WO2017048072A1 - 아미노산을 함유하는 근세포 분화 촉진용 조성물 - Google Patents

아미노산을 함유하는 근세포 분화 촉진용 조성물 Download PDF

Info

Publication number
WO2017048072A1
WO2017048072A1 PCT/KR2016/010371 KR2016010371W WO2017048072A1 WO 2017048072 A1 WO2017048072 A1 WO 2017048072A1 KR 2016010371 W KR2016010371 W KR 2016010371W WO 2017048072 A1 WO2017048072 A1 WO 2017048072A1
Authority
WO
WIPO (PCT)
Prior art keywords
differentiation
phenylalanine
muscle
methionine
cells
Prior art date
Application number
PCT/KR2016/010371
Other languages
English (en)
French (fr)
Inventor
정현우
라찬수
손종희
김완기
신송석
Original Assignee
주식회사 아모레퍼시픽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모레퍼시픽 filed Critical 주식회사 아모레퍼시픽
Priority to JP2018513476A priority Critical patent/JP6894889B2/ja
Priority to CN201680053051.8A priority patent/CN108024983A/zh
Publication of WO2017048072A1 publication Critical patent/WO2017048072A1/ko
Priority to HK18108289.3A priority patent/HK1248557A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]

Definitions

  • the present invention relates to a composition for promoting differentiation of myocytes containing amino acids, and more particularly, to a method for promoting differentiation of myocytes consisting of phenylalanine and methionine, and a pharmaceutical composition for preventing or treating senile muscle loss containing the same and for preventing or improving senile muscle loss. It relates to a nutraceutical composition.
  • Muscle loss which is one of the muscle loss disorders, refers to a condition in which about 13 to 24% of the body mass usually decreases. When muscle loss is caused, the amount of activity decreases significantly, which not only impairs mental health but also decreases the satisfaction of life. Almost injured and even seriously injured.
  • the causes of muscular dystrophy can be attributed to the gradual decrease in the amount and quality of skeletal muscle as aging progresses, and the weight loss of fat and body fat due to inadequate dietary energy intake. The relationship is deep. Accordingly, research is needed to prevent muscle loss or muscle loss caused by aging.
  • mTOR Mammalian Target of Rapamycin
  • the present inventors have made diligent efforts to find a method for increasing differentiation of muscle cells, not protein synthesis in muscle, and as a result, phenylalanine and methionine among amino acids work together to differentiate myocytes into muscle cells.
  • the present invention has been confirmed to be able to prevent, ameliorate, and treat senile muscle loss by facilitating the present invention.
  • a myocyte differentiation promoter consisting of phenylalanine (Phe) and methionine (Met)
  • an object of the present invention is to provide a pharmaceutical composition for preventing or treating senile muscle loss, or a health functional food composition for preventing or improving, containing the muscle cell differentiation promoter as an active ingredient.
  • the present invention provides a myocyte differentiation promoter consisting of phenylalanine (Phe) and methionine (Met).
  • the present invention also provides a composition for promoting muscle cell differentiation, which further comprises a muscle cell differentiation promoter according to the present invention as a main component, and further contains a pharmaceutical or food-acceptable additive as an auxiliary component.
  • the present invention also provides a pharmaceutical composition for preventing or treating senile muscle loss, containing the composition for promoting myocyte differentiation according to the present invention.
  • the present invention also provides a health functional food composition for preventing or improving senile muscle loss, containing the composition for promoting myocyte differentiation according to the present invention.
  • the composition for promoting muscle cell differentiation of the present invention and the pharmaceutical composition or health functional food composition containing the same may promote differentiation of myoblasts into muscle cells, thereby preventing, improving and treating myotropenia or muscle loss. It is effective, and as the number of myocytes increases, the metabolism increases, thereby oxidizing fatty acids in the body.
  • Figure 1 is a microscopic observation of cell shape changes according to the differentiation of C2C12 cells in the absence of amino acids.
  • Figure 2 is a microscopic observation of cell shape change according to the differentiation of L6 cells in the absence of amino acids.
  • Figure 3 is a Western blot analysis of the expression patterns of differentiation marker proteins (MyoD and Myogenin) of C2C12 cells in the absence of various essential amino acids.
  • Figure 4 is an experiment to observe whether a concentration-dependent effect on the differentiation of C2C12 cells when Tyrosine (Tyr) or phenylalanine in C2C12 cells in the absence of phenylalanine among amino acids.
  • FIG. 6 is an analysis of the concentration-dependent effect on the expression of myocyte marker genes when C2C12 cells are treated with tyrosine or phenylalanine in the absence of phenylalanine among amino acids.
  • FIG. 7 analyzes whether L6 cells are treated with tyrosine or phenylalanine in a phenylalanine deficiency condition in a concentration-dependent manner.
  • FIG. 8 is an experiment to observe whether a concentration-dependent effect on the differentiation of C2C12 cells when tyrosine or phenylalanine is treated to C2C12 cells in the absence of amino acids as a whole.
  • FIG. 11 is a graph showing whether concentration-dependent effects on the expression of myocyte marker genes when L6 cells are treated with tyrosine or phenylalanine in an amino acid deficient condition.
  • FIG. 12 is an experiment to observe whether concentration of methionine affects the differentiation of C2C12 cells when methionine is treated in C2C12 cells in the absence of the entire amino acid.
  • FIG. 13 is an experiment to observe whether concentration of methionine affects differentiation of L6 cells when methionine is treated in L6 cells in a deficient amino acid condition.
  • FIG. 14 analyzes whether methionine affects the expression of myocyte marker genes in a concentration-dependent manner in the absence of amino acids.
  • FIG. 15 analyzes whether concentration of methionine affects the expression of myocyte marker gene when methionine is treated in L6 cells.
  • FIG. 16 shows changes in expression patterns of myocyte marker genes when C2C12 cells are treated with phenylalanine, methionine or various ratios of phenylalanine + methionine in an amino acid-deficient condition.
  • FIG. 17 shows changes in expression patterns of myocyte marker genes when L6 cells are treated with phenylalanine, methionine or various ratios of phenylalanine + methionine in an amino acid-deficient condition.
  • myoblast refers to a stem cell having the ability to differentiate into muscle cells. These myoblasts are specifically differentiated into satellite cells, a phenomenon that occurs in some myoblasts that have not been converted to muscle cells for a long time. However, even these satellite cells can be differentiated from myoblasts to muscle cells at any time, given the appropriate stimulus (movement, etc.).
  • progenitor cell differentiation is a process in which mononuclear myoblasts form a multinuclear myotube through fusion. During differentiation from myoblasts to root canal, the expression of genes such as myosin D (MyoD), myogenin (myogenin) increases. Thus, using myosin D and myogenin as myogenic cell differentiation marker genes, it is possible to confirm the differentiation of myocytes.
  • myosin D myosin D
  • myogenin myogenin
  • muscle cell differentiation refers to the formation of muscle cells having muscle characteristics such as muscle fibers and a large number of mitochondria, together with the change of myoblasts into elongated shapes. This means that they form a multinucleated myotube through fusion. However, root canal formation through cell fusion occurs only in skeletal muscle, and does not occur in myocardium and smooth muscle.
  • Stem cell “differentiation” used in the present invention includes not only the case of fully differentiated stem cells from specific cells, but also an intermediate step before complete differentiation of stem cells from specific cells.
  • the present invention relates to a myocyte differentiation promoter consisting of phenylalanine (Phe) and methionine (Met).
  • the phenylalanine (Phe) and methionine (Met) of the myocyte differentiation promoter may be characterized in that it is mixed in a weight ratio of 1: 4 to 4: 1, preferably 2: 1.
  • the weight ratio is not only suitable for showing the differentiation effect of the muscle cells, it can satisfy both the stability and safety of the composition, it may be appropriate to include in the above range in terms of cost-effectiveness.
  • phenylalanine and / or methionine may be present as monomers, oligomers, polymers and the like.
  • the present invention relates to a composition for promoting muscle cell differentiation, which further comprises a muscle cell differentiation promoter according to the present invention as a main component, and further contains a pharmaceutically or food-acceptable additive as an auxiliary component.
  • the composition for promoting myocyte differentiation is any one or more amino acids selected from the group consisting of threonine (Thr), valine (Val), isoleucine (Ile), glutamine (Gln) and lysine (Lys). It may be characterized by further containing as a component.
  • the phenylalanine (Phe) is contained in 0.02 to 64% by weight, preferably 0.05 to 54% by weight relative to the total weight of the composition
  • methionine (Met) is also 0.02 to 64% by weight, preferably 0.05 to 27% by weight It may be characterized by containing. If the sum of the two amino acids content is less than 0.1% by weight, the effect is weak, and if it is more than 80% by weight, hyperphenylalanineemia (other than phenylketonuria) or hypermethionineemia (other than homocysteinemia) ) May occur.
  • the amount of the phenylalanine / methionine mixture between 0.1 to 80% by weight relative to the total weight of the composition.
  • the present invention relates to a pharmaceutical composition for preventing or treating senile muscle loss, which contains the myocyte differentiation promoter according to the present invention as an active ingredient.
  • the composition When the composition according to the present invention is applied to a pharmaceutical composition, the composition may be formulated in a solid, semi-solid or liquid form by adding a commercially available inorganic or organic carrier using the composition as an active ingredient.
  • a commercially available inorganic or organic carrier such as sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bi
  • tablets, pills, granules, soft capsules, powders, fine granules, powders, solutions, suspensions, emulsions, syrups, pellets Etc. can be mentioned.
  • These formulations contain, in addition to the active ingredient, diluents (e.g. lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and glycine), glidants (e.g. silica, talc, stearic acid and its magnesium or calcium salts and polyethylene glycols) It may contain.
  • Tablets may also contain binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose or polyvinylpyrrolidine, optionally starch, agar, alginic acid or its sodium salt It may contain pharmaceutical additives such as disintegrants, absorbents, colorants, flavors or sweeteners.
  • binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose or polyvinylpyrrolidine, optionally starch, agar, alginic acid or its sodium salt
  • pharmaceutical additives such as disintegrants, absorbents, colorants, flavors or sweeteners.
  • the tablets can be prepared by conventional mixing, granulating or coating methods.
  • composition according to the present invention may be administered orally, parenteral, rectal, topical, transdermal, intravenous, intramuscular, intraperitoneal, subcutaneous.
  • the dosage of the active ingredient will vary depending on the age, sex, weight of the subject to be treated or the specific disease or pathology to be treated, the severity of the disease or pathology, the route of administration or the judgment of the prescriber. Dosage determination based on these factors is within the level of skill in the art. Typical dosages may preferably be from 1.375 mg / kg / day to 1100 mg / kg / day, but the dosage does not limit the scope of the invention in any way.
  • the present invention relates to a health functional food composition for preventing or improving senile muscle loss, which contains the myocyte differentiation promoter according to the present invention as an active ingredient.
  • the formulation of the health functional food composition is not particularly limited, but may be, for example, formulated into tablets, granules, drinks, caramels, diet bars, beverages and the like.
  • the food composition of each formulation may be suitably selected by a person skilled in the art according to the formulation or purpose of use in addition to the active ingredient, and may be synergistic when applied simultaneously with other raw materials.
  • the determination of the dosage of the active ingredient is within the level of those skilled in the art, and its daily dosage may vary depending on various factors such as the age, health condition, complications, etc. of the subject to be administered.
  • C2C12 muscle cells Differentiation of C2C12 muscle cells was performed by using Olympus' CK40 optical microscope (40x) in the absence of any one of nine amino acids (Leu, Ile Met, Val, Lys, Trp, Phe, Thr, Gln). As shown in FIG. 1, it was found that the deficiency of phenylalanine (Phe) among the 9 amino acids severely inhibited the differentiation of muscle cells, and the deficiency of methionine (Met) was followed by phenylalanine. It was confirmed that they inhibit a lot of differentiation of muscle cells. Therefore, it was confirmed that sufficient provision of phenylalanine and methionine is important for the formation of muscle cells.
  • muscle cells had the greatest influence on differentiation (the slowest differentiation), followed by phenylalanine deficiency, followed by methionine deficiency. Tryptophan deficiency was found to have the least effect on the differentiation of muscle cells.
  • myosin D and myogenin In addition to observing changes in the shape of cells during differentiation of muscle cells, and extracting proteins from differentiated muscle cells to investigate expression patterns of differentiation marker proteins (myosin D and myogenin), myosin D and myo Ogenin specific antibodies were compared and analyzed using Western blotting methods commonly used in the art. As shown in FIG. 3, the expression of the differentiation marker protein was significantly reduced in the absence of phenylalanine as in the optical microscope observation result, and the effect of methionine deficiency was also less than that of phenylalanine. It was confirmed that the reduction.
  • differentiation marker proteins myosin D and myogenin
  • RNA is extracted from differentiated myocytes, such as the qRT-PCR method commonly used in the art, and based on the complementary DNA (cDNA) After synthesis, mRNA expression changes of marker genes were observed using PCR primers of myosin D and myogenin in quantitative real-time polymerase chain reaction (qRT-PCR).
  • C2C12 cells were added to the cell culture medium lacking all amino acids by adding phenylalanine or tyrosine by concentration (0.2 mM, 0.4 mM, 0.8 mM), respectively. And differentiation capacity of L6 muscle cells were measured in the same manner as described above.
  • methionine has a greater effect on muscle cell differentiation than phenylalanine, but is higher than other essential amino acids.
  • methionine was added to C2C12 and L6 cells deficient in amino acids, and then the differentiation into muscle cells was observed.
  • Examples 1 to 7 were used to determine the mixing ratios of phenylalanine and methionine showing the optimum effects. It was prepared with the ingredient and content of 1. Comparative Example 1 was prepared not to contain methionine at all, and Comparative Example 2 was prepared not to contain phenylalanine at all. In addition, small amounts of branched chain amino acids (leucine, valine, and isoleucine), which are known to induce intramuscular protein synthesis, were minimally affected by muscle cell differentiation.
  • branched chain amino acids leucine, valine, and isoleucine
  • Examples 1 to 7 and Comparative Examples 1 and 2 were treated with C2C12 cells and L6 cells in the same manner as described in Test Examples 1 to 3, and differentiation of muscle cells was observed and measured. As a result, as shown in Figure 16 (C2C12) and Figure 17 (L6), it was confirmed that the muscle cell differentiation effect of Example 3 in which phenylalanine and methionine were mixed in a weight ratio of 2: 1.
  • the above components are mixed and filled into gelatin capsules to prepare capsules.
  • each component is added to the purified water to dissolve, lemon flavor is added, and then the above ingredients are mixed, purified water is added to adjust the total amount to 100 ml and sterilized by filling into a brown bottle to prepare a liquid solution.
  • Vitamin B6 juxtapos «. 0.5 mg
  • composition ratio of the above-mentioned vitamin and mineral mixtures is a composition suitable for a relatively healthy food in a preferred embodiment, but the composition ratio may be arbitrarily modified, and the above ingredients are mixed according to a conventional health food manufacturing method.
  • the granules may be prepared and used for preparing the nutraceutical composition according to a conventional method.
  • Purified water is added to the whole ...
  • the above ingredients are mixed according to a conventional beverage preparation method, followed by stirring and heating at 85 ° C. for about 1 hour.
  • the resulting solution was obtained by filtration in a sterilized 2 L container, sealed sterilized and then refrigerated to be used for preparing the beverage composition of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 아미노산을 함유하는 근세포 분화 촉진용 조성물에 관한 것으로, 보다 구체적으로는 페닐알라닌 및 메티오닌으로 이루어진 근세포 분화 촉진제와, 이를 함유하는 노인성 근손실 예방 또는 치료용 약학 조성물 및 노인성 근손실 예방 또는 개선용 건강기능식품 조성물에 관한 것이다. 본 발명의 근세포 분화 촉진용 조성물 및 이를 함유하는 약학 조성물 또는 건강기능식품 조성물은 근원세포가 근육세포로 분화되는 것을 촉진하여 근감소증이나 근손실을 예방, 개선 및 치료할 수 있고, 특히 노인성 근손실에 효과적이며, 근세포 수 증가에 따라 기초대사량이 증가하여 체내 지방산을 산화시키는 효과가 있다.

Description

아미노산을 함유하는 근세포 분화 촉진용 조성물
본 발명은 아미노산을 함유하는 근세포 분화 촉진용 조성물에 관한 것으로, 보다 구체적으로는 페닐알라닌 및 메티오닌으로 이루어진 근세포 분화 촉진제와, 이를 함유하는 노인성 근손실 예방 또는 치료용 약학 조성물 및 노인성 근손실 예방 또는 개선용 건강기능식품 조성물에 관한 것이다.
우리 몸의 근육은 뼈에 붙어 뼈를 보호하고 체형을 바르게 유지시켜 주는 등의 여러 가지 기능을 한다. 또한 근육은 칼슘 유입을 촉진시켜 골 밀도를 높여 주기도 한다. 그러나 신체는 노화하면서 구성성분의 변화로써 체지방과 체단백질의 재분포가 일어나며, 약 50세가 되면 근세포 내 단백질의 합성속도가 분해속도보다 느려져 근육이 급격하게 퇴화를 시작하게 되며, 근육 감소 질환에 노출될 수 있다.
근육 감소 질환의 하나인 근육 감소증은 평소 자기 체질량의 약 13~24%가 감소한 상태를 말하는 것으로, 근육 감소증이 있으면 행동량이 현격하게 줄어 정신건강을 해칠뿐만 아니라 생활의 만족도도 떨어지며, 용이한 일상 생활에서도 쉽게 부상을 입고 심각한 중상에 이르기도 한다.
근육 감소증의 원인은 노화가 진행됨에 따라 일어나는 골격근의 양과 질의 점진적 감소 및 부적절한 식이에너지 섭취에 따른 지방과 체지방성분을 포함하는 체중감소 등을 원인으로 꼽을 수 있으며, 흔히 노화에 따른 것으로 연령과의 상관관계가 깊다. 이에 따라, 노화에 따른 근육 감소증 또는 근손실을 방지하고자 하는 연구가 필요한 실정이다.
류신(leucine)을 포함한 분지쇄 아미노산(branched-chain amino acid)이 mTOR(Mammalian Target of Rapamycin) 신호전달을 통해 근육 세포에서 단백질을 합성하는 메커니즘을 통한 근육 강화 효과는 90년대 말부터 보고되어 왔고, 크게 두 부분에서 연구 방향이 진행되어 왔다. 첫째는, 어떠한 특정 아미노산이 mTOR를 통한 근육 강화 효과가 있는지에 관한 연구였고, 이에 대해 개별 아미노산을 제거한 상태에서 근육 강화 효과를 측정한 결과, 분지쇄 아미노산이 효과가 좋으며, 그 중에서도 류신(leucine)이 가장 효과가 뛰어나다는 보고가 있었다. 또한, 여러 아미노산들 간의 시너지 효과에 있어서는, 글루타민(glutamine)이 류신(leucine)의 세포 내 흡수를 촉진시켜 mTOR 신호전달을 통한 근육 강화 효과가 증가된다는 보고가 있었다. 둘째는, 아미노산이 어떻게 세포 내에서 인식이 되어 mTOR 신호전달을 활성화시키는지에 관한 연구였고, 이에 대해 2000년대 후반부터 보고되기 시작하였는데, Vps34, MAP4K3, Rag GTPase가 중간 매개체로 제시되어 왔다. 이후, 본 발명자들은 류신-tRNA 합성효소(leucyl-tRNA synthase)가 류신(leucine)을 직접 인식해서 Rag GTPase를 활성화시킴으로써 mTOR가 활성화된다는 것을 밝혀낸 바 있다.
그러나, mTOR 신호전달 관련 기작은 모두 근육 내 단백질 합성을 증가시킴으로써 근육 강화 효과를 나타낼 뿐, 근원세포를 근세포로 분화시켜 근세포의 수 자체를 증가시킴으로써, 감소되거나 손실된 근육량을 근본적으로 회복시키는 기작과는 차이가 있다.
이에, 본 발명자들은 근육 내 단백질 합성이 아닌, 근세포의 분화형성을 증가시키기 위한 방법을 찾기 위해 예의 노력한 결과, 아미노산 중 페닐알라닌(phenylalanine)과 메티오닌(methionine)이 함께 작용하여 근원세포가 근육세포로 분화되는 것을 촉진함으로써 노인성 근손실을 예방하거나 개선, 치료할 수 있음을 확인하고, 본 발명을 완성하게 되었다.
본 발명의 목적은 페닐알라닌(Phe) 및 메티오닌(Met)으로 이루어진 근세포 분화 촉진제와, 여기에 약제학적 또는 식품학적으로 허용되는 첨가제를 더 함유하는 근세포 분화 촉진용 조성물을 제공하는 데 있다.
즉, 본 발명의 목적은 상기 근세포 분화 촉진제를 유효성분으로 함유하는, 노인성 근손실 예방 또는 치료용 약학 조성물, 또는 예방 또는 개선용 건강기능식품 조성물을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 페닐알라닌(Phe) 및 메티오닌(Met)으로 이루어진 근세포 분화 촉진제를 제공한다.
본 발명은 또한, 본 발명에 따른 근세포 분화 촉진제를 주성분으로 함유하고, 약제학적 또는 식품학적으로 허용되는 첨가제를 보조성분으로 더 함유하는, 근세포 분화 촉진용 조성물을 제공한다.
본 발명은 또한, 본 발명에 따른 근세포 분화 촉진용 조성물을 함유하는, 노인성 근손실 예방 또는 치료용 약학 조성물을 제공한다.
본 발명은 또한, 본 발명에 따른 근세포 분화 촉진용 조성물을 함유하는, 노인성 근손실 예방 또는 개선용 건강기능식품 조성물을 제공한다.
본 발명의 근세포 분화 촉진용 조성물 및 이를 함유하는 약학 조성물 또는 건강기능식품 조성물은 근원세포가 근육세포로 분화되는 것을 촉진하여 근감소증이나 근손실을 예방, 개선 및 치료할 수 있고, 특히 노인성 근손실에 효과적이며, 근세포 수 증가에 따라 기초대사량이 증가하여 체내 지방산을 산화시키는 효과가 있다.
도 1은 아미노산의 결핍상황에서 C2C12 세포의 분화에 따른 세포 모양변화를 현미경으로 관측한 것이다.
도 2는 아미노산의 결핍상황에서 L6 세포의 분화에 따른 세포 모양변화를 현미경으로 관측한 것이다.
도 3은 각종 필수 아미노산의 결핍상황에서 C2C12 세포의 분화 마커단백질(MyoD와 Myogenin)의 발현 패턴을 웨스턴 블롯을 통해 분석한 것이다.
도 4는 아미노산 중 페닐알라닌의 결핍상황에서 타이로신(Tyr) 또는 페닐알라닌을 C2C12 세포에 처리하는 경우 C2C12 세포의 분화에 농도 의존적으로 영향을 미치는지 실험하여 관측한 것이다.
도 5는 아미노산 중 페닐알라닌의 결핍상황에서 타이로신 혹은 페닐알라닌을 L6 세포에 처리하는 경우 L6 세포의 분화에 농도 의존적으로 영향을 미치는지 실험하여 관측한 것이다.
도 6는 아미노산 중 페닐알라닌의 결핍상황에서 타이로신 또는 페닐알라닌을 C2C12 세포에 처리하는 경우 근세포 마커유전자의 발현에 농도 의존적으로 영향을 미치는지 분석한 것이다.
도 7는 아미노산 중 페닐알라닌의 결핍상황에서 타이로신 혹은 페닐알라닌을 L6 세포에 처리하는 경우 근세포 마커유전자의 발현에 농도 의존적으로 영향을 미치는지 분석한 것이다.
도 8은 아미노산 전체의 결핍상황에서 타이로신 또는 페닐알라닌을 C2C12 세포에 처리하는 경우 C2C12 세포의 분화에 농도 의존적으로 영향을 미치는지를 실험하여 관측한 것이다.
도 9는 아미노산 전체의 결핍상황에서 타이로신 또는 페닐알라닌을 L6 세포에 처리하는 경우 L6 세포의 분화에 농도 의존적으로 영향을 미치는지를 실험하여 관측한 것이다.
도 10은 아미노산 전체의 결핍상황에서 타이로신 또는 페닐알라닌을 C2C12 세포에 처리하는 경우 근세포 마커유전자의 발현에 농도 의존적으로 영향을 미치는지 분석한 것이다.
도 11은 아미노산 전체의 결핍상황에서 타이로신 또는 페닐알라닌을 L6 세포에 처리하는 경우 근세포 마커유전자의 발현에 농도 의존적으로 영향을 미치는지 분석한 것이다.
도 12는 아미노산 전체의 결핍상황에서 메티오닌을 C2C12 세포에 처리하는 경우 C2C12 세포의 분화에 농도 의존적으로 영향을 미치는지 실험하여 관측한 것이다.
도 13은 아미노산 전체의 결핍상황에서 메티오닌을 L6 세포에 처리하는 경우 L6세포의 분화에 농도 의존적으로 영향을 미치는지 실험하여 관측한 것이다.
도 14는 아미노산 전체의 결핍상황에서 메티오닌을 C2C12 세포에 처리하는 경우 근세포 마커유전자의 발현에 농도 의존적으로 영향을 미치는지 분석한 것이다.
도 15는 아미노산 전체의 결핍상황에서 메티오닌을 L6 세포에 처리하는 경우 근세포 마커유전자의 발현에 농도 의존적으로 영향을 미치는지 분석한 것이다.
도 16은 아미노산 전체의 결핍상황에서 페닐알라닌, 메티오닌 혹은 다양한 비율의 페닐알라닌+메티오닌을 C2C12 세포에 처리하는 경우 근세포 마커유전자들의 발현 양상 변화를 관측한 것이다.
도 17은 아미노산 전체의 결핍상황에서 페닐알라닌, 메티오닌 혹은 다양한 비율의 페닐알라닌+메티오닌을 L6 세포에 처리하는 경우 근세포 마커유전자들의 발현 양상 변화를 관측한 것이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서 사용되는 "근원세포(myoblast)"란 근육세포로의 분화 능력을 지닌 줄기세포를 의미한다. 이들 근원세포는 특이하게 위성세포(satellite cells)로 역분화되기도 하는데, 장시간 근육세포로의 전환이 이루어지지 않은 일부 근원세포들에서 일어나는 현상이다. 하지만, 이러한 위성세포라 할지라도 적절한 자극(운동 등)이 주어진다면, 언제든지 근원세포에서 근육세포로의 분화가 가능하다.
본 발명에서 사용되는 "근원세포 분화"란 단핵인 근원세포가 융합을 통해 다핵의 근관(myotube)을 형성하는 과정이다. 근원세포에서 근관으로의 분화 과정에서, 마이오신 D(MyoD), 마이오제닌(myogenin) 등의 유전자들의 발현이 증가한다. 따라서 근원세포 분화 마커유전자로 마이오신 D와 마이오제닌을 이용하면 근세포의 분화 여부를 확인할 수 있다.
본 발명에서 사용되는 "근육세포 분화형성"이란, 근원세포가 분화되어 길쭉한 모양으로의 변화와 더불어 근섬유 및 많은 수의 미토콘드리아 함유 등 근육의 특성을 지니는 근육세포가 형성되는 것을 의미하고, 형성된 근육세포들이 융합을 거쳐 다핵의 근관(myotube)을 형성하는 것을 의미한다. 다만, 세포 융합을 통한 근관 형성은 골격근에서만 일어나는 현상이며, 심근 및 평활근에서는 일어나지 않는다.
본 발명에서 사용되는 줄기세포 "분화"는 줄기세포에서 특정세포로 완전히 분화된 경우뿐만 아니라 줄기세포에서 특정세포로의 완전 분화되기 전 중간 단계도 포함한다.
이하, 본 발명에 대해서 구체적으로 설명한다.
본 발명에서는 페닐알라닌 및 메티오닌을 포함하는 9가지의 아미노산(Leu, Ile, Met, Val, Lys, Trp, Phe, Thr, Gln) 중 어느 아미노산이 근육세포의 분화형성에 영향을 미치는지 확인하기 위한 실험을 하였다. 그 결과, 특히 페닐알라닌(Phe)과 메티오닌(Met)이 결핍되었을 경우 근육세포의 분화형성이 크게 저해됨을 알 수 있었고, 페닐알라닌과 메티오닌의 혼합비율이 중량비로 2:1 일 때 근육세포의 분화형성이 가장 크게 일어남을 확인할 수 있었다.
따라서, 본 발명은 일 관점에서, 페닐알라닌(Phe) 및 메티오닌(Met)으로 이루어진 근세포 분화 촉진제에 관한 것이다.
본 발명에 있어서, 상기 근세포 분화 촉진제의 상기 페닐알라닌(Phe) 및 메티오닌(Met)은 1:4 ~ 4:1, 바람직하게는 2:1의 중량비로 혼합되는 것을 특징으로 할 수 있다. 상기 중량비로 포함되는 경우 근육세포의 분화형성 효과를 나타내기에 적절할 뿐만 아니라, 조성물의 안정성 및 안전성을 모두 만족할 수 있으며, 비용 대비 효과의 측면에서도 상기 범위로 포함하는 것이 적절할 수 있다.
또한, 상기 페닐알라닌 및/또는 메티오닌은 단량체, 올리고머, 중합체 등으로 존재할 수 있다.
본 발명은 다른 관점에서, 본 발명에 따른 근세포 분화 촉진제를 주성분으로 함유하고, 약제학적으로 또는 식품학적으로 허용되는 첨가제를 보조성분으로 더 함유하는, 근세포 분화 촉진용 조성물에 관한 것이다.
또한, 본 발명에 있어서, 상기 근세포 분화 촉진용 조성물은 트레오닌(Thr), 발린(Val), 이소류신(Ile), 글루타민(Gln) 및 라이신(Lys)으로 이루어진 군에서 선택된 어느 1종 이상의 아미노산을 보조성분으로 더 함유하는 것을 특징으로 할 수 있다.
또한, 상기 페닐알라닌(Phe)은 조성물 총 중량에 대하여 0.02~64중량%, 바람직하게는 0.05~54중량%로 함유되고, 메티오닌(Met) 역시 0.02~64중량%, 바람직하게는 0.05~27중량%로 함유되는 것을 특징으로 할 수 있다. 상기 두 가지 아미노산 함량이 총 합이 0.1중량% 미만이면 효과가 미약하며, 80중량% 초과이면 아미노산 대사에 문제가 있는 환자의 경우 고페닐알라닌혈증(페닐케톤뇨증 외)이나 고메티오닌혈증(고호모시스테인혈증 외)이 발생할 가능성이 있다. 따라서, 정상인의 경우는 문제가 없으나, 아미노산 대사이상 환자를 고려하였을 때 페닐알라닌/메티오닌 혼합제재의 양을 조성물 총 중량에 대하여 0.1~80중량% 사이에서 사용하는 것이 바람직하다.
본 발명은 다른 관점에서, 본 발명에 따른 근세포 분화 촉진제를 유효성분으로 함유하는 노인성 근손실 예방 또는 치료용 약학 조성물에 관한 것이다.
본 발명에 따른 조성물을 약학 조성물에 적용할 경우에는, 상기 조성물을 유효 성분으로 하여 상용되는 무기 또는 유기의 담체를 가하여 고체, 반고체 또는 액상의 형태로 제제화 할 수 있다. 본 발명의 유효 성분을 상법에 따라서 실시하면 용이하게 제제화할 수 있으며, 계면활성제, 부형제, 착색제, 향신료, 안정화제, 방부제, 보존제, 수화제, 유화 촉진제, 현탁제, 삼투압 조절을 위한 염 및/또는 완충제, 기타 상용하는 보조제를 적당히 사용할 수 있다.
상기 경구 투여를 위한 제재로서는 정제(錠劑), 환제(丸劑), 과립제(顆粒劑), 연경질 캅셀제, 산제, 세립제, 분제, 액제, 현탁제, 유탁제(乳濁濟), 시럽제, 펠렛제 등을 들 수 있다. 이들 제형은 유효 성분 이외에 희석제 (예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로오스 및 글리신), 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및 폴리에틸렌 글리콜)를 함유할 수 있다. 정제는 또한 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로오스, 나트륨 카르복시메틸셀룰로오스 또는 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제, 흡수제, 착색제, 향미제 또는 감미제 등의 약제학적 첨가제를 함유할 수 있다. 상기 정제는 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다.
본 발명에 따른 상기 약학 조성물은 경구, 비경구, 직장, 국소, 경피, 정맥 내, 근육 내, 복강 내, 피하 등으로 투여될 수 있다.
또한, 상기 유효 성분의 투여량은 치료 받을 대상의 연령, 성별, 체중 또는 치료할 특정 질환 또는 병리 상태, 질환 또는 병리 상태의 심각도, 투여 경로 또는 처방자의 판단에 따라 달라질 것이다. 이러한 인자에 기초한 투여량 결정은 당업자의 수준 내에 있다. 일반적인 투여량은 바람직하게는 1.375mg/kg/일 내지 1100mg/kg/일이 될 수 있으나, 상기 투여량은 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.
본 발명은 또 다른 관점에서, 본 발명에 따른 근세포 분화 촉진제를 유효성분으로 함유하는 노인성 근손실 예방 또는 개선용 건강기능식품 조성물에 관한 것이다.
상기 건강기능식품 조성물의 제형은 특별히 한정되지 않으나, 예를 들어, 정제, 과립제, 드링크제, 캐러멜, 다이어트바, 음료 등으로 제형화될 수 있다. 각 제형의 식품 조성물은 유효 성분 이외에 해당 분야에서 통상적으로 사용되는 성분들을 제형 또는 사용 목적에 따라 당업자가 어려움 없이 적의 선정하여 배합할 수 있으며, 다른 원료와 동시에 적용할 경우 상승 효과가 일어날 수 있다.
상기 유효 성분의 투여량 결정은 당업자의 수준 내에 있으며, 이의 1일 투여 용량은 투여하고자 하는 대상의 연령, 건강 상태, 합병증 등의 다양한 요인에 따라 달라질 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
[시험예 1] 필수 아미노산 결핍에 따른 근육세포 분화형성 효과 확인
9종의 아미노산(Leu, Ile Met, Val, Lys, Trp, Phe, Thr, Gln) 중 어느 한 가지의 결핍상황에서 각각 C2C12 근육세포의 분화형성 과정을 올림푸스 사의 CK40 광학현미경(40x)을 이용하여 관찰한 결과, 도 1에 나타난 바와 같이, 9종의 아미노산 중 페닐알라닌(Phe)의 결핍상황은 근육세포의 분화형성을 심각하게 저해하고 있음을 알 수 있었고, 메티오닌(Met)의 결핍이 페닐알라닌 다음으로 근육세포의 분화형성을 많이 저해하고 있음을 확인할 수 있었다. 따라서, 페닐알라닌 및 메티오닌의 충분한 제공이 근육세포의 형성에 중요함을 확인할 수 있었다.
다른 종의 근육세포인 L6의 세포에서도 상기와 동일한 방법으로 분화형성 과정을 관찰한 결과, 도 2에 나타난 바와 같이, C2C12에서와 동일하게 페닐알라닌 결핍이 근육세포의 분화형성에 미치는 영향이 제일 컸으며, 메티오닌 결핍 또한 큰 영향을 미치는 것을 알 수 있었다.
상기 두 가지 실험 결과에 따라, 9종의 아미노산이 근육세포 분화형성에 미치는 영향을 다음과 같은 순서로 정리할 수 있었다.
Total essential amino acid>Phe>Met>Thr=Val=Ile=Gln=Lys>Leu=Trp
모든 아미노산이 결핍된 상황에서 근육세포의 분화형성에 가장 큰 영향을 미쳤으며(분화가 가장 더뎠으며), 그 다음으로는 페닐알라닌의 결핍이, 그 다음은 메티오닌의 결핍이 큰 영향을 미쳤다. 트립토판의 결핍상황은 근육세포의 분화형성에 미치는 영향이 가장 적은 것을 확인할 수 있었다.
근육세포의 분화형성시 세포의 모양변화를 관측함과 더불어, 분화마커 단백질(마이오신 D와 마이오제닌)의 발현 패턴을 알아보기 위하여 분화된 근육세포로부터 단백질을 추출한 후, 마이오신 D와 마이오제닌 특이 항체를 이 기술분야에서 통상적으로 사용되는 웨스턴 블랏팅 방법에 이용하여 비교 분석하였다. 도 3에 나타난 바와 같이, 상기 광학현미경 관찰 결과와 동일하게 페닐알라닌이 결핍된 상황에서 분화마커 단백질의 발현도 현저하게 감소되는 것을 확인할 수 있었고, 페닐알라닌 보다는 영향이 미미하나 메티오닌 결핍 역시 분화마커 단백질의 발현을 감소시키는 것을 확인할 수 있었다.
[시험예 2] 페닐알라닌의 근육세포 분화형성 효과 확인
시험예 1에서 살펴본 바에 따르면, 필수아미노산 중 페닐알라닌이 근육세포 분화형성에 미치는 영향이 가장 큰 것으로 나타나, 페닐알라닌의 첨가에 의해 근육세포 분화형성이 촉진될 수 있는지 알아보기 위하여 후속 실험을 준비하였다. 또한, 아미노산 대사경로에서 페닐알라닌은 타이로신(Tyr)으로 전환이 된다는 점을 고려하여, 근육세포의 형성에 타이로신 결핍이 영향을 미치는지 알아보기 위한 실험을 함께 수행하였다. 페닐알라닌이 결핍된 세포배양액에 타이로신 또는 페닐알라닌을 각각 농도별로(0.2mM, 0.4mM, 0.8mM) 첨가한 후, C2C12 세포와 L6 세포 각각의 분화형성 능력을 시험예 1에서와 동일한 방법으로 광학 현미경을 인용하여 측정하였다.
그 결과, 도 4(C2C12) 및 도 5(L6)에 나타난 바와 같이, 타이로신이 아니라 페닐알라닌이 근육세포의 형성에 농도 의존적으로 영향을 미친다는 것을 알 수 있었다.
또한, 각각의 경우 근육세포 마커유전자의 발현을 확인하기 위하여, 이 기술분야에서 통상적으로 사용되는 qRT-PCR 방법과 같이, 분화된 근세포에서 RNA를 추출하고, 이를 바탕으로 상보적 DNA(cDNA)를 합성한 후, qRT-PCR(quantitative real-time polymerase chain reaction)에 마이오신 D 및 마이오제닌의 PCR 프라이머를 이용하여 마커 유전자들의 mRNA 발현 변화를 관찰하였다.
그 결과, 도 6(C2C12) 및 도 7(L6)에 나타난 바와 같이, 분화 마커 유전자인 Myo D의 mRNA 발현정도도 농도 의존적으로 나타남을 확인할 수 있었다.
더 나아가, 페닐알라닌과 타이로신의 근육세포 형성에 대한 영향을 좀 더 확인하고자, 아미노산이 모두 결핍된 세포배양액에 페닐알라닌 또는 타이로신을 각각 농도별로(0.2mM, 0.4mM, 0.8mM) 첨가한 후, C2C12 세포 및 L6 근육세포의 분화형성 능력을 상기와 같은 방법으로 각각 측정하였다.
그 결과, 도 8(C2C12) 및 도 9(L6)에 나타난 바와 같이, 타이로신이 아닌 페닐알라닌이 첨가되었을 때 근육 형성 능력이 증대된다는 결과를 다시 한 번 확인할 수 있었다. 또한, 도 10(C2C12) 및 도 11(L6)에 나타난 바와 같이, 각 근육세포내 마커유전자의 발현 역시 페닐알라닌의 첨가에 의해서만 증가하는 것을 확인할 수 있었다.
[시험예 3] 메티오닌의 근육세포 분화형성 효과 확인
시험예 1의 결과를 통하여, 메티오닌은 페닐알라닌 만큼은 아니나, 그 외 다른 필수 아미노산들에 비하여 근육세포 분화형성에 미치는 영향이 크다는 것을 유추할 수 있었다. 이에, 메티오닌의 첨가에 의해서도 근육세포의 분화형성이 가능한지 알아보기 위하여 아미노산이 결핍된 C2C12 및 L6 세포에 메티오닌을 첨가한 후 근육세포로의 분화 여부를 각각 관찰하였다.
그 결과, 도 12(C2C12) 및 도 13(L6)에 나타난 바와 같이, 메티오닌 단독으로도 근육세포 분화형성에 영향을 주는 것을 확인할 수 있었고, 도 14(C2C12) 및 도 15(L6)에 나타난 바와 같이, 근육세포 마커유전자의 발현이 증가하는 것을 통해서도 메티오닌의 근육세포 분화형성에 영향을 미침을 다시 한 번 확인할 수 있었다.
[실시예] 페닐알라닌 및 메티오닌의 혼합 비율에 따른 근육세포 형성 효과 확인
상기 시험예 1 내지 3에서 아미노산 중 페닐알라닌 및 메티오닌이 근육세포 분화형성에 가장 효과가 좋았던 점에 착안하여, 최적의 효과를 나타내는 페닐알라닌 및 메티오닌의 혼합 비율을 알아보기 위해 실시예 1 내지 7을 하기 표 1의 성분 및 함량으로 제조하였다. 비교예 1은 메티오닌을 전혀 포함하지 않도록 제조하고, 비교예 2는 페닐알라닌을 전혀 포함하지 않도록 하여 제조하였다. 또한 근육세포 분화에는 미미한 영향을 미치지만, 근육내 단백질 합성을 유도하는 것으로 알려진 분지쇄 아미노산(류신, 발린, 이소류신)도 소량 첨가하였다.
(단위: 중량%)
구성성분 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7 비교예1 비교예2
페닐알라닌 72 67.5 60 45 30 22.5 18 90 -
메티오닌 18 22.5 30 45 60 67.5 72 - 90
류신 6 6 6 6 6 6 6 6 6
발린 2 2 2 2 2 2 2 2 2
이소류신 2 2 2 2 2 2 2 2 2
총합 100 100 100 100 100 100 100 100 100
상기 실시예 1 내지 7과 비교예 1 및 2를, 시험예 1 내지 3에 기재된 것과 동일한 방법으로 C2C12 세포 및 L6 세포에 처리하고, 근육세포의 분화형성을 관측 및 측정하였다. 그 결과, 도 16(C2C12) 및 도 17(L6)에 나타난 바와 같이, 페닐알라닌과 메티오닌을 2:1의 중량비로 혼합한 실시예 3의 근육세포 분화형성 효과가 가장 뛰어난 것을 확인할 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
또한, 이하 본 발명의 조성물을 포함하는 약학 조성물 및 건강기능식품 조성물의 제형예를 보다 상세하게 설명하나, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다.
[제형예 1] 정제의 제조
실시예 3................................50 mg
옥수수전분.............................100 mg
유당...................................100 mg
스테아린산 마그네슘......................2 mg
비타민 C................................50 mg
상기의 성분들을 혼합한 후 통상의 정제 제조 방법에 따라 타정하여 정제를 제조한다.
[제형예 2] 캅셀제의 제조
실시예 3...............................50 mg
옥수수전분............................100 mg
유당..................................100 mg
스테아린산 마그네슘.....................2 mg
비타민 C...............................50 mg
세린...................................50 mg
통상의 캅셀제 제조 방법에 따라 상기의 성분을 혼합하고 젤라틴 캅셀에 충전하여 캅셀제를 제조한다.
[제형예 3] 액제의 제조
실시예 3...............................100 mg
이성화당................................10 g
만니톨...................................5 g
비타민 C................................50 mg
세린....................................50 mg
유지.....................................적량
정제수...................................잔량 
통상의 액제 제조 방법에 따라 정제수에 각각의 성분을 가하여 용해시키고 레몬향을 적량 가한 다음 상기의 성분을 혼합한 후 정제수를 가하여 전체 100 ㎖로 조절하고 갈색병에 충진하여 멸균시켜 액제를 제조한다.
[제형예 4] 건강기능식품의 제조
실시예 3..............................1000 ㎎
비타민 혼합물
비타민 A 아세테이트.....................70 ㎍
비타민 E ..............................1.0 ㎎
비타민 B1.............................0.13 ㎎
비타민 B2 ............................0.15 ㎎
비타민 B6..............................0.5 ㎎
비타민 B12.............................0.2 ㎍
비타민 C................................10 ㎎
비오틴..................................10 ㎍
니코틴산아미드.........................1.7 ㎎
엽산....................................50 ㎍
판토텐산 칼슘..........................0.5 ㎎
무기질 혼합물
황산제1철.............................1.75 ㎎
산화아연..............................0.82 ㎎
탄산마그네슘..........................25.3 ㎎
제1인산칼륨.............................15 ㎎
제2인산칼슘.............................55 ㎎
구연산칼륨..............................90 ㎎
탄산칼슘...............................100 ㎎
염화마그네슘..........................24.8 ㎎
상기의 비타민 및 미네랄 혼합물의 조성비는 비교적 건강 식품에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만, 그 배합비를 임의로 변형 실시하여도 무방하며, 통상의 건강 식품 제조방법에 따라 상기의 성분을 혼합한 다음, 과립을 제조하고, 통상의 방법에 따라 건강기능식품 조성물 제조에 사용할 수 있다.
[제형예 5] 음료의 제조
실시예 3...............................1000 ㎎
구연산.................................1000 ㎎
올리고당................................100 g
매실농축액................................2 g
타우린....................................1 g
정제수를 가하여 전체...................1000 ㎖
통상의 음료 제조방법에 따라 상기의 성분을 혼합한 다음, 약 1시간 동안 85℃에서 교반 가열한다. 만들어진 용액을 여과하여 멸균된 2ℓ용기에 취득한 후 밀봉 멸균한 뒤 냉장 보관하여 본 발명의 음료 조성물 제조에 사용한다.

Claims (8)

  1. 페닐알라닌(Phe) 및 메티오닌(Met)으로 이루어진 근세포 분화 촉진제.
  2. 제1항에 있어서, 상기 페닐알라닌(Phe) 및 메티오닌(Met)은 1:4 ~ 4:1의 중량비로 혼합되는 것을 특징으로 하는, 근세포 분화 촉진제.
  3. 제1항의 근세포 분화 촉진제를 주성분으로 함유하고, 약제학적으로 또는 식품학적으로 허용되는 첨가제를 보조성분으로 더 함유하는, 근세포 분화 촉진용 조성물.
  4. 제3항에 있어서, 트레오닌(Thr), 발린(Val), 이소류신(Ile), 글루타민(Gln) 및 라이신(Lys)으로 이루어진 군에서 선택된 어느 1종 이상의 아미노산을 보조성분으로 더 함유하는 것을 특징으로 하는, 근세포 분화 촉진용 조성물.
  5. 제1항 또는 제2항의 근세포 분화 촉진제를 유효성분으로 함유하는, 노인성 근손실 예방 또는 치료용 약학 조성물.
  6. 제1항 또는 제2항의 근세포 분화 촉진제를 유효성분으로 함유하는, 노인성 근손실 예방 또는 개선용 건강기능식품 조성물.
  7. 약학 조성물의 제조에 있어서, 페닐알라닌 및 메티오닌의 근세포 분화 촉진제로서의 용도.
  8. 건강기능식품 조성물의 제조에 있어서, 페닐알라닌 및 메티오닌의 근세포 분화 촉진제로서의 용도.
PCT/KR2016/010371 2015-09-15 2016-09-13 아미노산을 함유하는 근세포 분화 촉진용 조성물 WO2017048072A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018513476A JP6894889B2 (ja) 2015-09-15 2016-09-13 アミノ酸を含有する筋細胞分化促進用組成物
CN201680053051.8A CN108024983A (zh) 2015-09-15 2016-09-13 含有氨基酸的用于促进肌细胞分化的组合物
HK18108289.3A HK1248557A1 (zh) 2015-09-15 2018-06-27 含有氨基酸的用於促進肌細胞分化的組合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0130265 2015-09-15
KR1020150130265A KR102348361B1 (ko) 2015-09-15 2015-09-15 아미노산을 함유하는 근세포 분화 촉진용 조성물

Publications (1)

Publication Number Publication Date
WO2017048072A1 true WO2017048072A1 (ko) 2017-03-23

Family

ID=58289329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010371 WO2017048072A1 (ko) 2015-09-15 2016-09-13 아미노산을 함유하는 근세포 분화 촉진용 조성물

Country Status (5)

Country Link
JP (1) JP6894889B2 (ko)
KR (1) KR102348361B1 (ko)
CN (1) CN108024983A (ko)
HK (1) HK1248557A1 (ko)
WO (1) WO2017048072A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809882A4 (en) * 2018-07-20 2022-10-05 MEND Nutrition Inc. NUTRITIONAL COMPOSITIONS TO IMPROVE MUSCLE PERFORMANCE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018208079A2 (ko) * 2017-05-09 2018-11-15 가천대학교 산학협력단 류실-trna 합성효소의 une-l 도메인을 유효성분으로 함유하는 근육증강용 조성물
KR101988735B1 (ko) 2017-05-09 2019-06-12 가천대학교 산학협력단 류실-tRNA 합성효소의 UNE-L 도메인을 유효성분으로 함유하는 근육증강용 조성물
US20220331290A1 (en) * 2019-09-24 2022-10-20 Myo-Tec-Sci Pharmaceutical composition for preventing or treating sarcopenia, containing unnatural amino acid
CN115279211A (zh) * 2020-04-01 2022-11-01 雀巢产品有限公司 含有氨基酸的组合物和使用此类组合物来治疗肌肉减少症的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024200A (ja) * 2008-07-23 2010-02-04 Dhc Co 生体コラーゲン合成促進剤並びに生体コラーゲン合成促進用飲食品、化粧品及び医薬部外品
WO2014092150A1 (ja) * 2012-12-13 2014-06-19 新田ゼラチン株式会社 筋芽細胞分化促進剤
WO2014134225A2 (en) * 2013-02-26 2014-09-04 Pronutria, Inc. Nutritive polypeptides, formulations and methods for treating disease and improving muscle health and maintenance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545424B2 (ja) * 2005-03-29 2014-07-09 味の素株式会社 高齢者の骨格筋量減少を防止又は改善するためのアミノ酸含有組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024200A (ja) * 2008-07-23 2010-02-04 Dhc Co 生体コラーゲン合成促進剤並びに生体コラーゲン合成促進用飲食品、化粧品及び医薬部外品
WO2014092150A1 (ja) * 2012-12-13 2014-06-19 新田ゼラチン株式会社 筋芽細胞分化促進剤
WO2014134225A2 (en) * 2013-02-26 2014-09-04 Pronutria, Inc. Nutritive polypeptides, formulations and methods for treating disease and improving muscle health and maintenance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAM, R. G. ET AL.: "Improved Media for Normal Human Muscle Satellite Cells: Serum-Free Clonal Growth and Enhanced Growth with Low Serum", IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY, vol. 24, no. 8, 1988, pages 833 - 844, XP000982458 *
PAN, Y. ET AL.: "Peptide-bound Methionine as Methionine Sources for Protein Accretion and Cell Proliferation in Primary Cultures of Ovine Skeletal Muscle", THE JOURNAL OF NUTRITION, vol. 128, no. 2, 1 February 1998 (1998-02-01), pages 251 - 256, XP055371398 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809882A4 (en) * 2018-07-20 2022-10-05 MEND Nutrition Inc. NUTRITIONAL COMPOSITIONS TO IMPROVE MUSCLE PERFORMANCE

Also Published As

Publication number Publication date
JP2018527364A (ja) 2018-09-20
KR20170032652A (ko) 2017-03-23
KR102348361B1 (ko) 2022-01-11
CN108024983A (zh) 2018-05-11
HK1248557A1 (zh) 2018-10-19
JP6894889B2 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2017048072A1 (ko) 아미노산을 함유하는 근세포 분화 촉진용 조성물
WO2015130109A1 (ko) 고시폴 및 펜포르민을 유효성분으로 함유하는 암 치료용 약제학적 조성물
WO2018194309A1 (ko) 인디루빈 유도체를 유효성분으로 포함하는 약학 조성물
WO2011090270A2 (ko) 오스모틴을 포함하는 신경질환의 예방 및 치료용 조성물
WO2021194110A1 (ko) 주주보사이드 a를 유효성분으로 포함하는 대사성 질환의 예방 또는 치료용 조성물
WO2020149636A1 (ko) 아우쿠빈을 포함하는 안구 건조증의 예방 또는 치료용 약학적 조성물
WO2012020991A2 (ko) 실크 아미노산 및 티로신을 유효성분으로 포함하는 뇌질환 예방 및 개선용 조성물
WO2018106002A1 (ko) 플라보노이드 유도체 및 이리도이드 유도체로 구성된 화합물 조합을 유효성분으로 함유하는 남성 불임증 예방 및 치료용 조성물 및 이의 용도
WO2018080276A1 (ko) 담즙산을 포함하는 허혈성 재관류 손상의 예방 또는 치료용 약학적 조성물
JP2022110113A (ja) エンテロコッカス・フェカーリス、その培養液またはその死菌体を有効成分として含有する筋肉の減退、低下及び筋萎縮の予防、改善または治療用の薬学組成物、食品組成物及び食品添加剤
WO2020145584A1 (ko) 중추신경계 질환의 예방 또는 치료용 세린 유도체 화합물
WO2021261631A1 (ko) 신규한 피칼리박테리움 프로스니치 eb-fpdk9 균주 및 그의 용도
US9029419B2 (en) Use of zinc N-acetyltaurinate
EP0485232B1 (en) Neovascularisation inhibitors
WO2022059882A1 (ko) 산소수를 포함하는 뇌전증성 발작 또는 경련의 예방, 개선 또는 치료용 조성물
WO2019216650A1 (ko) 간보호, 숙취해소, 항산화 및 항염증 효능을 갖는 펩티드
WO2024080435A1 (ko) 파르네솔을 포함하는 근육 줄기세포 증식 및 분화 촉진용 조성물.
WO2022186658A1 (ko) D-리보-2-헥술로스를 유효성분으로 포함하는 사코페니아 예방, 개선 또는 치료용 조성물
WO2017014545A1 (ko) 멜라닌 응집 호르몬을 유효성분으로 포함하는 파킨슨병 치료 및 레보도파 부작용 억제용 약학 조성물
WO2010008746A1 (en) Pharmaceutical compositions and methods for treating age-related macular degeneration with melatonin analogues
WO2022146010A1 (ko) 암 줄기세포 성장 억제용 조성물
WO2022245067A1 (ko) RORα의 활성자 JC1-40을 포함하는 근감소증 예방, 개선, 또는 치료를 위한 약학적 조성물
WO2013137514A1 (ko) 아미노벤조에이트 유도체 또는 이의 약학적으로 허용가능한 염을 포함하는 골 질환 예방 및 치료용 약학적 조성물
WO2014163413A1 (ko) 인삼열매 추출물을 포함하는 수명 연장용 조성물
WO2020235900A1 (ko) 골 손실 질환의 예방, 개선 또는 치료를 위한 chp(사이클로-히스프로) 및 부갑상선 호르몬을 포함하는 조성물의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018513476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846893

Country of ref document: EP

Kind code of ref document: A1