WO2022151398A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022151398A1
WO2022151398A1 PCT/CN2021/072272 CN2021072272W WO2022151398A1 WO 2022151398 A1 WO2022151398 A1 WO 2022151398A1 CN 2021072272 W CN2021072272 W CN 2021072272W WO 2022151398 A1 WO2022151398 A1 WO 2022151398A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
uplink resource
feedback information
uplink
resource
Prior art date
Application number
PCT/CN2021/072272
Other languages
English (en)
French (fr)
Inventor
苏桐
马蕊香
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/072272 priority Critical patent/WO2022151398A1/zh
Priority to CN202180089081.5A priority patent/CN116686248A/zh
Publication of WO2022151398A1 publication Critical patent/WO2022151398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device.
  • the fifth generation (5G) mobile communication system has higher requirements on data transmission rate, data transmission reliability, transmission delay and power consumption.
  • 5G's ultra-reliable and low-latency communication (URLLC) service as an example, the requirements of this service include: data transmission reliability reaching 99.999% and transmission delay less than 1 millisecond (milisecond, ms) , and minimize the instruction overhead as much as possible. Therefore, how to improve data transmission reliability, reduce transmission delay, and reduce signaling overhead, thereby reducing power consumption, has become an urgent problem to be solved.
  • URLLC ultra-reliable and low-latency communication
  • SPS semi-persistent scheduling
  • PDSCH physical downlink shared channel
  • SPS PDSCH feedback information corresponding to the semi-persistent scheduling physical downlink shared channel
  • the embodiments of the present application provide a communication method and device, which can solve the problems of low reliability and low transmission efficiency of SPS PDSCH data transmission, so as to improve communication efficiency.
  • a communication method is provided.
  • the communication method can be applied to a terminal device, and the communication method includes: determining a first uplink resource.
  • the first uplink resource is located in the first time unit and carries first feedback information, where the first feedback information is feedback information corresponding to the semi-persistently scheduled physical downlink shared channel. If the time domain symbol (symbol) occupied by the first uplink resource includes: a downlink symbol (downlink symbol), and/or a flexible symbol (flexible symbol) used for uplink transmission is not indicated, the second time unit and the second time unit are determined. Uplink resources.
  • the second uplink resource is located in the second time unit, the time domain symbols occupied by the second uplink resource are all symbols used for uplink transmission, and the time domain start position of the second uplink resource is located at the time of the first uplink resource. after the start of the field. Send the first feedback information on the second uplink resource.
  • the terminal device may determine the second time unit and the second uplink resource in the resource after the time domain starting position of the first uplink resource, and send the first feedback information on the second uplink resource. In this way, when the feedback information corresponding to the SPS PDSCH is not sent on the first uplink resource, the terminal device can delay the sending of the feedback information to the second uplink resource.
  • the network device can determine whether the SPS PDSCH is successfully received according to the feedback information, and determine whether to retransmit the data, so as to reduce the probability of data loss, improve the reliability of data transmission, and reduce the number of data retransmissions, save resources, and improve transmission. efficiency, thereby improving communication efficiency.
  • the second time unit may be located after the first time unit, or the second time unit and the first time unit may be the same time unit.
  • the terminal device can either send the first feedback information in the first time unit, or send the first feedback information in a time unit after the first time unit, which can improve the flexibility of the terminal device to send the first feedback information.
  • the relative position of the second uplink resource in the second time unit may be the same as the relative position of the first uplink resource in the first time unit.
  • the time domain range of the second uplink resource can be narrowed from all time domains after the time domain start position of the first uplink resource to the time domain in each time unit after the time domain start position of the first uplink resource. Partial symbols, that is to say, the terminal device can determine the second time unit and the second uplink resource in a smaller time domain range, so that the calculation amount of the terminal device can be reduced and power consumption can be saved.
  • the time domain width of the second uplink resource may be equal to the time domain width of the first uplink resource, and/or the frequency domain width of the second uplink resource may be the same as the first uplink resource.
  • the width of the frequency domain can be equal.
  • the size of the second uplink resource is equal to the size of the first uplink resource. In this way, the time domain range of the second uplink resource can be narrowed from all the time domains after the time domain start position of the first uplink resource to a part of the time domain after the time domain start position of the first uplink resource.
  • the time domain is the time domain including the available uplink resources, and the size of the available uplink resources may be equal to the size of the first uplink resources, that is, the terminal device may determine the second time unit and the second time unit in a smaller time domain. In this way, the amount of calculation of the terminal equipment can be reduced and the power consumption can be saved.
  • the above-mentioned mode 1 and mode 2 can be implemented independently or in combination.
  • the manner of implementing manner 1 and manner 2 in combination may include: the relative position of the second uplink resource in the second time unit is the same as the relative position of the first uplink resource in the first time unit, and the time domain width of the second uplink resource is equal to the time domain width of the first uplink resource, and/or, the frequency domain width of the second uplink resource is equal to the frequency domain width of the first uplink resource.
  • the time domain range in which the second uplink resource exists can be narrowed from all time domains after the time domain start position of the first uplink resource to the partial symbols in each time unit of the above partial time domain, that is to say , the terminal device can determine the second time unit and the second uplink resource in a smaller time domain range, thereby reducing the calculation amount of the terminal device and saving power consumption.
  • the above-mentioned determining the second time unit and the second uplink resource may include: determining the second time unit.
  • the second time unit may be a candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit. starting position, and each candidate time unit may satisfy: the first condition, and/or the second condition.
  • the first condition may be: there are available SPS feedback resources, the time domain symbols of the available SPS feedback resources are all symbols used for uplink transmission, and the maximum value of the codebook bit interval corresponding to the available SPS feedback resources may be greater than or equal to the feedback
  • the number of bits, and the number of feedback bits may be the sum of the number of codebook bits of the SPS feedback information in the candidate time unit and the number of codebook bits of the first feedback information.
  • the second condition may be: there is an uplink signal, and the uplink signal may include uplink data or dynamic feedback information. The second uplink resource is determined in the second time unit.
  • the terminal device when it determines the second uplink resource in the second time unit, it can carry the first feedback information through the existing available SPS feedback resources in the time unit, or carry the first feedback information through the existing resources in the time unit that carry the uplink signal.
  • One feedback information that is to say, one feedback resource can be used to carry multiple feedback information, thereby reducing the number of interactions between the terminal device and the network device, reducing signaling overhead, and improving communication efficiency.
  • the above-mentioned determining the second uplink resource in the second time unit may include: if the second time unit satisfies the first condition and does not satisfy the second condition, determining that the available SPS feedback resources in the second time unit are: The second uplink resource. Or, if the second time unit satisfies the second condition, it is determined that the resource bearing the uplink signal in the second time unit is the second uplink resource.
  • the first feedback information can be carried preferentially through the existing resource carrying the uplink signal in the time unit, because the resource carrying the uplink signal can be a dynamic feedback resource (such as the feedback resource corresponding to the dynamically scheduled PDSCH), and compared with the available resources
  • the resource carrying the uplink signal can be a dynamic feedback resource (such as the feedback resource corresponding to the dynamically scheduled PDSCH), and compared with the available resources
  • the quality of the channel occupied by the SPS feedback resources and dynamic feedback resources is often better, and the feedback success rate is higher. Therefore, the first feedback information is preferentially carried by the resources carrying the uplink signal, which can improve the reliability of data transmission and reduce the transmission delay. Improve communication efficiency.
  • the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit may include the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit, or the number of bits in the candidate time unit.
  • the minimum value of the codebook bit interval corresponding to the available SPS feedback resource may be greater than the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit.
  • the available SPS feedback resource can carry not only the SPS feedback information in the candidate time unit, but also the first feedback information, so that a new feedback resource can be used to carry multiple feedback information, reducing the interaction between the terminal device and the network device times, reducing signaling overhead and improving communication efficiency.
  • the communication method described in the first aspect may further include: if the combined transmission condition is satisfied, determining the third uplink resource;
  • the resource carries the first feedback information and the second feedback information.
  • the combined transmission condition may be: the second time unit includes the second feedback information, or the second uplink resource overlaps with the resource bearing the second feedback information.
  • the first feedback information and the second feedback information are sent on the third uplink resource.
  • a communication method is provided.
  • the communication method can be applied to a network device, and the communication method includes: determining a first uplink resource.
  • the first uplink resource is located in the first time unit and carries the first feedback information, and the first feedback information is the feedback information corresponding to the SPS PDSCH. If the time domain symbols occupied by the first uplink resources include: downlink symbols, and/or flexible symbols used for uplink transmission are not indicated, the second time unit and the second uplink resource are determined.
  • the second uplink resource is located in the second time unit, the time domain symbols occupied by the second uplink resource are all symbols used for uplink transmission, and the time domain start position of the second uplink resource is located at the time of the first uplink resource. after the start of the field.
  • the first feedback information is received on the second uplink resource.
  • the second time unit may be located after the first time unit, or the second time unit and the first time unit may be the same time unit.
  • the relative position of the second uplink resource in the second time unit may be the same as the relative position of the first uplink resource in the first time unit.
  • the time domain width of the second uplink resource may be equal to the time domain width of the first uplink resource, and/or the frequency domain width of the second uplink resource may be the same as the frequency domain width of the first uplink resource. equal.
  • the above-mentioned determining the second time unit and the second uplink resource may include: determining the second time unit.
  • the second time unit may be a candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit. starting position, and each candidate time unit may satisfy: the first condition, and/or the second condition.
  • the first condition may be: there are available SPS feedback resources, the time domain symbols of the available SPS feedback resources are all symbols used for uplink transmission, and the maximum value of the codebook bit interval corresponding to the available SPS feedback resources may be greater than or equal to the feedback
  • the number of bits, and the number of feedback bits may be the sum of the number of codebook bits of the SPS feedback information in the candidate time unit and the number of codebook bits of the first feedback information.
  • the second condition may be: there is an uplink signal, and the uplink signal may include uplink data or dynamic feedback information. The second uplink resource is determined in the second time unit.
  • the above-mentioned determining the second uplink resource in the second time unit may include: if the second time unit satisfies the first condition and does not satisfy the second condition, determining that the available SPS feedback resources in the second time unit are: The second uplink resource. Alternatively, if the second time unit satisfies the second condition, it is determined that the resource bearing the uplink signal in the second time unit is the second uplink resource.
  • the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit may include the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit, or the number of bits in the candidate time unit.
  • the minimum value of the codebook bit interval corresponding to the available SPS feedback resource may be greater than the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit.
  • the communication method described in the second aspect may further include: if the combined reception condition is satisfied, determining a third uplink resource; the third uplink resource carries the first feedback information and the second feedback information.
  • the combined reception condition may be: the second time unit includes the second feedback information, or the second uplink resource overlaps with the resource bearing the second feedback information. The first feedback information and the second feedback information are received on the third uplink resource.
  • a communication device in a third aspect, includes: a processing module and a transceiver module.
  • the processing module is used to determine the first uplink resource.
  • the first uplink resource is located in the first time unit, and carries the first feedback information, and the first feedback information is the feedback information corresponding to the SPS PDSCH.
  • the processing module is further configured to determine the second time unit and the second uplink resource if the time domain symbols occupied by the first uplink resources include downlink symbols and/or flexible symbols used for uplink transmission are not indicated.
  • the second uplink resource is located in the second time unit, the time domain symbols occupied by the second uplink resource are all symbols used for uplink transmission, and the time domain start position of the second uplink resource is located at the time of the first uplink resource. after the start of the field.
  • the transceiver module is configured to send the first feedback information on the second uplink resource.
  • the second time unit may be located after the first time unit, or the second time unit and the first time unit may be the same time unit.
  • the relative position of the second uplink resource in the second time unit may be the same as the relative position of the first uplink resource in the first time unit.
  • the time domain width of the second uplink resource may be equal to the time domain width of the first uplink resource, and/or the frequency domain width of the second uplink resource may be equal to the frequency domain width of the first uplink resource.
  • the processing module may also be used to determine the second time unit.
  • the second time unit may be the candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit starting position, and each candidate time unit can satisfy: the first condition, and/or the second condition.
  • the first condition may be: there are available SPS feedback resources, the time domain symbols of the available SPS feedback resources are all symbols used for uplink transmission, and the maximum value of the codebook bit interval corresponding to the available SPS feedback resources may be greater than or equal to the feedback
  • the number of bits, and the number of feedback bits may be the sum of the number of codebook bits of the SPS feedback information in the candidate time unit and the number of codebook bits of the first feedback information.
  • the second condition may be: there is an uplink signal, and the uplink signal may include uplink data or dynamic feedback information.
  • the processing module may also be configured to determine the second uplink resource in the second time unit.
  • the processing module may be further configured to determine that the available SPS feedback resources in the second time unit are the second uplink resources if the second time unit satisfies the first condition and does not satisfy the second condition.
  • the processing module may be further configured to determine that the resource bearing the uplink signal in the second time unit is the second uplink resource if the second time unit satisfies the second condition.
  • the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit may include the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit, or the number of bits in the candidate time unit.
  • the minimum value of the codebook bit interval corresponding to the available SPS feedback resource may be greater than the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit.
  • the processing module may also be configured to determine the third uplink resource if the combined transmission condition is satisfied.
  • the third uplink resource may carry the first feedback information and the second feedback information.
  • the combined transmission condition may be: the second time unit includes the second feedback information, or the second uplink resource overlaps with the resource bearing the second feedback information.
  • the transceiver module may also be configured to send the first feedback information and the second feedback information on the third uplink resource.
  • the transceiver module may include a receiving module and a sending module.
  • the sending module is used for realizing the sending function of the communication device
  • the receiving module is used for realizing the receiving function of the communication device.
  • the communication device of the third aspect may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or the instruction, the communication device can execute the communication method described in the first aspect.
  • the communication device described in the third aspect may be a terminal device, a chip (system) or other components or components that can be provided in the terminal device, or a device including a terminal device. Not limited.
  • a communication device in a fourth aspect, includes: a processing module and a transceiver module.
  • the processing module is used to determine the first uplink resource.
  • the first uplink resource is located in the first time unit and carries the first feedback information, and the first feedback information is the feedback information corresponding to the SPS PDSCH.
  • the processing module is further configured to determine the second time unit and the second uplink resource if the time domain symbols occupied by the first uplink resources include downlink symbols and/or flexible symbols used for uplink transmission are not indicated.
  • the second uplink resource is located in the second time unit, the time domain symbols occupied by the second uplink resource are all symbols used for uplink transmission, and the time domain start position of the second uplink resource is located at the time of the first uplink resource. after the start of the field.
  • the transceiver module is configured to receive the first feedback information on the second uplink resource.
  • the second time unit may be located after the first time unit, or the second time unit and the first time unit may be the same time unit.
  • the relative position of the second uplink resource in the second time unit may be the same as the relative position of the first uplink resource in the first time unit.
  • the time domain width of the second uplink resource may be equal to the time domain width of the first uplink resource, and/or the frequency domain width of the second uplink resource may be equal to the frequency domain width of the first uplink resource.
  • the processing module may also be used to determine the second time unit.
  • the second time unit may be the candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit starting position, and each candidate time unit can satisfy: the first condition, and/or the second condition.
  • the first condition may be: there are available SPS feedback resources, the time domain symbols of the available SPS feedback resources are all symbols used for uplink transmission, and the maximum value of the codebook bit interval corresponding to the available SPS feedback resources may be greater than or equal to the feedback
  • the number of bits, and the number of feedback bits may be the sum of the number of codebook bits of the SPS feedback information in the candidate time unit and the number of codebook bits of the first feedback information.
  • the second condition may be: there is an uplink signal, and the uplink signal may include uplink data or dynamic feedback information.
  • the processing module may also be configured to determine the second uplink resource in the second time unit.
  • the processing module may be further configured to determine that the available SPS feedback resources in the second time unit are the second uplink resources if the second time unit satisfies the first condition and does not satisfy the second condition.
  • the processing module may be further configured to determine that the resource bearing the uplink signal in the second time unit is the second uplink resource if the second time unit satisfies the second condition.
  • the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit may include the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit, or the number of bits in the candidate time unit.
  • the minimum value of the codebook bit interval corresponding to the available SPS feedback resource may be greater than the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit.
  • the processing module may also be used to determine the third uplink resource if the combined reception condition is satisfied.
  • the third uplink resource may carry the first feedback information and the second feedback information.
  • the combined reception condition may be: the second time unit includes the second feedback information, or the second uplink resource overlaps with the resource bearing the second feedback information.
  • the transceiver module may also be configured to receive the first feedback information and the second feedback information on the third uplink resource.
  • the transceiver module may include a receiving module and a sending module.
  • the sending module is used for realizing the sending function of the communication device
  • the receiving module is used for realizing the receiving function of the communication device.
  • the communication device may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or the instruction
  • the communication apparatus can execute the communication method described in the second aspect.
  • the communication device described in the fourth aspect may be a network device (such as an access network device or a core network device, etc.), or a chip (system) or other components or components that can be provided in the network device. It may be a device including network equipment, which is not limited in this application.
  • a communication device configured to execute the communication method described in any one of the implementation manners of the first aspect and the second aspect.
  • the communication device described in the fifth aspect may be the terminal device described in the first aspect or the network device described in the second aspect, or may be provided in a chip (system) or other device of the terminal device or network device. A part or assembly, or an apparatus containing the terminal or network equipment.
  • the communication device described in the fifth aspect includes a corresponding module, unit, or means for implementing the communication method described in any one of the first aspect and the second aspect, and the module, unit, or means may be Implemented by hardware, implemented by software, or implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units for performing the functions involved in the above communication method.
  • a communication device in a sixth aspect, includes: a processor, where the processor is configured to execute the communication method described in any one of the possible implementation manners of the first aspect and the second aspect.
  • the communication device described in the sixth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the communication device described in the sixth aspect to communicate with other communication devices.
  • the communication apparatus described in the sixth aspect may further include a memory.
  • the memory can be integrated with the processor, or it can be provided separately.
  • the memory may be used to store the computer program and/or data involved in the communication method described in any one of the first aspect and the second aspect.
  • the communication device described in the sixth aspect may be the terminal device described in the first aspect, or the network device described in the second aspect, or may be provided in a chip (system) or a chip (system) of the terminal device or network device. other parts or assemblies, or apparatuses containing the terminal or network equipment.
  • a communication device in a seventh aspect, includes: a processor, which is coupled to the memory, and the processor is configured to execute a computer program stored in the memory, so that the communication device executes any one of the possible implementations of the first aspect and the second aspect. communication method.
  • the communication device may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the communication device described in the seventh aspect to communicate with other communication devices.
  • the communication device described in the seventh aspect may be the terminal device described in the first aspect, or the network device described in the second aspect, or may be provided in a chip (system) or a chip (system) of the terminal device or network device. other parts or assemblies, or apparatuses containing the terminal or network equipment.
  • a communication device in an eighth aspect, includes: a processor and an interface circuit. Wherein, the interface circuit is used to receive the code instruction and transmit it to the processor.
  • the processor is configured to run the above code instructions to execute the communication method described in any one of the implementation manners of the first aspect and the second aspect.
  • the communication device may further include a memory.
  • the memory can be integrated with the processor, or it can be provided separately.
  • the memory may be used to store the computer program and/or data involved in the communication method described in any one of the first aspect and the second aspect.
  • the communication device described in the eighth aspect may be the terminal device described in the first aspect, or the network device described in the second aspect, or may be provided in a chip (system) or a chip (system) of the terminal device or network device. other parts or assemblies, or apparatuses containing the terminal or network equipment.
  • a communication device in a ninth aspect, includes: a processor and a transceiver, the transceiver is used for information interaction between the communication device and other communication devices, and the processor executes program instructions to execute any one of the first aspect and the second aspect. the described communication method.
  • the communication device may further include a memory.
  • the memory can be integrated with the processor, or it can be provided separately.
  • the memory may be used to store the computer program and/or data involved in the communication method described in any one of the first aspect and the second aspect.
  • the communication device described in the ninth aspect may be the terminal device described in the first aspect, or the network device described in the second aspect, or may be provided in a chip (system) or a chip (system) of the terminal device or network device. other parts or assemblies, or apparatuses containing the terminal or network equipment.
  • a tenth aspect provides a processor.
  • the processor is configured to execute the communication method described in any one of the possible implementation manners of the first aspect and the second aspect.
  • a communication system in an eleventh aspect, includes one or more terminal devices and one or more network devices.
  • a twelfth aspect provides a computer-readable storage medium, comprising: a computer program or an instruction; when the computer program or instruction is run on a computer, the computer is made to execute any one of the first aspect and the second aspect.
  • the communication method described in the implementation mode is implemented.
  • a thirteenth aspect provides a computer program product, including a computer program or instructions, which, when the computer program or instructions are run on a computer, cause the computer to execute any one of the possible implementations of the first aspect and the second aspect. the communication method described.
  • FIG. 1 is a schematic diagram 1 of the time domain of SPS PDSCH transmission data provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of resource multiplexing provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the architecture of a communication system to which the communication method provided by the embodiment of the present application is applicable;
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a second time domain schematic diagram of SPS PDSCH transmission data provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram three of the time domain of SPS PDSCH transmission data provided by the embodiment of the present application.
  • FIG. 7 is a fourth time-domain schematic diagram of SPS PDSCH transmission data provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram five of the time domain of SPS PDSCH transmission data provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram 1 of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a second schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • time units in the new radio interface (NR) of 5G including: frame (frame), subframe (subframe), time slot and symbol (symbol).
  • the time length of one frame is 10 milliseconds (milisecond, ms), including 10 subframes, the time length of each subframe may be 1 ms, and one subframe may include one or more time slots.
  • a slot includes 12 symbols in the case of an extended cyclic prefix (ECP), and 14 symbols in the case of a normal cyclic prefix (NCP).
  • ECP extended cyclic prefix
  • NCP normal cyclic prefix
  • the symbols are divided into: uplink symbols (uplink symbols), downlink symbols (downlink symbols) and flexible symbols (flexible symbols).
  • the symbols here may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • the NR supports flexible configuration of the frame structure, that is, in a time slot, which symbols are uplink symbols, which symbols are downlink symbols, and which symbols are flexible symbols can be flexibly configured.
  • the configuration method may include: semi-persistent scheduling (SPS) configuration or dynamic (dynamic) configuration.
  • SPS semi-persistent scheduling
  • dynamic dynamic
  • the uplink symbols are called semi-static uplink symbols
  • the downlink symbols are called semi-static downlink symbols
  • the flexible symbols are called semi-static flexible symbols.
  • the uplink symbols are called dynamic uplink symbols
  • the downlink symbols are called dynamic downlink symbols
  • the flexible symbols are called dynamic flexible symbols.
  • the specific implementation process of the semi-static configuration and the dynamic configuration may refer to the provisions of the prior art, which will not be repeated here.
  • the flexible symbol can be modified as an uplink symbol or a downlink symbol
  • the flexible symbol modified into an uplink symbol can be referred to as a flexible symbol indicating that it is used for uplink transmission
  • the flexible symbol modified into a downlink symbol can be referred to as a flexible symbol indicating that it is used for downlink transmission. symbol.
  • the specific implementation process of modifying the flexible symbol into an uplink symbol or a downlink symbol may refer to the provisions of the prior art, which will not be repeated here.
  • Uplink symbols or flexible symbols indicating uplink transmission can be used for uplink transmission, and downlink symbols or flexible symbols indicating downlink transmission can be used for downlink transmission.
  • downlink symbols or flexible symbols indicating downlink transmission can be used for downlink transmission.
  • the flexible symbols not indicated for uplink transmission include: dynamic flexible symbols, semi-static flexible symbols, and flexible symbols indicated for downlink transmission.
  • Step 1 the network device sends configuration information to the terminal device, and the terminal device receives the configuration information from the network device.
  • the configuration information is used to indicate: the transmission period of the SPS PDSCH and the resources that carry the feedback information corresponding to the SPS PDSCH, and the like.
  • the feedback information corresponding to the SPS PDSCH here refers to the positive acknowledgment (acknowledge, ACK) information or the negative acknowledgment (non-acknowledge, NACK) information of the SPS PDSCH, and the feedback information corresponding to the SPS PDSCH can be included in the hybrid automatic repeat request (hybrid automatic retransmission request). repeat request acknowledgement, HARQ-ACK) codebook.
  • the resource that bears the feedback information corresponding to the SPS PDSCH may be a physical uplink control channel (physical uplink control channel, PUCCH).
  • the feedback information corresponding to the SPS PDSCH may be referred to as SPS feedback information
  • the resources bearing the feedback information corresponding to the SPS PDSCH may also be referred to as SPS feedback resources.
  • Step 2 the network device sends activation information to the terminal device, and the terminal device receives the activation information from the network device.
  • the activation information may be used to indicate: the time domain position where the SPS PDSCH is located, and the time domain position where the feedback information of the SPS PDSCH is located.
  • the activation information may be carried on a physical downlink control channel (physical downlink control channel, PDCCH).
  • the above activation information can be implemented through DCI, and the implementation manner is as follows:
  • the index value in the time domain resource table is indicated by the DCI, thereby indicating the time domain position where the SPS PDSCH is located.
  • Table 1 is a corresponding relationship table of index value, K0 and (S, L), that is, a real-time domain resource table.
  • K0 represents the number of time slots spaced between the PDCCH carrying DCI and the SPS PDSCH
  • (S, L) represents that the SPS PDSCH is located in the time slot from symbol S to symbol S+L.
  • time domain resource table may be predefined by a protocol, or configured through higher layer signaling or physical layer signaling.
  • the time domain position where the feedback information of the SPS PDSCH is located may be indicated by the DCI.
  • the indication information is carried by DCI, and the indication information is used to indicate the value of a K1 in the K1 set, and the value of K1 represents the number of time slots between the SPS PDSCH and the feedback information of the SPS PDSCH.
  • Step 3 the network device periodically sends the SPS PDSCH to the terminal device based on the transmission period and activation information of the SPS PDSCH.
  • the terminal device periodically receives the SPS PDSCH from the network device based on the transmission period and activation information of the SPS PDSCH.
  • Step 4 the terminal device determines the feedback information corresponding to each SPS PDSCH, and periodically sends the feedback information to the network device based on the transmission period and activation information of the SPS PDSCH.
  • the network device periodically receives feedback information from the terminal device based on the transmission period of the SPS PDSCH.
  • determining the feedback information corresponding to the SPS PDSCH by the terminal equipment may include: first, determining the feedback time unit; then, generating a HARQ-ACK codebook according to the feedback information corresponding to the SPS PDSCH; finally, determining the PUCCH resource bearing the HARQ-ACK codebook .
  • the feedback time unit can be determined to be time slot 4 first, and then the HARQ-ACK codebook is generated according to the feedback information corresponding to the SPS PDSCH, and finally the HARQ-ACK codebook is generated according to the feedback information corresponding to the SPS PDSCH.
  • the size of the ACK codebook determines the PUCCH resource that carries the HARQ-ACK codebook in the PUCCH set of slot 4.
  • the specific implementation manner of the terminal device determining the feedback information corresponding to the SPS PDSCH may refer to the prior art regulations, which will not be repeated here.
  • symbol 2, symbol 1, symbol 2, ... of slot 3, symbol 1, symbol 2 of slot n periodically send the SPS PDSCH to the terminal device.
  • the terminal device periodically receives the SPS PDSCH from the network device in the symbols 1 and 2 of the time slot 2, the symbols 1 and 2 of the time slot 3, ..., the symbols 1 and 2 of the time slot n, respectively.
  • the terminal device periodically sends feedback information to the network device in time slot 3, time slot 4, . . . , time slot n, respectively.
  • the network device periodically receives feedback information from the terminal device at timeslot 3, timeslot 4, ..., timeslot n, respectively.
  • n is a positive integer.
  • the first SPS PDSCH may be referred to as the SPS PDSCH with scheduling information
  • the SPS PDSCH after the first SPS PDSCH may be referred to as the SPS PDSCH without scheduling information.
  • the terminal device can periodically receive multiple SPS PDSCH, and can periodically Send feedback information corresponding to multiple SPS PDSCHs to the network device.
  • the terminal device can multiplex the feedback information corresponding to the two data services and send it .
  • the HARQ-ACK codebook corresponding to PDSCH1 is sent on PUCCH1
  • the HARQ-ACK codebook corresponding to PDSCH2 is sent on PUCCH2
  • PUCCH1 and PUCCH2 are located in the same time slot, then these two codes can be The book is reorganized into a new codebook, and a new PUCCH is determined to carry the new codebook in this time slot.
  • PUCCH3 carries the HARQ-ACK codebook of PDSCH1 and the HARQ-ACK codebook of PDSCH2.
  • the time domain position of PUCCH3 may or may not overlap with the time domain position of PUCCH1 and the time domain position of PUCCH2.
  • the feedback information corresponding to the SPS PDSCH with scheduling information and the feedback information corresponding to the SPS PDSCH without scheduling information are both indicated by K1, that is to say, each non-scheduling information is indicated by K1.
  • the time domain position where the feedback information corresponding to the SPS PDSCH of the information is located is fixed.
  • the resource carrying the feedback information corresponding to the SPS PDSCH is located in the semi-static downlink symbol.
  • the resource bearing the feedback information corresponding to the SPS PDSCH is located in the dynamic downlink symbol.
  • the resource carrying the feedback information corresponding to the SPS PDSCH is located in a flexible symbol that is not indicated for uplink transmission.
  • the resource of the feedback information corresponding to the SPS PDSCH without scheduling information is located in the downlink symbol, and/or the flexible symbol for uplink transmission is not indicated, it will not be sent.
  • the network device does not know whether the SPS PDSCH is successfully received. Therefore, if the network device retransmits the SPS PDSCH, resources will be wasted and the transmission efficiency will be low. If the network device does not retransmit the SPS PDSCH, it will lead to data loss and low reliability of data transmission.
  • the above cases 1 to 3 will occur frequently, that is, the feedback information corresponding to the SPS PDSCH without scheduling information will not be sent frequently, which will cause the network device to retransmit data frequently, resulting in packet loss.
  • the data transmission rate is high, the reliability of data transmission is low, and the transmission delay is large.
  • the embodiments of the present application provide a communication method and apparatus, so as to improve the reliability of data transmission, reduce the transmission delay, and improve the performance of the communication system. It should be noted that all the above-mentioned defects are the result obtained by the inventor after careful practical research. Therefore, the discovery process of the above problems and the solutions proposed in the following embodiments of the present application for the above problems should be regarded as contributions made by the inventor in the process of realizing the present application.
  • WiFi wireless fidelity
  • V2X vehicle-to-everything
  • D2D device-todevie
  • Communication systems Internet of Vehicles communication systems
  • 4th generation (4G) mobile communication systems such as long term evolution (LTE) systems
  • WiMAX worldwide interoperability for microwave access
  • 5th generation (5G) mobile communication systems such as new radio (NR) systems
  • 6G 6th generation
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 3 is a schematic structural diagram of a communication system to which the communication method provided by the embodiment of the present application is applied.
  • the communication system includes network equipment and terminal equipment.
  • the above-mentioned network device is a device located on the network side of the above-mentioned communication system and has a function of wireless transmission and reception, or a chip or a chip system that can be provided in the device.
  • the network devices include but are not limited to: access points (APs) in wireless fidelity (WiFi) systems, such as home gateways, routers, servers, switches, bridges, etc., evolved Node B (evolved Node B (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP) etc., it can also be 5G, such as a gNB in a new radio (NR) system, or a transmission point (TRP or TP), one
  • the above-mentioned terminal equipment is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or a chip system that can be provided in the terminal.
  • the terminal equipment may also be referred to as user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted terminals, RSUs with terminal functions, etc.
  • the terminal device of the present application may also be an on-board module, on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units.
  • the vehicle-mounted component, the vehicle-mounted chip or the vehicle-mounted unit can implement the communication method provided in this application.
  • FIG. 3 is a simplified schematic diagram of an example for ease of understanding, and the communication system may further include other network devices, and/or other terminal devices, which are not shown in FIG. 3 .
  • FIG. 4 is a first schematic flowchart of a communication method provided by an embodiment of the present application. This communication method can be applied to the communication between the terminal device and the network device shown in FIG. 3 .
  • the communication method may include the following steps:
  • a terminal device determines a first uplink resource.
  • the first uplink resource may be located in the first time unit, and may carry the first feedback information, and the first feedback information may be feedback information corresponding to the SPS PDSCH.
  • the first feedback information may include: feedback information corresponding to one or more SPS PDSCHs.
  • the configuration information of the multiple SPS PDSCHs here may be the same or different.
  • the above-mentioned first time unit may be a time slot.
  • the first feedback information includes feedback information corresponding to one SPS PDSCH as an example, and the above-mentioned S401 is described with reference to FIG. 5 .
  • the terminal device can determine: PUCCH1 is the first uplink resource , time slot 3 is the first time unit.
  • PUCCH1 is the first uplink resource
  • time slot 3 is the first time unit.
  • the terminal device determines a second time unit and a second uplink resource.
  • the second uplink resource is located in the second time unit, the time domain symbols occupied by the second uplink resource are all symbols used for uplink transmission, and the time domain start position of the second uplink resource may be located in the first uplink resource. after the start of the time domain.
  • the above-mentioned second uplink resource may include: PUCCH, or uplink shared physical channel (physical uplink shared channel, PUSCH) and the like.
  • the second unit of time may be a time slot.
  • the time domain start position of a resource may be: the first symbol in all time domain symbols occupied by the resource.
  • the time domain symbols occupied by PUCCH1 are symbols 1-symbol 3 of time slot 3, and these three symbols are all downlink symbols, that is to say, the first uplink resource occupies The time domain symbols of are all downlink symbols.
  • the terminal device may determine the second time unit and the second uplink resource in the resources after the symbol 1 of the time slot 3. For example, time slot 3 may be determined as the second time unit, and PUCCH 2 may be determined as the second uplink resource. Alternatively, time slot 4 may also be determined as the second time unit, and PUCCH 3 may be determined as the second uplink resource.
  • the time domain symbols occupied by PUCCH2 are symbols 11-symbol 13 of time slot 3, and these three symbols are all uplink symbols
  • the time domain symbols occupied by PUCCH3 are symbols 1-symbol 3 of time slot 4, and these three symbols are uplink symbols. All 3 symbols are upstream symbols.
  • the second time unit may be located after the first time unit, or the second time unit and the first time unit may be the same time unit. For example, if time slot 4 is determined as the second time unit and PUCCH 3 is determined as the second uplink resource, the second time unit is located after the first time unit. In other possible embodiments, if time slot 3 is determined as the second time unit and PUCCH 2 is determined as the second uplink resource, the second time unit and the first time unit are the same time unit.
  • the terminal device can either send the first feedback information in the first time unit, or send the first feedback information in a time unit after the first time unit, which can improve the flexibility of the terminal device to send the first feedback information.
  • the relative position of the second uplink resource in the second time unit and the relative position of the first uplink resource in the first time unit may be the same (referred to as Mode 1). ).
  • the relative position may be: the symbol number of the first symbol occupied by the resource in a time slot, that is, the number of symbols spaced between the first symbol and the symbol 0 of the time slot. For example, assuming that a time slot includes 14 symbols, the chronological order is: symbol 0, symbol 1, .
  • the relative position in is 1.
  • time domain starting position of PUCCH1 is the symbol 1 of time slot 3
  • the terminal device determines the second time unit and the second uplink resource, it can be in chronological order, and the number of time slots after time slot 3 In the time slots, the second uplink resource is determined with symbol 1 as the starting symbol.
  • time slot 4 may be determined as the second time unit
  • PUCCH3 may be determined as the second uplink resource.
  • the time domain range of the second uplink resource can be narrowed from all time domains after the time domain start position of the first uplink resource to the time domain in each time unit after the time domain start position of the first uplink resource.
  • Partial symbols that is to say, the terminal device can determine the second time unit and the second uplink resource in a relatively small time domain range, so that the calculation amount of the terminal device can be reduced and power consumption can be saved.
  • the time domain width of the second uplink resource may be equal to the time domain width of the first uplink resource, and/or the frequency of the second uplink resource
  • the domain width may be equal to the frequency domain width of the first uplink resource (referred to as mode 2).
  • time domain symbols occupied by PUCCH1 are symbols 1-symbol 3 of time slot 3, when the terminal device determines the second time unit and the second uplink resource, In symbols 1 to 3 of the following multiple time slots, the second uplink resource is determined, for example, PUCCH3 may be determined as the second uplink resource, and time slot 4 may be determined as the second time unit.
  • the time domain range of the second uplink resource can be narrowed from all the time domains after the time domain start position of the first uplink resource to a part of the time domain after the time domain start position of the first uplink resource.
  • the time domain is the time domain including the available uplink resources, and the size of the available uplink resources may be equal to the size of the first uplink resources, that is, the terminal device may determine the second time unit and the second time unit in a smaller time domain. In this way, the amount of calculation of the terminal equipment can be reduced and the power consumption can be saved.
  • the above-mentioned mode 1 and mode 2 can be implemented independently or in combination, that is, the relative position of the second uplink resource in the second time unit is the same as the relative position of the first uplink resource in the first time unit, and the first The time domain width of the second uplink resource is equal to the time domain width of the first uplink resource, and/or the frequency domain width of the second uplink resource is equal to the frequency domain width of the first uplink resource.
  • the time domain range in which the second uplink resource exists can be narrowed from all time domains after the time domain start position of the first uplink resource to the partial symbols in each time unit of the above partial time domain, that is to say , the terminal device can determine the second time unit and the second uplink resource in a smaller time domain range, thereby reducing the calculation amount of the terminal device and saving power consumption.
  • the above S402 may include the following implementations:
  • Mode 3 may include the following steps:
  • Step 5 determine the second time unit.
  • the second time unit may be a candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit. starting position, and each candidate time unit may satisfy: the first condition, and/or the second condition.
  • the above-mentioned first condition may be: there are available SPS feedback resources, the time domain symbols of the available SPS feedback resources are all symbols used for uplink transmission, and the maximum value of the codebook bit interval corresponding to the available SPS feedback resources may be greater than or equal to the feedback
  • the number of bits, where the number of feedback bits may be: the sum of the number of codebook bits of the SPS feedback information in the candidate time unit and the number of codebook bits of the first feedback information.
  • the available SPS feedback resources can carry: the SPS feedback information in the candidate time unit and the first feedback information.
  • the SPS feedback information in the candidate time unit may be: feedback information corresponding to part or all of the SPS PDSCH in the candidate time unit. For example, referring to FIG. 6, if time slot 4 is a candidate time unit, and time slot 4 includes: SPS feedback information 1, SPS feedback information 2, SPS feedback information 3, and SPS feedback information 4, then these 4 feedback information can be selected. Some or all of the information is used as the SPS feedback information in slot 4.
  • the above-mentioned second condition may be: there is an uplink signal, and the uplink signal may include uplink data or dynamic feedback information.
  • the resource bearing uplink data may be PUSCH or PUCCH or the like.
  • the dynamic feedback information may be feedback information corresponding to the dynamic PDSCH.
  • the above-mentioned SPS feedback information and available SPS feedback resources can refer to the description of "SPS PDSCH" in the above-mentioned technical term 2, and the specific description of the feedback information corresponding to the dynamic PDSCH can refer to the existing implementation, which will not be repeated here.
  • the candidate time unit may also be a time unit with available SPS feedback resources and/or uplink signals, and the time domain start position is not earlier than the time domain start position of the first time unit.
  • the first time unit may also be a candidate time unit.
  • the maximum value of the codebook bit interval corresponding to the above-mentioned available SPS feedback resources may be greater than or equal to the number of feedback bits, and may include: the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit may include the candidate time unit.
  • the sum of the codebook bits of the SPS feedback information in the candidate time unit and the first feedback information, or the minimum value of the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit, may be greater than the SPS feedback information in the candidate time unit and The sum of the codebook bits of the first feedback information.
  • the available SPS feedback resources can carry not only the SPS feedback information in the candidate time unit, but also the first feedback information, so that one feedback resource can be used to carry multiple feedback information, reducing the number of interactions between the terminal device and the network device. Reduce signaling overhead to improve communication efficiency.
  • Step 6 Determine the second uplink resource in the second time unit.
  • the SPS feedback information may include: feedback information corresponding to other SPS PDSCHs and the first feedback information.
  • the SPS feedback information in time slot 4 includes the first feedback information and other SPS feedback information.
  • time slot 3 is the first time unit
  • PUCCH1 is the first uplink resource
  • there are available SPS feedback resources and uplink signals in time slot 4 there are uplink signals in time slot 5, and there is available SPS feedback in time slot 6 resources, so that slot 4, slot 5, and slot 6 are all candidate time units.
  • time slot 4 is the most advanced candidate time unit in the time domain among the several candidate time units
  • time slot 4 can be determined as the second time unit, and then the terminal device can determine the second uplink resource in time slot 4.
  • the terminal device may determine the resource carrying the uplink signal in the time slot 4 as the second uplink resource, that is, the first feedback information is carried by the resource carrying the uplink signal in the time slot 4 .
  • the terminal device when it determines the second uplink resource in the second time unit, it can carry the first feedback information through the existing available SPS feedback resources in the time unit, or carry the first feedback information through the existing resources in the time unit that carry the uplink signal.
  • One feedback information that is to say, one feedback resource can be used to carry multiple feedback information, thereby reducing the number of interactions between the terminal device and the network device, reducing signaling overhead, and improving communication efficiency.
  • determining the second uplink resource in the second time unit may include: if the second time unit satisfies the first condition and does not satisfy the second condition, determining the available SPS feedback resources in the second time unit is the second uplink resource. Alternatively, if the second time unit satisfies the second condition, it is determined that the resource bearing the uplink signal in the second time unit is the second uplink resource.
  • the determining in step 6 that the available SPS feedback resources in the second time unit are the second uplink resources may include: first, determining the SPS feedback information in the second time unit. Then, according to the sum of the payload size of the SPS feedback information and the payload size of the first feedback information, the available SPS feedback resources are determined in the semi-persistently scheduled PUCCH resource set in the second time unit. Finally, the available SPS feedback resource is determined as the second uplink resource.
  • determining the available SPS feedback resources in the semi-persistently scheduled PUCCH resource set of the second time unit may include: determining one or more first available PUCCH resources in the semi-persistently scheduled PUCCH resource set of the second time unit, wherein, Each of the first available PUCCH resources satisfies: the occupied time domain symbols are all symbols used for uplink transmission, and the maximum value of the corresponding codebook bit interval may be greater than or equal to the above-mentioned number of feedback bits.
  • the first available PUCCH resource with the shortest frequency domain width and/or time domain width, or the first available PUCCH resource with the earliest time domain starting position is determined as the available SPS feedback resource.
  • the determining in step 6 that the resource bearing the uplink signal in the second time unit is the second uplink resource may include: first, determining the dynamic feedback information in the second time unit. Then, the dynamic feedback information and the first feedback information are combined into one feedback information. After that, according to the payload size of the combined feedback information, the resource bearing the uplink signal is determined in the dynamic PUCCH resource set of the second time unit. Finally, the resource bearing the uplink signal is determined as the second uplink resource.
  • determining the resource bearing the uplink signal in the dynamic PUCCH resource set of the second time unit may include: according to the payload size of the combined feedback information and the physical uplink control channel resource (PUCCH resource indicator, PRI) in the DCI, One or more second available PUCCH resources are determined in the dynamic PUCCH resource set. Wherein, each second available PUCCH resource satisfies: the occupied time domain symbols are all symbols used for uplink transmission, and the maximum value of the corresponding codebook bit interval may be greater than or equal to the above-mentioned number of feedback bits.
  • the second available PUCCH resource with the shortest frequency domain width and/or time domain width, or the second available PUCCH resource with the earliest time domain starting position is determined as the resource bearing the uplink signal.
  • the terminal device can preferentially carry the first feedback information through the existing resource carrying the uplink signal in the time unit, because the resource carrying the uplink signal can be a dynamic feedback resource (such as dynamic PDSCH), and compared with the available resources
  • the resource carrying the uplink signal can be a dynamic feedback resource (such as dynamic PDSCH)
  • the first feedback information is preferentially carried by the resources carrying the uplink signal, which can improve the reliability of data transmission and reduce the transmission delay, so as to improve the reliability of data transmission. communication efficiency.
  • step 7 may be performed instead of the step 6, so as to determine the second uplink resource in the second time unit:
  • Step 7 Determine the available SPS feedback resource in the second time unit as the second uplink resource, or determine the resource bearing the uplink signal in the second time unit as the second uplink resource.
  • step 6 the difference between the two implementations is that in step 6, the first feedback information can be carried preferentially by the existing resource carrying the uplink signal in the time unit, while step 7 is to carry the first feedback information.
  • the available SPS feedback resource or the resource bearing the uplink signal in the second time unit is determined as the second uplink resource. Therefore, the effect of step 7 includes: determining the available SPS feedback resource in the second time unit or the resource carrying the uplink signal as the second uplink resource, and one feedback resource can be used to carry multiple feedback information, thereby reducing the need for the terminal equipment and the network. The number of device interactions is reduced, signaling overhead is reduced, and communication efficiency is improved.
  • Manner 4 Determine the second time unit, and determine the second uplink resource in the second time unit.
  • the second time unit may be a candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit. starting position, and each candidate time unit can satisfy the candidate condition.
  • the candidate condition may include any one of the following: the presence of uplink symbols, the presence of feedback information, the presence of dynamic feedback information, or the presence of SPS feedback information.
  • mode 4 and mode 3 can be replaced with each other. Therefore, the implementation and effect of mode 4 can refer to mode 3, which will not be repeated here.
  • the third time unit may be: a time unit after the time domain start position of the first uplink resource and including available uplink resources, and the time domain symbols occupied by the available uplink resources are all symbols used for uplink transmission.
  • the third time unit is determined as the second time unit, and the available uplink resources in the third time unit are determined as the second uplink resources.
  • Example 1 First, determine the size and location of the second uplink resource.
  • the size of the second uplink resource is equal to the size of the first uplink resource, and the relative position of the second uplink resource in one time unit is the same as the relative position of the first uplink resource in the first time unit.
  • the size of one resource is equal to the size of another resource may be: the time domain width of one resource is equal to the time domain width of the other resource, and/or the frequency domain width of one resource is equal to the frequency domain width of the other resource .
  • the third time unit is determined according to the size and location of the second uplink resource.
  • the third time unit may be: after the first time unit, and including the first time unit of the third available uplink resource, the size of the third available uplink resource is equal to the size of the first uplink resource, the third available uplink resource
  • the position of the resource in the third time unit is the same as the position of the first uplink resource in the first time unit, and the time domain symbols occupied by the third available uplink resource are all symbols used for uplink transmission.
  • the third time unit is determined as the second time unit, and the third available uplink resource in the third time unit is determined as the second uplink resource.
  • time slot 3 is the first time unit
  • PUCCH1 is the first uplink resource
  • PUCCH1 is located in symbol 1 to symbol 3 of time slot 3 .
  • the terminal device may, in time sequence, start from time slot 3, and in symbols 1-3 of each time slot after time slot 3, determine the first time slot with the third available uplink resource as the third time unit , as shown in time slot 4 in Figure 5.
  • time slot 4 is determined as the second time unit
  • PUCCH 3 in symbol 1 to symbol 3 of time slot 4 is determined as the second uplink resource.
  • Example 2 First, determine the size of the second uplink resource.
  • the size of the second uplink resource is equal to the size of the first uplink resource.
  • the third time unit is determined according to the size of the second uplink resource.
  • the third time unit may be the first time unit after the first time unit and including the fourth available uplink resource, the size of the fourth available uplink resource being equal to the size of the first uplink resource.
  • the third time unit is determined as the second time unit, and the fourth available uplink resource in the third time unit is determined as the second uplink resource.
  • time slot 3 is the first time unit
  • PUCCH1 is the first uplink resource
  • PUCCH1 is located in symbol 1-symbol 3 of time slot 3 .
  • the terminal equipment may start from the symbol 3 of the time slot 3 in time sequence, and in each symbol after the symbol 3 of the time slot 3, determine the first time slot with the fourth available uplink resource as the third time unit, Slot 3 in Figure 7. Then, the time slot 3 is determined as the second time unit, and the PUCCH2 in the symbol 11-symbol 13 of the time slot 3 is determined as the second uplink resource.
  • Example 3 First, determine the fifth available uplink resource according to the size of the first uplink resource.
  • the fifth available uplink resource may be an uplink resource located after the first uplink resource in the time domain, and the size of the fifth available uplink resource is greater than or equal to the size of the first uplink resource.
  • the fifth available uplink resource is determined as the second uplink resource, and the time unit where the fifth available uplink resource is located is determined as the second time unit.
  • time slot 3 is the first time unit
  • PUCCH1 is the first uplink resource.
  • the terminal device can start from time slot 3 in time sequence, and in the PUCCH resource set (including PUCCH resource set 1, PUCCH resource set 2, and PUCCH resource set 3) of each time slot after time slot 3, the first The time slot in which the fifth available uplink resource exists is determined as the third time unit, such as time slot 4 in FIG. 8 . Then, time slot 4 is determined as the second time unit, and PUCCH2 of time slot 4 is determined as the second uplink resource.
  • method 5 provides a variety of implementations for determining the second time unit and the second uplink resource, and the feedback information can be delayed to the second uplink resource transmission, so as to avoid the feedback information being canceled and sent, so , the network device can determine whether the SPS PDSCH is successfully received according to the feedback information, and determine whether to retransmit the data, so as to reduce the probability of data loss, improve the reliability of data transmission, and reduce the number of data retransmissions, save resources, and improve transmission efficiency. , thereby improving communication efficiency.
  • the second time unit determined based on the manners 3 to 5 may be located after the first time unit, or the second time unit and the first time unit may be the same time unit.
  • the relative positions of the second uplink resources in the second time unit determined based on the manners 3 to 5 may be the same as the relative positions of the first uplink resources in the first time unit.
  • the relative positions of the second uplink resources in the second time unit determined based on the manners 3 to 5 may be the same as the relative positions of the first uplink resources in the first time unit.
  • the above-mentioned symbols for uplink transmission may include one or more of the following: semi-statically configured uplink symbols, dynamically indicated flexible symbols for uplink transmission, or flexible symbols configured for uplink transmission, and the like.
  • the communication method shown in FIG. 4 may further include the following steps:
  • Step 8 If the combined transmission condition is satisfied, determine the third uplink resource.
  • the third uplink resource may carry the first feedback information and the second feedback information.
  • the combined transmission condition may be: the second time unit includes the second feedback information, or the second uplink resource overlaps with the resource bearing the second feedback information.
  • the above-mentioned second feedback information may be uplink data, for example, feedback information corresponding to SPS PDSCH, feedback information corresponding to dynamic PDSCH, and the like.
  • the terminal device may determine the third uplink resource by multiplexing to carry the first feedback information and Second feedback information.
  • the third uplink resource here may be the same as the second uplink resource, or may be different from the second uplink resource.
  • the terminal device may also send the first feedback information and the second feedback information on the third uplink resource.
  • the terminal device sends the first feedback information on the second uplink resource, and the network device receives the first feedback information on the second uplink resource.
  • the network device After the network device receives the first feedback information, if the first feedback information includes the acknowledgment information, it is determined that the terminal device has successfully received the SPS PDSCH. If the first feedback information includes negative acknowledgement information, it is determined that the terminal device fails to receive, and the network device can retransmit the SPS PDSCH to the terminal device.
  • the terminal device may determine the second time unit and the second uplink resource in the resource after the time domain starting position of the first uplink resource, and send the first feedback information on the second uplink resource. In this way, when the feedback information corresponding to the SPS PDSCH is not sent on the first uplink resource, the terminal device can delay the sending of the feedback information to the second uplink resource.
  • the network device can determine whether the SPS PDSCH is successfully received according to the feedback information, and determine whether to retransmit the data, so as to reduce the probability of data loss, improve the reliability of data transmission, and reduce the number of data retransmissions, save resources, and improve transmission. efficiency, thereby improving communication efficiency.
  • FIG. 9 is a first structural schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 900 includes: a processing module 901 and a transceiver module 902 .
  • FIG. 9 only shows the main components of the communication device.
  • the communication apparatus 900 can be applied to the communication system shown in FIG. 3 to perform the functions of the terminal device in the communication method shown in FIG. 4 .
  • the processing module 901 is configured to determine the first uplink resource. Wherein, the first uplink resource is located in the first time unit, and carries the first feedback information, and the first feedback information is the feedback information corresponding to the SPS PDSCH. The processing module 901 is further configured to determine the second time unit and the second uplink resource if the time domain symbols occupied by the first uplink resources include downlink symbols, and/or flexible symbols used for uplink transmission are not indicated.
  • the second uplink resource is located in the second time unit, the time domain symbols occupied by the second uplink resource are all symbols used for uplink transmission, and the time domain start position of the second uplink resource is located at the time of the first uplink resource. after the start of the field.
  • the transceiver module 902 is configured to send the first feedback information on the second uplink resource.
  • the second time unit may be located after the first time unit, or the second time unit and the first time unit may be the same time unit.
  • the relative position of the second uplink resource in the second time unit may be the same as the relative position of the first uplink resource in the first time unit.
  • the time domain width of the second uplink resource may be equal to the time domain width of the first uplink resource, and/or the frequency domain width of the second uplink resource may be equal to the frequency domain width of the first uplink resource.
  • the processing module 901 may also be used to determine the second time unit.
  • the second time unit may be the candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit starting position, and each candidate time unit can satisfy: the first condition, and/or the second condition.
  • the first condition may be: there are available SPS feedback resources, the time domain symbols of the available SPS feedback resources are all symbols used for uplink transmission, and the maximum value of the codebook bit interval corresponding to the available SPS feedback resources may be greater than or equal to the feedback
  • the number of bits, and the number of feedback bits may be the sum of the number of codebook bits of the SPS feedback information in the candidate time unit and the number of codebook bits of the first feedback information.
  • the second condition may be: there is an uplink signal, and the uplink signal may include uplink data or dynamic feedback information.
  • the processing module 901 may also be configured to determine the second uplink resource in the second time unit.
  • the processing module 901 may be further configured to determine that the available SPS feedback resources in the second time unit are the second uplink resources if the second time unit satisfies the first condition and does not satisfy the second condition.
  • the processing module 901 may be further configured to determine that the resource carrying the uplink signal in the second time unit is the second uplink resource if the second time unit satisfies the second condition.
  • the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit may include the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit, or the number of bits in the candidate time unit.
  • the minimum value of the codebook bit interval corresponding to the available SPS feedback resource may be greater than the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit.
  • the processing module 901 may also be configured to determine the third uplink resource if the combined transmission condition is satisfied.
  • the third uplink resource may carry the first feedback information and the second feedback information.
  • the combined transmission condition may be: the second time unit includes the second feedback information, or the second uplink resource overlaps with the resource bearing the second feedback information.
  • the transceiver module 902 may also be configured to send the first feedback information and the second feedback information on the third uplink resource.
  • the transceiver module 902 may include a receiving module and a transmitting module (not shown in FIG. 9 ).
  • the sending module is used to implement the sending function of the communication apparatus 900
  • the receiving module is used to implement the receiving function of the communication apparatus 900 .
  • the communication apparatus 900 may further include a storage module (not shown in FIG. 9 ), where the storage module stores programs or instructions.
  • the processing module 901 executes the program or instruction
  • the communication apparatus 900 can execute the function of the terminal device in the communication method shown in FIG. 4 .
  • the processing module 901 involved in the communication device 900 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module 902 may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver module Receiver or Transceiver Unit.
  • the communication apparatus 900 may be the terminal equipment shown in FIG. 3 , or may be a chip (system) or other components or components provided in the above-mentioned terminal equipment, or a device including the terminal equipment. This is not limited.
  • the communication apparatus 900 may be applied to the communication system shown in FIG. 3 to perform the functions of the network device in the communication method shown in FIG. 4 .
  • the processing module 901 is configured to determine the first uplink resource.
  • the first uplink resource is located in the first time unit and carries the first feedback information, and the first feedback information is the feedback information corresponding to the SPS PDSCH.
  • the processing module 901 is further configured to determine the second time unit and the second uplink resource if the time domain symbols occupied by the first uplink resources include: downlink symbols, and/or flexible symbols used for uplink transmission are not indicated.
  • the second uplink resource is located in the second time unit, the time domain symbols occupied by the second uplink resource are all symbols used for uplink transmission, and the time domain start position of the second uplink resource is located at the time of the first uplink resource. after the start of the field.
  • the transceiver module 902 is configured to receive the first feedback information on the second uplink resource.
  • the second time unit may be located after the first time unit, or the second time unit and the first time unit may be the same time unit.
  • the relative position of the second uplink resource in the second time unit may be the same as the relative position of the first uplink resource in the first time unit.
  • the time domain width of the second uplink resource may be equal to the time domain width of the first uplink resource, and/or the frequency domain width of the second uplink resource may be equal to the frequency domain width of the first uplink resource.
  • the processing module 901 may also be used to determine the second time unit.
  • the second time unit may be the candidate time unit whose time domain position is the most advanced among the one or more candidate time units, and the time domain start position of each candidate time unit may not be earlier than the time domain position of the first time unit starting position, and each candidate time unit can satisfy: the first condition, and/or the second condition.
  • the first condition may be: there are available SPS feedback resources, the time domain symbols of the available SPS feedback resources are all symbols used for uplink transmission, and the maximum value of the codebook bit interval corresponding to the available SPS feedback resources may be greater than or equal to the feedback
  • the number of bits, and the number of feedback bits may be the sum of the number of codebook bits of the SPS feedback information in the candidate time unit and the number of codebook bits of the first feedback information.
  • the second condition may be: there is an uplink signal, and the uplink signal may include uplink data or dynamic feedback information.
  • the processing module 901 may also be configured to determine the second uplink resource in the second time unit.
  • the processing module 901 may be further configured to determine that the available SPS feedback resources in the second time unit are the second uplink resources if the second time unit satisfies the first condition and does not satisfy the second condition.
  • the processing module 901 may be further configured to determine that the resource carrying the uplink signal in the second time unit is the second uplink resource if the second time unit satisfies the second condition.
  • the codebook bit interval corresponding to the available SPS feedback resources in the candidate time unit may include the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit, or the number of bits in the candidate time unit.
  • the minimum value of the codebook bit interval corresponding to the available SPS feedback resource may be greater than the sum of the codebook bits of the SPS feedback information and the first feedback information in the candidate time unit.
  • the processing module 901 may also be configured to determine the third uplink resource if the combined reception condition is satisfied.
  • the third uplink resource may carry the first feedback information and the second feedback information.
  • the combined reception condition may be: the second time unit includes the second feedback information, or the second uplink resource overlaps with the resource bearing the second feedback information.
  • the transceiver module 902 may also be configured to receive the first feedback information and the second feedback information on the third uplink resource.
  • the communication apparatus 900 may further include a storage module (not shown in FIG. 9 ), where the storage module stores programs or instructions.
  • the processing module 901 executes the program or the instruction, the communication apparatus 900 can perform the function of the network device in the communication method shown in FIG. 4 .
  • the processing module 901 involved in the communication device 900 may be implemented by a processor or a processor-related circuit component, and may be a processor or a processing unit;
  • the transceiver module 902 may be implemented by a transceiver or a transceiver-related circuit component, and may be a transceiver module Receiver or Transceiver Unit.
  • the communication device 900 may be the network device shown in FIG. 3 , or may be a chip (system) or other components or components provided in the above-mentioned network device, or a device including the network device. This is not limited.
  • FIG. 10 is a second schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device, or may be a chip (system) or other components or assemblies that can be provided in the terminal device or the network device.
  • the communication apparatus 1000 may include a processor 1001 .
  • the communication apparatus 1000 may further include a memory 1002 and/or a transceiver 1003 .
  • the processor 1001 is coupled with the memory 1002 and the transceiver 1003, such as can be connected through a communication bus.
  • the processor 1001 is the control center of the communication device 1000, which may be one processor or a general term for multiple processing elements.
  • the processor 1001 is one or more central processing units (CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more of the embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 1001 may execute various functions of the communication device 1000 by running or executing software programs stored in the memory 1002 and calling data stored in the memory 1002 .
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 10 .
  • the communication apparatus 1000 may also include multiple processors, for example, the processor 1001 and the processor 1004 shown in FIG. 10 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 1002 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 1001.
  • the memory 1002 is used to store the software program for executing the solution of the present application, and is controlled and executed by the processor 1001.
  • the processor 1001. For the specific implementation, reference may be made to the above method embodiments, which will not be repeated here.
  • the memory 1002 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM), or a random access memory (RAM) or other type of static storage device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions which may also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical discs storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 1002 may be integrated with the processor 1001, or may exist independently, and be coupled to the processor 1001 through an interface circuit (not shown in FIG. 10) of the communication
  • the transceiver 1003 is used for communication with other communication devices.
  • the communication apparatus 1000 is a terminal device, and the transceiver 1003 may be used to communicate with a network device or communicate with another terminal device.
  • the communication apparatus 1000 is a network device, and the transceiver 1003 may be used to communicate with a terminal device or communicate with another network device.
  • transceiver 1003 may include a receiver and a transmitter (not shown separately in Figure 10). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 1003 may be integrated with the processor 1001, or may exist independently, and be coupled to the processor 1001 through an interface circuit (not shown in FIG. 10 ) of the communication device 1000, which is not made in this embodiment of the present application Specific restrictions.
  • the structure of the communication device 1000 shown in FIG. 10 does not constitute a limitation of the communication device, and an actual communication device may include more or less components than those shown in the figure, or combine some components, or Different component arrangements.
  • Embodiments of the present application provide a communication system.
  • the communication system includes the above-mentioned one or more terminal devices and one or more network devices.
  • the processor in this embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), special integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains a set of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请提供一种通信方法及装置,能够解决解决SPS PDSCH数据传输可靠性低,传输效率低的问题,以提高通信效率,可应用于4G系统、5G系统,以及未来的通信系统,如6G系统。该方法包括:确定第一上行资源。其中,第一上行资源承载SPS PDSCH对应的反馈信息。若第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二上行资源,并在第二上行资源上发送该反馈信息。如此,反馈信息在第一上行资源不被发送时,可以被延后至第二上行资源发送,从而网络设备可以根据该反馈信息确定是否重传数据,以减少数据丢失概率,提高数据传输可靠性,且可以降低数据重传次数,提高传输效率。

Description

通信方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
第五代(5th generation,5G)移动通信系统与前几代移动通信系统相比,对数据传输速率、数据传输可靠性、传输时延以及功耗的要求更高。以5G的超可靠低延迟通信(ultra-reliable and low-latency communication,URLLC)业务为例,该业务的需求包括:数据传输可靠性达到99.999%,传输时延低于1毫秒(milisecond,ms),以及尽可能减小指令开销。因此,如何提高数据传输可靠性,降低传输时延,以及降低信令开销,从而降低功耗,成为亟需解决的问题。
目前,可以通过半静态调度(semi-persistent scheduling,SPS)物理下行共享信道(physical downlink shared channel,PDSCH)传输数据,但是半静态调度物理下行共享信道(下文简称为SPS PDSCH)对应的反馈信息可能被取消(drop)发送,网络设备不知道SPS PDSCH是否接收成功。因此,若网络设备直接重传SPS PDSCH,则会浪费资源,导致传输效率低下,若网络设备不重传SPS PDSCH,则又会导致数据丢失,数据传输可靠性低下。
发明内容
本申请实施例提供一种通信方法及装置,能够解决SPS PDSCH数据传输可靠性低,传输效率低的问题,以提高通信效率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该通信方法可以应用于终端设备,该通信方法包括:确定第一上行资源。其中,第一上行资源位于第一时间单元,且承载第一反馈信息,第一反馈信息为半静态调度物理下行共享信道对应的反馈信息。若第一上行资源所占用的时域符号(symbol)包括:下行符号(downlink symbol),和/或,未指示用于上行传输的灵活符号(flexible symbol),则确定第二时间单元和第二上行资源。其中,第二上行资源位于第二时间单元内,第二上行资源所占用的时域符号均为用于上行传输的符号,且第二上行资源的时域起始位置位于第一上行资源的时域起始位置之后。在第二上行资源上发送第一反馈信息。
基于第一方面所述的通信方法,若第一上行资源被取消发送,例如第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则终端设备可以在第一上行资源的时域起始位置之后的资源中,确定第二时间单元和第二上行资源,并在第二上行资源上发送第一反馈信息。如此,SPS PDSCH对应的反馈信息在第一上行资源不被发送时,终端设备可以将反馈信息延后至第二上行资源发送。如此,网络设备可以根据该反馈信息确定SPS PDSCH是否接收成功,并确定是否重传数据,以减少数据丢失的概率,提高数据传输可靠性,且可以降低数据重传的次数,节省资源,提高传输效率,进而提高通信效率。
一种可能的设计方案中,第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。如此,终端设备既可以在第一时间单元发送第一反馈信息,也可以在第一时间单元之后的时间单元发送第一反馈信息,可以提高终端设备发送第一反馈信息的灵活性。
可选地(下文简称为方式1),第二上行资源在第二时间单元中的相对位置与第一上行资源在第一时间单元中的相对位置可以相同。这样,存在第二上行资源的时域范围,可以从第一上行资源的时域起始位置之后的所有时域,缩小到第一上行资源的时域起始位置之后的每个时间单元中的部分符号,也即是说,终端设备可以在较小的时域范围确定第二时间单元和第二上行资源,从而能够减少终端设备的计算量,节省功耗。
或者,可选地(下文简称为方式2),第二上行资源的时域宽度与第一上行资源的时域宽度可以相等,和/或,第二上行资源的频域宽度与第一上行资源的频域宽度可以相等。换句话说,第二上行资源的大小等于第一上行资源的大小。这样,存在第二上行资源的时域范围,可以从第一上行资源的时域起始位置之后的所有时域,缩小到第一上行资源的时域起始位置之后的部分时域,该部分时域为包括可用上行资源的时域,该可用上行资源的大小可以与第一上行资源的大小相等,也即是说,终端设备可以在较小的时域范围确定第二时间单元和第二上行资源,从而能够减少终端设备的计算量,节省功耗。
上述的方式1、方式2可以独立实施,也可以结合实施。方式1与方式2结合实施的方式可以包括:第二上行资源在第二时间单元中的相对位置与第一上行资源在第一时间单元中的相对位置相同,且第二上行资源的时域宽度与第一上行资源的时域宽度相等,和/或,第二上行资源的频域宽度与第一上行资源的频域宽度相等。这样,存在第二上行资源的时域范围,可以从第一上行资源的时域起始位置之后的所有时域,缩小至上述部分时域的每个时间单元中的部分符号,也即是说,终端设备可以在更小的时域范围确定第二时间单元和第二上行资源,从而能够减少终端设备的计算量,节省功耗。
一种可能的设计方案中,上述的确定第二时间单元和第二上行资源,可以包括:确定第二时间单元。其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置可以均不早于第一时间单元的时域起始位置,且每个候选时间单元可以均满足:第一条件,和/或,第二条件。其中,第一条件可以为:存在可用SPS反馈资源,可用SPS反馈资源的时域符号均为用于上行传输的符号,且可用SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,反馈比特数可以为候选时间单元中的SPS反馈信息的码本比特数与第一反馈信息的码本比特数之和。第二条件可以为:存在上行信号,上行信号可以包括上行数据或动态反馈信息。在第二时间单元中确定第二上行资源。这样,终端设备在第二时间单元中确定第二上行资源时,可以通过时间单元中已存在的可用SPS反馈资源承载第一反馈信息,或者通过时间单元中已存在的承载上行信号的资源承载第一反馈信息,也即是说,可以用一个反馈资源承载多个反馈信息,从而可以减少终端设备与网络设备的交互次数,降低信令开销,以提高通信效率。
可选地,上述的在第二时间单元中确定第二上行资源,可以包括:若第二时间单元满足第一条件且不满足第二条件,则确定第二时间单元中的可用SPS反馈资源为第二上行资源。或者,若第二时间单元满足第二条件,则确定第二时间单元中承载上行信号的资源为第二上行资源。这样,可以优先通过时间单元中已存在的承载上行信号的资源承载第一反馈信息,由于承载上行信号的资源可以为动态反馈资源(如动态调度的PDSCH对应的反馈资源),且相较于可用SPS反馈资源,动态反馈资源所占用的信道的质量往往更好,反馈成功率更高,因此优先通过承载上行信号的资源承载第一反馈信息,能够提高数据传输可靠性,降低传输时延,以提高通信效率。
可选地,候选时间单元中的可用SPS反馈资源对应的码本比特区间,可以包含候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和,或者,候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,可以大于候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和。换句话说,可用SPS反馈资源不仅能够承载候选时间单元中的SPS反馈信息,还能够承载第一反馈信息,从而可以用一个新的反馈资源承载多个反馈信息,减少终端设备与网络设备的交互次数,降低信令开销,以提高通信效率。
一种可能的设计方案中,上述的确定第二时间单元和第二上行资源之后,第一方面所述的通信方法还可以包括:若满足合并发送条件,则确定第三上行资源;第三上行资源承载第一反馈信息和第二反馈信息。其中,合并发送条件可以为:第二时间单元包括第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠。在第三上行资源上发送第一反馈信息和第二反馈信息。这样,不仅可以用一个反馈资源承载多个反馈信息,减少终端设备与网络设备的交互次数,降低信令开销,还能够通过资源复用的方式,避免资源冲突,减少第一反馈信息被取消发送的次数,从而可以提高数据传输可靠性,降低传输时延,以提高通信效率。
第二方面,提供一种通信方法。该通信方法可以应用于网络设备,该通信方法包括:确定第一上行资源。其中,第一上行资源位于第一时间单元,且承载第一反馈信息,第一反馈信息为SPS PDSCH对应的反馈信息。若第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源。其中,第二上行资源位于第二时间单元内,第二上行资源所占用的时域符号均为用于上行传输的符号,且第二上行资源的时域起始位置位于第一上行资源的时域起始位置之后。在第二上行资源上接收第一反馈信息。
一种可能的设计方案中,第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。
可选地,第二上行资源在第二时间单元中的相对位置与第一上行资源在第一时间单元中的相对位置可以相同。
一种可能的设计方案中,第二上行资源的时域宽度与第一上行资源的时域宽度可以相等,和/或,第二上行资源的频域宽度与第一上行资源的频域宽度可以相等。
一种可能的设计方案中,上述的确定第二时间单元和第二上行资源,可以包括:确定第二时间单元。其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置可以均不早于第一时间单 元的时域起始位置,且每个候选时间单元可以均满足:第一条件,和/或,第二条件。其中,第一条件可以为:存在可用SPS反馈资源,可用SPS反馈资源的时域符号均为用于上行传输的符号,且可用SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,反馈比特数可以为候选时间单元中的SPS反馈信息的码本比特数与第一反馈信息的码本比特数之和。第二条件可以为:存在上行信号,上行信号可以包括上行数据或动态反馈信息。在第二时间单元中确定第二上行资源。
可选地,上述的在第二时间单元中确定第二上行资源,可以包括:若第二时间单元满足第一条件且不满足第二条件,则确定第二时间单元中的可用SPS反馈资源为第二上行资源。或者,若第二时间单元满足第二条件,则确定第二时间单元中承载上行信号的资源为第二上行资源。
可选地,候选时间单元中的可用SPS反馈资源对应的码本比特区间,可以包含候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和,或者,候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,可以大于候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和。
一种可能的设计方案中,第二方面所述的通信方法还可以包括:若满足合并接收条件,则确定第三上行资源;第三上行资源承载第一反馈信息和第二反馈信息。其中,合并接收条件可以为:第二时间单元包括第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠。在第三上行资源上接收第一反馈信息和第二反馈信息。
此外,第二方面所述的通信方法的技术效果可以参考第一方面所述的通信方法的技术效果,此处不再赘述。
第三方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。其中,处理模块,用于确定第一上行资源。其中,第一上行资源位于第一时间单元,且承载第一反馈信息,第一反馈信息为SPS PDSCH对应的反馈信息。处理模块,还用于若第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源。其中,第二上行资源位于第二时间单元内,第二上行资源所占用的时域符号均为用于上行传输的符号,且第二上行资源的时域起始位置位于第一上行资源的时域起始位置之后。收发模块,用于在第二上行资源上发送第一反馈信息。
一种可能的设计方案中,第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。
可选地,第二上行资源在第二时间单元中的相对位置可以与第一上行资源在第一时间单元中的相对位置相同。
或者,可选地,第二上行资源的时域宽度可以与第一上行资源的时域宽度相等,和/或,第二上行资源的频域宽度可以与第一上行资源的频域宽度相等。
一种可能的设计方案中,处理模块,还可以用于确定第二时间单元。其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均可以不早于第一时间单元的时域起始位置,且每个候选时间单元均可以满足:第一条件,和/或,第二条件。其中,第一条件可以为:存在可用SPS反馈资源,可用SPS反馈资源的时域符号均为用于上行传输的符号,且可用 SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,反馈比特数可以为候选时间单元中的SPS反馈信息的码本比特数与第一反馈信息的码本比特数之和。第二条件可以为:存在上行信号,上行信号可以包括上行数据或动态反馈信息。处理模块,还可以用于在第二时间单元中确定第二上行资源。
可选地,处理模块,还可以用于若第二时间单元满足第一条件且不满足第二条件,则确定第二时间单元中的可用SPS反馈资源为第二上行资源。或者,处理模块,还可以用于若第二时间单元满足第二条件,则确定第二时间单元中承载上行信号的资源为第二上行资源。
可选地,候选时间单元中的可用SPS反馈资源对应的码本比特区间,可以包含候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和,或者,候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,可以大于候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和。
一种可能的设计方案中,处理模块,还可以用于若满足合并发送条件,则确定第三上行资源。其中,第三上行资源可以承载第一反馈信息和第二反馈信息。其中,合并发送条件可以为:第二时间单元包括第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠。收发模块,还可以用于在第三上行资源上发送第一反馈信息和第二反馈信息。
可选地,收发模块可以包括接收模块和发送模块。其中,发送模块用于实现通信装置的发送功能,接收模块用于实现通信装置的接收功能。
可选地,第三方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该通信装置可以执行第一方面所述的通信方法。
需要说明的是,第三方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,还可以是包含终端设备的装置,本申请对此不做限定。
此外,第三方面所述的通信装置的技术效果可以参考第一方面所述的通信方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。其中,处理模块,用于确定第一上行资源。其中,第一上行资源位于第一时间单元,且承载第一反馈信息,第一反馈信息为SPS PDSCH对应的反馈信息。处理模块,还用于若第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源。其中,第二上行资源位于第二时间单元内,第二上行资源所占用的时域符号均为用于上行传输的符号,且第二上行资源的时域起始位置位于第一上行资源的时域起始位置之后。收发模块,用于在第二上行资源上接收第一反馈信息。
一种可能的设计方案中,第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。
可选地,第二上行资源在第二时间单元中的相对位置可以与第一上行资源在第一时间单元中的相对位置相同。
或者,可选地,第二上行资源的时域宽度可以与第一上行资源的时域宽度相等,和/或,第二上行资源的频域宽度可以与第一上行资源的频域宽度相等。
一种可能的设计方案中,处理模块,还可以用于确定第二时间单元。其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均可以不早于第一时间单元的时域起始位置,且每个候选时间单元均可以满足:第一条件,和/或,第二条件。其中,第一条件可以为:存在可用SPS反馈资源,可用SPS反馈资源的时域符号均为用于上行传输的符号,且可用SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,反馈比特数可以为候选时间单元中的SPS反馈信息的码本比特数与第一反馈信息的码本比特数之和。第二条件可以为:存在上行信号,上行信号可以包括上行数据或动态反馈信息。处理模块,还可以用于在第二时间单元中确定第二上行资源。
可选地,处理模块,还可以用于若第二时间单元满足第一条件且不满足第二条件,则确定第二时间单元中的可用SPS反馈资源为第二上行资源。或者,处理模块,还可以用于若第二时间单元满足第二条件,则确定第二时间单元中承载上行信号的资源为第二上行资源。
可选地,候选时间单元中的可用SPS反馈资源对应的码本比特区间,可以包含候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和,或者,候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,可以大于候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和。
一种可能的设计方案中,处理模块,还可以用于若满足合并接收条件,则确定第三上行资源。其中,第三上行资源可以承载第一反馈信息和第二反馈信息。其中,合并接收条件可以为:第二时间单元包括第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠。收发模块,还可以用于在第三上行资源上接收第一反馈信息和第二反馈信息。
可选地,收发模块可以包括接收模块和发送模块。其中,发送模块用于实现通信装置的发送功能,接收模块用于实现通信装置的接收功能。
可选地,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该通信装置可以执行第二方面所述的通信方法。
需要说明的是,第四方面所述的通信装置可以是网络设备(如接入网设备或核心网设备等),也可以是可设置于网络设备的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第四方面所述的通信装置的技术效果可以参考第二方面所述的通信方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置用于执行第一方面、第二方面中任意一种实现方式所述的通信方法。
在本申请中,第五方面所述的通信装置可以为第一方面所述的终端设备或第二方面所述的网络设备,或者可设置于该终端设备或网络设备的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
应理解,第五方面所述的通信装置包括实现上述第一方面、第二方面中任一方面所述的通信方法相应的模块、单元、或手段(means),该模块、单元、或手段可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个用于执行上述通信方法所涉及的功能的模块或单元。
此外,第五方面所述的通信装置的技术效果可以参考第一方面、第二方面中任一方面所述的通信方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括:处理器,该处理器用于执行第一方面、第二方面中任意一种可能的实现方式所述的通信方法。
一种可能的设计方案中,第六方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第六方面所述的通信装置与其他通信装置通信。
一种可能的设计方案中,第六方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面、第二方面中任一方面所述的通信方法所涉及的计算机程序和/或数据。
在本申请中,第六方面所述的通信装置可以为第一方面所述的终端设备,或第二方面所述的网络设备,或者可设置于该终端设备或网络设备的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
此外,第六方面所述的通信装置的技术效果可以参考第一方面、第二方面中任意一种实现方式所述的通信方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面、第二方面中任意一种可能的实现方式所述的通信方法。
一种可能的设计方案中,第七方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第七方面所述的通信装置与其他通信装置通信。
在本申请中,第七方面所述的通信装置可以为第一方面所述的终端设备,或第二方面所述的网络设备,或者可设置于该终端设备或网络设备的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
此外,第七方面所述的通信装置的技术效果可以参考第一方面、第二方面中任意一种实现方式所述的通信方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该通信装置包括:包括:处理器和接口电路。其中,接口电路,用于接收代码指令并传输至所述处理器。处理器用于运行上述代码指令以执行第一方面、第二方面中任意一种实现方式所述的通信方法。
一种可能的设计方案中,第八方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面、第二方面中任一方面所述的通信方法所涉及的计算机程序和/或数据。
在本申请中,第八方面所述的通信装置可以为第一方面所述的终端设备,或第二方面所述的网络设备,或者可设置于该终端设备或网络设备的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
此外,第八方面所述的通信装置的技术效果可以参考第一方面、第二方面中任意一种实现方式所述的通信方法的技术效果,此处不再赘述。
第九方面,提供一种通信装置。该通信装置包括:包括:处理器和收发器,收发器用于通信装置和其他通信装置之间进行信息交互,处理器执行程序指令,用以执行第一方面、第二方面中任意一种实现方式所述的通信方法。
一种可能的设计方案中,第九方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面、第二方面中任一方面所述的通信方法所涉及的计算机程序和/或数据。
在本申请中,第九方面所述的通信装置可以为第一方面所述的终端设备,或第二方面所述的网络设备,或者可设置于该终端设备或网络设备的芯片(系统)或其他部件或组件,或者包含该终端设备或网络设备的装置。
此外,第九方面所述的通信装置的技术效果可以参考第一方面、第二方面中任意一种实现方式所述的通信方法的技术效果,此处不再赘述。
第十方面,提供一种处理器。其中,处理器用于执行第一方面、第二方面中任意一种可能的实现方式所述的通信方法。
第十一方面,提供一种通信系统。该通信系统包括一个或多个终端设备,和一个或多个网络设备。
第十二方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面、第二方面中任意一种可能的实现方式所述的通信方法。
第十三方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面、第二方面中任意一种可能的实现方式所述的通信方法。
附图说明
图1为本申请实施例提供的SPS PDSCH传输数据的时域示意图一;
图2为本申请实施例提供的资源复用示意图;
图3为本申请实施例提供的通信方法所适用的一种通信系统的架构示意图;
图4为本申请实施例提供的通信方法的流程示意图;
图5为本申请实施例提供的SPS PDSCH传输数据的时域示意图二;
图6为本申请实施例提供的SPS PDSCH传输数据的时域示意图三;
图7为本申请实施例提供的SPS PDSCH传输数据的时域示意图四;
图8为本申请实施例提供的SPS PDSCH传输数据的时域示意图五;
图9为本申请实施例提供的通信装置的结构示意图一;
图10为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
首先,本申请实施例对可能涉及的技术术语作简单介绍。
1,时隙(slot)
5G的新空口(new radio,NR)中存在多种时间单元,包括:帧(frame)、子帧(subframe)、时隙和符号(symbol)。一个帧的时间长度为10毫秒(milisecond,ms), 包括10个子帧,每个子帧的时间长度可以为1ms,一个子帧可以包括一个或多个时隙。一个时隙在扩展循环前缀(extended cyclic prefix,ECP)情况下包括12个符号,在普通循环前缀(normal cyclic prefix,NCP)情况下包括14个符号。其中,符号被分为:上行符号(uplink symbol)、下行符号(downlink symbol)以及灵活符号(flexible symbol)。这里的符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
NR支持灵活地配置帧结构,即可以灵活地配置一个时隙中,哪些符号为上行符号,哪些符号为下行符号,哪些符号为灵活符号。配置的方式可以包括:半静态(semi-persistent scheduling,SPS)配置或动态(dynamic)配置。其中,在半静态配置方式中,上行符号被称为半静态上行符号,下行符号被称为半静态下行符号,灵活符号被称为半静态灵活符号。在动态配置方式中,上行符号被称为动态上行符号,下行符号被称为动态下行符号,灵活符号被称为动态灵活符号。另外,半静态配置和动态配置的具体实现过程可以参考现有技术规定,在此不再赘述。
灵活符号可以被修改为上行符号或下行符号,被修改为上行符号的灵活符号可以称为指示用于上行传输的灵活符号,被修改为下行符号的灵活符号可以称为指示用于下行传输的灵活符号。其中,灵活符号被修改为上行符号或下行符号的具体实现过程可以参考现有技术规定,在此不再赘述。
上行符号或指示用于上行传输的灵活符号可以进行上行传输,下行符号或指示用于下行传输的灵活符号可以进行下行传输。换句话说,在下行符号,和/或,未指示用于上行传输的灵活符号不能用于上行传输。其中,未指示用于上行传输的灵活符号包括:动态灵活符号、半静态灵活符号以及指示用于下行传输的灵活符号。
2,SPS PDSCH
网络设备与终端设备之间可以通过SPS PDSCH传输数据,具体步骤如下:
步骤1,网络设备向终端设备发送配置信息,终端设备接收来自网络设备的配置信息。
其中,该配置信息用于指示:SPS PDSCH的传输周期以及承载SPS PDSCH对应的反馈信息的资源等。这里的SPS PDSCH对应的反馈信息是指SPS PDSCH的肯定应答(acknowledge,ACK)信息或者否定应答(non-acknowledge,NACK)信息,SPS PDSCH对应的反馈信息可以包含于混合自动重传请求(hybrid automatic repeat request acknowledgement,HARQ-ACK)码本中。承载SPS PDSCH对应的反馈信息的资源,可以是物理上行链路控制信道(physical uplink control channel,PUCCH)。另外,SPS PDSCH对应的反馈信息可以称为SPS反馈信息,承载SPS PDSCH对应的反馈信息的资源也可以称为SPS反馈资源。
步骤2,网络设备向终端设备发送激活信息,终端设备接收来自网络设备的激活信息。
其中,该激活信息可以用于指示:SPS PDSCH所在的时域位置、SPS PDSCH的反馈信息所在的时域位置。另外,该激活信息可以承载于物理下行控制信道(physical downlink control channel,PDCCH)。
具体地,上述的激活信息可以通过DCI实现,实现方式如下:
[根据细则91更正 27.01.2021] 
通过DCI指示时域资源表中的索引(index)值,从而指示SPS PDSCH所在的时域位置。例如,请参照表1,表1为索引值、K0以及(S,L)的对应关系表,即时域资源表。其中,K0表示承载DCI的PDCCH与SPS PDSCH之间间隔的时隙个数,(S,L)表示SPS PDSCH位于时隙的符号S至符号S+L。假设DCI指示时域资源表中的索引值的值为1(即,K0=1,S=1,L=2),且承载该DCI的PDCCH位于时隙n,那么索引值为1的SPS PDSCH位于时隙n+1的符号1至符号2。
表1
索引 K0 (S,L)
0 1 (2,4)
1 1 (1,2)
2 2 (3,4)
3 2 (0,7)
[根据细则91更正 27.01.2021] 
另外,上述的时域资源表可以是协议预定义的,或者是通过高层信令或物理层信令配置的。
具体地,可以通过DCI指示SPS PDSCH的反馈信息所在的时域位置。例如,通过DCI承载指示信息,该指示信息用于指示K1集合中的一个K1的值,K1的值表示SPS PDSCH与SPS PDSCH的反馈信息之间间隔的时隙个数。其中,K1集合可以是通过高层信令配置的集合。如图1所示,假设第1个SPS PDSCH在时隙2,且K1=2,那么该SPS PDSCH的反馈信息位于时隙4。
步骤3,网络设备基于SPS PDSCH的传输周期和激活信息,向终端设备周期性地发送SPS PDSCH。终端设备基于SPS PDSCH的传输周期和激活信息,周期性地接收来自网络设备的SPS PDSCH。
步骤4,终端设备确定每个SPS PDSCH对应的反馈信息,以及基于SPS PDSCH的传输周期和激活信息,周期性地向网络设备发送反馈信息。网络设备基于SPS PDSCH的传输周期,周期性地接收来自终端设备的反馈信息。
其中,终端设备确定SPS PDSCH对应的反馈信息,可以包括:首先,确定反馈时间单元;然后,根据SPS PDSCH对应的反馈信息生成HARQ-ACK码本;最后,确定承载HARQ-ACK码本的PUCCH资源。如图1所示,假设SPS PDSCH在时隙2,且K1=2,则首先可以确定反馈时间单元为时隙4,然后根据该SPS PDSCH对应的反馈信息生成HARQ-ACK码本,最后根据HARQ-ACK码本的大小在时隙4的PUCCH集合中确定承载该HARQ-ACK码本的PUCCH资源。当然,终端设备确定SPS PDSCH对应的反馈信息的具体实施方式可以参考现有技术规定,在此不再赘述。
下面结合图1说明上述步骤3、步骤4。
如图1所示,假设SPS PDSCH的传输周期为1个时隙,DCI指示index=1,K1=2,且承载DCI的PDCCH位于时隙1,那么,网络设备分别在时隙2的符号1、符号2,时隙3的符号1、符号2,…,时隙n的符号1、符号2,周期性地向终端设备发送SPS PDSCH。对应地,终端设备分别在时隙2的符号1、符号2,时隙3的符号1、符号2,…,时隙n的符号1、符号2,周期性地接收来自网络设备的SPS PDSCH。然后,终端设备分别在时隙3、时隙4、…、时隙n,周期性地向网络设备发送反馈信息。对 应地,网络设备分别在时隙3、时隙4、…、时隙n,周期性地接收来自终端设备的反馈信息。其中,n为正整数。
另外,第1个SPS PDSCH可以被称为有调度信息的SPS PDSCH,第1个SPS PDSCH之后的SPS PDSCH均可以被称为无调度信息的SPS PDSCH。
基于上述步骤1-步骤4,网络设备与终端设备之间通过SPS PDSCH传输数据的过程中,在配置信息和激活信息被确定后,终端设备可以周期性地接收多个SPS PDSCH,并且可以周期性地向网络设备发送多个SPS PDSCH对应的反馈信息。
上述步骤1-步骤4仅为示例性说明。网络设备与终端设备之间通过半静态调度物理下行共享信道传输数据的具体实施方式,可以参照相应的现有技术规定。
3,资源的复用
若一个时间单元中存在两个数据业务对应的反馈信息,或者承载这两个数据业务对应的反馈信息的时域资源有重叠,终端设备可以将这两个数据业务对应的反馈信息复用后发送。如图2所示,假设PDSCH1对应的HARQ-ACK码本在PUCCH1上发送,PDSCH2对应的HARQ-ACK码本在PUCCH2上发送,且PUCCH1和PUCCH2位于同一个时隙,那么可以将这两个码本重组为一个新码本,并在该时隙确定一个新的PUCCH承载该新码本。例如,确定PUCCH3承载PDSCH1的HARQ-ACK码本和PDSCH2的HARQ-ACK码本。其中,PUCCH3的时域位置与PUCCH1的时域位置、PUCCH2的时域位置可能重叠,也可能不重叠。
在实现本申请实施例的过程中,本申请发明人发现:
网络设备与终端设备之间通过SPS PDSCH传输数据时,有调度信息的SPS PDSCH对应的反馈信息以及无调度信息的SPS PDSCH对应的反馈信息,均由K1指示,也即是说,每个无调度信息的SPS PDSCH对应的反馈信息所在的时域位置是固定的。当出现以下几种情况时,无调度信息的SPS PDSCH对应的反馈信息不被发送:
情况1,承载SPS PDSCH对应的反馈信息的资源位于半静态下行符号。
情况2,承载SPS PDSCH对应的反馈信息的资源位于动态下行符号。
情况3,承载SPS PDSCH对应的反馈信息的资源位于未指示用于上行传输的灵活符号。
换句话说,若承载无调度信息的SPS PDSCH对应的反馈信息的资源位于:下行符号,和/或,未指示用于上行传输的灵活符号,则不被发送。当无调度信息的SPS PDSCH对应的反馈信息不被发送时,网络设备不知道SPS PDSCH是否接收成功。因此,若网络设备重传SPS PDSCH,则会浪费资源,传输效率低下,若网络设备不重传SPS PDSCH,则又会导致数据丢失,数据传输可靠性低下。
另外,在实际应用中,上述情况1-情况3会频繁出现,即无调度信息的SPS PDSCH对应的反馈信息会频繁地不被发送,这会导致网络设备频繁地重传数据,从而导致丢包率高,数据传输可靠性低,传输时延大。
为了解决上述技术问题,本申请实施例提供一种通信方法及装置,以提高数据传输可靠性,降低传输时延,提升通信系统性能。需要说明的是,上述种种缺陷,均是发明人经过仔细实践研究后得出的结果。因此,上述问题的发现过程以及下文中本申请实施例针对上述问题所提出的解决方案,都应视为发明人在实现本申请过程中做出 的贡献。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如无线保真(wireless fidelity,WiFi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-todevie,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图3中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图3为本申请实施例提供的通信方法所适用的一种通信系统的架构示意图。
如图3所示,该通信系统包括网络设备和终端设备。
其中,上述网络设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP) 等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
上述终端设备为接入上述通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。该终端设备也可以称为用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的通信方法。
需要说明的是,本申请实施例提供的通信方法,可以适用于图3所示的终端设备与网络设备之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
图3仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图3中未予以画出。
下面将结合图4-图8对本申请实施例提供的通信方法进行具体阐述。
示例性地,图4为本申请实施例提供的通信方法的流程示意图一。该通信方法可以适用于图3所示的终端设备和网络设备之间的通信。
如图4所示,该通信方法可以包括如下步骤:
S401,终端设备确定第一上行资源。
其中,第一上行资源可以位于第一时间单元,且可以承载第一反馈信息,第一反馈信息可以为SPS PDSCH对应的反馈信息。
可选地,第一反馈信息可以包括:一个或多个SPS PDSCH对应的反馈信息。当第一反馈信息包括多个SPS PDSCH对应的反馈信息时,这里的多个SPS PDSCH的配置信息可以相同也可以不同。另外,上述的第一时间单元可以为时隙。
下面以第一反馈信息包括一个SPS PDSCH对应的反馈信息为例,并结合图5说明上述的S401。
请参照图5,假定SPS PDSCH位于时隙1,该SPS PDSCH对应的反馈信息承载于时隙3中的PUCCH1(图5中以虚线框示出),终端设备可以确定:PUCCH1为第一上行资源,时隙3为第一时间单元。其中,关于SPS PDSCH、SPS PDSCH对应的反馈信息的说明可以参照上述步骤1-步骤4,在此不再赘述。
S402,若第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则终端设备确定第二时间单元和第二上行资源。
其中,第二上行资源位于第二时间单元内,第二上行资源所占用的时域符号均为用于上行传输的符号,且第二上行资源的时域起始位置可以位于第一上行资源的时域起始位置之后。
上述的第二上行资源可以包括:PUCCH、或上行共享物理信道(physical uplink shared channel,PUSCH)等。第二时间单元可以为时隙。一个资源的时域起始位置可以为:该资源所占用的所有时域符号中的第一个符号。另外,上述的下行符号以及未指示用于上行传输的灵活符号可以参照上述技术术语1中的说明,在此不再赘述。
下面结合图5说明上述S402。
请继续参照图5,PUCCH1(第一上行资源)所占用的时域符号为时隙3的符号1-符号3,且这3个符号均是下行符号,也即是说第一上行资源所占用的时域符号均为下行符号。为了成功发送PUCCH1,终端设备可以在时隙3的符号1之后的资源中,确定第二时间单元和第二上行资源。例如,可以将时隙3确定为第二时间单元,并将PUCCH2确定为第二上行资源。或者,也可以将时隙4确定为第二时间单元,并将PUCCH3确定为第二上行资源。其中,PUCCH2所占用的时域符号为时隙3的符号11-符号13,且这3个符号均是上行符号,PUCCH3所占用的时域符号为时隙4的符号1-符号3,且这3个符号均是上行符号。
一些可能的实施例中,第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。例如,若时隙4被确定为第二时间单元,PUCCH3被确定为第二上行资源,则第二时间单元位于第一时间单元之后。另一些可能的实施例中,若时隙3被确定为第二时间单元,PUCCH2被确定为第二上行资源,则第二时间单元和第一时间单元为同一时间单元。
如此,终端设备既可以在第一时间单元发送第一反馈信息,也可以在第一时间单元之后的时间单元发送第一反馈信息,可以提高终端设备发送第一反馈信息的灵活性。
可选地,为了减少终端设备的计算量,节省功耗,第二上行资源在第二时间单元中的相对位置与第一上行资源在第一时间单元中的相对位置可以相同(称为方式1)。其中,相对位置可以为:资源占用的首个符号在一个时隙中的符号编号,即该首个符号与该时隙的符号0之间间隔的符号个数。例如,假设一个时隙包括14个符号,按时间先后顺序分别为:符号0、符号1、…、符号13,该时隙中的一个PUCCH位于符号1-符号3,那么该PUCCH在该时隙中的相对位置为1。
请继续参照图5,由于PUCCH1的时域起始位置为时隙3的符号1,终端设备在确定第二时间单元和第二上行资源时,可以按时间先后顺序,在时隙3之后的多个时隙中,以符号1作为起始符号确定第二上行资源,例如,可以将时隙4确定为第二时间单元,并将PUCCH3确定为第二上行资源。
这样,存在第二上行资源的时域范围,可以从第一上行资源的时域起始位置之后的所有时域,缩小到第一上行资源的时域起始位置之后的每个时间单元中的部分符号,也即是说,终端设备可以在较小的时域范围内确定第二时间单元和第二上行资源,从而能够减少终端设备的计算量,节省功耗。
另一些可能的实施例中,为了减少终端设备的计算量,节省功耗,第二上行资源的时域宽度与第一上行资源的时域宽度可以相等,和/或,第二上行资源的频域宽度与第一上行资源的频域宽度可以相等(称为方式2)。
请继续参照图5,由于PUCCH1所占用的时域符号为时隙3的符号1-符号3,终端设备在确定第二时间单元和第二上行资源时,可以按时间先后顺序,在时隙3之后的多个时隙的符号1-符号3中,确定第二上行资源,例如,可以将PUCCH3确定为第二上行资源,并将时隙4确定为第二时间单元。
这样,存在第二上行资源的时域范围,可以从第一上行资源的时域起始位置之后的所有时域,缩小到第一上行资源的时域起始位置之后的部分时域,该部分时域为包括可用上行资源的时域,该可用上行资源的大小可以与第一上行资源的大小相等,也即是说,终端设备可以在较小的时域范围确定第二时间单元和第二上行资源,从而能够减少终端设备的计算量,节省功耗。
其中,上述的方式1、方式2可以独立实施,也可以结合实施,即第二上行资源在第二时间单元中的相对位置与第一上行资源在第一时间单元中的相对位置相同,且第二上行资源的时域宽度与第一上行资源的时域宽度相等,和/或,第二上行资源的频域宽度与第一上行资源的频域宽度相等。
这样,存在第二上行资源的时域范围,可以从第一上行资源的时域起始位置之后的所有时域,缩小至上述部分时域的每个时间单元中的部分符号,也即是说,终端设备可以在更小的时域范围确定第二时间单元和第二上行资源,从而能够减少终端设备的计算量,节省功耗。
一些可能的实施例中,上述的S402,可以包括如下几种实施方式:
方式3,可以包括如下几个步骤:
步骤5,确定第二时间单元。
其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置可以均不早于第一时间单元的时域起始位置,且每个候选时间单元可以均满足:第一条件,和/或,第二条件。
上述的第一条件可以为:存在可用SPS反馈资源,可用SPS反馈资源的时域符号均为用于上行传输的符号,且可用SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,该反馈比特数可以为:候选时间单元中的SPS反馈信息的码本比特数与第一反馈信息的码本比特数之和。换句话说,可用SPS反馈资源能够承载:候选时间单元中的SPS反馈信息以及第一反馈信息。
其中,候选时间单元中的SPS反馈信息可以为:该候选时间单元中的部分或全部SPS PDSCH对应的反馈信息。例如,请参照图6,若时隙4为候选时间单元,且时隙4中包括:SPS反馈信息1、SPS反馈信息2、SPS反馈信息3、SPS反馈信息4,那么可以选择这4个反馈信息中的部分或全部作为时隙4中的SPS反馈信息。
上述的第二条件可以为:存在上行信号,该上行信号可以包括上行数据或动态反馈信息。其中,承载上行数据的资源可以为PUSCH或PUCCH等。动态反馈信息可以为动态PDSCH对应的反馈信息。
另外,上述的SPS反馈信息以及可用SPS反馈资源可以参照上述技术术语2中 “SPS PDSCH”的说明,动态PDSCH对应的反馈信息的具体说明可以参考现有实现方式,在此不再赘述。
基于上述说明,候选时间单元也可以为:存在可用SPS反馈资源和/或上行信号,且时域起始位置不早于第一时间单元的时域起始位置的时间单元。另外,若第一时间单元中存在“可用SPS反馈资源和/或上行信号”,且该“可用SPS反馈资源和/或上行信号”的时域起始位置位于第一上行资源的时域起始位置之后,则第一时间单元也可以为候选时间单元。
可选地,上述可用SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,可以包括:候选时间单元中的可用SPS反馈资源对应的码本比特区间,可以包含候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和,或者,候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,可以大于候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和。换句话说,可用SPS反馈资源不仅能够承载候选时间单元中的SPS反馈信息,还能够承载第一反馈信息,从而可以用一个反馈资源承载多个反馈信息,减少终端设备与网络设备的交互次数,降低信令开销,以提高通信效率。
步骤6,在第二时间单元中确定第二上行资源。
可选地,在第二时间单元中确定第二上行资源后,相当于将第一反馈信息延后至第二时间单元中的第二上行资源上发送,即第二时间单元中的SPS反馈信息可以包括第一反馈信息。换言之,终端设备确定的第二时间单元中,SPS反馈信息可以包括:其他SPS PDSCH对应的反馈信息以及第一反馈信息。例如,请参照图6,若确定时隙4为第二时间单元,那么,时隙4中的SPS反馈信息包括第一反馈信息以及其他SPS反馈信息。
下面结合图6说明上述的步骤5、步骤6。
请参照图6,时隙3为第一时间单元,PUCCH1为第一上行资源,时隙4中存在可用SPS反馈资源以及上行信号,时隙5中存在上行信号,时隙6中存在可用SPS反馈资源,从而时隙4、时隙5和时隙6均为候选时间单元。由于时隙4为这几个候选时间单元中时域位置最靠前的候选时间单元,因此可以确定时隙4为第二时间单元,然后终端设备可以在时隙4中确定第二上行资源。例如,终端设备可以将时隙4中承载上行信号的资源确定为第二上行资源,也即是说,通过时隙4中承载上行信号的资源来承载第一反馈信息。
这样,终端设备在第二时间单元中确定第二上行资源时,可以通过时间单元中已存在的可用SPS反馈资源承载第一反馈信息,或者通过时间单元中已存在的承载上行信号的资源承载第一反馈信息,也即是说,可以用一个反馈资源承载多个反馈信息,从而可以减少终端设备与网络设备的交互次数,降低信令开销,以提高通信效率。
可选地,步骤6,在第二时间单元中确定第二上行资源,可以包括:若第二时间单元满足第一条件且不满足第二条件,则确定第二时间单元中的可用SPS反馈资源为第二上行资源。或者,若第二时间单元满足第二条件,则确定第二时间单元中承载上行信号的资源为第二上行资源。
一种实施方式中,步骤6中的确定第二时间单元中的可用SPS反馈资源为第二上 行资源,可以包括:首先,确定第二时间单元中的SPS反馈信息。然后,根据该SPS反馈信息的有效载荷(payload)大小与第一反馈信息的有效载荷大小之和,在第二时间单元的半静态调度PUCCH资源集合中确定可用SPS反馈资源。最后,将该可用SPS反馈资源确定为第二上行资源。
其中,在第二时间单元的半静态调度PUCCH资源集合中确定可用SPS反馈资源,可以包括:在第二时间单元的半静态调度PUCCH资源集合中确定一个或多个第一可用PUCCH资源,其中,每个第一可用PUCCH资源均满足:占用的时域符号均为用于上行传输的符号,且对应的码本比特区间的最大值可以大于或等于上述的反馈比特数。将一个或多个第一可用PUCCH资源中,频域宽度和/或时域宽度最短,或者时域起始位置最早的第一可用PUCCH资源确定为可用SPS反馈资源。
一种实施方式中,步骤6中的确定第二时间单元中承载上行信号的资源为第二上行资源,可以包括:首先,确定第二时间单元中的动态反馈信息。然后,将动态反馈信息和第一反馈信息合并为一个反馈信息。之后,根据合并后的反馈信息的有效载荷大小,在第二时间单元的动态PUCCH资源集合中确定承载上行信号的资源。最后,将承载上行信号的资源确定为第二上行资源。
其中,在第二时间单元的动态PUCCH资源集合中确定承载上行信号的资源,可以包括:根据合并后的反馈信息的有效载荷大小以及DCI中的物理上行控制信道资源(PUCCH resource indicator,PRI),在动态PUCCH资源集合中确定一个或多个第二可用PUCCH资源。其中,每个第二可用PUCCH资源均满足:占用的时域符号均为用于上行传输的符号,且对应的码本比特区间的最大值可以大于或等于上述的反馈比特数。将一个或多个第二可用PUCCH资源中,频域宽度和/或时域宽度最短,或者时域起始位置最早的第二可用PUCCH资源确定为承载上行信号的资源。
基于上述步骤6可知,终端设备可以优先通过时间单元中已存在的承载上行信号的资源承载第一反馈信息,由于承载上行信号的资源可以为动态反馈资源(如动态PDSCH),且相较于可用SPS反馈资源,动态反馈资源所占用的信道条件可能更好,反馈成功率更高,因此优先通过承载上行信号的资源承载第一反馈信息,能够提高数据传输可靠性,降低传输时延,以提高通信效率。
可选地,上述步骤5之后,也可以不执行步骤6,而是执行下述步骤7,以在第二时间单元中确定第二上行资源:
步骤7,确定第二时间单元中的可用SPS反馈资源为第二上行资源,或者,确定第二时间单元中承载上行信号的资源为第二上行资源。
比较上述步骤6和步骤7的两种实施方式可知,两种实施方式的区别在于:步骤6可以优先通过时间单元中已存在的承载上行信号的资源承载第一反馈信息,而步骤7则是将第二时间单元中的可用SPS反馈资源或者承载上行信号的资源确定为第二上行资源。因此,步骤7的效果包括:将第二时间单元中的可用SPS反馈资源或者承载上行信号的资源确定为第二上行资源,可以用一个反馈资源承载多个反馈信息,从而可以减少终端设备与网络设备的交互次数,降低信令开销,以提高通信效率。
方式4,确定第二时间单元,以及在第二时间单元中确定第二上行资源。
其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时 间单元,每个候选时间单元的时域起始位置可以均不早于第一时间单元的时域起始位置,且每个候选时间单元可以均满足候选条件。该候选条件可以包括如下任一项:存在上行符号、存在反馈信息、存在动态反馈信息或者存在SPS反馈信息。
比较上述方式3和方式4可知,方式4与方式3之间可以相互替换,因此,方式4的实施方式及效果可以参照方式3,在此不再赘述。
方式5,确定第三时间单元。其中,第三时间单元可以为:在第一上行资源的时域起始位置之后,且包含可用上行资源的时间单元,可用上行资源所占用的时域符号均为用于上行传输的符号。将第三时间单元确定为第二时间单元,并将第三时间单元中的可用上行资源确定为第二上行资源。
下面结合图5、图7、图8以及几个示例说明如何实现方式5。
示例1,首先,确定第二上行资源的大小和位置。其中,第二上行资源的大小等于第一上行资源的大小,第二上行资源在一个时间单元中的相对位置,与第一上行资源在第一时间单元中的相对位置相同。另外,一个资源的大小等于另一个资源的大小可以是:一个资源的时域宽度与另一个资源的时域宽度相等,和/或,一个资源的频域宽度与另一个资源的频域宽度相等。
然后,根据第二上行资源的大小和位置,确定第三时间单元。其中,第三时间单元可以为:在第一时间单元之后,且包含第三可用上行资源的首个时间单元,该第三可用上行资源的大小与第一上行资源的大小相等,第三可用上行资源在第三时间单元中的位置,与第一上行资源在第一时间单元中的位置相同,且第三可用上行资源所占用的时域符号均为用于上行传输的符号。
最后,将第三时间单元确定为第二时间单元,并将第三时间单元中的第三可用上行资源确定为第二上行资源。
请参照图5,时隙3为第一时间单元,PUCCH1为第一上行资源,且PUCCH1位于时隙3的符号1-符号3。终端设备可以按时间先后顺序,从时隙3开始,在时隙3之后的每个时隙的符号1-符号3中,将首个存在第三可用上行资源的时隙确定为第三时间单元,如图5中的时隙4。然后,将时隙4确定为第二时间单元,并将时隙4的符号1-符号3中的PUCCH3确定为第二上行资源。
示例2,首先,确定第二上行资源的大小。其中,第二上行资源的大小等于第一上行资源的大小。
然后,根据第二上行资源的大小,确定第三时间单元。其中,第三时间单元可以为:在第一时间单元之后,且包含第四可用上行资源的首个时间单元,该第四可用上行资源的大小与第一上行资源的大小相等。
最后,将第三时间单元确定为第二时间单元,并将第三时间单元中的第四可用上行资源确定为第二上行资源。
请参照图7,时隙3为第一时间单元,PUCCH1为第一上行资源,且PUCCH1位于时隙3的符号1-符号3。终端设备可以按时间先后顺序,从时隙3的符号3开始,在时隙3的符号3之后的每个符号中,将首个存在第四可用上行资源的时隙确定为第三时间单元,如图7中的时隙3。然后将时隙3确定为第二时间单元,并将时隙3的符号11-符号13中的PUCCH2确定为第二上行资源。
示例3,首先,根据第一上行资源的大小确定第五可用上行资源。其中,第五可用上行资源可以为:在时域上位于第一上行资源之后的上行资源,且第五可用上行资源的大小大于或等于第一上行资源的大小。
然后,将第五可用上行资源确定为第二上行资源,并将第五可用上行资源所在的时间单元确定为第二时间单元。
请参照图8,时隙3为第一时间单元,PUCCH1为第一上行资源。终端设备可以按时间先后顺序,从时隙3开始,在时隙3之后的每个时隙的PUCCH资源集合(包括PUCCH资源集合1、PUCCH资源集合2、PUCCH资源集合3)中,将首个存在第五可用上行资源的时隙确定为第三时间单元,如图8中的时隙4。然后将时隙4确定为第二时间单元,并将时隙4的PUCCH2确定为第二上行资源。
结合上述示例1-示例3可知,方式5提供了多种确定第二时间单元和第二上行资源的实施方式,可以将反馈信息延后至第二上行资源发送,避免反馈信息被取消发送,如此,网络设备可以根据该反馈信息确定SPS PDSCH是否接收成功,并确定是否重传数据,以减少数据丢失的概率,提高数据传输可靠性,且可以降低数据重传的次数,节省资源,提高传输效率,进而提高通信效率。
结合上述方式3-方式5可知,基于方式3-方式5所确定的第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。基于方式3-方式5所确定的第二上行资源在第二时间单元中的相对位置与第一上行资源在第一时间单元中的相对位置可以相同。基于方式3-方式5所确定的第二上行资源在第二时间单元中的相对位置与第一上行资源在第一时间单元中的相对位置可以相同。
另外,上述的用于上行传输的符号可以包括如下一项或多项:半静态配置的上行符号、动态指示的用于上行传输的灵活符号、或被配置为上行传输的灵活符号等。
一些可能的实施例中,S402之后,图4所示的通信方法还可以包括如下步骤:
步骤8,若满足合并发送条件,则确定第三上行资源。该第三上行资源可以承载第一反馈信息和第二反馈信息。
其中,合并发送条件可以为:第二时间单元包括第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠。
上述的第二反馈信息可以为上行数据,例如,SPS PDSCH对应的反馈信息、动态PDSCH对应的反馈信息等。当第二时间单元中包括该第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠时,终端设备可以通过复用的方式,确定第三上行资源以承载第一反馈信息和第二反馈信息。其中,这里的第三上行资源可以与第二上行资源相同,也可以与第二上行资源不同。
这样,不仅可以用一个反馈资源承载多个反馈信息,减少终端设备与网络设备的交互次数,降低信令开销,还能够通过资源复用的方式,避免资源冲突,减少第一反馈信息被取消发送的次数,从而可以提高数据传输可靠性,降低传输时延,以提高通信效率。
在执行步骤8,确定第三上行资源后,终端设备还可以在第三上行资源上发送第一反馈信息和第二反馈信息。
另外,终端设备通过复用的方式确定第二上行资源可以参照上述技术术语3,在 此不再赘述。
S403,终端设备在第二上行资源上发送第一反馈信息,网络设备在第二上行资源上接收第一反馈信息。
其中,S403中的网络设备在第二上行资源上接收第一反馈信息的实施方式,可以参照S401、S402,在此不再赘述。
网络设备在接收到第一反馈信息后,若第一反馈信息包括肯定应答信息,则确定终端设备成功接收到SPS PDSCH。若第一反馈信息包括否定应答信息,则确定终端设备接收失败,网络设备可以向终端设备重传SPS PDSCH。
基于图4所示出的通信方法,若第一上行资源被取消发送,例如第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则终端设备可以在第一上行资源的时域起始位置之后的资源中,确定第二时间单元和第二上行资源,以及并在第二上行资源上发送第一反馈信息。如此,SPS PDSCH对应的反馈信息在第一上行资源不被发送时,终端设备可以将反馈信息延后至第二上行资源发送。如此,网络设备可以根据该反馈信息确定SPS PDSCH是否接收成功,并确定是否重传数据,以减少数据丢失的概率,提高数据传输可靠性,且可以降低数据重传的次数,节省资源,提高传输效率,进而提高通信效率。
以上结合图4-图8详细说明了本申请实施例提供的通信方法。以下结合图9、图10详细说明用于执行本申请实施例提供的通信方法的通信装置。
示例性地,图9是本申请实施例提供的通信装置的结构示意图一。如图9所示,通信装置900包括:处理模块901和收发模块902。为了便于说明,图9仅示出了该通信装置的主要部件。
一些实施例中,通信装置900可适用于图3中所示出的通信系统中,执行图4中所示出的通信方法中终端设备的功能。
其中,处理模块901,用于确定第一上行资源。其中,第一上行资源位于第一时间单元,且承载第一反馈信息,第一反馈信息为SPS PDSCH对应的反馈信息。处理模块901,还用于若第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源。其中,第二上行资源位于第二时间单元内,第二上行资源所占用的时域符号均为用于上行传输的符号,且第二上行资源的时域起始位置位于第一上行资源的时域起始位置之后。收发模块902,用于在第二上行资源上发送第一反馈信息。
一种可能的设计方案中,第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。
可选地,第二上行资源在第二时间单元中的相对位置可以与第一上行资源在第一时间单元中的相对位置相同。
或者,可选地,第二上行资源的时域宽度可以与第一上行资源的时域宽度相等,和/或,第二上行资源的频域宽度可以与第一上行资源的频域宽度相等。
一种可能的设计方案中,处理模块901,还可以用于确定第二时间单元。其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均可以不早于第一时间单元的时域起始位置,且每个候 选时间单元均可以满足:第一条件,和/或,第二条件。其中,第一条件可以为:存在可用SPS反馈资源,可用SPS反馈资源的时域符号均为用于上行传输的符号,且可用SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,反馈比特数可以为候选时间单元中的SPS反馈信息的码本比特数与第一反馈信息的码本比特数之和。第二条件可以为:存在上行信号,上行信号可以包括上行数据或动态反馈信息。处理模块901,还可以用于在第二时间单元中确定第二上行资源。
可选地,处理模块901,还可以用于若第二时间单元满足第一条件且不满足第二条件,则确定第二时间单元中的可用SPS反馈资源为第二上行资源。或者,处理模块901,还可以用于若第二时间单元满足第二条件,则确定第二时间单元中承载上行信号的资源为第二上行资源。
可选地,候选时间单元中的可用SPS反馈资源对应的码本比特区间,可以包含候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和,或者,候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,可以大于候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和。
一种可能的设计方案中,处理模块901,还可以用于若满足合并发送条件,则确定第三上行资源。其中,第三上行资源可以承载第一反馈信息和第二反馈信息。其中,合并发送条件可以为:第二时间单元包括第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠。收发模块902,还可以用于在第三上行资源上发送第一反馈信息和第二反馈信息。
可选地,收发模块902可以包括接收模块和发送模块(图9中未示出)。其中,发送模块用于实现通信装置900的发送功能,接收模块用于实现通信装置900的接收功能。
可选地,通信装置900还可以包括存储模块(图9中未示出),该存储模块存储有程序或指令。当处理模块901执行该程序或指令时,使得通信装置900可以执行图4所示出的通信方法中终端设备的功能。
应理解,通信装置900中涉及的处理模块901可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块902可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置900可以是图3中所示出的终端设备,也可以是设置于上述终端设备的芯片(系统)或其他部件或组件,或者包含该终端设备的装置,本申请对此不做限定。
此外,通信装置900的技术效果可以参考图4所示出的通信方法的技术效果,此处不再赘述。
另一些实施例中,通信装置900可适用于图3中所示出的通信系统中,执行图4中所示出的通信方法中网络设备的功能。
其中,处理模块901,用于确定第一上行资源。其中,第一上行资源位于第一时间单元,且承载第一反馈信息,第一反馈信息为SPS PDSCH对应的反馈信息。处理模块901,还用于若第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源。其中,第二上行资源位于 第二时间单元内,第二上行资源所占用的时域符号均为用于上行传输的符号,且第二上行资源的时域起始位置位于第一上行资源的时域起始位置之后。收发模块902,用于在第二上行资源上接收第一反馈信息。
一种可能的设计方案中,第二时间单元可以位于第一时间单元之后,或者,第二时间单元和第一时间单元可以为同一时间单元。
可选地,第二上行资源在第二时间单元中的相对位置可以与第一上行资源在第一时间单元中的相对位置相同。
或者,可选地,第二上行资源的时域宽度可以与第一上行资源的时域宽度相等,和/或,第二上行资源的频域宽度可以与第一上行资源的频域宽度相等。
一种可能的设计方案中,处理模块901,还可以用于确定第二时间单元。其中,第二时间单元可以为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均可以不早于第一时间单元的时域起始位置,且每个候选时间单元均可以满足:第一条件,和/或,第二条件。其中,第一条件可以为:存在可用SPS反馈资源,可用SPS反馈资源的时域符号均为用于上行传输的符号,且可用SPS反馈资源对应的码本比特区间的最大值可以大于或等于反馈比特数,反馈比特数可以为候选时间单元中的SPS反馈信息的码本比特数与第一反馈信息的码本比特数之和。第二条件可以为:存在上行信号,上行信号可以包括上行数据或动态反馈信息。处理模块901,还可以用于在第二时间单元中确定第二上行资源。
可选地,处理模块901,还可以用于若第二时间单元满足第一条件且不满足第二条件,则确定第二时间单元中的可用SPS反馈资源为第二上行资源。或者,处理模块901,还可以用于若第二时间单元满足第二条件,则确定第二时间单元中承载上行信号的资源为第二上行资源。
可选地,候选时间单元中的可用SPS反馈资源对应的码本比特区间,可以包含候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和,或者,候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,可以大于候选时间单元中的SPS反馈信息与第一反馈信息的码本比特数之和。
一种可能的设计方案中,处理模块901,还可以用于若满足合并接收条件,则确定第三上行资源。其中,第三上行资源可以承载第一反馈信息和第二反馈信息。其中,合并接收条件可以为:第二时间单元包括第二反馈信息,或者第二上行资源与承载第二反馈信息的资源重叠。收发模块902,还可以用于在第三上行资源上接收第一反馈信息和第二反馈信息。
可选地,通信装置900还可以包括存储模块(图9中未示出),该存储模块存储有程序或指令。当处理模块901执行该程序或指令时,使得通信装置900可以执行图4所示的通信方法中网络设备的功能。
应理解,通信装置900中涉及的处理模块901可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块902可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
需要说明的是,通信装置900可以是图3中所示出的网络设备,也可以是设置于上述网络设备的芯片(系统)或其他部件或组件,或者包含该网络设备的装置,本申 请对此不做限定。
此外,通信装置900的技术效果可以参考图4所示出的通信方法的技术效果,此处不再赘述。
示例性地,图10为本申请实施例提供的通信装置的结构示意图二。该通信装置可以是终端设备或网络设备,也可以是可设置于终端设备或网络设备的芯片(系统)或其他部件或组件。如图10所示,通信装置1000可以包括处理器1001。可选地,通信装置1000还可以包括存储器1002和/或收发器1003。其中,处理器1001与存储器1002和收发器1003耦合,如可以通过通信总线连接。
下面结合图10对通信装置1000的各个构成部件进行具体的介绍:
其中,处理器1001是通信装置1000的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1001是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1001可以通过运行或执行存储在存储器1002内的软件程序,以及调用存储在存储器1002内的数据,执行通信装置1000的各种功能。
在具体的实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图10中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1000也可以包括多个处理器,例如图10中所示的处理器1001和处理器1004。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器1002用于存储执行本申请方案的软件程序,并由处理器1001来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器1002可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1002可以和处理器1001集成在一起,也可以独立存在,并通过通信装置1000的接口电路(图10中未示出)与处理器1001耦合,本申请实施例对此不作具体限定。
收发器1003,用于与其他通信装置之间的通信。例如,通信装置1000为终端设备,收发器1003可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置1000为网络设备,收发器1003可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器1003可以包括接收器和发送器(图10中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1003可以和处理器1001集成在一起,也可以独立存在,并通过通信装置1000的接口电路(图10中未示出)与处理器1001耦合,本申请实施例对此不作具体限定。
需要说明的是,图10中示出的通信装置1000的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置1000的技术效果可以参考上述方法实施例所述的通信方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统包括上述一个或多个终端设备,以及一个或多个网络设备。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质 可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法 的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    确定第一上行资源;所述第一上行资源位于第一时间单元,且承载第一反馈信息,所述第一反馈信息为半静态调度SPS物理下行共享信道PDSCH对应的反馈信息;
    若所述第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源;
    其中,所述第二上行资源位于所述第二时间单元内,所述第二上行资源所占用的时域符号均为用于上行传输的符号,且所述第二上行资源的时域起始位置位于所述第一上行资源的时域起始位置之后;
    在所述第二上行资源上发送所述第一反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二时间单元位于所述第一时间单元之后,或者,所述第二时间单元和所述第一时间单元为同一时间单元。
  3. 根据权利要求2所述的方法,其特征在于,所述第二上行资源在所述第二时间单元中的相对位置与所述第一上行资源在所述第一时间单元中的相对位置相同。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第二上行资源的时域宽度与所述第一上行资源的时域宽度相等,和/或,所述第二上行资源的频域宽度与所述第一上行资源的频域宽度相等。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述确定第二时间单元和第二上行资源,包括:
    确定所述第二时间单元;所述第二时间单元为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均不早于所述第一时间单元的时域起始位置,且每个候选时间单元均满足:第一条件,和/或,第二条件;
    其中,所述第一条件为:存在可用SPS反馈资源,所述可用SPS反馈资源的时域符号均为用于上行传输的符号,且所述可用SPS反馈资源对应的码本比特区间的最大值大于或等于反馈比特数,所述反馈比特数为所述候选时间单元中的SPS反馈信息的码本比特数与所述第一反馈信息的码本比特数之和;所述第二条件为:存在上行信号,所述上行信号包括上行数据或动态反馈信息;
    在所述第二时间单元中确定所述第二上行资源。
  6. 根据权利要求5所述的方法,其特征在于,所述在所述第二时间单元中确定所述第二上行资源,包括:
    若所述第二时间单元满足所述第一条件且不满足所述第二条件,则确定所述第二时间单元中的可用SPS反馈资源为所述第二上行资源;或者,
    若所述第二时间单元满足所述第二条件,则确定所述第二时间单元中承载所述上行信号的资源为所述第二上行资源。
  7. 根据权利要求5或6所述的方法,其特征在于,所述候选时间单元中的可用SPS反馈资源对应的码本比特区间,包含所述候选时间单元中的SPS反馈信息与所述第一反馈信息的码本比特数之和;或者,
    所述候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,大于所述候选时间单元中的SPS反馈信息与所述第一反馈信息的码本比特数之和。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述确定第二时间单元和第二上行资源之后,所述方法还包括:
    若满足合并发送条件,则确定第三上行资源;所述第三上行资源承载所述第一反馈信息和第二反馈信息;
    其中,所述合并发送条件为:所述第二时间单元包括所述第二反馈信息,或者所述第二上行资源与承载所述第二反馈信息的资源重叠;
    在所述第三上行资源上发送所述第一反馈信息和所述第二反馈信息。
  9. 一种通信方法,其特征在于,包括:
    确定第一上行资源;所述第一上行资源位于第一时间单元,且承载第一反馈信息,所述第一反馈信息为SPS PDSCH对应的反馈信息;
    若所述第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源;
    其中,所述第二上行资源位于所述第二时间单元内,所述第二上行资源所占用的时域符号均为用于上行传输的符号,且所述第二上行资源的时域起始位置位于所述第一上行资源的时域起始位置之后;
    在所述第二上行资源上接收所述第一反馈信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第二时间单元位于所述第一时间单元之后,或者,所述第二时间单元和所述第一时间单元为同一时间单元。
  11. 根据权利要求10所述的方法,其特征在于,所述第二上行资源在所述第二时间单元中的相对位置与所述第一上行资源在所述第一时间单元中的相对位置相同。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,所述第二上行资源的时域宽度与所述第一上行资源的时域宽度相等,和/或,所述第二上行资源的频域宽度与所述第一上行资源的频域宽度相等。
  13. 根据权利要求9-12中任一项所述的方法,其特征在于,所述确定第二时间单元和第二上行资源,包括:
    确定所述第二时间单元;所述第二时间单元为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均不早于所述第一时间单元的时域起始位置,且每个候选时间单元均满足:第一条件,和/或,第二条件;
    其中,所述第一条件为:存在可用SPS反馈资源,所述可用SPS反馈资源的时域符号均为用于上行传输的符号,且所述可用SPS反馈资源对应的码本比特区间的最大值大于或等于反馈比特数,所述反馈比特数为所述候选时间单元中的SPS反馈信息的码本比特数与所述第一反馈信息的码本比特数之和;所述第二条件为:存在上行信号,所述上行信号包括上行数据或动态反馈信息;
    在所述第二时间单元中确定所述第二上行资源。
  14. 根据权利要求13所述的方法,其特征在于,所述在所述第二时间单元中确定所述第二上行资源,包括:
    若所述第二时间单元满足所述第一条件且不满足所述第二条件,则确定所述第二时间单元中的可用SPS反馈资源为所述第二上行资源;或者,
    若所述第二时间单元满足所述第二条件,则确定所述第二时间单元中承载所述上 行信号的资源为所述第二上行资源。
  15. 根据权利要求13或14所述的方法,其特征在于,所述候选时间单元中的可用SPS反馈资源对应的码本比特区间,包含所述候选时间单元中的SPS反馈信息与所述第一反馈信息的码本比特数之和;或者,
    所述候选时间单元中的可用SPS反馈资源对应的码本比特区间的最小值,大于所述候选时间单元中的SPS反馈信息与所述第一反馈信息的码本比特数之和。
  16. 根据权利要求9-15中任一项所述的方法,其特征在于,所述确定第二时间单元和第二上行资源之后,所述方法还包括:
    若满足合并接收条件,则确定第三上行资源;所述第三上行资源承载所述第一反馈信息和第二反馈信息;
    其中,所述合并接收条件为:所述第二时间单元包括所述第二反馈信息,或者所述第二上行资源与承载所述第二反馈信息的资源重叠;
    在所述第三上行资源上接收所述第一反馈信息和所述第二反馈信息。
  17. 一种通信装置,其特征在于,包括:处理模块和收发模块;其中,
    所述处理模块,用于确定第一上行资源;所述第一上行资源位于第一时间单元,且承载第一反馈信息,所述第一反馈信息为SPS PDSCH对应的反馈信息;
    所述处理模块,还用于若所述第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源;
    其中,所述第二上行资源位于所述第二时间单元内,所述第二上行资源所占用的时域符号均为用于上行传输的符号,且所述第二上行资源的时域起始位置位于所述第一上行资源的时域起始位置之后;
    所述收发模块,用于在所述第二上行资源上发送所述第一反馈信息。
  18. 根据权利要求17所述的装置,其特征在于,所述第二时间单元位于所述第一时间单元之后,或者,所述第二时间单元和所述第一时间单元为同一时间单元。
  19. 根据权利要求17或18所述的装置,其特征在于,所述处理模块,还用于确定所述第二时间单元;所述第二时间单元为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均不早于所述第一时间单元的时域起始位置,且每个候选时间单元均满足:第一条件,和/或,第二条件;
    其中,所述第一条件为:存在可用SPS反馈资源,所述可用SPS反馈资源的时域符号均为用于上行传输的符号,且所述可用SPS反馈资源对应的码本比特区间的最大值大于或等于反馈比特数,所述反馈比特数为所述候选时间单元中的SPS反馈信息的码本比特数与所述第一反馈信息的码本比特数之和;所述第二条件为:存在上行信号,所述上行信号包括上行数据或动态反馈信息;
    所述处理模块,还用于在所述第二时间单元中确定所述第二上行资源。
  20. 根据权利要求19所述的装置,其特征在于,所述处理模块,还用于若所述第二时间单元满足所述第一条件且不满足所述第二条件,则确定所述第二时间单元中的可用SPS反馈资源为所述第二上行资源;或者,
    所述处理模块,还用于若所述第二时间单元满足所述第二条件,则确定所述第二时间单元中承载所述上行信号的资源为所述第二上行资源。
  21. 根据权利要求17-20中任一项所述的装置,其特征在于,所述处理模块,还用于若满足合并发送条件,则确定第三上行资源;所述第三上行资源承载所述第一反馈信息和第二反馈信息;
    其中,所述合并发送条件为:所述第二时间单元包括所述第二反馈信息,或者所述第二上行资源与承载所述第二反馈信息的资源重叠;
    所述收发模块,还用于在所述第三上行资源上发送所述第一反馈信息和所述第二反馈信息。
  22. 一种通信装置,其特征在于,包括:处理模块和收发模块;其中,
    所述处理模块,用于确定第一上行资源;所述第一上行资源位于第一时间单元,且承载第一反馈信息,所述第一反馈信息为SPS PDSCH对应的反馈信息;
    所述处理模块,还用于若所述第一上行资源所占用的时域符号包括:下行符号,和/或,未指示用于上行传输的灵活符号,则确定第二时间单元和第二上行资源;
    其中,所述第二上行资源位于所述第二时间单元内,所述第二上行资源所占用的时域符号均为用于上行传输的符号,且所述第二上行资源的时域起始位置位于所述第一上行资源的时域起始位置之后;
    所述收发模块,用于在所述第二上行资源上接收所述第一反馈信息。
  23. 根据权利要求22所述的装置,其特征在于,所述第二时间单元位于所述第一时间单元之后,或者,所述第二时间单元和所述第一时间单元为同一时间单元。
  24. 根据权利要求22或23所述的装置,其特征在于,所述处理模块,还用于确定所述第二时间单元;所述第二时间单元为一个或多个候选时间单元中时域位置最靠前的候选时间单元,每个候选时间单元的时域起始位置均不早于所述第一时间单元的时域起始位置,且每个候选时间单元均满足:第一条件,和/或,第二条件;
    其中,所述第一条件为:存在可用SPS反馈资源,所述可用SPS反馈资源的时域符号均为用于上行传输的符号,且所述可用SPS反馈资源对应的码本比特区间的最大值大于或等于反馈比特数,所述反馈比特数为所述候选时间单元中的SPS反馈信息的码本比特数与所述第一反馈信息的码本比特数之和;所述第二条件为:存在上行信号,所述上行信号包括上行数据或动态反馈信息;
    所述处理模块,还用于在所述第二时间单元中确定所述第二上行资源。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块,还用于若所述第二时间单元满足所述第一条件且不满足所述第二条件,则确定所述第二时间单元中的可用SPS反馈资源为所述第二上行资源;或者,
    所述处理模块,还用于若所述第二时间单元满足所述第二条件,则确定所述第二时间单元中承载所述上行信号的资源为所述第二上行资源。
  26. 根据权利要求22-25中任一项所述的装置,其特征在于,所述处理模块,还用于若满足合并接收条件,则确定第三上行资源;所述第三上行资源承载所述第一反馈信息和第二反馈信息;
    其中,所述合并接收条件为:所述第二时间单元包括所述第二反馈信息,或者所述第二上行资源与承载所述第二反馈信息的资源重叠;
    所述收发模块,还用于在所述第三上行资源上接收所述第一反馈信息和所述第二 反馈信息。
  27. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器,所述收发器用于所述通信装置和其他通信装置之间进行信息交互,所述处理器执行程序指令,用以执行如权利要求1-16中任一项所述的通信方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-16中任一项所述的通信方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-16中任一项所述的通信方法。
PCT/CN2021/072272 2021-01-15 2021-01-15 通信方法及装置 WO2022151398A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/072272 WO2022151398A1 (zh) 2021-01-15 2021-01-15 通信方法及装置
CN202180089081.5A CN116686248A (zh) 2021-01-15 2021-01-15 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072272 WO2022151398A1 (zh) 2021-01-15 2021-01-15 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022151398A1 true WO2022151398A1 (zh) 2022-07-21

Family

ID=82446873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072272 WO2022151398A1 (zh) 2021-01-15 2021-01-15 通信方法及装置

Country Status (2)

Country Link
CN (1) CN116686248A (zh)
WO (1) WO2022151398A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049531A1 (zh) * 2015-09-24 2017-03-30 华为技术有限公司 数据传输方法及装置
CN109644119A (zh) * 2018-05-08 2019-04-16 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN110958083A (zh) * 2018-09-26 2020-04-03 华为技术有限公司 通信方法及装置
CN111262670A (zh) * 2019-01-11 2020-06-09 维沃移动通信有限公司 一种混合自动重传确认反馈信息传输方法和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049531A1 (zh) * 2015-09-24 2017-03-30 华为技术有限公司 数据传输方法及装置
CN109644119A (zh) * 2018-05-08 2019-04-16 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN110958083A (zh) * 2018-09-26 2020-04-03 华为技术有限公司 通信方法及装置
CN111262670A (zh) * 2019-01-11 2020-06-09 维沃移动通信有限公司 一种混合自动重传确认反馈信息传输方法和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Other Enhancements to Uplink and Downlink Transmissions for NR URLLC", 3GPP DRAFT; R1-1910551-OTHER ENHACEMENTS TO UPLINK AND DOWNLINK TRANSMISSION FOR NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789352 *

Also Published As

Publication number Publication date
CN116686248A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN110830151B (zh) 反馈信息的传输方法和装置
US20200119852A1 (en) Providing Acknowledgement Information by a Wireless Device
WO2019144833A1 (zh) Dai的指示方法、用户终端和网络侧设备
WO2019174486A1 (zh) 资源指示、确定方法及装置
WO2019184943A1 (zh) 数据传输方法、终端设备及网络设备
JP6720371B2 (ja) キャリアアグリゲーションベースの無線通信システムにおける通信方法(communication method in wireless communication system on basis of carrier aggregation)
US10708100B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
CN110166182B (zh) 一种竞争窗管理的方法及发送设备
US20180324810A1 (en) Method and Apparatus for Carrier Aggregation
WO2020200162A1 (zh) 确定反馈信息的方法和通信装置
JP2015164279A (ja) 基地局、送信方法、移動局及び再送制御方法
TWI706644B (zh) 資料傳輸方法、終端設備及網路設備
EP3751763A1 (en) Indication method, network device and user equipment
WO2017088696A1 (zh) 一种基于laa的混合自动重传处理方法和基站
CN112910610B (zh) 一种混合自动重传请求应答方法和设备
TW202118332A (zh) 通道衝突處理方法、裝置、設備和儲存介質
WO2022000318A1 (en) Harq feedback transmission method, base station and user equipment
WO2020249031A1 (zh) 应答信息的传输方法及装置
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
WO2021062609A1 (zh) 通信方法和通信装置
US20190223042A1 (en) Data transmission method and device
US20220368505A1 (en) Data feedback method and apparatus
WO2019095971A1 (zh) 一种通信方法及设备
WO2022151398A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089081.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202305408V

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 21918602

Country of ref document: EP

Kind code of ref document: A1