WO2019184943A1 - 数据传输方法、终端设备及网络设备 - Google Patents

数据传输方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2019184943A1
WO2019184943A1 PCT/CN2019/079842 CN2019079842W WO2019184943A1 WO 2019184943 A1 WO2019184943 A1 WO 2019184943A1 CN 2019079842 W CN2019079842 W CN 2019079842W WO 2019184943 A1 WO2019184943 A1 WO 2019184943A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
pdsch
ack
ack feedback
slot
Prior art date
Application number
PCT/CN2019/079842
Other languages
English (en)
French (fr)
Inventor
高雪娟
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP22195053.8A priority Critical patent/EP4120609B1/en
Priority to KR1020237023900A priority patent/KR20230109794A/ko
Priority to US17/043,546 priority patent/US11736237B2/en
Priority to KR1020207031284A priority patent/KR20200135528A/ko
Priority to EP19775440.1A priority patent/EP3780448B1/en
Publication of WO2019184943A1 publication Critical patent/WO2019184943A1/zh
Priority to US18/347,470 priority patent/US20230353286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1635Cumulative acknowledgement, i.e. the acknowledgement message applying to all previous messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method, a terminal device, and a network device.
  • a Physical Downlink Control Channel (PDCCH) carrying its scheduling information may indicate a scheduling timing relationship between the PDSCH and the PDCCH and a PDSCH to the PDSCH to the PDCCH.
  • the corresponding Hybrid Automatic Repeat Request (HARQ) confirms the HARQ-ACK timing between the HARQ-ACKs.
  • the time domain resource allocation indication field in the Downlink Control Information (DCI) format used by the PDCCH indicates the time slot offset of the time slot in which the PDSCH is located and the time slot in which the DCI is located; and the PDSCH to HARQ in the DCI format.
  • DCI Downlink Control Information
  • the -ACK feedback timing indication field indicates the number of slots K1 between the PDSCH and the HARQ-ACK.
  • the DCI for scheduling PDSCH has two formats, one is DCI format 1_0, and the other is DCI format 1_1.
  • the DCI format 1_0 is a fallback DCI, and the corresponding K1 set is fixed to ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ , and the DCI format 1_1 is non-fallback.
  • the DCI format, whose corresponding K1 set is the maximum of 8 values selected in the above maximum K1 set needs to contain at least the values in ⁇ 0, 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • K1 can indicate a value to the terminal device through the 3-bit HARQ-ACK timing indication field in the DCI, so the value can be dynamically changed.
  • the semi-static and dynamic HARQ-ACK codebook generation methods are supported in the 5G NR system.
  • the so-called HARQ-ACK codebook pointer performs downlink transmission of HARQ-ACK feedback on the same time domain location or uplink channel (including PDSCH and PDCCH indicating downlink SPS resource release), and the PDCCH indicating downlink SPS resource release may also be referred to as SPS.
  • the PDSCH release indication generates a HARQ-ACK feedback sequence.
  • the semi-static HARQ-ACK codebook may determine, according to the HARQ-ACK timing value in the K1 set, a location set Mc of downlink transmission corresponding to HARQ-ACK feedback in the same slot n on each carrier c, and then determine according to Mc.
  • the HARQ-ACK codebook transmitted in slot n. Specifically, according to each K1 value, a slot in which the corresponding slot slot n performs HARQ-ACK feedback may be determined, and in each slot of the slots, further according to the pre-configured downlink time domain resource allocation information.
  • the various time domain locations determine the maximum number of downlink transmissions that exist in Time Division Multiplexing (TDM) in a time slot.
  • TDM Time Division Multiplexing
  • a semi-static uplink and downlink time slot structure For example, if a semi-static uplink and downlink time slot structure is configured, if there is an uplink symbol in a transmission position in one time slot determined according to a downlink time domain resource allocation information, the transmission position is not counted, so there is an uplink and downlink resource conflict.
  • the downlink transmission does not actually occur, or the PDCCH monitoring occasion does not exist in the time slot of the downlink transmission scheduling information in the time slot determined according to the scheduling timing K0, indicating that the time slot cannot be scheduled.
  • the downlink transmission in the time slot cannot be counted. Only the symbols that are determined according to the downlink time domain resource allocation information in one slot are downlink or unknown symbols, and the PDCCH exists in the slot of the scheduling information corresponding to the slot.
  • the timing When the timing is monitored, it indicates that the downlink transmission can exist in the time slot, thereby determining the maximum number of downlink transmissions of the TDM transmission in the downlink transmission that may exist in one time slot, and so on, determining the correspondence according to K1.
  • the total number of downlink transmissions in multiple slots for performing HARQ-ACK feedback in slot n is taken as Mc, and is determined in the slot according to Mc.
  • the semi-static HARQ-ACK codebook transmitted in n includes the codebook size and the HARQ-ACK specific content and order.
  • the size of a semi-static HARQ-ACK codebook is usually determined by the number of downlink transmissions in which HARQ-ACK feedback is performed in one slot, due to downlink transmission of HARQ-ACK feedback in one slot. It may be that the downlink transmission in the time domain position is multiplexed, that is, the number of downlink transmissions in which HARQ-ACK feedback is performed in one slot may be large, and therefore, downlink transmission according to HARQ-ACK feedback in one slot is performed. In the semi-static HARQ-ACK codebook determined by the number, there may be more redundant information, which causes poor transmission performance of the HARQ-ACK feedback information.
  • the embodiments of the present disclosure provide a data transmission method, a terminal device, and a network device, to solve the problem that the redundancy information of the semi-static HARQ-ACK codebook in the related art is large, resulting in poor transmission performance of the HARQ-ACK feedback information.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a terminal device, and includes:
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a network device, and includes:
  • an embodiment of the present disclosure further provides a terminal device, including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor;
  • the transceiver is configured to: receive a PDSCH;
  • the processor is configured to determine a size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH, and perform corresponding HARQ on the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size. ACK feedback.
  • an embodiment of the present disclosure further provides a network device, including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor;
  • the transceiver is configured to: transmit a PDSCH;
  • the processor is configured to: determine a size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH;
  • the transceiver is further configured to: receive the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • the embodiment of the present disclosure further provides a data transmission apparatus, which is applied to a terminal device, and includes:
  • a first receiving module configured to receive a PDSCH
  • a first determining module configured to determine a size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH;
  • a feedback module configured to perform corresponding HARQ-ACK feedback on the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • the embodiment of the present disclosure further provides a data transmission apparatus, which is applied to a network device, and includes:
  • a transmission module configured to transmit a PDSCH
  • a second determining module configured to determine a size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH;
  • a second receiving module configured to receive the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • an embodiment of the present disclosure further provides a terminal device, including a memory, a processor, and a program stored on the memory and executable on the processor, wherein the program is used by the processor.
  • an embodiment of the present disclosure further provides a network device, including a memory, a processor, and a program stored on the memory and executable on the processor, wherein the program is used by the processor.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a program, wherein the program is executed by a processor to implement the step of applying the data transmission method applied to the terminal device, or the foregoing The steps of the data transmission method applied to the network device.
  • the size of the semi-static HARQ-ACK codebook is determined by the number of repeated transmissions according to the PDSCH, compared to the semi-static determined according to the number of downlink transmissions for performing HARQ-ACK feedback in one slot.
  • the HARQ-ACK codebook can reduce the redundancy information in the semi-static HARQ-ACK codebook based on the HARQ-ACK feedback of the normal PDSCH repeated transmission, and further repeats the semi-static HARQ-ACK codebook according to the semi-static HARQ-ACK codebook.
  • the transmitted PDSCH performs corresponding HARQ-ACK feedback, the transmission performance of the HARQ-ACK feedback information can be improved.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of performing HARQ-ACK feedback in a specific embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of performing HARQ-ACK feedback in case 2 in a specific embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of performing HARQ-ACK feedback in another specific embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a second schematic structural diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a second schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a terminal device, and includes the following steps:
  • Step 101 Receive a PDSCH
  • Step 102 Determine a size of the semi-static HARQ-ACK codebook according to the number of repeated transmissions of the PDSCH.
  • Step 103 Perform corresponding HARQ-ACK feedback on the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH is the HARQ-ACK feedback information corresponding to the last transmission of the repeatedly transmitted PDSCH, that is, the HARQ-ACK feedback information of the PDSCH obtained after the combination of multiple repeated transmissions. .
  • the size of the semi-static HARQ-ACK codebook is determined by the number of repeated transmissions according to the PDSCH, compared to the semi-static determined according to the number of downlink transmissions for performing HARQ-ACK feedback in one slot.
  • the HARQ-ACK codebook can reduce the redundancy information in the semi-static HARQ-ACK codebook based on the HARQ-ACK feedback of the normal PDSCH repetition transmission, and further repeats the semi-static HARQ-ACK codebook according to the semi-static HARQ-ACK codebook.
  • the transmitted PDSCH performs corresponding HARQ-ACK feedback, the transmission performance of the HARQ-ACK feedback information can be improved.
  • the terminal device when determining the size of the semi-static HARQ-ACK codebook, may further be based on a physical uplink control channel (Physical Uplink Control Channel, in addition to the number of repeated transmissions of the PDSCH).
  • the number of downlink transmissions for performing HARQ-ACK feedback on PUCCH may include:
  • the number of downlink transmissions for performing HARQ-ACK feedback on one time slot or PUCCH may be at least one of the following:
  • the number of downlink transmissions determined according to the slot range determined by the maximum and minimum values of the PDSCH to the feedback timing set corresponding to the HARQ-ACK and the time domain resource allocation candidate set of the downlink transmission in each slot.
  • the number of downlink transmissions for performing HARQ-ACK feedback on one time slot or PUCCH may be determined for each carrier, that is, for each carrier according to the manner of determining the number of downlink transmissions.
  • the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH may also be determined for multiple carriers, that is, in the determining process, first, determine the number of downlink transmissions for each carrier according to the foregoing.
  • the terminal device determines, according to the number of repeated transmissions of the PDSCH and the number of downlink transmissions that perform HARQ-ACK feedback on one slot or PUCCH, the PDSCH that performs repeated transmission of HARQ-ACK feedback on one slot or PUCCH.
  • the number of processes can be:
  • M is the number of PDSCHs for repeated transmission of HARQ-ACK feedback on one slot or PUCCH
  • B is the number of downlink transmissions for performing HARQ-ACK feedback on one slot or PUCCH
  • A is PDSCH Repeat the number of transmissions, The operator symbol for rounding up.
  • the repetition The transmitted PDSCH is the PD+1 of the i+1th repeated transmission in the PDSCH in which the HARQ-ACK feedback is repeatedly transmitted on one slot or PUCCH, and i is a positive integer greater than or equal to 0.
  • step 103 may include:
  • the terminal device maps the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH to the semi-static HARQ-ACK code according to the position of the repeatedly transmitted PDSCH in the PDSCH in which the HARQ-ACK feedback is repeatedly transmitted on one slot or PUCCH. This is transmitted.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a network device, and includes the following steps:
  • Step 201 Transmit a PDSCH
  • Step 202 Determine a size of the semi-static HARQ-ACK codebook according to the number of repeated transmissions of the PDSCH.
  • Step 203 Receive HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • the size of the semi-static HARQ-ACK codebook is determined by the number of repeated transmissions according to the PDSCH, compared to the semi-static determined according to the number of downlink transmissions for performing HARQ-ACK feedback in one slot.
  • the HARQ-ACK codebook can reduce the redundancy information in the semi-static HARQ-ACK codebook based on the HARQ-ACK feedback of the normal PDSCH repetition transmission, and further receives the repetition according to the semi-static HARQ-ACK codebook.
  • the HARQ-ACK feedback information corresponding to the transmitted PDSCH can improve the reception performance of the HARQ-ACK feedback information.
  • step 202 may include:
  • Determining a PDSCH for performing repeated transmission of HARQ-ACK feedback on the one slot or the PUCCH according to the number of repeated transmissions of the PDSCH and the number of downlink transmissions for performing HARQ-ACK feedback on one slot or PUCCH Number of
  • the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH is at least one of the following:
  • the number of downlink transmissions determined according to the slot range determined by the maximum and minimum values of the PDSCH to the feedback timing set corresponding to the HARQ-ACK and the time domain resource allocation candidate set of the downlink transmission in each slot.
  • determining to perform HARQ-ACK on the one time slot or the PUCCH according to the number of repeated transmissions of the PDSCH and the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH including:
  • the M is the number of PDSCHs that perform repeated transmission of HARQ-ACK feedback on the one time slot or the PUCCH
  • B is the downlink transmission that performs HARQ-ACK feedback on the one time slot or the PUCCH.
  • Number of A the number of repeated transmissions of the PDSCH, The operator symbol for rounding up.
  • the repeatedly transmitted PDSCH is The PDSCH of the i+1th repeated transmission in the PDSCH in which the HARQ-ACK feedback is repeatedly transmitted on the one slot or the PUCCH is a positive integer greater than or equal to 0.
  • step 203 can include:
  • the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH is the HARQ-ACK feedback information corresponding to the last transmission of the repeatedly transmitted PDSCH.
  • the candidate set K1 including 8 HARQ-ACK timings is ⁇ 2, 3, 4, 5, 6, 7, 8, 9 ⁇ , and the high layer signaling pre-configures the PDSCH for repeated transmission and repeated transmission.
  • the time domain resources in the time domain are determined according to the scheduling of the PDCCH, and in the repeated transmission process, each PDSCH has the same time domain position in the transmission slot, and the time domain resource allocation of the PDSCH in the above one slot is satisfied subsequently after the first slot starts. Repeated transmission in the slot. It is not currently excluded that the specific implementation can also perform repeated transmissions within the slot. For example, when the number of symbols allocated to a PDSCH is relatively small, the specific embodiment of the present disclosure repeats transmission only in units of slots.
  • Case 1 If the first transmission of the first repeatedly transmitted PDSCH is in slot n, the transmission is repeated in subsequent slots n+1, n+2, and n+3, and the first transmission of the second repeated transmission of the PDSCH is The slot n+4 is sequentially transmitted in the subsequent slots n+5, n+6, and n+7, and the corresponding HARQ-ACK feedback process performed by the terminal device is:
  • each K1 value in the set 8 slots corresponding to HARQ-ACK transmission in slot n+9, that is, slot n to slot n+7, can be determined, and each slot in these slots is in accordance with the existing one.
  • the correlation manner determines the maximum number of possible PDSCHs in the slot. For example, it is assumed that the terminal capability only supports only one PDSCH in each slot, and each slot exists in a slot for transmitting scheduling signaling determined according to K0.
  • the value determines the number of slots of the downlink resource that can be scheduled as the number of downlink transmissions, or determines a slot set range according to the maximum value and the minimum value in the K1 set, and determines, in this set, the downlink resources that can be scheduled.
  • At least one time domain resource downlink transmission resource allocation domain candidate set, if included, it indicates that the slot contains sufficient symbols may be scheduled for downlink PDSCH transmission; shown in Figure 3;
  • the eight downlink transmission locations corresponding to the HARQ-ACK feedback in the slot n+9 can only contain a maximum of two PDSCHs with four repetitions of the number of repetitions; the reason for this determination is that the terminal device performs repeated transmission.
  • the PDSCH determines the time domain location of the HARQ-ACK feedback only for the last PDSCH and the K1 value.
  • the range of the second PDSCH repeated transmission may exist in the B downlink transmissions. Therefore, it may be determined that the second PDSCH of the repeated transmission is corresponding to the slot.
  • the second PDSCH of the repeated transmission corresponds to the second position of the two HARQ-ACK feedback positions, as shown in FIG. 3;
  • the final HARQ-ACK feedback sequence is generated according to the above two HARQ-ACK positions, the HARQ-ACK feedback position corresponding to the first PDSCH repeatedly transmitted, and the HARQ-ACK feedback position corresponding to the second PDSCH repeatedly transmitted.
  • the HARQ-ACK corresponding to each repeatedly transmitted PDSCH may be 1 bit or multiple bits, depending on the specific configuration of the downlink transmission, for example, single TB or multiple TB, whether Space consolidation, support for CBG transmission, etc.
  • the HARQ-ACK corresponding to each repeatedly transmitted PDSCH is a multi-bit such as 2 bits
  • the first PDSCH repeatedly transmitted is a PDSCH corresponding to two repeated transmissions of HARQ-ACK feedback in slot n+9
  • the second PDSCH that is repeatedly transmitted is the second PDSCH in the PDSCH that corresponds to the two repeated transmissions of HARQ-ACK feedback in slot n+9
  • the eight downlink transmissions the actual There are only two PDSCHs with a repetition number of 4, so only the HARQ-ACK feedback of the two repeatedly transmitted PDSCHs needs to be performed, and the number of HARQ-ACK feedback bits of each repeatedly transmitted PDSCH is 2 bits, then the total
  • the second PDSCH transmitted corresponds to the third to fourth positions in the four HARQ-ACK feedback positions, and the final HARQ-ACK feedback sequence is generated thereby; or it can be understood that there are still two HARQ-ACKs at this time.
  • Feedback position each HARQ-ACK feedback position corresponds to 2-bit HARQ-ACK feedback information, ie repeat
  • the 2-bit HARQ-ACK of the first PDSCH transmitted is mapped to the 2-bit HARQ-ACK feedback information corresponding to the first HARQ-ACK feedback position, and the 2-bit HARQ-ACK of the second PDSCH repeatedly transmitted is mapped to the second
  • the HARQ-ACK feedbacks the 2-bit HARQ-ACK feedback information corresponding to the location, and thereby generates a final HARQ-ACK feedback sequence.
  • the network side for example, the base station, can determine the size of the semi-static HARQ-ACK codebook and the HARQ-ACK feedback position of different PDSCH repetition transmissions in the same manner, thereby obtaining each repeated transmission from the received HARQ-ACK feedback sequence.
  • the PDSCH corresponds to the HARQ-ACK feedback information.
  • Case 2 Only one PDSCH repeated transmission is scheduled in the B downlink transmission positions, and the first transmission is in slot n+1, and the transmission is repeated in the subsequent slots n+2, n+3, and n+4, and the terminal device performs the transmission.
  • the corresponding HARQ-ACK feedback process is:
  • the second PDSCH in the repeatedly transmitted PDSCH in the specific embodiment of the present disclosure, assuming that the HARQ-ACK corresponding to each repeatedly transmitted PDSCH is 1 bit, the HARQ-ACK corresponding to each repeatedly transmitted PDSCH corresponds to one HARQ.
  • - ACK feedback position in the 8 downlink transmissions, the actual HARQ-ACK feedback position is 2, and the first PDSCH of the repeated transmission corresponds to the second position of the 2 HARQ-ACK feedback positions, see Figure 4;
  • the feedback information is mapped at the second HARQ-ACK feedback position, and the first HARQ-ACK feedback position mapping NACK information is shown in FIG. 4 Show.
  • the HARQ-ACK feedback information corresponding to the PDSCH is mapped to the first HARQ-ACK feedback position, otherwise the first HARQ-ACK feedback position is Map NACK information.
  • the candidate set K1 including three HARQ-ACK timings is ⁇ 1, 3, 5 ⁇ .
  • each transmission is performed in a slot containing sufficient DL or unknown symbols, and the slot in which the first PDSCH transmission is located may be determined according to the scheduling of the PDCCH, for example, according to K0, the PDSCH is in a slot.
  • the time domain resources in the time domain are determined according to the scheduling of the PDCCH, and in the repeated transmission process, each PDSCH has the same time domain position in the transmission slot, and the time domain resource allocation of the PDSCH in the above one slot is satisfied subsequently after the first slot starts.
  • Repeated transmission in the slot It is not currently excluded that the specific implementation can also perform repeated transmissions within the slot. For example, when the number of symbols allocated to a PDSCH is relatively small, the specific embodiment of the present disclosure repeats transmission only in units of slots.
  • the corresponding HARQ-ACK feedback process performed by the terminal device is:
  • the maximum K1 value and the minimum K1 value in the set it can be determined that a total of 5 slots of slot n+8 to slot n+4 correspond to HARQ-ACK transmission in slot n+9, where slot n+8 and slot n+ 7 is the uplink slot, then the downlink cannot be transmitted, and is excluded from the semi-static HARQ-ACK codebook feedback, leaving only slot n+4 to slot n+6, and each slot in these slots is in accordance with the existing correlation mode. Determining the maximum number of possible PDSCHs in the slot.
  • the number of slots including the downlink resources that can be scheduled is used as the number of downlink transmissions, or a slot set range is determined according to the maximum value and the minimum value in the K1 set, and a slot containing downlink resources that can be scheduled is determined in the set.
  • the three downlink transmission locations corresponding to the HARQ-ACK feedback in the slot n+9 can only contain a maximum of two PDSCHs with two repetitions of the number of times of transmission; the reason for this determination is that the terminal device performs repeated transmission.
  • the PDSCH determines the time domain location of the HARQ-ACK feedback only for the last PDSCH and the K1 value.
  • the range of the second PDSCH repeated transmission may exist in the B downlink transmissions. Therefore, it may be determined that the second PDSCH of the repeated transmission is corresponding to the slot.
  • the second PDSCH of the repeated transmission corresponds to the second position of the two HARQ-ACK feedback positions, as shown in FIG. 5;
  • the final HARQ-ACK feedback sequence is generated according to the above two HARQ-ACK positions, the HARQ-ACK feedback position corresponding to the first PDSCH repeatedly transmitted, and the HARQ-ACK feedback position corresponding to the second PDSCH repeatedly transmitted.
  • the HARQ-ACK corresponding to each repeatedly transmitted PDSCH may be 1 bit or multiple bits, depending on the specific configuration of the downlink transmission, for example, single TB or multiple TB, whether Space consolidation, support for CBG transmission, etc.
  • the HARQ-ACK corresponding to each repeatedly transmitted PDSCH is a multi-bit such as 2 bits
  • the first PDSCH repeatedly transmitted is a PDSCH corresponding to two repeated transmissions of HARQ-ACK feedback in slot n+9
  • the second PDSCH that is repeatedly transmitted is the second PDSCH in the PDSCH that corresponds to the two repeated transmissions of HARQ-ACK feedback in slot n+9
  • the eight downlink transmissions the actual There are only two PDSCHs with a repeated transmission number of 2, so only the HARQ-ACK feedback of the two repeatedly transmitted PDSCHs needs to be performed, and the number of HARQ-ACK feedback bits of each repeatedly transmitted PDSCH is 2 bits, then the total
  • the second PDSCH transmitted corresponds to the third to fourth positions in the four HARQ-ACK feedback positions, and the final HARQ-ACK feedback sequence is generated thereby; or it can be understood that there are still two HARQ-ACKs at this time.
  • Feedback position each HARQ-ACK feedback position corresponds to 2-bit HARQ-ACK feedback information, ie repeat
  • the 2-bit HARQ-ACK of the first PDSCH transmitted is mapped to the 2-bit HARQ-ACK feedback information corresponding to the first HARQ-ACK feedback position, and the 2-bit HARQ-ACK of the second PDSCH repeatedly transmitted is mapped to the second
  • the HARQ-ACK feedbacks the 2-bit HARQ-ACK feedback information corresponding to the location, and thereby generates a final HARQ-ACK feedback sequence.
  • the network side for example, the base station, can determine the size of the semi-static HARQ-ACK codebook and the HARQ-ACK feedback position of different PDSCH repetition transmissions in the same manner, thereby obtaining each repeated transmission from the received HARQ-ACK feedback sequence.
  • the PDSCH corresponds to the HARQ-ACK feedback information.
  • an embodiment of the present disclosure further provides a terminal device, including a transceiver 61, a memory 62, a processor 63, and a computer program stored on the memory 62 and operable on the processor 63;
  • the transceiver uses 61 to: receive the PDSCH.
  • the processor 63 is configured to: determine a size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH, and perform corresponding to the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size. HARQ-ACK feedback.
  • the terminal apparatus of the embodiment of the present disclosure determines the size of the semi-static HARQ-ACK codebook by the number of repeated transmissions according to the PDSCH, compared to the half determined according to the number of downlink transmissions for performing HARQ-ACK feedback in one slot.
  • the static HARQ-ACK codebook can reduce the redundancy information in the semi-static HARQ-ACK codebook based on the HARQ-ACK feedback of the normal PDSCH repetition transmission, and further according to the semi-static HARQ-ACK codebook, When the repeatedly transmitted PDSCH performs corresponding HARQ-ACK feedback, the transmission performance of the HARQ-ACK feedback information can be improved.
  • the processor 63 is further configured to:
  • Determining a PDSCH for performing repeated transmission of HARQ-ACK feedback on the one slot or the PUCCH according to the number of repeated transmissions of the PDSCH and the number of downlink transmissions for performing HARQ-ACK feedback on one slot or PUCCH Number of
  • the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH is at least one of the following:
  • the number of downlink transmissions determined according to the slot range determined by the maximum and minimum values of the PDSCH to the feedback timing set corresponding to the HARQ-ACK and the time domain resource allocation candidate set of the downlink transmission in each slot.
  • the processor 63 is further configured to:
  • the M is the number of PDSCHs that perform repeated transmission of HARQ-ACK feedback on the one time slot or the PUCCH
  • B is the downlink transmission that performs HARQ-ACK feedback on the one time slot or the PUCCH.
  • Number of A the number of repeated transmissions of the PDSCH, The operator symbol for rounding up.
  • the repeatedly transmitted PDSCH is The PDSCH of the i+1th repeated transmission in the PDSCH in which the HARQ-ACK feedback is repeatedly transmitted on the one slot or the PUCCH is a positive integer greater than or equal to 0.
  • the transceiver 61 is further configured to:
  • the semi-static HARQ-ACK codebook is transmitted.
  • the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH is the HARQ-ACK feedback information corresponding to the last transmission of the repeatedly transmitted PDSCH.
  • bus architecture (represented by bus 60) may include any number of interconnected buses and bridges, and bus 60 will include various ones of memory represented by processor 63 and memory represented by memory 62.
  • the circuits are connected together.
  • the transceiver 61 can include a transmitter and a receiver, and the transmitter and receiver can be coupled to the processor 63 and the memory 62 via a bus 60.
  • the processor 63 is responsible for managing the bus 60 and the usual processing, while the memory 62 can be used to store data used by the processor 62 in performing the operations.
  • an embodiment of the present disclosure further provides a network device, including a transceiver 71, a memory 72, a processor 73, and a computer program stored on the memory 72 and operable on the processor 73;
  • the transceiver 71 is configured to: transmit a PDSCH.
  • the processor 73 is configured to determine a size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH.
  • the transceiver 71 is further configured to: receive the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • the network device of the embodiment of the present disclosure determines the size of the semi-static HARQ-ACK codebook by the number of repeated transmissions according to the PDSCH, compared to the half determined according to the number of downlink transmissions for performing HARQ-ACK feedback in one slot.
  • the static HARQ-ACK codebook can reduce the redundancy information in the semi-static HARQ-ACK codebook based on the HARQ-ACK feedback of the normal PDSCH repetition transmission, and further receive the semi-static HARQ-ACK codebook according to the semi-static HARQ-ACK codebook.
  • the HARQ-ACK feedback information corresponding to the PDSCH that is repeatedly transmitted can improve the reception performance of the HARQ-ACK feedback information.
  • the processor 73 is further configured to:
  • Determining a PDSCH for performing repeated transmission of HARQ-ACK feedback on the one slot or the PUCCH according to the number of repeated transmissions of the PDSCH and the number of downlink transmissions for performing HARQ-ACK feedback on one slot or PUCCH Number of
  • the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH is at least one of the following:
  • the number of downlink transmissions determined according to the slot range determined by the maximum and minimum values of the PDSCH to the feedback timing set corresponding to the HARQ-ACK and the time domain resource allocation candidate set of the downlink transmission in each slot.
  • the processor 73 is further configured to:
  • the M is the number of PDSCHs that perform repeated transmission of HARQ-ACK feedback on the one time slot or the PUCCH
  • B is the downlink transmission that performs HARQ-ACK feedback on the one time slot or the PUCCH.
  • Number of A the number of repeated transmissions of the PDSCH, The operator symbol for rounding up.
  • the repeatedly transmitted PDSCH is The PDSCH of the i+1th repeated transmission in the PDSCH in which the HARQ-ACK feedback is repeatedly transmitted on the one slot or the PUCCH is a positive integer greater than or equal to 0.
  • the transceiver 71 is further configured to:
  • the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH is the HARQ-ACK feedback information corresponding to the last transmission of the repeatedly transmitted PDSCH.
  • the bus architecture (represented by bus 70) may include any number of interconnected buses and bridges, which will include various ones of the memory represented by processor 73 and memory represented by memory 72.
  • the circuits are connected together.
  • the transceiver 71 can include a transmitter and a receiver, and the transmitter and receiver can be coupled to the processor 73 and the memory 72 via a bus 70.
  • the processor 73 is responsible for managing the bus 70 and the usual processing, while the memory 72 can be used to store data used by the processor 72 in performing the operations.
  • an embodiment of the present disclosure further provides a data transmission apparatus, which is applied to a terminal device, and includes:
  • a first receiving module 81 configured to receive a PDSCH
  • the first determining module 82 is configured to determine a size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH;
  • the feedback module 83 is configured to perform corresponding HARQ-ACK feedback on the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • the data transmission apparatus of the embodiment of the present disclosure determines the size of the semi-static HARQ-ACK codebook by the number of repeated transmissions according to the PDSCH, as compared with the number of downlink transmissions based on HARQ-ACK feedback in one slot.
  • the semi-static HARQ-ACK codebook can reduce redundant information in the semi-static HARQ-ACK codebook based on the HARQ-ACK feedback of the normal PDSCH repeated transmission, and further according to the semi-static HARQ-ACK codebook, When the corresponding HARQ-ACK feedback is performed on the repeatedly transmitted PDSCH, the transmission performance of the HARQ-ACK feedback information can be improved.
  • the first determining module 82 includes:
  • a first determining unit configured to determine, according to the number of repeated transmissions of the PDSCH and the number of downlink transmissions that perform HARQ-ACK feedback on one slot or PUCCH, perform HARQ on the one slot or the PUCCH.
  • a second determining unit configured to determine a size of the semi-static HARQ-ACK codebook according to the number of PDSCHs that perform repeated transmission of HARQ-ACK feedback on the one time slot or the PUCCH.
  • the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH is at least one of the following:
  • the number of downlink transmissions determined according to the slot range determined by the maximum and minimum values of the PDSCH to the feedback timing set corresponding to the HARQ-ACK and the time domain resource allocation candidate set of the downlink transmission in each slot.
  • the first determining unit is specifically configured to:
  • the M is the number of PDSCHs that perform repeated transmission of HARQ-ACK feedback on the one time slot or the PUCCH
  • B is the downlink transmission that performs HARQ-ACK feedback on the one time slot or the PUCCH.
  • Number of A the number of repeated transmissions of the PDSCH, The operator symbol for rounding up.
  • the repeatedly transmitted PDSCH is The PDSCH of the i+1th repeated transmission in the PDSCH in which the HARQ-ACK feedback is repeatedly transmitted on the one slot or the PUCCH is a positive integer greater than or equal to 0.
  • the feedback module 83 is specifically configured to:
  • the semi-static HARQ-ACK codebook is transmitted.
  • the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH is the HARQ-ACK feedback information corresponding to the last transmission of the repeatedly transmitted PDSCH.
  • an embodiment of the present disclosure further provides a data transmission apparatus, which is applied to a network device, and includes:
  • a transmission module 91 configured to transmit a PDSCH
  • a second determining module 92 configured to determine a size of the semi-static HARQ-ACK codebook according to the number of repeated transmissions of the PDSCH;
  • the second receiving module 93 is configured to receive the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size.
  • the data transmission apparatus of the embodiment of the present disclosure determines the size of the semi-static HARQ-ACK codebook by the number of repeated transmissions according to the PDSCH, as compared with the number of downlink transmissions based on HARQ-ACK feedback in one slot.
  • the semi-static HARQ-ACK codebook can reduce redundant information in the semi-static HARQ-ACK codebook based on the HARQ-ACK feedback of the normal PDSCH repeated transmission, and further according to the semi-static HARQ-ACK codebook, Receiving the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH can improve the reception performance of the HARQ-ACK feedback information.
  • the second determining module 92 includes:
  • a third determining unit configured to determine, according to the number of repeated transmissions of the PDSCH and the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH, perform HARQ on the one time slot or the PUCCH The number of PDSCHs for repeated transmission of ACK feedback;
  • a fourth determining unit configured to determine a size of the semi-static HARQ-ACK codebook according to the number of PDSCHs that perform repeated transmission of HARQ-ACK feedback on the one time slot or the PUCCH.
  • the number of downlink transmissions that perform HARQ-ACK feedback on one time slot or PUCCH is at least one of the following:
  • the number of downlink transmissions determined according to the slot range determined by the maximum and minimum values of the PDSCH to the feedback timing set corresponding to the HARQ-ACK and the time domain resource allocation candidate set of the downlink transmission in each slot.
  • the third determining unit is specifically configured to:
  • the M is the number of PDSCHs that perform repeated transmission of HARQ-ACK feedback on the one time slot or the PUCCH
  • B is the downlink transmission that performs HARQ-ACK feedback on the one time slot or the PUCCH.
  • Number of A the number of repeated transmissions of the PDSCH, The operator symbol for rounding up.
  • the repeatedly transmitted PDSCH is The PDSCH of the i+1th repeated transmission in the PDSCH in which the HARQ-ACK feedback is repeatedly transmitted on the one slot or the PUCCH is a positive integer greater than or equal to 0.
  • the second receiving module 93 is specifically configured to:
  • the HARQ-ACK feedback information corresponding to the repeatedly transmitted PDSCH is the HARQ-ACK feedback information corresponding to the last transmission of the repeatedly transmitted PDSCH.
  • embodiments of the present disclosure also provide a terminal device including a processor, a memory, and a computer program stored on the memory and executable on the processor, wherein the computer program is executed by the processor.
  • an embodiment of the present disclosure further provides a terminal device, including a bus 11, a processor 12, a transceiver 13, a bus interface 14, a memory 15, and a user interface 16.
  • the processor 12 is configured to read a program in the memory 15 and perform the following steps:
  • the control transceiver 13 receives the PDSCH, determines the size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH, and performs corresponding HARQ on the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size. - ACK feedback.
  • the transceiver 13 is configured to receive and transmit data under the control of the processor 12.
  • bus architecture may include any number of interconnected buses and bridges, each of which will include one or more processors represented by general purpose processor 12 and memory represented by memory 15.
  • the circuits are linked together.
  • the bus 11 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 14 provides an interface between bus 11 and transceiver 13.
  • the transceiver 13 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the transceiver 13 receives external data from other devices.
  • the transceiver 13 is configured to transmit the processed data of the processor 12 to other devices.
  • a user interface 16 such as a keypad, display, speakers, microphone, joystick, may also be provided.
  • the processor 12 is responsible for managing the bus 11 and the usual processing, running a general purpose operating system as described above.
  • the memory 15 can be used to store data used by the processor 12 when performing operations.
  • the processor 12 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • the memory 15 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • memory 15 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 151 and application 152.
  • the operating system 151 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 152 includes various applications such as a Media Player, a Browser, and the like for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 152.
  • Embodiments of the present disclosure also provide a network device including a processor, a memory, and a computer program stored on the memory and executable on the processor, wherein the computer program is implemented by the processor.
  • an embodiment of the present disclosure further provides a network device, including a bus 111, a transceiver 112, an antenna 113, a bus interface 114, a processor 115, and a memory 116.
  • the network device further includes: a computer program stored on the memory 116 and operable on the processor 115, the computer program being executed by the processor 115 to implement the following steps:
  • the control transceiver 112 transmits the PDSCH, determines the size of the semi-static HARQ-ACK codebook according to the repeated transmission times of the PDSCH, and receives the HARQ corresponding to the repeatedly transmitted PDSCH according to the semi-static HARQ-ACK codebook of the determined size. ACK feedback information.
  • the transceiver 112 is configured to receive and transmit data under the control of the processor 115.
  • bus architecture may include any number of interconnected buses and bridges, which will include various ones of the memory represented by processor 115 and memory represented by memory 116.
  • the circuits are linked together.
  • the bus 111 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • Bus interface 114 provides an interface between bus 111 and transceiver 112.
  • Transceiver 112 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by the processor 115 is transmitted over the wireless medium via the antenna 113. Further, the antenna 113 also receives the data and transmits the data to the processor 115.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where a computer program is stored thereon, and when the program is executed by the processor, the various processes of the foregoing data transmission method embodiment applied to the terminal device are implemented, and the same can be achieved. Technical effects, to avoid repetition, will not be repeated here.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where a computer program is stored thereon, and when the program is executed by the processor, the foregoing processes of the data transmission method embodiment applied to the network device are implemented, and the same can be achieved. Technical effects, to avoid repetition, will not be repeated here.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media, and information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.

Abstract

本公开提供一种数据传输方法、终端设备及网络设备,其中,数据传输方法包括:接收物理下行共享信道;根据物理下行共享信道的重复传输次数,确定半静态混合自动重传请求确认码本的大小;根据确定大小的半静态混合自动重传请求确认码本,对重复传输的物理下行共享信道进行相应的混合自动重传请求确认反馈。

Description

数据传输方法、终端设备及网络设备
相关申请的交叉引用
本申请主张在2018年3月30日在中国提交的中国专利申请号No.201810276760.3的优先权,其部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是涉及一种数据传输方法、终端设备及网络设备。
背景技术
随着移动通信业务需求的发展变化,国际电信联盟(International Telecommunication Union,ITU)和第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)等组织都开始研究新的无线通信系统,例如第五代新无线通信系统(5 Generation New Radio,5G NR)。
目前5G NR系统中支持灵活的定时关系。对于物理下行共享信道(Physical Downlink Shared Channel,PDSCH),承载其调度信息的物理下行控制信道(Physical Downlink Control Channel,PDCCH)可指示PDSCH与PDCCH之间的调度定时关系(Scheduling timing)以及PDSCH到其对应的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)确认HARQ-ACK之间的反馈定时关系(HARQ-ACK timing)。具体地,PDCCH所使用的下行控制信息(Downlink Control Information,DCI)格式中的时域资源分配指示域指示PDSCH所在时隙与DCI所在时隙的时隙偏移K0;DCI格式中的PDSCH到HARQ-ACK反馈定时指示域指示PDSCH到HARQ-ACK之间的时隙个数K1。调度PDSCH的DCI有两种格式,一种是DCI格式1_0,另一种是DCI格式1_1。其中,DCI格式1_0为回退(fallback)DCI,其对应的K1集合固定为{1,2,3,4,5,6,7,8},DCI格式1_1为非回退(non-fallback)的DCI格式,其对应的K1集合为上述最大K1集合中选择出的最多8个值,需要至少包含{0,1,2,3,4,5,6,7}中的值。K1可以通过DCI中的3比特HARQ-ACK定 时指示域指示一个值至终端设备,因此该值可以是动态改变的。
5G NR系统中支持半静态(semi-static)和动态(dynamic)两种HARQ-ACK码本(codebook)产生方式。所谓HARQ-ACK码本指针对在同一个时域位置或上行信道上进行HARQ-ACK反馈的下行传输(包括PDSCH和指示下行SPS资源释放的PDCCH,指示下行SPS资源释放的PDCCH也可称为SPS PDSCH释放指示)产生的HARQ-ACK反馈序列。
半静态HARQ-ACK码本可以根据K1集合中的HARQ-ACK定时值确定每个载波c上对应在同一个时隙n进行HARQ-ACK反馈的下行传输的位置集合Mc,然后根据Mc即可以确定时隙n中传输的HARQ-ACK码本。具体的,根据每个K1值可确定对应的时隙slot n进行HARQ-ACK反馈的时隙,在这些时隙的每个时隙中,进一步可根据预先配置的下行时域资源分配信息中的各种时域位置,确定一个时隙中时分复用(Time Division Multiplexing,TDM)存在的最大的下行传输的个数。例如,如果配置了半静态的上下行时隙结构,根据一个下行时域资源分配信息确定的在一个时隙中的传输位置中存在上行符号,则该传输位置不计数,因此存在上下行资源冲突,该下行传输实际不会发生,或根据调度定时K0确定的传输该时隙中的下行传输的调度信息的时隙中不存在PDCCH监听时机(PDCCH monitoring occasion),则说明该时隙不能被调度,该时隙中的下行传输都不能被计数,只有满足一个时隙中根据下行时域资源分配信息确定的符号都为下行或unknown符号且该时隙对应的发送调度信息的时隙中存在PDCCH监听时机时,才说明该下行传输可以在该时隙中存在,从而在一个时隙中可能存在的下行传输中确定最大的TDM传输的下行传输个数,以此类推,确定根据K1得到的对应在slot n中进行HARQ-ACK反馈的多个slot中的总的下行传输个数作为Mc,根据Mc确定在slot n中传输的半静态HARQ-ACK码本,包括码本大小以及HARQ-ACK具体内容和顺序。
目前在5G NR系统中,半静态HARQ-ACK码本的大小通常由在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定,由于在一个时隙中进行HARQ-ACK反馈的下行传输可能是复用在时域位置上的下行传输,即在一个时隙中进行HARQ-ACK反馈的下行传输的个数可能较大,因此根据在一个 时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本中,可能存在较多的冗余信息,造成HARQ-ACK反馈信息的传输性能差。
发明内容
本公开实施例提供一种数据传输方法、终端设备及网络设备,以解决相关技术中的半静态HARQ-ACK码本的冗余信息较多,造成HARQ-ACK反馈信息的传输性能差的问题。
第一方面,本公开实施例提供一种数据传输方法,应用于终端设备,包括:
接收PDSCH;
根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
第二方面,本公开实施例提供一种数据传输方法,应用于网络设备,包括:
传输PDSCH;
根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
第三方面,本公开实施例还提供了一种终端设备,包括收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
所述收发机用于:接收PDSCH;
所述处理器用于:根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
第四方面,本公开实施例还提供了一种网络设备,包括收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
所述收发机用于:传输PDSCH;
所述处理器用于:根据所述PDSCH的重复传输次数,确定半静态 HARQ-ACK码本的大小;
所述收发机还用于:根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
第五方面,本公开实施例还提供了一种数据传输装置,应用于终端设备,包括:
第一接收模块,用于接收PDSCH;
第一确定模块,用于根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
反馈模块,用于根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
第六方面,本公开实施例还提供了一种数据传输装置,应用于网络设备,包括:
传输模块,用于传输PDSCH;
第二确定模块,用于根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
第二接收模块,用于根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
第七方面,本公开实施例还提供了一种终端设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现上述应用于终端设备的数据传输方法的步骤。
第八方面,本公开实施例还提供了一种网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现上述应用于网络设备的数据传输方法的步骤。
第九方面,本公开实施例还提供了一种计算机可读存储介质,其上存储有程序,其中,所述程序被处理器执行时实现上述应用于终端设备的数据传输方法的步骤,或者上述应用于网络设备的数据传输方法的步骤。
在本公开实施例中,通过根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,相比于根据在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本,能够在保证正常的PDSCH 重复传输的HARQ-ACK反馈的基础上,减少半静态HARQ-ACK码本中的冗余信息,进一步根据此半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈时,能够提高HARQ-ACK反馈信息的传输性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的数据传输方法的流程图;
图2为本公开实施例的另一数据传输方法的流程图;
图3为本公开具体实施例中情况一下进行HARQ-ACK反馈的示意图;
图4为本公开具体实施例中情况二下进行HARQ-ACK反馈的示意图;
图5为本公开另一具体实施例中进行HARQ-ACK反馈的示意图;
图6为本公开实施例的终端设备的结构示意图之一;
图7为本公开实施例的网络设备的结构示意图之一;
图8为本公开实施例的数据传输装置的结构示意图之一;
图9为本公开实施例的数据传输装置的结构示意图之二;
图10为本公开实施例的终端设备的结构示意图之二;
图11为本公开实施例的网络设备的结构示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1所示,本公开实施例提供了一种数据传输方法,应用于终端设备,包括如下步骤:
步骤101:接收PDSCH;
步骤102:根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
步骤103:根据确定大小的半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
其中,该重复传输的PDSCH对应的HARQ-ACK反馈信息为重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息,即经过多次重复传输的合并之后得到的PDSCH的HARQ-ACK反馈信息。
在本公开实施例中,通过根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,相比于根据在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本,能够在保证正常的PDSCH重复传输的HARQ-ACK反馈的基础上,减少半静态HARQ-ACK码本中的冗余信息,进一步根据此半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈时,能够提高HARQ-ACK反馈信息的传输性能。
本公开实施例中,终端设备在确定半静态HARQ-ACK码本的大小时,除可根据PDSCH的重复传输次数外,还可进一步根据在一个时隙或物理上行控制信道(Physical Uplink Control Channel,PUCCH)上进行HARQ-ACK反馈的下行传输的个数。具体的,步骤102可包括:
根据PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在一个时隙或PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
根据在一个时隙或PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定半静态HARQ-ACK码本的大小。
其中,该在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数可为以下至少一项:
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传 输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
需指出的是,该在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数可以是针对每个载波确定的,即针对每个载波按照上述确定下行传输的个数的方式,确定在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数。此外,该在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数也可以是针对多个载波确定的,即此确定过程中,首先针对每个载波按照上述确定下行传输的个数的方式确定每个载波上对应的下行传输集合,然后对多个载波中的每个载波上对应的下行传输集合取并集,以确定在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数。
进一步的,终端设备根据PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在一个时隙或PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数的过程可为:
按照公式
Figure PCTCN2019079842-appb-000001
计算在一个时隙或PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
其中,M为在一个时隙或PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为PDSCH的重复传输次数,
Figure PCTCN2019079842-appb-000002
为向上取整的运算符号。
需说明的是,具体实现时,若该重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,则该重复传输的PDSCH为在一个时隙或PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
进一步的,步骤103可包括:
终端设备根据重复传输的PDSCH在在一个时隙或PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,将该重复传输的PDSCH对应的HARQ-ACK反馈信息映射到半静态HARQ-ACK码本中进行传输。
参见图2所示,本公开实施例提供了一种数据传输方法,应用于网络设备,包括如下步骤:
步骤201:传输PDSCH;
步骤202:根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
步骤203:根据确定大小的半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
在本公开实施例中,通过根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,相比于根据在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本,能够在保证正常的PDSCH重复传输的HARQ-ACK反馈的基础上,减少半静态HARQ-ACK码本中的冗余信息,进一步根据此半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息,能够提高HARQ-ACK反馈信息的接收性能。
本公开实施例中,可选的,步骤202可包括:
根据所述PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
可选的,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的 下行传输的个数。
可选的,所述根据所述PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,包括:
按照公式
Figure PCTCN2019079842-appb-000003
计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
Figure PCTCN2019079842-appb-000004
为向上取整的运算符号。
可选的,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
可选的,步骤203可包括:
根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,在所述半静态HARQ-ACK码本中的相应位置上接收所述重复传输的PDSCH对应的HARQ-ACK反馈信息。
可选的,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
下面,结合图3至图5对本公开具体实施例进行详细说明。
本公开具体实施例中,假设包含8个HARQ-ACK定时的候选集合K1为{2,3,4,5,6,7,8,9},高层信令预先配置PDSCH进行重复传输,重复传输次数为A=4,即承载同一个TB的PDSCH需要经过4次重复传输。若以slot为单位进行重复传输,则每次传输在一个包含足够DL或unknown符号的slot中进行,第一个PDSCH传输所在的slot可根据PDCCH的调度确定,例如根据K0确定,PDSCH在一个slot中的时域资源根据PDCCH的调度确定,且重 复传输过程中,每个PDSCH在传输slot中的时域位置相同,在第一个slot开始的后续满足上述一个slot中的PDSCH的时域资源分配的slot中进行重复传输。当前不排除具体实现时还可以在slot内部进行重复传输,比如一个PDSCH被分配的符号个数比较少时,而本公开具体实施例仅以slot为单位进行重复传输。
情况一:若第一个重复传输的PDSCH的第一次传输在slot n,依次在后续slot n+1、n+2和n+3重复传输,第二重复传输的PDSCH的第一次传输在slot n+4,依次在后续slot n+5、n+6和n+7重复传输,则终端设备进行的相应HARQ-ACK反馈过程为:
首先,根据集合中的每个K1值可以确定8个对应在slot n+9中进行HARQ-ACK传输的slot,即slot n到slot n+7,对这些slot中的每一个slot都按照现有相关方式确定PDSCH在该slot中可能存在的最大个数,比如此时假设终端能力仅支持每个slot中仅存在一个PDSCH,且每个slot都在根据K0确定的发送调度信令的slot中存在PDCCH监听时机,则确定每个slot都可以包含一个PDSCH传输,即在一个载波上对应在slot n+9中进行HARQ-ACK反馈的下行传输个数为B=8,或者,直接根据每一个K1值确定的包含可以被调度的下行资源的slot个数作为下行传输个数,或者,根据K1集合中的最大值和最小值确定一个slot集合范围,在这个集合中确定包含可以被调度的下行资源的slot个数作为下行传输个数,都可以得到B=8,其中,包含可以被调度的下行资源的slot即判断该slot中是否包含预先配置的每个时隙中的下行传输的时域资源分配候选集合中的至少一个下行时域资源,如果包含,则说明该slot中包含足够的下行符号可以被调度进行PDSCH传输;如图3所示;
其次,按照
Figure PCTCN2019079842-appb-000005
即可判断对应在slot n+9中进行HARQ-ACK反馈的8个下行传输位置中实际上只能包含最多2个重复传输次数为4次的PDSCH;此判断的原因为终端设备对重复传输的PDSCH只针对最后一个PDSCH以及K1值确定HARQ-ACK反馈的时域位置,前几个PDSCH重复传输由于属于一个重复传输的PDSCH的中间过程,可不需要进行HARQ-ACK反馈;因此,此种情况下,可确定M=2,即对应在slot n+9中进行HARQ-ACK 反馈的重复传输的PDSCH的个数为2个,对应在slot n+9中进行HARQ-ACK反馈的进行重复传输的下行传输位置仅有2个,只针对此2个下行传输位置进行HARQ-ACK反馈即可,如图3所示;
然后,按照HARQ-ACK映射原则,由于终端设备接收到的在slot n+3结束重复传输的PDSCH的结束位置在B=8个位置中的第4个位置,属于i=0确定的第1至4个位置的集合中,即属于B个下行传输中可能存在第一个PDSCH重复传输的范围,因此,可确定重复传输的第一个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第1个重复传输的PDSCH;同理,由于终端设备接收到的在slot n+7结束重复传输的PDSCH的结束位置在B=8个位置中的第8个位置,属于i=1确定的第5至8个位置的集合中,即属于B个下行传输中可能存在第二个PDSCH重复传输的范围,因此,可确定重复传输的第二个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第2个重复传输的PDSCH;本公开具体实施例中,假设每个重复传输的PDSCH对应的HARQ-ACK为1比特,则每个重复传输的PDSCH对应的HARQ-ACK对应一个HARQ-ACK反馈位置,则在8个下行传输中,实际存在的HARQ-ACK反馈位置为2个,重复传输的第一个PDSCH对应于2个HARQ-ACK反馈位置中的第1个位置,重复传输的第二个PDSCH对应于2个HARQ-ACK反馈位置中的第2个位置,参见图3所示;
最后,按照上述2个HARQ-ACK位置、重复传输的第一个PDSCH对应的HARQ-ACK反馈位置和重复传输的第二个PDSCH对应的HARQ-ACK反馈位置,生成最终的HARQ-ACK反馈序列。
需指出的是,具体实现时,每个重复传输的PDSCH对应的HARQ-ACK除可为1比特外,还可为多比特,取决于下行传输的具体配置,例如是单TB还是多TB、是否进行空间合并、是否支持CBG传输等。在每个重复传输的PDSCH对应的HARQ-ACK为多比特比如2比特的情况下,当重复传输的第一个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第1个PDSCH,重复传输的第二个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第2个PDSCH时,在 8个下行传输中,实际仅存在2个重复传输次数为4的PDSCH,因此只需要对这两个重复传输的PDSCH进行HARQ-ACK反馈,而每个重复传输的PDSCH的HARQ-ACK反馈比特数为2比特,则总的HARQ-ACK反馈比特数为2x2=4比特,可以等效为4个HARQ-ACK位置,则重复传输的第一个PDSCH对应于4个HARQ-ACK反馈位置中的第1至2个位置,重复传输的第二个PDSCH对应于4个HARQ-ACK反馈位置中的第3至4个位置,并以此生成最终的HARQ-ACK反馈序列;或者也可以理解为,此时还是2个HARQ-ACK反馈位置,每个HARQ-ACK反馈位置对应2比特HARQ-ACK反馈信息,即重复传输的第一个PDSCH的2比特HARQ-ACK映射为第一个HARQ-ACK反馈位置对应的2比特HARQ-ACK反馈信息,重复传输的第二个PDSCH的2比特HARQ-ACK映射为第二个HARQ-ACK反馈位置对应的2比特HARQ-ACK反馈信息,并以此生成最终的HARQ-ACK反馈序列。
此情况下,网络侧比如基站可以按照同样方式确定半静态HARQ-ACK码本的大小以及不同PDSCH重复传输的HARQ-ACK反馈位置,从而从接收到的HARQ-ACK反馈序列中得到每个重复传输的PDSCH对应的HARQ-ACK反馈信息。
情况二:在B个下行传输位置中仅调度了一个PDSCH重复传输,第一次传输在slot n+1,依次在后续slot n+2、n+3和n+4重复传输,则终端设备进行的相应HARQ-ACK反馈过程为:
首先,按照上述情况1的同样方法确定B=8以及M=2;在进行HARQ-ACK映射时,由于终端设备接收到的在slot n+4结束重复传输的PDSCH的结束位置在B=8个位置中的第5个位置,属于i=1确定的第5至8个位置的集合中,因此,可确定重复传输的第一个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第2个PDSCH;本公开具体实施例中,假设每个重复传输的PDSCH对应的HARQ-ACK为1比特,则每个重复传输的PDSCH对应的HARQ-ACK对应一个HARQ-ACK反馈位置,则在8个下行传输中,实际存在的HARQ-ACK反馈位置为2个,该重复传输的第一个PDSCH对应于2个HARQ-ACK反馈位置中的第2个位置,参见图4所示;
然后,根据该重复传输的第一个PDSCH对应的HARQ-ACK反馈位置,在第2个HARQ-ACK反馈位置映射反馈信息,此对第1个HARQ-ACK反馈位置映射NACK信息,参见图4所示。
此情况下,若在重复传输的第一个PDSCH之前存在一个PDSCH重复传输,其开始位置不在B=8个下行传输位置范围中,但最后一次传输在slot n,则该PDSCH的HARQ-ACK由于根据最后一个PDSCH的位置和K1来确定,也是需要在slot n+9中反馈的,因此,在第5至8个位置的集合中结束传输的PDSCH只能映射到第2个HARQ-ACK反馈位置,第1个HARQ-ACK反馈位置是预留给前面可能存在的PDSCH重复传输的。若终端设备在slot n中接收到一个PDSCH重复传输的最后一次传输,则将该PDSCH对应的HARQ-ACK反馈信息映射到第1个HARQ-ACK反馈位置,否则对第1个HARQ-ACK反馈位置映射NACK信息。
此情况下,网络侧比如基站可以按照同样方式确定半静态HARQ-ACK码本的大小以及不同PDSCH重复传输的HARQ-ACK反馈位置,从而从接收到的HARQ-ACK反馈序列中得到每个重复传输的PDSCH对应的HARQ-ACK反馈信息。
本公开另一具体实施例中,假设包含3个HARQ-ACK定时的候选集合K1为{1,3,5},当然,K1的集合可以有8个值,但其中只包含3个不相同的值,其余值都是重复的,例如K1的集合为{1,3,5,1,3,5,1,3},这是为了与固定的3比特K1指示域相匹配,但即使此时有8个值,实际有效的仅有3个值即{1,3,5},可以根据这3个有效值进行后续操作;高层信令预先配置PDSCH进行重复传输,重复传输次数为A=2,即承载同一个TB的PDSCH需要经过2次重复传输。若以slot为单位进行重复传输,则每次传输在一个包含足够DL或unknown符号的slot中进行,第一个PDSCH传输所在的slot可根据PDCCH的调度确定,例如根据K0确定,PDSCH在一个slot中的时域资源根据PDCCH的调度确定,且重复传输过程中,每个PDSCH在传输slot中的时域位置相同,在第一个slot开始的后续满足上述一个slot中的PDSCH的时域资源分配的slot中进行重复传输。当前不排除具体实现时还可以在slot内部进行重复传输,比如一个PDSCH被分配的符号个数比较少时,而本公开 具体实施例仅以slot为单位进行重复传输。
其中,若第一个重复传输的PDSCH的第一次传输在slot n+3,依次在后续slot n+4重复传输,第二重复传输的PDSCH的第一次传输在slot n+5,依次在后续n+6重复传输,则终端设备进行的相应HARQ-ACK反馈过程为:
首先,根据集合中的最大K1值和最小K1值可以确定slot n+8到slot n+4共计5个slot对应在slot n+9中进行HARQ-ACK传输,其中slot n+8和slot n+7为上行slot,则不能传输下行,被排除在半静态HARQ-ACK码本反馈之外,仅剩slot n+4到slot n+6,对这些slot中的每一个slot都按照现有相关方式确定PDSCH在该slot中可能存在的最大个数,比如此时假设终端能力仅支持每个slot中仅存在一个PDSCH,且每个slot都在根据K0确定的发送调度信令的slot中存在PDCCH监听时机,则确定每个slot都可以包含一个PDSCH传输,即在一个载波上对应在slot n+9中进行HARQ-ACK反馈的下行传输个数为B=3,或者,直接根据每一个K1值确定的包含可以被调度的下行资源的slot个数作为下行传输个数,或者,根据K1集合中的最大值和最小值确定一个slot集合范围,在这个集合中确定包含可以被调度的下行资源的slot个数作为下行传输个数,都可以得到B=3,其中,包含可以被调度的下行资源的slot即判断该slot中是否包含预先配置的每个时隙中的下行传输的时域资源分配候选集合中的至少一个下行时域资源,如果包含,则说明该slot中包含足够的下行符号可以被调度进行PDSCH传输;如图5所示;
其次,按照
Figure PCTCN2019079842-appb-000006
即可判断对应在slot n+9中进行HARQ-ACK反馈的3个下行传输位置中实际上只能包含最多2个重复传输次数为2次的PDSCH;此判断的原因为终端设备对重复传输的PDSCH只针对最后一个PDSCH以及K1值确定HARQ-ACK反馈的时域位置,前几个PDSCH重复传输由于属于一个重复传输的PDSCH的中间过程,可不需要进行HARQ-ACK反馈;因此,此种情况下,可确定M=2,即对应在slot n+9中进行HARQ-ACK反馈的重复传输的PDSCH的个数为2个,对应在slot n+9中进行HARQ-ACK反馈的进行重复传输的下行传输位置仅有2个,只针对此2个下行传输位置进行HARQ-ACK反馈即可,如图5所示;
然后,按照HARQ-ACK映射原则,由于终端设备接收到的在slot n+4结束重复传输的PDSCH的结束位置在B=3个位置中的第2个位置,属于i=0确定的第1至2个位置的集合中,即属于B个下行传输中可能存在第一个PDSCH重复传输的范围,因此,可确定重复传输的第一个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第1个重复传输的PDSCH;同理,由于终端设备接收到的在slot n+6结束重复传输的PDSCH的结束位置在B=3个位置中的第4个位置,属于i=1确定的第3至4个位置的集合中,即属于B个下行传输中可能存在第二个PDSCH重复传输的范围,因此,可确定重复传输的第二个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第2个重复传输的PDSCH;本公开具体实施例中,假设每个重复传输的PDSCH对应的HARQ-ACK为1比特,则每个重复传输的PDSCH对应的HARQ-ACK对应一个HARQ-ACK反馈位置,则在3个下行传输中,实际存在的HARQ-ACK反馈位置为2个,重复传输的第一个PDSCH对应于2个HARQ-ACK反馈位置中的第1个位置,重复传输的第二个PDSCH对应于2个HARQ-ACK反馈位置中的第2个位置,参见图5所示;
最后,按照上述2个HARQ-ACK位置、重复传输的第一个PDSCH对应的HARQ-ACK反馈位置和重复传输的第二个PDSCH对应的HARQ-ACK反馈位置,生成最终的HARQ-ACK反馈序列。
需指出的是,具体实现时,每个重复传输的PDSCH对应的HARQ-ACK除可为1比特外,还可为多比特,取决于下行传输的具体配置,例如是单TB还是多TB、是否进行空间合并、是否支持CBG传输等。在每个重复传输的PDSCH对应的HARQ-ACK为多比特比如2比特的情况下,当重复传输的第一个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第1个PDSCH,重复传输的第二个PDSCH为对应在slot n+9中进行HARQ-ACK反馈的2个重复传输的PDSCH中的第2个PDSCH时,在8个下行传输中,实际仅存在2个重复传输次数为2的PDSCH,因此只需要对这两个重复传输的PDSCH进行HARQ-ACK反馈,而每个重复传输的PDSCH的HARQ-ACK反馈比特数为2比特,则总的HARQ-ACK反馈比特 数为2x2=4比特,可以等效为4个HARQ-ACK位置,则重复传输的第一个PDSCH对应于4个HARQ-ACK反馈位置中的第1至2个位置,重复传输的第二个PDSCH对应于4个HARQ-ACK反馈位置中的第3至4个位置,并以此生成最终的HARQ-ACK反馈序列;或者也可以理解为,此时还是2个HARQ-ACK反馈位置,每个HARQ-ACK反馈位置对应2比特HARQ-ACK反馈信息,即重复传输的第一个PDSCH的2比特HARQ-ACK映射为第一个HARQ-ACK反馈位置对应的2比特HARQ-ACK反馈信息,重复传输的第二个PDSCH的2比特HARQ-ACK映射为第二个HARQ-ACK反馈位置对应的2比特HARQ-ACK反馈信息,并以此生成最终的HARQ-ACK反馈序列。
此情况下,网络侧比如基站可以按照同样方式确定半静态HARQ-ACK码本的大小以及不同PDSCH重复传输的HARQ-ACK反馈位置,从而从接收到的HARQ-ACK反馈序列中得到每个重复传输的PDSCH对应的HARQ-ACK反馈信息。
上述实施例对本公开的数据传输方法进行了说明,下面将结合实施例和附图对本公开的终端设备和网络设备进行说明。
参见图6所示,本公开实施例还提供了一种终端设备,包括收发机61、存储器62、处理器63及存储在存储器62上并可在处理器63上运行的计算机程序;其中,
所述收发机用61于:接收PDSCH。
所述处理器63用于:根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
本公开实施例的终端设备,通过根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,相比于根据在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本,能够在保证正常的PDSCH重复传输的HARQ-ACK反馈的基础上,减少半静态HARQ-ACK码本中的冗余信息,进一步根据此半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈时,能够提高HARQ-ACK反馈信息的传输性能。
本公开实施例中,可选的,所述处理器63还用于:
根据所述PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
可选的,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
可选的,所述处理器63还用于:
按照公式
Figure PCTCN2019079842-appb-000007
计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
Figure PCTCN2019079842-appb-000008
为向上取整的运算符号。
可选的,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
可选的,所述收发机61还用于:
根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,将所述重复传输的PDSCH对应的HARQ-ACK反馈信息映射到所述半静态HARQ-ACK码本中进行传输。
可选的,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
在图6中,总线架构(用总线60来代表)可以包括任意数量的互联的总线和桥,总线60将包括由处理器63代表的一个或多个处理器和存储器62代表的存储器的各种电路连接在一起。收发机61可包括发送器和接收器,发送器和接收器可通过总线60与处理器63和存储器62连接。
处理器63负责管理总线60和通常的处理,而存储器62可以被用于存储处理器62在执行操作时所使用的数据。
参见图7所示,本公开实施例还提供了一种网络设备,包括收发机71、存储器72、处理器73及存储在存储器72上并可在处理器73上运行的计算机程序;其中,
所述收发机71用于:传输PDSCH。
所述处理器73用于:根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小。
所述收发机71还用于:根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
本公开实施例的网络设备,通过根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,相比于根据在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本,能够在保证正常的PDSCH重复传输的HARQ-ACK反馈的基础上,减少半静态HARQ-ACK码本中的冗余信息,进一步根据此半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息,能够提高HARQ-ACK反馈信息的接收性能。
本公开实施例中,可选的,所述处理器73还用于:
根据所述PDSCH的重复传输次数以及在一个时隙或PUCCH上进行 HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
可选的,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
可选的,所述处理器73还用于:
按照公式
Figure PCTCN2019079842-appb-000009
计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
Figure PCTCN2019079842-appb-000010
为向上取整的运算符号。
可选的,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
可选的,所述收发机71还用于:
根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行 HARQ-ACK反馈的重复传输的PDSCH中的位置,在所述半静态HARQ-ACK码本中的相应位置上接收所述重复传输的PDSCH对应的HARQ-ACK反馈信息。
可选的,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
在图7中,总线架构(用总线70来代表)可以包括任意数量的互联的总线和桥,总线70将包括由处理器73代表的一个或多个处理器和存储器72代表的存储器的各种电路连接在一起。收发机71可包括发送器和接收器,发送器和接收器可通过总线70与处理器73和存储器72连接。
处理器73负责管理总线70和通常的处理,而存储器72可以被用于存储处理器72在执行操作时所使用的数据。
参见图8所示,本公开实施例还提供了一种数据传输装置,应用于终端设备,包括:
第一接收模块81,用于接收PDSCH;
第一确定模块82,用于根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
反馈模块83,用于根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
本公开实施例的数据传输装置,通过根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,相比于根据在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本,能够在保证正常的PDSCH重复传输的HARQ-ACK反馈的基础上,减少半静态HARQ-ACK码本中的冗余信息,进一步根据此半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈时,能够提高HARQ-ACK反馈信息的传输性能。
本公开实施例中,可选的,所述第一确定模块82包括:
第一确定单元,用于根据所述PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
第二确定单元,用于根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
可选的,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
可选的,所述第一确定单元具体用于:
按照公式
Figure PCTCN2019079842-appb-000011
计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
Figure PCTCN2019079842-appb-000012
为向上取整的运算符号。
可选的,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
可选的,所述反馈模块83具体用于:
根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,将所述重复传输的PDSCH 对应的HARQ-ACK反馈信息映射到所述半静态HARQ-ACK码本中进行传输。
可选的,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
参见图9所示,本公开实施例还提供了一种数据传输装置,应用于网络设备,包括:
传输模块91,用于传输PDSCH;
第二确定模块92,用于根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小;
第二接收模块93,用于根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
本公开实施例的数据传输装置,通过根据PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,相比于根据在一个时隙中进行HARQ-ACK反馈的下行传输的个数确定的半静态HARQ-ACK码本,能够在保证正常的PDSCH重复传输的HARQ-ACK反馈的基础上,减少半静态HARQ-ACK码本中的冗余信息,进一步根据此半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息,能够提高HARQ-ACK反馈信息的接收性能。
本公开实施例中,可选的,所述第二确定模块92包括:
第三确定单元,用于根据所述PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
第四确定单元,用于根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
可选的,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确 定的时隙范围,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
可选的,所述第三确定单元具体用于:
按照公式
Figure PCTCN2019079842-appb-000013
计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
Figure PCTCN2019079842-appb-000014
为向上取整的运算符号。
可选的,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
可选的,所述第二接收模块93具体用于:
根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,在所述半静态HARQ-ACK码本中的相应位置上接收所述重复传输的PDSCH对应的HARQ-ACK反馈信息。
可选的,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
此外,本公开实施例还提供一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现上述应用于终端设备的数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,参见图10所示,本公开实施例还提供了一种终端设备,包括总线11、处理器12、收发机13、总线接口14、存储器15和用户接口16。
其中,处理器12,用于读取存储器15中的程序,执行以下步骤:
控制收发机13接收PDSCH,根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
收发机13,用于在处理器12的控制下接收和发送数据。
在图10中,总线架构(用总线11来代表)可以包括任意数量的互联的总线和桥,总线11将包括由通用处理器12代表的一个或多个处理器和存储器15代表的存储器的各种电路链接在一起。总线11还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口14在总线11和收发机13之间提供接口。收发机13可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机13从其他设备接收外部数据。收发机13用于将处理器12处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口16,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器12负责管理总线11和通常的处理,如前述所述运行通用操作系统。而存储器15可以被用于存储处理器12在执行操作时所使用的数据。
可选的,处理器12可以是CPU、ASIC、FPGA或CPLD。
可以理解,本公开实施例中的存储器15可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM, SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器15旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器15存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统151和应用程序152。
其中,操作系统151,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序152包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序152中。
本公开实施例还提供一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现上述应用于网络设备的数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,参见图11所示,本公开实施例还提供一种网络设备,包括总线111、收发机112、天线113、总线接口114、处理器115和存储器116。
在本公开实施例中,所述网络设备还包括:存储在存储器116上并可在处理器115上运行的计算机程序,计算机程序被处理器115执行时实现以下步骤:
控制收发机112传输PDSCH,根据所述PDSCH的重复传输次数,确定半静态HARQ-ACK码本的大小,根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
收发机112,用于在处理器115的控制下接收和发送数据。
在图11中,总线架构(用总线111来代表)可以包括任意数量的互联的总线和桥,总线111将包括由处理器115代表的一个或多个处理器和存储器116代表的存储器的各种电路链接在一起。总线111还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域 所公知的,因此,本文不再对其进行进一步描述。总线接口114在总线111和收发机112之间提供接口。收发机112可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器115处理的数据通过天线113在无线介质上进行传输,进一步,天线113还接收数据并将数据传送给处理器115。
处理器115负责管理总线111和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器116可以被用于存储处理器115在执行操作时所使用的数据。
可选的,处理器115可以是CPU、ASIC、FPGA或CPLD。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述应用于终端设备的数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述应用于网络设备的数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况 下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种数据传输方法,应用于终端设备,包括:
    接收物理下行共享信道PDSCH;
    根据所述PDSCH的重复传输次数,确定半静态混合自动重传请求确认HARQ-ACK码本的大小;
    根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
  2. 根据权利要求1所述的方法,其中,所述根据所述PDSCH的重复传输次数,确定半静态混合自动重传请求确认HARQ-ACK码本的大小,包括:
    根据所述PDSCH的重复传输次数以及在一个时隙或物理上行控制信道PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
  3. 根据权利要求2所述的方法,其中,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
  4. 根据权利要求2所述的方法,其中,所述根据所述PDSCH的重复传输次数以及在一个时隙或物理上行控制信道PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK 反馈的重复传输的PDSCH的个数,包括:
    按照公式
    Figure PCTCN2019079842-appb-100001
    计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
    Figure PCTCN2019079842-appb-100002
    为向上取整的运算符号。
  5. 根据权利要求4所述的方法,其中,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
  6. 根据权利要求2所述的方法,其中,所述根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈,包括:
    根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,将所述重复传输的PDSCH对应的HARQ-ACK反馈信息映射到所述半静态HARQ-ACK码本中进行传输。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
  8. 一种数据传输方法,应用于网络设备,包括:
    传输物理下行共享信道PDSCH;
    根据所述PDSCH的重复传输次数,确定半静态混合自动重传请求确认HARQ-ACK码本的大小;
    根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
  9. 根据权利要求8所述的方法,其中,所述根据所述PDSCH的重复传 输次数,确定半静态HARQ-ACK码本的大小,包括:
    根据所述PDSCH的重复传输次数以及在一个时隙或物理上行控制信道PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
  10. 根据权利要求9所述的方法,其中,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
  11. 根据权利要求9所述的方法,其中,所述根据所述PDSCH的重复传输次数以及在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,包括:
    按照公式
    Figure PCTCN2019079842-appb-100003
    计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
    Figure PCTCN2019079842-appb-100004
    为向上取整的运算符号。
  12. 根据权利要求11所述的方法,其中,若所述重复传输的PDSCH的 最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
  13. 根据权利要求9所述的方法,其中,所述根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息,包括:
    根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,在所述半静态HARQ-ACK码本中的相应位置上接收所述重复传输的PDSCH对应的HARQ-ACK反馈信息。
  14. 根据权利要求8至13中任一项所述的方法,其中,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
  15. 一种终端设备,包括收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
    所述收发机用于:接收物理下行共享信道PDSCH;
    所述处理器用于:根据所述PDSCH的重复传输次数,确定半静态混合自动重传请求确认HARQ-ACK码本的大小,根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
  16. 根据权利要求15所述的终端设备,其中,所述处理器还用于:
    根据所述PDSCH的重复传输次数以及在一个时隙或物理上行控制信道PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
  17. 根据权利要求16所述的终端设备,其中,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下 行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
  18. 根据权利要求16所述的终端设备,其中,所述处理器还用于:
    按照公式
    Figure PCTCN2019079842-appb-100005
    计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
    Figure PCTCN2019079842-appb-100006
    为向上取整的运算符号。
  19. 根据权利要求18所述的终端设备,其中,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
  20. 根据权利要求16所述的终端设备,其中,所述收发机还用于:
    根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,将所述重复传输的PDSCH对应的HARQ-ACK反馈信息映射到所述半静态HARQ-ACK码本中进行传输。
  21. 根据权利要求15至20中任一项所述的终端设备,其中,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
  22. 一种网络设备,包括收发机、存储器、处理器及存储在所述存储器 上并可在所述处理器上运行的程序;其中,
    所述收发机用于:传输物理下行共享信道PDSCH;
    所述处理器用于:根据所述PDSCH的重复传输次数,确定半静态混合自动重传请求确认HARQ-ACK码本的大小;
    所述收发机还用于:根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
  23. 根据权利要求22所述的网络设备,其中,所述处理器还用于:
    根据所述PDSCH的重复传输次数以及在一个时隙或物理上行控制信道PUCCH上进行HARQ-ACK反馈的下行传输的个数,确定在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    根据所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,确定所述半静态HARQ-ACK码本的大小。
  24. 根据权利要求23所述的网络设备,其中,所述在一个时隙或PUCCH上进行HARQ-ACK反馈的下行传输的个数为以下至少一项:
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的每个值以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数;
    根据PDSCH到对应HARQ-ACK的反馈定时集合中的最大值和最小值确定的时隙范围以及下行传输在每个时隙中的时域资源分配候选集合,确定的下行传输的个数。
  25. 根据权利要求23所述的网络设备,其中,所述处理器还用于:
    按照公式
    Figure PCTCN2019079842-appb-100007
    计算所述在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数;
    其中,M为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH的个数,B为在所述一个时隙或所述PUCCH上进行 HARQ-ACK反馈的下行传输的个数,A为所述PDSCH的重复传输次数,
    Figure PCTCN2019079842-appb-100008
    为向上取整的运算符号。
  26. 根据权利要求25所述的网络设备,其中,若所述重复传输的PDSCH的最后一次传输的位置对应于B个下行传输位置中的第A*i+1到A*(i+1)个位置,所述重复传输的PDSCH为在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的第i+1个重复传输的PDSCH,i为大于或等于0的正整数。
  27. 根据权利要求23所述的网络设备,其中,所述收发机还用于:
    根据所述重复传输的PDSCH在所述一个时隙或所述PUCCH上进行HARQ-ACK反馈的重复传输的PDSCH中的位置,在所述半静态HARQ-ACK码本中的相应位置上接收所述重复传输的PDSCH对应的HARQ-ACK反馈信息。
  28. 根据权利要求22至27中任一项所述的网络设备,其中,所述重复传输的PDSCH对应的HARQ-ACK反馈信息为所述重复传输的PDSCH的最后一次传输所对应的HARQ-ACK反馈信息。
  29. 一种数据传输装置,应用于终端设备,包括:
    第一接收模块,用于接收物理下行共享信道PDSCH;
    第一确定模块,用于根据所述PDSCH的重复传输次数,确定半静态混合自动重传请求确认HARQ-ACK码本的大小;
    反馈模块,用于根据确定大小的所述半静态HARQ-ACK码本,对重复传输的PDSCH进行相应的HARQ-ACK反馈。
  30. 一种数据传输装置,应用于网络设备,包括:
    传输模块,用于传输物理下行共享信道PDSCH;
    第二确定模块,用于根据所述PDSCH的重复传输次数,确定半静态混合自动重传请求确认HARQ-ACK码本的大小;
    第二接收模块,用于根据确定大小的所述半静态HARQ-ACK码本,接收重复传输的PDSCH对应的HARQ-ACK反馈信息。
  31. 一种终端设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利 要求1至7中任一项所述的数据传输方法的步骤。
  32. 一种网络设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求8至14中任一项所述的数据传输方法的步骤。
  33. 一种计算机可读存储介质,其上存储有程序,其中,所述程序被处理器执行时实现如权利要求1至7中任一项所述的数据传输方法的步骤,或者如权利要求8至14中任一项所述的数据传输方法的步骤。
PCT/CN2019/079842 2018-03-30 2019-03-27 数据传输方法、终端设备及网络设备 WO2019184943A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22195053.8A EP4120609B1 (en) 2018-03-30 2019-03-27 Data transmission method, terminal device, and network device
KR1020237023900A KR20230109794A (ko) 2018-03-30 2019-03-27 데이터 전송 방법, 단말기 및 네트워크 기기
US17/043,546 US11736237B2 (en) 2018-03-30 2019-03-27 Data transmission method, terminal device and network device
KR1020207031284A KR20200135528A (ko) 2018-03-30 2019-03-27 데이터 전송 방법, 단말기 및 네트워크 기기
EP19775440.1A EP3780448B1 (en) 2018-03-30 2019-03-27 Data transmission method, terminal device, and network device
US18/347,470 US20230353286A1 (en) 2018-03-30 2023-07-05 Data transmission method, terminal device and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276760.3A CN110324117B (zh) 2018-03-30 2018-03-30 一种数据传输方法、终端设备及网络设备
CN201810276760.3 2018-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/043,546 A-371-Of-International US11736237B2 (en) 2018-03-30 2019-03-27 Data transmission method, terminal device and network device
US18/347,470 Continuation US20230353286A1 (en) 2018-03-30 2023-07-05 Data transmission method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2019184943A1 true WO2019184943A1 (zh) 2019-10-03

Family

ID=68058557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079842 WO2019184943A1 (zh) 2018-03-30 2019-03-27 数据传输方法、终端设备及网络设备

Country Status (6)

Country Link
US (2) US11736237B2 (zh)
EP (2) EP4120609B1 (zh)
KR (2) KR20200135528A (zh)
CN (1) CN110324117B (zh)
TW (1) TWI788545B (zh)
WO (1) WO2019184943A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021158086A1 (ko) * 2020-02-06 2021-08-12 엘지전자 주식회사 Harq-ack 정보 전송 방법, 사용자기기 및 저장 매체, 그리고 harq-ack 정보 수신 방법 및 기지국
WO2021207262A1 (en) * 2020-04-07 2021-10-14 Qualcomm Incorporated Type-1 codebook construction with multiple aggregation factors
WO2022027348A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Multiple pdsch/pusch transmission scheduling with repetition
US20220110150A1 (en) * 2020-02-07 2022-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information receiving method, information sending method, information receiving apparatus, information sending apparatus, and device
EP4150851A4 (en) * 2020-05-14 2024-01-24 Qualcomm Inc MONITORING FOR DOWNLINK REPETITIONS

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064566B2 (ja) * 2017-09-14 2022-05-10 オッポ広東移動通信有限公司 時間領域リソース確定方法、装置、記憶媒体及びシステム
EP3627753B1 (en) * 2018-04-04 2022-03-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink control information, terminal device, and network device
CN112567666A (zh) * 2018-08-10 2021-03-26 苹果公司 用于可靠通信的增强harq反馈
EP3918861A4 (en) 2019-08-16 2022-03-30 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR TRANSMITTING UPLINK CONTROL INFORMATION IN A NETWORK COOPERATIVE COMMUNICATION
EP4044668B1 (en) * 2019-11-07 2024-04-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information sending method, information sending apparatus and base station
CN112787764B (zh) * 2019-11-08 2022-07-01 中国移动通信有限公司研究院 一种混合自动重传请求码本的确定方法及设备
CN112788760B (zh) * 2019-11-08 2022-09-13 维沃移动通信有限公司 混合自动重传请求应答harq-ack反馈位置的确定方法及通信设备
CN113114431B (zh) * 2020-01-13 2023-05-09 中国移动通信有限公司研究院 信息的传输方法、网络设备及终端
US11671995B2 (en) * 2020-04-17 2023-06-06 Qualcomm Incorporated Time domain resource allocation-based HARQ-ACK feedback generation
CN113541897B (zh) 2020-04-20 2023-03-14 大唐移动通信设备有限公司 一种码本反馈处理方法、设备、装置及介质
CN113572585B (zh) * 2020-04-29 2022-11-08 大唐移动通信设备有限公司 一种反馈码本、反馈信息的确定方法、装置、设备及介质
CN114124315B (zh) * 2020-08-28 2024-02-02 大唐移动通信设备有限公司 信息反馈方法、信息接收方法、终端和网络设备
KR20230157376A (ko) * 2021-04-05 2023-11-16 엘지전자 주식회사 Harq-ack 정보를 전송하는 방법, 사용자기기, 프로세싱장치, 저장 매체 및 컴퓨터 프로그램, 그리고 harq-ack 정보를 수신하는 방법 및 기지국

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162791A1 (en) * 2015-04-09 2016-10-13 Nokia Technologies Oy Dynamic codebook adaptation for enhanced carrier aggregation
CN107332646A (zh) * 2016-04-29 2017-11-07 中兴通讯股份有限公司 Harq-ack的发送方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015025272B1 (pt) * 2013-04-05 2022-11-16 Telefonaktiebolaget L M Ericsson (Publ) Métodos para informar e para receber reconhecimento ou não reconhecimento de pedido repetição automática híbrida, equipamento de usuário, e, estação base
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
CN104811283A (zh) 2014-01-23 2015-07-29 夏普株式会社 物理上行链路信道配置方法以及基站和用户设备
CN105960824B (zh) * 2014-01-30 2020-02-18 夏普株式会社 终端装置、基站装置以及通信方法
JP6460430B2 (ja) * 2014-09-18 2019-01-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 応答情報を送信するための方法、装置及びデバイス
CN107079440A (zh) 2014-11-06 2017-08-18 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
WO2017078299A1 (en) * 2015-11-06 2017-05-11 Lg Electronics Inc. Method for handling of drx timers for multiple repetition transmission in wireless communication system and a device therefor
WO2017161541A1 (zh) 2016-03-24 2017-09-28 华为技术有限公司 下行数据的混合式自动重传请求反馈方法以及装置
US10541785B2 (en) 2016-07-18 2020-01-21 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
US11239953B2 (en) * 2017-08-11 2022-02-01 Lenovo (Beijing) Co. Ltd Triggering HARQ-ACK feedback for a downlink slot set
WO2019028857A1 (en) * 2017-08-11 2019-02-14 Lenovo (Beijing) Limited HARQ-ACK FEEDBACK SYNCHRONIZATION FOR SPS-PDSCH
US10506468B2 (en) * 2017-09-08 2019-12-10 At&T Intellectual Property I, L.P. Reporting hybrid automatic repeat request-acknowledgements in wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162791A1 (en) * 2015-04-09 2016-10-13 Nokia Technologies Oy Dynamic codebook adaptation for enhanced carrier aggregation
CN107332646A (zh) * 2016-04-29 2017-11-07 中兴通讯股份有限公司 Harq-ack的发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Discussion on HARQ-ACK Multiplexing and Bundling for NR", R1-1720876, 3GPP TSG RAN WG1 MEETING, vol. 91, 1 December 2017 (2017-12-01), XP051370274 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021158086A1 (ko) * 2020-02-06 2021-08-12 엘지전자 주식회사 Harq-ack 정보 전송 방법, 사용자기기 및 저장 매체, 그리고 harq-ack 정보 수신 방법 및 기지국
US20220110150A1 (en) * 2020-02-07 2022-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information receiving method, information sending method, information receiving apparatus, information sending apparatus, and device
WO2021207262A1 (en) * 2020-04-07 2021-10-14 Qualcomm Incorporated Type-1 codebook construction with multiple aggregation factors
US11581922B2 (en) 2020-04-07 2023-02-14 Qualcomm Incorporated Type-1 codebook construction with multiple aggregation factors
US11863253B2 (en) 2020-04-07 2024-01-02 Qualcomm Incorporated Type-1 codebook construction with multiple aggregation factors
EP4150851A4 (en) * 2020-05-14 2024-01-24 Qualcomm Inc MONITORING FOR DOWNLINK REPETITIONS
WO2022027348A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Multiple pdsch/pusch transmission scheduling with repetition

Also Published As

Publication number Publication date
EP3780448A4 (en) 2021-05-26
US11736237B2 (en) 2023-08-22
KR20200135528A (ko) 2020-12-02
CN110324117B (zh) 2021-10-26
EP4120609A1 (en) 2023-01-18
EP4120609B1 (en) 2024-05-08
CN110324117A (zh) 2019-10-11
TWI788545B (zh) 2023-01-01
EP3780448A1 (en) 2021-02-17
US20230353286A1 (en) 2023-11-02
EP3780448B1 (en) 2022-10-26
US20210099255A1 (en) 2021-04-01
KR20230109794A (ko) 2023-07-20
TW201943219A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2019184943A1 (zh) 数据传输方法、终端设备及网络设备
US20230370208A1 (en) Method, user equipment and base station for transmitting harq-ack information
WO2019144833A1 (zh) Dai的指示方法、用户终端和网络侧设备
JP6561130B2 (ja) ハイブリッド自動再送要求−肯定応答伝送方法及び装置
CN110324126B (zh) 一种数据传输方法、终端设备及网络设备
WO2019174486A1 (zh) 资源指示、确定方法及装置
US20200068556A1 (en) Communication system
EP3907916B1 (en) Harq-ack/pucch transmissions
WO2018228363A1 (zh) 资源配置方法、基站、终端及计算机可读存储介质
WO2021027443A1 (zh) 混合自动重传请求应答的传输指示方法及设备
WO2021023011A1 (zh) Harq-ack反馈方法、终端及网络侧设备
WO2021031820A1 (zh) 侧行链路反馈信息传输的方法和通信装置
US11497024B2 (en) Transmission method and device
CN111432477B (zh) 数据传输方法、网络侧设备及终端
CN111031580B (zh) 用于传输反馈信息的方法和设备
WO2019192583A1 (zh) 信息反馈方法、装置和系统
WO2022151398A1 (zh) 通信方法及装置
TWI786585B (zh) 資訊傳輸方法及裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207031284

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019775440

Country of ref document: EP