WO2010145361A9 - 一种载波聚合时的信号传输方法及系统 - Google Patents

一种载波聚合时的信号传输方法及系统 Download PDF

Info

Publication number
WO2010145361A9
WO2010145361A9 PCT/CN2010/072690 CN2010072690W WO2010145361A9 WO 2010145361 A9 WO2010145361 A9 WO 2010145361A9 CN 2010072690 W CN2010072690 W CN 2010072690W WO 2010145361 A9 WO2010145361 A9 WO 2010145361A9
Authority
WO
WIPO (PCT)
Prior art keywords
srs
component carrier
pucch
transmission parameter
transmission
Prior art date
Application number
PCT/CN2010/072690
Other languages
English (en)
French (fr)
Other versions
WO2010145361A1 (zh
Inventor
张戎
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010145361A1 publication Critical patent/WO2010145361A1/zh
Publication of WO2010145361A9 publication Critical patent/WO2010145361A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal transmission method during carrier aggregation.
  • FIG. 1 is a schematic structural diagram of a basic frame structure in an LTE system; as shown in FIG. 1, the frame structure is divided into five levels: a radio frame, a half frame, a subframe, a slot, and a symbol.
  • a radio frame has a length of 10 ms
  • a radio frame is composed of two fields, each field has a length of 5 ms
  • a field consists of 5 subframes, each of which has a length of 1 ms
  • a sub-frame The frame consists of two time slots, each of which has a length of 0.5 ms.
  • the measurement reference signal also called the Sounding Reference Signal (SRS)
  • SRS Sounding Reference Signal
  • UE User Equipment
  • CSI Channel State Information
  • a user equipment (UE) periodically transmits an uplink SRS according to parameters such as bandwidth, frequency domain location, period, and subframe offset indicated by a base station (e-node-B, eNB).
  • the eNB determines the uplink CSI of the UE according to the received SRS signal, and performs operations such as frequency domain selection scheduling and closed loop power control according to the obtained CSI.
  • the UE transmits the SRS only on the last symbol of the subframe.
  • the configuration in which the UE transmits SRS in the time domain is related to four parameters: cell-specific period T SFC and subframe offset ( ), and UE-specific ( UE-specific ) period ( r SRS ) and sub- Frame offset (T. ffset ).
  • Tables 1 and 2 show the cell-specific periods (also called the Configuration Period) and the subframe bias in the Frequency Division Duplex (FDD) and Time Division Duplex (TDD) systems, respectively.
  • the cell-specific period and subframe offset give the time domain subframe position where all UEs in the cell may send SRS, while in other subframes, the last SC-FDMA symbol cannot be used for sending.
  • SRS SRS.
  • the period is 5 subframes, and the subframe 0 and subframe 1 positions in each period will be used by the UEs in the cell to transmit the SRS.
  • Table 1 FDDSRS subframe configuration
  • Table 3 and Table 4 show the UE-specific SRS transmission period (SRS Periodicity) and the subframe offset (SRS Subframe Offset) in the FDD and TDD systems, respectively.
  • the UE-specific period and subframe offsets give the time domain period and subframe position at which a certain UE transmits the SRS.
  • SRS Configuration Index SRS Configuration Index
  • I SRS 17 in Table 3 as an example, the UE sends an SRS reference signal every 20 ms, and its time domain location is transmitted in the first subframe within 20 ms.
  • Table 4 TDD UE Specific SRS transmission period T SRS and subframe offset.
  • LTE defines a Physical Uplink Control Channel (PUCCH) for transmitting uplink control signaling, including an uplink scheduling request (SR), and a positive/negative response information (Acknowledged I Non-acknowledged, ACK/NACK). ), Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), and Rank Indicator (RI).
  • PUCCH Physical Uplink Control Channel
  • SR uplink scheduling request
  • ACK/NACK positive/negative response information
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • the format of the PUCCH is divided into format 1, format la, format lb, and format 2, format 2a, and format 2b.
  • the format 1 is used to transmit 1-bit uplink scheduling request information, indicating that there is no SR; La is used to transmit ACK/NACK information of a 1-bit single codeword stream; format lb is used to transmit ACK/NACK information of a 2-bit dual codeword stream, where each codeword stream corresponds to 1-bit ACK/NACK information ; format 2 is used to transfer CQI/PMI And RI information; format 2a is used for transmitting CQI/PMI/RI information, and single codeword stream ACK/NACK information; format 2b is used for transmitting CQI/PMI/RI information, and double codeword stream ACK/NACK information; PUCCH format 2a and format 2b are used for scenarios where the cyclic prefix is a regular cyclic prefix.
  • npRB is a resource block (RB) index number
  • m is a PUCCH channel identifier; as shown in FIG. 4, each PUCCH channel is occupied.
  • PUCCH format1/la/lb 1-bit SR information, or 1-bit/2-bit ACK/NACK information is subjected to frequency domain extension and spread to 12 subcarriers of the PUCCH channel.
  • the frequency domain spreading code also known as the frequency domain spreading sequence
  • the frequency domain spreading sequence is a basic sequence of Constant Amplitude Zero Auto-correlation Code (CAZAC) sequence searched by a computer with a length of 12, and is cyclically Shifted.
  • CAZAC Constant Amplitude Zero Auto-correlation Code
  • the frequency domain spreading sequence is repeated 7 times, and one of the 12 frequency domain locations on each symbol of a resource block is mapped.
  • the sequence on each time slot (#0, #2, #3, #4, #6) symbol is used for data transmission of the PUCCH channel, each time slot (#1, # 5) The sequence on the symbol is used as a transmission of a Demodulation Reference Signal (DMRS) of the PUCCH channel, as shown in FIG.
  • DMRS Demodulation Reference Signal
  • the sequence on the (#0, #1, #5, #6) symbol of each slot is used for data transmission of the PUCCH channel, each time slot (#2, #3, The sequence on the #4) symbol is used as the transmission of the DMRS of the PUCCH channel, as shown in FIG.
  • the frequency domain spreading sequence is repeated 6 times, and one of the 12 frequency domain locations on each symbol of a resource block is mapped.
  • PUCCH format 2 the sequence on each time slot (#0, #1, #3, #4, #5) symbol is used for data transmission of the PUCCH channel, and the sequence on each time slot (#2) symbol is used.
  • the DMRS transmission of the PUCCH channel is as shown in FIG.
  • PUCCH formatl/la/lb the sequence on the (#0, #1, #4, #5) symbol of each slot is used for data transmission of the PUCCH channel, each time slot (#2, #3)
  • the sequence on the symbol is used as the transmission of the DMRS of the PUCCH channel, as shown in FIG.
  • the parameter table is determined by a PUCCH resource index, a number of cyclic shifts used by PUCCH format 1/la/lb on the component carrier, and a slot number (n s ).
  • the PUCCH uses one SC-FDMA symbol in one slot, that is, only six are used. Symbol (conventional cyclic prefix) or 5 symbols (extended cyclic prefix), this structure is called the truncated structure of PUCCH. At this time, the last symbol in this time slot can be used by the UE to transmit the SRS.
  • the single carrier characteristic when the UE transmits data is always maintained in the uplink, which requires that the data transmitted by the UE must be continuous in the frequency domain.
  • the frequency domain position of the PUCCH is the two ends of the entire frequency band, and the frequency domain position of the SRS is usually not connected to the PUCCH. Therefore, for one UE, the PUCCH and the SRS cannot be simultaneously transmitted, so it is necessary to consider A method of multiplexing both in one subframe.
  • whether the PUCCH and the SRS can be multiplexed depends on the format of the PUCCH, and the upper layer signaling (Simultaneous-AN-and-SRS) indicating whether to allow simultaneous transmission of the PUCCH and the SRS, and follows the following principles:
  • the UE in the cell can only send the SRS on the cell-specific allowed subframe offset, and cannot send the SRS in other subframe positions, and the UE can only send the SRS on the last symbol in the subframe;
  • the UE cannot send SRS; this is due to the fact that The PUCCH format 1/la/lb does not use the truncation structure. To ensure the single carrier characteristic, the UE cannot send the SRS at the last symbol position.
  • the UE may use the truncation structure of the PUCCH to transmit in the subframe. PUCCH, and send SRS in the last symbol; in addition, in this case all UEs in the cell will be sent with a truncated structure
  • LTE-Advanced also known as Further Advancements for E-UTRA
  • LTE-Advanced is an evolved version of LTE.
  • 3GPP TR 25.913 "Requirements for the provision of terrestrial radio access networks for wireless access and evolution of universal mobile telecommunications systems", it is also necessary to meet or exceed the International Telecommunications Union Radiocommunication Sector.
  • the proposed IMT-Advanced requirements The requirements for backward compatibility with LTE refer to: LTE terminals can work in LTE-Advanced networks; LTE-Advanced terminals can work in LTE networks.
  • LTE-Advanced should be able to operate in different sizes of spectrum configurations, including a wider frequency profile than LTE (eg, 100 MHz continuous frequency resources) to achieve higher performance and target peak rates. Since the LTE-Advanced network needs to be able to access LTE users, its operating band needs to cover the current LTE frequency band, and there is no allocated 100 MHz spectrum bandwidth that can be allocated in this frequency band. Therefore, a technical problem that LTE-Advanced needs to solve is to aggregate several continuous component carrier carriers (component carriers) distributed in different frequency bands to form a 100 MHz bandwidth that can be used by LTE-Advanced. That is, for the aggregated frequency, it is divided into n component carrier frequencies (or component carriers), and the spectrum in each component carrier frequency (or component carrier) is continuous.
  • component carriers component carrier frequencies
  • the LTE-Advanced spectrum configuration is composed of a plurality of component carrier frequencies by carrier aggregation; wherein the aggregation of the above spectrum may be aggregation of continuous spectrum or aggregation of discontinuous spectrum.
  • the LTE UE can access the LTE-compatible frequency band
  • the LTE-A UE can access the LTE-compatible frequency band and can also access the LTE-Advanced frequency band.
  • the spectrum can be aggregated by multiple component carrier frequencies.
  • Each component carrier has both a subframe for uplink and a subframe for downlink.
  • both the uplink spectrum and the downlink spectrum are aggregated by the component carrier frequency.
  • the number of uplink component carriers and the number of downlink component carriers may be the same or different.
  • LTE-Advanced component carrier frequencies can be used to transmit PUCCH and/or SRS. This requires consideration of how to handle PUCCH and/or SRS transmission on multiple component carriers.
  • the present invention provides a signal transmission method during carrier aggregation, including: a base station configuring a physical uplink control channel (PUCCH) transmission parameter and/or measurement of a component carrier or a plurality of component carriers for a user equipment (UE) a reference signal (SRS) transmission parameter, and transmitting the PUCCH transmission parameter and/or SRS transmission parameter to the UE;
  • PUCCH physical uplink control channel
  • UE user equipment
  • SRS reference signal
  • the corresponding component carrier transmits PUCCH and/or SRS.
  • the SRS transmission parameter includes: an upper layer signaling for indicating whether to allow simultaneous transmission of the SRS and the PUCCH on the component carrier; the step of transmitting the PUCCH and/or the SRS on the corresponding component carrier includes: when the UE needs to be in the SRS When the subframe corresponding to the transmission parameter corresponds to the SRS transmission SRS, and the format 1, format la or format lb PUCCH:
  • the UE transmits the PUCCH in the subframe of the component carrier using a truncation structure, and at the end of the subframe Transmit SRS on one symbol;
  • the UE transmits the PUCCH in the subframe of the component carrier using a conventional format and discards the SRS.
  • the step of transmitting the PUCCH transmission parameter to the UE includes: transmitting, by the base station, the PUCCH transmission parameter to a downlink subframe or a downlink subframe of the component carrier, and transmitting the PUCCH transmission parameter to the UE;
  • the method further includes: the UE, according to the preset rule or the signaling sent by the base station, the component carrier corresponding to the PUCCH transmission parameter carried in the downlink subframe of the downlink component carrier or the component carrier.
  • the step of transmitting the SRS transmission parameter to the UE includes: transmitting, by the base station, the SRS transmission parameter to a downlink subframe or a downlink subframe of the component carrier, and sending the SRS transmission parameter to the UE; After the step of transmitting the SRS transmission parameter to the UE, the method further includes: the UE, according to the preset rule or the signaling sent by the base station, learning the SRS carried in the downlink subframe of the downlink component carrier or the component carrier. The component carrier corresponding to the transmission parameter. In the step of transmitting the SRS by the corresponding component carrier, the UE transmits the SRS only on the last symbol of the subframe of the component carrier.
  • the step of transmitting the PUCCH and/or the SRS on the corresponding component carrier includes: when the UE needs to transmit the SRS of the SRS in the component carrier, and the PUCCH of the format 2, the format 2a or the format 2b, the UE is in the component carrier
  • the above subframe transmits PUCCH and discards the SRS.
  • the present invention further provides a signal transmission system for carrier aggregation, including a user equipment (UE) and a base station, where the base station includes: a transmission parameter configuration unit and a transmission parameter transmission unit; and the UE includes: a parameter receiving unit and a signal transmission unit; wherein: the transmission parameter configuration unit is configured to: configure a physical uplink control channel (PUCCH) transmission parameter and/or a measurement reference signal (SRS) of one component carrier or multiple component carriers for the UE And transmitting the parameter to the transmission parameter sending unit; the transmission parameter sending unit is configured to: send the PUCCH transmission parameter and/or the SRS transmission parameter to the UE; and the transmission parameter receiving unit is configured to: Receiving, by the base station, the PUCCH transmission parameter and/or measurement reference signal (SRS) transmission parameter, and outputting to the signal transmission unit; and the signal transmission unit is configured to: respectively transmit the PUCCH according to each component carrier Parameter and/or SRS transmission parameters are transmitted on the corresponding component carrier PUCCH
  • PUCCH physical up
  • the present invention further provides a user equipment (UE) for signal transmission during carrier aggregation, comprising: a transmission parameter receiving unit and a signal transmission unit; wherein: the transmission parameter receiving unit is configured to: receive a configuration sent by the base station for the UE Physical component control channel (PUCCH) transmission parameters and/or measurement reference signal (SRS) transmission parameters of component carriers or multiple component carriers, and output to the signal transmission unit; and the signal transmission unit is configured to: The PUCCH transmission parameters and/or SRS transmission parameters of each component carrier transmit PUCCH and/or SRS on corresponding component carriers.
  • PUCCH Physical component control channel
  • SRS measurement reference signal
  • the SRS transmission parameter includes: upper layer signaling for indicating whether to allow simultaneous transmission of the SRS and the PUCCH on the component carrier; the signal transmission unit is configured to transmit the PUCCH and/or the corresponding component carrier in the following manner SRS: when the signal transmission unit needs to transmit a SRS for transmitting a SRS in a component carrier corresponding to the SRS transmission parameter, and a PUCCH of format 1, format la or format lb: if on the component carrier.
  • the upper layer signaling allows the PUCCH and the SRS to be simultaneously transmitted on the component carrier, and the signal transmission unit transmits the PUCCH using the truncation structure in the subframe of the component carrier, and transmits the SRS on the last symbol of the subframe.
  • the signal transmission unit transmits the PUCCH in the subframe of the component carrier using a conventional format, and Discard the SRS.
  • the signal transmission unit is configured to transmit a PUCCH and/or an SRS on a corresponding component carrier as follows: when the signal transmission unit needs to transmit an SRS in a component carrier corresponding to the SRS transmission parameter, a SRS is transmitted. And the PUCCH of the format 2, the format 2a or the format 2b: the signal transmission unit transmits the PUCCH in the subframe on the component carrier, and discards
  • the PUCCH transmission parameter is sent to the UE in a downlink subframe of the downlink component carrier or the component carrier; the signal transmission unit is further configured to: learn the downlink component carrier according to a preset rule or signaling sent by the base station The component carrier corresponding to the PUCCH transmission parameter carried on the downlink subframe of the component carrier.
  • the SRS transmission parameter is sent to the UE in a downlink subframe of the downlink component carrier or the component carrier; the signal transmission unit is further configured to: learn the downlink component carrier according to a preset rule or signaling sent by the base station Or the component carrier corresponding to the SRS transmission parameter carried on the downlink subframe of the component carrier.
  • the present invention further provides a base station for signal transmission during carrier aggregation, comprising: a transmission parameter configuration unit and a transmission parameter sending unit; wherein: the transmission parameter configuration unit is configured to: be a user equipment (a UE) configuring a physical uplink control channel (PUCCH) transmission parameter and/or a measurement reference signal (SRS) transmission parameter of one component carrier or a plurality of component carriers, and outputting to the transmission parameter transmitting unit; and the transmission parameter transmitting unit The method is configured to: send the PUCCH transmission parameter and/or the SRS transmission parameter to the UE, so that the UE transmits the PUCCH on the corresponding component carrier according to the PUCCH transmission parameter and/or the SRS transmission parameter of each component carrier, respectively.
  • the transmission parameter configuration unit is configured to: be a user equipment ( a UE) configuring a physical uplink control channel (PUCCH) transmission parameter and/or a measurement reference signal (SRS) transmission parameter of one component carrier or a plurality of component carriers, and outputting to
  • the transmission parameter sending unit is configured to send the PUCCH transmission parameter to the UE according to the following manner: sending the PUCCH transmission parameter to the UE in a downlink subframe of a downlink component carrier or a component carrier, so that The UE learns the component carrier corresponding to the PUCCH transmission parameter carried in the downlink subframe of the downlink component carrier or the component carrier according to the preset rule or the signaling sent by the base station.
  • the transmission parameter sending unit is configured to send the SRS transmission parameter to the UE in the following manner: the transmission parameter sending unit sends the SRS transmission parameter on a downlink component carrier or a downlink subframe of a component carrier Giving the UE, so that the UE learns the downlink component according to a preset rule or signaling sent by a base station The component carrier corresponding to the SRS transmission parameter carried on the downlink subframe of the carrier or component carrier.
  • the multiplexed transmission method of the PUCCH and the SRS in the case of carrier aggregation is compatible with the LTE UE, and can be used on multiple carriers without collision, and can maximize the utilization efficiency of the spectrum.
  • FIG. 1 is a schematic diagram of a radio frame structure of an LTE system
  • FIG. 2 is a schematic diagram of a cell-specific SRS transmission period ( TSFC ) and a subframe offset ( ASFC ) of an LTE system;
  • FIG. 3 is a schematic diagram of a UE-specific SRS transmission period ( ⁇ SRS ) and a subframe offset ( Toffset ) of an LTE system;
  • FIG. 4 is a schematic diagram of a frequency domain location of a physical uplink control channel of an LTE system
  • FIG. 5 is a schematic diagram of a time-frequency location of a PUCCH format 2/2a/2b in a conventional cyclic prefix of an LTE system
  • FIG. 6 is a schematic diagram of a PUCCH format 1/la/lb time-frequency position when a conventional cyclic prefix of an LTE system is used;
  • Figure 7 is a schematic diagram of the time-frequency position of PUCCH format 2/2a/2b when the LTE system extends the cyclic prefix
  • FIG. 8 is a schematic diagram of a PUCCH format 1/la/lb time-frequency position when the LTE system expands the cyclic prefix
  • FIG. 10 is a flowchart of a signal transmission method in carrier aggregation according to the present invention.
  • FIG. 11 is a signal transmission system structure in carrier aggregation according to the present invention. schematic diagram.
  • a preferred embodiment of the present invention is that the base station configures a PUCCH transmission parameter and an SRS transmission parameter of each component carrier for the UE, and sends the transmission parameter to the UE; the UE separately uses the transmission parameter of each component carrier.
  • the PUCCH and/or SRS are transmitted on the corresponding component carrier.
  • the base station configures a PUCCH transmission parameter for a component carrier that needs to transmit a PUCCH, and separately configures an SRS transmission parameter for a component carrier that needs to transmit an uplink SRS.
  • the foregoing SRS transmission parameters include, but are not limited to, one or more of the following: a cell specific SRS period and a subframe offset on a component carrier; a UE specific SRS period and a subframe offset on a component carrier; Whether upper layer signaling of PUCCH and SRS is simultaneously transmitted is allowed.
  • the foregoing PUCCH transmission parameters include, but are not limited to, one or more of the following: a PUCCH resource index on a component carrier; a cyclic shift number used by PUCCH format 1/la/lb on a component carrier.
  • the base station sends a PUCCH transmission parameter of each component carrier to a UE on a specific downlink component carrier (FDD system) or a downlink subframe (TDD system) of a specific component carrier; and performs SRS transmission parameters of each component carrier.
  • the UE is transmitted to a specific downlink component carrier (FDD system) or a downlink subframe (TDD system) of a specific component carrier.
  • the base station and the UE may pre-arrange the PUCCH transmission parameter carried by the specific downlink component carrier or the downlink subframe of the specific component carrier for configuring the PUCCH transmission of the component carrier; the base station may also notify the UE of the specific downlink component carrier or the specific by signaling.
  • the PUCCH transmission parameter carried by the downlink subframe of the component carrier is used to configure which component carrier's PUCCH transmission.
  • the base station and the UE may pre-agreed the specific downlink component carrier or the specific component carrier.
  • the SRS transmission parameter carried by the downlink subframe is used to configure the SRS transmission of the component carrier.
  • the base station may also notify the UE of the SRS transmission parameter carried by the specific downlink component carrier or the downlink subframe of the specific component carrier for configuration.
  • Which component carrier is SRS transmitted. That is, the UE may learn the received component of the PUCCH transmission parameter and the SRS transmission parameter according to the preset rule; or may obtain the corresponding PUCCH transmission parameter and the SRS transmission parameter according to the signaling sent by the base station.
  • Component carrier is used to configure which component carrier's PUCCH transmission.
  • the UE determines, according to the foregoing PUCCH transmission parameter and the SRS transmission parameter of each component carrier, and the following principles, whether PUCCH and SRS can be simultaneously transmitted in a subframe of the component carrier to perform PUCCH and/or SRS transmission:
  • the subframe in which the UE transmits the SRS may transmit the PUCCH and may not transmit the SRS.
  • the base station allows the UE to transmit the SRS, if the format of the PUCCH to be transmitted is format2/2a/2b, the PUCCH may be transmitted, and the SRS may not be transmitted; Allowing the UE to transmit the subframe of the SRS.
  • the UE determines whether the upper layer signaling in the SRS transmission parameter allows the PUCCH and the SRS to be simultaneously transmitted on the component carrier, if allowed, The subframe transmits PUCCH and SRS at the same time. Otherwise, only PUCCH can be transmitted, and SRS cannot be transmitted.
  • the FDD system is used, and the number of uplink component carriers is two, which are component carrier 1 (CC1) and component carrier 2 (CC2); H does not use the system cyclic prefix.
  • the transmission method of the extended cyclic prefix is similar to the conventional cyclic prefix), and the UE needs to transmit PUCCH and SRS on both component carriers.
  • the base station configures a PUCCH transmission parameter for a component carrier that needs to transmit a PUCCH, and configures an SRS transmission parameter for a component carrier that needs to transmit an uplink SRS. Moreover, each group of PUCCH transmission parameters is sent to the UE on a specific downlink component carrier. , each set of SRS transmission parameters in a special The fixed downlink component carrier is sent to the UE.
  • the base station In the subframe where the base station allows the UE to transmit the CC1 and CC2 of the SRS, if the UE needs to transmit the PUCCH format 2/2a/2b, the SRS cannot be transmitted, and only the PUCCH is transmitted. It should be noted that the PUCCH and SRS multiplexing methods on one uplink component carrier (such as CC1) are independent of other uplink component carriers (such as CC2).
  • the base station configures a PUCCH transmission parameter for a component carrier that needs to transmit a PUCCH, and configures an SRS transmission parameter for a component carrier that needs to transmit an uplink SRS. Moreover, each group of PUCCH transmission parameters is sent to the UE on a specific downlink component carrier. Each set of SRS transmission parameters is sent to the UE on a particular downlink component carrier.
  • the base station does not allow the UE to transmit the CRC and CC2 subframes of the SRS, and may transmit the PUCCH but not the SRS; the base station allows the UE to transmit the SRS.
  • the subframes of CC1 and CC2 may transmit SRS if the UE does not need to transmit PUCCH;
  • the UE If the UE needs to transmit PUCCH format 2/2a/2b, the UE cannot transmit the SRS; In the subframe on the CC2 that the base station allows the UE to transmit the SRS, if the UE needs to transmit the PUCCH format 1/la/lb, it is determined according to the upper layer signaling in the SRS transmission parameter of the CC2 whether to allow the PUCCH and the SRS to be simultaneously transmitted in the CC2:
  • the UE transmits PUCCH in the subframe and does not transmit SRS;
  • the UE transmits the PUCCH using the truncated structure in the subframe and transmits the SRS on the last symbol of the subframe. It should be noted that the PUCCH and SRS multiplexing methods on the uplink component carrier (such as CC1) are independent of other uplink component carriers (such as CC2).
  • the base station configures a PUCCH transmission parameter for a component carrier that needs to transmit a PUCCH, and configures an SRS transmission parameter for a component carrier that needs to transmit an uplink SRS. Moreover, each group of PUCCH transmission parameters is transmitted on a specific downlink component carrier. A set of SRS transmission parameters are transmitted on a particular downlink component carrier.
  • the base station does not allow the UE to transmit the subframes of CC1 and CC2 of the SRS, and can transmit PUCCH format 1/la/lb, but cannot transmit the SRS; the base station allows the UE to transmit the CC1 and CC2 of the SRS.
  • the SRS may be transmitted; in the subframe on the CC1 that the base station allows the UE to transmit the SRS, if the UE needs to transmit the PUCCH format 1/la/lb, the upper layer in the SRS transmission parameter according to the CCl Let us judge whether to allow PUCCH and SRS to be transmitted simultaneously in CC1:
  • the UE transmits PUCCH in the normal format in this subframe, and does not transmit SRS; • If upper layer signaling allows simultaneous transmission of PUCCH and SRS at CC1, the UE transmits a PUCCH using a truncated structure in that subframe and transmits the SRS on the last symbol of the subframe. In the subframe on the CC2 that the base station allows the UE to transmit the SRS, if the UE needs to transmit the PUCCH format 1/la/lb, it is determined according to the upper layer signaling in the SRS transmission parameter of the CC2 whether to allow the PUCCH and the SRS to be simultaneously transmitted in the CC2:
  • the UE transmits the PUCCH in the normal format in the subframe, and does not transmit the SRS;
  • the UE transmits the PUCCH using the truncation structure in the subframe and transmits the SRS on the last symbol of the subframe. It should be noted that the PUCCH and SRS multiplexing methods on the uplink component carrier (such as CC1) are independent of other uplink component carriers (such as CC2).
  • the TDD system is used, and the number of component carriers is two, which are component carrier 1 (CC1) and component carrier 2 (CC2); H does not use the conventional cyclic prefix (The method of transmitting the extended cyclic prefix is similar thereto, and the UE needs to transmit PUCCH and SRS on both component carriers.
  • CC1 component carrier 1
  • CC2 component carrier 2
  • H does not use the conventional cyclic prefix
  • the base station configures a PUCCH transmission parameter for a component carrier that needs to transmit a PUCCH, and configures an SRS transmission parameter for a component carrier that needs to transmit an uplink SRS. Moreover, each group of PUCCH transmission parameters is on a downlink subframe of a specific component carrier. Transmitted to the UE, each set of SRS transmission parameters is sent to the UE on a downlink subframe of a specific component carrier.
  • the base station allows the UE to transmit the CRC and CC2 subframes of the SRS, if the UE does not have the PUCCH to transmit, the SRS can be transmitted; the base station allows the UE to transmit the CC1 and CC2 of the SRS.
  • Frame if the UE needs to transmit PUCCH format 2/2a/2b, the SRS cannot be transmitted and only the PUCCH is transmitted.
  • the PUCCH and SRS multiplexing methods on one uplink component carrier such as CC1 are independent of other uplink component carriers (such as CC2).
  • the base station configures a PUCCH transmission parameter for a component carrier that needs to transmit a PUCCH, and configures an SRS transmission parameter for a component carrier that needs to transmit an uplink SRS. Moreover, each group of PUCCH transmission parameters is on a downlink subframe of a specific component carrier. Transmitted to the UE, each set of SRS transmission parameters is sent to the UE on a downlink subframe of a specific component carrier.
  • the base station allows the UE to transmit the subframes of CC1 and CC2 of the SRS, and if the UE does not need to transmit the PUCCH, the SRS may be transmitted;
  • the UE In the subframe on the CC1 that the base station allows the UE to transmit the SRS, if the UE needs to transmit the PUCCH format 2/2a/2b, the UE cannot transmit the SRS; the subframe on the CC2 that the base station allows the UE to transmit the SRS, if the UE needs to transmit the PUCCH format 1/la/lb, according to the upper layer signaling in the SRS transmission parameter of CC2, it is judged whether to allow PUCCH and SRS to be simultaneously transmitted in CC2:
  • the UE transmits PUCCH in the subframe and does not transmit SRS; • If upper layer signaling allows PUCCH and SRS to be transmitted simultaneously at CC2, the UE transmits the PUCCH using the truncation structure in the subframe and transmits the SRS on the last symbol of the subframe.
  • the PUCCH and SRS multiplexing methods on the uplink component carrier are independent of other uplink component carriers (such as CC2).
  • the base station configures a PUCCH transmission parameter for a component carrier that needs to transmit a PUCCH, and configures an SRS transmission parameter for a component carrier that needs to transmit an uplink SRS. Moreover, each group of PUCCH transmission parameters is transmitted on a specific downlink component carrier. A set of SRS transmission parameters are transmitted on a particular downlink component carrier.
  • the base station does not allow the UE to transmit the subframes of CC1 and CC2 of the SRS, and can transmit PUCCH format 1/la/lb, but cannot transmit the SRS; the base station allows the UE to transmit the CC1 and CC2 of the SRS.
  • the SRS may be transmitted; in the subframe on the CC1 that the base station allows the UE to transmit the SRS, if the UE needs to transmit the PUCCH format 1/la/lb, the upper layer in the SRS transmission parameter according to the CCl Let us judge whether to allow PUCCH and SRS to be transmitted simultaneously in CC1:
  • the UE transmits PUCCH in the normal format in this subframe, and does not transmit SRS;
  • the UE transmits the PUCCH using the truncation structure in the subframe and transmits the SRS on the last symbol of the subframe.
  • the base station allows the UE to transmit the SRS
  • the UE transmits the PUCCH in the normal format in the subframe, and does not transmit the SRS;
  • the UE transmits the PUCCH using the truncation structure in the subframe and transmits the SRS on the last symbol of the subframe. It should be noted that the PUCCH and SRS multiplexing methods on the uplink component carrier (such as CC1) are independent of other uplink component carriers (such as CC2).
  • the system includes a UE and a base station, where the base station is provided with: a transmission parameter configuration unit and a transmission parameter sending unit; and the UE is provided with: a parameter receiving unit and a signal transmission unit; wherein: the transmission parameter configuration unit is configured to: configure a PUCCH transmission parameter and/or an SRS transmission parameter of one or more component carriers for the UE, and output the same to a transmission parameter sending unit; The unit is configured to: send the PUCCH transmission parameter and/or the SRS transmission parameter to the UE in a downlink subframe of the downlink component carrier or the component carrier; the transmission parameter receiving unit is configured to receive the PUCCH transmission parameter and/or the SRS transmission parameter, and Output to the signal transmission unit; the signal transmission unit is configured to: transmit PUCCH and/or SRS on the corresponding component carrier according to transmission parameters of each component carrier.
  • the signal transmission unit may learn, according to a preset rule or a signaling sent by the base station, a downlink component carrier, or a PUCCH transmission parameter carried on a downlink subframe of the component carrier, and a component carrier corresponding to the SRS transmission parameter.
  • the SRS transmission parameter of the component carrier may include: indicating whether to allow simultaneous simultaneous on the component carrier Transmitting upper layer signaling of SRS and PUCCH; when the signal transmission unit needs to transmit the SRS of the SRS and the PUCCH of the format 1, la or lb in the component carrier corresponding to the SRS transmission parameter: if on the component carrier The upper layer signaling allows PUCCH and SRS to be simultaneously transmitted on the component carrier, and the signal transmission unit transmits the PUCCH using the truncation structure in the subframe of the component carrier, and transmits the SRS on the last symbol of the subframe; if the component carrier The upper layer signaling does not allow simultaneous transmission of the PUCCH and the SRS on the component carrier, and the signal transmission unit transmits the PUCCH in the subframe in the subframe of the component carrier and discards the SRS.
  • the signal transmission unit When the signal transmission unit needs to transmit the SRS and the PUCCH of the format 2, 2a or 2b in the component carrier corresponding to the SRS transmission parameter, the signal transmission unit transmits the PUCCH in the subframe on the component carrier. , and discard the SRS.
  • the present invention further provides a user equipment (UE) for signal transmission during carrier aggregation, comprising: a transmission parameter receiving unit and a signal transmission unit; wherein: the transmission parameter receiving unit is configured to: send by the receiving base station a PUCCH transmission parameter and/or an SRS transmission parameter of one component carrier or multiple component carriers configured for the UE, and output to the signal transmission unit; and the signal transmission unit is configured to: respectively according to PUCCH transmission parameters of each component carrier and/or The SRS transmission parameters transmit PUCCH and/or SRS on the corresponding component carrier.
  • UE user equipment
  • the SRS transmission parameter includes: upper layer signaling for indicating whether to allow simultaneous transmission of the SRS and the PUCCH on the component carrier; the signal transmission unit is configured to transmit the PUCCH and/or the corresponding component carrier in the following manner
  • SRS When the signal transmission unit needs to transmit the SRS subframe transmission SRS in the component carrier corresponding to the SRS transmission parameter, and the format 1, format la or format lb PUCCH: if the upper layer signaling on the component carrier allows the component The PUCCH and the SRS are simultaneously transmitted on the carrier, and the signal transmission unit transmits the PUCCH using the truncation structure in the subframe of the component carrier, and Transmitting the SRS on the last symbol of the subframe; or if the upper layer signaling on the component carrier does not allow simultaneous transmission of the PUCCH and the SRS on the component carrier, the signal transmission unit transmits the PUCCH in the subframe of the component carrier using the conventional format , and discard the SRS.
  • the signal transmission unit is configured to transmit PUCCH and/or on the corresponding component carrier as follows
  • the signal transmission unit needs to transmit the SRS of the SRS and the PUCCH of the format 2, the format 2a or the format 2b in the component carrier corresponding to the SRS transmission parameter: the sub-signal of the signal transmission unit on the component carrier
  • the frame transmits the PUCCH and discards the SRS.
  • the PUCCH transmission parameter is sent to the UE in a downlink subframe of the downlink component carrier or the component carrier.
  • the signal transmission unit is further configured to: learn, according to a preset rule or a signaling sent by the base station, a downlink subframe carrier or a downlink carrier of the component carrier.
  • the component carrier corresponding to the PUCCH transmission parameter.
  • the SRS transmission parameter is sent to the UE in a downlink subframe of the downlink component carrier or the component carrier.
  • the signal transmission unit is further configured to: learn the downlink component carrier or the downlink subframe of the component carrier according to the preset rule or the signaling sent by the base station.
  • the component carrier corresponding to the bearer SRS transmission parameter.
  • the present invention further provides a base station for signal transmission during carrier aggregation, comprising: a transmission parameter configuration unit and a transmission parameter sending unit; wherein: the transmission parameter configuration unit is configured to: configure a component carrier for the UE or a PUCCH transmission parameter and/or an SRS transmission parameter of the plurality of component carriers, and outputting to the transmission parameter sending unit; and the transmission parameter sending unit is configured to: send the PUCCH transmission parameter and/or the SRS transmission parameter to the UE, so that the UE respectively The PUCCH transmission parameters and/or SRS transmission parameters of each component carrier transmit PUCCH and/or SRS on the corresponding component carrier.
  • the transmission parameter sending unit is configured to send the PUCCH transmission parameter to the UE in the following manner: sending the PUCCH transmission parameter to the downlink component of the downlink component carrier or the component carrier
  • the UE is configured to enable the UE to learn the component carrier corresponding to the PUCCH transmission parameter carried in the downlink subframe of the downlink component carrier or the component carrier according to the preset rule or the signaling sent by the base station.
  • the transmission parameter sending unit is configured to send the SRS transmission parameter to the UE in the following manner: the transmission parameter sending unit sends the SRS transmission parameter to the UE in a downlink component carrier or a downlink subframe of the component carrier, so that the UE according to the advance
  • the set rule or the signaling sent by the base station learns the component carrier corresponding to the SRS transmission parameter carried on the downlink component carrier or the downlink subframe of the component carrier.
  • the multiplex transmission method of the PUCCH and SRS of the present invention is compatible with both LTE UEs and non-collision on multiple carriers, and can maximize spectrum utilization efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种载波聚合时的信号传输方法及系统
技术领域 本发明涉及通信领域, 尤其涉及一种载波聚合时的信号传输方法。
背景技术
长期演进(Long Term Evolution, LTE ) 系统是第三代伙伴组织的重要 计划。 图 1示出了 LTE系统中基本帧结构的结构示意图; 如图 1所示, 帧结 构分为无线帧、 半帧、 子帧、 时隙和符号五个等级。 其中, 一个无线帧的长 度为 10ms, —个无线帧由两个半帧组成, 每个半帧的长度为 5ms, —个半帧 由 5个子帧组成, 每个子帧的长度为 lms, —个子帧由两个时隙构成, 每个 时隙的长度为 0.5ms。 每个时隙内, 在常规循环前缀时有 7个单载波频分多 址接入 ( Single Carrier Frequency Division Multiple Access, SC-FDMA )符号, 在扩展循环前缀时有 6个 SC-FDMA符号。 测量参考信号 , 也称为 Sounding参考信号 ( Sounding Reference Signal, SRS )是一种用户设备 ( User Equipment, UE )与基站间用来测量无线信道 信息( Channel State Information, CSI )的信号。 在 LTE中, 用户设备 ( UE ) 按照基站 (e-node-B , eNB )指示的带宽、 频域位置、 周期和子帧偏置等参 数, 定时发送上行 SRS。 eNB根据接收到的 SRS信号判断 UE上行的 CSI, 并根据得到的 CSI进行频域选择调度和闭环功控等操作。 在 LTE中, UE只在子帧的最后一个符号上发送 SRS。 UE在时域发送 SRS 的配置与四个参数有关: 小区专有 (cell-specific ) 的周期 TSFC )和子 帧偏置( ),及 UE专有( UE-specific )的周期( rSRS )和子帧偏置( T。ffset )。 表 1、 2分别给出了频分双工 ( Frequency Division Duplex, FDD )和时 分双工( Time Division Duplex, TDD )系统中 cell-specific的周期(也称为配 置周期, Configuration Period )和子帧偏置 (也称为传输偏置, Transmission offset ) 。 cell-specific的周期和子帧偏置给出了小区内所有 UE可能发送 SRS 的时域子帧位置, 而在其他子帧上, 最后一个 SC-FDMA符号不能用来发送 SRS。 如图 2所示, 以表 1中 SRS子帧配置号 srsSubframeConfiguration=7为 例, TSFC 二 , A^c={0,l}? 则小区内 cell-Specific的一个 SRS发送周期为 5 个子帧, 每个周期内的子帧 0和子帧 1位置将可以被小区内的 UE用来发送 SRS。 表 1:FDDSRS子帧配置
Figure imgf000004_0001
表 2: TDD SRS子帧配置
Figure imgf000004_0002
5 0101 5 {1,2,4}
6 0110 5 {1,3,4}
7 0111 5 {1,2,3,4}
8 1000 10 {1,2,6}
9 1001 10 {1,3,6}
10 1010 10 {1,6, 7}
11 1011 10 {1,2, 6,8}
12 1100 10 {1,3,6,9}
13 1101 10 {1,4, 6, 7}
14 1110 reserved reserved
15 1111 reserved reserved
表 3和表 4分别给出了 FDD和 TDD系统中, UE-specific的 SRS发送周 期 ( SRS Periodicity )和子帧偏置 ( SRS Subframe Offset ) 。 UE-specific的周 期和子帧偏置给出了某个 UE发送 SRS的时域周期和子帧位置。如图 3所示, 以表 3中 SRS配置索引( SRS Configuration Index )ISRS=17为例, UE每 20ms 发送一个 SRS参考信号, 其时域位置在 20ms内的第一个子帧上发送。
Figure imgf000005_0001
表 4: TDD UE Specific SRS 发送周期TSRS和子帧偏置 。 ef
Figure imgf000006_0001
LTE 定义了物理上行控制信道 ( Physical Uplink Control Channel , PUCCH ) ,用于发送上行控制信令, 包括上行调度请求( Scheduling Request, SR ) ,肯定 /否定应答信息( Acknowledged I Non-acknowledged, ACK/NACK ) , 信道质量指示( Channel Quality Indicator, CQI ) ,预编码矩阵指示( Precoding Matrix Indicator, PMI ) , 及空间秩指示 ( Rank Indicator, RI ) 。
PUCCH的格式( format )分为 format 1、 format la、 format lb和 format 2、 format 2a、 format 2b六种; 其中, format 1用于传输 1比特的上行调度请求 信息, 表示有或者没有 SR ; format l a 用于传输 1 比特的单码字流的 ACK/NACK信息; format lb用于传输 2比特的双码字流的 ACK/NACK信息, 其中,每个码字流对应 1比特的 ACK/NACK信息; format 2用于传输 CQI/PMI 和 RI信息; format 2a用于传输 CQI/PMI/RI信息、以及单码字流 ACK/NACK 信息; format 2b用于传输 CQI/PMI/RI信息、以及双码字流 ACK/NACK信息; PUCCH format 2a和 format 2b用于循环前缀为常规循环前缀的场景。 图 4示出了 LTE系统中物理上行控制信道的频域位置示意图;其中, npRB 为资源块(Resource Block, RB ) 索引号, m为 PUCCH信道标识; 如图 4 所示, 每个 PUCCH信道占用两个资源块的资源, 其中频域为 12个子载波, 时域为 14个符号 (常规循环前缀)或者 12个符号 (扩展循环前缀) 。 对于 PUCCH formatl/la/lb, 1 比特的 SR信息、 或者 1 比特 /2比特的 ACK/NACK信息要经过频域扩展, 扩展到 PUCCH信道的 12个子载波上。 对于 PUCCH format2/2a/2b, 其所携带的 CQI/PMI/RI, 也需要经过频域扩展, 扩展到 PUCCH信道的 12个子载波上。 PUCCH所用的频域扩展码(也称为 频域扩展序列) 是以一个长度为 12 的计算机搜索出来的恒幅零自相关 ( Constant Amplitude Zero Auto-correlation Code, CAZAC )序列作为基本序 列, 经过循环移位得到的。 在常规循环前缀的情况下, 将所述频域扩展序列重复使用 7次, 一个资 源块的每个符号上的 12 个频域位置上映射一个所述序列。 对于 PUCCH format2/2a/2b,其中每个时隙( #0, #2, #3 , #4, #6 )符号上的序列用作 PUCCH 信道的数据传输, 每个时隙 (#1 , #5 )符号上的序列用作 PUCCH信道的解 调参考信号(Demodulation Reference Signal, DMRS )的传输, 如图 5所示。 对于 PUCCH formatl/la/lb, 其中每个时隙的(#0, #1 , #5 , #6 )符号上的序 列用作 PUCCH信道的数据传输, 每个时隙 (#2, #3 , #4 )符号上的序列用 作 PUCCH信道的 DMRS的传输, 如图 6所示。 在扩展循环前缀的情况下, 将所述频域扩展序列重复使用 6次, 一个资 源块的每个符号上的 12 个频域位置上映射一个所述序列。 对于 PUCCH format2, 其中每个时隙 (#0, #1 , #3 , #4, #5 )符号上的序列用作 PUCCH 信道的数据传输, 每个时隙 (#2 )符号上的序列用作 PUCCH信道的 DMRS 传输, 如图 7所示。 对于 PUCCH formatl/la/lb, 其中每个时隙的 (#0, #1 , #4, #5 )符号上的序列用作 PUCCH信道的数据传输, 每个时隙 (#2, #3 ) 符号上的序列用作 PUCCH信道的 DMRS的传输, 如图 8所示。 对于 PUCCH formatl/la/lb, 1 比特的 SR信息, 或者 1 比特 /2比特的 ACK/NACK信息经过频域扩展, 扩展到 PUCCH信道的 12个子载波上后, 还需要通过时域正交码( Orthogonal sequences ) , 扩展到 4个( Ns p F uc H = 4 ) 或者 3个( Ns p F ueeH = 3 ) 时域符号上, 所选用的时域扩展码分别如表 5和表 6所示, 由 PUCCH资源索引、 分量载波上的 PUCCH format 1/la/lb所使用 的循环移位数量、 及时隙编号 (ns )等参数查表确定。
表 5: 时域正交码( NsP F ULLH = 4 )
Figure imgf000008_0001
表 6: 时域正交码( NS P F UC 1
Figure imgf000008_0002
如图 9所示, 当 PUCCH formatl/la/lb通过时域正交码, 扩展到 3个时 域符号上时, PUCCH在一个时隙内少使用了一个 SC-FDMA符号, 即仅使 用 6个符号 (常规循环前缀)或者 5个符号 (扩展循环前缀) , 这种结构称 为 PUCCH的截短结构。 这时这个时隙内的最后一个符号可以被 UE用来发 送 SRS。 在 LTE中, 为了使 UE保持较低的功率峰均比 ( Peak to Average Power Ratio, PAPR ) , 需要在上行链路中始终保持 UE发送数据时的单载波特性, 这就要求 UE发送的数据在频域上必须是连续的。然而,如图 4所示, PUCCH 的频域位置为整个频带的两端, 而 SRS的频域位置通常不与 PUCCH相连, 所以对于一个 UE来说, PUCCH与 SRS不能同时发送, 所以就需要考虑一 个子帧内两者的复用方法。 在 LTE中, PUCCH与 SRS是否可以复用取决于 PUCCH的格式, 以及 用 于表示是否 允许 PUCCH 与 SRS 同 时传输的 上层信令 ( Simultaneous-AN-and-SRS ) , 并遵循以下原则:
• 小区内的 UE只能在 cell-specific所允许的子帧偏置上发送 SRS, 在其 他子帧位置上不能发送 SRS, 且 UE 只能在子帧内的最后一个符号上发送 SRS;
• 如果 UE有 PUCCH format 2/2a/2b发送, 则在该子帧内不能发送 SRS; 这是由于 PUCCH format 2/2a/2b没有截短结构, 为了保证最后一个符号位置 上的单载波特性, 因此不能发送 SRS;
•如果 UE 有 PUCCH format 1/la/lb 发送 , 而 上层信令 Simultaneous-AN-and-SRS为 False (即不允许 PUCCH与 SRS同时传输) , 则 UE不能发送 SRS; 这是由于在这种情况下, PUCCH format 1/la/lb不釆 用截短结构, 为保证单载波特性, UE不能在最后一个符号位置上发送 SRS;
•如果 UE 有 PUCCH format 1/la/lb 发送 , 而 上层信令 Simultaneous-AN-and-SRS为 Ture (即允许 PUCCH与 SRS同时传输) , 则 UE可以使用 PUCCH的截短结构在子帧内发送 PUCCH, 并在最后一个符号 发送 SRS; 另外, 在这种情况下小区内的所有 UE 都将釆用截短结构发送
高级长期演进 ( LTE-Advanced , 也称为 Further Advancements for E-UTRA )是 LTE的演进版本。除满足或超过 3GPP TR 25.913: "Requirements 球通信无线接入和演进的通用移动通信系统陆地无线接入网的需求" ) 的所 有相关需求外, 还要达到或超过国际电信联合会无线电通信部门 提出的 IMT-Advanced的需求。 其中, 与 LTE后向兼容的需求是指: LTE的 终端可以在 LTE-Advanced的网络中工作; LTE-Advanced的终端可以在 LTE 的网络中工作。 另外, LTE-Advanced应能在不同大小的频谱配置, 包括比 LTE更宽的 频语配置 (如 100MHz的连续的频语资源)下工作, 以达到更高的性能和目 标峰值速率。 由于 LTE-Advanced网络需要能够接入 LTE用户, 所以其操作 频带需要覆盖目前的 LTE 频段, 在这个频段上已经不存在可分配的连续 100MHz的频谱带宽了。 所以 LTE-Advanced需要解决的一个技术问题是将 几个分布在不同频段上的连续分量载频(频谱) (Component carrier ) 聚合 起来形成 LTE-Advanced可以使用的 100MHz带宽。 即对于聚合后的频语, 被划分为 n个分量载频(或分量载波) (Component carrier ) , 每个分量载 频(或分量载波) 内的频谱是连续的。
LTE-Advanced 频谱配置由多个分量载频通过频谱聚集 ( carrier aggregation )组成; 其中, 上述频谱的聚集可以是连续频谱的聚集, 也可以 是不连续频谱的聚集。 LTE UE能够接入兼容 LTE的频带, LTE-A UE即能 够接入 LTE兼容的频带, 也能够接入 LTE-Advanced的频带。 对于 TDD系 统, 频谱可以由多个分量载频聚合而成, 每个分量载频上都是既有用于上行 的子帧, 也有用于下行的子帧。对于 FDD系统, 上行频谱和下行频谱都由分 量载频聚合而成,上行分量载波数和下行分量载波数可以相同,也可以不同。 考虑到与 LTE 的兼容性, LTE-Advanced各分量载频都可以用来发送 PUCCH和 /或 SRS。 这就需要考虑如何在多个分量载波上处理 PUCCH和 /或 SRS的发送问题, 而当前还没有在载波聚合时对 PUCCH和 SRS进行复用传 输的具体方法。
发明内容 本发明所要解决的技术问题是, 克服现有技术的不足, 提供一种载波聚 合时的信号传输方法及系统, 以实现在载波聚合时对 PUCCH和 SRS的复用 传输。 为了解决上述问题,本发明提供一种载波聚合时的信号传输方法, 包括: 基站为用户设备( UE )配置一个分量载波或多个分量载波的物理上行控 制信道(PUCCH )传输参数和 /或测量参考信号(SRS )传输参数, 并将所述 PUCCH传输参数和 /或 SRS传输参数发送给 UE; 以及
对应的分量载波传输 PUCCH和 /或 SRS。 所述 SRS传输参数包含:用于表示是否允许在所述分量载波上同时传输 SRS和 PUCCH的上层信令; 在对应的分量载波传输 PUCCH和 /或 SRS的步骤包括: 当 UE需要在所述 SRS传输参数所对应的分量载波中允许传输 SRS的子 帧传输 SRS, 和格式 1、 格式 la或格式 lb的 PUCCH时:
如果所述分量载波上的上层信令允许在所述分量载波上同时传输 PUCCH 和 SRS, 则 UE 在所述分量载波的所述子帧中使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS; 或者
如果所述分量载波上的上层信令不允许在所述分量载波上同时传输 PUCCH 和 SRS, 则 UE 在所述分量载波的所述子帧中使用常规格式传输 PUCCH, 并丟弃 SRS。 将所述 PUCCH传输参数发送给 UE的步骤包括: 基站将所述 PUCCH 传输参数承载在下行分量载波或分量载波的下行子帧上发送给所述 UE; 以 及 将所述 PUCCH传输参数发送给 UE的步骤之后, 所述方法还包括: 所 述 UE根据预先设置的规则或基站发送的信令获知所述下行分量载波或分量 载波的下行子帧上承载的 PUCCH传输参数所对应分量载波。 将所述 SRS传输参数发送给 UE的步骤包括:基站将所述 SRS传输参数 承载在下行分量载波或分量载波的下行子帧上发送给所述 UE; 以及 将所述 SRS传输参数发送给 UE 的步骤之后, 所述方法还包括: 所述 UE根据预先设置的规则或基站发送的信令获知所述下行分量载波或分量载 波的下行子帧上承载的 SRS传输参数所对应分量载波。 在对应的分量载波传输 SRS的步骤中, UE仅在分量载波的子帧的最后 一个符号上传输 SRS。 在对应的分量载波传输 PUCCH和 /或 SRS的步骤包括: 当 UE需要在分量载波中允许传输 SRS的子帧传输 SRS, 和格式 2、 格 式 2a或格式 2b的 PUCCH时, UE在所述分量载波上的所述子帧传输 PUCCH , 并丟弃 SRS。
为了解决上述问题, 本发明还提供一种载波聚合时的信号传输系统, 包 含用户设备(UE )和基站, 所述基站包括: 传输参数配置单元和传输参数发 送单元; 以及所述 UE包括: 传输参数接收单元和信号传输单元; 其中: 所述传输参数配置单元设置为: 为所述 UE配置一个分量载波或多个分 量载波的物理上行控制信道(PUCCH )传输参数和 /或测量参考信号 (SRS ) 传输参数, 并输出到所述传输参数发送单元; 所述传输参数发送单元设置为:将所述 PUCCH传输参数和 /或 SRS传输 参数发送给所述 UE; 所述传输参数接收单元设置为: 接收基站发送来的所述 PUCCH传输参 数和 /或测量参考信号 (SRS )传输参数, 并输出到所述信号传输单元; 以及 所述信号传输单元设置为: 分别根据各分量载波的所述 PUCCH传输参 数和 /或 SRS传输参数在对应的分量载波传输 PUCCH和 /或 SRS。
为了解决上述问题, 本发明还提供一种用于载波聚合时的信号传输的用 户设备(UE ) , 其包括: 传输参数接收单元和信号传输单元; 其中: 所述传输参数接收单元设置为: 接收基站发送来的为所述 UE配置的一 个分量载波或多个分量载波的物理上行控制信道(PUCCH )传输参数和 /或 测量参考信号 (SRS )传输参数, 并输出到所述信号传输单元; 以及 所述信号传输单元设置为: 分别根据各分量载波的所述 PUCCH传输参 数和 /或 SRS传输参数在对应的分量载波传输 PUCCH和 /或 SRS。 所述 SRS传输参数中包含:用于表示是否允许在所述分量载波上同时传 输 SRS和 PUCCH的上层信令; 所述信号传输单元是设置为按如下方式在对应的分量载波传输 PUCCH 和 /或 SRS: 当所述信号传输单元需要在所述 SRS 传输参数所对应的分量载波中允 许传输 SRS的子帧传输 SRS, 和格式 1、 格式 la或格式 lb的 PUCCH时: 如果所述分量载波上的上层信令允许在所述分量载波上同时传输 PUCCH和 SRS, 则所述信号传输单元在该分量载波的该子帧中使用截短结 构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS; 或者 如果所述分量载波上的上层信令不允许在所述分量载波上同时传输 PUCCH和 SRS, 则所述信号传输单元在所述分量载波的所述子帧中使用常 规格式传输 PUCCH, 并丟弃 SRS。 所述信号传输单元是设置为按如下方式在对应的分量载波传输 PUCCH 和 /或 SRS: 当所述信号传输单元需要在所述 SRS 传输参数所对应的分量载波中允 许传输 SRS的子帧传输 SRS, 和格式 2、 格式 2a或格式 2b的 PUCCH时: 所述信号传输单元在所述分量载波上的所述子帧传输 PUCCH, 并丟弃
SRS。 所述 PUCCH传输参数在下行分量载波或分量载波的下行子帧上发送给 所述 UE; 所述信号传输单元还设置为: 根据预先设置的规则或基站发送的信令获 知所述下行分量载波或分量载波的下行子帧上承载的 PUCCH传输参数所对 应分量载波。 所述 SRS 传输参数承载在下行分量载波或分量载波的下行子帧上发送 给所述 UE; 所述信号传输单元还设置为: 根据预先设置的规则或基站发送的信令获 知所述下行分量载波或分量载波的下行子帧上承载的 SRS 传输参数所对应 分量载波。
为了解决上述问题, 本发明还提供一种用于载波聚合时的信号传输的基 站, 其包括: 传输参数配置单元和传输参数发送单元; 其中: 所述传输参数配置单元设置为: 为用户设备(UE )配置一个分量载波或 多个分量载波的物理上行控制信道(PUCCH )传输参数和 /或测量参考信号 ( SRS )传输参数, 并输出到所述传输参数发送单元; 以及 所述传输参数发送单元设置为:将所述 PUCCH传输参数和 /或 SRS传输 参数发送给所述 UE, 以使所述 UE分别根据各分量载波的所述 PUCCH传输参数和 /或 SRS传 输参数在对应的分量载波传输 PUCCH和 /或 SRS。 所述传输参数发送单元是设置为按如下方式将所述 PUCCH传输参数发 送给所述 UE: 将所述 PUCCH传输参数在下行分量载波或分量载波的下行子帧上发送 给所述 UE, 以使所述 UE根据预先设置的规则或基站发送的信令获知所述下行分量 载波或分量载波的下行子帧上承载的 PUCCH传输参数所对应分量载波。 所述传输参数发送单元是设置为按如下方式将所述 SRS 传输参数发送 给所述 UE: 所述传输参数发送单元将所述 SRS传输参数在下行分量载波、或分量载 波的下行子帧上发送给所述 UE , 以使所述 UE根据预先设置的规则或基站发送的信令获知所述下行分量 载波或分量载波的下行子帧上承载的 SRS传输参数所对应分量载波。
综上所述, 本发明在载波聚合情况下 PUCCH和 SRS的复用传输方法既 兼容 LTE UE, 又能够无冲突地在多个载波上使用, 并且能最大化频谱的利 用效率。
附图概述 图 1是 LTE系统的无线帧结构示意图;
图 2是 LTE系统 cell-specific的 SRS发送周期( TSFC )和子帧偏置( ASFC ) 示意图;
图 3是 LTE系统 UE-specific的 SRS发送周期( ^SRS )和子帧偏置( Toffset ) 示意图;
图 4是 LTE系统物理上行控制信道频域位置示意图; 图 5 是 LTE系统常规循环前缀时, PUCCH format 2/2a/2b时频位置示意 图;
图 6是 LTE系统常规循环前缀时, PUCCH format 1/la/lb时频位置示意 图;
图 7 是 LTE系统扩展循环前缀时, PUCCH format 2/2a/2b时频位置示意 图;
图 8是 LTE系统扩展循环前缀时, PUCCH format 1/la/lb时频位置示意 图;
图 9是 LTE系统 PUCCH与 SRS复用时, 釆用的截短结构示意图; 图 10是本发明的载波聚合时的信号传输方法流程图; 图 11是本发明的载波聚合时的信号传输系统结构示意图。 本发明的较佳实施方式 本发明的核心思想是, 基站为 UE分别配置各分量载波的 PUCCH传输 参数和 SRS传输参数,并将上述传输参数发送给 UE; UE分别根据各分量载 波的上述传输参数在对应的分量载波传输 PUCCH和 /或 SRS。 下面将结合附图和实施例对本发明进行详细描述。 图 10是本发明的载波聚合时的信号传输方法流程图, 包括如下步骤:
1001 : 基站为需要传输 PUCCH的分量载波配置 PUCCH传输参数, 并 为需要传输上行 SRS的分量载波分别配置 SRS传输参数。 上述 SRS传输参数包含(但不限于) 以下一种或多种: 分量载波上的 cell specific的 SRS周期和子帧偏置; 分量载波上的 UE specific的 SRS周期和子帧偏置; 用于表示分量载波上是否允许同时传输 PUCCH和 SRS的上层信令。 上述 PUCCH传输参数中包含(但不限于) 以下一种或多种: 分量载波上的 PUCCH资源索引; 分量载波上的 PUCCH format 1/la/lb所使用的循环移位数量。
1002: 基站将各分量载波的 PUCCH传输参数在特定的下行分量载波 ( FDD系统 )、 或在特定的分量载波的下行子帧( TDD系统 )上发送给 UE; 并将各分量载波的 SRS传输参数在特定的下行分量载波(FDD 系统) 、 或 在特定的分量载波的下行子帧 (TDD系统)上发送给 UE。 基站和 UE可以预先约定上述特定下行分量载波或特定分量载波的下行 子帧所承载的 PUCCH传输参数用于配置哪个分量载波的 PUCCH传输; 基 站也可以通过信令通知 UE上述特定下行分量载波或特定分量载波的下行子 帧所承载的 PUCCH传输参数用于配置哪个分量载波的 PUCCH传输。 同样, 基站和 UE可以预先约定上述特定下行分量载波或特定分量载波 的下行子帧所承载的 SRS传输参数用于配置哪个分量载波的 SRS传输; 基 站也可以通过信令通知 UE上述特定下行分量载波或特定分量载波的下行子 帧所承载的 SRS传输参数用于配置哪个分量载波的 SRS传输。 也就是说, UE可以根据预先设定的规则获知接收到的 PUCCH传输参数 和 SRS传输参数所对应的分量载波;也可以根据基站发送的信令获知接收到 的 PUCCH传输参数和 SRS传输参数所对应的分量载波。
1003: UE分别根据各分量载波的上述 PUCCH传输参数和 SRS传输参 数以及以下原则判断是否可以在该分量载波的子帧同时传输 PUCCH和 SRS , 以进行 PUCCH和 /或 SRS的传输: 在基站不允许 UE传输 SRS的子帧,可以传输 PUCCH ,不能传输 SRS; 在基站允许 UE传输 SRS的子帧,如果需要传输的 PUCCH的格式为 format2/2a/2b, 则可以传输 PUCCH, 不能传输 SRS; 在基站允许 UE传输 SRS的子帧,如果需要传输的 PUCCH的格式为 formatl/la/lb, 则 UE判断 SRS传输参数中的上层信令是否允许在该分量载 波同时传输 PUCCH和 SRS, 如果允许则可以在该子帧同时传输 PUCCH和 SRS, 否则只可以传输 PUCCH, 不能传输 SRS。
下面将结合本发明的 6个应用实例对上述方法进行详细说明。 其中, 在应用实例 1 ~ 3中, 4叚定釆用 FDD系统, 上行分量载波数为 2 个, 分别为分量载波 1 ( CC1 )和分量载波 2 ( CC2 ); H没系统釆用常规循 环前缀(扩展循环前缀的发送方法与常规循环前缀类似) , 并且 UE在这两 个分量载波上都需要传输 PUCCH和 SRS。
应用实例 1 基站为需要传输 PUCCH的分量载波配置 PUCCH传输参数, 并为需要 传输上行 SRS的分量载波配置 SRS传输参数; 并且,每一组 PUCCH传输参 数在某个特定的下行分量载波上发送给 UE, 每一组 SRS传输参数在某个特 定的下行分量载波上发送给 UE。
UE根据接收到的上述传输参数确定各分量载波专有的 PUCCH和 SRS 的复用方法(即判断是否允许在该分量载波复用传输 PUCCH和 SRS ) ; 假 设 UE需要在 CC1和 CC2上传输 PUCCH format 2/2a/2b, 则: 在基站不允许 UE传输 SRS的 CC1和 CC2的子帧,可以传输 PUCCH format 2/2a/2b , 而不能传输 SRS; 在基站允许 UE传输 SRS的 CC1和 CC2的子帧,如果 UE没有 PUCCH 需要传输, 则可以传输 SRS; 在基站允许 UE传输 SRS的 CC1和 CC2的子帧, 如果 UE需要传输 PUCCH format 2/2a/2b, 则不能传输 SRS, 仅传输 PUCCH。 需要注意的是, 一个上行分量载波(如 CC1 )上的 PUCCH和 SRS复用 方法与其他上行分量载波(如 CC2 )无关。
应用实例 2 基站为需要传输 PUCCH的分量载波配置 PUCCH传输参数, 并为需要 传输上行 SRS的分量载波配置 SRS传输参数; 并且,每一组 PUCCH传输参 数在某个特定的下行分量载波上发送给 UE, 每一组 SRS传输参数在某个特 定的下行分量载波上发送给 UE。
UE根据接收到的上述传输参数确定各分量载波专有的 PUCCH和 SRS 的复用方法(即判断是否允许在该分量载波复用传输 PUCCH和 SRS ) ; 假 设 UE需要在 CC1上传输 PUCCH format 2/2a/2b, 在 CC2上传输 PUCCH format 1/1 a/lb, 则: 在基站不允许 UE传输 SRS的 CCl和 CC2的子帧,可以传输 PUCCH, 而不能传输 SRS; 在基站允许 UE传输 SRS的 CC1和 CC2的子帧,如果 UE没有 PUCCH 需要传输, 则可以传输 SRS;
在基站允许 UE传输 SRS的 CC1上的子帧,如果 UE需要传输 PUCCH format 2/2a/2b, 则 UE不能传输 SRS; 在基站允许 UE传输 SRS的 CC2上的子帧,如果 UE需要传输 PUCCH format 1/la/lb, 则根据 CC2的 SRS传输参数中的上层信令判断是否允许在 CC2同时传输 PUCCH和 SRS:
• 如果上层信令不允许在 CC2同时传输 PUCCH和 SRS, 则 UE在 该子帧传输 PUCCH, 不传输 SRS;
• 如果上层信令允许在 CC2同时传输 PUCCH和 SRS ,则 UE在该 子帧使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS。 需要注意的是, 上行分量载波(如 CC1 )上的 PUCCH和 SRS复用方法 与其他上行分量载波(如 CC2 )无关。
应用实例 3 基站为需要传输 PUCCH的分量载波配置 PUCCH传输参数, 并为需要 传输上行 SRS的分量载波配置 SRS传输参数; 并且,每一组 PUCCH传输参 数在某个特定的下行分量载波上传输,每一组 SRS传输参数在某个特定的下 行分量载波上传输。
UE根据接收到的上述传输参数确定各分量载波专有的 PUCCH和 SRS 的复用方法(即判断是否允许在该分量载波复用传输 PUCCH和 SRS ) ; 假 设 UE需要在 CC1和 CC2上传输 PUCCH format 1/la/lb, 则: 在基站不允许 UE传输 SRS的 CC1和 CC2的子帧,可以传输 PUCCH format 1/la/lb, 而不能传输 SRS; 在基站允许 UE传输 SRS的 CC1和 CC2的子帧,如果 UE没有 PUCCH 需要传输, 则可以传输 SRS; 在基站允许 UE传输 SRS的 CC1上的子帧,如果 UE需要传输 PUCCH format 1/la/lb, 则根据 CCl的 SRS传输参数中的上层信令判断是否允许在 CC1同时传输 PUCCH和 SRS:
• 如果上层信令不允许在 CC1同时传输 PUCCH和 SRS, 则 UE在 该子帧釆用常规格式传输 PUCCH, 不传输 SRS; • 如果上层信令允许在 CC1同时传输 PUCCH和 SRS , 则 UE在该 子帧使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS。 在基站允许 UE传输 SRS的 CC2上的子帧,如果 UE需要传输 PUCCH format 1/la/lb, 则根据 CC2的 SRS传输参数中的上层信令判断是否允许在 CC2同时传输 PUCCH和 SRS:
• 如果上层信令不允许在 CC2同时传输 PUCCH和 SRS, 则 UE在 该子帧釆用常规格式传输 PUCCH, 不传输 SRS;
• 如果上层信令允许在 CC2同时传输 PUCCH和 SRS , 则 UE在该 子帧使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS。 需要注意的是, 上行分量载波(如 CC1 )上的 PUCCH和 SRS复用方法 与其他上行分量载波(如 CC2 )无关。
在下述的应用实例 4 ~ 6中, 4叚定釆用 TDD系统, 分量载波数为 2个, 分别为分量载波 1 ( CC1 )和分量载波 2 ( CC2 ); H没系统釆用常规循环前 缀(扩展循环前缀的发送方法与其类似) , 并且 UE在这两个分量载波上都 需要传输 PUCCH和 SRS。
应用实例 4 基站为需要传输 PUCCH的分量载波配置 PUCCH传输参数, 并为需要 传输上行 SRS的分量载波配置 SRS传输参数; 并且,每一组 PUCCH传输参 数在某个特定的分量载波的下行子帧上发送给 UE, 每一组 SRS传输参数在 某个特定的分量载波的下行子帧上发送给 UE。
UE根据接收到的上述传输参数确定各分量载波专有的 PUCCH和 SRS 的复用方法(即判断是否允许在该分量载波复用传输 PUCCH和 SRS ) ; 假 设 UE需要在 CC1和 CC2上传输 PUCCH format 2/2a/2b, 则: 在基站不允许 UE传输 SRS的 CC1和 CC2的子帧,可以传输 PUCCH format 2/2a/2b , 而不能传输 SRS; 在基站允许 UE传输 SRS的 CCl和 CC2的子帧,如果 UE没有 PUCCH 需要传输, 则可以传输 SRS; 在基站允许 UE传输 SRS的 CC1和 CC2的子帧, 如果 UE需要传输 PUCCH format 2/2a/2b, 则不能传输 SRS, 仅传输 PUCCH。 需要注意的是, 一个上行分量载波(如 CC1 )上的 PUCCH和 SRS复用 方法与其他上行分量载波(如 CC2 )无关。
应用实例 5 基站为需要传输 PUCCH的分量载波配置 PUCCH传输参数, 并为需要 传输上行 SRS的分量载波配置 SRS传输参数; 并且,每一组 PUCCH传输参 数在某个特定的分量载波的下行子帧上发送给 UE, 每一组 SRS传输参数在 某个特定的分量载波的下行子帧上发送给 UE。
UE根据接收到的上述传输参数确定各分量载波专有的 PUCCH和 SRS 的复用方法(即判断是否允许在该分量载波复用传输 PUCCH和 SRS ) ; 假 设 UE需要在 CC1上传输 PUCCH format 2/2a/2b, 在 CC2上传输 PUCCH format 1/1 a/lb, 则: 在基站不允许 UE传输 SRS的 CCl和 CC2的子帧,可以传输 PUCCH, 而不能传输 SRS;
在基站允许 UE传输 SRS的 CC1和 CC2的子帧,如果 UE没有 PUCCH 需要传输, 则可以传输 SRS;
在基站允许 UE传输 SRS的 CC1上的子帧,如果 UE需要传输 PUCCH format 2/2a/2b, 则 UE不能传输 SRS; 在基站允许 UE传输 SRS的 CC2上的子帧,如果 UE需要传输 PUCCH format 1/la/lb, 则根据 CC2的 SRS传输参数中的上层信令判断是否允许在 CC2同时传输 PUCCH和 SRS:
• 如果上层信令不允许在 CC2同时传输 PUCCH和 SRS, 则 UE在 该子帧传输 PUCCH, 不传输 SRS; • 如果上层信令允许在 CC2同时传输 PUCCH和 SRS ,则 UE在该 子帧使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS。 需要注意的是, 上行分量载波(如 CC1 )上的 PUCCH和 SRS复用方法 与其他上行分量载波(如 CC2 )无关。
应用实例 6 基站为需要传输 PUCCH的分量载波配置 PUCCH传输参数, 并为需要 传输上行 SRS的分量载波配置 SRS传输参数; 并且,每一组 PUCCH传输参 数在某个特定的下行分量载波上传输,每一组 SRS传输参数在某个特定的下 行分量载波上传输。
UE根据接收到的上述传输参数确定各分量载波专有的 PUCCH和 SRS 的复用方法(即判断是否允许在该分量载波复用传输 PUCCH和 SRS ) ; 假 设 UE需要在 CC1和 CC2上传输 PUCCH format 1/la/lb, 则: 在基站不允许 UE传输 SRS的 CC1和 CC2的子帧,可以传输 PUCCH format 1/la/lb, 而不能传输 SRS; 在基站允许 UE传输 SRS的 CC1和 CC2的子帧,如果 UE没有 PUCCH 需要传输, 则可以传输 SRS; 在基站允许 UE传输 SRS的 CC1上的子帧,如果 UE需要传输 PUCCH format 1/la/lb, 则根据 CCl的 SRS传输参数中的上层信令判断是否允许在 CC1同时传输 PUCCH和 SRS:
• 如果上层信令不允许在 CC1同时传输 PUCCH和 SRS, 则 UE在 该子帧釆用常规格式传输 PUCCH, 不传输 SRS;
• 如果上层信令允许在 CC1同时传输 PUCCH和 SRS, 则 UE在该 子帧使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS。 在基站允许 UE传输 SRS的 CC2上的子帧,如果 UE需要传输 PUCCH format 1/la/lb, 则根据 CC2的 SRS传输参数中的上层信令判断是否允许在 CC2同时传输 PUCCH和 SRS:
• 如果上层信令不允许在 CC2同时传输 PUCCH和 SRS, 则 UE在 该子帧釆用常规格式传输 PUCCH, 不传输 SRS;
• 如果上层信令允许在 CC2同时传输 PUCCH和 SRS, 则 UE在该 子帧使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS。 需要注意的是, 上行分量载波(如 CC1 )上的 PUCCH和 SRS复用方法 与其他上行分量载波(如 CC2 )无关。
需要注意的是, 除 LTE-Advanced系统外, 本发明的上述方法还可以应 用到其它系统。
图 11是本发明的载波聚合时的信号传输系统结构示意图;如图 11所示, 该系统包含 UE和基站, 基站中设置有: 传输参数配置单元和传输参数发送 单元; UE中设置有: 传输参数接收单元和信号传输单元; 其中: 传输参数配置单元设置为: 为 UE配置一个或多个分量载波的 PUCCH 传输参数和 /或 SRS传输参数, 并将其输出到传输参数发送单元; 传输参数发送单元设置为:将 PUCCH传输参数和 /或 SRS传输参数在下 行分量载波或分量载波的下行子帧上发送给 UE; 传输参数接收单元设置为接收 PUCCH传输参数和 /或 SRS传输参数,并 将其输出到信号传输单元; 信号传输单元设置为: 分别根据各分量载波的传输参数在对应的分量载 波传输 PUCCH和 /或 SRS。 其中, 信号传输单元可以根据预先设置的规则或基站发送的信令获知下 行分量载波、 或分量载波的下行子帧上承载的 PUCCH传输参数和 SRS传输 参数所对应分量载波。 分量载波的 SRS传输参数中可以包含:表示是否允许在分量载波上同时 传输 SRS和 PUCCH的上层信令;当信号传输单元需要在 SRS传输参数所对 应的分量载波中允许传输 SRS 的子帧传输 SRS、 和格式为 1、 la或 lb 的 PUCCH时: 如果分量载波上的上层信令允许在分量载波上同时传输 PUCCH和 SRS, 则信号传输单元在该分量载波的该子帧中使用截短结构传输 PUCCH, 并在 该子帧的最后一个符号上传输 SRS; 如果分量载波上的上层信令不允许在分 量载波上同时传输 PUCCH和 SRS , 则信号传输单元在该分量载波的该子帧 中使用常规格式传输 PUCCH, 并丟弃 SRS。 当信号传输单元需要在 SRS传输参数所对应的分量载波中允许传输 SRS 的子帧传输 SRS和格式为 2、 2a或 2b的 PUCCH时, 则信号传输单元在该 分量载波上的该子帧传输 PUCCH, 并丟弃 SRS。
相应的, 本发明还提供了一种用于载波聚合时的信号传输的用户设备 ( UE ) , 其包括: 传输参数接收单元和信号传输单元; 其中: 传输参数接收单元设置为: 接收基站发送来的为 UE配置的一个分量载 波或多个分量载波的 PUCCH传输参数和 /或 SRS传输参数,并输出到信号传 输单元; 以及 信号传输单元设置为: 分别根据各分量载波的 PUCCH传输参数和 /或 SRS传输参数在对应的分量载波传输 PUCCH和 /或 SRS。
SRS传输参数中包含:用于表示是否允许在分量载波上同时传输 SRS和 PUCCH的上层信令; 信号传输单元是设置为按如下方式在对应的分量载波传输 PUCCH和 /或
SRS: 当信号传输单元需要在 SRS传输参数所对应的分量载波中允许传输 SRS 的子帧传输 SRS, 和格式 1、 格式 la或格式 lb的 PUCCH时: 如果分量载波上的上层信令允许在分量载波上同时传输 PUCCH和 SRS, 则信号传输单元在该分量载波的该子帧中使用截短结构传输 PUCCH, 并在 该子帧的最后一个符号上传输 SRS; 或者 如果分量载波上的上层信令不允许在分量载波上同时传输 PUCCH 和 SRS, 则信号传输单元在分量载波的所述子帧中使用常规格式传输 PUCCH, 并丟弃 SRS。 信号传输单元是设置为按如下方式在对应的分量载波传输 PUCCH和 /或
SRS: 当信号传输单元需要在 SRS传输参数所对应的分量载波中允许传输 SRS 的子帧传输 SRS, 和格式 2、 格式 2a或格式 2b的 PUCCH时: 信号传输单元在分量载波上的所述子帧传输 PUCCH, 并丟弃 SRS。
PUCCH传输参数在下行分量载波或分量载波的下行子帧上发送给 UE; 信号传输单元还设置为: 根据预先设置的规则或基站发送的信令获知下 行分量载波或分量载波的下行子帧上承载的 PUCCH传输参数所对应分量载 波。
SRS传输参数承载在下行分量载波或分量载波的下行子帧上发送给 UE; 信号传输单元还设置为: 根据预先设置的规则或基站发送的信令获知下 行分量载波或分量载波的下行子帧上承载的 SRS传输参数所对应分量载波。 相应的, 本发明还提供了一种用于载波聚合时的信号传输的基站, 其包 括: 传输参数配置单元和传输参数发送单元; 其中: 传输参数配置单元设置为: 为 UE配置一个分量载波或多个分量载波的 PUCCH传输参数和 /或 SRS传输参数, 并输出到传输参数发送单元; 以及 传输参数发送单元设置为:将 PUCCH传输参数和 /或 SRS传输参数发送 给 UE, 以使 UE分别根据各分量载波的 PUCCH传输参数和 /或 SRS传输参数在 对应的分量载波传输 PUCCH和 /或 SRS。 传输参数发送单元是设置为按如下方式将 PUCCH传输参数发送给 UE: 将 PUCCH传输参数在下行分量载波或分量载波的下行子帧上发送给 UE, 以使 UE根据预先设置的规则或基站发送的信令获知下行分量载波或分 量载波的下行子帧上承载的 PUCCH传输参数所对应分量载波。 传输参数发送单元是设置为按如下方式将所述 SRS传输参数发送给 UE: 传输参数发送单元将 SRS传输参数在下行分量载波、或分量载波的下行 子帧上发送给 UE, 以使 UE根据预先设置的规则或基站发送的信令获知下行分量载波或分 量载波的下行子帧上承载的 SRS传输参数所对应分量载波。
工业实用性 在载波聚合情况下, 本发明的 PUCCH和 SRS 的复用传输方法既兼容 LTE UE,又能够无冲突地在多个载波上使用,并且能最大化频谱的利用效率。

Claims

权 利 要 求 书
1、 一种载波聚合时的信号传输方法, 包括:
基站为用户设备( UE )配置一个分量载波或多个分量载波的物理上行控 制信道(PUCCH )传输参数和 /或测量参考信号(SRS )传输参数, 并将所述 PUCCH传输参数和 /或 SRS传输参数发送给 UE; 以及
对应的分量载波传输 PUCCH和 /或 SRS。
2、 如权利要求 1所述的方法, 其中: 所述 SRS传输参数包含:用于表示是否允许在所述分量载波上同时传输 SRS和 PUCCH的上层信令; 在对应的分量载波传输 PUCCH和 /或 SRS的步骤包括: 当 UE需要在所述 SRS传输参数所对应的分量载波中允许传输 SRS的子 帧传输 SRS, 和格式 1、 格式 la或格式 lb的 PUCCH时: 如果所述分量载波上的上层信令允许在所述分量载波上同时传输 PUCCH 和 SRS, 则 UE 在所述分量载波的所述子帧中使用截短结构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS; 或者 如果所述分量载波上的上层信令不允许在所述分量载波上同时传输 PUCCH 和 SRS, 则 UE 在所述分量载波的所述子帧中使用常规格式传输 PUCCH, 并丟弃 SRS。
3、 如权利要求 1所述的方法, 其中: 将所述 PUCCH传输参数发送给 UE的步骤包括: 基站将所述 PUCCH 传输参数承载在下行分量载波或分量载波的下行子帧上发送给所述 UE; 以 及 将所述 PUCCH传输参数发送给 UE的步骤之后, 所述方法还包括: 所 述 UE根据预先设置的规则或基站发送的信令获知所述下行分量载波或分量 载波的下行子帧上承载的 PUCCH传输参数所对应分量载波。
4、 如权利要求 1所述的方法, 其中:
将所述 SRS传输参数发送给 UE的步骤包括:基站将所述 SRS传输参数 承载在下行分量载波或分量载波的下行子帧上发送给所述 UE; 以及 将所述 SRS传输参数发送给 UE 的步骤之后, 所述方法还包括: 所述 UE根据预先设置的规则或基站发送的信令获知所述下行分量载波或分量载 波的下行子帧上承载的 SRS传输参数所对应分量载波。
5、 如权利要求 1所述的方法, 其中:
在对应的分量载波传输 SRS的步骤中, UE仅在分量载波的子帧的最后 一个符号上传输 SRS。
6、 如权利要求 1所述的方法, 其中, 在对应的分量载波传输 PUCCH和 /或 SRS的步骤包括: 当 UE需要在分量载波中允许传输 SRS的子帧传输 SRS, 和格式 2、 格 式 2a或格式 2b的 PUCCH时, UE在所述分量载波上的所述子帧传输 PUCCH , 并丟弃 SRS。
7、 一种载波聚合时的信号传输系统, 包含用户设备(UE )和基站, 所 述基站包括: 传输参数配置单元和传输参数发送单元; 以及所述 UE包括: 传输参数接收单元和信号传输单元; 其中:
所述传输参数配置单元设置为: 为所述 UE配置一个分量载波或多个分 量载波的物理上行控制信道(PUCCH )传输参数和 /或测量参考信号 (SRS ) 传输参数, 并输出到所述传输参数发送单元; 所述传输参数发送单元设置为:将所述 PUCCH传输参数和 /或 SRS传输 参数发送给所述 UE; 所述传输参数接收单元设置为: 接收基站发送来的所述 PUCCH传输参 数和 /或测量参考信号 (SRS )传输参数, 并输出到所述信号传输单元; 以及 所述信号传输单元设置为: 分别根据各分量载波的所述 PUCCH传输参 数和 /或 SRS传输参数在对应的分量载波传输 PUCCH和 /或 SRS。
8、 一种用于载波聚合时的信号传输的用户设备(UE ) , 其包括: 传输 参数接收单元和信号传输单元; 其中: 所述传输参数接收单元设置为: 接收基站发送来的为所述 UE配置的一 个分量载波或多个分量载波的物理上行控制信道(PUCCH )传输参数和 /或 测量参考信号 (SRS )传输参数, 并输出到所述信号传输单元; 以及 所述信号传输单元设置为: 分别根据各分量载波的所述 PUCCH传输参 数和 /或 SRS传输参数在对应的分量载波传输 PUCCH和 /或 SRS。
9、 如权利要求 8所述的 UE, 其中: 所述 SRS传输参数中包含:用于表示是否允许在所述分量载波上同时传 输 SRS和 PUCCH的上层信令; 所述信号传输单元是设置为按如下方式在对应的分量载波传输 PUCCH 和 /或 SRS: 当所述信号传输单元需要在所述 SRS 传输参数所对应的分量载波中允 许传输 SRS的子帧传输 SRS, 和格式 1、 格式 la或格式 lb的 PUCCH时: 如果所述分量载波上的上层信令允许在所述分量载波上同时传输 PUCCH和 SRS, 则所述信号传输单元在该分量载波的该子帧中使用截短结 构传输 PUCCH, 并在该子帧的最后一个符号上传输 SRS; 或者 如果所述分量载波上的上层信令不允许在所述分量载波上同时传输 PUCCH和 SRS, 则所述信号传输单元在所述分量载波的所述子帧中使用常 规格式传输 PUCCH, 并丟弃 SRS。
10、 如权利要求 8所述的 UE, 其中: 所述信号传输单元是设置为按如下方式在对应的分量载波传输 PUCCH 和 /或 SRS: 当所述信号传输单元需要在所述 SRS 传输参数所对应的分量载波中允 许传输 SRS的子帧传输 SRS, 和格式 2、 格式 2a或格式 2b的 PUCCH时: 所述信号传输单元在所述分量载波上的所述子帧传输 PUCCH, 并丟弃
SRS。
11、 如权利要求 8所述的 UE, 其中: 所述 PUCCH传输参数在下行分量载波或分量载波的下行子帧上发送给 所述 UE; 所述信号传输单元还设置为: 根据预先设置的规则或基站发送的信令获 知所述下行分量载波或分量载波的下行子帧上承载的 PUCCH传输参数所对 应分量载波。
12、 如权利要求 8所述的 UE, 其中, 所述 SRS 传输参数承载在下行分量载波或分量载波的下行子帧上发送 给所述 UE; 所述信号传输单元还设置为: 根据预先设置的规则或基站发送的信令获 知所述下行分量载波或分量载波的下行子帧上承载的 SRS 传输参数所对应 分量载波。
13、 一种用于载波聚合时的信号传输的基站, 其包括: 传输参数配置单 元和传输参数发送单元; 其中: 所述传输参数配置单元设置为: 为用户设备(UE )配置一个分量载波或 多个分量载波的物理上行控制信道(PUCCH )传输参数和 /或测量参考信号 ( SRS )传输参数, 并输出到所述传输参数发送单元; 以及 所述传输参数发送单元设置为:将所述 PUCCH传输参数和 /或 SRS传输 参数发送给所述 UE, 以使所述 UE分别根据各分量载波的所述 PUCCH传输参数和 /或 SRS传 输参数在对应的分量载波传输 PUCCH和 /或 SRS。
14、 如权利要求 13所述的基站, 其中: 所述传输参数发送单元是设置为按如下方式将所述 PUCCH传输参数发 送给所述 UE: 将所述 PUCCH传输参数在下行分量载波或分量载波的下行子帧上发送 给所述 UE, 以使所述 UE根据预先设置的规则或基站发送的信令获知所述下行分量 载波或分量载波的下行子帧上承载的 PUCCH传输参数所对应分量载波。
15、 如权利要求 13所述的基站, 其中: 所述传输参数发送单元是设置为按如下方式将所述 SRS 传输参数发送 给所述 UE: 所述传输参数发送单元将所述 SRS传输参数在下行分量载波、或分量载 波的下行子帧上发送给所述 UE , 以使所述 UE根据预先设置的规则或基站发送的信令获知所述下行分量 载波或分量载波的下行子帧上承载的 SRS传输参数所对应分量载波。
PCT/CN2010/072690 2009-06-19 2010-05-12 一种载波聚合时的信号传输方法及系统 WO2010145361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910150607.7A CN101594683B (zh) 2009-06-19 2009-06-19 一种载波聚合时的信号传输方法及系统
CN200910150607.7 2009-06-19

Publications (2)

Publication Number Publication Date
WO2010145361A1 WO2010145361A1 (zh) 2010-12-23
WO2010145361A9 true WO2010145361A9 (zh) 2011-03-03

Family

ID=41409049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072690 WO2010145361A1 (zh) 2009-06-19 2010-05-12 一种载波聚合时的信号传输方法及系统

Country Status (2)

Country Link
CN (1) CN101594683B (zh)
WO (1) WO2010145361A1 (zh)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594683B (zh) * 2009-06-19 2014-03-19 中兴通讯股份有限公司南京分公司 一种载波聚合时的信号传输方法及系统
CN102104854A (zh) * 2009-12-22 2011-06-22 大唐移动通信设备有限公司 一种系统信息更新通知方法、系统和设备
CN101720122B (zh) 2009-12-28 2015-05-20 中兴通讯股份有限公司 一种物理上行控制信道的功率控制方法及基站和终端
CN102118741B (zh) * 2010-01-04 2013-12-04 中国移动通信集团公司 载波聚合系统中系统信息变更的处理系统、方法及装置
EP2522190B1 (en) * 2010-01-08 2018-02-07 Sharp Kabushiki Kaisha Mobile communication method and system for sounding reference signal transmission, and base station, user equipment and integrated circuit therein
CN103179637B (zh) * 2010-01-08 2016-06-29 索尼公司 通信系统中用于无线通信的设备以及方法
CN102123479B (zh) 2010-01-08 2015-09-16 索尼公司 支持载波汇聚的通信系统及其系统信息更新方法和设备
CN102130711B (zh) * 2010-01-15 2015-01-28 中兴通讯股份有限公司 载波聚合系统中非连续接收活动时间的确定方法及装置
CN102143505B (zh) 2010-02-03 2013-10-02 华为技术有限公司 聚合载波小区测量的方法、装置及系统
JP4913221B2 (ja) 2010-02-12 2012-04-11 シャープ株式会社 移動局装置、通信方法、集積回路、無線通信システムおよび制御プログラム
KR101328213B1 (ko) 2010-02-12 2013-11-14 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
EP2360864A1 (en) * 2010-02-12 2011-08-24 Panasonic Corporation Component carrier (de)activation in communication systems using carrier aggregation
KR101498079B1 (ko) 2010-03-04 2015-03-03 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 장치
WO2011108028A1 (ja) * 2010-03-05 2011-09-09 富士通株式会社 無線通信システム、端末装置、及び無線通信システムにおける無線通信方法
CN101820672B (zh) * 2010-03-26 2015-04-01 中兴通讯股份有限公司 物理上行控制信道的功率控制方法和装置
WO2011120230A1 (zh) * 2010-04-01 2011-10-06 富士通株式会社 用于载波聚合系统中的上下行分量载波链接的方法和设备
CN102264139A (zh) * 2010-05-24 2011-11-30 中国移动通信集团公司 Lte-a载波聚合系统上行参考信号传输方法以及基站和终端
CN102934481A (zh) * 2010-06-10 2013-02-13 富士通株式会社 用于在载波聚合系统中的上行次分量载波上传输探测参考信号的方法和设备
US8855053B2 (en) 2010-06-18 2014-10-07 Mediatek Inc. Sounding mechanism and configuration under carrier aggregation
TWI462622B (zh) 2010-06-18 2014-11-21 Mediatek Inc 載波聚合下之探測方法以及使用者設備
CN102111886B (zh) * 2010-07-02 2013-07-31 电信科学技术研究院 上行控制信息的传输方法和设备
CN102404092B (zh) * 2010-09-09 2014-07-09 电信科学技术研究院 一种上行控制信道资源配置及确定方法、设备
CN102438320B (zh) * 2010-09-29 2015-03-11 电信科学技术研究院 一种下行调度信息的配置方法和设备
CN104113505B (zh) * 2010-09-30 2017-06-20 中国移动通信集团公司 多载波通信系统降低干扰的方法以及终端设备
CN102447662B (zh) * 2010-09-30 2014-10-08 中国移动通信集团公司 多载波通信系统子载波配置方法和装置以及终端设备
CN101977099B (zh) * 2010-10-29 2016-06-01 中兴通讯股份有限公司 一种上行信道的发送方法、基站和用户设备
CN102480775B (zh) * 2010-11-22 2014-01-08 大唐移动通信设备有限公司 物理上行控制信道的功率控制方法及设备
EP2659725A1 (en) * 2010-12-27 2013-11-06 Nokia Siemens Networks Oy Inter-system carrier aggregation
CN102098086B (zh) * 2010-12-30 2016-03-02 中兴通讯股份有限公司 数据发送方法及装置
CN107437985B (zh) * 2011-02-18 2023-10-13 华为技术有限公司 一种建立演进分组系统承载的方法及基站
CN106535337B (zh) * 2011-03-03 2023-07-18 华为技术有限公司 一种采用载波汇聚方式传输数据的方法、系统及装置
CN103503342B (zh) * 2011-03-04 2016-05-04 Lg电子株式会社 在具有应用了载波聚合技术的无线通信系统中设置回程链路子帧的方法和设备
CN102685755B (zh) * 2011-03-07 2016-12-07 中兴通讯股份有限公司 一种频谱资源共享使用的方法及系统
CN102685707A (zh) * 2011-03-09 2012-09-19 华为技术有限公司 一种解决非周期srs和上行控制信令碰撞的方法及装置
CN102164414B (zh) * 2011-04-11 2014-01-08 新邮通信设备有限公司 载波聚合系统中上行控制信息的传输方法和装置
CN102196596A (zh) * 2011-04-19 2011-09-21 电信科学技术研究院 一种在多载波系统中更改小区的方法及装置
CN102170330B (zh) * 2011-04-29 2017-08-08 中兴通讯股份有限公司 测量参考信号的发送方法及系统
CN102299765B (zh) * 2011-07-18 2017-08-04 中兴通讯股份有限公司 一种传输控制方法和用户设备
CN102892199B (zh) * 2011-07-20 2018-03-09 中兴通讯股份有限公司 一种实现信号发送的方法和系统
CN103037529A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 一种上行控制信息的发送方法以及相关装置
JP2013102398A (ja) * 2011-11-09 2013-05-23 Ntt Docomo Inc 無線通信システム、ユーザ端末及び無線通信方法
WO2013087835A1 (en) * 2011-12-15 2013-06-20 Nokia Siemens Networks Oy Radio operations in a carrier aggregation system
CN103312447B (zh) * 2012-03-16 2019-02-26 中兴通讯股份有限公司 物理上行控制信道解调参考信号的发送方法及装置
EP3282631B1 (en) 2012-03-21 2019-03-06 Huawei Technologies Co., Ltd. Method for establishing envolved packet system bearer and base station
CN103368715B (zh) * 2012-03-28 2017-10-20 电信科学技术研究院 一种应答信息的传输方法、系统以及装置
JP5965069B2 (ja) 2012-07-19 2016-08-03 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンク制御チャネルの送信電力決定方法及び装置
JP6159523B2 (ja) * 2012-12-11 2017-07-05 株式会社Nttドコモ ユーザ装置及び送信制御方法
WO2014109569A1 (ko) 2013-01-09 2014-07-17 엘지전자 주식회사 신호 전송 방법 및 이를 위한 장치
CN104811286B (zh) * 2014-01-27 2018-10-19 上海诺基亚贝尔股份有限公司 用于上行控制信道的资源分配的方法和设备
CN106105084B (zh) * 2014-03-12 2019-07-12 Lg电子株式会社 在支持无线电资源的使用变化的无线通信系统中发送上行链路控制信道的方法及其装置
CN106688260B (zh) * 2014-09-30 2019-11-26 上海诺基亚贝尔股份有限公司 一种基于加权聚合传输控制信号的方法与设备
RU2684580C1 (ru) * 2015-08-14 2019-04-09 Хуавей Текнолоджиз Ко., Лтд. Способ передачи и способ приема информации управления восходящей линией и соответствующее устройство
EP3343810B1 (en) 2015-09-25 2021-03-03 Huawei Technologies Co., Ltd. Data transmission method, data transmission apparatus, base station, and user equipment
US10333670B2 (en) 2016-05-06 2019-06-25 Qualcomm Incorporated Sounding reference signals with collisions in asymmetric carrier aggregation
CN107370591B (zh) * 2016-05-13 2022-03-01 中兴通讯股份有限公司 信令传输方法、装置及系统
CN105915325B (zh) * 2016-06-28 2017-11-03 广东欧珀移动通信有限公司 载波聚合中载波参数的设置方法、装置及移动终端
JP6895958B2 (ja) 2016-08-12 2021-06-30 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 1セグメントpucchフォーマット
US11032850B2 (en) 2016-09-30 2021-06-08 Qualcomm Incorporated PRACH and/or SRS switching enhancements
CN108667577B (zh) * 2017-03-30 2021-08-06 中国移动通信有限公司研究院 一种相位跟踪参考信号配置方法、用户终端及网络侧设备
CN108111277B (zh) * 2017-08-11 2022-04-19 中兴通讯股份有限公司 上行信号发送的配置、上行信号的发送方法、装置及系统
CN110225596B (zh) * 2019-05-29 2022-05-24 成都中科微信息技术研究院有限公司 一种结合pucch周期的调度方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1779702B1 (en) * 2004-08-11 2012-09-26 Interdigital Technology Corporation Channel sounding for improved system performance
CN100355233C (zh) * 2005-10-27 2007-12-12 华为技术有限公司 多载波ev-do系统反向业务信道控制信息实现方法
CN101227231B (zh) * 2008-02-05 2012-11-14 中兴通讯股份有限公司 一种时分双工系统中物理上行控制信号的传输方法
CN101330325B (zh) * 2008-07-29 2012-09-05 中兴通讯股份有限公司 一种上行信道测量参考信号的传输方法
CN101541029B (zh) * 2009-04-27 2015-01-28 中兴通讯股份有限公司 载波聚合情况下测量参考信号的发送方法和装置
CN101594683B (zh) * 2009-06-19 2014-03-19 中兴通讯股份有限公司南京分公司 一种载波聚合时的信号传输方法及系统

Also Published As

Publication number Publication date
CN101594683A (zh) 2009-12-02
CN101594683B (zh) 2014-03-19
WO2010145361A1 (zh) 2010-12-23

Similar Documents

Publication Publication Date Title
WO2010145361A9 (zh) 一种载波聚合时的信号传输方法及系统
JP6722301B2 (ja) ワイヤレスデバイスに対するアップリンク送信の設定
TWI452924B (zh) Wireless base station device, wireless communication method and wireless communication system
JP5511708B2 (ja) 移動端末装置、基地局装置及び通信制御方法
JP6388584B2 (ja) 端末装置、基地局装置、集積回路、および通信方法
US20210211343A1 (en) Numerology-dependent physical uplink control changnel. structure wireless communication
JP5932554B2 (ja) 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JP6959910B2 (ja) 端末装置、基地局装置、および、通信方法
CN108476494B (zh) 上行控制信息的传输方法、装置
JP6417614B2 (ja) 端末装置、基地局装置、および、通信方法
WO2012019412A1 (zh) 一种测量参考信号的配置方法及系统
WO2015046358A1 (ja) 端末、基地局、および通信方法
CN104904174A (zh) 发送信号的方法及其设备
JP2016131377A (ja) 肯定応答信号及びサウンディングレファレンス信号を多重化するための方法及びシステム
WO2014110928A1 (zh) 上行解调参考信号的发送方法、装置和系统
CN102948103A (zh) 用于无线电间接入技术载波聚合的反馈
JP2012527152A (ja) 無線通信システムにおけるサウンディング参照信号送信方法及びそのための装置
CN102461044A (zh) 用于pucch信道上的多个ack/nack的传输的资源选择
WO2012055259A1 (zh) 一种上行信道的发送方法、基站和用户设备
JP2012114901A (ja) 移動局装置、基地局装置、方法および集積回路
CN110832802B (zh) 用于上行链路通信的波形的选择
TW201804836A (zh) 基於無線網絡的通信方法、終端設備和網絡設備
WO2012113330A1 (zh) 信息传输的方法和装置
WO2017166224A1 (zh) 传输模式的信息的传输方法、网络设备、终端设备和系统
CN110622609A (zh) 用于在无线通信系统中接收下行链路信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10788757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10788757

Country of ref document: EP

Kind code of ref document: A1