输方法、网络设备及终端设备 技术领域
本发明涉及通讯领域,特别涉及一种数据传输方法、网络设备及终端设备。
背景技术
LTE(Long Term Evolution,长期演进)是由3GPP(The 3rd Generation Partnership Projec,第三代合作伙伴计划)组织制定的技术标准。在LTE系统中,一个子帧的时长为1ms,每个子帧又被均分为两个时隙(slot),每个时隙的时长为0.5ms。LTE系统中,传输时间间隔(Transmission Time Interval,TTI)为1个子帧的长度。
无线通信系统中,时延(latency)是影响用户体验的重要因素之一。在LTE系统的上行传输中,基站接收到物理上行共享信道(Physical Uplink Share Channel,简称PDSCH)的信息后,需要在一定时间后向终端设备反馈接收结果,例如接收正确反馈确认字符,(Acknowledgement,简称ACK),接收错误反馈非确认字符(Negative ACKnowledgment,简称NACK)。若每个数据包都按照1个子帧发送,基站解译该数据包的时间就比较长,此外,如果该数据包接收错误,重传该数据包与初传该数据包之间的最小时间间隔也较长,造成数据传输的时延(latency)较大,影响用户的使用体验。
发明内容
有鉴于此,本发明实施例的目的是提供一种数据传输方法、网络设备及终端设备,能解决数据传输时延较大的问题。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
第一方面,提供了一种数据传输方法,所述方法包括:
终端设备接收第一终端设备发送的第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;
所述终端设备根据所述第一参考信号对所述第一物理信道进行解调。
结合第一方面,在第一方面的第一种可能实现方式中,所述时隙包括7个符号, 所述i为4,所述第一物理信道位于第一符号集或者第二符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第一方面或第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,在所述终端设备接收第一终端设备发送的第一参考信号和第一物理信道之前,还包括:
所述终端设备向所述第一终端设备发送第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
结合第一方面至第一方面的第二种可能实现方式中的任一种可能实现方式,在第一方面的第三种可能实现方式中,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数;或者,
所述第一参考信号在频域上占用编号为奇数的子载波或者编号为偶数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数。
结合第一方面至第一方面的第三种可能实现方式中的任一种可能实现方式,在第一方面的第四种可能实现方式中,所述终端设备接收第一终端设备发送的第一参考信号和第一物理信道之后,所述方法还包括:
所述终端设备接收所述第一终端设备发送的第二物理信道,其中,所述第二物理信道占用所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不同;
所述终端设备根据所述第一参考信号对所述第二物理信道进行解调。
结合第一方面的第四种可能实现方式中,在第一方面的第五种可能实现方式中,所述时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号, 或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第一方面的第四种可能实现方式或第一方面的第五种可能实现方式,在第一方面的第六种可能实现方式中,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数大于或等于所述第二物理信道占用的子载波数;或者,
所述第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数的2倍大于或等于所述第二物理信道占用的子载波数。
结合第一方面至第一方面的第二种可能实现方式,在第一方面的第七中可能实现方式中,所述方法还包括:
所述终端设备接收第二终端设备发送的第二参考信号和第三物理信道信息,其中,所述第二参考信号位于所述时隙内的所述第i个符号,i为小于7的正整数,所述第三物理信道占据所述时隙内的p个符号,p为1,或p为2,或p为3;
所述终端设备根据所述第二参考信号对所述第三物理信道进行解调;
其中,所述第一物理信道占据的符号与所述第三物理信道占据的符号不同。
结合第一方的第七种可能实现方式,在第一方面的第八种可能实现方式中,在所述终端设备接收第二终端设备发送的第二参考信号和第三物理信道之前,还包括:
所述终端设备向所述第二终端设备发送第二下行控制信息,所述第二下行控制信息包括用于指示所述第二参考信号的配置信息。
结合第一方面的第七种可能实现或第一方面的第八种可能实现方式,在第一方面的第九种可能实现方式中,所述第一参考信号在频域上占用编号为奇数的子载波,所述第二参考信号在频域上占用编号为偶数的子载波;或者,
所述第二参考信号在频域上占用编号为奇数的子载波,所述第一参考信号在频域上占用编号为偶数的子载波;或者,
所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第二参考信号占用的子载波数的2倍大于或等于所述第三物理信道占用的子载波数。
结合第一方面的第七种可能实现方式至第一方面的第九种可能实现方式中的任一 种可能实现方式,在第一方面的第十种可能实现方式中,所述时隙包括7个符号,所述i为4,则所述第一物理信道占据的符号与第三物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第三物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第三物理信道位于第一符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第一方面的第六种可能实现方式或第一方面的第九种可能实现方式,在第一方面的第十一种可能实现方式中,所述终端设备根据所述第一参考信号对所述第一物理信道进行解调,包括:
所述终端设备生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
所述终端设备对所述基序列进行循环移位得到初始参考信号序列;
所述终端设备对所述初始参考信号序列进行间隔抽样后得到所述第一参考信号序列;
所述终端设备根据所述第一参考信号序列对所述第一物理信道进行解调。
第二方方面,提供了一种数据传输方法,包括:
终端设备配置第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占据所述时隙内的n个符号,n为1,或n为2,或n为3;
所述终端设备向终端设备发送所述第一参考信号和所述第一物理信道。
结合第二方面,在第二方面的第一种可能实现方式中,所述时隙包括7个符号,所述i为4,则所述第一物理信道位于第一符号集或第二符号集,其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,
所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第二方面或第二方面的第一种可能实现方式,在第二方面的第二种可能实现 方式中,在所述终端设备配置第一参考信号和第一物理信道之前,还包括:
所述终端设备接收所述终端设备发送的第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
结合第二方面至第二方面的第二种可能实现方式中的任一种可能实现方式,在第二方面的三种可能实现方式中,所述第一参考信号占用连续的子载波,所述第一参考信号占用的子载波数等于或大于所述第一物理信道占用的子载波数。
结合第二方面至第二方面的第二种可能实现方式中的任一种可能实现方式,在第二方面的四种可能实现方式中,所述第一参考信号在频域上占用编号为奇数的子载波或者编号为偶数的子载波,所述第一参考信号占用的子载波数的2倍等于或大于所述第一物理信道占用的子载波数。
结合第二方面的第四种可能实现方式,在第二方面的五种可能实现方式中,所述终端设备配置第一参考信号,包括:
所述终端设备生成所述第一参考信号序列;
所述终端设备将所述第一参考信号序列映射到编号为偶数的子载波或者编号为奇数的子载波。
结合第二方面的第五种可能实现方式,在第二方面的六种可能实现方式中,所述终端设备生成第一参考信号序列,包括:
所述终端设备生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
所述终端设备对基序列进行循环移位得到初始参考信号序列;
所述终端设备对初始参考信号序列进行间隔抽样后得到所述第一参考信号序列。
结合第二方面至第二方面的第六种可能实现方式中的任一种可能实现方式,在第二方面的七种可能实现方式中,若所述第一参考信号还可以用于第二物理信道解调,则所述方法还包括:
所述终端设备配置第二物理信道,所述第二物理信道占据所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不相同;
所述终端设备向所述终端设备发送所述第二物理信道。
结合第二方面的第七种可能实现方式,在第二方面的八种可能实现方式中,所述 时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
第三方面,提供了一种网络,所述网络设备包括:
第一接收单元,用于接收第一终端设备发送的第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;
第一处理单元,用于根据所述第一参考信号对所述第一物理信道进行解调。
结合第三方面,在第三方面的第一种可能实现方式中,所述时隙包括7个符号,所述i为4,所述第一物理信道位于第一符号集或者第二符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第三方面或第三方面的第一种可能实现方式,在第三方面的第二种可能实现方式中,所述设备还包括第一发送单元,用于在所述第一接收单元接收第一终端设备发送的第一参考信号和第一物理信道之前,向所述第一终端设备发送第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
结合第三方面至第三方面的第二种可能实现方式中的任一种可能实现方式,在第三方面的第三种可能实现方式中,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数;或者,
所述第一参考信号在频域上占用编号为奇数的子载波或者编号为偶数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数。
结合第三方面至第三方面的第三种可能实现方式中的任一种可能实现方式,在第 三方面的第四种可能实现方式中,所述第一接收单元还用于,在接收第一终端设备发送的第一参考信号和第一物理信道之后,接收所述第一终端设备发送的第二物理信道,其中,所述第二物理信道占用所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不同;
所述第一处理单元还用于根据所述第一参考信号对所述第二物理信道进行解调。
结合第三方面的第四种可能实现方式,在第三方面的第五种可能实现方式中,所述时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第三方面的第四种或第五中可能实现方式,在第三方面的第六种可能实现方式中,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数大于或等于所述第二物理信道占用的子载波数;或者,
所述第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数的2倍大于或等于所述第二物理信道占用的子载波数。
结合第三方面至第三方面的第二种可能实现方式中的任一种可能实现方式,在第三方面的第七种可能实现方式中,所述第一接收单元还用于接收第二终端设备发送的第二参考信号和第三物理信道信息,其中,所述第二参考信号位于所述时隙内的所述第i个符号,i为小于7的正整数,所述第三物理信道占据所述时隙内的p个符号,p为1,或p为2,或p为3;
所述终端设备根据所述第二参考信号对所述第三物理信道进行解调;
其中,所述第一物理信道占据的符号与所述第三物理信道占据的符号不同。
结合第三方面的第七种可能实现方式,在第三方面的第八种可能实现方式中,所 述第一发送单元还用于在第一接收单元接收第二终端设备发送的第二参考信号和第二物理信道之前,向所述第二终端设备发送第二下行控制信息,所述第二下行控制信息包括用于指示所述第二参考信号的配置信息。
结合第三方面的第七种可能实现方式或第三方面的第八种可能实现方式,在第三方面的第九种可能实现方式中,所述第一参考信号在频域上占用编号为奇数的子载波,所述第二参考信号在频域上占用编号为偶数的子载波;或者,
所述第二参考信号在频域上占用编号为奇数的子载波,所述第一参考信号在频域上占用编号为偶数的子载波;或者,
所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第二参考信号占用的子载波数的2倍大于或等于所述第三物理信道占用的子载波数。
结合第三方面的第七种可能实现方式至第三方面的第九种可能实现方式中的任一种可能实现方式,在第三方面的第十种可能实现方式中,所述时隙包括7个符号,所述i为4,则所述第一物理信道占据的符号与第三物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第三物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第三物理信道位于第一符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第三方面的第六种可能实现方式或第三方面的第九种可能实现方式,在第三方面的第十一种可能实现方式中,所述第一处理单元还用于:
生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
对所述基序列进行循环移位得到初始参考信号序列;
对所述初始参考信号序列进行间隔抽样后得到所述第一参考信号序列;
根据所述第一参考信号序列对所述第一物理信道进行解调。
第四方面,提供了一种终端设备,所述终端设备包括:
第二处理单元,用于配置第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占据所述时 隙内的n个符号,n为1,或n为2,或n为3;
第二发送单元,用于向终端设备发送所述第一参考信号和所述第一物理信道。
结合第四方面,在第四方面的第一种可能实现方式中,所述时隙包括7个符号,所述i为4,则所述第一物理信道位于第一符号集或第二符号集,其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,
所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
结合第四方面或第四方面的第一种可能实现方式,在第四方面的第二种可能实现方式中,所述设备还包括第二接收单元,用于在第二处理单元配置第一参考信号和第一物理信道之前,接收所述终端设备发送的第一下行控制信息,以使所述处理单元根据所述第一下行控制信息配置第一参考信号,其中,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
结合第四方面或第一方面的第二种可能实现方式中的任一种可能实现方式,在第四方面的第三种可能实现方式中,所述第一参考信号占用连续的子载波,所述第一参考信号占用的子载波数等于或大于所述第一物理信道占用的子载波数。
结合第四方面或第一方面的第二种可能实现方式中的任一种可能实现方式,在第四方面的第四种可能实现方式中,所述第一参考信号在频域上占用编号为奇数的子载波或者编号为偶数的子载波,所述第一参考信号占用的子载波数的2倍等于或大于所述第一物理信道占用的子载波数。
结合第四方面的第四种可能实现方式,在第四方面的第五种可能实现方式中,所述第二处理单元还用于:
生成所述第一参考信号序列;
将所述第一参考信号序列映射到编号为偶数的子载波或者编号为奇数的子载波。
结合第四方面的第五种可能实现方式,在第四方面的第六种可能实现方式中,所述第二处理单元还用于:
生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
对基序列进行循环移位得到初始参考信号序列;
对初始参考信号序列进行间隔抽样后得到所述第一参考信号序列。
结合第四方面或第一方面的第六种可能实现方式中的任一种可能实现方式,在第四方面的第七种可能实现方式中,若所述第一参考信号还用于第二物理信道解调,则:
所述第二处理单元还用于配置第二物理信道,所述第二物理信道占据所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不相同;
所述第二发送单元还用于向所述终端设备发送所述第二物理信道。
结合第四方面的第七种可能实现方式,在第四方面的第八种可能实现方式中,所述时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
其中,所述第一符号集包括所述7个符号中的前3个符号;
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
本发明实施例提供了一种数据传输方法,能将上行传输的TTI为压缩为3个符号或4个符号,因此,传输时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本发明的保护范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为一个普通时隙的结构示意图;
图2所示为本发明实施例的数据传输方法的流程图;
图3所示为本发明实施例的普通CP中参考信号和物理信道的示意图;
图4所示为本发明实施例的普通CP中第一参考信号和第一物理信道的示意图;
图5所示为本发明实施例的数据传输方法的流程图;
图6所示为本发明实施例的普通CP的参考信号和物理信道的示意图;
图7所示为本发明实施例的普通CP的参考信号和物理信道的示意图;
图8所示为本发明实施例的一种数据传输方法的流程图;
图9所示为本发明实施例的普通CP中参考信号和物理信道的示意图;
图10所示为本发明实施例的数据传输方法的流程图;
图11所示为本发明实施例的网络设备的示意图;
图12所示为本发明实施例的终端设备的示意图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了全面理解本发明,在以下详细描述中提到了众多具体的细节,但是本领域技术人员应该理解,本发明可以无需这些具体细节而实现。在其他实施例中,不详细描述公知的方法、过程、组件和电路,以免不必要地导致实施例模糊。
本发明实施例提供了一种数据传输方法,该方法可以由终端设备和网络设备共同实现,其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,该终端设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,例如,终端设备或可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等。例如,终端设备或可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接 入网交换语言和/或数据。网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA中的基站(NodeB,简称为“NB”),还可以是LTE中的演进型基站(Evolutional Node B,简称为“eNB或e-NodeB”)。
本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”),及其他应用正交频分(OFDM)技术的无线通信系统等。
下面简要介绍本发明实施例的应用环境,以LTE系统为例,但本发明实施例的应用环境不限于LTE系统,任何通过调度进行数据传输的无线通信系统都可以采用本发明实施例提供的方案。
在LTE系统中,每个无线帧由10个时长为1ms的子帧组成,每个子帧在时域上包括2个slot。对于普通循环前缀(Normal cyclic prefix,简称normal CP),每个slot由7个符号(symbol)组成,即每个slot由序号为{#0,#1,#2,#3,#4,#5,#6}的符号组成;对于长CP(Extended cyclic prefix,简称extended CP),每个slot由6个符号(symbol)组成,即每个slot由序号为{#0,#1,#2,#3,#4,#5}的符号组成。
一个子帧在频域上包括多个子载波。图1所示为一个时隙的结构示意图,图1中横向表示时域,纵向表示频域。图1所示的时隙为普通CP的时隙,横向为时域,纵向为频域,每一纵行代表一个符号,每一横行代表一个子载波。该时隙在时域上包括7个符号,在频域上只示意性的示出4个子载波。
其中,上行符号称为单载波频分多址(Single Carrier-Frequency Division Multiple Access,简称SC-FDMA)符号,下行符号称为正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号。若后续技术引入正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)的上行多址方式,上行符号也可以称为OFDM符号。本发明实施例中,上行符号和下行符号都统称为符号。
物理信道(physical channel)承载来自高层(higher layers)的数据信息,本发明实施 例中,物理信道为PUSCH(physical uplink shared channel,PUSCH,物理上行共享信道)或PUCCH(physical uplink control channel,物理上行控制信道)。物理信号(physical signal)用于物理层,不承载来自高层的数据信息,优选地,本发明中实施例中,物理信号为参考信号(Reference Signal,简称RS),例如用于上行的解调参考信号(Demodulation Reference Signal,简称DMRS),探测参考信号(Sounding reference signal,简称SRS)。网络设备会给每个物理信道配置RS,并根据该RS进行信道估计,根据估计出来的信道值解调物理信道。
短TTI数据传输即TTI小于1个子帧或1ms的数据传输,例如:TTI=0.5ms,或者TTI为1、2、3或4个符号长度。同理,TTI小于1个子帧或1ms的数据包称为短TTI数据包。短TTI数据传输在频域上,可连续分布,也可非连续分布。对于非连续分布,短TTI数据传输分布在Ncluster个子载波集上,Ncluster个子载波集之间不连续,每个子载波集内的子载波连续分布,Ncluster个子载波集中的任意两个子载波集包含的子载波数可以相等或者不相等,其中,Ncluster为大于1的整数,优选地,Ncluster为2。需要说明的是,1个RB包括M个连续的子载波(例如,M=12),所以,本发明中,子载波集也可以称为资源块(resource block,RB)集。
本发明实施例提供了一种数据配置方法,本发明实施例中,配置的数据主要是参考信号以及物理信道。通过对参考信号和物理信道的配置,可以减少数据传输延时。
本发明实施例提供了三种参考信号和物理信道的配置场景,第一种配置场景是一个终端设备对应一个参考信号,且该一个参考信号用于解调一个物理信道;第二种配置场景是一个终端设备对应一个参考信号,且该一个参考信号用于解调两个物理信道;第三种配置场景是两个终端设备分别对应两个参考信号,且该两个参考信号分别用于解调该两个终端设备对应的两个物理信道。
图2所示为本发明实施例的数据传输方法的流程图,如图2所示,所述方法应用于网络设备,所述方法应用于上述第一种配置场景,即一个终端设备对应于一个参考信号,用于解调一个物理信道,该方法包括:
步骤201,网络设备接收第一终端设备发送的第一参考信号和第一物理信道。
所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3。
优选地,第一物理信道是PUSCH,第一参考信号是PUSCH对应的RS。该RS可以用作PUSCH DMRS和/或SRS。
可选地,第一当物理信道是PUCCH,第一参考信号是PUCCH对应的RS。该RS可以用作PUCCH DMRS和/或SRS。
本发明实施例中,优选的,对于普通CP,第一参考信号位于第4个符号(即i=4,参考信号位于一个时隙内序号为#3的符号),第一物理信道位于第一符号集或者第二符号集。
所述第一符号集包括所述时隙的7个符号中的前3个符号,或者说,第一符号集由所述时隙中序号为#0,#1和#2的3个符号组成。
所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。或者说,所述第二符号集由所述时隙中序号为#4,#5和#6的3个符号组成,或者,所述第二符号集由所述时隙中序号为#4和#5的2个符号组成。
通常,对于普通CP,第二符号集包括该时隙内的3个符号,但是当该时隙中的最后一个符号用于传输SRS时,第二符号集可以包括该时隙内的2个符号,例如上述的第二符号集包括第5个符号和第6个符号。其中,“该时隙中的最后一个符号用于传输SRS”包括如下4种条件中的至少一种:
条件一:终端设备在该时隙内的最后一个符号传输SRS,该SRS和该物理信道位于同一个服务小区(serving cell)。
条件二:该时隙为用于传输SRS的小区特定子帧中的第二个时隙,且物理信道占用的带宽和小区特定SRS占用的带宽部分或全部重叠。
条件三:该时隙为终端设备特定的非周期SRS子帧中的第二个时隙,在该物理信道位于的服务小区上,该终端设备可能会在该时隙的最后一个符号上传输SRS;
条件四:当该终端设备被配置了多个定时提前组(timing advance group,TAG)时,该时隙为终端设备特定的周期SRS子帧中的第二个时隙,在该物理信道位于的服务小区上,该终端设备可以在该时隙的最后一个符号上传输SRS。
当然,这四种条件仅是本发明举的例子,本发明包括并不限于此。
本发明实施例的方法还可以应用于长CP。对于长CP,一个时隙在时域上包括6个符号,优选的,第一参考信号可以位于第3个符号(即i=3,参考信号位于一个时隙内序号为#2的符号),第一物理信道位于第一符号集或者第二符号集。
此时,第一符号集包括所述6个符号中的前2个符号,或者说,第一符号集由所 述时隙中序号为#0和#1的2个符号组成。
所述第二符号集包括所述6个符号中的第4个符号、第5个符号以及第6个符号,或者,所述第二符号集包括所述6个符号中的第4个符号和第5个符号。或者说,所述第二符号集由所述时隙中序号为#3,#4和#5的3个符号组成,或者,所述第二符号集由所述时隙中序号为#3和#4的2个符号组成。
通常,对于长CP,第二符号集包括该时隙内的3个符号,当该时隙中的最后一个符号用于传输SRS时,第二符号集可以包括该时隙内的2个符号,例如上述的第二符号集包括第4个符号和第5个符号。其中,“该时隙中的最后一个符号用于传输SRS”包括的条件如上所述,在此不再赘述。
该本发明实施例中,可选地,第一参考信号为以下三种参考信号类型中的一种。
参考信号类型一:
第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,即
Figure PCTCN2015094001-appb-000001
Figure PCTCN2015094001-appb-000002
其中,
Figure PCTCN2015094001-appb-000003
为第一参考信号的序列长度,
Figure PCTCN2015094001-appb-000004
为第一物理信道占用的子载波数。第一参考信号在频域上占用连续的子载波,或者,第一参考信号在频域上占用非连续的Ncluster个子载波集(具体见前文描述)且在每个子载波集内占用连续的子载波。进一步地,该第一参考信号占用的子载波包括第一物理信道占用的全部子载波,即第一物理信道占用的全部子载波为第一参考信号占用的子载波中的一部分或全部。这样,第一参考信号既可以用于物理信道解调,又可以用于探测信道质量,即第一参考信号既可以当做DMRS,又可以当做SRS使用。
第一参考信号的序列由基序列进行循环移位(cyclic shift)生成,即
Figure PCTCN2015094001-appb-000005
其中,
Figure PCTCN2015094001-appb-000006
为第一参考信号的序列,
Figure PCTCN2015094001-appb-000007
为基序列,α为循环移位,
Figure PCTCN2015094001-appb-000008
为第一参考信号的序列长度,u为组号(group number),v是一个组内的基序列号(base sequence number)。
Figure PCTCN2015094001-appb-000009
为12和24时,基序列为通过计算机搜索到的特殊的基于四相相移键控(Quadrature Phase Shift Key;以下简称:QPSK)的序列。
Figure PCTCN2015094001-appb-000010
大于或等于36时,优选地,基序列为长为
Figure PCTCN2015094001-appb-000011
的Zadoff-Chu(ZC)序列经过循环扩展生成的序列,其中,
Figure PCTCN2015094001-appb-000012
是不大于
Figure PCTCN2015094001-appb-000013
的最大质数。例如:当MSC=48时,不大于48的最大质数是47,即
Figure PCTCN2015094001-appb-000014
也就是
Figure PCTCN2015094001-appb-000015
为48的RS序列由长度为47的ZC序列循环扩 展得到。具体地,基序列根据下列公式一生成。
Figure PCTCN2015094001-appb-000016
  (公式一)
Figure PCTCN2015094001-appb-000017
Figure PCTCN2015094001-appb-000018
Figure PCTCN2015094001-appb-000019
Figure PCTCN2015094001-appb-000020
大于或等于36时,可选地,基序列为ZC序列,或,长为
Figure PCTCN2015094001-appb-000021
的ZC序列经过截断生成的序列,
Figure PCTCN2015094001-appb-000022
是不小于
Figure PCTCN2015094001-appb-000023
的最小质数。
图3所示为本发明实施例的普通CP中参考信号和物理信道的示意图,如图3所示,横向为时域,纵向为频域。参考信号301占据第4个符号,参考信号301占用连续的子载波,物理信道位于第一符号集302,第一符号集占据第1至3个符号。物理信道302也占据连续的子载波。
参考信号类型二:
第一参考信号在频域上占用的全部子载波中的任意两个相邻子载波之间相隔(k-1)个子载波,第一参考信号占用的子载波数的k倍大于或等于所述第一物理信道占用的子载波数,其中,k为大于1的整数。
例如,所述第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,即
Figure PCTCN2015094001-appb-000024
Figure PCTCN2015094001-appb-000025
其中,
Figure PCTCN2015094001-appb-000026
为第一参考信号的序列长度,
Figure PCTCN2015094001-appb-000027
为第一物理信道占用的子载波数。进一步地,该第一参考信号占用的RB包括第一物理信道占用的全部RB,即第一物理信道占用的全部RB为第一参考信号占用的RB中的一部分或全部。这样,第一参考信号既可以用于物理信道解调,又可以用于探测信道质量,即第一参考信号既可以当做DMRS,又可以当做SRS使用。需要说明的是,只要一个RB内的至少一个子载波被第一参考信号占用,该RB也认为是被第一参考信号占用。
当第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波时,可以按照下列两种方法中的任意一种方法产生第一参考信号的序列:
第一种产生参考信号的序列的方法:
第一参考信号的序列为初始RS序列经过抽样得到的序列。
初始RS序列可以由基序列进行循环移位生成。初始RS序列的生成方法和参考信号类型 一中的第一参考信号序列的生成方法一样,在此不再赘述。初始RS序列长度等于或大于物理信道占用的子载波数
Figure PCTCN2015094001-appb-000028
第一参考信号的序列为初始RS序列经过不连续抽样后得到的序列。优选地,第一参考信号的序列
Figure PCTCN2015094001-appb-000029
为初始RS序列
Figure PCTCN2015094001-appb-000030
间隔抽样后得到的序列,即
Figure PCTCN2015094001-appb-000031
其中,
Figure PCTCN2015094001-appb-000032
Figure PCTCN2015094001-appb-000033
为第一参考信号的序列长度,
Figure PCTCN2015094001-appb-000034
为初始RS序列长度,a=0或1。
在上述第一种方法中,初始RS序列经过间隔抽样后得到的RS序列仍然保持较好的ZC序列的特性,例如,低三次方量(Cubic metric,CM)特性,低互相关特性等。另外,当小区一的RS映射到连续的子载波上(对于1ms TTI数据传输)和小区二的RS映射到间隔子载波上(对于短TTI数据传输)时,即使小区一的RS和小区二的RS部分重叠或全部重叠,两个RS之间也能取得较低的互相关性。
第二种产生参考信号的序列的方法:
RS序列由基序列进行循环移位生成;
具体地,
Figure PCTCN2015094001-appb-000035
其中,
Figure PCTCN2015094001-appb-000036
Figure PCTCN2015094001-appb-000037
为第一参考信号的序列,
Figure PCTCN2015094001-appb-000038
为基序列,α为循环移位,
Figure PCTCN2015094001-appb-000039
为第一参考信号的序列长度。当
Figure PCTCN2015094001-appb-000040
为12和24时,基序列为通过计算机搜索到的特殊的基于QPSK的序列。当
Figure PCTCN2015094001-appb-000041
大于或等于36时,基序列根据公式一生成(如上所述),或者,基序列根据下列公式二生成。
Figure PCTCN2015094001-appb-000042
  (公式二)
Figure PCTCN2015094001-appb-000043
p=F(q)
其中,F(q)表示一个函数,该函数的输入参数为q,例如F(q)=4q。
图4所示为本发明实施例的普通CP中第一参考信号和第一物理信道的示意图,如图4所示,横向为时域,纵向为频域,每一纵行代表一个符号,每一横行代表一个子载波。第一参考信号401在时域上占据第4个符号,第一参考信号401在频域上占用偶数编号的子载波,第一物理信道位于第二符号集403,第二符号集403占据第5至7个符号,第一物理信道403占据连续的子载波。图4中,第一参考信号401占据的子载波数为6,第一物理信道403占据的子载波数为12。第一参考信号401占据的子载 波数的2倍为12,等于第一物理信道占据的子载波数。
参考信号类型三:
第一参考信号在频域上占用的传输单元个数等于或大于第一物理信道占用的传输单元个数,其中,每个传输单元占用
Figure PCTCN2015094001-appb-000044
个连续子载波,
Figure PCTCN2015094001-appb-000045
为大于或等于12的整数,例如
Figure PCTCN2015094001-appb-000046
其中k为正整数。也就是,NRS=NCH,或,NRS>NCH,其中,NRS为第一参考信号占用的传输单元个数,NCH为第一物理信道占用的传输单元个数。第一参考信号在频域上占用连续的传输单元,或者,第一参考信号在频域上占用非连续的传输单元。进一步地,该第一参考信号占用的传输单元包括第一物理信道占用的全部传输单元,即第一物理信道占用的全部传输单元为第一参考信号占用的传输单元中的一部分或全部。这样,第一参考信号既可以用于物理信道解调,又可以用于探测信道质量。
第一参考信号的序列由NRS个单元序列级联生成。单元序列i由基序列进行循环移位生成,即
Figure PCTCN2015094001-appb-000047
其中,0≤i<NRS
Figure PCTCN2015094001-appb-000048
Figure PCTCN2015094001-appb-000049
为单元序列i,
Figure PCTCN2015094001-appb-000050
为单元序列i的基序列,αi为单元序列i的循环移位,
Figure PCTCN2015094001-appb-000051
为单元序列i的长度。单元序列i的生成方法和参考信号类型一中的第一参考信号的序列生成方法一样,在此不再赘述。优选地,NRS个单元序列采用相同的基序列,不同或相同的循环移位。
步骤201之前,即在所述网络设备接收第一终端设备发送的第一参考信号和第一物理信道之前,还包括:
所述网络设备向所述第一终端设备发送第一下行控制信息(Downlink Control Information,简称DCI),所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。所述第一参考信号的配置信息包括以下信息中的至少一种:
所述参考信号的传输梳,所述参考信号的序列长度,所述参考信号的循环移位,所述参考信号的类型。优选地,DCI包括1bit用于指示RS的传输梳的信息,例如:“0”指示偶数号子载波,“1”指示奇数号子载波;或者,“1”指示偶数号子载波,“0”指示奇数号子载波。优选地,DCI包括1bit用于指示RS的类型,例如:“0”指示RS用作DMRS,“1“指示RS用作DMRS和SRS;或者,“1”指示RS用作DMRS,“0“指示RS用作DMRS和SRS。可选地,DCI包括2bit用于指示RS的类型,其中,一种状态指示RS用作DMRS,另一种状态指示RS用作SRS,还有一种状态指示RS用作DMRS和SRS。需要说明的是,本段中的RS指代第一参考信号。
步骤202,网络设备根据第一参考信号对第一物理信道进行解调。
解调是从携带信息的已调信号中恢复信息的过程。针对步骤202,解调就是网络设备从接收到的第一物理信道恢复信息的过程。若第一物理信道是PUSCH,则恢复的信息就是PUSCH承载的信息,例如:上行共享信道(UL-SCH,Uplink Shared Channel)中包含的数据信息,和/或,HARQ-ACK信息,和/或,信道状态信息(CSI,Channel State Information)。若第一物理信道是PUCCH,则恢复的信息就是PUCCH承载的信息,例如:HARQ-ACK信息,和/或,信道状态信息(CSI,Channel State Information)。其中,HARQ-ACK信息可以用于指示下行数据的接收状态,也可以称为HARQ-ACK反馈信息,包括ACK、NACK或者DTX(Discontinuous Transmission,不连续传输)。
具体地,网络设备根据第一参考信号对第一物理信道进行解调,即网络设备根据第一参考信号对接收到的第一物理信道进行解调,其中,接收到的第一物理信道即网络设备接收到的终端设备发送的第一物理信道。该接收到的终端设备发送的第一物理信道会受到无线信道的影响,如阴影衰落和频率选择性衰落等等,发生畸变,如果没有任何纠正技术,网络设备直接解调该接收到的第一物理信道,会导致解调结果发生错误的概率较大。网络设备为了准确地恢复终端设备发送的第一物理信道,需要对无线信道进行估计(即进行信道估计),然后根据信道估计值对接收到的第一物理信道进行解调。本发明中,信道估计为基于参考信号的信道估计,即网络设备基于第一参考信号进行信道估计。因此,可选地,步骤202可以包括:网络设备生成第一参考信号;网络设备根据第一参考信号对第一物理信道进行解调。
可选地,当第一参考信号为步骤201中所述的参考信号类型一时,步骤202可以包括:
网络设备生成基序列,基序列的长度等于或大于所述第一物理信道占用的子载波数;
网络设备对基序列进行循环移位得到第一参考信号的序列;
网络设备根据第一参考信号的序列对所述第一物理信道进行解调。
可选地,当第一参考信号为步骤201中所述的参考信号类型二时,步骤202可以包括:
所述网络设备生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
所述网络设备对所述基序列进行循环移位得到初始参考信号序列;
所述网络设备对所述初始参考信号序列进行间隔抽样后得到所述第一参考信号的序列;
所述网络设备根据所述第一参考信号的序列对所述第一物理信道进行解调。
本发明实施例中,一个终端配置了一个参考信号,用于解调一个物理信道,由于参考信号占用一个符号,物理信道占用2个或3个符号,因此,上行传输的TTI为3个符号或4个符号,因此,传输时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
本发明实施例提供了一种数据传输方法,应用于网络设备,该应用配置场景中,第一终端设备对应一个参考信号,用一个参考信号用于解调两个物理信道,分别为第一物理信道和第二物理信道。
图5所示为本发明实施例的数据传输方法的流程图,如图5所示,所述方法包括:
步骤501,网络设备接收第一终端设备发送的第一参考信号、第一物理信道和第二物理信道。
步骤502,网络设备根据第一参考信号对第一物理信道和第二物理信道进行解调。
该实施例中,第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;所述第二物理信道占用所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不同。
第一符号集和第二符号集占用的符号如上述实施例的步骤201所述,在此不再赘述。
优选的,普通CP时,若i=4,所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集。
同理,优选的,长CP时,若i=3,所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。需要说明的是,步骤201和步骤202中所述的第一参考信号和第一物理信道的关系,也适合于第一参考信号和第二物理信道。
例如,第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,并且第一参考信号占用的子载波数大于或等于所述第二物理信道占用的子载波数。
例如,第一参考信号占用编号为偶数的子载波或编号为奇数的子载波,第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,并且第一参考信号占用的子载波数的2倍大于或等于所述第二物理信道占用的子载波数。
图6所示为本发明实施例的普通CP的参考信号和物理信道的示意图,如图6所示,参考信号601在时域上占据第4个符号,在频域上占据连续的子载波,第一物理信道占据第一符号集602,第二物理信道占据第二符号集603。
图7所示为本发明实施例的普通CP的参考信号和物理信道的示意图,如图7所示,参考信号701在时域上占据第4个符号,在频域上占据偶数号的子载波,即共占据6个子载波,第一物理信道占据第一符号集602,以及12个子载波,第二物理信道占据第二符号集603以及12个子载波。
步骤501之前,即在所述网络设备接收第一终端设备发送的第一参考信号、第一物理信道和第二物理信道之前,还包括:
所述网络设备向所述第一终端设备发送第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。所述第一参考信号的配置信息如步骤201中所述,在此不再赘述。
本发明实施例中,一个终端配置了一个参考信号,用于解调两个物理信道,由于参考信号占用一个符号,物理信道占用2个或3个符号,因此,上行传输的TTI为3个符号或4个符号,因此,传输时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
图8所示为本发明实施例的一种数据传输方法的流程图,该方法应用于网络设备, 该实施例中,网络设备可以和两个终端设备分别进行通信,两个终端设备分别对应两个参考信号,两个参考信号分别为第一参考信号和第二参考信号,其中,第一参考信号用于第一物理信道的解调,第二参考信号用于第三物理信道的解调。
步骤801,网络设备接收第一终端设备发送的第一参考信号和第一物理信道,接收第二终端设备发送的第二参考信号和第三物理信道。
步骤802,网络设备根据第一参考信号对第一物理信道进行解调,根据第二参考信号对第三物理信道进行解调。
该实施例中,第一参考信号和第二参考信号都位于一个时隙内的第i个符号,i为小于7的正整数,即第一参考信号和第二参考信号位于同一个符号。第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;所述第三物理信道占用所述时隙内的p个符号,p为1,或p为2,或p为3,所述第三物理信道占用的符号与所述第一物理信道占用的符号不同。
优选的,所述第三物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第三物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第三物理信道位于第一符号集。第一符号集和第二符号集占用的符号如上述实施例的步骤201所述,在此不再赘述。
本发明实施例中,可选地,第一物理信道和第三物理信道在频域上完全重叠或部分重叠。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。第二参考信号为步骤201中所述的三种参考信号类型中的一种(只要把第一参考信号换成第二参考信号即可),在此不再赘述。需要说明的是,步骤201和步骤202中所述的第一参考信号和第一物理信道的关系,也适合于第二参考信号和第三物理信道,即步骤201中的“第一参考信号”换成“第二参考信号”,“第一物理信道”换成“第三物理信道”。
可选地,第一参考信号和第二参考信号的类型为参考信号类型一。具体地,第一参考信号和第二参考信号占用相同的符号和相同的子载波。第一RS和第二RS采用相同的基序列,但是不同的循环移位。其中,第一RS和第二RS位于同一个小区,或者,支持上行CoMP的2个小区。因为对于相同基序列进行循环移位后的2个序列之间的正交性较好,所以网络设备能够保证物理信道的解调性能或者信道质量探测性能。
可选地,第一参考信号和第二参考信号的类型为参考信号类型二。具体地,第一参考信号和第二参考信号占据相同的符号,但占据不同的子载波。优选地,第一参考信号和第二参考信号使用不同的传输梳(Transmission comb),即终端设备配置第一RS和第二RS使用不同的传输梳。可选地,传输梳指示的是编号为偶数的子载波或者编号为奇数的子载波。例如,第一RS对应编号为偶数的子载波,第二RS对应编号为奇数的子载波;或者,第一RS对应编号为奇数的子载波,第二RS对应编号为偶数的子载波。需要说明的是,因为第一RS和第二RS位于不同的子载波,所以第一RS和第二RS的序列长度可以不一样。和参考信号类型一相比,参考信号类型二更具灵活性,不需要严格限制第一RS和第二RS一样长。
图9所示为本发明实施例的普通CP中参考信号和物理信道的示意图,如图9所示,第一参考信号在时域上占据第四个符号,在频域上占据偶数号子载波,第一物理信道在时域上占据第一符号集902。第二参考信号在时域上占据第四个符号,在频域上占据奇数号子载波,第三物理信道在时域上占据第二符号集903。
可选地,第一参考信号和第二参考信号的类型为参考信号类型三。具体地,第一参考信号和第二参考信号在时域上占据相同的符号,在频域上占据完全相同或部分相同的传输单元。其中,第一RS和第二RS位于同一个小区,或者,支持上行CoMP的2个小区。对于完全相同或部分相同的传输单元,第一参考信号对应的单元序列和第二参考信号对应的单元序列采用的基序列相同,循环移位不同。因为对于相同基序列进行循环移位后的2个序列之间的正交性较好,所以网络设备能够保证物理信道的解调性能或者信道质量探测性能。RS配置机制三不需要严格限制第一RS和第二RS一样长,所以和RS配置机制一相比,更具灵活性。但是当RS包括至少2个单元序列时,CM会升高,影响终端的功放效率。
步骤801之前,即网络设备接收第一终端设备发送的第一参考信号和第一物理信道,接收第二终端设备发送的第二参考信号和第三物理信道之前,还包括:
所述网络设备向所述第一终端设备发送第一下行控制信息,向所述第二终端设备发送第二下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息,所述第二下行控制信息包括用于指示所述第二参考信号的配置信息。所述第一参考信号的配置信息和所述第二参考信号的配置信息如步骤201中所述,在此不再赘述。
本发明实施例中,和同一个网络设备通讯的两个终端设备分别发送两个参考信号和两个物理信道,两个参考信号分别用于解调两个物理信道,两个终端的两个参考信号仅占用一个符号,两个物理信道占用2个或3个符号,因此,上行传输的TTI为3个符号或4个符号,因此,传输时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
和上述应用于网络设备的数据传输方法相对应,本发明实施例还公开了一种数据传输方法,应用于终端设备,如图10所示,所述方法包括:
步骤1001,终端设备配置第一参考信号和第一物理信道。
其中,第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占据所述时隙内的n个符号,n为1,或n为2,或n为3。
进一步地,步骤1001中,终端设备配置第一参考信号可以包括:终端设备根据该第一参考信号的配置信息配置第一参考信号。
步骤1002,终端设备向网络设备发送第一参考信号和第一物理信道。
优选地,第一物理信道是PUSCH,第一参考信号是PUSCH对应的RS。该RS可以用作PUSCH DMRS和/或SRS。
可选地,第一当物理信道是PUCCH,第一参考信号是PUCCH对应的RS。该RS可以用作PUCCH DMRS和/或SRS。
本发明实施例中,优选的,对于普通CP,第一参考信号位于第4个符号(即i=4,参考信号位于一个时隙内序号为#3的符号),第一物理信道位于第一符号集或者第二符号集。对于长CP,优选的,第一参考信号可以位于第3个符号(即i=3,参考信号位于一个时隙内序号为#2的符号),第一物理信道位于第一符号集或者第二符号集。
可选的,第一、第二符号集可参考上述实施例步骤201中所述,在此不再赘述。
可选的,在步骤1001之前,即所述终端设备配置第一参考信号和第一物理信道之前,还包括:
所述终端设备接收所述网络设备发送的第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。具体配置信息见步骤201中的描述,在此不再赘述。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。
可选的,所述第一参考信号占用连续的子载波,所述第一参考信号占用的子载波数等于或大于所述第一物理信道占用的子载波数。
可选的,第一参考信号占用编号为偶数的子载波或者编号为奇数的子载波,并且第一参考信号占用的子载波数的2倍等于或大于所述第一物理信道占用的子载波数。相应的,所述终端设备配置第一参考信号,包括:
所述终端设备生成所述第一参考信号的序列;
所述终端设备将所述第一参考信号的序列映射到编号为偶数的子载波或者编号为奇数的子载波。
可选的,所述终端设备生成第一参考信号的序列,包括:
所述终端设备生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
所述终端设备对基序列进行循环移位得到初始参考信号序列;
所述终端设备对初始参考信号序列进行间隔抽样后得到所述第一参考信号的序列。
本发明实施例中,一个终端配置了一个参考信号,用于网络设备解调一个物理信道,由于参考信号占用一个符号,物理信道占用2个或3个符号,因此,上行传输的TTI为3个符号或4个符号,进而传输时间间隔缩短。针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
图10所示的实施例中,一个参考信号用于一个物理信道的解调,实际应用中,一个参考信号可以用于两个物理信道的解调,即可以用于第一物理信道和第二物理信道的解调。
若所述第一参考信号还用于第二物理信道解调,则所述方法还包括:
所述终端设备配置第二物理信道,所述第二物理信道占据所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不相同;
所述终端设备向所述网络设备发送所述第二物理信道。
可选的,对于普通CP,所述i为4。可选地,对于长CP,所述i为3。所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集。其中,第一符号集和第二符号集占用的符号如上述实施例的步骤201所述,在此不再赘述。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。需要说明的是,步骤201和步骤202中所述的第一参考信号和第一物理信道的关系,也适合于第一参考信号和第二物理信道。
例如,第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,并且第一参考信号占用的子载波数大于或等于所述第二物理信道占用的子载波数。
例如,第一参考信号占用编号为偶数的子载波或编号为奇数的子载波,第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,并且第一参考信号占用的子载波数的2倍大于或等于所述第二物理信道占用的子载波数。
本发明实施例中,一个终端配置了一个参考信号,用于解调两个物理信道,由于参考信号占用一个符号,物理信道占用2个或3个符号,因此,上行传输的TTI为3个符号或4个符号,因此,传输时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
和上述数据传输方法相对应,本发明实施例还提供了一种网络设备,本发明实施例的网络设备可以执行上述应用于网络设备的数据传输方法。图11所示为本发明实施例的网络设备的示意图,网络设备可以与多个终端设备通讯。如图11所示,网络设备包括第一接收单元1101、第一处理单元1102以及第一发送单元1103。
第一接收单元1101,用于接收第一终端设备发送的第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;
第一处理单元1102,用于根据所述第一参考信号对所述第一物理信道进行解调。
优选地,第一物理信道是PUSCH,第一参考信号是PUSCH对应的RS。该RS可以用作 PUSCH DMRS和/或SRS。
可选地,第一当物理信道是PUCCH,第一参考信号是PUCCH对应的RS。该RS可以用作PUCCH DMRS和/或SRS。
本发明实施例中,优选的,对于普通CP,第一参考信号位于第4个符号(即i=4,参考信号位于一个时隙内序号为#3的符号),第一物理信道位于第一符号集或者第二符号集。对于长CP,优选的,第一参考信号可以位于第3个符号(即i=3,参考信号位于一个时隙内序号为#2的符号),第一物理信道位于第一符号集或者第二符号集。
可选的,第一、第二符号集可参考上述实施例步骤201中所述,在此不再赘述。
可选的,第一发送单元1103,用于在所述第一接收单元接收第一终端设备发送的第一参考信号和第一物理信道之前,向所述第一终端设备发送第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。具体配置信息见步骤201中的描述,在此不再赘述。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。需要说明的是,步骤201和步骤202中所述的第一参考信号和第一物理信道的关系,也适合于第一参考信号和第二物理信道。
可选的,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数;或者,
可选地,第一参考信号占用编号为偶数的子载波或编号为奇数的子载波,并且该第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数。
优选的,所述第一接收单元1101还用于,在接收第一终端设备1002发送的第一参考信号和第一物理信道之后,接收所述第一终端设备1002发送的第二物理信道,其中,所述第二物理信道占用所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不同;
所述第一处理单元1102还用于根据所述第一参考信号对所述第二物理信道进行解调。
可选的,第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集。其中,第一符号集和第二符号集占用的符号如上述实施例的步骤201所述,在此不再赘述。
可选的,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数大于或等于所述第二物理信道占用的子载波数;或者,
所述第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数的2倍大于或等于所述第二物理信道占用的子载波数。
可选的,所述第一接收单元1101还用于接收第二终端设备1003发送的第二参考信号和第三物理信道信息,其中,所述第二参考信号位于所述时隙内的所述第i个符号,i为小于7的正整数,所述第三物理信道占据所述时隙内的p个符号,p为1,或p为2,或p为3;
所述网络设备根据所述第二参考信号对所述第三物理信道进行解调;
其中,所述第一物理信道占据的符号与所述第三物理信道占据的符号不同。
可选的,所述第一发送单元还用于在第一接收单元接收第二终端设备发送的第二参考信号和第二物理信道之前,向所述第二终端设备发送第二下行控制信息,所述第二下行控制信息包括用于指示所述第二参考信号的配置信息。第二参考信号的配置信息如步骤201中所述,在此不再赘述。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。第二参考信号为步骤201中所述的三种参考信号类型中的一种(只要把第一参考信号换成第二参考信号即可,发明内容不变),在此不再赘述。需要说明的是,步骤201和步骤202中所述的第一参考信号和第一物理信道的关系,也适合于第二参考信号和第三物理信道,即步骤201中的“第一参考信号”换成“第二参考信号”,“第一物理信道”换成“第三物理信道”。
可选地,第一参考信号和第二参考信号的类型为参考信号类型一。具体地,第一参考信号和第二参考信号占用相同的符号和相同的子载波。第一RS和第二RS采用相同的基序列,但是不同的循环移位。
可选地,第一参考信号和第二参考信号的类型为参考信号类型二。具体地,第一参考信号和第二参考信号占据相同的符号,但占据不同的子载波。优选地,第一参考信号和第二参考信号使用不同的传输梳(Transmission comb),即终端设备配置第一RS和第 二RS使用不同的传输梳。可选地,传输梳指示的是编号为偶数的子载波或者编号为奇数的子载波。例如,第一RS对应编号为偶数的子载波,第二RS对应编号为奇数的子载波;或者,第一RS对应编号为奇数的子载波,第二RS对应编号为偶数的子载波。需要说明的是,因为第一RS和第二RS位于不同的子载波,所以第一RS和第二RS的序列长度可以不一样。和参考信号类型一相比,参考信号类型二更具灵活性,不需要严格限制第一RS和第二RS一样长。
可选地,第一参考信号和第二参考信号的类型为参考信号类型三。具体地,第一参考信号和第二参考信号在时域上占据相同的符号,在频域上占据完全相同或部分相同的传输单元。对于完全相同或部分相同的传输单元,第一参考信号对应的单元序列和第二参考信号对应的单元序列采用的基序列相同,循环移位不同。
可选的,对于普通CP,所述i为4。可选地,对于长CP,所述i为3。所述第一物理信道占据的符号与第三物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第三物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第三物理信道位于第一符号集。第一符号集和第二符号集占用的符号如上述实施例的步骤201所述,在此不再赘述。
本发明实施例中,可选地,第一物理信道和第三物理信道在频域上完全重叠或部分重叠。
可选的,所述第一处理单元1102包括:
生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
对所述基序列进行循环移位得到初始参考信号序列;
对所述初始参考信号序列进行间隔抽样后得到所述第一参考信号序列;
根据所述第一参考信号序列对所述第一物理信道进行解调。
本实施例中,第一发送单元1103发送第一下行控制信息至第一终端设备,然后第一接收单元1101接收接收第一终端设备发送的第一参考信号和第一物理信道,第一处理单元1102根据第一参考信号对第一物理信道进行解调。
在本发明其他实施例中,第一处理单元1102或可以根据第一参考信号同时对第一物理信道和第二物理信道进行解调。
在本发明其他实施例中,第一发送单元1103发送第一下行控制信息至第一终端设备,同时发送第二下行控制信息至第二中断设备,由第一接收单元1101接收第一终端 设备发送的第一参考信号和第一物理信道,第一接收单元1101还同时接收第二中断设备发送的第二参考信号和第三物理信道,之后,第一处理单元1102分别对第一物理信道和第三物理信道进行解调。
第一参考信号、第二参考信号的配置如上述实施例所述,在此不再赘述。
本发明实施例中,由于参考信号占用一个符号,物理信道占用2个或3个符号,因此,上行传输的TTI为3个符号或4个符号,因此,本发明实施例的网络设备通过执行上述流程,可以是数据传输的时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
本发明实施例还公开了一种终端设备,图12所示为本发明实施例的终端设备的示意图。如图12所示,所述终端设备包括:
第二处理单元1201,用于配置第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占据所述时隙内的n个符号,n为1,或n为2,或n为3;
第二发送单元1202,用于向网络设备发送所述第一参考信号和所述第一物理信道。
优选地,第一物理信道是PUSCH,第一参考信号是PUSCH对应的RS。该RS可以用作PUSCH DMRS和/或SRS。
可选地,第一当物理信道是PUCCH,第一参考信号是PUCCH对应的RS。该RS可以用作PUCCH DMRS和/或SRS。
本发明实施例中,优选的,对于普通CP,第一参考信号位于第4个符号(即i=4,参考信号位于一个时隙内序号为#3的符号),第一物理信道位于第一符号集或者第二符号集。对于长CP,优选的,第一参考信号可以位于第3个符号(即i=3,参考信号位于一个时隙内序号为#2的符号),第一物理信道位于第一符号集或者第二符号集。
可选的,第一、第二符号集可参考上述实施例步骤201中所述,在此不再赘述。
可选的,所述终端设备还包括第二接收单元1203,用于在第二处理单元1201配置第一参考信号和第一物理信道之前,接收所述网络设备1001发送的第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。具体配置信息见步骤201中的描述,在此不再赘述。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。
可选的,所述第一参考信号占用连续的子载波,所述第一参考信号占用的子载波数等于或大于所述第一物理信道占用的子载波数。
可选的,第一参考信号占用编号为偶数的子载波或者编号为奇数的子载波,并且所述第一参考信号占用的子载波数的2倍等于或大于所述第一物理信道占用的子载波数。相应的,所述第二处理单元1201配置第一参考信号,包括:
生成所述第一参考信号序列;
将所述第一参考信号序列映射到编号为偶数的子载波或者编号为奇数的子载波。
可选的,所述第二处理单元1201还用于:
生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
对基序列进行循环移位得到初始参考信号序列;
对初始参考信号序列进行间隔抽样后得到所述第一参考信号序列。
可选的,若所述第一参考信号还用于第二物理信道解调,则:
所述第二处理单元1201还用于配置第二物理信道,所述第二物理信道占据所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不相同;
所述第二发送单元还用于向所述网络设备发送所述第二物理信道。
可选的,对于普通CP,所述i为4。可选地,对于长CP,所述i为3。所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集。其中,第一符号集和第二符号集占用的符号如上述实施例的步骤201所述,在此不再赘述。
本实施例中,可选地,第一参考信号为步骤201中所述的三种参考信号类型中的一种,在此不再赘述。需要说明的是,步骤201和步骤202中所述的第一参考信号和第一物理信道的关系,也适合于第一参考信号和第二物理信道。
在本实施例中,第二接收单元1203接收网络设备发送的下行控制信息,第二处理单元1201配置第一参考信号和第一物理信道,第二发送单元1202向基站发送第一参考信号和第一物理信道。在本发明其他实施例中,第二发送单元1202还可以向基站发 送第二物理信道。
本发明实施例中,由于参考信号占用一个符号,物理信道占用2个或3个符号,因此,上行传输的TTI为3个符号或4个符号,因此,本发明实施例的终端设备通过执行上述流程,可以使数据传输的时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
本发明实施例公开了一种数据传输方法、网络设备及终端设备,能将上行传输的TTI为压缩为3个符号或4个符号,因此,传输时间间隔缩短,针对一个终端设备,单位时间内调度的次数可增多,因此可有效降低数据传输时延。此外,1个slot内只有1个符号用于传输参考信号,参考信号的开销并没有因为TTI的缩短而增加。
对于系统实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本发明,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称得的存储介质,如:ROM、RAM、磁碟、光盘等。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些 要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。本文中应用了具体个例对本发明的原理及实施方式进行了闸述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (42)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    网络设备接收第一终端设备发送的第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;
    所述网络设备根据所述第一参考信号对所述第一物理信道进行解调。
  2. 如权利要求1所述的方法,其特征在于,所述时隙包括7个符号,所述i为4,所述第一物理信道位于第一符号集或者第二符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  3. 如权利要求1或2所述的方法,其特征在于,在所述网络设备接收第一终端设备发送的第一参考信号和第一物理信道之前,还包括:
    所述网络设备向所述第一终端设备发送第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数;或者,
    所述第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述网络设备接收第一终端设备发送的第一参考信号和第一物理信道之后,所述方法还包括:
    所述网络设备接收所述第一终端设备发送的第二物理信道,其中,所述第二物理信道占用所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占 用的符号与所述第一物理信道占用的符号不同;
    所述网络设备根据所述第一参考信号对所述第二物理信道进行解调。
  6. 如权利要求5所述的方法,其特征在于,所述时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
    所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数大于或等于所述第二物理信道占用的子载波数;或者,
    所述第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数的2倍大于或等于所述第二物理信道占用的子载波数。
  8. 如权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收第二终端设备发送的第二参考信号和第三物理信道信息,其中,所述第二参考信号位于所述时隙内的所述第i个符号,i为小于7的正整数,所述第三物理信道占据所述时隙内的p个符号,p为1,或p为2,或p为3;
    所述网络设备根据所述第二参考信号对所述第三物理信道进行解调;
    其中,所述第一物理信道占据的符号与所述第三物理信道占据的符号不同。
  9. 如权利要求8所述的方法,其特征在于,在所述网络设备接收第二终端设备发送的第二参考信号和第三物理信道之前,还包括:
    所述网络设备向所述第二终端设备发送第二下行控制信息,所述第二下行控制信息包括用于指示所述第二参考信号的配置信息。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一参考信号在频域上占用编号为奇数的子载波,所述第二参考信号在频域上占用编号为偶数的子载波;或者,
    所述第二参考信号在频域上占用编号为奇数的子载波,所述第一参考信号在频域上占用编号为偶数的子载波;
    其中,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第二参考信号占用的子载波数的2倍大于或等于所述第三物理信道占用的子载波数。
  11. 如权利要求8至10任一项所述的方法,其特征在于,所述时隙包括7个符号,所述i为4,则所述第一物理信道占据的符号与第三物理信道占据的符号不同,包括:
    所述第一物理信道位于第一符号集,所述第三物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第三物理信道位于第一符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  12. 如权利要求4、7或10所述的方法,其特征在于,所述网络设备根据所述第一参考信号对所述第一物理信道进行解调,包括:
    所述网络设备生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
    所述网络设备对所述基序列进行循环移位得到初始参考信号序列;
    所述网络设备对所述初始参考信号序列进行间隔抽样后得到所述第一参考信号序列;
    所述网络设备根据所述第一参考信号序列对所述第一物理信道进行解调。
  13. 一种数据传输方法,其特征在于,包括:
    终端设备配置第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占据所述时隙内的n个符号,n为1,或n为2,或n为3;
    所述终端设备向网络设备发送所述第一参考信号和所述第一物理信道。
  14. 如权利要求13所述的方法,其特征在于,所述时隙包括7个符号,所述i为4,则所述第一物理信道位于第一符号集或第二符号集,其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  15. 如权利要求13或14所述的方法,其特征在于,在所述终端设备配置第一参考信号和第一物理信道之前,还包括:
    所述终端设备接收所述网络设备发送的第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
  16. 如权利要求13至15任一项所述的方法,其特征在于,所述第一参考信号占用连续的子载波,所述第一参考信号占用的子载波数等于或大于所述第一物理信道占用的子载波数。
  17. 如权利要求13至15任一项所述的方法,其特征在于,所述第一参考信号在频域上占用编号为奇数的子载波或者编号为偶数的子载波,所述第一参考信号占用的子载波数的2倍等于或大于所述第一物理信道占用的子载波数。
  18. 如权利要求17所述的方法,其特征在于,所述终端设备配置第一参考信号,包括:
    所述终端设备生成所述第一参考信号序列;
    所述终端设备将所述第一参考信号序列映射到编号为偶数的子载波或者编号为奇数的子载波。
  19. 如权利要求18所述的方法,其特征在于,所述终端设备生成第一参考信号序列,包括:
    所述终端设备生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
    所述终端设备对基序列进行循环移位得到初始参考信号序列;
    所述终端设备对初始参考信号序列进行间隔抽样后得到所述第一参考信号序列。
  20. 如权利要求13至19任一所述的方法,其特征在于,若所述第一参考信号还可以用于第二物理信道解调,则所述方法还包括:
    所述终端设备配置第二物理信道,所述第二物理信道占据所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不相同;
    所述终端设备向所述网络设备发送所述第二物理信道。
  21. 如权利要求20所述的方法,其特征在于,所述时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
    所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  22. 一种网络设备,其特征在于,所述网络设备包括:
    第一接收单元,用于接收第一终端设备发送的第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占用所述时隙内的n个符号,n为1,或n为2,或n为3;
    第一处理单元,用于根据所述第一参考信号对所述第一物理信道进行解调。
  23. 如权利要求22所述的设备,其特征在于,所述时隙包括7个符号,所述i为4,所述第一物理信道位于第一符号集或者第二符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  24. 如权利要求22或23所述的设备,其特征在于,所述设备还包括第一发送单元,用于在所述第一接收单元接收第一终端设备发送的第一参考信号和第一物理信道之前,向所述第一终端设备发送第一下行控制信息,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
  25. 如权利要求22至24任一项所述的设备,其特征在于,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数;或者,
    所述第一参考信号在频域上占用编号为奇数的子载波或者编号为偶数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数。
  26. 如权利要求22至25任一项所述的设备,其特征在于,所述第一接收单元还用于,在接收第一终端设备发送的第一参考信号和第一物理信道之后,接收所述第一终端设备发送的第二物理信道,其中,所述第二物理信道占用所述时隙内的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不同;
    所述第一处理单元还用于根据所述第一参考信号对所述第二物理信道进行解调。
  27. 如权利要求26所述的设备,其特征在于,所述时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
    所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  28. 如权利要求26或27任一项所述的设备,其特征在于,所述第一参考信号在频域上占用连续的子载波,所述第一参考信号占用的子载波数大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数大于或等于所述第二物理信道占用的子载波数;或者,
    所述第一参考信号在频域上占用编号为偶数的子载波或者编号为奇数的子载波,所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第一参考信号占用的子载波数的2倍大于或等于所述第二物理信道占用的子载波数。
  29. 如权利要求22至24任一项所述的设备,其特征在于,所述第一接收单元还用于接收第二终端设备发送的第二参考信号和第三物理信道信息,其中,所述第二参考信号位于所述时隙内的所述第i个符号,i为小于7的正整数,所述第三物理信道占据所述时隙内的p个符号,p为1,或p为2,或p为3;
    所述网络设备根据所述第二参考信号对所述第三物理信道进行解调;
    其中,所述第一物理信道占据的符号与所述第三物理信道占据的符号不同。
  30. 如权利要求29所述的设备,其特征在于,所述第一发送单元还用于在第一接收单元接收第二终端设备发送的第二参考信号和第二物理信道之前,向所述第二终端设备发送第二下行控制信息,所述第二下行控制信息包括用于指示所述第二参考信号的配置信息。
  31. 如权利要求29或30所述的设备,其特征在于,所述第一参考信号在频域上占用编号为奇数的子载波,所述第二参考信号在频域上占用编号为偶数的子载波;或者,
    所述第二参考信号在频域上占用编号为奇数的子载波,所述第一参考信号在频域 上占用编号为偶数的子载波;或者,
    所述第一参考信号占用的子载波数的2倍大于或等于所述第一物理信道占用的子载波数,所述第二参考信号占用的子载波数的2倍大于或等于所述第三物理信道占用的子载波数。
  32. 如权利要求29至31任一项所述的设备,其特征在于,所述时隙包括7个符号,所述i为4,则所述第一物理信道占据的符号与第三物理信道占据的符号不同,包括:
    所述第一物理信道位于第一符号集,所述第三物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第三物理信道位于第一符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  33. 如权利要求28或31述的设备,其特征在于,所述第一处理单元还用于:
    生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
    对所述基序列进行循环移位得到初始参考信号序列;
    对所述初始参考信号序列进行间隔抽样后得到所述第一参考信号序列;
    根据所述第一参考信号序列对所述第一物理信道进行解调。
  34. 一种终端设备,其特征在于,所述设备包括:
    第二处理单元,用于配置第一参考信号和第一物理信道,其中,所述第一参考信号位于一个时隙内的第i个符号,i为小于7的正整数,所述第一物理信道占据所述时隙内的n个符号,n为1,或n为2,或n为3;
    第二发送单元,用于向网络设备发送所述第一参考信号和所述第一物理信道。
  35. 如权利要求34所述的设备,其特征在于,所述时隙包括7个符号,所述i为4,则所述第一物理信道位于第一符号集或第二符号集,其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,
    所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
  36. 如权利要求34或35所述的设备,其特征在于,所述设备还包括第二接收单元,用于在第二处理单元配置第一参考信号和第一物理信道之前,接收所述网络设备发送的第一下行控制信息,以使所述处理单元根据所述第一下行控制信息配置第一参考信号,其中,所述第一下行控制信息包括用于指示所述第一参考信号的配置信息。
  37. 如权利要求34至36任一项所述的设备,其特征在于,所述第一参考信号占用连续的子载波,所述第一参考信号占用的子载波数等于或大于所述第一物理信道占用的子载波数。
  38. 如权利要求34至36任一项所述的设备,其特征在于,所述第一参考信号在频域上占用编号为奇数的子载波或者编号为偶数的子载波,所述第一参考信号占用的子载波数的2倍等于或大于所述第一物理信道占用的子载波数。
  39. 如权利要求38所述的设备,其特征在于,所述第二处理单元还用于:
    生成所述第一参考信号序列;
    将所述第一参考信号序列映射到编号为偶数的子载波或者编号为奇数的子载波。
  40. 如权利要求39所述的设备,其特征在于,所述第二处理单元还用于:
    生成基序列,所述基序列的长度等于或大于所述第一物理信道占用的子载波数;
    对基序列进行循环移位得到初始参考信号序列;
    对初始参考信号序列进行间隔抽样后得到所述第一参考信号序列。
  41. 如权利要求34至40任一所述的设备,其特征在于,若所述第一参考信号还用于第二物理信道解调,则:
    所述第二处理单元还用于配置第二物理信道,所述第二物理信道占据所述时隙内 的m个符号,m为1,或m为2,或m为3,所述第二物理信道占用的符号与所述第一物理信道占用的符号不相同;
    所述第二发送单元还用于向所述网络设备发送所述第二物理信道。
  42. 如权利要求41所述的设备,其特征在于,所述时隙包括7个符号,所述i为4,则所述第二物理信道占据的符号与第一物理信道占据的符号不同,包括:
    所述第一物理信道位于第一符号集,所述第二物理信道位于第二符号集,或者,所述第一物理信道位于第二符号集,所述第一物理信道位于第一符号集;
    其中,所述第一符号集包括所述7个符号中的前3个符号;
    所述第二符号集包括所述7个符号中的第5个符号、第6个符号以及第7个符号,或者,所述第二符号集包括所述7个符号中的第5个符号和第6个符号。
PCT/CN2015/094001 2015-11-06 2015-11-06 数据传输方法、网络设备及终端设备 WO2017075807A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15907649.6A EP3364700B1 (en) 2015-11-06 2015-11-06 Data transmission method, network device and terminal device
PCT/CN2015/094001 WO2017075807A1 (zh) 2015-11-06 2015-11-06 数据传输方法、网络设备及终端设备
BR112018008898A BR112018008898A8 (pt) 2015-11-06 2015-11-06 método de transmissão de dados, dispositivo de rede e dispositivo terminal
CN201580082252.6A CN107852710B (zh) 2015-11-06 2015-11-06 数据传输方法、网络设备及终端设备
JP2018522640A JP2018538729A (ja) 2015-11-06 2015-11-06 データ伝送方法、ネットワーク装置、及び端末装置
US15/971,961 US10554357B2 (en) 2015-11-06 2018-05-04 Data transmission method, network device, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094001 WO2017075807A1 (zh) 2015-11-06 2015-11-06 数据传输方法、网络设备及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/971,961 Continuation US10554357B2 (en) 2015-11-06 2018-05-04 Data transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2017075807A1 true WO2017075807A1 (zh) 2017-05-11

Family

ID=58661458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094001 WO2017075807A1 (zh) 2015-11-06 2015-11-06 数据传输方法、网络设备及终端设备

Country Status (6)

Country Link
US (1) US10554357B2 (zh)
EP (1) EP3364700B1 (zh)
JP (1) JP2018538729A (zh)
CN (1) CN107852710B (zh)
BR (1) BR112018008898A8 (zh)
WO (1) WO2017075807A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051334A1 (en) * 2017-09-10 2019-03-14 At&T Intellectual Property I, L.P. FACILITATING THE DETERMINATION OF THE TYPE OF TRANSMISSION VIA DEMODULATION REFERENCE SIGNAL MODELS
JP2019511881A (ja) * 2016-03-31 2019-04-25 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 伝送方法、機器およびシステム
CN109802784A (zh) * 2017-11-17 2019-05-24 电信科学技术研究院 一种pucch传输方法、移动通信终端及网络侧设备
WO2019194021A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 通信システム、基地局および端末装置
JP2021533697A (ja) * 2018-08-10 2021-12-02 華為技術有限公司Huawei Technologies Co., Ltd. 参照信号送信方法、参照信号受信方法、および装置
CN114731257A (zh) * 2020-01-10 2022-07-08 华为技术有限公司 上行信道解调方法和上行信道解调装置
WO2024041504A1 (zh) * 2022-08-26 2024-02-29 华为技术有限公司 一种通信方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476110B (zh) * 2015-12-31 2021-10-08 Idac控股公司 用于动态管理参考信号的方法
JP2023119339A (ja) * 2022-02-16 2023-08-28 Kddi株式会社 位置推定精度の向上のための中継装置、ネットワークノード、制御方法、及びプログラム
JP2023119340A (ja) * 2022-02-16 2023-08-28 Kddi株式会社 位置推定精度の向上のための中継装置、端末装置、制御方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977099A (zh) * 2010-10-29 2011-02-16 中兴通讯股份有限公司 一种上行信道的发送方法、基站和用户设备
CN102098086A (zh) * 2010-12-30 2011-06-15 中兴通讯股份有限公司 数据发送方法及装置
US20130135984A1 (en) * 2011-11-25 2013-05-30 Electronics And Telecommunications Research Instit Apparatus and method for transmitting uplink data
CN103874203A (zh) * 2012-12-11 2014-06-18 普天信息技术研究院有限公司 一种通信系统的上行信道分配方法
WO2015022137A1 (en) * 2013-08-14 2015-02-19 Sony Corporation Power density boosting in uplink shared channels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540751B (zh) * 2009-04-30 2013-01-02 北京邮电大学 用于多流数据的解调方法和系统
CN101645868B (zh) * 2009-08-31 2014-12-10 中兴通讯股份有限公司 一种参考信号的发送方法和装置
CN102170702B (zh) * 2010-02-25 2014-07-30 华为技术有限公司 一种数据传输方法、基站和通信系统
US20130343477A9 (en) * 2011-11-04 2013-12-26 Research In Motion Limited PUSCH Reference Signal Design for High Doppler Frequency
KR20130122572A (ko) * 2012-04-30 2013-11-07 한국전자통신연구원 단말 대 단말 통신을 위한 송수신 방법
CN105491665B (zh) * 2014-09-15 2019-07-23 中兴通讯股份有限公司 导频配置方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977099A (zh) * 2010-10-29 2011-02-16 中兴通讯股份有限公司 一种上行信道的发送方法、基站和用户设备
CN102098086A (zh) * 2010-12-30 2011-06-15 中兴通讯股份有限公司 数据发送方法及装置
US20130135984A1 (en) * 2011-11-25 2013-05-30 Electronics And Telecommunications Research Instit Apparatus and method for transmitting uplink data
CN103874203A (zh) * 2012-12-11 2014-06-18 普天信息技术研究院有限公司 一种通信系统的上行信道分配方法
WO2015022137A1 (en) * 2013-08-14 2015-02-19 Sony Corporation Power density boosting in uplink shared channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364700A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019511881A (ja) * 2016-03-31 2019-04-25 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 伝送方法、機器およびシステム
US10651999B2 (en) 2016-03-31 2020-05-12 China Academy Of Telecommunications Technology Transmission method, device and system
WO2019051334A1 (en) * 2017-09-10 2019-03-14 At&T Intellectual Property I, L.P. FACILITATING THE DETERMINATION OF THE TYPE OF TRANSMISSION VIA DEMODULATION REFERENCE SIGNAL MODELS
US10333740B2 (en) 2017-09-10 2019-06-25 At&T Intellectual Property I, L.P. Facilitating determination of transmission type via demodulation reference signal patterns
CN109802784A (zh) * 2017-11-17 2019-05-24 电信科学技术研究院 一种pucch传输方法、移动通信终端及网络侧设备
CN109802784B (zh) * 2017-11-17 2021-04-30 电信科学技术研究院 一种pucch传输方法、移动通信终端及网络侧设备
JPWO2019194021A1 (ja) * 2018-04-04 2021-04-08 三菱電機株式会社 通信システム、基地局および端末装置
WO2019194021A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 通信システム、基地局および端末装置
JP2021533697A (ja) * 2018-08-10 2021-12-02 華為技術有限公司Huawei Technologies Co., Ltd. 参照信号送信方法、参照信号受信方法、および装置
JP7196281B2 (ja) 2018-08-10 2022-12-26 華為技術有限公司 参照信号送信方法、参照信号受信方法、および装置
US11582081B2 (en) 2018-08-10 2023-02-14 Huawei Technologies Co., Ltd. Reference signal sending method, reference signal receiving method, and apparatus
CN114731257A (zh) * 2020-01-10 2022-07-08 华为技术有限公司 上行信道解调方法和上行信道解调装置
WO2024041504A1 (zh) * 2022-08-26 2024-02-29 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US10554357B2 (en) 2020-02-04
BR112018008898A8 (pt) 2019-02-26
US20180254869A1 (en) 2018-09-06
EP3364700B1 (en) 2021-01-06
EP3364700A1 (en) 2018-08-22
CN107852710B (zh) 2020-07-21
BR112018008898A2 (zh) 2018-11-06
JP2018538729A (ja) 2018-12-27
CN107852710A (zh) 2018-03-27
EP3364700A4 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2017075807A1 (zh) 数据传输方法、网络设备及终端设备
US11432191B2 (en) Hybrid automatic repeat request acknowledge resource allocation for enhanced physical downlink control channel
US11245563B2 (en) Method and device for transmitting reference signal
US20200313830A1 (en) Partial cqi feedback in wireless networks
CN114884637B (zh) 用于资源块中的物理上行链路控制信道的方法和装置
US10264567B2 (en) Data transmission method and device in wireless communication system
WO2017036419A1 (zh) 一种传输信息的方法和装置
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
KR102281344B1 (ko) 무선 통신 시스템에서 harq-ack 전송 방법 및 장치
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
EP3343969B1 (en) Data transmission method and apparatus
WO2010145361A9 (zh) 一种载波聚合时的信号传输方法及系统
EP2566087B1 (en) Method and apparatus for transmitting extended uplink acknowledgement information in a wireless communication system
US20130336226A1 (en) Method and device for transmitting data in wireless communication system
KR20200035455A (ko) 시퀀스 기반의 신호 처리 방법 및 장치
EP3493636B1 (en) Data transmission method, terminal device and network device
WO2017045179A1 (zh) 数据传输的方法、终端设备和基站
KR101241921B1 (ko) Ack/nack 정보 전송 방법 및 장치
KR20110038592A (ko) 무선 통신 시스템에서 상향링크 제어 신호 전송 방법 및 장치
WO2020199088A1 (zh) 数据传输的方法及通信设备
EP3429288B1 (en) Data transmission method, base station, and user equipment
WO2017194572A1 (en) Scalable spucch design for low latency lte operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018522640

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008898

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2015907649

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018008898

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180502