WO2017048103A1 - 이온교환막 및 그 제조방법 - Google Patents
이온교환막 및 그 제조방법 Download PDFInfo
- Publication number
- WO2017048103A1 WO2017048103A1 PCT/KR2016/010423 KR2016010423W WO2017048103A1 WO 2017048103 A1 WO2017048103 A1 WO 2017048103A1 KR 2016010423 W KR2016010423 W KR 2016010423W WO 2017048103 A1 WO2017048103 A1 WO 2017048103A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion exchange
- support
- fiber mat
- fiber
- mat
- Prior art date
Links
- 239000003014 ion exchange membrane Substances 0.000 title claims abstract description 148
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000000835 fiber Substances 0.000 claims abstract description 604
- 238000005342 ion exchange Methods 0.000 claims abstract description 303
- 238000001523 electrospinning Methods 0.000 claims abstract description 60
- 239000011148 porous material Substances 0.000 claims abstract description 54
- 239000012528 membrane Substances 0.000 claims abstract description 20
- 238000002844 melting Methods 0.000 claims description 26
- 230000008018 melting Effects 0.000 claims description 26
- 230000004927 fusion Effects 0.000 claims description 15
- -1 polytetrafluoroethylene Polymers 0.000 claims description 15
- 239000002033 PVDF binder Substances 0.000 claims description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 13
- 239000004793 Polystyrene Substances 0.000 claims description 11
- 125000000129 anionic group Chemical group 0.000 claims description 11
- 125000002091 cationic group Chemical group 0.000 claims description 11
- 229920002223 polystyrene Polymers 0.000 claims description 11
- 238000011049 filling Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 7
- 238000000909 electrodialysis Methods 0.000 claims description 7
- 229920001780 ECTFE Polymers 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 238000002242 deionisation method Methods 0.000 claims description 5
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 229920002732 Polyanhydride Polymers 0.000 claims description 4
- 229920000954 Polyglycolide Polymers 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 239000004633 polyglycolic acid Substances 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- CHJAYYWUZLWNSQ-UHFFFAOYSA-N 1-chloro-1,2,2-trifluoroethene;ethene Chemical group C=C.FC(F)=C(F)Cl CHJAYYWUZLWNSQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920001299 polypropylene fumarate Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000004697 Polyetherimide Substances 0.000 claims description 2
- 229920006293 Polyphenylene terephthalamide Polymers 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims description 2
- 150000002905 orthoesters Chemical class 0.000 claims description 2
- 229920005575 poly(amic acid) Polymers 0.000 claims description 2
- 229920000767 polyaniline Polymers 0.000 claims description 2
- 229920001610 polycaprolactone Polymers 0.000 claims description 2
- 229920001601 polyetherimide Polymers 0.000 claims description 2
- 239000004626 polylactic acid Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims 1
- 229930195712 glutamate Natural products 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 175
- 238000009987 spinning Methods 0.000 description 70
- 239000002904 solvent Substances 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 25
- 150000002500 ions Chemical class 0.000 description 20
- 239000010410 layer Substances 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 230000008859 change Effects 0.000 description 14
- 230000000704 physical effect Effects 0.000 description 14
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 238000005507 spraying Methods 0.000 description 9
- 239000000446 fuel Substances 0.000 description 8
- 239000011259 mixed solution Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000003957 anion exchange resin Substances 0.000 description 6
- 238000003490 calendering Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 239000004745 nonwoven fabric Substances 0.000 description 6
- SFXOHDOEOSCUCT-UHFFFAOYSA-N styrene;hydrochloride Chemical compound Cl.C=CC1=CC=CC=C1 SFXOHDOEOSCUCT-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 238000005341 cation exchange Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 229920007485 Kynar® 761 Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- NGAZZOYFWWSOGK-UHFFFAOYSA-N heptan-3-one Chemical compound CCCCC(=O)CC NGAZZOYFWWSOGK-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ULPMRIXXHGUZFA-UHFFFAOYSA-N (R)-4-Methyl-3-hexanone Natural products CCC(C)C(=O)CC ULPMRIXXHGUZFA-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- PFCHFHIRKBAQGU-UHFFFAOYSA-N 3-hexanone Chemical compound CCCC(=O)CC PFCHFHIRKBAQGU-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 102100040428 Chitobiosyldiphosphodolichol beta-mannosyltransferase Human genes 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Natural products OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 208000037062 Polyps Diseases 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- HLKZFSVWBQSKKH-UHFFFAOYSA-N but-3-enoic acid;1-ethenylpyrrolidin-2-one Chemical compound OC(=O)CC=C.C=CN1CCCC1=O HLKZFSVWBQSKKH-UHFFFAOYSA-N 0.000 description 1
- DNZWLJIKNWYXJP-UHFFFAOYSA-N butan-1-ol;propan-2-one Chemical compound CC(C)=O.CCCCO DNZWLJIKNWYXJP-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000007526 fusion splicing Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 125000005496 phosphonium group Chemical group 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002454 poly(glycidyl methacrylate) polymer Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical group 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/12—Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
- B01J47/127—Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes in the form of filaments or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0004—Organic membrane manufacture by agglomeration of particles
- B01D67/00042—Organic membrane manufacture by agglomeration of particles by deposition of fibres, nanofibres or nanofibrils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/002—Organic membrane manufacture from melts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/106—Membranes in the pores of a support, e.g. polymerized in the pores or voids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2275—Heterogeneous membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/39—Electrospinning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/18—Membrane materials having mixed charged functional groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/42—Ion-exchange membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4691—Capacitive deionisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an ion exchange membrane, and more particularly, the ion exchange membrane prepared at the same time through a simplified manufacturing process and short production time has a high ion exchange capacity while having excellent mechanical strength and durability, electrical resistance and diffusion It relates to an ion exchange membrane having a small coefficient and a method of manufacturing the same.
- Ion exchange resins are synthetic resins with ion exchange capacity.
- B. A. Adams and F. L. Holmes of England found ion exchange between a polyhydric phenol condensed with formaldehyde and a m-phenylenediamine condensed with formaldehyde. It has been found that this resin can remove various ions in water, and then began production on a systematic and industrial scale in Germany and the United States. During World War II, Germany was used to purify water, recover copper and ammonia from artificial dog factories, and to classify nuclear fission products, ultrauranium elements, and rare earth elements in the United States.
- ion exchange membranes are widely used in fields such as fuel cells, redox flow batteries, electrodialysis, desalination, ultrapure water and wastewater treatment.
- ion exchange membranes are widely used in fields such as fuel cells, redox flow batteries, electrodialysis, desalination, ultrapure water and wastewater treatment.
- fossil fuels it is attracting worldwide attention for its clean technology for eco-friendly renewable energy production.
- ion exchange membranes are often provided with a separate support to improve mechanical properties, specifically, a sheet-like ion exchange resin layer may be provided on one surface of the support, due to the material of the support and the ion exchange resin layer Peeling and separation frequently occur between interlayer interfaces due to compatibility and the like, and thus there is a problem in that ion exchange capacity and / or mechanical properties are significantly reduced.
- ion exchange capacity and / or mechanical properties are significantly reduced.
- it is very difficult to change the configuration for example, controlling the thickness, electrical conductivity, mechanical strength, diameter / ratio of the pores, and the like to suit the purpose.
- the manufactured ion exchange membrane has excellent mechanical strength and durability, high ion exchange capacity, and low electrical resistance and diffusion coefficient.
- the present invention has been devised in view of the above-mentioned point, and it is easy to control factors such as membrane thickness, electrical conductivity, mechanical strength, and diameter / ratio of pores to suit the purpose in the manufacturing process of ion exchange membrane, It is an object of the present invention to provide a method for producing an ion exchange membrane, in which a fabrication process is greatly simplified such that a filling process is omitted.
- Another object of the present invention is to provide a general-purpose ion exchange membrane having excellent mechanical strength and physical / chemical durability and at the same time a large ion exchange capacity and a low electrical resistance and diffusion coefficient.
- the first embodiment of the present invention (1) a support fiber mat and ion exchange fibers in which the support fibers are accumulated by electrospinning each of the support fiber forming solution and the ion exchange fiber forming solution It provides a method for producing an ion exchange membrane comprising a; manufacturing a laminate in which the accumulated ion exchange fiber mat alternately laminated.
- the support fiber forming solution may comprise 5 to 30% by weight of the support fiber forming component.
- the ion exchange fiber forming solution may contain 5 to 60% by weight of a cationic ion exchange fiber forming component or an anionic ion exchange fiber forming component.
- the ion exchange fiber forming solution includes a first ion exchange fiber forming solution containing a cationic ion exchange fiber forming component and a second ion exchange fiber forming solution containing an anionic ion exchange fiber forming component,
- Each of the first ion exchange fiber forming solution and the second ion exchange fiber forming solution may be electrospun to form a separate separate ion exchange fiber mat.
- step (1) (2) by applying heat and pressure to the laminate to melt at least a portion of the support fibers included in the support fiber mat, at least a portion of the molten support fibers in the pores of the ion exchange fiber mat It may further comprise the step of penetrating.
- the melting point of the support fiber may be lower than the melting point of the ion exchange fiber.
- the present invention is a support fiber mat; And an ion exchange fiber mat.
- any one or more of the support fiber mat and the ion exchange fiber mat may include a web region of a three-dimensional network structure formed by fusion between fibers.
- the surface portion of the support fiber mat and the ion exchange fiber mat facing each other may include a region where the support fibers and the ion exchange fibers are mixed and physically bound.
- the average diameter of the support fibers contained in the support fiber mat is 0.1 ⁇ 100 ⁇ m
- the average diameter of the ion exchange fibers included in the ion exchange fiber mat is 100 ⁇ 2000nm
- the average pore diameter of the single support fiber mat is 0.1 ⁇ 10 ⁇ m
- the average pore diameter of the single ion exchange fiber mat may be 0.1 to 1 ⁇ m
- the thickness of the single support fiber mat may be 0.1 to 200 ⁇ m
- the thickness of the single ion exchange fiber mat may be 0.1 to 10 ⁇ m.
- the ion exchange membrane may be used for the filter for the liquid, the filter for the air.
- the present invention is a support fiber mat; And an ion exchange fiber mat; is alternately stacked, and provides an ion exchange membrane including a fusion portion in which support fibers are fused and fused to at least a portion of one ion exchange fiber of the ion exchange fibers forming the ion exchange fiber mat.
- the support fiber mat and the ion exchange fiber mat has a weight ratio of 1: 0.8 to 1.5, the thickness ratio of a single support fiber mat and a single ion exchange fiber mat 1: 1: 0.2 ⁇ 0.8 have.
- the ion exchange membrane may be a liquid filter, air filter, capacitive deionization (CDI) or electrodialysis (ED).
- the present invention is an ion exchange fiber mat; And a support for filling the interfiber space of the ion exchange fiber mat to support the ion exchange fibers.
- the ion exchange membrane may be a use of the battery separation membrane.
- the present invention in order to solve the above problems, (I) spinning a spinning solution mixed with a support component and an ion exchangeable component to produce a fiber mat It provides a method for producing an ion exchange membrane comprising a.
- the ion exchange component may be a cationic ion exchange component or an anionic ion exchange component.
- the spinning solution may include 20 to 80 parts by weight of an ion exchange component based on 100 parts by weight of the support component.
- step (II) applying heat and pressure to the fiber mat to adjust the porosity and pore size may further include.
- the melting point of the support component included in the fiber mat may be lower than the melting point of the ion exchange component.
- the present invention provides an ion exchange membrane comprising a; fiber mat comprising a first fiber comprising a support component and an ion exchange component.
- the fibrous mat may further include a second fiber including a support component and a third fiber including an ion exchange component.
- the fiber mat may include a web region of a three-dimensional network structure formed by fusion between fibers.
- the average diameter of the fibers included in the fiber mat is 0.1 ⁇ 100 ⁇ m
- the average pore diameter of the island fiber mat may be 0.1 ⁇ 10 ⁇ m
- the thickness of the fiber mat may be 0.1 ⁇ 200 ⁇ m.
- the ion exchange membrane may be used for the filter for the liquid, the filter for the air.
- the present invention is a fiber mat comprising a third fiber comprising an ion exchange component; And a support for filling the interfiber space in the fiber mat to support the third fiber.
- the ion exchange membrane may be a liquid filter, an air filter, a capacitive deionization (CDI), an electrodialysis (ED), or a battery separator.
- the third embodiment of the present invention to solve the above problems, (A) forming a first support fiber mat by electrospinning the first support fiber forming solution; (B) spraying an ion exchange solution on the first support fiber mat to fill an ion exchange solution into the support fiber mat; And (C) electrospinning a second support fiber forming solution on the first support fiber mat from which the ion exchange solution is injected to form a second support fiber mat. to provide.
- step (D) spraying an ion exchange solution on the second support fiber mat so that the ion exchange solution is filled into the support fiber mat; Can be.
- first support fiber forming solution and the second support fiber forming solution may each independently include a support fiber forming component, and the support fiber forming component may be the same or different.
- first support fiber forming solution and the second support fiber forming solution may each independently contain 5 to 30% by weight of the support fiber forming component.
- the ion exchange solution may contain 0.1 to 99% by weight of a cationic ion exchange component or an anionic ion exchange component.
- any one or more of the steps (B) and (D) may be injected such that the ion exchange solution is overfilled into the support fiber mat.
- step (E) heat and pressure are applied to compress the first support fiber mat and the second support fiber mat to penetrate the ion exchange solution into the voids remaining inside the support fiber mat.
- the step of; may further include.
- the present invention a plurality of laminated support fiber mat; And an ion exchange component filled in the spaces between the plurality of support fiber mat fibers.
- the present invention is a laminated support fiber mat; An ion exchange component filled in the spaces between the plurality of support fiber mat fibers; And an ion exchange layer interposed between adjacent mats of the plurality of support fiber mats, the ion exchange layer including the ion exchangeable component.
- At least one of the plurality of supporting fiber mats may include a web area of a three-dimensional network structure formed by fusion between fibers.
- the thickness of the single support fiber mat may be 0.1 ⁇ 200 ⁇ m
- the average diameter of the support fibers included in the support fiber mat may be 0.1 ⁇ 100 ⁇ m
- the average pore diameter of the single support fiber mat is 0.1 ⁇ 10 ⁇ m day Can be.
- the ion exchange layer may be formed by an ion exchange component that is overfilled in the space between the fibers of at least one of the first support fiber mat and the second support fiber mat.
- the total weight of each of the support fiber mat and the ion exchangeable component may have a weight ratio of 1: 0.5 to 0.9.
- the present invention provides a battery separator comprising the ion exchange membrane described above.
- the present invention provides a fuel cell or a redox flow battery including the above-described separator for a battery.
- surface portion of a mat used in the present invention is meant to include an area corresponding to a thickness of 15% or less of the total thickness of the mat from the mat surface.
- the term "mat" used in the present invention refers to a state in which the electrospun fibers are accumulated, and the mat is formed by bending and entangled fibers several times or a plurality of fibers are bent and mutually It may be entangled in the liver, and even if a part of the fiber is melted to include a non-fibrous part, the fibrous part may be included in the "mat".
- the electrical conductivity, mechanical strength, voids, etc. can be easily adjusted according to the required characteristics of the ion exchange membrane, and the filling process of the ion exchange solution is omitted. Can be produced, which can significantly increase productivity.
- the ion exchange membrane prepared by expressing the effect of significantly increasing the filling capacity of the ion exchange component inside the support has excellent mechanical strength and durability, at the same time has a large ion exchange capacity, and has low electrical resistance and diffusion coefficient. Accordingly, the present invention can be widely applied to separators in the battery field, desalination systems such as CDI / ED, various materials, and the like, and may be particularly suitable for battery separator applications.
- FIG. 1 is a schematic view of the manufacturing process of the ion exchange membrane according to an embodiment of the present invention
- Figure 2 is a schematic cross-sectional view of the ion exchange membrane according to an embodiment of the present invention prepared through Figure 1,
- FIG. 4 is a partially enlarged schematic diagram of a portion A of the ion exchange membrane according to FIG. 3;
- FIG. 5 is an enlarged view of a portion B of FIG. 4;
- FIG. 6 is a schematic cross-sectional view of an ion exchange membrane according to an embodiment of the present invention.
- FIG. 7 is a schematic cross-sectional view of an ion exchange membrane according to an embodiment of the present invention.
- FIG. 8 is a schematic view of the manufacturing process of the ion exchange membrane according to an embodiment of the present invention.
- FIG. 9 is a schematic cross-sectional view of an ion exchange membrane according to an embodiment of the present invention prepared through FIG. 8;
- FIG. 10 is a schematic cross-sectional view of an ion exchange membrane according to an embodiment of the present invention.
- FIG. 11 is a schematic cross-sectional view of an ion exchange membrane according to an embodiment of the present invention.
- FIG. 12 is an enlarged view of a portion A ′ of FIG. 11.
- a method of manufacturing an ion exchange membrane according to an embodiment of the present invention will be described with reference to FIG. 1, wherein a first electrospinning tip 11, a third electrospinning tip 13, and a third electrospinning tip 10 are formed.
- the support fiber forming solution (not shown) is electrospun through the electrospinning tip 15 to produce the support fiber mats 21, 23, 25 in which the support fibers are accumulated, and the second electrospinning tip 12 and the first 4
- the ion exchange fiber forming solution (not shown) is electrospun through the electrospinning tip 15 to produce ion exchange fiber mats 22 and 24 in which ion exchange fibers are accumulated.
- the support fiber forming solution included in the spinning solution may include a support fiber forming component, and may be a molten liquid in which the forming component is melted or a dissolved solution in which the forming component is dissolved by a solvent.
- the support fiber forming solution may contain 5 to 30% by weight of the support fiber forming component. If the support fiber-forming component is included in less than 5% by weight, there may be a problem that the fiber is not formed during the electrospinning, as the viscosity is low, if the fiber is contained in excess of 30% by weight, the fiber melts or There may be a problem that continuous fiber formation is limited.
- the support fiber forming component may be used without limitation in the case of a compound used as a component of a support in a conventional ion exchange membrane, preferably polyimides, polyamic acid, polycarprolactone, Polyetherimide, nylon, polyaramid, polybenzyl-glutamate, polyphenyleneterephthalamide, polyaniline, polyacrylonitrile, polyethylene Oxide, polystyrene, cellulose, polymethylmethacrylate, polylactic acid (PLA), polyglycolic acid (PGA), polylactic-co- Glycolic acid, poly ⁇ poly (ethylene oxide) terephthalate-co-butylene terephthalate ⁇ (PEOT / PBT), polyphosphoester (polyp hosphoester (PPE), polyphosphazene (PPA), polyanhydride (PA), poly (ortho ester; POE), poly (propylene fumarate) -diacrylate ⁇ poly (propylene fumarate ) -diacryl
- the support fiber forming solution is a support fiber forming component at least two kinds of supporting fiber forming components are included in the spinning solution and electrospun, or at least two types of supporting fiber forming components are each contained in different spinning solution to each other Cross spinning may be through other spinning nozzles.
- a mixed spinning solution is formed using two kinds of supporting fiber forming components as the supporting fiber forming component, for example, polyacrylonitrile (PAN) and adhesive supporting fiber forming component (or swelling property as heat resistant supporting fiber forming component)
- PAN polyacrylonitrile
- PVDF polyvinylidene fluoride
- the mixing ratio of the heat-resistant supporting fiber forming component and the adhesive supporting fiber forming component is less than 5: 5 by weight, the heat resistance is poor and does not have the required high temperature characteristics. If the mixing ratio is larger than 8: 2 by weight, the strength drops and the radiation trouble Will occur.
- the support fiber forming solution is a mixed solution of the heat resistant support fiber forming component and the swellable support fiber forming component
- a single solvent or a two-component mixed solvent in which a high boiling point solvent and a low boiling point solvent are mixed may be used.
- the mixing ratio between the two-component mixed solvent and the whole supporting fiber forming component is preferably set to about 8: 2 by weight ratio.
- the solvent may not be volatilized well depending on the type of support fiber forming component, after passing through the pre-air dry zone (Pre-Air Dry Zone) by the preheater While adjusting the amount of the solvent and water remaining on the surface of the support fiber mat to be described later may be further roughened.
- Pre-Air Dry Zone pre-air dry Zone
- the heat resistant support fiber forming component may be dissolved in an organic solvent for electrospinning and has a melting point of 180 or more, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, poly (meth) -Phenylene isophthalamide), polysulfone, polyetherketone, polyethylene terephthalate, polytrimethylene telephthalate, polyethylene naphthalate and the like, aromatic polyester, polytetrafluoroethylene, polydiphenoxyphosphazene, poly ⁇ Polyphosphazenes such as bis [2- (2-methoxyethoxy) phosphazene] ⁇ , polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate propionates and the like Can be used.
- PAN polyacrylonitrile
- polyamide polyimide
- polyamideimide poly (meth) -Phenylene
- the swellable support fiber forming component is a resin that swells in an electrolyte and can be formed into ultrafine fibers by electrospinning.
- PVDF polyvinylidene fluoride
- perfuluropolymer polyvinylchloride or polyvinylidene chloride and copolymers thereof and polyethylene glycol derivatives including polyethylene glycol dialkyl ether and polyethylene glycol dialkyl ester, poly (oxymethylene-oligo-oxyethylene ),
- Polyoxides including polyethylene oxide and polypropylene oxide, polyvinylacetate, poly (vinylpyrrolidone-vinylacetate), polystyrene and polystyrene acrylonitrile copolymers, polyacrylonitrile methyl methacrylate copolymers
- Polyacrylonitrile copolymer made Body there may be mentioned polymethyl methacrylate, polymethyl me
- the solvent may be used without limitation in the case of a solvent used in the preparation of a conventional electrospinning solution, in addition to the solvent that can dissolve the support fiber forming component, and easily evaporated, may be used without limitation, and specifically selected
- the solvent may be differently selected according to the type of the supporting fiber forming component, the present invention is not particularly limited.
- the solvent may be a monocomponent solvent, for example, dimethylformamide (DMF), but in the case of using a bicomponent solvent, the boiling point (BP) is high and low. It is preferable to use the two-component solvent which mixed these things.
- the two-component solvent may be used by mixing a high boiling point solvent and a low boiling point solvent in a weight ratio of 7: 3 to 9: 1, but is not limited thereto.
- the ion exchange fiber forming solution may include an ion exchange fiber forming component, and the forming component may be a melt or a solution in which the forming component is dissolved by a solvent.
- the ion exchange fiber forming solution may contain 5 to 60% by weight of the ion exchange forming component. If less than 5% by weight of the ion-exchange forming component is included, the fiber may not be smooth during electrospinning due to the low viscosity, and if it is included in excess of 60% by weight, the spun fiber is not continuous and There may be a problem of increasing frequency.
- the ion exchange fiber forming component may be a cationic ion exchange fiber forming component or an anionic ion exchange fiber forming component, and a cation exchange membrane or an anion exchange membrane may be implemented according to the polarity of the selected ion.
- the ion exchange fiber forming solution may be formed of a first ion exchange fiber forming solution containing a cationic ion exchange fiber forming component and a second ion exchange fiber forming anionic ion exchange fiber forming component.
- the solution may include a solution, and each of the first ion exchange fiber forming solution and the second ion exchange fiber forming solution may be electrospun to form a separate separate ion exchange fiber mat.
- the cationic ion exchange fiber forming component is quaternary ammonium salt (-NH3), primary to tertiary amine (-NH2, -NHR, -NR2), quaternary phosphonium group (-PR4), tertiary sulfonium group (- It may be a high molecular compound having an anion exchange functional group such as SR3).
- the anionic ion exchange fiber forming component is a sulfonic acid group (-SO3H), carboxyl group (-COOH), phosphonic group (-PO3H2), phosphonic group (-HPO2H), asonic group (-AsO3H2), selino It may be a polymer compound having a cation exchange functional group such as a nick group (-SeO3H), and polysulfone, polyisulfone, or the like can be used as a volume.
- the cationic or anionic ion exchange fiber forming component is a hydroxyl group (-OH), an amine group (-NH2, -NH-, -NR-, -NR2) capable of crosslinking reaction by ester bonding with a crosslinking functional group.
- a polymer compound having a bonding structure may be used, and such a polymer resin may be present in a solution form by dissolving in an organic solvent.
- the forming solution further includes a solvent
- the solvent may be used without limitation in the case of a solvent used for preparing a conventional electrospinning solution, and in addition to the ion exchange forming component
- the solvent may be used without limitation, and the present invention is not particularly limited as the solvent may be differently selected according to the type of the ion-exchange fiber forming component specifically selected.
- acetone, chloroform, dichloromethane, trichloroethylene, ethanol, methanol, normal hexane and dimethylformamide can be used.
- the above-mentioned support fiber forming solution and ion exchange fiber forming solution may be added to a conventional electrospinning apparatus.
- the electrospinning device may be a device for wet spinning or dry spinning according to the specific type of the spinning solution selected.
- the spinning solution may be introduced into the supply unit of the electrospinning apparatus and transferred to the nozzle unit through a pump unit such as a known syringe pump.
- the nozzle unit may be configured of a nozzle and a connection unit connecting the nozzle to the supply unit.
- the nozzle may be coupled to the supply unit without a connection unit to form a nozzle unit, and thus the specific configuration of the nozzle unit is not particularly limited in the present invention, and the configuration of the nozzle unit included in the general electrospinning apparatus may be selected and changed.
- the diameter of the nozzle of the nozzle unit may be selected in consideration of the basis weight, porosity, pore size, mechanical strength, etc. of the desired fiber mat, and the present invention is not particularly limited thereto.
- the cross-sectional shape of the nozzle may be a variety of shapes, such as circular, elliptical, polygonal, and the longitudinal cross-sectional shape of the nozzle may be a cross-sectional shape of a conventional electrospinning nozzle, such as single nozzle, double nozzle, triple nozzle.
- the nozzle unit may include a plurality of nozzles according to the purpose, and the present invention does not limit the specific shape, size, number, etc. of the nozzles, and so on.
- the material of the nozzle may be a material of the nozzle used in the normal electrospinning, and preferably may be a metal material having electrical conductivity, but is not limited thereto.
- a portion of the nozzle portion may be connected in electrical communication with an electric field forming portion, for example a high voltage device, to form an electric field for electrospinning.
- the electric field forming unit is for forming a jet of the spinning solution from the nozzle unit to the collector, and is capable of forming an electric field between the nozzle tip of the nozzle unit and any one virtual point passing through the nozzle tip and the collector in a straight line.
- the present invention may be employed without limitation, and the configuration of the electric field forming unit provided in the general electrospinning apparatus may be selected, and thus the present invention is not particularly limited thereto.
- the electric field forming unit may include a current collector plate and a high voltage generator, the current collector plate may be grounded to the ground, and the high voltage generator may be electrically connected to the nozzle unit.
- the collector may be further equipped with a coagulation bath.
- the coagulation bath may include an external coagulation solution for coagulating a jet of spinning solution into a fibrous form.
- the external coagulant may be used without limitation, such as water, organic solvent, the present invention is not particularly limited to the specific type, as a non-limiting example, hexane, benzene, ethanol, methanol, propanol, acetone Butanol, dimethylformamide and tetrahydrofuran may be used, but not limited to one or more selected.
- the air gap which is a vertical distance between the nozzle tip and the surface of the external coagulating solution of the collector or the coagulation bath, may be 0 to 50 cm, but is not limited thereto.
- the ion exchange membrane manufactured by the above-described manufacturing method has a structure in which a support fiber mat and an ion exchange fiber mat are alternately laminated, and as shown in FIG. 2, the first support fiber mat 21 in which the support fibers 21a and 21b are accumulated. ), The first ion exchange fiber mat 22 and the second ion exchange fiber mat 24 are interposed between the second support fiber mat 23 and the third support fiber mat 25 so that each fiber mat is alternately provided. Can be stacked.
- the surface portion (A) of the first support fiber mat 21 and the first ion exchange fiber mat 22 is mixed with the support fibers 21a and ion exchange fibers 22a
- These fibers 21a and 22a may be physically bound by the entanglement so that the first support fiber mat 21 and the first ion exchange fiber mat 22 may be bound without being separated from each other without a separate adhesive component. This can minimize the peeling between the mat.
- the ion exchange membrane may include a region having a three-dimensional network structure in which at least one of the support fiber mats 21, 23, 25 and the ion exchange fiber mats 22, 24 is formed by fusion between fibers.
- a part of the surface of the first support fiber 21a and the first ion exchange fiber 22a is fused (B 1 ), and the first support fiber 21a and the second support fiber 21b are separated from each other.
- a portion of the surface may be fused (B 2 ) to form a web of three-dimensional network structure. The fusion does not mean only partial melting of the fiber through a separate heating process.
- the solvent contained in the spinning solution is usually spun and then vaporized in air irrespective of the method of electrospinning.
- Solvents that are present in the spun fiber that are not vaporized and / or dissolved entirely and can be removed can lead to the attachment of contact points or contact surfaces when contact between the fibers occurs.
- the fusion does not occur only on the surface portion between two different mats as shown in FIG. 4, and may also occur between support fibers or ion exchange fibers included in each fiber mat, thereby allowing each fiber mat to be formed in a three-dimensional network. It may include a region that is a structure.
- the web of the three-dimensional network structure When the web of the three-dimensional network structure is included in a single fiber mat, it is possible to form a stable pore structure between the fibers and improve the mechanical strength of the single fiber mat, and when the surface portion of the adjacent different fiber mat occurs in the inter-fiber entanglement Increased binding force above the mat-to-matte binding force can be expressed, which is very advantageous for improving the mechanical strength of the ion exchange membrane, and deterioration of ion exchange capacity or reduction in filtration efficiency caused by separation between adjacent different fiber mats. A fatal problem accompanying the physical property deterioration, etc. can be prevented.
- the average diameter of the support fibers included in the support fiber mat may be 0.1 ⁇ 100 ⁇ m. If the diameter of the support fiber is less than 0.1 ⁇ m the mechanical strength is weak, can not properly function as the support fiber, the radioactivity may be lowered. In addition, if the diameter exceeds 100 ⁇ m, the melting of the support fiber is not easy when the support fiber is melted by applying heat / pressure to the ion exchange membrane prepared through the above-mentioned step (1) according to the use, and thus the support fiber Adjusting the diameter of the mat may not be easy.
- the diameter range of the support fiber is not limited, and the fiber diameter range may be changed according to the use of the ion exchange membrane.
- the average pore diameter of the single support fiber mat of the support fiber mat may be 0.1 ⁇ 10 ⁇ m. If the average pore size is less than 0.1 ⁇ m there may be a problem that the flow rate is significantly reduced in the filter applications. In addition, if the average pore size is more than 10 ⁇ m can lead to a decrease in filtration efficiency in the filter.
- the mean pore size is not limited to the range, and the mean pore size may be changed according to the use of the ion exchange membrane.
- the thickness of the single support fiber mat of the support fiber mat (21, 23, 25) is preferably 0.1 ⁇ 200 ⁇ m, if the thickness is less than 0.1 ⁇ m may significantly decrease the mechanical properties, exceed 200 ⁇ m In this case, there may be a problem in that the production cost increases and the volume of the ion exchange membrane increases, thereby reducing the amount of the ion exchange membrane provided in the limited space.
- the support fiber mat (21, 23, 25) can be adjusted in pore size and thickness according to the intended use of the ion exchange membrane through the step (2) to be described later, the heat applied above the melting point of the support fiber is the support fiber Some or all of the melted water may flow into the pores of the ion exchange fiber mat to be described later, thereby affecting the pore size and porosity of the ion exchange fiber.
- the supporting fiber mat can be coated or filled with an inorganic material
- the inorganic material is nickel (Ni), copper (Cu), stainless steel (SUS), titanium (Ti), chromium (Cr), manganese (Mn) ), Iron (Fe), cobalt (Co), zinc (Zn), molybdenum (Mo), tungsten (W), silver (Ag), gold (Au), aluminum (Al) of at least one metal or oxides thereof And the like.
- the average diameter of the ion exchange fibers contained in the ion exchange fiber mat (22, 24) may be 100 ⁇ 2000nm.
- the average pore size of the single ion exchange fiber mat of the ion exchange fiber mat (22, 24) may be 0.1 ⁇ 1 ⁇ m.
- the thickness of the single ion exchange fiber mat may be 0.1 ⁇ 10 ⁇ m.
- the average diameter of the ion exchange fiber, the average pore diameter and the thickness range of the ion exchange fiber may be changed according to the use of the ion exchange membrane is not limited to the present invention.
- the support fibers and the ion exchange fibers contained in the support fiber mat (21, 23, 25) and the ion exchange fiber mat (22, 24) as a whole may have a weight ratio of 1: 0.8 ⁇ 1.5. If the amount of ion exchange fibers is less than 1: 0.8 by weight relative to the support fibers, it is difficult to achieve the desired physical properties, such as the expression of ion exchange capacity is insignificant. If it is included in excess, it may be difficult to achieve the desired physical properties such as mechanical strength is lowered.
- the thickness ratio of the single support fiber mat and the single ion exchange fiber mat is 1: in order to simultaneously improve the mechanical strength and ion exchange capacity. 0.2 to 0.8. If the thickness of the single ion exchange fiber mat becomes thin so that the ratio of the single support fiber mat is less than 1: 0.2, the improvement of the expression of ion exchange capacity may be insignificant, and the single ion exchange fiber mat may be based on the single support fiber mat.
- the mechanical strength may be weakened or the mechanical strength may be improved, and the chemical stability may be deteriorated, resulting in damage to the ion exchange membrane in a strong oxidation / reduction environment and thus deterioration of ion exchange capacity. There can be.
- step (2) included in a preferred embodiment of the present invention according to the use by applying heat and pressure to the laminate laminated the support fiber mat and the ion exchange fiber mat of at least a part of the support fiber mat
- the method may further include melting the support fibers and infiltrating at least a portion of the molten support fibers into pores of the ion exchange fiber mat.
- the melting point of the material of the support fiber included in the support fiber mat may be lower than the melting point of the material of the ion exchange fiber included in the ion exchange fiber mat, added through step (2) Some of the support fibers contained in the support fiber mat may be melted by losing heat and pressure.
- the ion exchange membrane according to the embodiment of the present invention is a lamination of the support fiber mat and the ion exchange fiber mat, the support fiber is at least part of the surface of one ion exchange fiber of the ion exchange fiber forming the ion exchange fiber mat 5.
- the fiber 21e is melted and includes a fusion welded.
- melting and fusion of the support fibers does not occur only at the surface of the ion exchange fiber mat, but also occurs in a single support fiber mat, and as shown in FIG. 5, one surface of the first support fibers 21c of the first support fiber mat 21.
- Another support fiber may be fused to include a fusion welded portion (21d).
- the ion exchange membrane has a lower melting point of the ion exchange fiber than the melting point of the support fiber, partial melting of the support fiber and melted support fiber by heat / pressure fill the interfiber space or are fused to the fiber surface, and the support fiber mat And the pore size, porosity, and the like contained in the mat as the ion exchange fiber mat is compressed, and as the molten support fiber binds and supports the ion exchange fibers more firmly, a general ion exchange membrane, in particular, a fibrous web shape Compared with the ion exchange membrane prepared by filling the support with an ion exchange component, the ion exchange performance can be improved and mechanical strength can be remarkably improved.
- the ion exchange membrane with more controlled pore size and porosity has properties required for the use of capacitive deionization (CDI), electrodialysis (ED), or battery separator in addition to the liquid filter and gas filter described above. It may be more suitable to express well.
- CDI capacitive deionization
- ED electrodialysis
- battery separator in addition to the liquid filter and gas filter described above. It may be more suitable to express well.
- the applied heat and / or pressure may be low, and / or (2)
- the step execution time can also be short.
- the specific heat / pressure / run time may vary depending on the size of the target material to be filtered.
- the ion exchange membrane according to a preferred embodiment of the present invention by applying the heat applied in the above step (2) higher than the melting point of the support fibers to melt the support fibers, the molten support fibers to fill the ion exchange fiber mat and Solidified ion exchange membrane can be implemented.
- the ion exchange fibers form a mat in fibrous form as they are spun, but the first support fiber mat (21) to the third support fiber mat (25) is a fibrous support component that was forming a mat is no longer to form a mat of fiber aggregate shape, the support component is the first ion exchange fiber mat (22) and The interfiber space of the second ion exchange fiber mat 24 may be filled and solidified into a film.
- the first support fiber mat 21 to the third support fiber mat 25 represented in the drawing shows only the region where the support fiber mat was fibrous, the ion exchange membrane according to Figure 6 still the fibrous support fiber mat It does not mean that it is included.
- the molten support fibers fill the interfiber spaces of the first ion exchange fiber mat 22 and the second ion exchange fiber mat 24, so that the porosity is 5% or less, more preferably.
- the battery separator such as a fuel cell or a redox flow battery, may satisfy the mechanical and electrical properties required by the battery separator more remarkably, and thus may be very suitable as a battery separator.
- An ion exchange membrane according to a second embodiment of the present invention is implemented including (I) preparing a fiber mat by electrospinning a spinning solution in which a support component and an ion exchange component are mixed.
- the support fiber forming component implementing the support fiber and the ion exchange fiber forming component implementing the ion exchange fiber are mixed in a single spinning solution. The biggest difference is what is emitted.
- a fiber mat 21 to 25 formed by integrating fibers by electrospinning a spinning solution mixed with a supporting component and an ion exchangeable component through a plurality of electrospinning tips 10 is formed.
- the spinning solution may include a support component and an ion exchange component, and the spinning solution may be a melt solution in which the support component and the ion exchange component are mixed / melted or a solution in which the components are dissolved by a solvent.
- the spinning solution may include 20 to 80 parts by weight of the ion-exchangeable component with respect to 100 parts by weight of the support component, more preferably 30 to 60 parts by weight. If the ion exchangeable component is included in less than 20 parts by weight, the ion exchange capacity may be significantly lowered. If the ion exchangeable component is included in an amount greater than 80 parts by weight, the spinning ability may be remarkably decreased, such as spinning into beads. Can be.
- the spinning solution may further include a solvent.
- the supporting component, the ion exchange component, and the solvent provided in the spinning solution of the second embodiment are described with respect to the support fiber forming component, the ion exchange fiber forming component, and the solvent of the first embodiment. same.
- the spinning solution may be embodied as an ion exchange membrane through electrospinning.
- electrospinning apparatus and method used therein refer to the description of the first embodiment.
- the ion exchange membrane according to the second embodiment prepared by electrospinning a single spinning solution includes a first fiber comprising a support component and an ion exchange component.
- the fiber strand forming the fiber mat may be spun in a state containing both a support component and an ion exchange component, but some of the fibers included in the fiber mat are separated from each other by the phase separation between the components during the spinning process.
- the fiber mat may further include any one or more of a second fiber including a support component and a third fiber including an ion exchange component, as the component may form one strand of fiber, as shown in FIG. 7.
- the ion exchange membrane may include all of the first fibers 21a '/ 22b', the second fibers 21a ', and the third fibers 22b'.
- the fiber mat may include a web region having a three-dimensional network structure formed by fusion between fibers, which is referred to the description of FIG.
- the fiber mat is a step (II), after the step (II), the step of applying any one or more of heat and pressure to the fiber mat to control the porosity and pore size; may be further performed.
- the pore size and thickness can be adjusted according to the intended use of the ion exchange membrane, and the heat applied above the melting point of the support component melts a part or all of the mono yarn including the support component in the fiber to remove part or all of the pores.
- the pore size and porosity of the fiber mat produced by embedding may be adjusted.
- the molten support component may be filled in inter-fiber fusion splicing and / or pores in the fiber mat. Heat applied may be from 60 to 180, the pressure may be 2 psi or less, but may be different depending on the specific use of the ion exchange membrane, the support component and the specific type of the ion exchange component is not limited thereto.
- the average diameter of the fibers (21a ', 21a' / 22b ', 22b') contained in the fiber mat may be 0.1 ⁇ 100 ⁇ m. If the diameter of the fiber is less than 0.1 [mu] m, the mechanical strength is weak, making it difficult to form a stable pore structure, which may be unsuitable for use in some applications, for example, filters, and the radioactivity may be reduced. In addition, if the diameter exceeds 100 ⁇ m, the melting of the supporting component is not easy when the supporting component of the fiber is melted by separately applying heat / pressure, which will be described later depending on the use, and thus, the pore size and porosity of the fiber mat can be easily adjusted. You can't. However, the diameter range of the fiber is not limited, and the fiber diameter range may be changed depending on the use of the ion exchange membrane.
- the average pore diameter of the fiber mat may be 0.1 ⁇ 10 ⁇ m. If the average pore size is less than 0.1 ⁇ m may have a problem that the flow rate is significantly reduced in the filter applications, if the average pore size exceeds 10 ⁇ m there is a problem that the filtration efficiency in the filter use may be lowered.
- the mean pore size is not limited to the range, and the mean pore size may be changed according to the use of the ion exchange membrane.
- the thickness of the fiber mat may be 0.1 ⁇ 200 ⁇ m, but is not limited thereto, the thickness may be changed according to the use.
- the step of omitting additional heat / pressure may be omitted or the heat and / or pressure applied may be low even if the step is performed, and / or the The execution time of a step can also be short.
- the specific heat / pressure / run time may vary depending on the size of the target material to be filtered.
- the porosity / pore size, etc. through the adjustment of the diameter and / or the amount of radiation per hour of the plurality of spinning nozzles (11 to 15) in the manufacturing process, as shown in Figure 1 even without the step of applying a separate heat / pressure described above It is possible to implement a fiber mat 20 in which different mats 21 to 25 are stacked, and thus, an ion exchange membrane having a gradient of pore size and / or porosity may be implemented from one surface portion to another surface portion of the fiber mat.
- the melting point of the material of the support fiber included in the support fiber mat may be lower than the melting point of the ion exchange fiber material included in the ion exchange fiber mat, and the step (II) Heat and pressure applied through the melt melt at least some of the support components, thereby filling the melted support components in the interfiber fusion and / or pores in the fibrous mat.
- the ion exchange membrane is implemented to include a fiber mat comprising a fiber including an ion exchange component and a support for filling the interfiber space in the fiber mat to support the fibers.
- the fibers forming the fibrous mat may include an ion exchange component as the subject of the fiber forming component as the support component is melted by heat / pressure, and for some fibers, may include an unmelted support component.
- the support is formed by melting the support component included in the first fiber or the support fiber included in the second fiber of the fibers included in the fiber mat prepared through step (I), to fill the interfiber space in the fiber mat Porosity, pore size can be controlled and the bond between fibers with the ion exchangeable component as the subject can be increased to further improve the mechanical strength.
- the ion exchange membrane prepared by the second embodiment of the present invention described above includes a fiber mat formed by integrating at least one fiber containing an ion exchange component and a support for filling the interfiber spaces in the fiber mat to support the fibers. Is implemented.
- the fibers forming the fibrous mat may include an ion exchangeable component as a main component of the fiber forming component as the supporting component is melted by heat / pressure, and some fibers may include an unmelted support component.
- the support is formed by melting the supporting component of the fibers included in the fiber mat manufactured in the manufacturing method for the second embodiment described above, filling the interfiber space in the fiber mat, porosity, pore size can be adjusted, The adhesion between the fibers of which the ion exchangeable component in the fiber mat is the subject can be increased to further improve the mechanical strength.
- the porosity controlled ion exchange membrane may be implemented to be suitable for the use of capacitive deionization (CDI) or electrodialysis (ED).
- pore-free ion exchange membranes having a porosity of 5% or less, more preferably 3% or less, even more preferably 1% or less, and even more preferably 0% of porosity may be used in fuel cells or redox flow batteries.
- the battery separator satisfies the required mechanical and electrical properties more remarkably, it may be very suitable as a battery separator.
- An ion exchange membrane comprises the steps of (A) electrospinning the first support fiber forming solution to form a first support fiber mat (mat); (B) spraying an ion exchange solution on the first support fiber mat to fill an ion exchange solution into the support fiber mat; And (C) electrospinning a second support fiber forming solution on the first support fiber mat to which the ion exchange solution is injected to form a second support fiber mat. After the step (D), the step of spraying the ion exchange solution on the second support fiber mat so that the ion exchange solution is filled into the support fiber mat;
- a method of manufacturing an ion exchange membrane according to a third embodiment of the present invention will be described with reference to FIG. 8.
- the first electrospinning tip 11 and the third electrospinning tip 13 of the plurality of electrospinning tips 10 are provided.
- the supporting fiber forming solution (not shown) is electrospun through the support fiber mats 121 and 123 in which the supporting fibers are accumulated, and the second electrospinning tip 12 and the fourth electrospinning tip 15 are manufactured.
- the ion exchange solution (122,124) is electrosprayed through the ion exchange solution may be filled into the support fiber mat (121, 123).
- the first support fiber forming solution when the first support fiber forming solution is electrospun through the first electrospinning tip 11, the first support fiber mat 121 may be manufactured, and the manufactured first support fiber mat 121 may be After moving to the place where the second electrospinning tip 12 is located through the conveyor belt, the ion exchange solution may be electrosprayed on the first support fiber mat 121 through the second electrospinning tip 12. At this time, the ion exchange solution is controlled so as not to form a fiber even if the electrospinning, the spinning ion exchange solution flows into the inter-fiber space inside the first support fiber mat to fill the space.
- the first support fiber mat 121 filled with the ion exchange solution 122 is moved to a place where the third electrospinning tip 13 is located, and then a second support fiber is formed through the third electrospinning tip 13.
- the solution is electrospun so that a second support fiber mat 123 is formed on the first support fiber mat 121 (and / or on the ion exchange solution 122).
- the stacked support fiber mats 121 and 123 are moved to the place where the fourth electrospinning tip 14 is located, and the space between the internal fibers of the second support fiber mat 124 is filled by the electrosprayed ion exchange solution. Can be.
- FIG. 8 is a manufacturing process in which two sets are repeated when spinning / spraying the supporting fiber mat / ion exchange solution as one set, but the present invention is not limited thereto, and the set may be repeated many times.
- the ion exchange solution may not be sprayed on top of the support fiber mat.
- the pore size and porosity of the support fiber mat are very controlled according to the fineness of the support fiber, the spinning amount, and the like. It may be easier to control the desired physical properties.
- the support fiber mat is not formed by spinning all of the support fiber mats at once, and the layer is laminated so that the ion exchange solution is filled in the support fiber mat in the intermediate process of laminating the support fiber mat. As a result, the filling ability of the ion exchange solution can be remarkably improved as compared to the case where the yarn supporting fiber mat is totally spun once and then the ion exchange solution is filled.
- the step (A) the step of forming a first support fiber mat by electrospinning the first support fiber forming solution.
- the detailed description of the first support fiber is the same as the description of the support fiber forming solution in the above-described first embodiment, and a detailed description thereof will be omitted.
- step (B) the step of spraying the ion exchange solution on the first support fiber mat so that the ion exchange solution is filled into the prepared first support fiber mat.
- the ion exchange solution may include an ion exchange component, and the ion exchange component may be a melt or a solution in which the ion exchange component is dissolved by a solvent.
- the ion exchange solution is a solution, it may comprise 0.1 to 99% by weight of an ion exchange component.
- the ion exchange component may be a cationic ion exchange component or an anionic ion exchange component, a cation exchange membrane or an anion exchange membrane may be implemented according to the polarity of the selected ions.
- the type of the ion exchange component and the description of the solvent and the like when the ion exchange solution is a solution are the same as those described in the first embodiment, and are omitted.
- the above-described ion exchange solution 122 is injected to be filled into the first support fiber mat 121.
- the injection may be by a conventional method that can inject the ion exchange solution in the droplet state or stream state, for example, may be used without limitation, such as electrospinning, electrospinning, ultrasonic spraying. If the electrospinning method is used, the ion exchange solution can be spun to control the composition and composition of the solution or to control the spinning conditions so as not to form fibers.
- the ion exchange solution 122 injected onto the first support fiber mat 121 may flow into the interfiber space of the first support fiber mat to fill the inside of the support fiber mat, and if the ion exchange solution is inside the support fiber mat, When sprayed to overfill the ion exchange solution may form a separate layer on the first support fiber mat 121.
- an ion exchange solution 122 is filled in the first support fiber mat 121, and an overfilled ion exchange solution 122 is filled on the first support fiber mat 121.
- a separate layer 122 can be formed.
- the second support fiber forming solution by electrospinning the second support fiber forming solution on the first support fiber mat 121 is sprayed with the ion exchange solution 122 (mat) Step 123 is performed.
- step (C) Description of the electrospinning in the step (C) is the same as in step (A) described above and will be omitted.
- step (C) the second support fiber forming solution is omitted as described for the support fiber forming solution described in the first embodiment, and the second support fiber forming solution is the same as the first support fiber forming solution or Alternatively, the fiber forming component may be different, and even though the fiber forming component is the same, the content may be different, and may be designed differently according to the purpose.
- the step of spraying the ion exchange solution on the second support fiber mat prepared to fill the ion exchange solution into the support fiber mat may be further performed.
- the ion exchange solution may be the same as the ion exchange solution in step (B) described above.
- the ion exchange solution in step (D) should also include a cation exchange component, and the same components and / Or by ion exchangeable components need not be used.
- the ion exchange solution when the ion exchange solution is injected to the extent that the second support fiber mat 123 is filled and remains, the ion exchange solution may form a separate ion exchange layer 124 on the second support fiber mat 123. .
- the first support fiber mat and the second support by applying any one or more of heat and pressure, the first support fiber mat and the second support.
- the step of compressing the fiber mat and permeating the ion exchange solution to the remaining voids in the support fiber mat may be further performed.
- Step (E) is a step for controlling the degree of porosity, pore size, ion exchange capacity, and electrical properties of the laminated support fiber mat.
- Heat applied to the laminated support fiber mat may be a temperature of 60 ⁇ 180 °C, the pressure may be 2psi or less but may vary depending on the use of the specific ion exchange membrane, the specific type of the support fiber and the ion exchange component is limited to this It is not.
- the heat and / or pressure applied may be low even if step (E) is omitted or step (E) is performed, and / Alternatively, step (E) may be short.
- the specific heat / pressure / run time may vary depending on the size of the target material to be filtered.
- the ion exchange membrane is used as a battery separation membrane, the lower the porosity, the better the desired physical properties, so that there may be little or no pores, and more preferably, heat and pressure may be applied.
- the ion exchange solution to fill all the pores of the support fiber mat through the steps (B) and (D) described above. Even in this case, the pores of the ion exchange membrane may not exist.
- the ion exchange membrane according to the third embodiment of the present invention manufactured by the above-described manufacturing method is, as shown in Figure 10, the first support fiber mat 210, the second support fiber mat 220 and the third support fiber A plurality of support fiber mats are sequentially stacked, including the mat 230, and an ion exchange component (not shown) may be filled in the interfiber spaces of the support fiber mats 210, 220, and 230.
- the first support fiber mat 121 and the second support fiber mat 123 are stacked, and the ion exchange component 122a is formed in the interfiber space of the first support fiber mat 121.
- the ion exchange component 124 is filled in the interfiber space of the second support fiber mat 123, and between the first support fiber mat 121 and the second support fiber mat 123.
- the same component as the ion exchange component 122a filled in the first support fiber mat 121 may be implemented to form a separate ion exchange layer 122a.
- the ion exchange layer 122a may be formed by the first ion exchange component 122a overfilled in the first support fiber mat 121.
- 12 is a schematic diagram showing the boundary of the ion exchange layer 22a layer as a dotted line, but in the actual ion exchange membrane, the first support fiber mat 121 and the second support fiber mat 123 are not separated into separate layers. It can be seen that there is a gap between and filled with ion exchange components.
- the ion exchange layer interposed between the first support fiber mat 121 and the second support fiber mat 123 is not necessarily caused by the first ion exchangeable component 122a, but the second ion exchangeable component. It may be caused by component 124, and the step in which the origin of the ion exchange layer is derived from manufacturing process is not particularly limited in the present invention.
- all of the ion exchangeable components filled in the second support fiber mat 123 may not be the second ion exchangeable component 124.
- the ion exchange component filled in the lower surface portion may be filled with the first ion exchange component 122a.
- the ion exchange membrane according to a third embodiment of the present invention may include a web (web) region having a three-dimensional network structure formed by fusion between fibers at least one of the support fiber mat of the plurality of support fiber mat This refers to the description of FIG. 4 described above.
- the diameter of the support fibers included in the support fiber mat may be 0.1 ⁇ 100 ⁇ m in average diameter. If the diameter of the support fiber is less than 0.1 ⁇ m the mechanical strength is weak, can not properly function as the support fiber, the radioactivity may be lowered. In addition, if the diameter exceeds 100 ⁇ m, the melting of the support fiber is not easy when melting the support fiber by applying heat / pressure to the prepared ion exchange membrane according to the use, and thus it is not easy to adjust the pore size of the support fiber mat. Can be.
- the diameter range of the support fiber is not limited, and the fiber diameter range may be changed according to the use of the ion exchange membrane.
- the average pore diameter of the single support fiber mat of the support fiber mat (121,123) may be 0.1 ⁇ 10 ⁇ m. If the average pore size is less than 0.1 ⁇ m there may be a problem that the flow rate is significantly reduced in the filter applications. In addition, if the average pore size is more than 10 ⁇ m can lead to a decrease in filtration efficiency in the filter.
- the mean pore size is not limited to the range, and the mean pore size may be changed according to the use of the ion exchange membrane.
- the thickness of the single support fiber mat of the support fiber mat (121,123) is preferably 0.1 ⁇ 200 ⁇ m, if the thickness is less than 0.1 ⁇ m mechanical properties can be significantly reduced, if the manufacturing cost exceeds 200 ⁇ m There may be a problem that the increase in the volume and the volume of the ion exchange membrane is increased, the amount of the ion exchange membrane provided in the limited space is reduced.
- the total weight of each of the support fiber mat and the ion-exchangeable component may have a weight ratio of 1: 0.5 to 0.9, through which may be more suitable to meet the desired physical properties, in particular the mechanical strength is secured durability and In the case of the use of the membrane can satisfy the filtration efficiency or energy efficiency at the same time. If the ion-exchangeable component is included in the ratio less than 1: 0.5 by weight of the supporting fiber mat, the filtration efficiency or energy efficiency cannot be achieved at the desired level, and if the ion-exchangeable component is 1 When included in an amount exceeding 0.9 weight ratio, mechanical strength and durability may be reduced.
- the ion exchange membrane according to the embodiment of the present invention described above may be implemented as a separator for a battery including the same.
- the battery separator may be composed of an ion exchange membrane itself, or may be further provided with another conventional configuration provided by the battery separator.
- a separate support member such as a nonwoven fabric may be further included on one surface of the ion exchange membrane to reinforce mechanical strength.
- the support member is, for example, a nonwoven fabric made of a double structure PP / PE fiber coated with PE on the outer circumference of the PP fiber as a core, or a PET nonwoven fabric made of polyethyleneterephthalate (PET) fiber, a nonwoven fabric made of cellulose fiber. Any one may be used, but is not limited thereto.
- PET polyethyleneterephthalate
- the basis weight, thickness, and the like of the nonwoven fabric may be changed and used according to the purpose, and are not particularly limited in the present invention.
- the battery separator may be an ion exchange membrane having a porosity of 5% or less, more preferably 3% or less, even more preferably 1% or less, and more preferably a non-porous ion exchange membrane having a porosity of 0%.
- porosity is very low or non-porous ion exchange membrane is very suitable as a battery separator as it satisfies the mechanical and electrical properties required by the battery separator such as fuel cell or redox flow battery more remarkably. can do.
- the separator for a battery according to an embodiment of the present invention can be applied to a fuel cell or a redox flow battery having the same, in addition to the separator for the battery other components provided in the fuel cell or redox flow battery has a conventional configuration.
- the description about the said conventional structure is also abbreviate
- the fiber mat and / or non-woven fabric may be coated or filled with an inorganic material
- the inorganic material is nickel (Ni), copper (Cu), stainless steel (SUS), titanium (Ti), chromium (Cr), At least one metal of manganese (Mn), iron (Fe), cobalt (Co), zinc (Zn), molybdenum (Mo), tungsten (W), silver (Ag), gold (Au), aluminum (Al) Oxides thereof, and the like.
- a support fiber spinning solution 12 g of polyvinylidene fluoride (Arkema, Kynar761) was used as a support fiber forming component, and the weight ratio of dimethylacetamide and acetone was 90:10. The solution was prepared by dissolving using a magnetic bar.
- the solution was prepared by dissolving using a magnetic bar at time.
- the spinning solution was put into two solution tanks of the electrospinning apparatus, and was discharged at a rate of 15 ⁇ l / min / hole for the supporting fiber spinning solution and 10 ⁇ l / min / hole for the ion exchange fiber forming component.
- the temperature of the spinning section is 28 °C
- the humidity was maintained at 45%
- the distance between the collector and the spinning nozzle tip was 25 cm.
- Two high voltage generators are used to impart a voltage of 45 kV or more to each spin nozzle pack, and at the same time to impart an air pressure of 0.05 MPa per spin pack nozzle to radiate as shown in FIG.
- a laminate having a thickness of 100 ⁇ m in which the fiber mat was laminated in the structure of the first support fiber mat / first ion exchange fiber mat / second support fiber mat / second ion exchange fiber mat was prepared.
- the weight ratio of the total support fiber mat and the total ion exchange fiber mat included in the laminate is 1: 1
- the thickness of the single support fiber mat and the single ion exchange fiber mat is 33 ⁇ m, 17 ⁇ m respectively 1 It was prepared to be 0.51.
- a calendering process was performed by applying heat and pressure at 140 and 1 kgf / cm 2 to dry the solvent and moisture remaining on the laminated fiber mat, and the total thickness was 95 ⁇ m, and the porosity was 60% as shown in Table 1 below.
- An ion exchange membrane was prepared.
- Example 2 Manufactured in the same manner as in Example 1, by changing the weight ratio of the support fiber and the ion exchange fiber provided in the ion exchange membrane, the thickness ratio of a single fiber mat as shown in Table 1 or Table 2 as shown in Table 1 or Table 2 An ion exchange membrane was prepared.
- Preparation was carried out in the same manner as in Example 1, after spinning the support fiber spinning solution to prepare a support fiber mat having a total thickness of 100 ⁇ m and then calendering under the same conditions to prepare a support membrane having a thickness of 95 ⁇ m.
- the dimensional change of the membrane was measured. Specifically, the prepared membrane was immersed in distilled water for 24 hours, and the volume of the wet membrane (V wet ) was measured, and the wet membrane was vacuum-dried again at 120 to 24 hours to measure the volume (V dry ). These measured values were substituted in Equation 1 below to calculate the degree of dimensional change.
- a pair of carbon felts (GF020, JMTG), a pair of graphite plates, a pair of current collector plates, and a hard plate are formed on both sides of the ion exchange membrane.
- End plates sequentially and then include a charge / discharger (WBCS 3000, WonAtech), a pump, an anode electrolyte tank connected to one region of the cell divided into ion exchange membranes, and a cathode electrolyte tank connected to the other region of the cell.
- a redox flow cell was prepared.
- the anode electrolyte tank was filled with 40 ml of a solution containing 2.0 M sulfuric acid and 1.0 M vanadium oxysulfate
- the cathode electrolyte tank was filled with 40 ml of a solution containing 2.0 M sulfuric acid and V3 + 1.0 M.
- Charging proceeded to 1.5V while maintaining the current density at 60mA / cm 2 , and discharge proceeded to 1.0V at the same current density to measure the performance of the charge / discharge cycles.
- the energy efficiency of each cycle was calculated by measuring the change of voltage with time in each cycle according to Equation 2 below, and the rest of the experiment was performed based on the energy efficiency of Example 1 as 100% for 10 charge / discharge cycles.
- the energy efficiency was displayed relative to 10 charge / discharge cycles of the examples and the comparative examples.
- the cycles in which the 2% energy efficiency decreased compared to the energy efficiency in the first 1 cycle of each example / comparative example were also indicated.
- Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Single support fiber mat thickness ( ⁇ m) 33 33 33 33 33 33 45 Single Ion Exchange Fiber Mat Thickness ( ⁇ m) 17 17 17 17 17 5 Support Fiber Mat: Ion Exchange Fiber Mat Weight Ratio 1: 1 1: 0.5 1: 0.8 1: 1.4 1: 1.6 1: 1 Support Fiber Mat: Ion Exchange Fiber Mat Thickness Ratio 1: 0.51 1: 0.51 1: 0.51 1: 0.51 1: 0.11 Dimensional change (%) 3 2 2 6 15 One Energy efficiency (%) 100 80 97 102 104 69 Cycles when energy efficiency is reduced by 2% 802 846 825 760 594 863
- Example 7 Example 8 Comparative Example 1 Comparative Example 2 Single support fiber mat thickness ( ⁇ m) 29.4 26 0 100 Single Ion Exchange Fiber Mat Thickness ( ⁇ m) 20.6 24 100 0 Support Fiber Mat: Ion Exchange Fiber Mat Weight Ratio 1: 1 1: 1 - - Support Fiber Mat: Ion Exchange Fiber Mat Thickness Ratio 1: 0.7 1: 0.92 - - Dimensional change (%) 5 22 68 One Energy efficiency (%) 105 110 22 92 Cycles when energy efficiency is reduced by 2% 799 640 13 730
- Comparative Example 1 in which the ion exchange membrane was manufactured using only ion-exchange fibers, the durability was not good as the dimensional change was significantly larger than the Examples, and the energy efficiency in 10 charge / discharge cycles was 22% compared to that of Example 1. It is only a case, and it can be seen that energy efficiency cannot be maintained for a long time.
- Comparative Example 2 in which the ion exchange solution was filled in the support fiber mat, the energy efficiency was reduced, and the maintenance period of the energy efficiency was shortened.
- the energy efficiency of Comparative Example 2 was less than that of Example 1, due to the fact that the ion exchange solution was not 100% filled in the supporting fiber mat.
- Example 2 and 5 in which the weight ratios of the entire support fiber mat and the ion exchange fiber mat were outside the preferred ranges, the physical properties thereof were lowered compared to Example 1, and even when the desired weight ratio was satisfied. It can be seen that the physical properties of Examples 6 and 8 in which the thickness ratio of the single support fiber mat and the single ion exchange fiber mat were outside the preferred ranges were reduced.
- the first mixed solution and the second mixed solution were mixed again and stirred to prepare a spinning solution, but mixed so that the ion exchangeable component was 50 parts by weight based on 100 parts by weight of the supporting component.
- the prepared spinning solution was put in a solution tank of an electrospinning apparatus, and 15 ⁇ l / min / hole was discharged. At this time, the temperature of the spinning section was 28, the humidity was maintained at 45%, the distance between the collector and the spinning nozzle tip was 25cm.
- spin Nozzle Pack spin Nozzle Pack
- a calendering process was performed by applying heat and pressure at 140 and 1 kgf / cm 2 to dry the solvent and moisture remaining on the fiber mat, and the total thickness was 95 ⁇ m, and the porosity was 65%. Prepared.
- a support fiber 12 g of polyvinylidene fluoride (Arkema, Kynar761) was used as a support fiber forming component at 90:10 with a weight ratio of dimethylacetamide and acetone at 90:10. It was dissolved to prepare a spinning solution.
- the spinning solution was put into a solution tank of an electrospinning apparatus and discharged at a rate of 15 ⁇ l / min / hole. At this time, the temperature of the spinning section is 28 °C, the humidity was maintained at 45%, the distance between the collector and the spinning nozzle tip was 25 cm.
- a spinneret pack was spun to give a spinning nozzle pack with a voltage of 45 kV or more and an air pressure of 0.05 MPa per spin pack nozzle to spin, thereby producing a support fiber mat having a thickness of 100 ⁇ m. Then, a calendering process was performed by applying heat and pressure at 140 and 1 kgf / cm 2 to dry the solvent and moisture remaining on the fiber mat, thereby preparing a support membrane having a total thickness of 95 ⁇ m.
- anion-exchange resin using a magnetic bar for 6 hours at a temperature of 60 ° C. at 92 g of dimethylacetamide and immersed in a mixed solution for 1 hour.
- Example 9 Example 10 Example 11 Example 12 Example 13 Comparative Example 3 Comparative Example 4 Spinning solution Support ingredient content (parts by weight) 100 100 100 100 100 100 0 100 Ion exchange component content (parts by weight) 50 10 25 75 90 100 0 Ion exchange membrane Dimensional change (%) 9 2 4 12 25 68 One Sacrifice (%) 99 100 100 96 78 76 100 Energy efficiency (%) 100 46 78 106 110 25 109 Cycles when energy efficiency is reduced by 2% 716 902 705 658 493 14 730
- Comparative Example 3 in which the ion exchange membrane was manufactured using only ion-exchange fibers, the durability was not good as the dimensional change was significantly larger than those in the Examples, and the energy efficiency in 10 charge / discharge cycles was 25% compared to that of Example 9. It is only a case, and it can be seen that energy efficiency cannot be maintained for a long time.
- Comparative Example 4 which is a conventional ion exchange membrane filled with an ion exchange solution in the support membrane, has a superior physical property compared with Example 9, but it is superior to Example 9 in productivity as the immersion time is required separately. You can check it.
- Example 10 the content of the ion-exchangeable components in the spinning solution is too low or excessive compared to Example 9 it can be confirmed that it is difficult to satisfy all the physical properties at the same time.
- the solution was dissolved to prepare a mixed solution.
- the spinning solution and the ion exchange solution were added to two solution tanks of the electrospinning apparatus, respectively, and discharged at a rate of 15 ⁇ l / min / hole for the spinning solution and 10 ⁇ l / min / hole for the ion exchange solution.
- the temperature of the spinning section is 28 °C
- the humidity was maintained at 45%
- the distance between the collector and the spinning nozzle tip was 25 cm.
- each spin nozzle pack imparts a voltage of 45 kV or more and at the same time gives an air pressure of 0.05 MPa per spin pack nozzle to radiate as shown in FIG.
- a laminate having a structure of the injected first ion exchange solution / second support fiber mat / sprayed second ion exchange solution was prepared. At this time, the weight ratio of the total support fiber mat and the total ion exchange component contained in the laminate was 1: 0.67. Next, heat and pressure were applied at 140 and 1 kgf / cm 2 to dry the solvent and water remaining in the laminate, and a calendering process was performed to prepare an ion exchange membrane as shown in Table 4 having a total thickness of 95 ⁇ m.
- Example 14 Prepared in the same manner as in Example 14, except that the weight ratio of the support fiber mat and the ionic component provided in the ion exchange membrane was changed as shown in Table 4 to prepare an ion exchange membrane as shown in Table 4.
- Example 14 Prepared in the same manner as in Example 14, without spinning the spinning fiber spinning solution, only the ion exchange solution was spun to prepare an ion exchange membrane as shown in Table 4. At this time, a mixed solution in which 12 g of APS was dissolved in 88 g of dimethylacetamide was used as an ion exchange solution.
- Example 14 Manufactured in the same manner as in Example 14, without spraying the ion exchange solution, spinning only the spinning solution on the support fiber mat to produce a support fiber mat having a total thickness of 100 ⁇ m and then calendering under the same conditions A support film having a thickness of 95 ⁇ m was prepared.
- anion exchange resin was dissolved in 92 g of dimethylacetamide at 60 ° C.
- the ion exchange membranes prepared in Examples 14 to 18 and Comparative Examples 5 to 6 were evaluated in the separator performance of the redox flow battery using the method according to Experimental Example 1 and are shown in Table 4 below. In this case, the energy efficiency of the ion exchange membranes according to the remaining Examples 15 to 18 and Comparative Examples 5 to 6 was relatively represented based on the energy efficiency of Example 14 as 100%.
- Example 14 Example 15 Example 16 Example 17 Example 18 Comparative Example 5 Comparative Example 6
- Total support fiber mat Total ion exchangeable component (weight ratio) 1: 0.67 1: 0.45 1: 0.52 1: 0.85 1: 0.92 0 100 Energy efficiency (%) 100 82 95 104 104 23 97 Cycles when energy efficiency is reduced by 2% 735 760 756 718 675 13 730
- Comparative Example 6 which is a conventional ion exchange membrane filled with an ion exchange solution in the support membrane, has similar physical properties as compared with Example 14, but it is confirmed that Example 14 is more excellent in productivity as the immersion time is required separately. have.
- Example 15 the content of the ion-exchangeable component was too small or excessive relative to the total weight of the fibrous mat, and it was confirmed that the energy efficiency and the maintenance of the energy efficiency were poor in comparison with Example 14. .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Textile Engineering (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Nonwoven Fabrics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
이온교환막의 제조방법이 제공된다. 본 발명의 일 구현예에 따른 이온교환막의 제조방법은 지지섬유 형성용액 및 이온교환섬유 형성용액 각각을 전기방사하여 지지섬유가 축적된 지지섬유매트(mat) 및 이온교환섬유가 축적된 이온교환섬유매트(mat)가 교호적층된 적층체를 제조하는 단계를 포함한다. 이에 의하면 이온교환막의 용도에 맞도록 막의 두께, 전기전도도, 기계적강도, 공극의 직경/비율 등의 인자 조절이 제조공정상에서 용이하고, 제조공정을 단순화시킬 수 있으며, 이를 통해 제조된 이온교환막은 우수한 기계적 강도와 내구성을 가지면서도 동시에 이온교환용량이 크고, 전기저항 및 확산계수가 작은 범용의 이온교환막으로 활용될 수 있다.
Description
본 발명은 이온 교환막에 관한 것으로, 보다 구체적으로는 단순화된 제조공정 및 단축된 제조시간을 통해 구현되는 동시에 제조된 이온교환막은 우수한 기계적 강도와 내구성을 가지면서도 이온교환용량이 크고, 전기저항 및 확산계수가 작은 이온 교환막 및 그 제조방법에 관한 것이다.
이온교환수지는 이온교환능이 있는 합성수지를 말한다. 1935년 영국의 B. A. 애덤스와 F. L. 홈스는 다가(多價) 페놀과 폼알데하이드를 축합시킨 수지와 m-페닐렌다이아민과 폼알데하이드를 축합시킨 수지가 이온을 교환하는 것을 발견하였다. 이 수지에 의해서 물속에 있는 각종 이온을 제거할 수 있다는 사실이 밝혀졌는데, 그 후 독일 및 미국 등에서 계통적 연구 및 공업적인 규모로 생산이 시작되었다. 제2차 세계대전 중 독일에서는 물의 정제, 인조견공장에서의 구리·암모니아 회수 등에 이용하였으며, 미국에서는 핵분열 생성물·초우라늄원소·회토류원소 등의 분류에 이용하였다. 또한 이온교환수지에 의해 각종 물질(아미노산·항생물질 등)의 정제가 용이하게 되었고 이후 이온교환막이 개발되면서 전기화학적으로 더욱 중요한 역할을 하게 되었다. 현재 이온교환막은 연료전지, 레독스 흐름 전지, 전기투석, 담수화, 초순수 및 폐수처리 등의 분야에서 널리 활용되고 있다. 특히 화석 연료의 사용을 감소시켜 친환경적 신 재생에너지 생산 청정기술로 세계적인 주목을 받고 있다. 현재 소형 노트북, 핸드폰 등의 전자제품 사용 급증으로 인해 이에 필요한 고수명, 고용량의 배터리 개발 및 새로운 연료전지의 개발 필요성에 따라 그 핵심 소재인 이온교환막에 대한 연구가 활발히 진행되고 있다.
한편, 통상적인 이온교환막은 기계적 물성의 향상을 위해 별도의 지지체를 구비하는 경우가 많으며, 구체적으로 지지체의 일면에 시트상의 이온교환수지층이 구비될 수 있는데, 지지체와 이온교환수지층의 재질상 상용성 등의 문제로 층간 계면 사이에 박리, 분리가 빈번히 일어나고, 이에 따라 이온교환능 및/또는 기계적 물성이 현저히 저하되는 문제점이 있다. 또한, 이온교환막의 제조공정에서 용도에 맞도록 구성의 변경, 예를 들어, 막의 두께, 전기전도도, 기계적강도, 공극의 직경/비율 등의 인자 조절이 매우 어려운 문제점이 있었다.
이에 따라 단순화된 공정임에도 용도에 맞도록 이온교환막의 구조, 물성을 변경시키기 용이한 동시에 제조된 이온교환막이 우수한 기계적 강도와 내구성을 가지면서도 동시에 이온교환용량이 크고, 전기저항 및 확산계수가 작은 범용의 이온교환막 및 이와 같은 이온교환막을 보다 용이하게 구현할 수 있는 공정에 대한 연구가 시급한 실정이다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 이온교환막의 제조공정에서 용도에 맞도록 막의 두께, 전기전도도, 기계적강도, 공극의 직경/비율 등의 인자 조절이 용이하고, 이온교환용액의 충진공정이 생략되는 등 제작공정이 매우 단순화된 이온교환막의 제조방법을 제공하는 것에 목적이 있다.
또한, 본 발명은 우수한 기계적 강도와 물리적/화학적 내구성을 가지면서도 동시에 이온교환용량이 크고, 전기저항 및 확산계수가 작은 범용의 이온교환막을 제공하는 것에 다른 목적이 있다.
상술한 과제를 해결하기 위해 본 발명의 제1구현예는, (1) 지지섬유 형성용액 및 이온교환섬유 형성용액 각각을 전기방사하여 지지섬유가 축적된 지지섬유매트(mat) 및 이온교환섬유가 축적된 이온교환섬유매트(mat)가 교호적층된 적층체를 제조하는 단계;를 포함하는 이온교환막의 제조방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 지지섬유 형성용액은 지지섬유 형성성분을 5 ~ 30중량%로 포함할 수 있다.
또한, 상기 이온교환섬유 형성용액은 양이온성 이온교환섬유 형성성분 또는 음이온성 이온교환섬유 형성성분을 5 ~ 60 중량%로 포함할 수 있다.
또한, 상기 이온교환섬유 형성용액은 양이온성 이온교환섬유 형성성분을 포함하는 제1 이온교환섬유 형성용액 및 음이온성 이온교환섬유 형성성분을 포함하는 제2 이온교환섬유 형성용액을 포함하며, 상기 제1 이온교환섬유 형성용액 및 제2 이온교환섬유 형성용액 각각은 분리된 별도의 이온교환섬유매트를 형성하도록 전기방사 될 수 있다.
또한, 상기 (1) 단계 이후, (2) 상기 적층체에 열 및 압력을 가하여 지지섬유매트에 포함된 적어도 일부의 지지섬유를 용융시키고, 용융된 지지섬유의 적어도 일부를 이온교환섬유매트의 기공에 침투시키는 단계를 더 포함할 수 있다.
이때, 상기 지지섬유의 융점이 이온교환섬유의 융점보다 낮을 수 있다.
한편, 본 발명은 지지섬유매트; 및 이온교환섬유매트;가 교호적층된 이온교환막을 제공한다.
본 발명의 바람직한 일구현예에 따르면, 상기 지지섬유매트 및 이온교환섬유매트 중 어느 하나 이상의 섬유매트는 섬유간 융착되어 형성된 3차원 네트워크 구조의 웹 영역을 포함할 수 있다.
또한, 상호 대면하는 지지섬유매트 표면부 및 이온교환섬유매트의 표면부는 지지섬유 및 이온교환섬유가 혼재되어 물리적으로 결착된 영역을 포함할 수 있다.
또한, 지지섬유매트에 포함된 지지섬유의 평균직경은 0.1 ~ 100 ㎛이고, 상기 이온교환섬유매트에 포함된 이온교환섬유의 평균직경은 100 ~ 2000nm이며, 단일 지지섬유매트의 평균공경은 0.1 ~ 10 ㎛이고, 단일 이온교환섬유매트의 평균공경은 0.1 ~ 1 ㎛일 수 있고, 단일 지지섬유매트의 두께는 0.1 ~ 200㎛ 이며, 단일 이온교환섬유매트의 두께는 0.1 ~ 10㎛일 수 있다. 이때, 상기 이온교환막은 액체용 필터, 공기용 필터의 용도일 수 있다.
또한, 본 발명은 지지섬유매트; 및 이온교환섬유매트;가 교호적층되며, 상기 이온교환섬유매트를 형성하는 이온교환섬유 중 일 이온교환섬유의 표면 적어도 일부분에는 지지섬유가 용융되어 융착된 융착부를 포함하는 이온교환막을 제공한다.
본 발명의 일 실시예에 의하면, 상기 지지섬유매트 및 이온교환섬유매트는 중량비가 1: 0.8 ~ 1.5이며, 단일의 지지섬유매트 및 단일의 이온교환섬유 매트의 두께비가 1: 0.2 ~ 0.8 일 수 있다.
또한, 상기 이온교환막은 액체용 필터, 공기용 필터, 축전식 탈염장치(capacitive deionization, CDI) 또는 전기투석(electrodialysis, ED)의 용도일 수 있다.
또한, 본 발명은 이온교환섬유매트; 및 상기 이온교환섬유 매트의 섬유간 공간을 채워 이온교환섬유를 지지하는 지지체;를 포함하는 이온교환막을 제공한다.
본 발명의 일 실시예에 따르면, 상기 이온교환막은 전지 분리막의 용도일 수 있다.
상술한 과제를 해결하기 위해 본 발명의 제2구현예는, 상술한 과제를 해결하기 위해 본 발명은, (Ⅰ)지지성분 및 이온교환성 성분이 혼합된 방사용액을 전기방사하여 섬유매트를 제조하는 단계;를 포함하는 이온교환막의 제조방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 이온교환성 성분은 양이온성 이온교환성 성분 또는 음이온성 이온교환성 성분일 수 있다.
또한, 상기 방사용액은 지지성분 100 중량부에 대하여 이온교환성 성분을 20 ~ 80 중량부로 포함할 수 있다.
또한, 상기 (Ⅰ) 단계 이후, (Ⅱ)기공도 및 공경을 조절하기 위하여 상기 섬유매트에 열 및 압력을 가하는 단계;를 더 포함할 수 있다.
또한, 상기 섬유매트에 포함된 지지성분의 융점은 이온교환성 성분의 융점보다 낮을 수 있다.
또한, 본 발명은 지지성분 및 이온교환성 성분을 포함하는 제1섬유를 포함하는 섬유매트;를 포함하는 이온교환막을 제공한다.
본 발명의 일 실시예에 의하면, 상기 섬유매트는 지지성분을 포함하는 제2섬유 및 이온교환성 성분을 포함하는 제3섬유를 더 포함할 수 있다.
또한, 상기 섬유매트는 섬유간 융착되어 형성된 3차원 네트워크 구조의 웹(web) 영역을 포함할 수 있다.
또한, 상기 섬유매트에 포함된 섬유의 평균직경은 0.1 ~ 100㎛이고, 섬섬유매트의 평균공경은 0.1 ~ 10㎛이고, 섬유매트의 두께는 0.1 ~ 200㎛일 수 있다.
이때, 상기 이온교환막은 액체용 필터, 공기용 필터의 용도일 수 있다.
또한, 본 발명은 이온교환성 성분을 포함하는 제3섬유를 포함하는 섬유매트; 및 상기 섬유매트 내 섬유간 공간을 매립하여 제3섬유를 지지하는 지지체;를 포함하는 이온교환막을 제공한다.
본 발명의 일 실시예에 의하면, 상기 이온교환막은 액체용 필터, 공기용 필터, 축전식 탈염장치(capacitive deionization, CDI), 전기투석(electrodialysis, ED) 또는 전지분리막 용도일 수 있다.
또한, 상술한 과제를 해결하기 위해 본 발명의 제3구현예는, (A) 제1 지지섬유 형성용액을 전기방사하여 제1 지지섬유매트(mat)를 형성시키는 단계; (B) 지지섬유매트 내부로 이온교환용액이 충진되도록 상기 제1 지지섬유 매트상에 이온교환용액을 분사시키는 단계; 및 (C) 상기 이온교환용액이 분사된 제1 지지섬유매트상에 제2 지지섬유 형성용액을 전기방사하여 제2 지지섬유매트(mat)를 형성시키는 단계;를 포함하는 이온교환막의 제조방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 (C)단계 후, (D) 지지섬유매트 내부로 이온교환용액이 충진되도록 상기 제2 지지섬유매트상에 이온교환용액을 분사시키는 단계;를 더 포함할 수 있다.
또한, 상기 제1 지지섬유 형성용액 및 제2 지지섬유 형성용액은 각각 독립적으로 지지섬유 형성성분을 포함하고, 상기 지지섬유 형성성분은 동일하거나 상이할 수 있다.
또한, 상기 제1 지지섬유 형성용액 및 제2 지지섬유 형성용액은 지지섬유 형성성분을 각각 독립적으로 5 ~ 30중량%로 포함할 수 있다.
또한, 상기 이온교환용액은 양이온성 이온교환성 성분 또는 음이온성 이온교환성 성분을 0.1 ~ 99중량%로 포함할 수 있다.
또한, 상기 (B) 단계 및 (D) 단계 중 어느 하나 이상의 단계는 지지섬유매트 내부로 이온교환용액이 과충진되도록 분사될 수 있다.
또한, 상기 (C)단계 또는 (D) 단계 이후, (E) 열 및 압력을 가하여 제1 지지섬유매트 및 제2 지지섬유매트를 압축시켜 이온교환용액을 지지섬유 매트 내부에 잔존하는 보이드에 침투시키는 단계;를 더 포함할 수 있다.
또한, 본 발명은, 적층된 복수개의 지지섬유 매트; 및 상기 복수개의 지지섬유 매트 섬유간 공간에 충진된 이온교환성 성분;을 포함하는 이온교환막을 제공한다.
또한, 본 발명은 적층된 복수개의 지지섬유 매트; 상기 복수개의 지지섬유 매트 섬유간 공간에 충진된 이온교환성 성분; 및 상기 복수개의 지지섬유 매트 중 인접한 매트 사이에 개재되며, 상기 이온교환성 성분을 포함하여 형성된 이온교환층;을 포함하는 이온교환막을 제공한다.
본 발명의 일 실시예에 의하면, 상기 복수개의 지지섬유매트 중 적어도 하나의 지지섬유매트는 섬유간 융착되어 형성된 3차원 네트워크 구조의 웹(web) 영역을 포함할 수 있다.
또한, 단일 지지섬유매트의 두께는 0.1 ~ 200㎛일 수 있고, 지지섬유매트에 포함된 지지섬유의 평균직경은 0.1 ~ 100㎛일 수 있으며, 단일 지지섬유매트의 평균공경은 0.1 ~ 10㎛ 일 수 있다.
또한, 상기 이온교환층은 제1 지지섬유매트 및 제2 지지섬유매트 중 적어도 하나의 지지섬유매트 섬유간 공간에 과충진된 이온교환성 성분에 의해 형성된 것일 수 있다.
또한, 지지섬유매트 및 이온교환성 성분 각각의 총중량은 1: 0.5 ~ 0.9의 중량비를 가질 수 있다.
또한, 본 발명은, 상술한 이온교환막을 포함하는 전지용 분리막을 제공한다.
또한, 본 발명은 상술한 전지용 분리막을 포함하는 연료전지 또는 레독스플로우전지를 제공한다.
이하, 본 발명에서 사용한 용어에 대해 설명한다.
본 발명에서 사용한 용어인 매트의 "표면부"는 매트표면에서부터 당해 매트 전체두께의 15% 이하의 두께에 해당하는 영역을 포함하는 의미이다.
또한, 본 발명에서 사용한 용어인 "매트(mat)"는 전기방사된 섬유가 축적되어 있는 상태를 의미하고, 상기 매트는 한 가닥의 섬유가 여러 번 굴곡되고 얽혀 형성되거나 복수개의 섬유가 굴곡되고 서로간에 얽혀 형성될 수도 있으며, 섬유 중 일부가 용융되어 비섬유상인 부분을 포함하더라도 섬유상의 부분을 포함하는 경우는 "매트"에 포함될 수 있다.
본 발명에 의하면, 이온교환막의 용도에 따른 요구특성에 맞춰 전기전도도, 기계적강도, 공극 등을 쉽게 조절할 수 있고, 이온교환용액의 충진공정이 생략됨에 따라서 보다 단순화된 공정을 통해 이온교환막을 대량으로 제조할 수 있어 생산성을 현저히 증가시킬 수 있다. 또한, 지지체 내부에 이온교환성 성분의 충진성을 현저히 증가시킨 것과 같은 효과가 발현하여 제조된 이온교환막은 우수한 기계적 강도와 내구성을 가지면서도 동시에 이온교환용량이 크고, 전기저항 및 확산계수가 작음에 따라 전지분야의 분리막, CDI/ED 등의 탈염시스템이나 각종 필터류의 소재등으로 널리 응용될 수 있고, 특히 전지분리막 용도에 보다 적합할 수 있다.
도 1은 본 발명의 일 실시예에 따른 이온교환막의 제조공정모식도,
도 2는 도 1을 통해 제조된 본 발명의 일 실시예에 의한 이온교환막의 단면모식도,
도 4는 도 3에 따른 이온교환막 중 A 부분의 부분확대모식도,
도 5는 도 4 중 B 영역의 부분 확대도,
도 6은 본 발명의 일 실시예에 의한 이온교환막의 단면 모식도,
도 7은 본 발명의 일 실시예에 의한 이온교환막의 단면 모식도,
도 8은 본 발명의 일 실시예에 따른 이온교환막의 제조공정모식도,
도 9는 도 8을 통해 제조된 본 발명의 일 실시예에 의한 이온교환막의 단면모식도,
도 10은 본 발명의 일 실시예에 의한 이온교환막의 단면 모식도,
도 11은 본 발명의 일 실시예에 따른 이온교환막의 단면모식도, 그리고,
도 12는 도 11 중 A' 부분에 대한 부분확대도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 구현예에 따른 이온교환막의 제조방법을 도 1을 참조하여 설명하면, 복수개의 전기방사 팁(10) 중 제1전기방사 팁(11), 제3 전기방사 팁(13) 및 제5전기방사 팁(15)을 통해 지지섬유 형성용액(미도시)이 전기방사 되어 지지섬유가 축적된 지지섬유매트(21, 23, 25)가 제조되고, 제2전기방사 팁(12) 및 제4전기방사 팁(15)을 통해 이온교환섬유 형성용액(미도시)이 전기방사 되어 이온교환섬유가 축적된 이온교환섬유매트(22, 24)가 제조되며, 인접하는 섬유매트에는 다른 종류의 섬유매트가 위치하도록 교호적으로 전기방사함을 통해 지지섬유매트 및 이온교환섬유매트가 교호적층된 적층체를 제조될 수 있다.
상기 방사용액에 포함되는 상기 지지섬유 형성용액은 지지섬유 형성성분을 포함하고, 상기 형성성분이 용융된 용융액 또는 상기 형성성분이 용매에 의해 용해된 용해액일 수 있다. 상기 지지섬유 형성용액은 지지섬유 형성성분을 5 ~ 30 중량%로 포함할 수 있다. 만일 지지섬유 형성성분이 5 중량% 미만으로 포함되는 경우 점도가 낮게 됨에 따라 전기방사시 섬유형성이 이루어지지 않는 문제점이 있을 수 있고, 30 중량%를 초과하여 포함되는 경우 전기방사시 섬유가 녹거나 연속적인 섬유형성이 제한되는 문제점이 있을 수 있다.
상기 지지섬유 형성성분은 통상의 이온교환막에서 지지체의 성분으로 사용되는 화합물의 경우 제한 없이 사용될 수 있으나, 바람직하게는 폴리이미드(polyimides), 폴리아믹스산(polyamic acid), 폴리카프로락톤(polycarprolactone), 폴리에테르이미드(polyetherimide), 나일론(nylon), 폴리아라미드(polyaramid), 폴리벤질글루타메이트(polybenzyl-glutamate), 폴리페닐렌테레프탈아마이드(polyphenyleneterephthalamide), 폴리아닐린(polyaniline), 폴리아크릴로니트릴(polyacrylonitrile), 폴리에틸렌옥사이드(polyethylene oxide), 폴리스티렌(polystyrene), 셀룰로오스(cellulose), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리락틱산(polylactic acid; PLA), 폴리글리콜산(polyglycolic acid; PGA), 폴리락틱-co-글리콜산, 폴리{폴리(에틸렌옥사이드)테레프탈레이트-co-부틸렌테레프탈레이트}(PEOT/PBT), 폴리포스포에스터(polyphosphoester; PPE), 폴리포스파젠(PPA), 폴리안하이드라이드(Polyanhydride; PA), 폴리오르쏘에스터{poly(ortho ester; POE}, 폴리(프로필렌푸마레이트)-디아크릴레이트{poly(propylene fumarate)-diacrylate; PPF-DA}, 폴리비닐알콜, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리테트라플로우로에틸렌(PTFE, polytetra fluoroethylene), 폴리에틸렌테트라플로우로에틸렌(ETFE, polyethylene tetrafluoro ethylene), 폴리비닐리덴플루오라이드(PVDF, polyvinylidene fluoride), 에틸렌클로로트리플로우로에틸렌(ECTFE, Ethylene Chlorotrifluoroethylene) 및 폴리클로로트리플로우로에틸렌(PCTFE, polychlorotrifluoro ethylene) 및 폴리(스티렌-co-무수말레산)로 이루어진 군에서 선택된 1종 이상일 수 있다. 다만, 이에 한정되는 것은 아니며 이온교환막의 용도에 따라 성분을 변경할 수 있다.
한편, 상기 지지섬유 형성용액은 지지섬유 형성성분으로 적어도 2 종류의 지지섬유 형성성분이 방사용액에 포함되어 전기방사 되거나, 또는 적어도 2종류의 지지섬유 형성성분 각각이 서로 다른 방사용액에 포함되어 서로 다른 방사 노즐을 통하여 교차 방사될 수도 있다.
지지섬유 형성성분으로 2 종류의 지지섬유 형성성분을 사용하여 혼합 방사용액을 형성하는 경우, 예를 들어, 내열성 지지섬유 형성성분로서 폴리아크릴로니트릴(PAN)과 접착성 지지섬유 형성성분(또는 팽윤성 지지섬유 형성성분)로서 폴리비닐리덴플루오라이드(PVDF)를 혼합하는 경우, 8:2 내지 5:5 중량% 범위로 혼합하는 것이 바람직하다.
내열성 지지섬유 형성성분과 접착성 지지섬유 형성성분의 혼합비가 중량비로 5:5보다 작은 경우 내열성이 떨어져서 요구되는 고온 특성을 갖지 못하며, 혼합비가 중량비로 8:2보다 큰 경우 강도가 떨어지고 방사 트러블이 발생하게 된다.
지지섬유 형성용액으로 내열성 지지섬유 형성성분과 팽윤성 지지섬유 형성성분의 혼합용액인 경우, 단일 용매 또는 고비등점 용매와 저비등점 용매를 혼합한 2성분계 혼합용매를 사용할 수 있다. 이 경우, 2성분계 혼합용매와 전체 지지섬유 형성성분 사이의 혼합비율은 중량비로 약 8:2로 설정되는 것이 바람직하다. 본 발명에서는 단일 용매를 사용할 때는 지지섬유 형성성분의 종류에 따라 용매의 휘발이 잘 이루어지지 못하는 경우가 있다는 것을 고려하여 방사공정 이후에 프리히터에 의한 선 건조구간(Pre-Air Dry Zone)을 통과하면서 후술하는 지지섬유매트 표면에 잔존해 있는 용매와 수분의 양을 조절하는 공정을 더 거칠 수 있다.
상기 내열성 지지섬유 형성성분은 전기방사를 위해 유기용매에 용해될 수 있고 융점이 180 이상인 수지로서, 예를 들어, 폴리아크릴로니트릴(PAN), 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리{비스[2-(2-메톡시에톡시)포스파젠]} 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등을 사용할 수 있다.
상기 팽윤성 지지섬유 형성성분은 전해액에 팽윤이 일어나는 수지로서 전기 방사법에 의하여 초극세 섬유로 형성 가능한 것으로, 예를 들어, 폴리비닐리덴플루오라이드(PVDF), 폴리(비닐리덴플루오라이드-코-헥사플루오로프로필렌), 퍼풀루오로폴리머, 폴리비닐클로라이드 또는 폴리비닐리덴 클로라이드 및 이들의 공중합체 및 폴리에틸렌글리콜 디알킬에테르 및 폴리에틸렌글리콜 디알킬에스터를 포함하는 폴리에틸렌글리콜 유도체, 폴리(옥시메틸렌-올리 고-옥시에틸렌), 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드를 포함하는 폴리옥사이드, 폴리비닐아세테이트, 폴리(비닐피롤리돈-비닐아세테이트), 폴리스티렌 및 폴리스티렌 아크릴로니트릴 공중합체, 폴리아크릴로니트릴 메틸메타크릴레이트 공중합체를 포함하는 폴리아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리메틸메타크릴레이트 공중합체 및 이들의 혼합물을 들 수 있다
상기 용매는 통상의 전기방사용액의 제조에 사용되는 용매의 경우 제한 없이 사용될 수 있고, 그 이외에도 지지섬유 형성성분을 용해하고, 쉽게 기화될 수 있는 용매의 경우 제한 없이 사용될 수 있으며, 구체적으로 선택되는 지지섬유 형성성분의 종류에 따라 용매를 달리 선택할 수 있음에 따라 구체적인 종류를 본 발명은 특별히 한정하지 않는다. 다만, 바람직하게는 용매는 단성분계 용매, 예를 들면, 다이메틸포름아마이드(DMF: dimethylformamide)를 사용하는 것도 가능하나, 2성분계 용매를 사용하는 경우는 비등점(BP: boiling point)이 높은 것과 낮은 것을 혼합한 2성분계 용매를 사용하는 것이 바람직하다. 이때, 2성분계 용매는 고비등점 용매와 저비등점 용매를 중량비로 7:3 내지 9:1 범위로 혼합하여 사용할 수 있으나 이에 제한되는 것은 아니다.
다음으로 상기 이온교환섬유 형성용액은 이온교환섬유 형성성분을 포함하고, 상기 형성성분이 용융액 또는 상기 형성성분이 용매에 의해 용해된 용해액일 수 있다. 상기 이온교환섬유 형성용액은 이온교환 형성성분을 5 ~ 60 중량%로 포함할 수 있다. 만일 이온교환 형성성분이 5 중량% 미만으로 포함되는 경우 점도가 낮게 됨에 따라 전기 방사시에 섬유형성이 원활하지 않을 수 있고, 60중량%를 초과하여 포함되는 경우 방사된 섬유가 연속적이지 못하고 사절의 빈도가 늘어나는 문제점이 있을 수 있다.
상기 이온교환섬유 형성성분은 양이온성 이온교환섬유 형성성분 또는 음이온성 이온교환섬유 형성성분일 수 있고, 선택되는 이온의 극성에 따라 양이온교환막 또는 음이온교환막이 구현될 수 있다.
만일 바이폴라 이온교환막을 구현하기 위한 경우 상기 이온교환섬유 형성용액은 양이온성 이온교환섬유 형성성분이 포함된 제1 이온교환섬유 형성용액 및 음이온성 이온교환섬유 형성성분이 포함된 제2 이온교환섬유 형성용액을 포함할 수 있고, 상기 제1 이온교환섬유 형성용액 및 제2 이온교환섬유 형성용액 각각은 분리된 별도의 이온교환섬유매트를 형성하도록 전기방사될 수 있다.
상기 양이온성 이온교환섬유 형성성분은 4급 암모늄염(-NH3), 1 ~ 3급 아민(-NH2, -NHR, -NR2), 4급 포스포니움기(-PR4), 3급 술폰니움기(-SR3) 등의 음이온 교환성 관능기를 가지는 고분자 화합물일 수 있다.
또한, 상기 음이온성 이온교환섬유 형성성분은 술폰산기(-SO3H), 카르복실기(-COOH), 포스포닉기(-PO3H2), 포스피닉기(-HPO2H), 아소닉기(-AsO3H2), 셀리노닉기(-SeO3H) 등의 양이온교환성 관능기를 가지는 고분자 화합물일 수 있고, 체적으로 폴리술폰, 폴리이서술폰 등을 사용할 수 있다.
또한, 양이온성 또는 음이온성 이온교환섬유 형성성분은 가교반응 작용기로 에스테르 결합에 의해 가교반응을 할 수 있는 수산기(-OH), 아민기(-NH2, -NH-, -NR-, -NR2) 및 카르복실산기 (-COOH)를 갖는 것과 에폭시기나 우레탄 결합을 할 수 있는 이소시아네이트 작용기 등을 포함하고 있는 축합중합형 가교반응 작용기를 가지고 있는 고분자 화합물 또는 부가중합에 의한 가교반응을 할 수 있는 2중 결합구조를 갖고 있는 고분자 화합물을 사용할 수 있고, 이와 같은 고분자수지는 유기용매에 녹아서 용액형태로 존재할 수 있는 것으로, 구체적으로 예를 들면, 폴리스티렌, 폴리술폰, 폴리이서술폰, 폴리아미드, 폴리에스테르, 폴리이미드, 폴리에테르, 폴리에틸렌, 폴리테트라플루오로에틸렌, 폴리글리시딜메타크릴레이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
상기 이온교환섬유 형성용액이 용해액인 경우 상기 형성용액은 용매를 더 포함하며, 상기 용매는 통상의 전기방사용액의 제조에 사용되는 용매의 경우 제한 없이 사용될 수 있고, 그 이외에도 이온교환 형성성분을 용해하고, 쉽게 기화될 수 있는 용매의 경우 제한 없이 사용될 수 있으며, 구체적으로 선택되는 이온교환섬유 형성성분의 종류에 따라 용매를 달리 선택할 수 있음에 따라 구체적인 종류를 본 발명은 특별히 한정하지 않는다. 다만, 바람직하게는 γ-부티로락톤, 사이클로헥사논, 3-헥사논, 3-헵타논, 3-옥타논, N-메틸피롤리돈, 디메틸아세트아미드, 디메틸설폭사이드, 아세트산, 톨루엔, 포름산, 아세톤, 클로로포름, 디클로로메탄, 트리클로로에틸렌, 에탄올, 메탄올, 노르말헥산 및 디메틸포름아마이드로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
방사용액으로 상술한 지지섬유 형성용액 및 이온교환섬유 형성용액은 통상의 전기방사장치에 투입될 수 있다. 상기 전기방사장치는 선택되는 방사용액의 구체적 종류에 따라 습식방사 또는 건식방사를 위한 장치일 수 있다.
예를 들어, 상기 방사용액은 전기방사장치의 공급부로 투입되고, 공지된 시린지 펌프와 같은 펌프유닛을 통해 노즐부로 이송될 수 있다. 상기 노즐부는 노즐과 상기 노즐을 공급부와 연결시키는 연결부로 구성될 수 있다. 다만 연결부 없이 노즐이 공급부에 결합되어 노즐부를 형성할 수 있어 노즐부의 구체적인 구성은 본 발명에서 특별히 한정하지 않으며, 통상의 전기방사 장치에 구비되는 노즐부의 구성을 선택, 변경할 수 있다.
상기 노즐부의 노즐의 직경은 목적하는 섬유매트의 평량, 기공도, 공경, 기계적 강도 등을 고려하여 달리 선택할 수 있어 본 발명에서는 이를 특별히 한정하지 않는다. 또한 노즐의 횡단면 형상은 원형, 타원형, 다각형 등 다양한 형상이 수 있고, 노즐의 종단면 형상은 단일노즐, 이중노즐, 삼중노즐 등 통상의 전기방사 노즐의 단면형상일 수 있다. 또한, 노즐부는 노즐을 목적에 따라 복수개로 포함할 수 있고, 복수개로 포함되는 노즐 각각의 직경을 달리할 수 있는 등 본 발명은 노즐의 구체적 형상, 크기, 개수 등을 한정하지 않는다. 또한, 노즐의 재질은 통상의 전기방사에 사용되는 노즐의 재질일 수 있고, 바람직하게는 전기전도성이 있는 금속소재일 수 있으나 이에 한정되는 것은 아니다.
상기 노즐부의 일부분은 전기방사를 위한 전기장을 형성하기 위하여 전기장형성부, 예를 들어 고전압장치와 전기적으로 연통될 수 있도록 연결될 수 있다. 상기 전기장형성부는 노즐부에서 컬렉터로 방사용액의 제트를 형성시키기 위한 것으로써, 노즐부의 노즐팁 및 상기 노즐팁과 컬렉터를 직선으로 통과하는 가상의 어느 일지점 사이에 전기장을 형성시킬 수 있는 구성인 경우 제한 없이 채용될 수 있고, 통상의 전기방사장치에 구비되는 전기장 형성부의 구성이 선택될 수 있어 본 발명에서는 이를 특별히 한정하지 않는다. 다만, 상기 전기장 형성부는 집전판 및 고전압발생장치를 포함할 수 있고, 상기 집전판은 지면에 접지될 수 있으며, 상기 고전압발생장치는 노즐부와 전기적으로 연결될 수 있다.
만일 습식전기방사를 수행할 경우 컬렉터에 응고조를 더 구비할 수 있다. 상기 응고조는 방사용액의 제트를 섬유형상으로 응고시키기 위한 외부응고액을 포함할 수 있다. 상기 외부응고액은 물, 유기용매 등을 제한 없이 사용할 수 있음에 따라서 그 구체적인 종류에 대해서는 본 발명은 특별히 한정하지 않으며, 이에 대한 비제한적인 예로써, 헥산, 벤젠, 에탄올, 메탄올, 프로판올, 아세톤, 부탄올, 디메틸포름아미드 및 테트라하이드로푸란 등에서 선택된 1종 이상을 사용할 수 있으나 이에 한정되는 것은 아니다.
한편, 상술한 노즐부의 노즐팁과 컬렉터 또는 응고조의 외부응고액 표면 간의 수직거리인 에어갭은 0 ~ 50㎝일 수 있으나 이에 한정되지 않는다.
상술한 제조방법으로 제조된 이온교환막은 지지섬유매트 및 이온교환섬유매트가 교호적층된 구조를 가지고, 도 2에 도시된 것과 같이 지지섬유(21a, 21b)가 축적된 제1 지지섬유매트(21), 제2 지지섬유 매트(23) 및 제3 지지섬유 매트(25) 사이에 제1 이온교환섬유매트(22) 및 제2 이온교환섬유매트(24)가 개재되어 각 섬유매트가 교호적으로 적층될 수 있다.
또한, 도 3에 도시된 것과 같이, 제1지지섬유매트(21) 및 제1 이온교환섬유매트(22)의 표면부(A)는 지지섬유(21a)와 이온교환섬유(22a)가 혼재되어 얽힘에 따라 물리적으로 이들 섬유(21a, 22a)가 결착될 수 있고, 이에 따라 제1 지지섬유매트(21) 및 제1 이온교환섬유매트(22)가 별도의 접착성분 없이도 서로 분리되지 않고 결착될 수 있어서 매트간의 박리를 최소화 할 수 있다.
또한, 이온교환막은 지지섬유매트(21,23,25) 및 이온교환섬유매트(22,24) 중 어느 하나 이상의 섬유매트는 섬유간 융착되어 형성된 3차원 네트워크 구조를 가지는 영역을 포함할 수 있다. 도 4를 참조하면 제1 지지섬유(21a) 및 제1 이온교환섬유(22a)는 표면의 일부가 융착(B1)되어 있고, 제1 지지섬유(21a) 및 제2 지지섬유(21b)의 표면 일부가 융착(B2)되어 3차원 네트워크 구조의 웹(web)을 형성할 수 있다. 상기 융착은 별도의 가온공정을 통한 섬유의 일부용융만을 의미하지는 않는다. 구체적으로 전기 방사되는 과정에서 방사용액에 포함된 용매는 전기방사의 방법에 무관하게 통상적으로 방사된 후 공기 중에서 기화되고, 습식 전기방사의 경우에는 기화되지 못한 잔량의 용매가 외부응고액에 용해되어 제거될 수 있는데, 전량 기화 및/또는 용해되어 나오지 못하고 방사된 섬유에 존재하는 용매는 섬유간의 접촉이 발생했을 때 접촉점 또는 접촉면의 부착을 유도할 수 있다.
상기 융착은 도 4와 같이 서로 다른 두 매트 사이의 표면부에서만 발생하는 것이 아니고, 각각의 섬유매트에 포함된 지지섬유 간 또는 이온교환섬유간에도 발생할 수 있고, 이를 통해 각각의 섬유매트는 3차원 네트워크 구조인 영역을 포함할 수 있다. 상기 3차원 네트워크 구조의 웹이 단일 섬유매트 내에 포함될 경우 섬유간의 안정된 기공구조 형성 및 단일 섬유매트의 기계적 강도를 향상시킬 수 있고, 인접하는 서로 다른 섬유매트의 표면부에서 발생할 경우 상술한 섬유간의 얽힘으로 발현되는 매트간 결착력 이상의 상승된 결착력이 발현될 수 있어 이온교환막의 기계적 강도 향상에 매우 유리한 이점이 있고, 인접하는 서로 상이한 섬유매트 사이가 박리됨에 따라 발생하는 이온교환능의 저하 또는 여과효율의 감소 등의 물성저하를 수반하는 치명적인 문제점을 방지할 수 있다.
한편, 상기 지지섬유매트(21,23,25)에 포함된 지지섬유의 평균직경은 0.1 ~ 100 ㎛일 수 있다. 만일 지지섬유의 직경이 0.1㎛ 미만일 경우 기계적 강도가 약해 지지섬유로써의 기능을 제대로 수행할 수 없고, 방사성이 저하될 수 있다. 또한, 만일 직경이 100㎛를 초과하는 경우 상술한 (1) 단계를 통해 제조된 이온교환막을 용도에 따라 열/압력을 가하여 지지섬유를 용융시킬 때 지지섬유의 용융이 쉽지 않고, 이에 따라 지지섬유 매트의 공경 조절이 용이하지 않을 수 있다. 다만, 상기 지지섬유의 직경범위에 제한되는 것은 아니고, 이온교환막이 사용되는 용도에 따라 섬유 직경 범위는 변경될 수 있다.
상기 지지섬유매트(21,23,25) 중에서 단일 지지섬유매트의 평균공경은 0.1~ 10㎛ 일 수 있다. 만일 평균공경이 0.1㎛ 미만의 경우 필터 용도에서 유량이 현저히 감소하게 되는 문제점이 있을 수 있다. 또한, 만일 평균공경이 10 ㎛를 초과하는 경우 필터용도에서 여과효율의 저하를 초래할 수 있다. 다만, 상기 평균공경 범위에 제한되는 것은 아니고, 이온교환막이 사용되는 용도에 따라 평균공경은 변경될 수 있다.
또한, 상기 지지섬유매트(21,23,25) 중에서 단일 지지섬유매트의 두께는 0.1 ~ 200㎛인 것이 바람직하며, 두께가 0.1㎛ 미만일 경우 기계적 물성이 현저히 감소할 수 있고, 200㎛ 를 초과할 경우 제조단가의 상승 및 이온교환막의 부피가 커져 한정된 공간에 구비되는 이온교환막의 양이 줄어드는 문제점이 있을 수 있다.
또한, 지지섬유매트(21,23,25)는 후술하는 (2) 단계를 통해 목적하는 이온교환막의 용도에 따라 공경과 두께가 조절될 수 있고, 지지섬유의 융점 이상으로 가해지는 열은 지지섬유의 일부 또는 전부용융 시켜 후술하는 이온교환섬유매트의 기공에 흘러 들어갈 수 있어서 이온교환섬유의 공경, 기공도의 조절에 영향을 미칠 수 있다. 또한, 목적에 따라 지지섬유매트에는 무기물을 코팅하거나 충진 시킬 수 있고, 상기 무기물은 니켈(Ni), 구리(Cu), 스텐레스 스틸(SUS), 티타늄(Ti), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 아연(Zn), 몰리브덴(Mo), 텅스텐(W), 은(Ag), 금(Au), 알루미늄(Al) 중 적어도 하나 이상의 금속이나 이들의 산화물 등을 포함할 수 있다.
또한, 상기 이온교환섬유매트(22,24)에 포함된 이온교환섬유의 평균직경은 100 ~ 2000㎚ 일 수 있다. 또한, 상기 이온교환섬유매트(22,24) 중에서 단일 이온교환섬유매트의 평균공경은 0.1 ~ 1 ㎛일 수 있다. 또한, 단일 이온교환섬유매트의 두께는 0.1 ~ 10㎛일 수 있다. 다만, 상기 이온교환섬유의 평균직경, 이온교환섬유의 평균공경 및 두께범위는 이온교환막이 사용되는 용도에 따라 달리 변경될 수 있음에 따라서 본 발명이 이에 제한되는 것은 아니다.
또한, 상기 지지섬유매트(21,23,25) 및 이온교환섬유매트(22,24) 전체에 포함된 지지섬유 및 이온교환섬유는 중량비가 1: 0.8 ~ 1.5일 수 있다. 만일 지지섬유에 대하여 이온교환섬유가 1: 0.8 중량비 미만으로 적게 포함되는 경우 이온교환능의 발현이 미미할 수 있는 등 목적하는 물성을 달성하기 어렵고, 또한 지지섬유에 대하여 이온교환섬유가 1: 1.5 중량비를 초과하여 많이 포함되는 경우 기계적강도가 저하되는 등 목적하는 물성을 달성하기 어려울 수 있다. 다만, 이온교환막에 포함되는 지지섬유 및 이온교환섬유가 상기 중량비를 만족하는 경우에도 더욱 향상된 기계적 강도 및 이온교환능의 동시 발현을 위하여 단일의 지지섬유매트 및 단일의 이온교환섬유매트의 두께비가 1: 0.2 ~ 0.8일 수 있다. 만일 단일 지지섬유매트에 기준하여 단일 이온교환섬유매트가 1: 0.2 두께비 미만이 되도록 두께가 얇아질 경우 이온교환능의 발현 향상이 미미할 수 있고, 또한, 단일 지지섬유매트에 기준하여 단일 이온교환섬유매트가 1: 0.8 두께비를 초과하여 두께가 두꺼워질 경우 기계적 강도의 약화 또는 기계적 강도의 향상정도가 미미할 수 있고, 화학적 안정성이 저하되어 강한 산화/환원환경에서 이온교환막의 손상 및 이에 따른 이온교환능의 저하가 있을 수 있다.
한편, 용도에 따라 본 발명의 바람직한 일 구현예에 포함되는 (2) 단계로써, 지지섬유매트와 이온교환섬유매트가 교호적층된 적층체에 열 및 압력을 가하여 지지섬유매트에 포함된 적어도 일부의 지지섬유를 용융시키고, 용융된 지지섬유의 적어도 일부를 이온교환섬유매트의 기공에 침투시키는 단계를 더 포함할 수 있다.
이를 위하여 본 발명의 일 구현예에 의하면, 지지섬유매트에 포함되는 지지섬유의 재질의 융점이 이온교환섬유매트에 포함되는 이온교환섬유 재질의 융점보다 낮을 수 있고, 상기 (2) 단계를 통해 가해지는 열 및 압력에 의해 지지섬유 매트에 포함된 지지섬유의 일부는 용융될 수 있다.
이를 통해 본 발명의 일 구현예에 따른 이온교환막은 지지섬유매트 및 이온교환섬유매트가 교호적층되며, 상기 이온교환섬유매트를 형성하는 이온교환섬유 중 일 이온교환섬유의 표면 적어도 일부분에는 지지섬유가 용융되어 융착된 융착부를 포함하고, 도 5에 도시된 것과 같이 제1 이온교환섬유매트(22) 중 제1 이온교환섬유(22a)의 일표면에 제1 지지섬유매트(21)를 형성했던 지지섬유(21e)가 용융되어 융착된 융착부를 포함한다.
또한, 지지섬유의 용융 및 융착은 이온교환섬유매트 표면부에서만 일어나지 않고, 단일의 지지섬유매트 내에서도 일어나며, 도 5와 같이 제1 지지섬유매트(21)의 제1 지지섬유(21c)의 일표면에 다른 지지섬유가 용융되어 융착된 융착부(21d)를 포함할 수 있다.
이와 같은 이온교환막은 지지섬유의 융점보다 이온교환섬유의 융점이 낮음에 따라 열/압력에 의해 지지섬유의 일부용융 및 용융된 지지섬유가 섬유간 공간을 채우거나 섬유표면에 융착되고, 지지섬유매트 및 이온교환섬유매트가 압축됨에 따라서 매트에 포함된 공경, 기공도 등이 조절되고, 용융된 지지섬유가 이온교환섬유간을 더욱 견고하게 결합 및 지지시킴에 따라 통상의 이온교환막 특히, 섬유웹 형상의 지지체에 이온교환성분을 충진시켜 제조하는 이온교환막에 비해 매우 뛰어난 이온교환성능을 발현하는 동시에 기계적 강도가 현저히 향상될 수 있다.
더불어 공경, 기공도가 더욱 조절된 이온교환막은 상술한 액체용 필터, 기체용 필터 이외에 축전식 탈염장치(capacitive deionization, CDI), 전기투석(electrodialysis, ED) 또는 전지분리막의 용도에 요구되는 물성을 우수게 발현하는데 더욱 적합할 수 있다.
또한, 상기 이온교환막의 용도가 액체필터 또는 공기필터의 용도인 경우 상기 (2) 단계를 생략하거나 (2) 단계를 수행하더라도 가해지는 열 및/또는 압력이 낮을 수 있고, 및/또는 (2) 단계 수행시간도 짧을 수 있다. 또한, 동일한 필터의 용도일지라도 여과시키려는 목적물질의 크기에 따라 구체적으로 가해지는 열/압력/수행시간은 달라질 수 있다.
한편, 본 발명의 바람직한 일구현예에 따른 이온교환막은 상술한 (2) 단계에서 가해지는 열을 지지섬유의 융점보다 높게 가하여 지지섬유를 용융시키고, 용융된 지지섬유가 이온교환섬유매트를 충진 및 고형화된 이온교환막이 구현될 수 있다.
이를 도 6을 참고하여 설명하면, 제1 이온교환섬유매트(22) 및 제2 이온교환섬유매트(24)의 경우 방사된 그대로 이온교환섬유가 섬유상으로 매트를 형성하고 있으나, 제1 지지섬유매트(21) 내지 제3 지지섬유매트(25)는 매트를 형성하던 섬유상의 지지성분이 용융되어 더 이상 섬유집합체 형상의 매트를 형성하지 않고, 상기 지지성분이 제1 이온교환섬유매트(22) 및 제2 이온교환섬유매트(24)의 섬유간 공간을 채워 필름상으로 고형화될 수 있다. 한편, 도면상으로 표현한 제1 지지섬유매트(21) 내지 제3 지지섬유매트(25)는 섬유상이었던 지지섬유매트가 위치한 영역을 나타낼 뿐, 도 6에 따른 이온교환막이 여전히 섬유상의 지지섬유매트를 포함하고 있음을 의미하지 않는다.
상기 도 6에 따른 이온교환막은 제1 이온교환섬유매트(22) 및 제2 이온교환섬유매트(24)의 섬유간 공간을 용융된 지지섬유가 채우게 됨으로써, 기공도가 5 % 이하, 보다 바람직하게는 3%이하, 보다 더 바람직하게는 1% 이하인 이온교환막일 수 있고, 더욱 바람직하게는 기공도가 0%인 무공의 이온교환막일 수 있고, 이와 같은 기공도가 현저히 적거나 무공의 이온교환막은 연료전지 또는 레독스플로우전지 등의 전지 분리막이 요구하는 기계적 물성 및 전기적 물성 등을 더욱 현저히 만족시킴에 따라 전지분리막의 용도로써 매우 적합할 수 있다.
다음으로 본 발명의 제2구현예에 따른 이온교환막 및 이의 제조방법에 대해 설명한다. 다만, 제1구현예에 따른 제조방법에서 설명된 동일한 내용에 대한 설명은 생략한다.
본 발명의 제2구현예에 따른 이온교환막은 (Ⅰ) 지지성분 및 이온교환성 성분이 혼합된 방사용액을 전기방사하여 섬유매트를 제조하는 단계;를 포함하여 구현된다. 상기 제2구현예에 따른 이온교환막은 제1구현예와 다르게 제1구현예에서 지지섬유를 구현한 지지섬유형성성분 및 이온교환섬유를 구현한 이온교환섬유형성성분이 단일의 방사용액에 혼합되어 방사되는 것에 가장 큰 차이가 있다.
구체적으로 도 1의 전기방사장치를 이용할 경우 복수개의 전기방사 팁(10)을 통해 지지성분 및 이온교환성 성분이 혼합된 방사용액이 전기방사 되어 섬유가 집적되어 형성된 섬유매트(21 ~ 25)가 제조될 수 있다.
상기 방사용액은 지지성분 및 이온교환성 성분을 포함하고, 방사용액은 지지성분 및 이온교환 성분이 혼합/용융된 용융액 또는 상기 성분들이 용매에 의해 용해된 용해액일 수 있다. 이때, 상기 방사용액은 지지성분 100 중량부에 대하여 이온교환성 성분을 20 ~ 80 중량부로 포함할 수 있고, 보다 바람직하게는 30 ~ 60 중량부로 포함할 수 있다. 만일 이온교환성 성분이 20 중량부 미만으로 포함되는 경우 이온교환능이 현저히 저하될 수 있고, 80중량부를 초과하여 포함되는 경우 비드로 방사되는 등 제사성이 현저히 저하되고, 기계적 강도 저하의 문제가 있을 수 있다.
상기 방사용액은 용매를 더 포함할 수 있는데, 제2구현예의 방사용액에 구비되는 지지성분, 이온교환성분 및 용매는 제1구현예의 지지섬유형성성분, 이온교환섬유 형성성분 및 용매에 대한 설명과 동일하다.
상기 방사용액은 전기방사를 통해 이온교환막으로 구현될 수 있으며, 이때 이용되는 전기방사장치 및 그 방법에 대한 설명은 제1구현예에 대한 설명을 참조한다.
단일의 방사용액을 전기방사하여 제조된 제2구현예에 따른 이온교환막은 지지성분 및 이온교환성 성분을 포함하는 제1섬유을 포함한다.
상기 섬유매트를 형성하는 섬유 한가닥은 지지성분 및 이온교환성분을 모두 포함한 상태로 방사된 것일 수 있으나, 섬유매트에 포함된 섬유의 일부는 방사과정에서 성분간의 상분리로 인하여 각각의 성분이 분리되어 각 성분마다 한 가닥의 섬유를 형성할 수 있음에 따라서 섬유매트는 지지성분을 포함하는 제2섬유 및 이온교환성 성분을 포함하는 제3섬유 중 어느 하나 이상을 더 포함할 수 있고, 도 7과 같이 이온교환막은 제1섬유(21a'/22b'), 제2섬유(21a') 및 제3섬유(22b')를 모두 포함할 수 있다.
또한, 상기 섬유매트는 섬유간 융착되어 형성된 3차원 네트워크 구조를 가지는 웹(web)영역을 포함할 수 있고, 이는 상술한 도 4의 설명을 참조한다.
또한, 상기 섬유매트는 (Ⅰ) 단계 이후, (Ⅱ)단계로써, 기공도 및 공경을 조절하기 위하여 상기 섬유매트에 열 및 압력 중 어느 하나 이상을 가하는 단계;를 더 수행할 수 있다. 이를 통해 목적하는 이온교환막의 용도에 따라 공경과 두께가 조절될 수 있고, 지지성분의 융점 이상으로 가해지는 열은 섬유 중 지지성분을 포함하는 모노사 일부분 또는 전부를 용융 시켜 기공의 일부 또는 전부를 매립하여 제조되는 섬유매트의 공경, 기공도를 조절할 수 있으며, 일예로, 섬유매트내 섬유간 융접합 및/또는 섬유매트내 기공에 용융된 지지성분이 채워질 수 있다. 가해지는 열은 60 ~ 180 일 수 있고, 압력은 2 psi이하일 수 있으나 구체적인 이온교환막의 용도, 지지성분 및 이온교환성분의 구체적 종류에 따라 달라질 수 있어서 이에 한정되는 것은 아니다.
또한, 상기 섬유매트에 포함된 섬유(21a',21a'/22b',22b')의 평균직경은 0.1 ~ 100㎛일 수 있다. 만일 섬유의 직경이 0.1㎛ 미만일 경우 기계적 강도가 약해 안정된 기공구조를 형성하기 어려워 일부 용도, 예를 들어 필터에 사용이 부적합할 수 있고, 방사성이 저하될 수 있다. 또한, 만일 직경이 100㎛를 초과하는 경우 용도에 따라 후술하는 열/압력을 별도로 가해 섬유 중 지지성분을 용융시킬 때 지지성분의 용융이 쉽지 않고, 이에 따라 섬유 매트의 공경, 기공도 조절이 용이하지 않을 수 있다. 다만, 상기 섬유의 직경범위에 제한되는 것은 아니고, 이온교환막이 사용되는 용도에 따라 섬유 직경 범위는 변경될 수 있다.
상기 섬유 매트의 평균공경은 0.1 ~ 10㎛일 수 있다. 만일 평균공경이 0.1㎛미만의 경우 필터 용도에서 유량이 현저히 감소하게 되는 문제점이 있을 수 있고, 10㎛ 를 초과하는 경우 필터용도에서 여과효율이 저하될 수 있는 문제점이 있다. 다만, 상기 평균공경 범위에 제한되는 것은 아니고, 이온교환막이 사용되는 용도에 따라 평균공경은 변경될 수 있다.
또한, 상기 섬유매트의 두께는 0.1 ~ 200㎛일 수 있으나 이에 제한되는 것은 아니며 용도에 따라서 두께는 변경될 수 있다.
또한, 이온교환막의 용도가 액체필터 또는 공기필터의 용도인 이온교환막의 경우 별도로 열/압력을 가하는 단계를 생략하거나 당해 단계를 수행하더라도 가해지는 열 및/또는 압력이 낮을 수 있고, 및/또는 당해 단계의 수행시간도 짧을 수 있다. 또한, 동일한 필터의 용도일지라도 여과시키려는 목적물질의 크기에 따라 구체적으로 가해지는 열/압력/수행시간은 달라질 수 있다.
한편, 상술한 별도로 열/압력을 가하는 단계를 거치지 않더라도 도 1에 도시된 것과 같이 제조공정상 복수개의 방사노즐(11 ~ 15) 의 각각 직경 및/또는 시간당 방사량의 조절을 통해 기공도/공경 등이 상이한 매트(21 ~ 25)들이 적층된 섬유매트(20)를 구현할 수 있고, 이를 통해 섬유매트의 일표면부에서 타표면부로 갈수록 공경 및/또는 기공도의 구배를 가지는 이온교환막을 구현할 수 있다.
본 발명의 바람직한 다른 일구현예에 따른 이온교환막은 지지섬유매트에 포함되는 지지섬유의 재질의 융점이 이온교환섬유매트에 포함되는 이온교환섬유 재질의 융점보다 낮을 수 있고, 상기 (Ⅱ) 단계를 통해 가해지는 열 및 압력은 적어도 일부의 지지성분을 용융시키고, 이를 통해 섬유매트내 섬유간 융접합 및/또는 섬유매트내 기공에 용융된 지지성분이 채워질 수 있다.
이에 따라 본 발명의 일 구현예에 따른 이온교환막은 이온교환성 성분을 포함하는 섬유를 포함하는 섬유매트 및 상기 섬유매트 내 섬유간 공간을 채워 섬유들을 지지하는 지지체를 포함하도록 구현된다.
상기 섬유매트를 형성하는 섬유는 지지성분이 열/압력에 의해 용융됨에 따라 이온교환성 성분이 섬유형성성분의 주제로 포함되고, 일부 섬유의 경우 용융되지 않은 지지성분을 포함할 수 있다. 상기 지지체는 (Ⅰ) 단계를 통해 제조된 섬유매트에 포함된 섬유 중 제1섬유에 포함된 지지성분이나 제2섬유에 포함된 지지섬유가 용융되어 형성된 것으로써, 섬유매트내 섬유간 공간을 채워 기공도, 공경이 조절될 수 있고 이온교환성 성분이 주제인 섬유 간에 접합이 증가하여 기계적 강도를 더욱 향상시킬 수 있다.
상술한 본 발명의 제2구현예를 통해 제조된 이온교환막은 이온교환성 성분을 포함하는 적어도 하나의 섬유가 집적되어 형성된 섬유매트 및 상기 섬유매트 내 섬유간 공간을 채워 섬유들을 지지하는 지지체를 포함하도록 구현된다.
상기 섬유매트를 형성하는 섬유는 지지성분이 열/압력에 의해 용융됨에 따라 이온교환성 성분이 섬유형성성분의 주재로 포함되고, 일부 섬유의 경우 용융되지 않은 지지성분을 포함할 수 있다. 상기 지지체는 상술한 제2구현예에 대한 제조방법에서 제조된 섬유매트에 포함된 섬유 중 지지성분이 용융되어 형성된 것으로써, 섬유매트내 섬유간 공간을 채워 기공도, 공경이 조절될 수 있고, 섬유매트내 이온교환성 성분이 주제인 섬유들 간에 접합이 증가하여 기계적 강도를 더욱 향상시킬 수 있다.
또한, 기공도가 조절된 이온교환막은 축전식 탈염장치(capacitive deionization, CDI) 또는 전기투석(electrodialysis, ED)의 용도에 적합하도록 구현될 수 있다.
또한, 기공도가 5 % 이하, 보다 바람직하게는 3%이하, 보다 더 바람직하게는 1% 이하, 더욱 바람직하게는 기공도가 0%인 무공의 이온교환막은 연료전지 또는 레독스플로우전지 등의 전지 분리막이 요구하는 기계적 물성 및 전기적 물성 등을 더욱 현저히 만족시킴에 따라 전지분리막의 용도로써 매우 적합할 수 있다.
다음으로 본 발명의 제3구현예에 따른 이온교환막 및 이의 제조방법에 대해 설명한다. 다만, 상술한 제1구현예 또는 제2구현예에 따른 제조방법에서 설명된 동일한 내용에 대한 설명은 생략한다.
본 발명의 제3구현예에 따른 이온교환막은 (A) 제1지지섬유 형성용액을 전기방사하여 제1지지섬유매트(mat)를 형성시키는 단계; (B) 지지섬유매트 내부로 이온교환용액이 충진되도록 상기 제1 지지섬유 매트상에 이온교환용액을 분사시키는 단계; 및 (C) 상기 이온교환용액이 분사된 제1지지섬유매트상에 제2지지섬유 형성용액을 전기방사하여 제2지지섬유매트(mat)를 형성시키는 단계;를 포함하여 제조되며, 상기 (C) 단계 이후에 (D) 단계로써, 지지섬유매트 내부로 이온교환용액이 충진되도록 상기 제2 지지섬유매트상에 이온교환용액을 분사시키는 단계;를 더 수행할 수 있다.
본 발명의 제3구현예에 따른 이온교환막의 제조방법을 도 8을 참조하여 설명하면, 복수개로 구비되는 전기방사 팁(10) 중 제1 전기방사 팁(11) 및 제3 전기방사 팁(13)을 통해 지지섬유 형성용액(미도시)이 전기방사 되어 지지섬유가 축적된 지지섬유매트(121, 123)가 제조되고, 제2 전기방사 팁(12) 및 제4 전기방사 팁(15)을 통해 이온교환용액(122,124)이 전기분사되어 이온교환용액이 지지섬유매트(121, 123) 내부로 충진될 수 있다.
보다 구체적으로 상기 제1 전기방사 팁(11)을 통해서 제1 지지섬유 형성용액이 전기방사되면, 제1 지지섬유매트(121)가 제조될 수 있는데, 제조된 제1 지지섬유매트(121)는 컨베이어 벨트를 통해 제2 전기방사 팁(12)이 위치한 곳으로 이동 후, 제2 전기방사 팁(12)을 통해 이온교환용액이 제1 지지섬유매트(121) 상부에 전기분사될 수 있다. 이때, 상기 이온교환용액은 전기방사 되더라도 섬유를 형성하지 않도록 조절됨에 따라 방사된 이온교환용액은 제1 지지섬유매트 내부의 섬유간 공간으로 흘러 들어가 상기 공간을 충진시킬 수 있다. 이후 이온교환용액(122)으로 충진된 제1 지지섬유 매트(121)는 제3 전기방사팁(13)이 위치한 곳으로 이동 후, 상기 제3 전기방사팁(13)을 통해 제2 지지섬유형성용액이 전기 방사되어 제1 지지섬유 매트(121)(및/또는 이온교환용액(122)상)상에 제2 지지섬유매트(123)가 형성되게 된다. 이후 적층된 지지섬유매트(121, 123)는 제4 전기방사팁(14)이 위치한 곳으로 이동하여 전기분사된 이온교환용액에 의해 제2 지지섬유매트(124)의 내부 섬유간 공간이 충진될 수 있다.
한편, 도 8은 지지섬유매트/이온교환용액의 방사/분사를 1세트로 할 때 2세트가 반복된 제조공정이나, 이에 제한되는 것은 아니며 해당 세트가 다수회 반복될 수 있으며, 이에 더 나아가 최상층의 지지섬유매트의 상부에는 이온교환용액이 분사되지 않을 수 있다.
상술한 도 8과 같은 공정을 통해 이온교환막을 제조할 경우 지지체를 전기방사된 지지섬유매트로 구현시킴에 따라 지지섬유의 섬도, 방사량 등의 조건에 따라 지지섬유매트의 공경, 기공도 조절이 매우 용이하여 목적하는 물성의 조절에 보다 유리할 수 있다. 또한, 목적하는 지지체를 구현함에 있어서 지지섬유매트를 한번에 전부 방사하여 형성하지 않고 지지섬유매트가 층층이 적층되도록 구현하고, 층층이 지지섬유매트를 적층시키는 중간과정에서 이온교환용액을 지지섬유매트에 충진시킴에 따라사 지지섬유매트를 한번에 전부방사한 후 이온교환용액을 충진시키는 경우에 비해 이온교환용액의 충진성이 현저히 향상될 수 있는 이점이 있다.
먼저, 본 발명에 따른 (A)단계로써, 제1지지섬유 형성용액을 전기방사하여 제1지지섬유매트를 형성시키는 단계를 수행한다. 상기 제1 지지섬유에 대한 구체적인 설명은 상술한 제1구현예에서 지지섬유 형성용액에 대한 설명과 동일하여 이에 대한 구체적인 설명은 생략한다.
다음으로 본 발명에 따른 (B)단계로써, 제조된 제1지지섬유매트 내부로 이온교환용액이 충진되도록 상기 제1 지지섬유 매트상에 이온교환용액을 분사시키는 단계를 수행한다.
상기 이온교환용액은 이온교환성 성분을 포함하고, 상기 이온교환성 성분이 용융액 또는 상기 이온교환성 성분이 용매에 의해 용해된 용해액일 수 있다. 상기 이온교환용액이 용해액인 경우 이온교환성 성분을 0.1 ~ 99중량%로 포함할 수 있다.
또한, 상기 이온교환성 성분은 양이온성 이온교환성 성분 또는 음이온성 이온교환성 성분일 수 있고, 선택되는 이온의 극성에 따라 양이온교환막 또는 음이온교환막이 구현될 수 있다. 상기 이온교환성분에 대한 종류, 상기 이온교환용액이 용해액인 경우 용매 등에 대한 설명은 상술한 제1구현예에서의 설명과 동일하여 생략한다.
한편, 상술한 이온교환용액(122)은 제1 지지섬유매트(121)의 내부로 충진되도록 분사된다.
상기 분사는 이온교환용액을 액적상태 또는 스트림 상태로 분사할 수 있는 통상의 방법에 의한 것일 수 있고, 예를 들어 전기방사, 전기분사, 초음파 분사등의 방법을 제한 없이 사용될 수 있다. 만일 전기방사의 방법을 이용할 경우 이온교환용액은 섬유형성성이 없도록 용액의 성분, 조성비를 조절하거나 방사조건을 조절하여 방사시킬 수 있다.
제1 지지섬유매트(121)상 분사된 이온교환용액(122)은 제1 지지섬유매트의 섬유간 공간에 흘러 들어가 지지섬유매트의 내부를 충진시킬 수 있고, 만일 지지섬유매트 내부로 이온교환용액이 과충진되도록 분사될 경우 이온교환용액은 제1 지지섬유매트(121) 상에 별도의 층을 형성할 수 있다. 이를 도 9를 참조하여 설명하면, 상기 제1 지지섬유매트(121) 내부에 이온교환용액(122)이 충진되며, 과충진된 이온교환용액(122)이 제1 지지섬유 매트(121) 상에 별도의 층(122)을 형성할 수 있다.
다음으로 본 발명에 따른 (C)단계로써, 상기 이온교환용액(122)이 분사된 제1 지지섬유매트(121)상에 제2 지지섬유 형성용액을 전기방사하여 제2 지지섬유매트(mat)(123)를 형성시키는 단계를 수행한다.
상기 (C) 단계에서 전기방사에 대한 설명은 상술한 (A) 단계에서와 동일하여 생략한다.
또한, (C) 단계에서 상기 제2 지지섬유 형성용액은 제1구현예에서 설명한 지지섬유 형성용액에 대한 설명과 동일하여 생략하며, 제2 지지섬유 형성용액은 제1 지지섬유 형성용액과 동일하거나 또는 섬유형성성분이 상이할 수 있고, 섬유형성성분이 동일하더라도 함량이 상이할 수 있는 등 목적에 따라 달리 설계될 수 있다.
다음으로, 상기 (C)단계 후 (D) 단계로써, 지지섬유매트 내부로 이온교환용액이 충진되도록 제조된 제2 지지섬유매트상에 이온교환용액을 분사시키는 단계를 더 수행할 수 있다. 이때, 상기 이온교환용액은 상술한 (B) 단계에서의 이온교환용액과 동일할 수 있다. 다만, 동일한 전하, 예를 들어 (B) 단계에서의 이온교환용액이 양이온교환성 성분을 포함하는 경우 (D) 단계에서의 이온교환용액도 양이온 교환성 성분을 포함하면 되고, 반드시 동일한 성분 및/또는 함량으로 이온교환성 성분이 사용될 필요는 없다.
또한, 상기 이온교환용액이 제2 지지섬유매트(123)를 충진시키고 남을 정도로 분사될 경우 제2 지지섬유매트(123)상에 이온교환용액은 별도의 이온교환층(124)을 형성할 수 있다.
본 발명의 바람직한 일구현예에 따르면, 마지막 단계인 상기 (C) 단계 후 또는 (D) 단계 이후에 (E) 단계로써, 열 및 압력 중 어느 하나 이상을 가하여 제1 지지섬유매트 및 제2 지지섬유매트를 압축시키고 이온교환용액을 지지섬유매트내 잔존하는 보이드에 침투시키는 단계를 더 수행할 수 있다.
상기 (E) 단계는 적층된 지지섬유매트의 기공도, 공경, 이온교환능, 전기적물성의 정도 조절을 위한 단계이다. 상기 적층된 지지섬유매트에 가해지는 열은 온도가 60 ~ 180 ℃일 수 있고, 압력은 2psi이하일 수 있으나 구체적인 이온교환막의 용도, 지지섬유 및 이온교환성분의 구체적인 종류에 따라 달라질 수 있어서 이에 한정되는 것은 아니다. 예를 들어, 이온교환막의 용도가 액체필터 또는 공기필터의 용도인 이온교환막의 경우 상기 (E) 단계를 생략하거나 (E) 단계를 수행하더라도 가해지는 열 및/또는 압력이 낮을 수 있고, 및/또는 (E) 단계 수행시간도 짧을 수 있다. 또한, 동일한 필터의 용도일지라도 여과시키려는 목적물질의 크기에 따라 구체적으로 가해지는 열/압력/수행시간은 달라질 수 있다. 나아가, 만일 이온교환막의 용도가 전지분리막 용도인 경우 기공도가 낮을수록 요구하는 물성을 잘 만족할 수 있음에 따라 기공이 거의 없도록, 보다 바람직하게는 기공이 없도록 열 및 압력이 가해질 수 있다.
한편, 지지섬유매트에 기공을 불포함하도록 구현함에 반드시 상기 (E) 단계를 수행해야 하는 것은 아니며, 상술한 (B) 및 (D) 단계를 통해 이온교환용액이 지지섬유매트의 기공을 모두 충진시킬 경우에도 이온교환막의 기공은 존재하지 않을 수 있다.
상술한 제조방법을 통해 제조된 본 발명의 제3구현예에 따른 이온교환막은 도 10에 도시된 것과 같이, 제1 지지섬유매트(210), 제2 지지섬유매트(220) 및 제3 지지섬유매트(230)를 포함해 복수개의 지지섬유 매트가 순차적으로 적층되며, 상기 지지섬유 매트들(210, 220, 230)에 있는 섬유간 공간에 이온교환성 성분(미도시)이 충진될 수 있다.
또한, 도 11에 도시된 것과 같이 제1 지지섬유매트(121), 제2 지지섬유매트(123)가 적층되고, 상기 제1 지지섬유매트(121)의 섬유간 공간에 이온교환성 성분(122a)이 충진되고, 제2 지지섬유매트(123)의 섬유간 공간에 이온교환성 성분(124)이 충진되어 있으며, 상기 제1 지지섬유매트(121) 및 제2 지지섬유매트(123) 사이에는 제1 지지섬유매트(121)에 충진된 이온교환성 성분(122a)과 동일한 성분이 별도의 이온교환층(122a)을 형성하도록 구현될 수 있다.
상기 이온교환층(122a)은 제1 지지섬유매트(121)에 과충진된 제1 이온교환성성분(122a)에 의해 형성된 것일 수 있다. 도 12는 모식도임에 따라 이온교환층(22a) 층의 경계를 점선으로 나타내었으나 실제 이온교환막에서는 별도의 층으로 구분되기 보다는 제1 지지섬유매트(121) 및 제2 지지섬유매트(123) 사이에 갭이 있고 그 사이를 이온교환성 성분이 채우고 있는 것으로 보여질 수 있다. 또한, 제1 지지섬유매트(121)와 제2 지지섬유매트(123) 사이에 개재되어 있는 이온교환층은 그 성분이 반드시 제1 이온교환성 성분(122a)에 의한 것이 아니라 제2 이온교환성 성분(124)에 의한 것일 수 있고, 상기 이온교환층의 유래가 제조공정성 어느 단계에서 비롯된 것인지는 본 발명에서 특별히 한정하는 것은 아니다.
또한, 도 12에 도시된 것과 같이, 제2 지지섬유매트(123)에 충진된 이온교환성 성분은 모두 제2 이온교환성성분(124)이 아닐 수 있고, 제2 지지섬유매트(123)의 하부 표면부에 충진된 이온교환성 성분은 제1 이온교환성 성분(122a)이 충진된 것일 수도 있다.
한편, 본 발명의 바람직한 제3구현예에 따른 이온교환막은 상기 복수개의 지지섬유매트 중 적어도 하나의 지지섬유매트는 섬유간 융착되어 형성된 3차원 네트워크 구조를 가지는 웹(web)영역을 포함할 수 있으며, 이는 상술한 도 4의 설명을 참조한다.
또한, 상기 지지섬유매트(121,123)에 포함된 지지섬유의 직경은 평균직경은 0.1 ~ 100 ㎛일 수 있다. 만일 지지섬유의 직경이 0.1㎛ 미만일 경우 기계적 강도가 약해 지지섬유로써의 기능을 제대로 수행할 수 없고, 방사성이 저하될 수 있다. 또한, 만일 직경이 100㎛를 초과하는 경우 제조된 이온교환막을 용도에 따라 열/압력을 가하여 지지섬유를 용융시킬 때 지지섬유의 용융이 쉽지 않고, 이에 따라 지지섬유 매트의 공경 조절이 용이하지 않을 수 있다. 다만, 상기 지지섬유의 직경범위에 제한되는 것은 아니고, 이온교환막이 사용되는 용도에 따라 섬유 직경 범위는 변경될 수 있다.
상기 지지섬유 매트(121,123) 중에서 단일 지지섬유매트의 평균공경은 0.1~ 10㎛ 일 수 있다. 만일 평균공경이 0.1㎛ 미만의 경우 필터 용도에서 유량이 현저히 감소하게 되는 문제점이 있을 수 있다. 또한, 만일 평균공경이 10 ㎛를 초과하는 경우 필터용도에서 여과효율의 저하를 초래할 수 있다. 다만, 상기 평균공경 범위에 제한되는 것은 아니고, 이온교환막이 사용되는 용도에 따라 평균공경은 변경될 수 있다.
또한, 상기 지지섬유 매(121,123)트 중에서 단일 지지섬유매트의 두께는 0.1 ~ 200㎛인 것이 바람직하며, 두께가 0.1㎛ 미만일 경우 기계적 물성이 현저히 감소할 수 있고, 200㎛ 를 초과할 경우 제조단가의 상승 및 이온교환막의 부피가 커져 한정된 공간에 구비되는 이온교환막의 양이 줄어드는 문제점이 있을 수 있다.
한편, 상기 지지섬유매트 및 이온교환성 성분 각각의 총중량은 1: 0.5 ~ 0.9의 중량비를 가질 수 있고, 이를 통해 목적하는 물성을 만족하기에 더욱 적합할 수 있고, 특히 기계적강도가 담보되어 내구성 및 분리막의 용도일 경우 여과효율이나 에너지효율을 동시에 만족시킬 수 있다. 만일 이온교환성 성분이 지지섬유매트 중량에 대해 1: 0.5 중량비 보다 적게 포함될 경우 여과효율이나 에너지효율을 목적하는 수준으로 달성할 수 없으며, 또한, 만일 이온교환성 성분이 지지섬유매트 중량에 대해 1: 0.9 중량비를 초과하여 포함될 경우 기계적강도, 내구성 등이 저하될 우려가 있다.
상술한 본 발명의 일 구현예에 따른 이온교환막은 이를 포함하는 전지용 분리막으로 구현될 수 있다.
상기 전지용 분리막은 이온교환막 자체로 구성되거나 전지용 분리막이 구비하는 통상의 다른 구성이 더 구비되어 구성될 수 있다. 이에 대한 일예로써, 기계적 강도의 보강을 위해 부직포와 같은 별도의 지지부재가 이온교환막의 일면에 더 포함될 수 있다. 상기 지지부재는 예를 들어, 코어로서 PP 섬유의 외주에 PE가 코팅된 이중 구조의 PP/PE 섬유로 이루어진 부직포, 또는 폴리에틸렌테레프탈레이트(PET: polyethyleneterephthalate) 섬유로 이루어진 PET 부직포, 셀룰로즈 섬유로 이루어진 부직포 중 어느 하나를 사용할 수 있으나 이에 제한되는 것은 아니며, 부직포의 평량, 두께 등은 목적에 따라 변경하여 사용할 수 있어 본 발명에서 특별히 한정하지 않는다.
한편, 상기 전지용 분리막은 기공도가 5 % 이하, 보다 바람직하게는 3%이하, 보다 더 바람직하게는 1% 이하인 이온교환막일 수 있고, 더욱 바람직하게는 기공도가 0%인 무공의 이온교환막일 수 있고, 이와 같은 기공도가 현저히 적거나 무공의 이온교환막은 연료전지 또는 레독스플로우전지 등의 전지 분리막이 요구하는 기계적 물성 및 전기적 물성 등을 더욱 현저히 만족시킴에 따라 전지분리막의 용도로써 매우 적합할 수 있다.
또한, 본 발명의 바람직한 일 구현예에 따른 전지용 분리막은 이를 구비하는 연료전지 또는 레독스플로우전지로 응용될 수 있는데, 전지용 분리막 이외에 연료전지 또는 레독스플로우전지에 구비되는 다른 구성은 통상의 구성을 그대로 채용할 수 있음에 따라 본 발명에서는 이를 특별히 한정하지 않으며, 상기 통상의 구성에 대한 설명도 생략한다.
또한, 목적에 따라 섬유매트 및/또는 부직포에는 무기물을 코팅하거나 충진 시킬 수 있고, 상기 무기물은 니켈(Ni), 구리(Cu), 스텐레스 스틸(SUS), 티타늄(Ti), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 아연(Zn), 몰리브덴(Mo), 텅스텐(W), 은(Ag), 금(Au), 알루미늄(Al) 중 적어도 하나 이상의 금속이나 이들의 산화물 등을 포함할 수 있다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예 1>
먼저, 지지섬유 방사용액을 제조하기 위하여 지지섬유형성성분으로 폴리비닐리덴플루오라이드(Arkema사, Kynar761) 12g을 디메틸아세트아마이드와 아세톤의 중량비를 90:10으로 하여 88g에 60℃의 온도로 6시간 마그네틱바를 사용하여 용해시켜 혼합용액을 제조했다. 다음으로, 이온교환섬유 방사용액을 제조하기 위하여 이온교환섬유형성성분으로 음이온 교환 수지인 APS(PolyStyrene:VinylBenzeneChloride:MethylMethAcrylate = 1:1:2 )수지 12g을 디메틸아세트아마이드 88g에 60℃의 온도로 6시간 마그네틱바를 사용하여 용해시켜 혼합용액을 제조했다. 상기 방사용액들을 전기방사장치의 용액탱크 두 대에 각각 투입하고, 지지섬유 방사용액의 경우 15㎕/min/hole의 속도로, 이온교환섬유형성성분의 경우 10㎕/min/hole 토출하였다. 이때 방사 구간의 온도는 28℃, 습도는 45%를 유지하고, 콜렉터와 방사노즐팁 간 거리를 25㎝로 하였다.
고전압 발생기 두 대를 사용하여 각각의 방사 노즐 팩(Spin Nozzle Pack)에 45kV 이상의 전압을 부여함과 동시에 방사 팩 노즐 당 0.05MPa의 에어압력을 부여하여 도 1과 같이 방사시켜 지지섬유매트와 이온교환섬유매트가 제1지지섬유매트/제1이온교환섬유매트/제2지지섬유매트/제2이온교환섬유매트의 구조로 적층된 두께 100㎛인 적층체를 제조하였다. 이때, 적층체에 포함된 전체 지지섬유매트와 전체 이온교환섬유매트의 중량비가 1:1이며, 단일의 지지섬유매트 및 단일의 이온교환섬유매트 두께가 각각 33㎛, 17㎛로 하여 두께비가 1:0.51이 되도록 제조하였다. 다음으로 적층된 섬유매트에 잔존하는 용매, 수분을 건조시키기 위해 140 및 1kgf/㎠로 열과 압력을 가해 캘린더링 공정을 실시하여 총 두께가 95㎛이며, 기공도가 60%인 하기 표 1과 같은 이온교환막을 제조하였다.
<실시예2 ~ 8>
실시예 1과 동일하게 실시하여 제조하되, 이온교환막에 구비된 지지섬유 및 이온교환섬유의 중량비, 단일의 섬유매트의 두께비를 하기 표 1 또는 표 2와 같이 변경하여 하기 표 1 또는 표 2와 같은 이온교환막을 제조하였다.
<비교예 1>
실시예 1과 동일하게 실시하여 제조하되, 지지섬유방사용액을 방사하지 않고, 이온교환섬유 방사용액만을 방사하여 하기 표 2와 같은 이온교환막을 제조하였다.
<비교예 2>
실시예 1과 동일하게 실시하여 제조하되, 지지섬유방사용액을 방사한 후 총 두께 100㎛인 지지섬유매트를 제조한 후 동일조건으로 캘린더링 실시하여 두께가 95㎛인 지지막을 제조하였다. 당해 지지막을 음이온 교환 수지인 APS(PolyStyrene:VinylBenzeneChloride:MethylMethAcrylate = 1:1:2 )수지 8g을 디메틸아세트아마이드 92g에 60℃의 온도로 6시간 마그네틱바를 사용하여 용해시켜 혼합용액에 1시간 침지시킨 후 80℃온도로 건조시켜 하기 표 2와 같은 이온교환막을 제조하였다.
<실험예 1>
실시예 및 비교예에서 제조된 이온교환막에 대하여 하기의 물성을 평가하여 하기 표 1 및 표 2에 나타내었다.
1. 치수변화도(%)
이온교환막의 기계적강도를 가늠하기 위하여 막의 치수 변화도를 측정하였다. 구체적으로 제조된 막을 24시간 동안 증류수에 담근 후 젖은 막의 부피(Vwet)를 측정하고 상기 젖은 막을 120에서 24시간 동안 다시 진공건조시켜 부피(Vdry)를 측정하였다. 이들 측정된 수치를 하기 식 1에 대입하여 치수 변화도를 계산하였다.
[식 1]
치수변화도(%) = (Vwet - Vdry) ×100 / Vdry
치수변화가 클수록 기계적 강도가 좋지 않고, 내구성까지 좋지 않다고 볼 수 있다.
2. 레독스플로우 전지용도의 분리막 성능
셀 안에 표면적이 30㎝2인 이온교환막을 중심에 위치시킨 후, 상기 이온교환막 양면에 양쪽 전극으로써 카본펠트(GF020, JMTG) 한쌍, 흑연판(Graphite plate) 한 쌍, 집전판 한 쌍 및 경판(End plate)을 순차적으로 위치시킨 후, 충/방전기(WBCS 3000,WonAtech), 펌프, 이온교환막으로 양분된 셀의 한쪽 영역으로 연결된 양극 전해액 탱크 및 셀의 다른쪽 영역에 연결된 음극 전해액 탱크를 포함하는 레독스 흐름전지를 제조하였다. 이때, 상기 양극 전해액 탱크에는 황산 2.0 M 및 옥시황산바나듐 1.0 M을 포함하는 용액 40 ㎖를 채우고, 상기 음극전해액 탱크에는 황산 2.0 M 및 V3+ 1.0 M을 포함하는 용액 40 ㎖ 채웠다.
충전은 전류 밀도를 60mA/cm2으로 유지하여 1.5V까지 진행하였고, 방전은 동일한 전류밀도로 1.0V까지 진행하여 충/방전 사이클에 대한 성능을 측정하였다.
이때, 각 사이클에서 시간에 따른 전압의 변화를 측정하여 하기 식 2에 따라 각 사이클에서의 에너지효율을 계산하였으며, 충/방전 사이클 10회 때 실시예1의 에너지 효율을 100%로 기준하여 나머지 실시예 및 비교예의 충/방전 사이클 10회때 에너지 효율을 상대적으로 표시했다. 또한, 각각의 실시예/비교예의 최초 1사이클에서의 에너지 효율에 비해 2% 에너지 효율이 감소한 사이클을 함께 표시하였다.
[식 2]
(Energy Efficiency : 에너지효율, Id : 방전 전류량, Ic : 충전 전류량, V : 방전 전압, VC : 충전 전압, t : 충전 시간 또는 방전 시간)
실시예1 | 실시예2 | 실시예3 | 실시예4 | 실시예5 | 실시예6 | |
단일 지지섬유매트 두께(㎛) | 33 | 33 | 33 | 33 | 33 | 45 |
단일 이온교환섬유매트 두께(㎛) | 17 | 17 | 17 | 17 | 17 | 5 |
지지섬유매트 : 이온교환섬유매트 중량비 | 1:1 | 1:0.5 | 1:0.8 | 1:1.4 | 1:1.6 | 1:1 |
지지섬유매트 : 이온교환섬유매트 두께비 | 1:0.51 | 1:0.51 | 1:0.51 | 1:0.51 | 1:0.51 | 1:0.11 |
치수변화도(%) | 3 | 2 | 2 | 6 | 15 | 1 |
에너지효율(%) | 100 | 80 | 97 | 102 | 104 | 69 |
에너지효율2% 감소했을 때 사이클 수(회) | 802 | 846 | 825 | 760 | 594 | 863 |
실시예7 | 실시예8 | 비교예1 | 비교예2 | |
단일 지지섬유매트 두께(㎛) | 29.4 | 26 | 0 | 100 |
단일 이온교환섬유매트 두께(㎛) | 20.6 | 24 | 100 | 0 |
지지섬유매트 : 이온교환섬유매트 중량비 | 1:1 | 1:1 | - | - |
지지섬유매트 : 이온교환섬유매트 두께비 | 1:0.7 | 1:0.92 | - | - |
치수변화도(%) | 5 | 22 | 68 | 1 |
에너지효율(%) | 105 | 110 | 22 | 92 |
에너지효율2% 감소했을 때 사이클 수(회) | 799 | 640 | 13 | 730 |
표 1 및 표 2를 통해 확인할 수 있듯이,
이온교환섬유를 통해서만 이온교환막을 제조한 비교예1의 경우 실시예들에 비해 치수변화가 현저히 큼에 따라서 내구성이 좋지 않고, 10회 충/방전 사이클에서의 에너지효율이 실시예 1에 대비 22%에 지나지 않으며, 에너지효율을 오랜기간 유지할 수 없음을 확인할 수 있다.
또한, 지지섬유매트에 이온교환액을 충진한 비교예 2의 경우 실시예1에 비해 에너지효율이 감소했으며, 에너지효율의 유지기간도 짧아진 것을 확인할 수 있다. 비교예2의 에너지효율이 실시예1보다 적은 것은 이온교환액이 지지섬유매트에 100% 충진되지 않음에 기인한 것으로 예상된다.
또한, 실시예 중에서도 지지섬유매트 전체와 이온교환섬유매트 전체 각각의 중량비가 바람직한 범위를 벗어난 실시예2, 실시예 5의 경우 실시예1에 대비하여 물성이 저하되었고, 바람직한 중량비를 만족하는 경우에도 단일의 지지섬유매트, 단일의 이온교환섬유매트의 두께비가 바람직한 범위를 벗어난 실시예 6 및 실시예 8의 경우 물성이 저하된 것을 확인할 수 있다.
<실시예9>
먼저, 지지성분으로 폴리비닐리덴플루오라이드(Arkema사, Kynar761) 12g을 디메틸아세트아마이드와 아세톤의 중량비를 90:10으로 하여 88g에 60의 온도로 6시간 마그네틱바를 사용하여 용해시켜 제1혼합용액을 제조했다. 다음으로, 이온교환성 성분으로 음이온 교환 수지인 APS(PolyStyrene:VinylBenzeneChloride:MethylMethAcrylate = 1:1:2 )수지 12g을 디메틸아세트아마이드 88g에 60의 온도로 6시간 마그네틱바를 사용하여 용해시켜 제2혼합용액을 제조했다. 이후 상기 제1혼합용액과 제2혼합용액을 다시 혼합하여 교반하여 방사용액을 제조하되, 지지성분 100 중량부에 대해 이온교환성 성분이 50중량부가 되도록 하여 혼합하였다. 제조된 방사용액을 전기방사장치의 용액탱크 에 투입하고, 15㎕/min/hole 토출하였다. 이때 방사 구간의 온도는 28, 습도는 45%를 유지하고, 콜렉터와 방사노즐팁 간 거리를 25㎝로 하였다.
고전압 발생기를 사용하여 방사 노즐 팩(Spin Nozzle Pack)에 45kV 이상의 전압을 부여함과 동시에 방사 팩 노즐 당 0.05MPa의 에어압력을 부여하여 도 1과 같이 방사시켜 섬유매트를 제조하였다. 이후 섬유매트에 잔존하는 용매, 수분을 건조시키기 위해 140 및 1kgf/㎠로 열과 압력을 가해 캘린더링 공정을 실시하여 총 두께가 95㎛이며, 기공도가 65%인 하기 표 3과 같은 이온교환막을 제조하였다.
<실시예10 ~ 13>
실시예 9와 동일하게 실시하여 제조하되, 방사용액의 지지성분 및 이온교환성 성분의 함량을 하기 표 3과 같이 변경하여 하기 표 3과 같은 이온교환막을 제조하였다
<비교예 3>
실시예 9와 동일하게 실시하여 제조하되, 방사용액에 지지성분을 불포함 시켜 하기 표 3과 같은 이온교환막을 제조하였다.
<비교예 4>
지지섬유체를 제조하기 위하여 지지섬유형성성분으로 폴리비닐리덴플루오라이드(Arkema사, Kynar761) 12g을 디메틸아세트아마이드와 아세톤의 중량비를 90:10으로 하여 88g에 60℃의 온도로 6시간 마그네틱바를 사용하여 용해시켜 방사용액을 제조했다. 상기 방사용액을 전기방사장치의 용액탱크에 투입하고, 15㎕/min/hole의 속도로 토출하였다. 이때 방사 구간의 온도는 28℃, 습도는 45%를 유지하고, 콜렉터와 방사노즐팁 간 거리를 25㎝로 하였다. 고전압 발생기를 사용하여 방사 노즐 팩(Spin Nozzle Pack)에 45kV 이상의 전압 및 방사 팩 노즐 당 0.05MPa의 에어압력을 부여하여 방사시켜 두께 100㎛인 지지섬유매트를 제조하였다. 이후 섬유매트에 잔존하는 용매, 수분을 건조시키기 위해 140 및 1kgf/㎠로 열과 압력을 가해 캘린더링 공정을 실시하여 총 두께가 95㎛인 지지막을 제조하였다. 이후 상기 지지막을 음이온 교환 수지인 APS(PolyStyrene:VinylBenzeneChloride:MethylMethAcrylate = 1:1:2 )수지 8g을 디메틸아세트아마이드 92g에 60℃℃의 온도로 6시간 마그네틱바를 사용하여 용해시켜 혼합용액에 1시간 침지시킨 후 80℃온도로 건조시켜 하기 표 3과 같은 이온교환막을 제조하였다.
<실험예2>
실시예 9 내지 13 및 비교예 3 내지 4에서 제조된 이온교환막에 대하여 하기의 물성을 평가하여 하기 표 3에 나타내었다.
이때, 치수변화도 및 레독스플로우 전지용도의 분리막 성능은 실험예1의 평가방법과 동일하게 하여 평가를 수행했고, 분리막성능의 에너지효율의 경우 실시예 9를 기준으로 실시예 10 내지 13 및 비교예 3 내지 4의 에너지효율을 상대적으로 나타내었다.
1. 제사성
섬유매트 표면에 대해 2000배 배율로 SEM 사진을 촬영하여 촬영된 이미지 상에서 섬유의 전체 개수 및 비드개수를 카운팅 한 후, 하기의 식 3에 따라서 제사성을 계산하였다.
[식 3]
제사성(%) = (전체섬유개수 - 비드개수) ×100 / 전체 섬유개수
실시예9 | 실시예10 | 실시예11 | 실시예12 | 실시예13 | 비교예3 | 비교예4 | ||
방사용액 | 지지성분 함량(중량부) | 100 | 100 | 100 | 100 | 100 | 0 | 100 |
이온교환성성분 함량(중량부) | 50 | 10 | 25 | 75 | 90 | 100 | 0 | |
이온교환막 | 치수변화도(%) | 9 | 2 | 4 | 12 | 25 | 68 | 1 |
제사성(%) | 99 | 100 | 100 | 96 | 78 | 76 | 100 | |
에너지효율(%) | 100 | 46 | 78 | 106 | 110 | 25 | 109 | |
에너지효율2% 감소했을 때 사이클 수(회) | 716 | 902 | 705 | 658 | 493 | 14 | 730 |
상기 표 3을 통해 확인할 수 있듯이,
이온교환섬유를 통해서만 이온교환막을 제조한 비교예3의 경우 실시예들에 비해 치수변화가 현저히 큼에 따라서 내구성이 좋지 않고, 10회 충/방전 사이클에서의 에너지효율이 실시예 9에 대비 25%에 지나지 않으며, 에너지효율을 오랜기간 유지할 수 없음을 확인할 수 있다.
한편, 지지막에 이온교환용액을 충진한 통상의 이온교환막인 비교예4의 경우 실시예9와 비교하여 물성이 다소 우위에 있으나 침지시간이 별도로 소요됨에 따라서 생산성에 있어서 실시예9가 더 우수함을 확인할 수 있다.
또한, 실시예 중에서도 방사용액내 이온교환성 성분의 함량이 과소 또는 과도한 실시예10, 실시예 13은 실시예9에 대비하여 모든 물성을 동시에 만족시키기 어려운 것을 확인할 수 있다.
<실시예 14>
먼저, 지지섬유매트를 제조하기 위한 방사용액을 제조하기 위하여 지지섬유형성성분으로 폴리비닐리덴플루오라이드(Arkema사, Kynar761) 12g을 디메틸아세트아마이드와 아세톤의 중량비를 90:10으로 하여 88g에 60℃의 온도로 6시간 마그네틱바를 사용하여 용해시킨 혼합용액을 제조했다. 다음으로, 이온교환용액을 제조하기 위하여 이온교환성 성분으로 음이온 교환 수지인 APS(PolyStyrene:VinylBenzeneChloride:MethylMethAcrylate = 1:1:2 )수지 8g을 디메틸아세트아마이드 92g에 60℃의 온도로 6시간 마그네틱바를 사용하여 용해시켜 혼합용액을 제조했다. 상기 방사용액 및 이온교환용액을 전기방사장치의 용액탱크 두 대에 각각 투입하고, 방사용액의 경우 15㎕/min/hole의 속도로, 이온교환용액의 경우 10㎕/min/hole 토출하였다. 이때 방사 구간의 온도는 28℃, 습도는 45%를 유지하고, 콜렉터와 방사노즐팁 간 거리를 25㎝로 하였다.
고전압 발생기 두 대를 사용하여 각각의 방사 노즐 팩(Spin Nozzle Pack)에 45kV 이상의 전압을 부여함과 동시에 방사 팩 노즐 당 0.05MPa의 에어압력을 부여하여 도 1과 같이 방사시켜 제1지지섬유매트/분사된 제1이온교환용액/제2지지섬유매트/분사된 제2이온교환용액의 구조를 갖는 적층체를 제조하였다. 이때, 적층체에 포함된 전체 지지섬유매트와 전체 이온교환성 성분의 중량비가 1:0.67이었다. 다음으로 적층체에 잔존하는 용매, 수분을 건조시키기 위해 140 및 1kgf/㎠로 열과 압력을 가해 캘린더링 공정을 실시하여 총 두께가 95㎛ 인 하기 표 4와 같은 이온교환막을 제조하였다.
<실시예15 ~ 18>
실시예 14와 동일하게 실시하여 제조하되, 이온교환막에 구비된 지지섬유매트 및 이온성성분의 중량비를 하기 표 4와 같이 변경하여 하기 표 4와 같은 이온교환막을 제조하였다.
<비교예 5>
실시예 14와 동일하게 실시하여 제조하되, 지지섬유방사용액을 방사하지 않고, 이온교환용액만을 방사하여 하기 표 4와 같은 이온교환막을 제조하였다. 이때 이온교환용액은 APS 12g을 디메틸아세트아마이드 88g에 용해시킨 혼합용액을 사용하였다.
<비교예 6>
실시예 14와 동일하게 실시하여 제조하되, 이온교환용액을 분사하지 않고, 지지섬유매트에 대한 방사용액만을 방사하여 총 두께 100㎛인 지지섬유매트를 제조한 후 동일조건으로 캘린더링 실시하여 두께가 95㎛인 지지막을 제조하였다. 당해 지지막을 음이온 교환 수지인 APS(PolyStyrene:VinylBenzeneChloride:MethylMethAcrylate = 1:1:2 )수지 8g을 디메틸아세트아마이드 92g에 60℃의 온도로 6시간 마그네틱바를 사용하여 용해시킨 이온교환용액에 1시간 침지시킨 후 80℃온도로 건조시켜 하기 표 4와 같은 이온교환막을 제조하였다.
<실험예3>
실시예 14 내지 18 및 비교예 5 내지 6에서 제조된 이온교환막에 대하여 실험예1에 따른 방법으로 레독스플로우 전지용도의 분리막 성능을 평가하여 하기 표 4에 나타내었다. 이때 실시예 14의 에너지효율을 100%로 기준하여 나머지 실시예 15 내지 18 및 비교예 5 내지 6에 따른 이온교환막의 에너지효율을 상대적으로 나타내었다.
실시예14 | 실시예15 | 실시예16 | 실시예17 | 실시예18 | 비교예5 | 비교예6 | |
전체 지지섬유매트: 총 이온교환성성분(중량비) | 1:0.67 | 1:0.45 | 1:0.52 | 1:0.85 | 1:0.92 | 0 | 100 |
에너지효율(%) | 100 | 82 | 95 | 104 | 104 | 23 | 97 |
에너지효율2% 감소했을 때 사이클 수(회) | 735 | 760 | 756 | 718 | 675 | 13 | 730 |
상기 표 4를 통해 확인할 수 있듯이,
이온교환섬유를 통해서만 이온교환막을 제조한 비교예5의 경우 실시예들에 비해 10회 충/방전 사이클에서의 에너지효율이 실시예14에 대비 23%에 지나지 않으며, 에너지효율을 오랜기간 유지할 수 없음을 확인할 수 있다.
한편, 지지막에 이온교환용액을 충진한 통상의 이온교환막인 비교예6의 경우 실시예14와 비교하여 물성이 유사하나 침지시간이 별도로 소요됨에 따라서 생산성에 있어서 실시예14가 더 우수함을 확인할 수 있다.
또한, 실시예 중에서도 섬유매트 총중량에 대비하여 이온교환성 성분의 함량이 과소 또는 과도한 실시예15, 실시예 18은 실시예14에 대비하여 에너지 효율 및 에너지 효율의 유지성에 있어서 좋지 않은 것을 확인할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
Claims (15)
- (1) 지지섬유 형성용액 및 이온교환섬유 형성용액 각각을 전기방사하여 지지섬유가 축적된 지지섬유매트(mat) 및 이온교환섬유가 축적된 이온교환섬유매트(mat)가 교호적층된 적층체를 제조하는 단계;를 포함하는 이온교환막의 제조방법.
- 제1항에 있어서,상기 지지섬유 형성용액은 지지섬유 형성성분을 포함하고,상기 지지섬유 형성성분은 폴리이미드(polyimides), 폴리아믹스산(polyamic acid), 폴리카프로락톤(polycarprolactone), 폴리에테르이미드(polyetherimide), 나일론(nylon), 폴리아라미드(polyaramid), 폴리벤질글루타메이트(polybenzyl-glutamate), 폴리페닐렌테레프탈아마이드(polyphenyleneterephthalamide), 폴리아닐린(polyaniline), 폴리아크릴로니트릴(polyacrylonitrile), 폴리에틸렌옥사이드(polyethylene oxide), 폴리스티렌(polystyrene), 셀룰로오스(cellulose), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리락틱산(polylactic acid; PLA), 폴리글리콜산(polyglycolic acid; PGA), 폴리락틱-co-글리콜산, 폴리{폴리(에틸렌옥사이드)테레프탈레이트-co-부틸렌테레프탈레이트}(PEOT/PBT), 폴리포스포에스터(polyphosphoester; PPE), 폴리포스파젠(PPA), 폴리안하이드라이드(Polyanhydride; PA), 폴리오르쏘에스터{poly(ortho ester; POE}, 폴리(프로필렌푸마레이트)-디아크릴레이트{poly(propylene fumarate)-diacrylate; PPF-DA}, 폴리비닐알콜, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리테트라플로우로에틸렌(PTFE, polytetra fluoroethylene), 폴리에틸렌테트라플로우로에틸렌(ETFE, polyethylene tetrafluoro ethylene), 폴리비닐리덴플루오라이드(PVDF, polyvinylidene fluoride), 에틸렌클로로트리플로우로에틸렌(ECTFE, Ethylene Chlorotrifluoroethylene) 및 폴리클로로트리플로우로에틸렌(PCTFE, polychlorotrifluoro ethylene) 및 폴리(스티렌-co-무수말레산)로 이루어진 군에서 선택된 1종 이상인 이온교환막의 제조방법.
- 제2항에 있어서,상기 지지섬유 형성용액은 지지섬유 형성성분을 5 ~ 30 중량%로 포함하며,상기 이온교환섬유 형성용액은 양이온성 이온교환섬유 형성성분 또는 음이온성 이온교환섬유 형성성분을 5 ~ 60 중량%로 포함하는 이온교환막의 제조방법.
- 제1항에 있어서, 상기 이온교환섬유 형성용액은양이온성 이온교환섬유 형성성분을 포함하는 제1 이온교환섬유 형성용액 및 음이온성 이온교환섬유 형성성분을 포함하는 제2 이온교환섬유 형성용액을 포함하며,상기 제1 이온교환섬유 형성용액 및 제2 이온교환섬유 형성용액 각각은 분리된 별도의 이온교환섬유매트를 형성하도록 전기방사 되는 이온교환막의 제조방법.
- 제1항에 있어서, (1) 단계 이후,(2) 상기 적층체에 열 및 압력을 가하여 지지섬유매트에 포함된 적어도 일부의 지지섬유를 용융시키고, 용융된 지지섬유의 적어도 일부를 이온교환섬유매트의 기공에 침투시키는 단계;를 더 포함하는 이온교환막의 제조방법.
- 제5항에 있어서,상기 지지섬유의 융점이 이온교환섬유의 융점보다 낮은 것을 특징으로 하는 이온교환막의 제조방법.
- 지지섬유매트; 및 이온교환섬유매트;가 교호적층된 이온교환막.
- 제7항에 있어서,상기 지지섬유매트 및 이온교환섬유매트 중 어느 하나 이상의 섬유매트는 섬유간 융착되어 형성된 3차원 네트워크 구조의 웹(web) 영역을 포함하는 이온교환막.
- 제7항에 있어서,상기 지지섬유매트 및 이온교환섬유매트는 중량비가 1: 0.8 ~ 1.5이며, 단일의 지지섬유매트 및 단일의 이온교환섬유 매트의 두께비가 1: 0.2 ~ 0.8인 이온교환막.
- 제7항에 있어서,지지섬유매트에 포함된 지지섬유의 평균직경은 0.1 ~ 100 ㎛이고, 상기 이온교환섬유매트에 포함된 이온교환섬유의 평균직경은 100 ~ 2000㎚인 이온교환막.
- 제7항에 있어서,단일의 지지섬유매트 평균공경은 0.1 ~ 10 ㎛이고, 단일의 이온교환섬유매트 평균공경은 0.1 ~ 1 ㎛인 이온교환막.
- 지지섬유매트; 및 이온교환섬유매트;가 교호적층되며,상기 이온교환섬유매트에 구비된 이온교환섬유 중 일 이온교환섬유의 표면 적어도 일부분에는 인접하여 배치된 지지섬유매트에 구비된 지지섬유가 용융되어 융착된 융착부를 포함하는 이온교환막.
- 제12항에 있어서,상기 지지섬유매트 및 이온교환섬유매트는 중량비가 1: 0.8 ~ 1.5이며, 단일의 지지섬유매트 및 단일의 이온교환섬유 매트의 두께비가 1: 0.2 ~ 0.8인 이온교환막.
- 이온교환섬유매트; 및상기 이온교환섬유 매트의 섬유간 공간을 채워 이온교환섬유를 지지하는 지지체;를 포함하는 이온교환막.
- 제7항에 있어서,상기 이온교환막은 액체용 필터, 공기용 필터, 축전식 탈염장치(capacitive deionization, CDI), 전기투석(electrodialysis, ED) 또는 전지분리막 용도인 이온교환막.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/760,440 US11192098B2 (en) | 2015-09-15 | 2016-09-19 | Ion exchange membrane and method for manufacturing same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0130036 | 2015-09-15 | ||
KR10-2015-0130034 | 2015-09-15 | ||
KR20150130036 | 2015-09-15 | ||
KR10-2015-0130035 | 2015-09-15 | ||
KR20150130035 | 2015-09-15 | ||
KR20150130034 | 2015-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017048103A1 true WO2017048103A1 (ko) | 2017-03-23 |
Family
ID=58289500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/010423 WO2017048103A1 (ko) | 2015-09-15 | 2016-09-19 | 이온교환막 및 그 제조방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11192098B2 (ko) |
WO (1) | WO2017048103A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107256938A (zh) * | 2017-06-27 | 2017-10-17 | 华南理工大学 | 一种无纺布锂离子电池隔膜及其制备方法 |
CN109126739A (zh) * | 2018-08-21 | 2019-01-04 | 浙江理工大学 | 一种用于去除印染废水中锑离子的纤维素基吸附剂的制备方法 |
CN110061175A (zh) * | 2019-04-26 | 2019-07-26 | 东莞东阳光科研发有限公司 | 锂电池、锂电池隔膜及其制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6443696B2 (ja) * | 2016-09-27 | 2018-12-26 | トヨタ自動車株式会社 | 二次電池 |
CN114423894A (zh) * | 2019-09-20 | 2022-04-29 | 富士胶片株式会社 | 无纺布、无纺布制造方法及过滤器 |
TR201921099A2 (tr) * | 2019-12-23 | 2021-07-26 | Akdeniz Ueniversitesi | Anyoni̇k ve katyoni̇k yapidaki̇ organi̇k bi̇leşi̇kleri̇ seçi̇mli̇ olarak ayirmak i̇çi̇n nanoli̇f formunda yeni̇ bi̇r kompozi̇t membran ve bu membrani hazirlama yöntemi̇ |
KR20220114679A (ko) * | 2021-02-09 | 2022-08-17 | 현대자동차주식회사 | 플라즈마 처리된 충진제를 포함하는 막-전극 접합체의 전해질막 및 이의 제조방법 |
US20230068559A1 (en) * | 2021-08-31 | 2023-03-02 | Robert Bosch Gmbh | Electrochemical water deionization separators |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005285549A (ja) * | 2004-03-30 | 2005-10-13 | National Institute Of Advanced Industrial & Technology | 固体高分子型燃料電池用の電解質膜 |
JP2009202116A (ja) * | 2008-02-28 | 2009-09-10 | Kurita Water Ind Ltd | フィルタ及び液処理方法 |
KR101422918B1 (ko) * | 2012-09-05 | 2014-07-23 | 삼성전기주식회사 | 초소수성 멤브레인 및 이의 제조방법 |
KR20140103866A (ko) * | 2013-02-18 | 2014-08-27 | 주식회사 아모그린텍 | 필터 여재 및 그 제조방법과, 이를 이용한 필터 장치 |
KR20140137194A (ko) * | 2013-05-22 | 2014-12-02 | 주식회사 아모그린텍 | 전기방사된 나노 섬유 웹을 이용한 액체처리 케미컬 필터 및 그 제조방법 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5547760A (en) * | 1994-04-26 | 1996-08-20 | Ibc Advanced Technologies, Inc. | Compositions and processes for separating and concentrating certain ions from mixed ion solutions using ion-binding ligands bonded to membranes |
KR20070019868A (ko) | 2005-08-11 | 2007-02-15 | 삼성에스디아이 주식회사 | 연료전지용 고분자 전해질막, 이를 포함하는 막-전극어셈블리, 이를 포함하는 연료전지 시스템, 및 이의제조방법 |
JP2009245639A (ja) | 2008-03-28 | 2009-10-22 | Asahi Glass Co Ltd | 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体 |
CN102137704A (zh) * | 2008-07-18 | 2011-07-27 | 克拉考公司 | 具有纳米纤维连接的多组分过滤介质 |
US20100227247A1 (en) * | 2008-10-07 | 2010-09-09 | Peter Pintauro | Nanocapillary networks and methods of forming same |
JP5040888B2 (ja) | 2008-10-17 | 2012-10-03 | 旭硝子株式会社 | 繊維の製造方法および触媒層の製造方法 |
KR101376362B1 (ko) | 2010-04-28 | 2014-03-26 | 코오롱패션머티리얼 (주) | 연료전지용 고분자 전해질막 및 그 제조방법 |
US9252445B2 (en) * | 2010-10-27 | 2016-02-02 | Vanderbilt University | Nanofiber membrane-electrode-assembly and method of fabricating same |
KR101890747B1 (ko) * | 2011-11-03 | 2018-10-01 | 삼성전자주식회사 | 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지 |
KR101646707B1 (ko) | 2013-05-22 | 2016-08-08 | 주식회사 아모그린텍 | 이온 교환 멤브레인과 그의 제조 방법, 멤브레인 전극 어셈블리 및 연료 전지 |
KR101619471B1 (ko) | 2013-08-06 | 2016-05-11 | 주식회사 아모그린텍 | 액체 필터용 필터여재 및 그의 제조방법 |
-
2016
- 2016-09-19 WO PCT/KR2016/010423 patent/WO2017048103A1/ko active Application Filing
- 2016-09-19 US US15/760,440 patent/US11192098B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005285549A (ja) * | 2004-03-30 | 2005-10-13 | National Institute Of Advanced Industrial & Technology | 固体高分子型燃料電池用の電解質膜 |
JP2009202116A (ja) * | 2008-02-28 | 2009-09-10 | Kurita Water Ind Ltd | フィルタ及び液処理方法 |
KR101422918B1 (ko) * | 2012-09-05 | 2014-07-23 | 삼성전기주식회사 | 초소수성 멤브레인 및 이의 제조방법 |
KR20140103866A (ko) * | 2013-02-18 | 2014-08-27 | 주식회사 아모그린텍 | 필터 여재 및 그 제조방법과, 이를 이용한 필터 장치 |
KR20140137194A (ko) * | 2013-05-22 | 2014-12-02 | 주식회사 아모그린텍 | 전기방사된 나노 섬유 웹을 이용한 액체처리 케미컬 필터 및 그 제조방법 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107256938A (zh) * | 2017-06-27 | 2017-10-17 | 华南理工大学 | 一种无纺布锂离子电池隔膜及其制备方法 |
CN109126739A (zh) * | 2018-08-21 | 2019-01-04 | 浙江理工大学 | 一种用于去除印染废水中锑离子的纤维素基吸附剂的制备方法 |
CN110061175A (zh) * | 2019-04-26 | 2019-07-26 | 东莞东阳光科研发有限公司 | 锂电池、锂电池隔膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20190022634A1 (en) | 2019-01-24 |
US11192098B2 (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017048103A1 (ko) | 이온교환막 및 그 제조방법 | |
WO2011055967A2 (ko) | 내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법과 이를 이용한 이차 전지 | |
WO2015016450A1 (ko) | 일렉트로블로운 또는 멜트블로운과, 전기방사를 이용한 다층 나노섬유 필터여재 및 이의 제조방법 | |
WO2018212568A1 (ko) | 전고체 전지용 고체 전해질막의 제조 방법 및 상기 방법에 의해 제조된 고체 전해질막 | |
WO2017026876A1 (ko) | 필터여재용 나노섬유, 이를 포함하는 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛 | |
WO2017209536A1 (ko) | 필터여재, 이의 제조방법 및 이를 포함하는 필터모듈 | |
WO2017209520A1 (ko) | 필터집합체, 이의 제조방법 및 이를 포함하는 필터모듈 | |
WO2014142450A1 (ko) | 이차전지용 다공성 분리막의 제조방법 및 이에 따라 제조된 이차전지용 다공성 분리막 | |
KR101283013B1 (ko) | 고내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법 | |
WO2012002754A2 (ko) | 전기방사된 나노 섬유 웹을 이용한 액체 필터용 필터여재와 그 제조방법 및 이를 이용한 액체 필터 | |
WO2019240500A1 (ko) | 패턴화 전극접착층이 구비된 전기화학소자용 분리막 및 상기 분리막의 제조방법 | |
KR101094267B1 (ko) | 친수성 폴리올레핀계 분리막, 및 이의 제조방법 | |
WO2020055218A1 (ko) | 전기화학소자용 세퍼레이터 및 이의 제조방법 | |
WO2015147550A1 (ko) | 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지 | |
KR20110105365A (ko) | 셧다운 기능을 갖는 초극세 섬유상 다공성 분리막 및 그 제조방법과 제조장치 | |
WO2019017750A1 (ko) | 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛 | |
WO2015047008A1 (ko) | 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리 | |
WO2018110986A1 (ko) | 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛 | |
KR101402976B1 (ko) | 폴리올레핀 기재 상 폴리이미드를 전기방사한 후 무기물을 코팅한 이차전지용 다공성 분리막 및 이의 제조방법 | |
WO2019039820A2 (ko) | 다공성 복합 분리막 및 이의 제조방법 | |
WO2019103545A1 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자 | |
CN106928705B (zh) | 一种含填料的聚酰亚胺复合材料、片材以及含有它的电路基板 | |
CN105709502A (zh) | 一种防静电夹心净化材料 | |
WO2018110990A1 (ko) | 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛 | |
WO2020197344A1 (ko) | 전극 및 이를 포함하는 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16846924 Country of ref document: EP Kind code of ref document: A1 |