KR102281344B1 - 무선 통신 시스템에서 harq-ack 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 harq-ack 전송 방법 및 장치 Download PDF

Info

Publication number
KR102281344B1
KR102281344B1 KR1020167019474A KR20167019474A KR102281344B1 KR 102281344 B1 KR102281344 B1 KR 102281344B1 KR 1020167019474 A KR1020167019474 A KR 1020167019474A KR 20167019474 A KR20167019474 A KR 20167019474A KR 102281344 B1 KR102281344 B1 KR 102281344B1
Authority
KR
South Korea
Prior art keywords
subframe
ack
pucch
resource
harq
Prior art date
Application number
KR1020167019474A
Other languages
English (en)
Other versions
KR20160123289A (ko
Inventor
채혁진
양석철
서한별
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20160123289A publication Critical patent/KR20160123289A/ko
Application granted granted Critical
Publication of KR102281344B1 publication Critical patent/KR102281344B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 HARQ(Hybrid automatic repeat request)-ACK을 전송하는 방법에 있어서, ARO(HARQ-ACK resource offset)를 사용하여, 복수의 하향링크 서브프레임에 대한 PUCCH(Physical Uplink Control CHannel) 자원을 결정하는 단계; 및 상기 PUCCH 자원을 통해 HARQ-ACK을 하나의 상향링크 서브프레임에서 전송하는 단계를 포함한다.

Description

무선 통신 시스템에서 HARQ-ACK 전송 방법 및 장치{METHOD AND APPARATUS FOR TRANSMITTING HARQ-ACK IN WIRELESS COMMUNICATION SYSTEM}
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 EPDCCH(Enhanced Physical Downlink Channel)와 eIMTA(Enhanced Interference Mitigation and Traffic Adaptation)가 사용되는 경우 HARQ(Hybrid automatic repeat request)-ACK 전송 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 단말에게 eIMTA(Enhanced Interference Mitigation and Traffic Adaptation)가 구성된 경우, 수신확인응답을 어떻게 전송할 것인지를 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 HARQ(Hybrid automatic repeat request)-ACK을 전송하는 방법에 있어서, ARO(HARQ-ACK resource offset)를 사용하여, 복수의 하향링크 서브프레임에 대한 PUCCH(Physical Uplink Control CHannel) 자원을 결정하는 단계; 및 상기 PUCCH 자원을 통해 HARQ-ACK을 하나의 상향링크 서브프레임에서 전송하는 단계를 포함하며, 상기 복수의 하향링크 서브프레임이, eIMTA(Enhanced Interference Mitigation and Traffic Adaptation)가 구성된 단말과 eIMTA 구성과 무관한 단말에게 공통되는 제1 서브프레임 세트에 포함된 서브프레임만 포함하는 경우, 상기 ARO는, 제1 서브프레임 세트에 포함된 제1 서브프레임을 위한 PUCCH 자원을, 상기 제1 서브프레임 세트에서 상기 제1 서브프레임보다 앞선 서브프레임을 위한 PUCCH 자원으로 이동시키며, 상기 복수의 하향링크 서브프레임이, eIMTA가 구성된 단말만을 위한 제2 서브프레임 세트에 포함된 서브프레임도 포함하는 경우, 상기 ARO는, 제2 서브프레임 세트에 포함된 제2 서브프레임을 위한 PUCCH 자원을 상기 제2 서브프레임보다 앞선 서브프레임을 위한 PUCCH 자원으로 이동시키며, 상기 제2 서브프레임을 위한 PUCCH 자원 이동량 결정시 제2 서브프레임 세트는 제1 서브프레임에 포함된 서브프레임들도 포함하는 것으로 간주되는, HARQ-ACK 전송 방법이다.
상기 ARO는 상기 제1 서브프레임 세트 및 상기 제2 서브프레임 세트 각각을 위해 설정된 것일 수 있다.
상기 제1 서브프레임 세트를 위해 설정된 ARO 및 상기 제2 서브프레임 세트를 위해 설정된 ARO는 서로 상이할 수 있다.
상기 제1 서브프레임 세트를 위한 PUCCH 자원과 상기 제2 서브프레임 세트를 위한 PUCCH 자원은 서로 연속될 수 있다.
상기 복수의 하향링크 서브프레임이, eIMTA가 구성된 단말과 eIMTA 구성과 무관한 단말에게 공통되는 제1 서브프레임 세트에 포함된 서브프레임만 포함하는 경우, 상기 ARO는
Figure 112016069406163-pct00001
이며, m 은 상기 복수의 하향링크 서브프레임의 인덱스,
Figure 112016069406163-pct00002
n - k i1 서브프레임에서 EPDCCH-PRB-세트 q 의 ECCE 개수일 수 있다.
상기 PUCCH 자원의 결정에는 EPDCCH(Enhanced Physical Downlink Control CHannel)를 구성하는 ECCE(Enhanced Control Channel Element) 인텍스 중 가장 낮은 ECCE 인덱스가 사용될 수 있다.
본 발명의 또 다른 일 실시예는, 무선 통신 시스템에서 HARQ(Hybrid automatic repeat request)-ACK을 전송하는 단말 장치에 있어서, 수신 모듈; 및 프로세서를 포함하고, 상기 프로세서는, ARO(HARQ-ACK resource offset)를 사용하여, 복수의 하향링크 서브프레임에 대한 PUCCH(Physical Uplink Control CHannel) 자원을 결정하고, 상기 PUCCH 자원을 통해 HARQ-ACK을 하나의 상향링크 서브프레임에서 전송하며, 상기 복수의 하향링크 서브프레임이, eIMTA(Enhanced Interference Mitigation and Traffic Adaptation)가 구성된 단말과 eIMTA 구성과 무관한 단말에게 공통되는 제1 서브프레임 세트에 포함된 서브프레임만 포함하는 경우, 상기 ARO는, 제1 서브프레임 세트에 포함된 제1 서브프레임을 위한 PUCCH 자원을, 상기 제1 서브프레임 세트에서 상기 제1 서브프레임보다 앞선 서브프레임을 위한 PUCCH 자원으로 이동시키며, 상기 복수의 하향링크 서브프레임이, eIMTA가 구성된 단말만을 위한 제2 서브프레임 세트에 포함된 서브프레임도 포함하는 경우, 상기 ARO는, 제2 서브프레임 세트에 포함된 제2 서브프레임을 위한 PUCCH 자원을 상기 제2 서브프레임보다 앞선 서브프레임을 위한 PUCCH 자원으로 이동시키며, 상기 제2 서브프레임을 위한 PUCCH 자원 이동량 결정시 제2 서브프레임 세트는 제1 서브프레임에 포함된 서브프레임들도 포함하는 것으로 간주되는, 단말 장치이다.
상기 ARO는 상기 제1 서브프레임 세트 및 상기 제2 서브프레임 세트 각각을 위해 설정된 것일 수 있다.
상기 제1 서브프레임 세트를 위해 설정된 ARO 및 상기 제2 서브프레임 세트를 위해 설정된 ARO는 서로 상이할 수 있다.
상기 제1 서브프레임 세트를 위한 PUCCH 자원과 상기 제2 서브프레임 세트를 위한 PUCCH 자원은 서로 연속될 수 있다.
상기 복수의 하향링크 서브프레임이, eIMTA가 구성된 단말과 eIMTA 구성과 무관한 단말에게 공통되는 제1 서브프레임 세트에 포함된 서브프레임만 포함하는 경우, 상기 ARO는
Figure 112016069406163-pct00003
이며, m 은 상기 복수의 하향링크 서브프레임의 인덱스,
Figure 112016069406163-pct00004
n - k i1 서브프레임에서 EPDCCH-PRB-세트 q 의 ECCE 개수일 수 있다.
상기 PUCCH 자원의 결정에는 EPDCCH(Enhanced Physical Downlink Control CHannel)를 구성하는 ECCE(Enhanced Control Channel Element) 인덱스 중 가장 낮은 ECCE 인덱스가 사용될 수 있다.
본 발명에 따르면 eIMTA가 단말에 적용된 경우 PUCCH 자원의 충돌 없이 자원 사용의 효율성을 증대시키며 수신확인응답을 전송할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 상향링크 물리자원블록에서 PUCCH 포맷들이 매핑되는 형태를 도시하는 도면이다.
도 6은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타내는 도면이다.
도 7은 일반 CP의 경우에 ACK/NACK 채널의 구조를 나타내는 도면이다.
도 8는 일반 CP의 경우에 CQI 채널의 구조를 나타내는 도면이다.
도 9은 블록 확산을 이용한 PUCCH 채널 구조를 나타내는 도면이다.
도 10은 상향링크제어정보를 PUSCH를 통하여 전송하는 방식을 설명하기 위한 도면이다.
도 11은 TDD에서 수신확인응답을 설명하기 위한 도면이다.
도 12 내지 도 16은 본 발명의 일 실시예에 의한 ARO를 설명하기 위한 도면이다.
도 17은 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE/LTE-A 자원 구조/채널
도 1를 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 신호 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(전송 time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 NDL의 개수는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical uplink shared channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
물리상향링크제어채널(PUCCH)
PUCCH를 통하여 전송되는 상향링크 제어 정보(UCI)는, 스케줄링 요청(Scheduling Request; SR), HARQ ACK/NACK 정보, 및 하향링크 채널 측정 정보를 포함할 수 있다.
HARQ ACK/NACK 정보는 PDSCH 상의 하향링크 데이터 패킷의 디코딩 성공 여부에 따라 생성될 수 있다. 기존의 무선 통신 시스템에서, 하향링크 단일 코드워드(codeword) 전송에 대해서는 ACK/NACK 정보로서 1 비트가 전송되고, 하향링크 2 코드워드 전송에 대해서는 ACK/NACK 정보로서 2 비트가 전송된다.
채널 측정 정보는 다중입출력(Multiple Input Multiple Output; MIMO) 기법과 관련된 피드백 정보를 지칭하며, 채널품질지시자(Channel Quality Indicator; CQI), 프리코딩행렬인덱스(Precoding Matrix Index; PMI) 및 랭크지시자(Rank Indicator; RI)를 포함할 수 있다. 이들 채널 측정 정보를 통칭하여 CQI 라고 표현할 수도 있다. CQI 의 전송을 위하여 서브프레임 당 20 비트가 사용될 수 있다.
PUCCH는 BPSK(Binary Phase Shift Keying)과 QPSK(Quadrature Phase Shift Keying) 기법을 사용하여 변조될 수 있다. PUCCH를 통하여 복수개의 단말의 제어 정보가 전송될 수 있고, 각 단말들의 신호를 구별하기 위하여 코드분할다중화(Code Division Multiplexing; CDM)을 수행하는 경우에 길이 12 의 CAZAC(Constant Amplitude Zero Autocorrelation) 시퀀스를 주로 사용한다. CAZAC 시퀀스는 시간 영역(time domain) 및 주파수 영역(frequency domain)에서 일정한 크기(amplitude)를 유지하는 특성을 가지므로 단말의 PAPR(Peak-to-Average Power Ratio) 또는 CM(Cubic Metric)을 낮추어 커버리지를 증가시키기에 적합한 성질을 가진다. 또한, PUCCH를 통해 전송되는 하향링크 데이터 전송에 대한 ACK/NACK 정보는 직교 시퀀스(orthogonal sequence) 또는 직교 커버(orthogonal cover; OC)를 이용하여 커버링된다.
또한, PUCCH 상으로 전송되는 제어정보는 서로 다른 순환 시프트(cyclic shift; CS) 값을 가지는 순환 시프트된 시퀀스(cyclically shifted sequence)를 이용하여 구별될 수 있다. 순환 시프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 시프트시켜 생성할 수 있다. 특정 CS 양은 순환 시프트 인덱스(CS index)에 의해 지시된다. 채널의 지연 확산(delay spread)에 따라 사용가능한 순환 시프트의 수는 달라질 수 있다. 다양한 종류의 시퀀스가 기본 시퀀스로 사용될 수 있으며, 전술한 CAZAC 시퀀스는 그 일례이다.
또한, 단말이 하나의 서브프레임에서 전송할 수 있는 제어 정보의 양은 제어 정보의 전송에 이용가능한 SC-FDMA 심볼의 개수(즉, PUCCH 의 코히어런트(coherent) 검출을 위한 참조신호(RS) 전송에 이용되는 SC-FDMA 심볼을 제외한 SC-FDMA 심볼들)에 따라 결정될 수 있다.
3GPP LTE 시스템에서 PUCCH 는, 전송되는 제어 정보, 변조 기법, 제어 정보의 양 등에 따라 총 7 가지 상이한 포맷으로 정의되며, 각각의 PUCCH 포맷에 따라서 전송되는 상향링크 제어 정보(uplink control information; UCI)의 속성은 다음의 표 1과 같이 요약할 수 있다.
[표 1]
Figure 112016069406163-pct00005
PUCCH 포맷 1은 SR의 단독 전송에 사용된다. SR 단독 전송의 경우에는 변조되지 않은 파형이 적용되며, 이에 대해서는 후술하여 자세하게 설명한다.
PUCCH 포맷 1a 또는 1b는 HARQ ACK/NACK의 전송에 사용된다. 임의의 서브프레임에서 HARQ ACK/NACK이 단독으로 전송되는 경우에는 PUCCH 포맷 1a 또는 1b를 사용할 수 있다. 또는, PUCCH 포맷 1a 또는 1b를 사용하여 HARQ ACK/NACK 및 SR 이 동일 서브프레임에서 전송될 수도 있다.
PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a 또는 2b는 CQI 및 HARQ ACK/NACK의 전송에 사용된다. 확장된 CP 의 경우에는 PUCCH 포맷 2가 CQI 및 HARQ ACK/NACK 의 전송에 사용될 수도 있다.
도 5는 상향링크 물리자원블록에서 PUCCH 포맷들이 PUCCH 영역들에 매핑되는 형태를 도시한다. 도 5에서
Figure 112016069406163-pct00006
는 상향링크에서의 자원블록의 개수를 나타내고, 0, 1,...
Figure 112016069406163-pct00007
는 물리자원블록의 번호를 의미한다. 기본적으로, PUCCH는 상향링크 주파수 블록의 양쪽 끝단(edge)에 매핑된다. 도 5 에서 도시하는 바와 같이, m=0,1 로 표시되는 PUCCH 영역에 PUCCH 포맷 2/2a/2b 가 매핑되며, 이는 PUCCH 포맷 2/2a/2b 가 대역-끝단(band-edge)에 위치한 자원블록들에 매핑되는 것으로 표현할 수 있다. 또한, m=2 로 표시되는 PUCCH 영역에 PUCCH 포맷 2/2a/2b 및 PUCCH 포맷 1/1a/1b 가 함께(mixed) 매핑될 수 있다. 다음으로, m=3,4,5 로 표시되는 PUCCH 영역에 PUCCH 포맷 1/1a/1b 가 매핑될 수 있다. PUCCH 포맷 2/2a/2b 에 의해 사용가능한 PUCCH RB들의 개수(
Figure 112016069406163-pct00008
)는 브로드캐스팅 시그널링에 의해서 셀 내의 단말들에게 지시될 수 있다.
PUCCH 자원
UE는 상항링크 제어정보(UCI)의 전송을 위한 PUCCH 자원을, 상위(higher) 레이어 시그널링을 통한 명시적(explicit) 방식 혹은 암묵적(implicit) 방식에 의해 기지국(BS)로부터 할당 받는다.
ACK/NACK의 경우에, 단말에 대해서 상위 계층에 의해 복수개의 PUCCH 자원 후보들이 설정될 수 있고, 그 중에서 어떤 PUCCH 자원을 사용하는지는 암묵적인 방식으로 결정될 수 있다. 예를 들어, UE는 BS로부터 PDSCH를 수신하고 상기 PDSCH 에 대한 스케줄링 정보를 나르는 PDCCH 자원에 의해 암묵적으로 결정된 PUCCH 자원을 통해 해당 데이터 유닛에 대한 ACK/NACK이 전송될 수 있다.
도 6은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸다.
LTE 시스템에서 ACK/NACK을 위한 PUCCH 자원은 각 UE에 미리 할당되어 있지 않고, 복수의 PUCCH 자원을 셀 내의 복수의 UE들이 매 시점마다 나눠서 사용한다. 구체적으로, UE가 ACK/NACK을 전송하는 데 사용하는 PUCCH 자원은 해당 하향링크 데이터를 나르는 PDSCH에 대한 스케줄링 정보를 나르는 PDCCH를 기반으로 암묵적 방식으로 결정된다. 각각의 DL 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCE(Control Channel Element)로 구성되고, UE에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. CCE는 복수(예를 들어, 9개)의 REG(Resource Element Group)를 포함한다. 하나의 REG는 참조 신호(Reference Signal: RS)를 제외한 상태에서 이웃하는 네 개의 RE(Resource Element)로 구성된다. UE는 자신이 수신한 PDCCH를 구성하는 CCE들의 인덱스들 중 특정 CCE 인덱스(예를 들어, 첫 번째 혹은 가장 낮은 CCE 인덱스)의 함수에 의해 유도(derive) 혹은 계산(calculate)되는 암묵적 PUCCH 자원을 통해 ACK/NACK을 전송한다.
도 6을 참조하면, 각각의 PUCCH 자원 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대응된다. 도 6에서와 같이, 4~6번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 스케줄링 정보가 UE에 전송된다고 가정할 경우, 상기 UE는 상기 PDCCH를 구성하는 최저 CCE인 4번 CCE의 인덱스로부터 유도 혹은 계산된 PUCCH, 예를 들어, 4번 PUCCH를 통해 ACK/NACK을 BS에 전송한다. 도 6은 DL에 최대 M'개의 CCE가 존재하고, UL에 최대 M개의 PUCCH가 존재하는 경우를 예시한다. M'=M일 수도 있으나, M'값과 M값이 다르게 설계되고, CCE와 PUCCH 자원의 맵핑이 겹치게 하는 것도 가능하다.
예를 들어, PUCCH 자원 인덱스는 다음과 같이 정해질 수 있다.
Figure 112016069406163-pct00009
여기서,
Figure 112016069406163-pct00010
는 ACK/NACK 전송을 위한 PUCCH 자원 인덱스를 나타내고,
Figure 112016069406163-pct00011
는 상위 레이어로부터 전달받는 시그널링 값을 나타낸다. n CCE 는 PDCCH 전송에 사용된 CCE 인덱스 중에서 가장 작은 값을 나타낼 수 있다.
PUCCH 채널 구조
PUCCH 포맷 1a 및 1b에 대하여 먼저 설명한다.
PUCCH 포맷 1a/1b에 있어서 BPSK 또는 QPSK 변조 방식을 이용하여 변조된 심볼은 길이 12 의 CAZAC 시퀀스로 승산(multiply)된다. 예를 들어, 변조 심볼 d(0)에 길이 N 의 CAZAC 시퀀스 r(n) (n=0, 1, 2, ..., N-1) 가 승산된 결과는 y(0), y(1), y(2), ..., y(N-1) 이 된다. y(0), ..., y(N-1) 심볼들을 심볼 블록(block of symbol)이라고 칭할 수 있다. 변조 심볼에 CAZAC 시퀀스를 승산한 후에, 직교 시퀀스를 이용한 블록-단위(block-wise) 확산이 적용된다.
일반 ACK/NACK 정보에 대해서는 길이 4의 하다마드(Hadamard) 시퀀스가 사용되고, 짧은(shortened) ACK/NACK 정보 및 참조신호(Reference Signal)에 대해서는 길이 3의 DFT(Discrete Fourier Transform) 시퀀스가 사용된다. 확장된 CP의 경우의 참조신호에 대해서는 길이 2의 하다마드 시퀀스가 사용된다.
도 7은 일반 CP의 경우에 ACK/NACK 채널의 구조를 나타낸다. 도 7에서는 CQI 없이 HARQ ACK/NACK 전송을 위한 PUCCH 채널 구조를 예시적으로 나타낸다. 하나의 슬롯에 포함되는 7 개의 SC-FDMA 심볼 중 중간 부분의 3개의 연속되는 SC-FDMA 심볼에는 참조신호(RS)가 실리고, 나머지 4 개의 SC-FDMA 심볼에는 ACK/NACK 신호가 실린다. 한편, 확장된 CP 의 경우에는 중간의 2 개의 연속되는 심볼에 RS 가 실릴 수 있다. RS에 사용되는 심볼의 개수 및 위치는 제어채널에 따라 달라질 수 있으며 이와 연관된 ACK/NACK 신호에 사용되는 심볼의 개수 및 위치도 그에 따라 변경될 수 있다.
1 비트 및 2 비트의 확인응답 정보(스크램블링되지 않은 상태)는 각각 BPSK 및 QPSK 변조 기법을 사용하여 하나의 HARQ ACK/NACK 변조 심볼로 표현될 수 있다. 긍정확인응답(ACK)은 '1' 로 인코딩될 수 있고, 부정확인응답(NACK)은 '0'으로 인코딩될 수 있다.
할당되는 대역 내에서 제어신호를 전송할 때, 다중화 용량을 높이기 위해 2차원 확산이 적용된다. 즉, 다중화할 수 있는 단말 수 또는 제어 채널의 수를 높이기 위해 주파수 영역 확산과 시간 영역 확산을 동시에 적용한다. ACK/NACK 신호를 주파수 영역에서 확산시키기 위해 주파수 영역 시퀀스를 기본 시퀀스로 사용한다. 주파수 영역 시퀀스로는 CAZAC 시퀀스 중 하나인 Zadoff-Chu (ZC) 시퀀스를 사용할 수 있다. 예를 들어, 기본 시퀀스인 ZC 시퀀스에 서로 다른 순환 시프트(Cyclic Shift; CS)가 적용됨으로써, 서로 다른 단말 또는 서로 다른 제어 채널의 다중화가 적용될 수 있다. HARQ ACK/NACK 전송을 위한 PUCCH RB 들을 위한 SC-FDMA 심볼에서 지원되는 CS 자원의 개수는 셀-특정 상위-계층 시그널링 파라미터(
Figure 112016069406163-pct00012
)에 의해서 설정되며,
Figure 112016069406163-pct00013
∈{1, 2, 3} 은 각각 12, 6 또는 4 시프트를 나타낸다.
주파수 영역 확산된 ACK/NACK 신호는 직교 확산(spreading) 코드를 사용하여 시간 영역에서 확산된다. 직교 확산 코드로는 월시-하다마드(Walsh-Hadamard) 시퀀스 또는 DFT 시퀀스가 사용될 수 있다. 예를 들어, ACK/NACK 신호는 4 심볼에 대해 길이 4의 직교 시퀀스(wO, w1, w2, w3)를 이용하여 확산될 수 있다. 또한, RS도 길이 3 또는 길이 2의 직교 시퀀스를 통해 확산시킨다. 이를 직교 커버링(Orthogonal Covering; OC)이라 한다.
전술한 바와 같은 주파수 영역에서의 CS 자원 및 시간 영역에서의 OC 자원을 이용해서 다수의 단말들이 코드분할다중화(Code Division Multiplex, CDM) 방식으로 다중화될 수 있다. 즉, 동일한 PUCCH RB 상에서 많은 개수의 단말들의 ACK/NACK 정보 및 RS 가 다중화될 수 있다.
이와 같은 시간 영역 확산 CDM 에 대해서, ACK/NACK 정보에 대해서 지원되는 확산 코드들의 개수는 RS 심볼들의 개수에 의해서 제한된다. 즉, RS 전송 SC-FDMA 심볼들의 개수는 ACK/NACK 정보 전송 SC-FDMA 심볼들의 개수보다 적기 때문에, RS 의 다중화 용량(capacity)이 ACK/NACK 정보의 다중화 용량에 비하여 적게 된다. 예를 들어, 일반 CP 의 경우에 4 개의 심볼에서 ACK/NACK 정보가 전송될 수 있는데, ACK/NACK 정보를 위하여 4 개가 아닌 3 개의 직교 확산 코드가 사용되며, 이는 RS 전송 심볼의 개수가 3 개로 제한되어 RS 를 위하여 3 개의 직교 확산 코드만이 사용될 수 있기 때문이다.
ACK/NACK 정보의 확산에 이용되는 직교 시퀀스의 일례는 표 2 및 표 3과 같다. 표 2는 길이 4 심볼에 대한 시퀀스를 나타내고, 표 3은 길이 3 심볼에 대한 시퀀스를 나타낸다. 길이 4 심볼에 대한 시퀀스는 일반적인 서브프레임 구성의 PUCCH 포맷 1/1a/1b에서 이용된다. 서브프레임 구성에 있어서 두 번째 슬롯의 마지막 심볼에서 SRS(Sounding Reference Signal)이 전송되는 등의 경우를 고려하여, 첫 번째 슬롯에서는 길이 4 심볼에 대한 시퀀스가 적용되고, 두 번째 슬롯에서는 길이 3 심볼에 대한 시퀀스의 짧은(shortened) PUCCH 포맷 1/1a/1b이 적용될 수 있다.
[표 2]
Figure 112016069406163-pct00014
[표 3]
Figure 112016069406163-pct00015
일반 CP 의 서브프레임에서 하나의 슬롯에서 3 개의 심볼이 RS 전송을 위해서 사용되고 4 개의 심볼이 ACK/NACK 정보 전송을 위해서 사용되는 경우에, 예를 들어, 주파수 영역에서 6 개의 순환시프트(CS) 및 시간 영역에서 3 개의 직교커버(OC) 자원을 사용할 수 있다면, 총 18 개의 상이한 단말로부터의 HARQ 확인응답이 하나의 PUCCH RB 내에서 다중화될 수 있다. 만약, 확장된 CP 의 서브프레임에서 하나의 슬롯에서 2 개의 심볼이 RS 전송을 위해서 사용되고 4 개의 심볼이 ACK/NACK 정보 전송을 위해서 사용되는 경우에, 예를 들어, 주파수 영역에서 6 개의 순환시프트(CS) 및 시간 영역에서 2 개의 직교커버(OC) 자원을 사용할 수 있다면, 총 12 개의 상이한 단말로부터의 HARQ 확인응답이 하나의 PUCCH RB 내에서 다중화될 수 있다.
다음으로, PUCCH 포맷 1에 대하여 설명한다. 스케줄링 요청(SR)은 단말이 스케줄링되기를 요청하거나 또는 요청하지 않는 방식으로 전송된다. SR 채널은 PUCCH 포맷 1a/1b 에서의 ACK/NACK 채널 구조를 재사용하고, ACK/NACK 채널 설계에 기초하여 OOK(On-Off Keying) 방식으로 구성된다. SR 채널에서는 참조신호가 전송되지 않는다. 따라서, 일반 CP 의 경우에는 길이 7 의 시퀀스가 이용되고, 확장된 CP 의 경우에는 길이 6 의 시퀀스가 이용된다. SR 및 ACK/NACK 에 대하여 상이한 순환 시프트 또는 직교 커버가 할당될 수 있다. 즉, 긍정(positive) SR 전송을 위해 단말은 SR용으로 할당된 자원을 통해 HARQ ACK/NACK을 전송한다. 부정(negative) SR 전송을 위해서는 단말은 ACK/NACK용으로 할당된 자원을 통해 HARQ ACK/NACK을 전송한다.
다음으로, PUCCH 포맷 2/2a/2b에 대하여 설명한다. PUCCH 포맷 2/2a/2b는 채널 측정 피드백(CQI, PMI, RI)을 전송하기 위한 제어 채널이다.
채널측정피드백(이하에서는, 통칭하여 CQI 정보라고 표현함)의 보고 주기 및 측정 대상이 되는 주파수 단위(또는 주파수 해상도(resolution))는 기지국에 의하여 제어될 수 있다. 시간 영역에서 주기적 및 비주기적 CQI 보고가 지원될 수 있다. PUCCH 포맷 2 는 주기적 보고에만 사용되고, 비주기적 보고를 위해서는 PUSCH 가 사용될 수 있다. 비주기적 보고의 경우에 기지국은 단말에게 상향링크 데이터 전송을 위하여 스케줄링된 자원에 개별 CQI 보고를 실어서 전송할 것을 지시할 수 있다.
도 8은 일반 CP의 경우에 CQI 채널의 구조를 나타낸다. 하나의 슬롯의 SC-FDMA 심볼 0 내지 6 중에서, SC-FDMA 심볼 1 및 5 (2 번째 및 6 번째 심볼)는 복조참조신호(Demodulation Reference Signal, DMRS) 전송에 사용되고, 나머지 SC-FDMA 심볼에서 CQI 정보가 전송될 수 있다. 한편, 확장된 CP 의 경우에는 하나의 SC-FDMA 심볼 (SC-FDMA 심볼 3) 이 DMRS 전송에 사용된다.
PUCCH 포맷 2/2a/2b 에서는 CAZAC 시퀀스에 의한 변조를 지원하고, QPSK 변조된 심볼이 길이 12 의 CAZAC 시퀀스로 승산된다. 시퀀스의 순환 시프트(CS)는 심볼 및 슬롯 간에 변경된다. DMRS에 대해서 직교 커버링이 사용된다.
하나의 슬롯에 포함되는 7 개의 SC-FDMA 심볼 중 3개의 SC-FDMA 심볼 간격만큼 떨어진 2개의 SC-FDMA 심볼에는 참조신호(DMRS)가 실리고, 나머지 5개의 SC-FDMA 심볼에는 CQI 정보가 실린다. 한 슬롯 안에 두 개의 RS가 사용된 것은 고속 단말을 지원하기 위해서이다. 또한, 각 단말은 순환 시프트(CS) 시퀀스를 사용하여 구분된다. CQI 정보 심볼들은 SC-FDMA 심볼 전체에 변조되어 전달되고, SC-FDMA 심볼은 하나의 시퀀스로 구성되어 있다. 즉, 단말은 각 시퀀스로 CQI를 변조해서 전송한다.
하나의 TTI에 전송할 수 있는 심볼 수는 10개이고, CQI 정보의 변조는 QPSK까지 정해져 있다. SC-FDMA 심볼에 대해 QPSK 매핑을 사용하는 경우 2비트의 CQI 값이 실릴 수 있으므로, 한 슬롯에 10비트의 CQI 값을 실을 수 있다. 따라서, 한 서브프레임에 최대 20비트의 CQI 값을 실을 수 있다. CQI 정보를 주파수 영역에서 확산시키기 위해 주파수 영역 확산 부호를 사용한다.
주파수 영역 확산 부호로는 길이-12 의 CAZAC 시퀀스(예를 들어, ZC 시퀀스)를 사용할 수 있다. 각 제어채널은 서로 다른 순환 시프트(cyclic shift) 값을 갖는 CAZAC 시퀀스를 적용하여 구분될 수 있다. 주파수 영역 확산된 CQI 정보에 IFFT가 수행된다.
12 개의 동등한 간격을 가진 순환 시프트에 의해서 12 개의 상이한 단말들이 동일한 PUCCH RB 상에서 직교 다중화될 수 있다. 일반 CP 경우에 SC-FDMA 심볼 1 및 5 상의 (확장된 CP 경우에 SC-FDMA 심볼 3 상의) DMRS 시퀀스는 주파수 영역 상의 CQI 신호 시퀀스와 유사하지만 CQI 정보와 같은 변조가 적용되지는 않는다. 단말은 PUCCH 자원 인덱스(
Figure 112016069406163-pct00016
)로 지시되는 PUCCH 자원 상에서 주기적으로 상이한 CQI, PMI 및 RI 타입을 보고하도록 상위 계층 시그널링에 의하여 반-정적으로(semi-statically) 설정될 수 있다. 여기서, PUCCH 자원 인덱스(
Figure 112016069406163-pct00017
)는 PUCCH 포맷 2/2a/2b 전송에 사용되는 PUCCH 영역 및 사용될 순환시프트(CS) 값을 지시하는 정보이다.
다음으로 개선된-PUCCH(e-PUCCH) 포맷에 대하여 설명한다. e-PUCCH는 LTE-A 시스템의 PUCCH 포맷 3에 대응할 수 있다. PUCCH 포맷 3을 이용한 ACK/NACK 전송에는 블록 확산(block spreading) 기법이 적용될 수 있다.
블록 확산 기법은, 기존의 PUCCH 포맷 1 계열 또는 2 계열과는 달리, 제어 신호 전송을 SC-FDMA 방식을 이용하여 변조하는 방식이다. 도 9에서 나타내는 바와 같이, 심볼 시퀀스가 OCC(Orthogonal Cover Code)를 이용하여 시간 영역(domain) 상에서 확산되어 전송될 수 있다. OCC를 이용함으로써 동일한 RB 상에 복수개의 단말들의 제어 신호들이 다중화될 수 있다. 전술한 PUCCH 포맷 2의 경우에는 하나의 심볼 시퀀스가 시간 영역에 걸쳐서 전송되고 CAZAC 시퀀스의 CS(cyclic shift)를 이용하여 복수개의 단말들의 제어 신호들이 다중화되는 반면, 블록 확산 기반 PUCCH 포맷(예를 들어, PUCCH 포맷 3)의 경우에는 하나의 심볼 시퀀스가 주파수 영역에 걸쳐서 전송되고, OCC를 이용한 시간 영역 확산을 이용하여 복수개의 단말들의 제어 신호들이 다중화된다.
도 9(a)에서는 1 슬롯 동안에 하나의 심볼 시퀀스에 길이=4 (또는 확산 인자(spreading factor, SF)=4)의 OCC를 이용하여 4 개의 SC-FDMA 심볼(즉, 데이터 부분)을 생성하여 전송하는 예시를 나타낸다. 이 경우, 1 슬롯 동안 3 개의 RS 심볼(즉, RS 부분)이 사용될 수 있다.
또는, 도 9(b)에서는 1 슬롯 동안에 하나의 심볼 시퀀스에 길이=5 (또는 SF=5)의 OCC를 이용하여 5 개의 SC-FDMA 심볼(즉, 데이터 부분)을 생성하여 전송하는 예시를 나타낸다. 이 경우, 1 슬롯 동안 2 개의 RS 심볼이 사용될 수 있다.
도 9의 예시에서, RS 심볼은 특정 순환 시프트 값이 적용된 CAZAC 시퀀스로부터 생성될 수 있으며, 복수개의 RS 심볼에 걸쳐 소정의 OCC가 적용된 (또는 곱해진) 형태로 전송될 수 있다. 또한, 도 9의 예시에서 각각의 OFDM 심볼(또는 SC-FDMA 심볼) 별로 12 개의 변조 심볼이 사용되고, 각각의 변조 심볼은 QPSK에 의해 생성되는 것으로 가정하면, 하나의 슬롯에서 전송할 수 있는 최대 비트 수는 12x2=24 비트가 된다. 따라서, 2개의 슬롯으로 전송할 수 있는 비트수는 총 48비트가 된다. 이와 같이 블록 확산 방식의 PUCCH 채널 구조를 사용하는 경우 기존의 PUCCH 포맷 1계열 및 2 계열에 비하여 확장된 크기의 제어 정보의 전송이 가능해진다.
ACK/NACK 다중화 방안
ACK/NACK 다중화의 경우에, 복수개의 데이터 유닛에 대한 ACK/NACK 응답의 내용(contents)은 실제 ACK/NACK 전송에서 사용되는 ACK/NACK 유닛과 QPSK 변조된 심볼들 중의 하나의 조합(combination)에 의해서 식별될 수 있다. 예를 들어, 하나의 ACK/NACK 유닛이 2 비트 크기의 정보를 나르는 것으로 가정하고, 최대 2 개의 데이터 유닛을 수신하는 것을 가정한다. 여기서, 수신된 각각의 데이터 유닛에 대한 HARQ 확인응답은 하나의 ACK/NACK 비트에 의해서 표현되는 것으로 가정한다. 이러한 경우, 데이터를 전송한 송신단은 ACK/NACK 결과를 아래의 표 4 에서 나타내는 바와 같이 식별할 수 있다.
[표 4]
Figure 112016069406163-pct00018
상기 표 4에서, HARQ-ACK(i) (i=0, 1) 는 데이터 유닛 i 에 대한 ACK/NACK 결과를 나타낸다. 전술한 바와 같이 최대 2 개의 데이터 유닛(데이터 유닛 0 및 데이터 유닛 1)이 수신되는 것을 가정하였으므로, 상기 표 4 에서는 데이터 유닛 0 에 대한 ACK/NACK 결과는 HARQ-ACK(O)으로 표시하고, 데이터 유닛 1 에 대한 ACK/NACK 결과는 HARQ-ACK(1)로 표시한다. 상기 표 4 에서, DTX(Discontinuous Transmission)는, HARQ-ACK(i)에 대응하는 데이터 유닛이 전송되지 않음을 나타내거나, 또는 수신단이 HARQ-ACK(i)에 대응하는 데이터 유닛의 존재를 검출하지 못하는 것을 나타낸다. 또한,
Figure 112016069406163-pct00019
은 실제 ACK/NACK 전송에 사용되는 ACK/NACK 유닛을 나타낸다. 최대 2 개의 ACK/NACK 유닛이 존재하는 경우,
Figure 112016069406163-pct00020
Figure 112016069406163-pct00021
로 표현될 수 있다. 또한, b(0),b(1) 는 선택된 ACK/NACK 유닛에 의해서 전송되는 2 개의 비트를 나타낸다. ACK/NACK 유닛을 통해서 전송되는 변조 심볼은 b(0),b(1) 비트에 따라서 결정된다.
예를 들어, 수신단이 2 개의 데이터 유닛을 성공적으로 수신 및 디코딩한 경우 (즉, 상기 표 4 의 ACK, ACK 의 경우), 수신단은 ACK/NACK 유닛
Figure 112016069406163-pct00022
를 사용해서 2 개의 비트 (1, 1) 을 전송한다. 또는, 수신단이 2 개의 데이터 유닛을 수신하는 경우에, 제 1 데이터 유닛(즉, HARQ-ACK(O)에 대응하는 데이터 유닛 0) 의 디코딩(또는 검출)에 실패하고 제 2 데이터 유닛(즉, HARQ-ACK(1)에 대응하는 데이터 유닛 1)의 디코딩에 성공하면 (즉, 상기 표 4 의 NACK/DTX, ACK의 경우), 수신단은 ACK/NACK 유닛
Figure 112016069406163-pct00023
을 사용해서 2 개의 비트 (0,0) 을 전송한다.
이와 같이, ACK/NACK 유닛의 선택 및 전송되는 ACK/NACK 유닛의 실제 비트 내용의 조합(즉, 상기 표 4 에서
Figure 112016069406163-pct00024
또는
Figure 112016069406163-pct00025
중 하나를 선택하는 것과 b(0),b(1) 의 조합)을 실제 ACK/NACK 의 내용과 연계(link) 또는 매핑시킴으로써, 하나의 ACK/NACK 유닛을 이용해서 복수개의 데이터 유닛에 대한 ACK/NACK 정보를 전송할 수 있게 된다. 전술한 ACK/NACK 다중화의 원리를 그대로 확장하여, 2 보다 많은 개수의 데이터 유닛에 대한 ACK/NACK 다중화가 용이하게 구현될 수 있다.
이러한 ACK/NACK 다중화 방식에 있어서 기본적으로 모든 데이터 유닛에 대해서 적어도 하나의 ACK 이 존재하는 경우에는, NACK 과 DTX 가 구별되지 않을 수 있다 (즉, 상기 표 4 에서 NACK/DTX 로 표현되는 바와 같이, NACK과 DTX가 결합(couple)될 수 있다). 왜냐하면, NACK 과 DTX 를 구분하여 표현하고자 하는 경우에 발생할 수 있는 모든 ACK/NACK 상태(즉, ACK/NACK 가설들(hypotheses))를, ACK/NACK 유닛과 QPSK 변조된 심볼의 조합만으로는 반영할 수 없기 때문이다. 한편, 모든 데이터 유닛에 대해서 ACK 이 존재하지 않는 경우(즉, 모든 데이터 유닛에 대해서 NACK 또는 DTX 만이 존재하는 경우)에는, HARQ-ACK(i)들 중에서 하나만이 확실히 NACK 인(즉, DTX과 구별되는 NACK) 것을 나타내는 하나의 확실한 NACK 의 경우가 정의될 수 있다. 이러한 경우, 하나의 확실한 NACK 에 해당하는 데이터 유닛에 대응하는 ACK/NACK 유닛 은 복수개의 ACK/NACK 들의 신호를 전송하기 위해 유보(reserved)될 수도 있다.
PUCCH 피기백
기존의 3GPP LTE 시스템(예를 들어, 릴리즈-8) 시스템의 상향링크 전송의 경우, 단말기의 파워앰프의 효율적인 활용을 위하여, 파워 엠프의 성능에 영향을 미치는 PAPR(Peak-to-Average Power Ratio) 특성이나 CM(Cubic Metric) 특성이 좋은 단일 반송파 전송을 유지하도록 되어 있다. 즉, 기존 LTE 시스템의 PUSCH 전송의 경우, 전송하고자 하는 데이터를 DFT-프리코딩(precoding)을 통해 단일 반송파 특성을 유지하고, PUCCH 전송의 경우는 단일 반송파 특성을 가지고 있는 시퀀스에 정보를 실어 전송함으로써 단일 반송파 특성을 유지할 수 있다. 그러나 DFT-precoding을 한 데이터를 주파수축으로 비연속적으로 할당하거나, PUSCH와 PUCCH가 동시에 전송하게 되는 경우에는 이러한 단일 반송파 특성이 깨지게 된다.
따라서, 도 10과 같이 PUCCH 전송과 동일한 서브프레임에 PUSCH 전송이 있을 경우, 단일 반송파 특성을 유지하기 위해 PUCCH로 전송할 UCI(uplink control information)정보를 PUSCH를 통해 데이터와 함께 전송(Piggyback)하도록 되어 있다.
앞서 설명했듯이 기존의 LTE 단말은 PUCCH와 PUSCH가 동시에 전송될 수 없기 때문에 PUSCH가 전송되는 서브프레임에서는 UCI(CQI/PMI, HARQ-ACK, RI등)를 PUSCH 영역에 다중화하는 방법을 사용한다. 일례로 PUSCH를 전송하도록 할당된 서브프레임에서 CQI 및/또는 PMI를 전송해야 할 경우 UL-SCH 데이터와 CQI/PMI를 DFT-확산 이전에 다중화하여 제어 정보와 데이터를 함께 전송할 수 있다. 이 경우 UL-SCH 데이터는 CQI/PMI 자원을 고려하여 레이트-매칭을 수행하게 된다. 또한 HARQ ACK, RI등의 제어 정보는 UL-SCH 데이터를 펑처링하여 PUSCH 영역에 다중화될 수 있다.
참조 신호 (Reference Signal, RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(안테나 포트)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드 오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 사용되며, 단말 특정 참조신호는 데이터 복조용으로만 사용된다. CRS는 광대역에 대해서 매 서브프레임마다 전송되며, 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 참조신호가 전송된다.
예를 들어 기지국의 송신 안테나의 개수가 2개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 4개인 경우 0~3번 안테나 포트에 대한 CRS가 각각 전송된다.
도 11은 기존의 3GPP LTE 시스템 (예를 들어, 릴리즈-8)에서 정의하는 CRS 및 DRS가 하향링크 자원블록 쌍 (RB pair) 상에 매핑되는 패턴을 나타내는 도면이다. 참조신호가 매핑되는 단위로서의 하향링크 자원블록 쌍은 시간 상으로 하나의 서브프레임×주파수 상으로 12 부반송파의 단위로 표현될 수 있다. 즉, 하나의 자원블록 쌍은 시간 상으로 일반 CP의 경우(도 11(a))에는 14 개의 OFDM 심볼 길이, 확장된 CP의 경우(도 11b))에는 12 개의 OFDM 심볼 길이를 가진다.
도 11은 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 참조신호의 자원블록 쌍 상에서의 위치를 나타낸다. 도 11에서 '0', '1', '2' 및 '3'으로 표시된 자원 요소(RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 11에서 'D'로 표시된 자원 요소는 DMRS의 위치를 나타낸다.
Enhanced Interference Management and Traffic Adaptation (eIMTA)
TDD의 경우, 각 서브프레임(상향링크-하향링크 간 전환을 위한 특수 서브프레임을 제외하고는)은 각각이 상향링크 또는 하향링크 중 어느 하나를 위해 사용되도록 미리 설정되어 있다. 구체적으로 예를 들어, 아래 표 4를 참조하면, 상향링크 하향링크 구성(Uplink Downlink configuration) 0의 경우, 하나의 무선 프레임에서 0, 5 번 서브프레임은 하향링크를 위해 사용되도록, 2, 3, 4, 7, 8, 9번 서브프레임은 상향링크를 위해 사용되도록 미리 설정되어 있다. 어떤 특정 기지국이 사용할 상향링크-하향링크 구성은 시스템 정보(예를 들어, SIB 1)의 일부로 단말에 제공될 수 있다. 그리고, 인접한 기지국들은 간섭 등의 이유로 동일한 TDD 구성, 즉 상향링크-하향링크 구성을 사용하도록 강제될 수 있다.
[표 5]
Figure 112016069406163-pct00026
(D : 하향링크 전송을 위한 서브프레임, U : 상향링크 전송을 위한 서브프레임, S : 스페셜 서브프레임)
상기 표 5와 같은 상향링크-하향링크 설정에 따라 시스템이 운영되는 경우에도 각 셀에서 상향링크 또는 하향링크로 전송되는 데이터의 양이 급격히 증가하는 경우, 이러한 데이터의 원활한 전송을 위하여 상향링크로 설정된 하나 이상의 서브프레임을 하향링크를 위한 것으로 변경하여 사용하거나 또는 그 역으로써 하향링크로 설정된 하나 이상의 서브프레임을 상향링크를 위한 것으로 변경/전환하여 사용함으로써 효율성을 높일 수 있다.
상향링크 서브프레임에서 하향링크 서브프레임으로의 전환 사용은 다음 표 5의 음영 표시된 서브프레임에서 가능할 수 있다. 다만, 표 7에서는 스위칭 구간(switching period)의 변경을 허용하는 경우를 나타내고 있으며, 스위칭 구간의 변경이 불가한 경우 하향링크로 전환하여 사용 가능한 서브프레임은 음영으로 표시되어 있다.
[표 6]
Figure 112016069406163-pct00027
[표 7]
Figure 112016069406163-pct00028
또한, 상향링크 서브프레임의 하향링크 서브프러임으로의 전환은 기존의 TDD 구성을 만족하여야 하는 것으로 설정될 수 있다. 다시 말해, 동적으로 서브프레임의 용도를 전환하면, 그 전환된 이후의 TDD 상향링크-하향링크 구성이 표 5의 구성 중 어느 하나여야 함을 의미한다. 구체적인 예를 들면, 상향링크-하향링크 구성 0에서 4번 서브프레임을 하향링크 서브프레임으로 전환하는 경우 9번 서브프레임도 동시에 하향링크 서브프레임으로 전환되어야 함을 의미한다. 이 경우 상향링크-하향링크 구성의 변경 여부를 1 비트로 알려줄 수 있는 이점이 있다.
Enhanced-PDCCH(EPDCCH)
릴리즈 11 이후의 LTE 시스템에서는 CoMP(Coordinate Multi Point), MU-MIMO(Multi User-Multiple Input Multiple Output) 등으로 인한 PDCCH의 용량 부족 및 셀 간 간섭(inter-cell interference)으로 인한 PDCCH 성능 감소 등에 대한 해결책으로 종래 PDSCH 영역을 통해 전송될 수 있는 Enhanced-PDCCH(EPDCCH)가 고려되고 있다. 또한 EPDCCH에서는 프리코딩(pre-coding) 이득 등을 얻기 위해 기존의 CRS 기반의 PDCCH와 다르게 DMRS를 기반으로 채널 추정을 수행할 수 있다.
EPDCCH 전송은, EPDCCH 전송에 사용되는 PRB(Physical Resource Block) 페어의 구성에 따라 국부형(localized) EPDCCH 전송과 분산형(distributed) EPDCCH 전송으로 나뉠 수 있다. 국부형 EPDCCH 전송은 하나의 DCI 전송에 사용되는 ECCE가 주파수 도메인에서 인접해 있는 경우를 의미하며, 빔포밍 이득을 얻기 위해 특정 프리코딩이 적용될 수 있다. 예를 들어, 국부형 EPDCCH 전송은 집합 레벨에 해당하는 개수의 연속된 ECCE에 기반할 수 있다. 반면에 분산형 EPDCCH 전송은 하나의 EPDCCH가 주파수 도메인에서 분리된 PRB 페어에서 전송되는 것을 의미하며, 주파수 다이버시티 측면의 이득이 있다. 예를 들어, 분산형 EPDCCH 전송은, 주파수 도메인에서 분리된 PRB 페어 각각에 포함된 EREG 4개로 이루어진 ECCE에 기반할 수 있다. 단말에게는 하나 또는 두 개의 EPDCCH PRB 세트가 상위계층 시그널링 등에 의해 설정(configured)될 수 있고, 각 EPDCCH PRB 세트는 국부형 EDPCCH 전송 또는 분산형 EPDCCH 전송 중 어느 하나를 위한 것일 수 있다.
단말은 EPDCCH를 통해 제어정보(DCI)를 수신/획득하기 위해, 기존 LTE/LTE-A 시스템에서와 유사하게 블라인드 복호를 수행할 수 있다. 보다 상세히, 단말은 설정된 전송 모드에 해당되는 DCI 포맷들을 위해, 집합 레벨 별로 EPDCCH 후보의 세트에 대해 복호를 시도(모니터링)할 수 있다. 여기서, 모니터링의 대상이 되는 EPDCCH 후보의 세트는 EPDCCH 단말 특정 탐색공간으로 불릴 수 있으며, 이 탐색공간은 집합 레벨별로 설정/구성될 수 있다. 또한, 집합 레벨은, 앞서 설명된 기존 LTE/LTE-A 시스템과는 다소 상이하게, 서브프레임 타입, CP의 길이, PRB 페어 내의 가용 자원량 등에 따라 {1, 2, 4, 8, 16, 32}가 가능하다.
EPDCCH가 설정(configured)된 단말의 경우, PRB 페어 세트에 포함된 RE들을 EREG로 인덱싱하고, 이 EREG를 다시 ECCE 단위로 인덱싱한다. 이 인덱싱된 ECCE에 기초해 탐색공간을 구성하는 EPDCCH 후보를 결정하고 블라인드 복호를 수행함으로써, 제어정보를 수신할 수 있다. 여기서, EREG는 기존 LTE/LTE-A의 REG에, ECCE는 CCE에 대응되는 개념으로써, 하나의 PRB 페어에는 16개의 EREG가 포함될 수 있다.
EPDCCH와 수신확인응답의 전송
EPDCCH를 수신한 단말은, EPDCCH에 대한 수신확인응답(ACK/NACK/DTX)을 PUCCH 상으로 전송할 수 있다. 이 때 사용되는 자원, 즉, PUCCH 자원의 인덱스는 앞서 설명된 수학식 1과 유사하게 EPDCCH 전송에 사용된 ECCE 중 가장 낮은 ECCE 인덱스에 의해 결정될 수 있다. 즉, 다음 수학식 2로써 표현될 수 있다.
Figure 112016069406163-pct00029
상기 수학식 2에서,
Figure 112016069406163-pct00030
는 상기 PUCCH 자원 인덱스, n ECCE 는 EPDCCH 전송에 사용된 ECCE 중 가장 낮은 ECCE 인덱스,
Figure 112016069406163-pct00031
(
Figure 112016069406163-pct00032
로 쓸 수도 있음)는 상위계층 시그널링으로 전달된 값으로써, PUCCH 자원 인덱스가 시작되는 지점을 의미한다.
다만, 상술한 수학식 2에 의해 일률적으로 PUCCH 자원 인덱스를 결정할 경우 자원 충돌 문제가 발생할 수 있다. 예를 들어, 두 개의 EPDCCH PRB 세트가 설정되는 경우, 각 EPDCCH PRB 세트에서의 ECCE 인덱싱은 독립적이므로 각 EPDCCH PRB 세트에서의 가장 낮은 ECCE 인덱스가 동일한 경우가 있을 수 있다. 이러한 경우, 사용자별로 PUCCH 자원의 시작점을 달리함으로써 해결할 수도 있지만, 모든 사용자별로 PUCCH 자원의 시작점을 달리하는 것은 많은 PUCCH 자원을 예약하는 것이 되므로 비효율적이다. 또한 EPDCCH에서는 MU-MIMO와 같이 같은 ECCE 위치에서 여러 사용자의 DCI가 전송될 수 있으므로 이러한 점을 고려하는 PUCCH 자원 할당 방법이 필요하기도 하다. 이와 같은 문제를 해결하기 위해 ARO(HARQ-ACK Resource Offset)가 도입되었다. ARO는 EPDCCH를 구성하는 ECCE 인덱스 중 가장 낮은 ECCE 인덱스, 상위계층시그널링으로 전달되는 PUCCH 자원의 시작 오프셋에 의해 결정되는 PUCCH 자원을 소정 정도 시프트 시킴으로써 PUCCH 자원의 충돌을 피할 수 있게 한다. ARO는 EPDCCH를 통해 전송되는 DCI 포맷 1A/1B/1D/1/2A/2/2B/2C/2D의 2 비트를 통해 다음 표 5와 같이 지시된다.
[표 5]
Figure 112016069406163-pct00033
기지국은 특정 단말을 위해, 상기 표 5의 ARO 값들 중 어느 하나의 값을 지정한 후 DCI 포맷을 통해 그 특정 단말에게 PUCCH 자원 결정시 사용할 ARO를 알려 줄 수 있다. 단말은 자신의 DCI 포맷에서 ARO 필드를 검출해보고, 이 값을 사용하여 결정된 PUCCH 자원을 통해 수신확인응답을 전송할 수 있다.
한편, FDD의 경우와 달리, TDD는 상향링크(UL)와 하향링크(DL)가 분리되어 있지 않은 이유로, 하나의 상향링크 서브프레임에서 여러 개의 하향링크 서브프레임(의 PDSCH)에 대한 수신확인응답을 전송하여야 하는 경우가 발생할 수 있다. 이에 대해 도 11을 참조하여 설명한다. 도 11(a)에는 TDD에서 사용되는 상향링크-하향링크 구성(Uplink-downlink configuration)이, 도 11(b)에서는 TDD 상향링크-하향링크 구성 2의 경우 수신확인응답을 도시하고 있다. 도 11을 참조하면, TDD 상향링크-하향링크 구성 2의 경우 상향링크로 사용 가능한 서브프레임이 2번, 7번 서브프레임으로 제한된다. 따라서, 하향링크 서브프레임(스페셜 서브프레임 포함) 8개에 대한 수신확인응답을 상향링크 서브프레임 두 개(2번 서브프레임, 7번 서브프레임)을 통해 전송할 필요가 있다. 이를 위해, 다음 표 6과 같은 하향링크 연관 세트 인덱스가 정의되어 있다.
[표 6]
Figure 112016069406163-pct00034
하향링크 연관 세트 K는 각 상향링크 서브프레임에서 {k 0,k 1,…k M-1} 의 요소로 이루어지며, M (bundling window size)은 연관세트 K에서 수신확인응답을 전송해야 하는 하향링크 서브프레임의 개수를 의미한다. 상기 표 6에서 각 숫자는 현재의 상향링크 서브프레임으로부터 몇 서브프레임 이전의 하향링크 서브프레임인지를 지시한다. 예를 들어, 상향링크-하향링크 구성 2의 경우 도 11(b)에 도시된 바와 같이, 2번 서브프레임은, 2번 서브프레임으로부터 8, 7, 4, 6번째 앞선 서브프레임(즉, 이전 라디오 프레임의 4번, 5번, 8번, 6번)의 수신확인응답을 전송한다.
하나의 상향링크 서브프레임에서 여러 개의 하향링크 서브프레임에 대한 수신확인응답을 전송하기 위해, EPDCCH PRB 세트 별로, 상기 연관 세트의 순서에 따라 PUCCH 자원을 순차적으로 이어 붙인 형태의 자원 할당 방식이 사용된다. 예를 들어, 상향링크-하향링크 구성 5의 경우, EPDCCH-PRB 세트 j 에 대해, 2번 서브프레임에는 연관세트 {13, 12, 9, 8, 7, 5, 4, 11, 6}에 해당하는 서브프레임들을 위한 PUCCH 자원 영역이 예약되어 있게 된다. 도 12에는 이러한 예시가 도시되어 있으며, 도 12에서 각 블록은 연관세트에 해당하는 서브프레임 각각을 위한 PUCCH 자원 영역이며, m 은 2번 서브프레임에서 전송해야 하는 하향링크 서브프레임의 인덱스(즉, 연관세트 {13, 12, 9, 8, 7, 5, 4, 11, 6}의 세트 내 순차적 인덱스, 예를 들어, m=1은 12(2번 서브프레임으로부터 12번째 앞선 서브프레임=직전 라디오 프레임의 0번 서브프레임)에 대응), N eCCE,i,j EPDCCH-PRB-세트 j 에서 i 번째 서브프레임의 ECCE 개수이다.
다만 도 12와 같이, 상향링크 서브프레임에 다수 개의 하향링크 서브프레임 각각을 위한 PUCCH 자원 영역 모두를 예약해 두는 것은 PUCCH 자원의 낭비를 초래할 수 있다. 따라서 PUCCH자원의 효율적인 사용 (실제 사용되는 PUCCH자원을 줄이기 위해)을 위해 large value offset이 TDD에서는 도입이 되었고, 다음 표 7과 같은 ARO가 사용될 수 있다.
[표 7]
Figure 112016069406163-pct00035
상기 표 7에서 m 은 하나의 상향링크 서브프레임에서 복수의 하향링크 서브프레임에 대한 HARQ-ACK이 전송될 때 복수의 하향링크 서브프레임의 인덱스,
Figure 112016069406163-pct00036
n - k i1 서브프레임에서 EPDCCH PRB 세트 q 의 ECCE 개수이다.
상기 표에서 ACK/NACK resource offset field가 1일때의 ARO값은 복수의 하향링크 서브프레임중에서 첫번째 서브프레임의 HARQ-ACK 자원으로 이동케 하는 값이고, ACK/NACK resource offset field가 2일때의 ARO값은 복수의 하향링크 서브프레임 중에서 1, 2, 혹은 3개의 이전 서브프레임(서브프레임의 위치마다 건너뛰는 서브프레임의 개수가 다를 수 있으며, 구체적인 이동 서브프레임의 개수는 표 7의 수식을 따른다.)의 HARQ-ACK자원으로 이동케 하는 값이다. 이렇게 서브프레임을 이동하는 ARO값을 통해서 PUCCH자원이 표율적으로 압축 (compression)될 수 있다. 이하에서는 설명의 편의상 첫번째 서브프레임의 HARQ-ACK 자원으로 이동케 하는 ARO값을 제1 large value ARO값, 이전 서브프레임중 하나로 이동케하는 ARO값을 제 2 large value ARO값으로 부르기로 한다.
PUCCH 자원은, EPDCCH PRB 세트 q 가 분산형 전송을 위한 것인 경우 수학식 3에 의해, 국부형 전송을 위한 것인 경우 수학식 4에 의해 결정될 수 있다.
Figure 112016069406163-pct00037
Figure 112016069406163-pct00038
상기 수학식 3, 4에서, n ECCE,q 는 가장 낮은 ECCE 인덱스,
Figure 112016069406163-pct00039
상위계층 시그널링에 의해 주어지는 파라미터, n' 는 안테나 포트에 관련되어 결정되는 값,
Figure 112016069406163-pct00040
n - k i1 서브프레임에서 EPDCCH PRB 세트 q 의 ECCE 개수이다.
eIMTA에서 HARQ-ACK 전송의 압축/패킹
한편, 앞서 잠시 언급된 eIMTA와 관련하여, eIMTA에서는 레거시 단말(legacy UE, eIMTA 구성과 무관한 단말 또는 eIMTA가 구성될 수 없는 단말 등을 의미할 수 있음)과 eIMTA 단말(eIMTA capable UE, eIMTA가 구성된 단말(eIMTA configured UE) 또는 eIMTA에 관련된 메시지가 구성된 단말 등을 의미할 수 있음)간에 HARQ 타이밍이 다를 수 있고, 이를 위해 하향링크 참조 HARQ 타이밍(DL reference HARQ timing)이 정해질 수 있다. 즉, eIMTA 단말과 레거시 단말 간에 서로 다른 HARQ 타이밍을 가질 수 있다. 예를 들어, eIMTA 단말은 TDD 상향링크-하향링크 구성 5를 HARQ 타이밍으로 사용하고 레거시 단말은 TDD 상향링크-하향링크 구성 4를 사용할 수 있다. 이러한 경우, 특히, 2번 서브프레임에서 레거시 단말은 12, 8, 7, 11번 하향링크 서브프레임을 위한 PUCCH 자원 순서의 패킹(packing) 순서를 가지고, eIMTA 단말은 13, 12, 9, 8, 7, 5, 4, 11, 6 순서의 패킹 순서를 갖는다. 이와 같이 레거시 단말과 eIMTA 단말의 패킹 순서가 상이함으로 인해, HARK-ACK 충돌이 발생할 수 있다. 이를 해결하기 위한 방법으로써, 레거시 단말과 eIMTA 단말에 공통되는 패킹 순서를 사용하고, 레거시 단말과 eIMTA 단말에 공통되지 않는 하향링크 서브프레임에 대해서는 별도의 PUCCH 자원을 사용할 수 있다. 예를 들어, 레거시 단말은 다음 표 8에 의한 HARQ 타이밍을 따르되, eIMTA 단말은 다음 표 9에 따라 레거시 단말과 eIMTA단말에 공통되지 않은 하향링크 서브프레임에 대한 HARQ-ACK을 전송하기 위한 패킹을 수행할 수 있다. 구체적으로, 위 예시(eIMTA 단말은 TDD 상향링크-하향링크 구성 5를 HARQ 타이밍으로 사용하고 레거시 단말은 TDD 상향링크-하향링크 구성 4)에서, 레거시 단말과 eIMTA 단말에 공통되는 하향링크 서브프레임 12, 8, 7, 11(의 PUCCH 자원)은 표 8에 따라, eIMTA 단말만을 위한 서브프레임 13, 9, 5, 4, 6(의 PUCCH 자원)은 표 9의 음영 부분에 따라 패킹될 수 있다.
[표 8]
Figure 112016069406163-pct00041
[표 9]
Figure 112016069406163-pct00042
이와 같은 패킹 방식에서는 순서가 변경되고, 레거시 단말과 공통된 영역과, eIMTA 단말만 사용하는 영역으로 분리가 되며, 그 순서도 기존의 번들링 윈도우 내에서 변경되기 때문에 이에 따른 ARO (값)의 설정이 필요하다. 따라서, 이하에서는, 본 발명의 실시예에 의한 제1, 제2 large value ARO (값)의 설정에 대해 살펴본다. 이하의 설명에서 레거시 단말과 eIMTA 단말에 공통되는 하향링크 서브프레임이 포함되는 세트를 제1 서브프레임 세트(또는 제1 윈도우), eIMTA 단말만을 위한 서브프레임이 포함되는 세트를 제2 서브프레임 세트(또는 제2 윈도우)라 칭한다. eIMTA 단말이 사용하는 윈도우 2는 eIMTA 단말이 사용하는 TDD 구성상의 윈도우에서 윈도우1을 제외한 나머지의 집합을 윈도우 2라고 설정할 수 있다. 이때 윈도우 2에서 순서는 고정형(fixed) DL 서브프레임이 우선 나타나고 이후에 플렉서블(flexible) 서브프레임이 나타날 수 있다. 구체적인 예로써, 윈도우 1은
Figure 112016069406163-pct00043
, 윈도우 2는
Figure 112016069406163-pct00044
로 구성되며, M1, M2는 각기 윈도우의 크기일 수 있다.
또한, 이하의 설명은 ARO는 주로 ACK/NACK 자원 오프셋 필드 값이 1인 것을 전제하지만, 본 발명의 기술적 특징이 이에 제한되는 것은 아니며 ACK/NACK 자원 오프셋 필드 값이 2인 경우에도 적용 가능하다.
실시예 1
단말이 ARO를 사용하여 복수의 하향링크 서브프레임에 대한 PUCCH 자원을 결정하고, 그 PUCCH 자원을 통해 HARQ-ACK을 하나의 상향링크 서브프레임에서 전송할 때, ARO는 복수의 하향링크 서브프레임에 어떤 서브프레임이 포함되어 있는지에 따라, 또는 TDD 상향링크-하향링크 구성과 복수의 하향링크 서브프레임의 개수의 관계에 따라 ARO가 다음과 같이 동작할 수 있다.
복수의 하향링크 서브프레임이 eIMTA가 구성된 단말과 레거시 단말에게 공통되는 제1 서브프레임 세트에 포함된 서브프레임만 포함하는 경우, 상기 ARO는, 제1 서브프레임 세트를 위한 PUCCH 자원과 제2 서브프레임 세트를 위한 PUCCH 자원이 서로 연속되는 것으로 간주하여 설정될 수 있다. 예를 들어 제1 large valur ARO값은 제1 서브프레임 세트의 첫 번째 서브프레임을 위한 PUCCH 자원으로 이동시킬 수 있다. 또한, 복수의 하향링크 서브프레임이, eIMTA가 구성된 단말만을 위한 제2 서브프레임 세트에 포함된 서브프레임도 포함하는 경우, 상기 ARO는, 제2 서브프레임 세트에 포함된 서브프레임을 위한 PUCCH 자원도, 상기 제1 서브프레임 세트의 첫 번째 서브프레임을 위한 PUCCH 자원으로 이동시킬 수 있다. 이와 유사하게 제2 large value ARO값은 제1 서브프레임 세트와 제 2서브프레임 세트를 하나의 연결된 서브프레임 세트로 가정하고 이전 하향링크 서브프레임에 대한 HARQ-ACK자원으로 이동하도록 설정될 수 있다. 이때 제2 large value ARO값이 이동하는 하향링크 서브프레임 개수는 window내에서 상대적인 위치에 따라 다르게 설정될 수 있는데, 제 1 서브프레임 세트와 제 2 서브프레임 세트를 하나의 윈도우로 가정하였기 때문에 제2 서브프레임 세트에 포함된 HARQ-ACK값들은 상대적인 위치가 M1개수의 하향링크 서브프레임이 앞에 있는 것으로 간주할 수 있다.
다시 말해, 상기 복수의 하향링크 서브프레임이, eIMTA가 구성된 단말과 eIMTA 구성과 무관한 단말에게 공통되는 제1 서브프레임 세트에 포함된 서브프레임만 포함하는 경우, 상기 ARO는, 제1 서브프레임 세트에 포함된 제1 서브프레임을 위한 PUCCH 자원을, 상기 제1 서브프레임 세트에서 상기 제1 서브프레임보다 앞선 서브프레임을 위한 PUCCH 자원으로 이동시킬 수 있다. 그리고, 상기 복수의 하향링크 서브프레임이, eIMTA가 구성된 단말만을 위한 제2 서브프레임 세트에 포함된 서브프레임도 포함하는 경우, 상기 ARO는, 제2 서브프레임 세트에 포함된 제2 서브프레임을 위한 PUCCH 자원을 상기 제2 서브프레임보다 앞선 서브프레임을 위한 PUCCH 자원으로 이동시키며, 상기 제2 서브프레임을 위한 PUCCH 자원 이동량 결정시 제2 서브프레임 세트는 제1 서브프레임에 포함된 서브프레임들도 포함하는 것으로 간주되는 것일 수 있다. 여기서, 제1 ARO가 사용되는 경우, 제1 및 제2 서브프레임보다 앞선 서브프레임은 모두 제1 서브프레임 세트의 첫 번째 서브프레임일 수 있다.
상기 설명과 같이 large value ARO값을 설정함으로써, PUCCH 자원 사용의 효율성을 최대화할 수 있다. 보다 상세히, 예를 들어 후술하는 바와 같이 PUCCH 자원의 압축(compression)을 각 윈도우 내에서만 수행할 수도 있는데, 경우에 따라 각 윈도우 사이의 자원도 낭비가 될 수 있다. 그러나, 상기 실시예에 의하면 단말은 각 윈도에서 PUCCH 자원을 윈도 경계를 넘어 압축할 수 있으므로 자원 사용의 효율성을 극대화할 수 있다.
도 12에는 상술한 실시예가 도시되어 있다. 도 12에서 각 블록은 하나의 상향링크 서브프레임에서 전송해야 하는 하향링크 서브프레임 각각을 위한 PUCCH 자원을 의미하며,
Figure 112016069406163-pct00045
는 i번째 윈도우의 시작 오프셋(starting offset)을 나타낸다. 도 12를 참조하면, 두 개의 윈도우(서브프레임 세트)가 연속된 하나의 윈도우로 간주됨을 알 수 있다. 도시된 바와 같이, 첫 번째 윈도우 내에서는 제 1 large value ARO가 특정 하향링크 서브프레임(예를 들어, m=M1-2)을 위한 PUCCH 자원을 첫 번째 윈도우의 첫 번째 서브프레임을 위한 PUCCH 자원으로 이동시킨다. 또한, 두 번째 윈도우에서도, ARO가 특정 하향링크 서브프레임(예를 들어, M=1+M1)을 위한 PUCCH 자원을 첫 번째 윈도우의 첫 번째 서브프레임을 위한 PUCCH 자원으로 이동시킨다. 즉 두 번째 윈도우의 ARO값은 자신의 서브프레임 순서에 첫 번째 윈도우의 크기 M1 값을 더하여 첫 번째 윈도우 이후에 연속하여 큰 크기의 윈도우를 가정하도록 한다. 다시 말해, 도 13은 두 윈도우에 대한 PUCCH 영역이 연속한 것으로 가정하고 두 번째 윈도우에서는 m에 M1을 더하여 첫 번째 윈도우의 첫 번째 서브프레임으로 이동하도록 설정한 것이다.
만약, 두 윈도우가 연속적이지 않은 경우(
Figure 112016069406163-pct00046
), ARO가 다은 윈도우 상에 불연속된 영역을 지시하지 않도록
Figure 112016069406163-pct00047
값이 두번째 윈도우의 ARO 값에 추가로 차감될 수 있다. 도 14는 두번째 윈도우의 시작 오프셋(starting offset)이 첫번째 윈도우의 PUCCH영역에 연속하지 않는 경우의 실시예를 나타낸다.
상기 실시예에서, 상기 ARO는 상기 제1 서브프레임 세트 및 상기 제2 서브프레임 세트 각각을 위해 설정된 것일 수 있다. 또는, 제1 서브프레임 세트를 위해 설정된 ARO 및 상기 제2 서브프레임 세트를 위해 설정된 ARO는 서로 상이할 수 있다. 즉, 제1 서브프레임 세트를 위해 설정된 ARO 및 제2 서브프레임 세트를 위해 설정된 ARO는 동일한 효과(PUCCH 자원을 첫 번째 서브프레임을 위한 PUCCH 자원으로 이동시킴)를 가져오되, 각각이 서로 상이하게 정의된 변수일 수 있다.
실시예 2
eIMTA 단말은 HARQ ACK을 전송하기 위한 두 가지 HARQ ACK 전송 윈도우를 설정하고 large value ARO값들은 각 윈도우별로 설정할 수 있다. 즉 각 윈도우내에서 서브프레임 순서 (m)에 따라 large value ARO값이 설정될 수 있다. 도 15에는 실시예 2의 일 예가 도시되어 있다. 도 15에 도시된 바와 같이, 제 1 large value ARO는 각 윈도 별로 설정되며, 제 1 large value ARO 값은각 윈도 상에서 PUCCH 자원을 각 윈도의 첫 번째 서브프레임을 위한 PUCCH 자원으로 이동시킨다.
실시예 3
실시예 3은 제1 윈도 및 제2 윈도 외, 제2 윈도를 eIMTA의 특성을 고려하여 더 세분화하는 것이다. 보다 상세히, 제2 윈도를 고정형(fixed) 서브프레임과 플렉서블(flexible) 서브프레임으로 분리하고, 각 윈도우 내의 서브프레임 순서에 따라 large value ARO 값을 정의할 수 있다. 즉, 제2 윈도우가 두 개의 윈도우로 분리되고, 각 윈도우 내에서 서브프레임의 순서에 따라 large value ARO를 적용할 수 있다. 도 16에는 실시예 3이 도시되어 있으며, 앞선 실시예와 마찬가지로 단말은 DCI에서 ACK/NACK 자원 오프셋 필드 값이 1임을 확인한 것을 전제한다. 따라서, 제 1 large value ARO 적용 시, 세 개의 윈도우에서 특정 서브프레임의 PUCCH 자원은 각 윈도우의 첫 번째 서브프레임을 위한 PUCCH 자원으로 이동될 수 있다.
본 발명의 실시예에 의한 장치 구성
도 17은 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 성을 도시한 도면이다.
도 17을 참조하여 본 발명에 따른 전송포인트 장치(10)는, 수신모듈(11), 전송모듈(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신모듈(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 전송포인트 장치(10) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 전송포인트 장치(10)의 프로세서(13)는, 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
전송포인트 장치(10)의 프로세서(13)는 그 외에도 전송포인트 장치(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
계속해서 도 17을 참조하면 본 발명에 따른 단말 장치(20)는, 수신모듈(21), 전송모듈(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신모듈(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(20)의 프로세서(23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 도 17에 대한 설명에 있어서 전송포인트 장치(10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치(20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (12)

  1. 무선통신시스템에서 HARQ(Hybrid automatic repeat request)-ACK을 전송하는 방법에 있어서,
    ARO(HARQ-ACK resource offset)를 사용하여, 복수의 하향링크 서브프레임에 대한 PUCCH(Physical Uplink Control CHannel) 자원을 결정하는 단계; 및
    상기 PUCCH 자원을 통해 HARQ-ACK을 하나의 상향링크 서브프레임에서 전송하는 단계,
    를 포함하며,
    eIMTA (enhanced Interference Mitigation and Traffic Adaptation) UE 및 non-eIMTA UE는, 하나의 서브프레임을 사용하여, 제1 서브프레임 세트의 DL 서브프레임에 대한 HARQ-ACK를 전송하도록 설정되고,
    상기 eIMTA UE와 상기 non-eIMTA UE 중 eIMTA UE만이, 하나의 서브프레임을 사용하여, 제2 서브프레임 세트의 DL 서브프레임의 HARQ-ACK를 전송하도록 설정되며,
    상기 복수의 하향링크 서브프레임들이 상기 제1 서브프레임 세트의 서브프레임들로만 구성되는 경우, 상기 ARO는 상기 제1 서브프레임 세트의 DL 서브프레임들을 위한 PUCCH 자원 시프트와 관련된 제1 값을 포함하고,
    상기 복수의 하향링크 서브프레임들이 상기 제1 서브프레임 세트 및 상기 제2 서브프레임 세트의 서브프레임들로 구성되는 경우, 상기 ARO는 상기 제1 값 및 제2 서브프레임 세트의 DL 서브프레임들을 위한 PUCCH 리소스 시프트와 관련된 제2 값 모두를 포함하는, HARQ-ACK 전송 방법.
  2. 제1항에 있어서,
    상기 제1 서브프레임 세트를 위한 PUCCH 자원과 상기 제2 서브 프레임 세트를 위한 PUCCH 자원은 연속되는 것인, HARQ-ACK 전송 방법.
  3. 제1항에 있어서,
    상기 PUCCH 자원은 EPDCCH (Enhanced Physical Downlink Control Channel)에서 ECCE(Enhanced Control Channel Element)의 인덱스 중 가장 낮은 인덱스에 기초하여 결정되는, HARQ-ACK 전송 방법.
  4. 무선 통신 시스템에서 HARQ(Hybrid automatic repeat request)-ACK을 전송하는 장치에 있어서,
    메모리; 및
    상기 메모리에 커플링된 프로세서를 포함하고,
    상기 프로세서는, ARO(HARQ-ACK resource offset)를 사용하여, 복수의 하향링크 서브프레임에 대한 PUCCH(Physical Uplink Control CHannel) 자원을 결정하고, 상기 PUCCH 자원을 통해 HARQ-ACK을 하나의 상향링크 서브프레임에서 전송하며,
    eIMTA (enhanced Interference Mitigation and Traffic Adaptation) UE 및 non-eIMTA UE는, 하나의 서브프레임을 사용하여, 제1 서브프레임 세트의 DL 서브프레임에 대한 HARQ-ACK를 전송하도록 설정되고,
    상기 eIMTA UE와 상기 non-eIMTA UE 중 eIMTA UE만이, 하나의 서브프레임을 사용하여, 제2 서브프레임 세트의 DL 서브프레임의 HARQ-ACK를 전송하도록 설정되며,
    상기 복수의 하향링크 서브프레임들이 상기 제1 서브프레임 세트의 서브프레임들로만 구성되는 경우, 상기 ARO는 상기 제1 서브프레임 세트의 DL 서브프레임들을 위한 PUCCH 자원 시프트와 관련된 제1 값을 포함하고,
    상기 복수의 하향링크 서브프레임들이 상기 제1 서브프레임 세트 및 상기 제2 서브프레임 세트의 서브프레임들로 구성되는 경우, 상기 ARO는 상기 제1 값 및 제2 서브프레임 세트의 DL 서브프레임들을 위한 PUCCH 리소스 시프트와 관련된 제2 값 모두를 포함하는, HARQ-ACK 전송 방법.
  5. 제4항에 있어서,
    상기 제1 서브프레임 세트를 위한 PUCCH 자원과 상기 제2 서브 프레임 세트를 위한 PUCCH 자원은 연속되는 것인, HARQ-ACK 전송 방법.
  6. 제4항에 있어서,
    상기 PUCCH 자원은 EPDCCH (Enhanced Physical Downlink Control Channel)에서 ECCE(Enhanced Control Channel Element)의 인덱스 중 가장 낮은 인덱스에 기초하여 결정되는, HARQ-ACK 전송 방법.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
KR1020167019474A 2014-02-14 2015-02-16 무선 통신 시스템에서 harq-ack 전송 방법 및 장치 KR102281344B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461939750P 2014-02-14 2014-02-14
US61/939,750 2014-02-14
PCT/KR2015/001545 WO2015122734A1 (ko) 2014-02-14 2015-02-16 무선 통신 시스템에서 harq-ack 전송 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20160123289A KR20160123289A (ko) 2016-10-25
KR102281344B1 true KR102281344B1 (ko) 2021-07-23

Family

ID=53800400

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167019474A KR102281344B1 (ko) 2014-02-14 2015-02-16 무선 통신 시스템에서 harq-ack 전송 방법 및 장치

Country Status (6)

Country Link
US (2) US9967062B2 (ko)
EP (1) EP3107237B1 (ko)
JP (1) JP6375382B2 (ko)
KR (1) KR102281344B1 (ko)
CN (1) CN106031071B (ko)
WO (1) WO2015122734A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106031071B (zh) 2014-02-14 2019-08-06 Lg电子株式会社 用于在无线通信系统中发送harq-ack的方法和设备
US20150263796A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Channel state information for reporting an advanced wireless communications system
CN108886433A (zh) * 2016-01-19 2018-11-23 华为技术有限公司 一种针对上行信道的反馈方法及装置
CN107040342B (zh) * 2016-02-03 2020-09-01 电信科学技术研究院 一种传输上行控制信息的方法和设备
WO2017138853A1 (en) 2016-02-09 2017-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Efficient harq feedback
US10700836B2 (en) * 2016-03-11 2020-06-30 Futurewei Technologies, Inc. Multicarrier uplink data with single carrier uplink control
KR20180068677A (ko) * 2016-12-14 2018-06-22 삼성전자주식회사 무선 통신 시스템에서 하향링크 제어채널의 송수신 방법 및 장치
CN108282881B (zh) * 2017-01-06 2020-12-15 华为技术有限公司 一种资源配置方法及装置
WO2018137221A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 发送及检测控制信息的方法、终端设备和网络设备
CN109245844B (zh) 2017-06-30 2020-11-03 华为技术有限公司 无线通信方法、装置及系统
MX2020001189A (es) 2017-08-01 2020-03-12 Nec Corp Estacion base, aparato terminal, primer aparato terminal, metodo, programa, medio de grabacion y sistema.
WO2019074311A1 (en) 2017-10-12 2019-04-18 Lg Electronics Inc. METHOD AND APPARATUS FOR SHIFTING A LIMIT OF UPLINK SUBFRAME OR UPLINK INTERVAL IN A WIRELESS COMMUNICATION SYSTEM
CN113572590B (zh) * 2021-08-17 2024-02-02 杭州红岭通信息科技有限公司 一种pucch资源复用及分配方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130125695A (ko) * 2012-05-09 2013-11-19 주식회사 팬택 인터밴드 tdd 전송 방식에서 채널 셀렉션 전송을 위한 harq-ack 인덱스 매핑 및 업링크 자원 할당을 제어하는 방법 및 장치
US11245507B2 (en) * 2012-11-02 2022-02-08 Texas Instruments Incorporated Efficient allocation of uplink HARQ-ACK resources for LTE enhanced control channel
WO2014119944A1 (ko) * 2013-01-31 2014-08-07 엘지전자 주식회사 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
US9160515B2 (en) * 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
CN106031071B (zh) 2014-02-14 2019-08-06 Lg电子株式会社 用于在无线通信系统中发送harq-ack的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP R1-134157
3GPP R1-140351

Also Published As

Publication number Publication date
JP2017506848A (ja) 2017-03-09
EP3107237A1 (en) 2016-12-21
CN106031071B (zh) 2019-08-06
WO2015122734A1 (ko) 2015-08-20
US20180234214A1 (en) 2018-08-16
EP3107237B1 (en) 2019-06-05
US20170054531A1 (en) 2017-02-23
US9967062B2 (en) 2018-05-08
KR20160123289A (ko) 2016-10-25
JP6375382B2 (ja) 2018-08-15
US10581562B2 (en) 2020-03-03
CN106031071A (zh) 2016-10-12
EP3107237A4 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6408103B2 (ja) 無線通信システムにおいて受信確認応答送信方法及び装置
KR102281344B1 (ko) 무선 통신 시스템에서 harq-ack 전송 방법 및 장치
JP6272969B2 (ja) 無線通信システムにおいて受信確認応答送信方法及び装置
KR102216247B1 (ko) 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
JP5894346B2 (ja) 無線通信システムにおいて受信確認応答送信方法及び装置
US20180255542A1 (en) Method and apparatus for transmitting and receiving uplink in wireless communication system
KR102086576B1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2014182039A1 (ko) 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
WO2014107062A1 (ko) 무선 통신 시스템에서 제어정보 전송방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant