WO2017047774A1 - 半導体素子及び固体撮像装置 - Google Patents

半導体素子及び固体撮像装置 Download PDF

Info

Publication number
WO2017047774A1
WO2017047774A1 PCT/JP2016/077507 JP2016077507W WO2017047774A1 WO 2017047774 A1 WO2017047774 A1 WO 2017047774A1 JP 2016077507 W JP2016077507 W JP 2016077507W WO 2017047774 A1 WO2017047774 A1 WO 2017047774A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
charge
potential
readout
reset
Prior art date
Application number
PCT/JP2016/077507
Other languages
English (en)
French (fr)
Inventor
川人 祥二
▲みん▼雄 徐
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to US15/760,743 priority Critical patent/US10453880B2/en
Priority to EP16846645.6A priority patent/EP3352220A4/en
Priority to JP2017540015A priority patent/JP7029037B2/ja
Publication of WO2017047774A1 publication Critical patent/WO2017047774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS

Definitions

  • the present invention relates to a semiconductor element having a function of transferring and accumulating electrons generated by light, and a solid-state imaging device in which a plurality of such semiconductor elements are arranged one-dimensionally or two-dimensionally.
  • a CCD image sensor has a configuration in which a p-type semiconductor region is sandwiched between an n-type floating diffusion layer and a reset drain region, and in the reset operation of signal charges in the floating diffusion layer, A method is known in which a direct pulse voltage is applied to cause punch-through in a semiconductor region sandwiched between a floating diffusion layer and a reset drain region, thereby discharging charges (see Patent Document 1).
  • the conventional reset gate electrode is not necessary, and the parasitic capacitance with the floating diffusion layer is eliminated, so that the floating diffusion layer capacitance can be reduced and the sensitivity can be improved.
  • CMOS image sensors have been developed to put ultra-low noise imaging into practical use.
  • ultra-low noise imaging with high pixel conversion gain and photon count level can be achieved. It is difficult to realize.
  • An object of the present invention is to provide a semiconductor element capable of realizing a high pixel conversion gain and a very low noise with a photon counting level, and a solid-state imaging device using the semiconductor element as a sensor element (pixel).
  • a semiconductor region of a first conductivity type and (b) a semiconductor region and a photodiode embedded in a part of an upper portion of the semiconductor region.
  • a charge generation buried region of a second conductivity type that generates charge in the first step; and (c) a charge that is provided in another part of the semiconductor region apart from the charge generation buried region and transferred from the charge generation buried region
  • a reset generation region of the second conductivity type provided in another part is provided, and is variable so as to change the height of the potential barrier generated in the semiconductor region sandwiched between the charge readout region and the reset generation region Charge read by applying voltage to reset generation region And summarized in that a semiconductor device for discharging the charge accumulated in the region.
  • a semiconductor region of a first conductivity type (a) a semiconductor region of a first conductivity type, and (b) a second conductivity that is embedded in a part of the upper portion of the semiconductor region and generates a charge by forming a photodiode with the semiconductor region.
  • Type charge generation buried region and (c) a second conductivity type provided in another part of the semiconductor region apart from the charge generation buried region and storing charges transferred from the charge generation buried region A charge readout region; (d) charge transfer means for controlling the transfer of charge from the charge generation embedded region to the charge readout region; and (e) a semiconductor region spaced apart from the charge readout region.
  • a reset generation region of the second conductivity type, and a variable voltage is applied to the reset generation region so as to change the height of the potential barrier generated in the semiconductor region sandwiched between the charge readout region and the reset generation region.
  • the charge accumulated in the charge readout area is summarized in that a solid-state imaging device is formed by arranging plural pixels to.
  • the present invention it is possible to provide a semiconductor element capable of realizing a high pixel conversion gain and a very low noise with a photon counting level, and a solid-state imaging device using the semiconductor element as a sensor element (pixel).
  • FIG. 3 is a schematic cross-sectional view seen from the AA direction in FIG. 2.
  • 1 is an equivalent circuit diagram of a semiconductor element according to a first embodiment.
  • FIG. 3 is a schematic plan view in which a readout transistor (amplification transistor), a pixel selection switching transistor, a surface wiring, and the like are further added to the configuration of the semiconductor element of FIG. 2.
  • FIG. 6 is a potential diagram based on a three-dimensional simulation focusing on a reset potential barrier when a voltage of 3 V is applied to the reset generation region of the semiconductor element according to the first embodiment. It is a potential diagram by three-dimensional simulation paying attention to the reset potential barrier when a voltage of 25 V is applied to the reset generation region of the semiconductor element according to the first embodiment. It is a graph which shows the measurement result of the read-out noise histogram of the solid-state imaging device concerning a 1st embodiment. It is a graph which shows the input-output relationship of the solid-state imaging device which concerns on 1st Embodiment. FIG.
  • FIG. 15A is a graph showing a measurement result of the photoelectron measurement histogram (PCH) of the solid-state imaging device according to the first embodiment, and FIG. 15B is a Poisson corresponding to FIG. It is a graph which shows the theoretical curve of distribution.
  • FIG. 16A is a graph showing a measurement result of PCH of the solid-state imaging device according to the first embodiment, and FIG. 16B shows a Poisson distribution theoretical curve corresponding to FIG. It is a graph to show.
  • FIG. 17A is an image of a signal range of 0 to 20 electrons captured by the solid-state imaging device according to the first embodiment using the US Air Force (USAF) test chart.
  • USAF US Air Force
  • FIG. 17C is a conventional image using the USAF test chart.
  • 2 is an image of a signal range of 0 to 8 electrons captured by a low noise solid-state imaging device.
  • 3 is a timing chart for explaining a readout method of the solid-state imaging device according to the first embodiment for one frame.
  • 1 is a schematic cross-sectional view including a configuration of a signal readout circuit of a semiconductor element according to a first embodiment.
  • FIG. 20A is a schematic cross-sectional view for explaining a configuration of a semiconductor element according to a first modification of the first embodiment
  • FIG. 20B is a diagram of the first embodiment.
  • FIG. 21A is a schematic circuit diagram of a signal readout circuit for explaining a semiconductor element readout method according to a first modification of the first embodiment
  • FIG. 22 is a potential diagram in a state corresponding to FIG. 21A of the semiconductor element according to the first modification example of the first embodiment
  • FIG. 22A is a schematic circuit diagram of a signal readout circuit for explaining a semiconductor element readout method according to the first modification of the first embodiment
  • FIG. 23 is a potential diagram in a state corresponding to FIG. 22A of the semiconductor element according to the first modification example of the first embodiment.
  • FIG. 21A is a schematic circuit diagram of a signal readout circuit for explaining a semiconductor element readout method according to a first modification of the first embodiment
  • FIG. 22A is a schematic circuit diagram of a signal readout circuit for explaining a semiconductor element readout method according to the first modification of the first embodiment
  • FIG. 23 is a potential diagram in a state corresponding to FIG. 22A of the semiconductor element according to the first modification example of the first embodiment
  • FIG. 23A is a schematic circuit diagram of a signal readout circuit for explaining a semiconductor element readout method according to a first modification of the first embodiment
  • FIG. FIG. 24 is a potential diagram in the state corresponding to FIG. 23A of the semiconductor element according to the first modification example of the first embodiment.
  • It is an equivalent circuit schematic of the semiconductor element which concerns on the 1st modification of 1st Embodiment.
  • It is a typical circuit diagram of the semiconductor element concerning the 2nd modification of a 1st embodiment.
  • It is a typical circuit diagram of the semiconductor element concerning the 2nd modification of a 1st embodiment.
  • It is a typical circuit diagram of the semiconductor element concerning the 2nd modification of a 1st embodiment.
  • It is a typical circuit diagram of the semiconductor element concerning the 2nd modification of a 1st embodiment.
  • FIG. 30A is a schematic cross-sectional view seen from the direction AA in FIG. 29, and FIG. 30B is a potential diagram corresponding to FIG. 6 is an equivalent circuit diagram of a semiconductor device according to a second embodiment.
  • FIG. It is a schematic circuit diagram of the semiconductor element which concerns on the modification of 2nd Embodiment. It is a schematic circuit diagram of the semiconductor element which concerns on the modification of 2nd Embodiment. It is a schematic circuit diagram of the semiconductor element which concerns on the modification of 2nd Embodiment. It is a schematic circuit diagram of the semiconductor element which concerns on the modification of 2nd Embodiment.
  • first to fourth embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and show the fluorescence and fluorescence lifetime from stained biological cells.
  • the present invention can be applied to various solid-state imaging devices such as a bioimaging solid-state imaging device for measurement or a time correlation image sensor for performing various measurements.
  • the technical idea of the present invention does not specify the material, shape, structure, arrangement, etc. of the component parts as described below, and the technical idea of the present invention is the technical idea described in the claims. Various changes can be made within the scope.
  • the first conductivity type is p-type and the second conductivity type is n-type
  • the first conductivity type may be n-type and the second conductivity type may be p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type
  • carriers as signal charges are electrons, but when the first conductivity type is n-type and the second conductivity type is p-type, the signal
  • carriers as electric charges become holes.
  • the directions of “left and right” and “up and down” in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention. Thus, for example, if the paper is rotated 90 degrees, “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course it becomes.
  • the solid-state imaging device (two-dimensional image sensor) according to the first embodiment of the present invention includes a pixel array unit 1 and peripheral circuit units (2, 3, 4, 6, 7). They are integrated on the same semiconductor chip.
  • the imaging region is configured.
  • the lower side of the pixel array unit 1 has pixel rows X 11 , X 12 , X 13 ,..., X 1m ; X 21 , X 22 , X 23 , ..., X 2m ; X 31 , X 32 , X 33 ,..., X 3m ; ising; X n1 , X n2 , X n3 ,..., X nm are provided along the horizontal scanning circuit 2, and the pixel array X 11 , X 21, X 31, ......, X n1; X 12, X 22, X 32, (2003), X n2; X 13, X 23, X 33, ...., X n3; ......; X 1m, X 2m , X 3m ,...,
  • a vertical scanning circuit 3 is provided along the X nm direction.
  • a timing generation circuit 4 is connected to the vertical scanning circuit 3 and the horizontal scanning circuit 2.
  • timing generation circuit 4, horizontal scanning circuit 2 and vertical scanning circuit 3 sequentially scan the unit pixels Xij in the pixel array section 1, and read out pixel signals and perform electronic shutter operations. That is, in the solid-state imaging device according to the first embodiment, the pixel array unit 1 is arranged in each pixel row X 11 , X 12 , X 13 ,..., X 1m ; X 21 , X 22 , X 23 ,. X 2m; X 31, X 32 , X 33, ...., X 3m; ......; X n1, X n2, X n3, —, by scanning in the vertical direction X nm units, each pixel row X 11 , X 12, X 13, «
  • the pixel signals read from the vertical signal lines B 1 , B 2 , B 3 ,..., B m are correlated with the correlated double sampling circuits CDS 1 , CDS 2 , CDS 3 ,.
  • Signal processing is performed at m , and further, signal processing is performed at the analog / digital conversion circuits ADC 1 , ADC 2 , ADC 3 ,..., ADC m of the signal processing circuit 7, and then output as an imaging signal to an external circuit (not shown).
  • FIG. 2 An example of the planar structure of the semiconductor element functioning as each pixel X ij of the solid-state imaging device according to the first embodiment is shown in FIG. 2 and viewed from the AA direction of the semiconductor element in the plan view of FIG. A corresponding cross-sectional view is shown in FIG.
  • the semiconductor element that is a part of the pixel X ij includes a first conductivity type (p-type) semiconductor region 11 and a second conductivity type that is embedded in the upper portion of the semiconductor region 11 and receives light.
  • An (n-type) charge generation buried region (light-receiving cathode region) 16 and a part of the upper portion of the semiconductor region 11 are buried away from the charge generation buried region 16 to the right.
  • the second conductivity type (n-type) charge induction region 13 having a lower impurity density than that of the charge read region 15 and guiding the charged charge to the charge read region 15 and a part of the upper portion of the semiconductor region 11 from the charge read region 15 a second conductivity type buried at a distance from each other in the right (n And a reset generation region 12 of the mold).
  • the charge readout region 15 and the charge induction region 13 function as a charge readout region.
  • the charge generation embedded region 16 and the semiconductor region (anode region) 11 immediately below the charge generation embedded region 16 constitute an embedded photodiode (hereinafter simply referred to as “photodiode”) D 1 .
  • the opening of the light shielding film 20 is selectively provided so that the generation of photocharge occurs in the semiconductor region 11 immediately below the charge generation buried region 16 constituting the photodiode. Yes.
  • the light shielding film 20 is made of aluminum (Al) or the like provided on any one of a plurality of interlayer insulating films having a multilayer wiring structure (not shown). The metal thin film may be used.
  • a first conductivity type (p + type) pinning layer 17 is disposed on the charge generation buried region 16.
  • a pinning layer 14 of the first conductivity type (p + type) is disposed on a part of the charge induction region 13.
  • the pinning layers 14 and 17 are layers that suppress the generation of carriers and the capture of signal carriers on the dark surface, and are used as preferred layers for reducing the capture of dark current and signal carriers.
  • FIG. 3 illustrates the case where the first conductivity type semiconductor region 11 is used as the “first conductivity type semiconductor region”, but the first conductivity type (p-type) semiconductor is used instead of the semiconductor region 11.
  • a first conductivity type (p-type) silicon epitaxial growth layer having a lower impurity density than the semiconductor substrate may be formed on the substrate, and the epitaxial growth layer may be employed as the first conductivity type semiconductor region.
  • a first conductivity type (p type) silicon epitaxial growth layer may be formed on an (n type) semiconductor substrate, and the epitaxial growth layer may be employed as the first conductivity type semiconductor region.
  • a first conductivity type (p-type) epitaxial growth layer is formed on a second conductivity type (n-type) semiconductor substrate so as to form a pn junction, light is emitted in the case of a long wavelength.
  • the semiconductor substrate penetrates deeply, the carriers generated by the light generated in the second conductivity type semiconductor substrate cannot enter the first conductivity type epitaxial growth layer because of the potential barrier due to the built-in potential of the pn junction.
  • Carriers generated deep in the conductive type semiconductor substrate can be positively discarded. This makes it possible to prevent carriers generated at a deep position from returning due to diffusion and leaking into adjacent pixels. This is particularly effective in preventing color mixing in the case of a single-plate color image sensor equipped with RGB color filters.
  • the semiconductor region 11 preferably has an impurity density of about 5 ⁇ 10 12 cm ⁇ 3 or more and about 5 ⁇ 10 16 cm ⁇ 3 or less.
  • the impurity density of the charge induction region 13 is such that the potential at the bottom of the potential valley for the majority carriers in the charge induction region 13 is deeper than the potential at the bottom of the potential valley formed by the charge generation buried region 16 (see FIG. 7). It is set higher than the charge generation buried region 16.
  • the impurity density of the charge generation embedded region 16 is about 1 ⁇ 10 17 cm ⁇ 3 or more and 8 ⁇ 10 18 cm ⁇ 3 or less, preferably about 2 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 18 cm.
  • about -3 typically may be employed are relatively depletion easily value, for example, of about 8 ⁇ 10 17 cm -3, the thickness thereof is 0.1 ⁇ 3 [mu] m approximately, preferably 0.1 It can be set to about 0.3 ⁇ m.
  • the impurity density of the charge induction region 13 is about 1 ⁇ 10 17 cm ⁇ 3 or more and 8 ⁇ 10 18 cm ⁇ 3 or less, preferably about 4 ⁇ 10 17 cm ⁇ 3 or more and 2 ⁇ 10 18 cm ⁇ 3.
  • a value of about 1.6 ⁇ 10 18 cm ⁇ 3 can be adopted, and the thickness is about 0.1 to 3 ⁇ m, preferably about 0.1 to 0.3 ⁇ m. It is possible.
  • the impurity density of the charge induction region 13 is set to 1.2 to 5 times, preferably about 1.5 to 2.5 times the impurity density of the charge generation buried region 16, the potential of the charge induction region 13 can be increased.
  • the potential at the bottom of the valley is appropriately deeper than the potential at the bottom of the potential valley formed by the charge generation buried region 16.
  • Impurity density of the reset generation region 12 is about 2 ⁇ 10 18 ⁇ 1 ⁇ 10 21 cm -3.
  • the impurity density of the pinning layers 14 and 17 is about 2.3 ⁇ 10 17 cm ⁇ 3 .
  • the impurity density of the charge readout region 15 is about 5 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the charge induction region 13 may be configured to function as a charge readout region.
  • a gate insulating film 19 is formed on the pinning layers 14 and 17, on the semiconductor region 11 between the pinning layers 14 and 17, and on the semiconductor region 11 between the reset generation region 12 and the charge induction region 13. .
  • the gate insulating film 19 is preferably a silicon oxide film (SiO 2 film), but may have an insulated gate structure of an insulated gate transistor (MIS transistor) using various insulating films other than the silicon oxide film.
  • MIS transistor insulated gate transistor
  • an ONO film composed of a three-layered film of silicon oxide film / silicon nitride film (Si 3 N 4 film) / silicon oxide film may be used.
  • At least one element of strontium (Sr), aluminum (Al), magnesium (Mg), yttrium (Y), hafnium (Hf), zirconium (Zr), tantalum (Ta), and bismuth (Bi) is contained.
  • An oxide containing, silicon nitride containing these elements, or the like can be used as the gate insulating film 19.
  • the thickness of the thermal oxide film may be about 150 nm or more and about 1000 nm or less, preferably about 200 nm or more and about 400 nm or less.
  • an oxide film (SiO 2 film) formed by standard CMOS technology for the gate insulating film 19 and using a field oxide film in the CMOS technology for the gate insulating film 19 simplifies the manufacturing process. Is suitable.
  • the potential of a transfer channel formed between the charge generation buried region 16 and the charge readout region 15 is controlled, and electrons generated by the charge generation buried region 16 are transferred to the charge readout region.
  • a transfer gate electrode 18 that transfers to the charge generation buried region 16 and the charge readout region 15 is disposed.
  • the gate insulating film 19 and the transfer gate electrode 18 on the gate insulating film 19 control the potential of the channel formed above the semiconductor region 11 between the charge generation buried region 16 and the charge reading region 15.
  • charge transfer means (18, 19) for transferring charges from the charge generation embedded region 16 to the charge readout region 15 is configured.
  • FIG. 4 shows an equivalent circuit of the signal readout circuit 8 of the semiconductor element shown in FIG.
  • the transfer transistor Q TX is connected constituted by the charge transfer means in the photodiode D 1, which forms the semiconductor region 11 and the charge generation buried region 16 (18, 19).
  • a control signal TX is applied to the transfer gate electrode 18 of the transfer transistor QTX .
  • the charge read area 15 indicated by the one electrode of the transfer transistor Q TX is connected to the gate electrode of the read transistor Q R. Drain region of the read transistor Q R is connected to power supply V DD, and a source region of the read transistor Q R is connected to the drain region of the switching transistor Q SL for pixel selection.
  • the switching transistor Q selection control signal SL to the gate electrode of the SL is applied.
  • the source region of the switching transistor Q SL is connected to the vertical signal line B j.
  • the semiconductor element according to the first embodiment is characterized by not having a reset transistor.
  • FIG. 4 the function of the reset generation region 12 shown in FIG. 3 is schematically shown, and the reset mechanism QRT is expressed by a symbol mark similar to the transistor whose gate electrode is indicated by a broken line, and the reset electrode having the gate electrode. Modeling that it can be reset without using.
  • the charge read area 15 of the pixel X ij, the gate electrode 31 of the read transistor Q R constituting the signal reading circuit 8 is connected through a surface wiring 27.
  • Drain region 35 of the read transistor Q R, via the surface wires 33,34,23 are connected to the power supply V DD, common region between the drain region of the switching transistor Q SL for the source region pixel selection of the read transistor Q R 30.
  • the source region 37 of the switching transistor Q SL for pixel selection is connected to the surface wiring 21 (the vertical signal line B j), the control signal for selection of a horizontal line to the gate electrode 32 SL (i) is via the surface wiring 25 From the vertical scanning circuit 3.
  • a current conducting switching transistor Q SL corresponds to the potential of the charge readout area 15 is amplified by the reading transistor (amplification transistor) Q R It flows to the surface wiring 21 (vertical signal line B j ).
  • the reset signal RT (i) is given to the reset generation region 12 via the reset wiring 22.
  • the variable voltage V Drain is set so as to change the height of the potential barrier (reset potential barrier) generated in the semiconductor region 11 sandwiched between the charge readout region 15 and the reset generation region 12.
  • the charge accumulated in the charge reading region 15 is discharged.
  • the reset signal RT (i) is generated in the semiconductor region 11 sandwiched between the reset generation region 12 and the charge readout region 15.
  • the height of the reset potential barrier is lowered to discharge a predetermined amount of charge, which is the majority of the charge accumulated in the charge readout region 15, so that the charge readout region 15 is set to the reset level. That is, the charge reading region 15 can be set to the reset level without providing a reset transistor having a reset gate electrode.
  • each circuit configuration including the correlated double sampling circuit CDS j and the analog / digital conversion circuit ADC j shown in FIG. 1 is connected to the switch circuit 41 and the output side of the switch circuit 41.
  • the adder 43 and the sample hold circuit 44 constitute an integrator.
  • An input signal from the vertical signal line B j is input to the switch circuit 41.
  • the switch circuit 41 outputs either an input signal or a reset level signal having a polarity opposite to that of the input signal ( ⁇ 1).
  • the adder 43 adds the input signal or reset level signal output from the switch circuit 41 and the signal fed back from the sample hold circuit 44 to perform multiple sampling.
  • the S / H circuit 44 holds the signal output from the adder 43 in accordance with the pulse signal ⁇ SI.
  • the ADC 45 converts the analog signal held in the S / H circuit 44 into a digital signal.
  • the register 46 holds the digital signal converted by the ADC 45. The noise is canceled by reading out the digital signal held by the register 46 to the outside through the switch 42 on the output side of the register 46.
  • FIG. 7 is a potential diagram in which the downward direction in the cross section (X direction) of the charge generation buried region 16, the charge readout region 15, and the reset generation region 12 in the horizontal plane in the cross sectional view of FIG. It is.
  • a potential valley PW1 indicating the position of the conduction band edge of the charge generation buried region 16 is shown on the left side of the center of FIG.
  • the potential well PW2 of the charge readout region 15 is shown on the right side of the potential valley PW1 via a transfer potential barrier.
  • a state in which electrons below the Fermi level are filled is indicated by hatching rising to the right.
  • the potential well PW3 of the reset generation region 12 is shown on the right side of the potential well PW2 via a reset potential barrier.
  • a state in which electrons below the Fermi level are filled is indicated by hatching rising to the right. Since the bottom depths of the potential well PW2 in the charge readout region 15 and the potential well PW3 in the reset generation region 12 are Fermi levels, the level of the upper end of the region indicated by the right-up hatching is the depth of the bottom of the potential well.
  • the height of the transfer potential barrier between the potential valley PW1 and the potential well PW2 is determined by the potential distribution at the conduction band edge of the semiconductor region 11 immediately below the transfer gate electrode 18, it can be controlled by the voltage of the transfer gate electrode 18.
  • the height of the reset potential barrier between the potential well PW2 and the potential well PW3 is such that the potential distribution at the conduction band edge of the semiconductor region 11 sandwiched between the charge readout region 15 and the reset generation region 12 is expressed in the reset generation region 12. It is determined by changing the applied voltage.
  • the transfer gate electrode 18 electrostatically controls the potential of the transfer channel via the gate insulating film 19. For example, when a low voltage (0 V or negative voltage) is applied to the transfer gate electrode 18 as the control signal TX, a transfer potential barrier against electrons is formed between the charge generation buried region 16 and the charge readout region 15, and charge generation is performed. No charge is transferred from the buried region 16 to the charge reading region 15.
  • FIG. 8 shows a potential diagram focusing on the reset potential barrier of FIG.
  • the charge required for resetting from the charge readout region 15 to the reset generation region 12 can be discharged.
  • FIG. 9 shows the peak potential V B of the reset potential barrier when the distance L between the charge readout region 15 and the reset generation region 12 is changed for two types of voltages V Drain as the reset signal RT, 3V and 25V .
  • the simulation result of MIN is shown.
  • FIG. 9 shows that as the distance L increases, the peak potential V B.MIN of the reset potential barrier decreases when the voltage V Drain as the reset signal RT is 3V or 25V.
  • the peak potential V B.MIN of the reset potential barrier changes sharply as the distance L increases. Therefore, it can be seen that when the distance L is increased, when the voltage V Drain as the reset signal RT is changed between 3 V and 25 V, the change in the height of the reset potential barrier is reduced.
  • FIG. 10 shows a potential diagram in which the downward direction is the positive direction of the potential by the three-dimensional simulation corresponding to the semiconductor element according to the first embodiment.
  • the simulation conditions are as follows: the impurity density of the charge generation buried region 16 is 6.75 ⁇ 10 16 cm ⁇ 3 , the impurity density of the pinning layer 17 is 2.24 ⁇ 10 17 cm ⁇ 3 , and the impurity density of the semiconductor region 11 is 5.
  • the height of the reset potential barrier between the region 15 and the reset generation region 12 is about 1V.
  • V Drain 25V
  • the height of the reset potential barrier between the charge readout region 15 and the reset generation region 12 was reduced to about 3V.
  • the charge in the charge reading region 15 is discharged through the reset generation region 12, and the charge reading region 15 can be reset to a predetermined residual charge amount level.
  • FIG. 13 shows the measurement result of the readout noise histogram.
  • 510 (vertical) ⁇ 31 (horizontal) 15810 pixels were captured, and the integration time was 149 msec.
  • the peak value of the read noise 0.27E - it was confirmed that the rms and low noise level.
  • the conversion gain for converting the voltage into electrons was 219.4 ⁇ V / e ⁇ .
  • the value of this conversion gain was obtained from the calculation results of photon shot noise and signal input / output as shown in FIG.
  • the parameter ⁇ is the expected number of events that occur within a given interval, and is the number of effective photons determined in the calculation, and corresponds to the average value.
  • FIG. 16 (a) the conversion gain is 219.4 ⁇ V / e - a is, 230LSB / e using an internal ADC - a and the noise is 0.27E - a rms, is detected photoelectrons in 100,000 The number of events (number of events) was measured.
  • FIG. 16 (a) also the conversion gain is 219.4 ⁇ V / e - a is, 230LSB / e using an internal ADC - is similar to FIG. 15 (a), the noise 0.26E - Figure in rms It is different from 15 (a).
  • FIG. 16A also measured the number of times photoelectrons were detected in 100,000 times.
  • the horizontal axis of FIG.15 (b) and FIG.16 (b) shows the number of photoelectrons (y).
  • the probability h (y) that photoelectrons are detected y times within a given interval can be obtained by the following equation (1).
  • x is the number of photoelectrons corresponding to each event and is a discrete value that is an average value of the Gaussian distribution
  • y is a continuous value corresponding to the number of detected photoelectrons
  • e 2.71828 is the number of Napier.
  • is a standard deviation indicating a read noise level
  • photoelectrons were captured by the solid-state imaging device according to the first embodiment and the conventional low-noise solid-state imaging device using a US Air Force (USAF) test chart.
  • Read noise level of the conventional low-noise CMOS image sensor 0.45E - a rms, pixel conversion gain 135 ⁇ V / e - a.
  • the sensor chip was air-cooled to ⁇ 10 ° C. and measured in an area of horizontal 35 ⁇ vertical 512 pixels.
  • FIGS. 17A to 17C show images in which photoelectrons are captured.
  • the signal (photoelectron) per pixel for 142 msec was calculated from the PCH of each pixel.
  • FIG. 17A shows a signal range of 0 to 20 electrons captured by the solid-state imaging device according to the first embodiment
  • FIG. 17B shows a signal range captured by the solid-state imaging device according to the first embodiment
  • FIG. 17C shows the signal range of 0 to 8 electrons captured by the conventional low noise solid-state imaging device.
  • the captured images of FIGS. 17 (a) to 17 (c) have different signal ranges adjusted by a fixed light intensity and ND filter.
  • the captured image of the solid-state imaging device according to the first embodiment shown in FIGS. 17A and 17B has a contrast as compared with the captured image of the conventional low noise CMOS image sensor shown in FIG. You can see that it was emphasized.
  • a solid-state imaging device was prototyped.
  • the number of effective pixels was set to horizontal 35 ⁇ vertical 512
  • the pixel size was set to 11.2 ⁇ m ⁇ 5.6 ⁇ m
  • the saturation capacity (FWC) was set to about 1500 electrons.
  • both the reset signal RT applied to the reset generation region 12 and the control signal TX applied to the transfer gate electrode 18 are maintained at the low (L) level, as shown in FIG. as, via the opening of the light blocking film 20 of each pixel X ij, it enters the photodiode D 1 of the respective pixel X ij.
  • Photodiode D 1 is the light incident through an opening of the light shielding film 20 receives an optical signal and converts the optical signal into an electric charge.
  • the switching transistor Q SL for pixel selection is turned on, the read transistor (amplification transistor) Q current vertical signal depending on the gate potential of R constituting the signal readout circuit shown in FIG. 19 Read through line Bj.
  • a positive voltage is applied to the reset generation region 12 and an electrostatic induction electric field from the reset generation region 12 is used to reset the reset generation region 12 and the charge readout region.
  • the reset potential barrier By changing the reset potential barrier to 15, the charge in the charge readout region 15 can be discharged to the reset generation region 12 and the reset operation can be performed. Therefore, the reset transistor having the reset gate electrode in the conventional pixel is not necessary. For this reason, since the parasitic capacitance between the reset gate electrode and the charge readout region in the conventional pixel can be removed, the floating diffusion capacitance can be reduced. As a result, a high pixel conversion gain can be obtained, noise inside the pixel can be reduced, and temporal fluctuations can be reduced. In addition, since a high conversion gain and a very low noise of the photon counting level can be achieved by using a standard CMOS technology without using a fine process, it is more efficient and more feasible than the conventional technology.
  • FIG. 20A shows the configuration of the semiconductor element according to the first modification of the first embodiment
  • FIG. 20 shows a potential diagram corresponding to FIG. 20A where the downward direction is the positive direction of the potential. Shown in (b).
  • the switching transistor Q to the source of the read transistor Q R signal reading circuit connected to the charge readout area 15 SW1 is connected, that the drain of the switching transistor Q SW2 to the vertical signal line B j is connected is different from the configuration of a signal readout circuit of a semiconductor device according to the first embodiment shown in FIG.
  • a variable voltage applied to the reset generation region 12, and the vertical signal line B j, the switching transistor Q SW1, a read transistor Q R, the switching transistor Q SW2 By changing the state, the charge accumulated in the charge reading region 15 is discharged. At this time, by using the gate capacitance of the read transistor Q R as a bootstrap capacitance to change the potential of the charge read area 15, to discharge the charges accumulated in the charge read area 15.
  • V Drain 0.5 V as a reset signal RT applied to the reset generation region 12, as shown in FIG. .
  • a voltage V Drain 0.5 V is applied as a variable voltage to the reset generation region 12.
  • the reset generation region 12 is set to a constant potential lower than the potential of the charge readout region 15, charges are supplied to the reset generation region 12 across the reset potential barrier, and the potential of the charge readout region 15 is reset and generated.
  • the potential V Drain applied to the region 12 is set to the same potential as 0.5 V.
  • the potential well PW2 in the charge readout region 15 and the potential well PW3 in the reset generation region 12 are filled with electrons, and the Fermi level is 0.5 V. Become.
  • the same potential V FD is set to 1 V.
  • the potential difference between the bottom potential of the potential well PW2 in the charge readout region 15 and the reset potential barrier is 2V.
  • the charge is generated by the bootstrap effect as shown in FIG.
  • the potential at the bottom of the potential well PW2 in the read region 15 becomes 3V, and the reset of the potential well PW2 in the charge read region 15 is completed.
  • a switching transistor Q SW1 connected between the power supply V DD and the read transistor Q R It can be represented as a circuit having a switching transistor Q SW2 connected between the control signal line and the vertical signal line B j having a predetermined voltage V R.
  • the transfer transistor Q TX is connected constituted by the charge transfer means in the photodiode D 1, which forms the semiconductor region 11 and the charge generation buried region 16 (18, 19).
  • the charge readout area indicated by one of the electrodes of the transfer transistor Q TX is connected to the gate electrode of the read transistor Q R.
  • Drain region of the read transistor Q R is connected to the switching transistor Q SW1, the source region of the read transistor Q R is connected to the drain region of the switching transistor Q SL for pixel selection.
  • the source region of the switching transistor Q SL is connected to the vertical signal line B j.
  • FIG. 24 the function of the reset generation region 12 shown in FIG. 20 is schematically shown, and the reset mechanism QRT is expressed by a symbol mark similar to the transistor whose gate electrode is indicated by a broken line, and the reset electrode having the gate electrode. Modeling that it can be reset without using.
  • FIG. 26 in addition to the two photodiodes D 1 and D 2 and the two transfer transistors Q TX1 and Q TX2 connected to the two photodiodes D 1 and D 2 , respectively. has a power supply V DD and the read transistor Q switching transistor Q SW1 connected between the R, the switching transistor Q SW2 connected between the control signal line and the vertical signal line B j having a predetermined voltage V R It may be. Further, as shown in FIG. 27, it may be configured to remove switching transistor Q SW2 from the configuration shown in FIG. 24, as shown in FIG. 28, the switching transistor Q SW2 from the configuration shown in FIG. 26 removed It may be the configuration.
  • the overall configuration of the solid-state imaging device according to the second embodiment of the present invention is substantially the same as the configuration shown in FIG.
  • the semiconductor element constituting the pixel X ij of the solid-state imaging device according to the second embodiment is shown in FIG. 29A corresponding to the plan view of FIG. 29 and the cross-sectional view seen from the AA direction of FIG.
  • the horizontal electric field control transistor having the pair of horizontal electric field control gate electrodes 51 and 52 is provided, and the transfer channel is provided between the pair of horizontal electric field control gate electrodes 51 and 52.
  • each of the pair of lateral electric field control gate electrodes 51 and 52 is arranged symmetrically across the transfer channel between the charge generation buried region 16 and the charge readout region 15.
  • an n-type transfer channel 56c having a narrower width than the charge generation buried region 16 is formed above the semiconductor region 11 between the lateral electric field control gate electrodes 51 and 52.
  • An n-type semiconductor region 57 having a width wider than that of the charge generation buried region 16 is disposed.
  • a charge induction region 56b that guides the charge transferred from the charge generation buried region 16 to the charge readout region 15, and the charge induction region 56b It is in contact with the reading area 15.
  • an n-type charge introduction portion 56a that introduces charges from the charge generation buried region 16 to the transfer channel 56c is provided, which is opposite to the side where the lateral electric field control gate electrodes 51 and 52 are adjacent to each other.
  • n + type semiconductor regions 53 and 54 are arranged, respectively.
  • the bottom of the semiconductor region 57 is deeper than the bottom of the charge generation buried region 16, and the bottom of the transfer channel 56c is deeper than the bottom of the semiconductor region 57.
  • the impurity density n 2 of the semiconductor region 57 is set lower than the impurity density n 0 of the charge generator buried region 16, the charge inlet portion 56a, the transfer channel 56c, the impurity density n 1 of the charge guiding area 56b is generated buried charge It is set higher than the impurity density n 2 impurity density n 0 and the semiconductor region 57 in the write area 16.
  • the magnitude relationship among the impurity density n 2 of the semiconductor region 57, the impurity density n 0 of the charge generation buried region 16, the charge introduction portion 56a, the transfer channel 56c, and the impurity density n 1 of the charge induction region 56b is not limited to this.
  • the potential distribution has steps corresponding to the charge generation buried region 16, the transfer channel 56 c, and the semiconductor region 57.
  • Charges can be transferred from the charge generation buried region 16 to the charge induction region 56b by controlling the potential of the transfer channel 56c sandwiched between the lateral electric field control gate electrodes 51 and 52 by the voltage of the lateral electric field control gate electrodes 51 and 52. .
  • FIG. 31 shows an equivalent circuit of the semiconductor element according to the second embodiment.
  • the lateral electric field control transistor Q TX gate electrode is indicated by a dashed line having a pair of transverse electric field control gate electrodes 51 and 52, the broken line with no gate electrode transistor is provided on the transfer channel Is equivalent to the structure.
  • Transverse electric field control transistor Q TX pair of transverse electric field control gate electrodes 51 and 52 on the photodiode D 1 to function equivalently forming the semiconductor region 11 and the charge generation buried region 16 is virtually connected.
  • the charge readout area indicated by one of the electrodes of the lateral electric field control transistor Q TX defined by a pair of transverse electric field control gate electrodes 51 and 52 are connected to the gate electrode of the read transistor Q R.
  • Drain region of the read transistor Q R is connected to the power supply V DD, and a source region of the read transistor Q R is connected to the drain region of the switching transistor Q SL for pixel selection.
  • the source region of the switching transistor Q SL is connected to the vertical signal line B j.
  • a positive voltage is applied to the reset generation region 12 shown in FIG.
  • the reset potential barrier between the reset generation region 12 and the charge readout region 15 By changing the reset potential barrier between the reset generation region 12 and the charge readout region 15 using an electric field, the charge in the charge readout region 15 can be discharged to the reset generation region 12 and the reset operation can be performed. High pixel conversion gain and extremely low noise can be realized. Further, since no transfer gate electrode is disposed immediately above the transfer channel between the charge generation buried region 16 and the charge read region 15, the parasitic capacitance around the charge read region 15 is reduced as in the first embodiment. This can be further reduced as compared with the case.
  • Each of the plural (two) lateral electric field control transistors Q TX1 and Q TX2 has a gate electrode indicated by a symbol mark represented by a broken line, which means that it is equivalent to a transistor without a gate electrode.
  • a switching transistor Q SW1 connected between the power supply V DD and the read transistor Q R is connected between the control signal line and the vertical signal line B j having a predetermined voltage V R
  • the switching transistor QSW2 may be included.
  • two photodiodes D 1 and D 2 and two lateral electric field control transistors Q TX1 and Q TX2 connected to each of the two photodiodes D 1 and D 2 has a power supply V DD and the read transistor Q switching transistor Q SW1 connected between the R, the switching transistor Q SW2 connected between the control signal line and the vertical signal line B j having a predetermined voltage V R It may be. 35, the switching transistor Q SW2 may be removed from the configuration shown in FIG. 33. As shown in FIG. 36, the switching transistor Q SW2 may be removed from the configuration shown in FIG. It may be the configuration.
  • switching transistors Q 11 , Q 12 , Q 13 ,... Q 1m are provided in a peripheral circuit outside the pixel X ij. This is different from the configuration of the solid-state imaging device according to the first embodiment.
  • the bit line B j to which the switching transistor Q SL constituting the signal readout circuit of the semiconductor element constituting the pixel X ij of the solid-state imaging device according to the third embodiment is connected is connected to the pixel the switching transistor Q 1j outer peripheral circuits X ij is connected.
  • the switching transistor Q SW1 is connected to the read transistor Q R constituting the signal readout circuit of a semiconductor device according to the third embodiment.
  • the readout method of the solid-state imaging device according to the third embodiment corresponds to the bootstrap operation described with reference to FIGS.
  • the control signal TX applied to the transfer gate electrode 18 is maintained at the low (L) level (0 V), and the control signal SW applied to the gate electrode of the switching transistor Q SW1 is set to low (L ) Level (0V). Since the inverted signal of the control signal SW is applied to the gate electrode of the switching transistor Q 1j, the switching transistor Q 1j becomes high (H) level.
  • the reset signal RT applied to the reset generation region 12 shifts from the high (H) level (3V) to the low (L) level (0.5V)
  • the voltage V FD of the charge readout region 15 0. It drops to 5V.
  • the photodiode receives incident light as an optical signal and converts the optical signal into electric charge.
  • the control signal TX applied to the transfer gate electrode 18 becomes high (H) level (3.3 V) at time t5
  • the charge is transferred from the charge generation buried region 16 to the charge readout region 15 at times t5 to t6.
  • the potential V FD of the charge read region 15 decreases by ⁇ V SIG .
  • the switching transistors Q 11 , Q 12 , Q 13 ,... Q 1m are provided in the peripheral circuit outside the pixel X ij , high pixel conversion gain and pole Low noise can be realized.
  • the solid-state imaging device according to the fourth embodiment of the present invention includes switching transistors Q 11 , Q 12 , Q 13 ,... Q 1m and switching transistors Q 21 , Q 22 , Q 23 ,.
  • the difference from the configuration of the solid-state imaging device according to the third embodiment of the present invention is that Q 2m is provided in the peripheral circuit outside the pixel X ij .
  • the drain region of the read transistor (amplification transistor) Q R constituting the signal readout circuit of a semiconductor device according to the fourth embodiment is the switching transistor Q 2j is a peripheral circuit of the pixel X ij Connected.
  • the driving method of the solid-state imaging device according to the solid-state imaging device according to the fourth embodiment is substantially the same as the driving method of the solid-state imaging device according to the third embodiment.
  • the switching transistor Q 11, Q 12, Q 13 , ... Q 1m and the switching transistor Q 21, Q 22, Q 23 , ... outside the pixel X ij and Q 2m Since the size of each pixel X ij can be reduced by providing it in the peripheral circuit, it is possible to realize a high spatial resolution.
  • the first conductivity type is p-type and the second conductivity type is n-type.
  • the first conductivity type is n-type and the second conductivity type is n-type. It will be easily understood that the same effect can be obtained even if the two conductivity type is p-type, if the electrical polarity is reversed.
  • a two-dimensional solid-state imaging device in which a plurality of semiconductor elements of the present invention are two-dimensionally arranged has been described as an example.
  • These semiconductor elements should not be interpreted so as to be used only for the pixels of the two-dimensional solid-state imaging device.
  • the present invention is used for various image sensors such as a security camera utilizing ultra-high sensitivity, an ultra-sensitive vehicle camera for supervision for night vision such as a broadcasting camera, and a super-resolution biomicroscope camera. Is possible.
  • Gate insulating film 20 Light-shielding films 21, 23, 25, 27, 33, 34 ... Surface wiring 22 ... Reset wiring 30 ... Common region 31, 32 ... Gate electrode 35 ... Drain region 37 ... Source region 41 ... Switch circuit 42 ... Switch 43 ... Adder 44 ... Sample hold (S / H) circuit 45 ... Analog-to-digital converter (ADC) ) 46 ... Registers 51, 52 ... Horizontal electric field control gate electrodes 53, 54, 57 ... Semiconductor region 56a ... Charge introduction part 56c ... Transfer channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

高い画素変換利得及びフォトン計数レベルの極低ノイズを実現可能な半導体素子及びこの半導体素子を画素として用いた固体撮像装置を提供する。第1導電型の半導体領域(11)と、半導体領域(11)の上部の一部に埋め込まれ、半導体領域(11)とフォトダイオード(D1)をなして電荷を生成する第2導電型の電荷生成埋込領域(16)と、半導体領域(11)に設けられ、電荷生成埋込領域(16)から転送された電荷を蓄積する第2導電型の電荷読出領域(15)と、半導体領域(11)に設けられた第2導電型のリセット生成領域(12)とを備え、電荷読出領域(15)とリセット生成領域(12)の間に挟まれた半導体領域(11)に生じた電位障壁の高さを変化させるように可変電圧をリセット生成領域(12)に印加して、電荷読出領域(15)に蓄積された電荷を排出させる。

Description

半導体素子及び固体撮像装置
 本発明は、光が生成した電子を転送、蓄積する機能を持った半導体素子、及びこの半導体素子を1次元又は2次元に複数配列した固体撮像装置に関する。
 低ノイズイメージング技術はバイオ・医療分野や科学分野など様々な分野に応用可能であるため、近年は低ノイズイメージングに対する関心が高まっている。回路の技術の進化で1ノイズ電子付近までは実現できているが、所謂フォトン計数(フォトンカウンティング)と呼ばれる極低ノイズイメージングを実用化するためには、ノイズレベルを更に低減する必要がある。
 従来、CCDイメージセンサにおいて、n型の浮遊拡散層とリセットドレイン領域とでp型の半導体領域を挟んだ構成を有し、浮遊拡散層の信号電荷のリセット動作の際には、リセットドレイン領域に直接パルス電圧を与えることにより、浮遊拡散層とリセットドレイン領域とで挟まれた半導体領域にパンチスルーを起こさせて、電荷を排出する手法が知られている(特許文献1参照)。特許文献1に記載の構成によれば、従来のリセットゲート電極が不要となり、浮遊拡散層との間の寄生容量がなくなるので、浮遊拡散層容量を小さくでき、感度を向上できる。
特開平7-106553号公報
 一方、CMOSイメージセンサにおいて、極低ノイズイメージングを実用化するための開発が行われているが、標準的なCMOSイメージセンサのプロセスを用いて、高い画素変換利得及びフォトン計数レベルの極低ノイズを実現することは困難である。
 本発明は、高い画素変換利得及びフォトン計数レベルの極低ノイズを実現可能な半導体素子、及びこの半導体素子をセンサ要素(画素)として用いた固体撮像装置を提供することを目的とする。
 上記目的を達成するために、本発明の第1の態様は、(a)第1導電型の半導体領域と、(b)半導体領域の上部の一部に埋め込まれ、半導体領域とフォトダイオードをなして電荷を生成する第2導電型の電荷生成埋込領域と、(c)電荷生成埋込領域から離間して半導体領域の他の一部に設けられ、電荷生成埋込領域から転送された電荷を蓄積する第2導電型の電荷読出領域と、(d)電荷生成埋込領域から電荷読出領域への電荷の転送を制御する電荷転送手段と、(e)電荷読出領域から離間した半導体領域の更に他の一部に設けられた第2導電型のリセット生成領域とを備え、電荷読出領域とリセット生成領域の間に挟まれた半導体領域に生じた電位障壁の高さを変化させるように可変電圧をリセット生成領域に印加して、電荷読出領域に蓄積された電荷を排出させる半導体素子であることを要旨とする。
 本発明の第2の態様は、(a)第1導電型の半導体領域と、(b)半導体領域の上部の一部に埋め込まれ、半導体領域とフォトダイオードをなして電荷を生成する第2導電型の電荷生成埋込領域と、(c)電荷生成埋込領域から離間して半導体領域の他の一部に設けられ、電荷生成埋込領域から転送された電荷を蓄積する第2導電型の電荷読出領域と、(d)電荷生成埋込領域から電荷読出領域への電荷の転送を制御する電荷転送手段と、(e)電荷読出領域から離間した半導体領域の更に他の一部に設けられた第2導電型のリセット生成領域とを備え、電荷読出領域とリセット生成領域の間に挟まれた半導体領域に生じた電位障壁の高さを変化させるように可変電圧をリセット生成領域に印加して、電荷読出領域に蓄積された電荷を排出させる画素を複数配列した固体撮像装置であることを要旨とする。
 本発明によれば、高い画素変換利得及びフォトン計数レベルの極低ノイズを実現可能な半導体素子、及びこの半導体素子をセンサ要素(画素)として用いた固体撮像装置を提供することができる。
本発明の第1の実施の形態に係る固体撮像装置(2次元イメージセンサ)の半導体チップ上のレイアウトを説明する模式的な平面図である。 第1の実施の形態に係る固体撮像装置の画素の一部となる半導体素子の構成を説明する概略的な平面図である。 図2のA-A方向から見た模式的な断面図である。 第1の実施の形態に係る半導体素子の等価回路図である。 図2の半導体素子の構成に、読み出しトランジスタ(増幅トランジスタ)、画素選択用のスイッチングトランジスタ及び表面配線等を更に追加した概略的な平面図である。 第1の実施の形態に係る固体撮像装置の相関二重サンプリング回路及びアナログ・デジタル変換回路の構成の一例を示す回路図である。 第1の実施の形態に係る半導体素子の転送ゲート電極に印加する電圧を変化させた場合のポテンシャル図である。 第1の実施の形態に係る半導体素子のリセット生成領域に印加する電圧を変化させたときのポテンシャル図である。 第1の実施の形態に係る半導体素子の電荷読出領域の端部とリセット生成領域の間の距離と、リセット電位障壁の高さとの関係を示すグラフである。 第1の実施の形態に係る半導体素子のリセット生成領域に3Vの電圧を印加したときの3次元シミュレーションによるポテンシャル図である。 第1の実施の形態に係る半導体素子のリセット生成領域に3Vの電圧を印加したときのリセット電位障壁に着目した3次元シミュレーションによるポテンシャル図である。 第1の実施の形態に係る半導体素子のリセット生成領域に25Vの電圧を印加したときのリセット電位障壁に着目した3次元シミュレーションによるポテンシャル図である。 第1の実施の形態に係る固体撮像装置の読み出しノイズヒストグラムの測定結果を示すグラフである。 第1の実施の形態に係る固体撮像装置の入出力の関係を示すグラフである。 図15(a)は、第1の実施の形態に係る固体撮像装置の光電子計測ヒストグラム(PCH)の測定結果を示すグラフであり、図15(b)は、図15(a)に対応するポアソン分布の理論曲線を示すグラフである。 図16(a)は、第1の実施の形態に係る固体撮像装置のPCHの測定結果を示すグラフであり、図16(b)は、図16(a)に対応するポアソン分布の理論曲線を示すグラフである。 図17(a)は、米国空軍(USAF)テストチャートを用いて第1の実施の形態に係る固体撮像装置により捕獲された捕獲された0~20電子の信号範囲の画像であり、図17(b)は、USAFテストチャートを用いて第1の実施の形態に係る固体撮像装置により捕獲された0~8電子の信号範囲画像であり、図17(c)は、USAFテストチャートを用いて従来の低ノイズの固体撮像装置により捕獲された0~8電子の信号範囲の画像である。 第1の実施の形態に係る固体撮像装置の読み出し方法を、1フレームについて説明するタイミングチャートである。 第1の実施の形態に係る半導体素子の信号読み出し回路の構成を含む模式的な断面図である。 図20(a)は、第1の実施の形態の第1の変形例に係る半導体素子の構成を説明する概略的な断面図であり、図20(b)は、第1の実施の形態の第1の変形例に係る半導体素子のポテンシャル図である。 図21(a)は、第1の実施の形態の第1の変形例に係る半導体素子の読み出し方法を説明するための信号読み出し回路の模式的な回路図であり、図21(b)は、第1の実施の形態の第1の変形例に係る半導体素子の図21(a)に対応した状態におけるポテンシャル図である。 図22(a)は、第1の実施の形態の第1の変形例に係る半導体素子の読み出し方法を説明するための信号読み出し回路の模式的な回路図であり、図22(b)は、第1の実施の形態の第1の変形例に係る半導体素子の図22(a)に対応した状態におけるポテンシャル図である。 図23(a)は、第1の実施の形態の第1の変形例に係る半導体素子の読み出し方法を説明するための信号読み出し回路の模式的な回路図であり、図23(b)は、第1の実施の形態の第1の変形例に係る半導体素子の図23(a)に対応した状態におけるポテンシャル図である。 第1の実施の形態の第1の変形例に係る半導体素子の等価回路図である。 第1の実施の形態の第2の変形例に係る半導体素子の模式的な回路図である。 第1の実施の形態の第2の変形例に係る半導体素子の模式的な回路図である。 第1の実施の形態の第2の変形例に係る半導体素子の模式的な回路図である。 第1の実施の形態の第2の変形例に係る半導体素子の模式的な回路図である。 第2の実施の形態に係る固体撮像装置の半導体素子の構成を説明する概略的な平面図である。 図30(a)は、図29のA-A方向から見た模式的な断面図であり、図30(b)は、図30(a)に対応するポテンシャル図である。 第2の実施の形態に係る半導体素子の等価回路図である。 第2の実施の形態の変形例に係る半導体素子の模式的な回路図である。 第2の実施の形態の変形例に係る半導体素子の模式的な回路図である。 第2の実施の形態の変形例に係る半導体素子の模式的な回路図である。 第2の実施の形態の変形例に係る半導体素子の模式的な回路図である。 第2の実施の形態の変形例に係る半導体素子の模式的な回路図である。 第3の実施の形態に係る固体撮像装置の半導体チップ上のレイアウトを説明する模式的な平面図である。 第3の実施の形態に係る固体撮像装置の画素の一部となる半導体素子の概略的な断面図である。 第3の実施の形態に係る固体撮像装置の読み出し方法を説明するためのタイミングチャートである。 第4の実施の形態に係る固体撮像装置の半導体チップ上のレイアウトを説明する模式的な平面図である。 第4の実施の形態に係る固体撮像装置の画素の一部となる半導体素子の概略的な断面図である。
 次に、図面を参照して、第1~第4の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 又、以下に示す第1~第4の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、染色した生体細胞からの蛍光や蛍光寿命を測定するバイオイメージング用固体撮像装置、或いは、各種の計測を行う時間相関イメージセンサ等の種々の固体撮像装置に適用可能である。又、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでなく、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
 以下の第1~第4の実施形態の説明では、第1導電型がp型、第2導電型がn型の場合について例示的に説明するが、導電型を逆の関係に選択して、第1導電型がn型、第2導電型がp型としても構わない。 第1導電型がp型、第2導電型がn型の場合は、信号電荷としてのキャリアは電子となるが、第1導電型がn型、第2導電型がp型の場合は、信号電荷としてのキャリアは正孔(ホール)となることは、勿論である。又、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」は、互いに交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。
 (第1の実施の形態)
 本発明の第1の実施の形態に係る固体撮像装置(2次元イメージセンサ)は、図1に示すように、画素アレイ部1と周辺回路部(2,3,4,6,7)とを同一の半導体チップ上に集積化している。画素アレイ部1には、2次元マトリクス状に多数の画素Xij(i=1~m;j=1~n:m,nはそれぞれ整数である。)が配列されており、例えば、方形状の撮像領域を構成している。画素アレイ部1の下辺部には、画素行X11,X12,X13,……,X1m;X21,X22,X23,……,X2m;X31,X32,X33,……,X3m;……;Xn1,Xn2,Xn3,……,Xnm方向に沿って水平走査回路2が設けられ、画素アレイ部1の左辺部には画素列X11,X21,X31,……,Xn1;X12,X22,X32,……,Xn2;X13,X23,X33,……,Xn3;……;X1m,X2m,X3m,……,Xnm方向に沿って垂直走査回路3が設けられている。垂直走査回路3及び水平走査回路2には、タイミング発生回路4が接続されている。
 これらのタイミング発生回路4、水平走査回路2及び垂直走査回路3によって画素アレイ部1内の単位画素Xijが順次走査され、画素信号の読み出しや電子シャッタ動作が実行される。即ち、第1の実施の形態に係る固体撮像装置では、画素アレイ部1を各画素行X11,X12,X13,……,X1m;X21,X22,X23,……,X2m;X31,X32,X33,……,X3m;……;Xn1,Xn2,Xn3,……,Xnm単位で垂直方向に走査することにより、各画素行X11,X12,X13,……,X1m;X21,X22,X23,……,X2m;X31,X32,X33,……,X3m;……;Xn1,Xn2,Xn3,……,Xnmの画素信号を各画素列X11,X21,X31,……,Xn1;X12,X22,X32,……,Xn2;X13,X23,X33,……,Xn3;……;X1m,X2m,X3m,……,Xnm毎に設けられた垂直信号線B,B2,B3,……,Bmによって画素信号を読み出す構成となっている。
 各垂直信号線B,B2,B3,……,Bmから読み出された画素信号は、ノイズキャンセル回路6の相関二重サンプリング回路CDS1,CDS2,CDS3,……,CDSmにおいて信号処理され、更に信号処理回路7のアナログ・デジタル変換回路ADC,ADC2,ADC3,……,ADCにおいて信号処理された後、撮像信号として図示を省略した外部回路に出力される。
 第1の実施の形態に係る固体撮像装置のそれぞれの画素Xijとして機能する半導体素子の平面構造の一例を、図2に示し、図2の平面図における半導体素子のA-A方向から見た対応する断面図を図3に示す。図3に示すように、画素Xijの一部となる半導体素子は、第1導電型(p型)の半導体領域11と、半導体領域11の上部に埋め込まれ、光を入射する第2導電型(n型)の電荷生成埋込領域(受光カソード領域)16と、半導体領域11の上部の一部に電荷生成埋込領域16から右方に離間して埋め込まれ、電荷生成埋込領域16により生成された電荷を蓄積する第2導電型(n型)の電荷読出領域15と、半導体領域11の上部の一部に電荷読出領域15に接して埋め込まれ、電荷生成埋込領域16により生成された電荷を電荷読出領域15へ導く、電荷読出領域15よりも低不純物密度の第2導電型(n型)の電荷誘導領域13と、半導体領域11の上部の一部に電荷読出領域15から右方に離間して埋め込まれた第2導電型(n型)のリセット生成領域12とを備える。第1の実施の形態では、電荷読出領域15及び電荷誘導領域13の部分が電荷読出領域の機能をなす。
 電荷生成埋込領域16と、電荷生成埋込領域16の直下の半導体領域(アノード領域)11とで埋込フォトダイオード(以下において、単に「フォトダイオード」という。)Dを構成している。図3に示すように、遮光膜20の開口部は、光電荷の発生が、フォトダイオードを構成している電荷生成埋込領域16の直下の半導体領域11で生じるように選択的に設けられている。図3では、ゲート絶縁膜19のみを示しているが、遮光膜20は、図示を省略した多層配線構造をなす複数の層間絶縁膜の内のいずれかの上部に設けられたアルミニウム(Al)等の金属薄膜で構成すれば良い。
 電荷生成埋込領域16の上には第1導電型(p型)のピニング層17が配置されている。電荷誘導領域13の上の一部には、第1導電型(p型)のピニング層14が配置されている。ピニング層14,17は、ダーク時の表面でのキャリアの生成や信号キャリアの捕獲を抑制する層であり、ダーク電流や信号キャリアの捕獲の削減のために好ましい層として用いている。
 図3では、「第1導電型の半導体領域」として、第1導電型の半導体領域11を用いる場合を例示しているが、半導体領域11の代わりに、第1導電型(p型)の半導体基板上に、半導体基板よりも低不純物密度の第1導電型(p型)のシリコンエピタキシャル成長層を形成して、エピタキシャル成長層を第1導電型の半導体領域として採用しても良く、第2導電型(n型)の半導体基板上に、第1導電型(p型)のシリコンエピタキシャル成長層を形成して、エピタキシャル成長層を第1導電型の半導体領域として採用しても良い。第2導電型(n型)の半導体基板上に、pn接合を形成するように、第1導電型(p型)のエピタキシャル成長層を形成すれば、長い波長の場合光が、第2導電型の半導体基板深くまで浸入するが、第2導電型の半導体基板で発生した光によるキャリアは、pn接合のビルトインポテンシャルによる電位障壁のため第1導電型のエピタキシャル成長層まで入って来られないので、第2導電型の半導体基板深くで発生したキャリアを積極的に捨てることができる。これによって、深い位置で発生したキャリアが拡散で戻ってきて、隣の画素に漏れ込むのを防ぐことが可能になる。これは特に、RGBのカラーフィルタが搭載された単板カラーのイメージセンサの場合に、色の混合を起こさないようにできる効果を奏する。
 半導体領域11は、不純物密度5×1012cm-3程度以上、5×1016cm-3程度以下が好ましい。電荷誘導領域13の多数キャリアに対するポテンシャル谷の底の電位が、電荷生成埋込領域16がなすポテンシャル谷の底の電位よりも深くなるように(図7参照)、電荷誘導領域13の不純物密度は電荷生成埋込領域16よりも高く設定している。例えば、電荷生成埋込領域16の不純物密度は、1×1017cm-3程度以上、8×1018cm-3程度以下、好ましくは2×1017cm-3程度以上、1×1018cm-3程度以下、代表的には、例えば8×1017cm-3程度の比較的空乏化が容易な値が採用可能であり、その厚さは0.1~3μm程度、好ましくは0.1~0.3μm程度とすることが可能である。
 一方、電荷誘導領域13の不純物密度は、1×1017cm-3程度以上、8×1018cm-3程度以下、好ましくは4×1017cm-3程度以上、2×1018cm-3程度以下、代表的には、例えば1.6×1018cm-3程度の値が採用可能であり、その厚さは0.1~3μm程度、好ましくは0.1~0.3μm程度とすることが可能である。電荷誘導領域13の不純物密度は、電荷生成埋込領域16の不純物密度の1.2~5倍、好ましくは1.5~2.5倍程度に設定しておけば、電荷誘導領域13のポテンシャル谷の底の電位が、電荷生成埋込領域16がなすポテンシャル谷の底の電位よりも適度に深くなる。
 リセット生成領域12の不純物密度は2×1018~1×1021cm-3程度である。ピニング層14,17の不純物密度は2.3×1017cm-3程度である。電荷読出領域15の不純物密度は5×1018~1×1021cm-3程度である。なお、電荷誘導領域13が無く、電荷が電荷生成埋込領域16からチャネル部を介して電荷読出領域15へ転送される構成であってもよい。逆に、電荷読出領域15が無い場合は、電荷誘導領域13の部分が電荷読出領域の機能をなすように構成してもよい。
 ピニング層14,17上、ピニング層14,17間の半導体領域11の上、及びリセット生成領域12と電荷誘導領域13との間の半導体領域11の上にはゲート絶縁膜19が形成されている。ゲート絶縁膜19としては、シリコン酸化膜(SiO膜)が好適であるが、シリコン酸化膜以外の種々の絶縁膜を用いた絶縁ゲート型トランジスタ(MISトランジスタ)の絶縁ゲート構造をなしても良い。例えば、シリコン酸化膜/シリコン窒化膜(Si膜)/シリコン酸化膜の3層積層膜からなるONO膜でも良い。更には、ストロンチウム(Sr)、アルミニウム(Al)、マグネシウム(Mg)、イットリウム(Y)、ハフニウム(Hf)、ジルコニウム(Zr)、タンタル(Ta)、ビスマス(Bi)のいずれか1つの元素を少なくとも含む酸化物、又はこれらの元素を含むシリコン窒化物等がゲート絶縁膜19として使用可能である。
 ゲート絶縁膜19を熱酸化膜で形成する場合は、熱酸化膜の厚さは、150nm程度以上、1000nm程度以下、好ましくは200nm程度以上、400nm程度以下とすれば良い。ゲート絶縁膜19を熱酸化膜以外の誘電体膜とする場合は、熱酸化膜の比誘電率εr(1MHzでεr=3.8)で換算した等価な厚さとすれば良い。例えば、比誘電率εr=4.4であるCVD酸化膜を用いるのであれば上記厚さを4.4/3.8=1.16倍した厚さを、比誘電率εr=7であるシリコン窒化物(Si34)膜をゲート絶縁膜19に用いるのであれば上記厚さを7/3.8=1.84倍した厚さを採用すれば良い。但し、標準的なCMOS技術で形成される酸化膜(SiO2膜)をゲート絶縁膜19に用いるのが好ましく、CMOS技術におけるフィールド酸化膜をゲート絶縁膜19に用いるのが製造工程の簡略化に適している。
 ゲート絶縁膜19の上部には、電荷生成埋込領域16と電荷読出領域15との間に形成される転送チャネルの電位を制御して、電荷生成埋込領域16が生成した電子を電荷読出領域15へ転送する転送ゲート電極18が電荷生成埋込領域16と電荷読出領域15の間に配置されている。又、ゲート絶縁膜19とゲート絶縁膜19上の転送ゲート電極18とで、電荷生成埋込領域16と電荷読出領域15との間の半導体領域11の上部に形成されるチャネルの電位を制御して、電荷生成埋込領域16から電荷読出領域15へ電荷を転送する電荷転送手段(18,19)を構成している。
 図3に示した半導体素子の信号読み出し回路8の等価回路を図4に示す。半導体領域11と電荷生成埋込領域16でなすフォトダイオードDに電荷転送手段(18,19)により構成される転送トランジスタQTXが接続されている。転送トランジスタQTXの転送ゲート電極18には制御信号TXが印加される。転送トランジスタQTXの一方の電極で示される電荷読出領域15には読み出しトランジスタQのゲート電極が接続されている。読み出しトランジスタQのドレイン領域は電源VDDに接続され、読み出しトランジスタQのソース領域は画素選択用のスイッチングトランジスタQSLのドレイン領域に接続される。スイッチングトランジスタQSLのゲート電極には選択用制御信号SLが印加される。スイッチングトランジスタQSLのソース領域は垂直信号線Bjに接続されている。
 第1の実施の形態に係る半導体素子はリセットトランジスタを有さないことを特徴とする。図4においては、図3に示したリセット生成領域12による機能を模式的に、ゲート電極を破線で示したトランジスタに類似したシンボルマークによって、リセット機構QRTを表現し、ゲート電極を有するリセット電極を用いないでリセットできることをモデル化している。
 図5に示すように、画素Xijの電荷読出領域15には、信号読み出し回路8を構成する読み出しトランジスタQのゲート電極31が表面配線27を介して接続されている。読み出しトランジスタQのドレイン領域35は、表面配線33,34,23を介して電源VDDに接続され、読み出しトランジスタQのソース領域は画素選択用のスイッチングトランジスタQSLのドレイン領域との共通領域30をなしている。画素選択用のスイッチングトランジスタQSLのソース領域37は、表面配線21(垂直信号線Bj)に接続され、ゲート電極32には水平ラインの選択用制御信号SL(i)が表面配線25を介して垂直走査回路3から与えられる。選択用制御信号SL(i)をハイ(H)レベルにすることにより、スイッチングトランジスタQSLが導通し、読み出しトランジスタ(増幅トランジスタ)Qで増幅された電荷読出領域15の電位に対応する電流が表面配線21(垂直信号線Bj)に流れる。
 一方、リセット生成領域12にはリセット配線22を介してリセット信号RT(i)が与えられる。第1の実施の形態においては、電荷読出領域15とリセット生成領域12の間に挟まれた半導体領域11に生じた電位障壁(リセット電位障壁)の高さを変化させるように可変電圧VDrainをリセット生成領域12に印加して、電荷読出領域15に蓄積された電荷を排出させる。例えば、リセット信号RT(i)として電圧VDrain=20V程度のハイ(H)レベルの電圧を印加することにより、リセット生成領域12と電荷読出領域15の間に挟まれた半導体領域11に生成されるリセット電位障壁の高さを下げて、電荷読出領域15に蓄積された電荷の大部分となる所定量の電荷を吐き出し、電荷読出領域15をリセットレベルにする。即ち、リセットゲート電極を有するリセットトランジスタを設けなくても、電荷読出領域15をリセットレベルに設定することができる。
 図1に示した相関二重サンプリング回路CDSとアナログ・デジタル変換回路ADCからなる回路構成のそれぞれは、図6に示すように、スイッチ回路41と、スイッチ回路41の出力側に接続された加算器43と、加算器43の出力側に接続されたサンプルホールド(S/H)回路44と、S/H回路44の出力側に接続されたアナログ・デジタル変換器(ADC)45と、ADC45の出力側に接続されたレジスタ46とを有する。加算器43及びサンプルホールド回路44により積分器が構成されている。
 スイッチ回路41には垂直信号線Bjからの入力信号が入力される。スイッチ回路41は、入力信号と、入力信号とは逆極性(-1)のリセットレベルの信号とのいずれかを出力する。加算器43は、スイッチ回路41から出力される入力信号又はリセットレベルの信号と、サンプルホールド回路44からフィードバックされる信号とを加算して多重サンプリングする。S/H回路44は、パルス信号φSIに応じて、加算器43から出力された信号を保持する。S/H回路44の出力を加算器43に入力することで、多数回数サンプリングして平均化した信号と、同じ処理を行った初期値レベルとの相関差分を求めることができる。相関差分を求めることで、フリーズノイズ、特に熱ノイズを低減できる。サンプリングしてADC45は、S/H回路44に保持されたアナログ信号をデジタル信号に変換する。レジスタ46は、ADC45により変換されたデジタル信号を保持する。レジスタ46により保持されたデジタル信号を、レジスタ46の出力側のスイッチ42を介して外部へ読み出すことによりノイズをキャンセルする。
 図7は、図3の断面図において、電荷生成埋込領域16、電荷読出領域15及びリセット生成領域12を水平面で切った断面(X方向)における、下向きを電圧の正の方向とするポテンシャル図である。図3の中央の左側に電荷生成埋込領域16の伝導帯端の位置を示すポテンシャル谷PW1を示す。更に、ポテンシャル谷PW1の右側に、転送電位障壁を介して、電荷読出領域15のポテンシャル井戸PW2を示す。ポテンシャル井戸PW2において、フェルミレベル以下の電子が充満した状態が右上がりのハッチングで示されている。更に、ポテンシャル井戸PW2の右側に、リセット電位障壁を介して、リセット生成領域12のポテンシャル井戸PW3を示す。ポテンシャル井戸PW3において、フェルミレベル以下の電子が充満した状態が右上がりのハッチングで示されている。電荷読出領域15のポテンシャル井戸PW2及びリセット生成領域12のポテンシャル井戸PW3の底の深さは、フェルミレベルになるので、右上がりのハッチングで示した領域の上端のレベルが、ポテンシャル井戸の底の深さを定義する。
 ポテンシャル谷PW1とポテンシャル井戸PW2の間の転送電位障壁の高さは、転送ゲート電極18直下の半導体領域11の伝導帯端のポテンシャル分布により決まるので、転送ゲート電極18の電圧で制御できる。ポテンシャル井戸PW2とポテンシャル井戸PW3の間のリセット電位障壁の高さは、電荷読出領域15とリセット生成領域12の間に挟まれた半導体領域11の伝導帯端のポテンシャル分布を、リセット生成領域12に印加する電圧を変えることにより決定する。
 図7に示すように、転送ゲート電極18に印加する電圧を-1.0V、1.0V、1.5V、2.5V、3.3Vと増大させると、ポテンシャル谷PW1とポテンシャル井戸PW2との間の転送電位障壁の高さが低くなる。即ち、転送ゲート電極18は、ゲート絶縁膜19を介して転送チャネルの電位を静電的に制御する。例えば、転送ゲート電極18に制御信号TXとして低い電圧(0V、又は負電圧)を与えると、電荷生成埋込領域16と電荷読出領域15との間に電子に対する転送電位障壁が形成され、電荷生成埋込領域16から電荷読出領域15へ電荷は転送されない。一方、転送ゲート電極18に制御信号TXとして高い電圧(正の電圧)を与えると、電荷生成埋込領域16と電荷読出領域15との間の転送電位障壁の高さが減少、若しくは消滅し、電荷生成埋込領域16から電荷読出領域15へ電荷が転送される。
 図8は、図7のリセット電位障壁に着目したポテンシャル図を示す。電荷読出領域15とリセット生成領域12との距離L=2.35μmに設定し、リセット信号RTとしての電圧VDrainを3Vから25Vまで2Vずつ段階的に増大させた場合の、電荷読出領域15とリセット生成領域12の間のリセット電位障壁の高さであるピーク電位VB.MINをシミュレーションにより計算した。リセット信号RTとしての電圧VDrain=3Vの場合には、リセット電位障壁のピーク電位VB.MIN=0.83Vであり、リセット信号RTとしての電圧VDrainを増大させるにつれてピーク電位VB.MINの絶対値は大きく(リセット電位障壁の高さは低く)なっていく。そして、リセット信号RTとしての電圧VDrain=25Vの場合には、ピーク電位VB.MIN=2.91Vとなり、リセット電位障壁の高さは電源電圧3.3Vで決まる約3Vの転送電位障壁に対して低くなるので、電荷読出領域15からリセット生成領域12へのリセットに必要な電荷の吐き出しが可能となる。
 図9は、リセット信号RTとしての電圧VDrainが3Vと25Vの2通りについて、電荷読出領域15とリセット生成領域12との距離Lを変化させた場合の、リセット電位障壁のピーク電位VB.MINのシミュレーション結果を示す。図9から、距離Lが大きくなると、リセット信号RTとしての電圧VDrainが3Vと25Vのいずれの場合もリセット電位障壁のピーク電位VB.MINが小さくなることが分かる。図9においてリセット信号RTとしての電圧VDrainが25Vの場合は距離Lが大きくなると、リセット電位障壁のピーク電位VB.MINが急峻に変化する。このため、距離Lが大きくなると、リセット信号RTとしての電圧VDrainを3Vと25Vとの間で変化させた場合、リセット電位障壁の高さの変化が小さくなることが分かる。
 図10は、第1の実施の形態に係る半導体素子に対応する3次元シミュレーションによる、下向きを電位の正の方向とするポテンシャル図を示す。シミュレーション条件は、電荷生成埋込領域16の不純物密度を6.75×1016cm-3、ピニング層17の不純物密度を2.24×1017cm-3、半導体領域11の不純物密度を5.0×1013cm-3、リセット信号RTとしての電圧VDrain=3Vに設定した。図11及び図12は、リセット生成領域12側に着目して拡大した3次元のポテンシャル図で、図11に示すように、リセット信号RTとして低い電圧VDrain=3Vを印加した場合は、電荷読出領域15とリセット生成領域12の間のリセット電位障壁の高さは1V程度である。一方、図12に示すように、リセット信号RTとして高い電圧VDrain=25Vを印加した場合は、電荷読出領域15とリセット生成領域12の間のリセット電位障壁の高さが3V程度に低減した。これにより、電荷読出領域15の電荷がリセット生成領域12を介して排出され、電荷読出領域15は所定の残留電荷量のレベルまでリセット可能となる。
 図13は、読み出しノイズヒストグラムの測定結果を示す。100フレームで、510(垂直)×31(水平)=15810画素で捕獲し、積分時間は149msecとした。測定された読み出しノイズヒストグラムから、読み出しノイズのピーク値が0.27e rmsと低ノイズレベルであることが確認された。電圧を電子に変換するための変換利得は219.4μV/eを用いた。この変換利得の値は、図14に示すようにフォトンショットノイズ及び信号の入出力の計算結果から求めた。
 図15(a)及び図15(b)は、ポアソン分布のパラメータとなる有効光電子数λ=2.05の場合の光電子計測ヒストグラム(PCH)の測定結果及びこれに対応するポアソン分布の理論曲線を示し、図16(a)及び図16(b)は、有効光電子数λ=4.0の場合のPCHの測定結果及びこれに対応するポアソン分布の理論曲線を示す。パラメータλは所与の区間内で発生する事象の期待発生回数で、計算上で決まる有効フォトン数であり、平均値に対応する。
 図15(a)では、変換利得は219.4μV/eであり、内部ADCを用いた230LSB/eであり、ノイズは0.27e rmsであり、10万回中の光電子が検出された回数(イベント数)を測定した。一方、図16(a)も変換利得は219.4μV/eであり、内部ADCを用いた230LSB/eで図15(a)と同様であるが、ノイズは0.26e rmsで図15(a)とは異なる。図16(a)も10万回中の光電子が検出された回数を測定した。図15(b)及び図16(b)の横軸は光電子数(y)を示す。
 図15(a)及び図16(a)に示すように、PCHの測定結果は、図15(b)及び図16(b)に示すノイズによるガウス分布の拡がりを有したポアソン分布の理論曲線と略一致する。図15(a)~図16(b)において、各ピークはノイズがあるため拡がっているが、ノイズがなければデルタ関数となる。
 所与の区間内で光電子がy回検出される確率h(y)は、以下の式(1)で求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、xは各事象に対応する光電子数でガウス分布の平均値となる離散値、yは検出した光電子数に対応する連続値、e=2.71828はネイピア数である。σは読み出しノイズレベルを示す標準偏差であり、図15(b)ではσ=0.26e rms、図16(b)ではσ=0.27e rmsである。
 光電子計測能力を評価するため、米国空軍(USAF)テストチャートを用いて第1の実施形態に係る固体撮像装置及び従来の低ノイズの固体撮像装置により光電子を捕獲した。従来の低ノイズCMOSイメージセンサの読み出しノイズレベルは0.45e rmsであり、画素変換利得は135μV/eである。ダーク電流の影響を最小限とするため、センサチップを-10℃まで空冷し、水平35×垂直512画素の領域で測定した。図17(a)~図17(c)は、光電子が捕獲された画像を示す。142msec、1画素当たりの信号(光電子)は各画素のPCHから計算した。
 図17(a)は、第1の実施形態に係る固体撮像装置により捕獲された0~20電子の信号範囲を示し、図17(b)は、第1の実施形態に係る固体撮像装置により捕獲された0~8電子の信号範囲を示し、図17(c)は、従来の低ノイズの固体撮像装置により捕獲された0~8電子の信号範囲を示す。図17(a)~図17(c)の捕獲された画像は、固定の光強度及びNDフィルタにより調整された異なる信号範囲を有する。図17(a)及び図17(b)の第1の実施形態に係る固体撮像装置の撮像画像は、図17(c)の、従来の低ノイズCMOSイメージセンサの撮像画像と比較してコントラストが強調されたことが分かる。
 又、第1の実施形態に係る固体撮像装置を試作した。水平312×垂直512の全画素アレイのうち、有効画素数は水平35×垂直512に設定し、画素サイズは11.2μm×5.6μm、飽和容量(FWC)は約1500電子に設定した。試作した固体撮像装置において変換利得と読み出しノイズを測定した結果、220μV/e程度の高い変換利得及び0.27e rmsの低い読み出しノイズレベルが達成できた。
 <固体撮像装置の動作>
 次に、図18のタイミングチャートを参照しながら、第1の実施の形態に係る固体撮像装置の動作の一例を説明する。
 (a)時刻t1~t2において、転送ゲート電極18に印加される制御信号TXをロー(L)レベル(0V)に維持して、矩形のリセット信号RTをリセット生成領域12に印加し、電荷読出領域15のリセット動作が行われる。即ち、時刻t1でリセット信号RTがロー(L)レベル(3V)からハイ(H)レベル(25V)への移行が開始され、図8に示したリセット生成領域12と電荷読出領域15との間のリセット電位障壁の高さが低下して電荷読出領域15から電荷が吐き出される。時刻t1~t2では、図8及び図12に示したように電荷読出領域15の電位VFDが3Vになる。その後、時刻t2でリセット信号RTがハイ(H)レベル(25V)からロー(L)レベル(3V)に移行すると、電荷読出領域15の電位VFDは3Vより少し低下する。
 (b)時刻t2~t3において、リセット生成領域12に印加されるリセット信号RT及び転送ゲート電極18に印加される制御信号TXはいずれもロー(L)レベルに維持されており、図3に示したように、それぞれの画素Xijの遮光膜20の開口部を介して、それぞれの画素XijのフォトダイオードDに入射する。フォトダイオードDは、遮光膜20の開口部を介して入射した光を光信号として受光し、この光信号を電荷に変換する。
 (c)時刻t3で、転送ゲート電極18に印加される制御信号TXがハイ(H)レベル(3.3V)になると、図7に示したポテンシャル谷PW1とポテンシャル井戸PW2の間の転送電位障壁の高さが低下し、時刻t3~t4で電荷生成埋込領域16から電荷読出領域15へ電荷が転送される。電荷生成埋込領域16から電荷読出領域15へ転送された電荷量に対応して、電荷読出領域15の電位VFDがΔVSIGだけ低下する。
 (d)時刻t4以降のタイミングで、画素選択用のスイッチングトランジスタQSLがターンオンすると、図19に示す信号読み出し回路を構成する読み出しトランジスタ(増幅トランジスタ)Qのゲート電位に依存する電流が垂直信号線Bを介して読み出される。
 第1の実施の形態に係る固体撮像装置によれば、リセット生成領域12に正の電圧を印加し、リセット生成領域12からの静電誘導電界を利用して、リセット生成領域12と電荷読出領域15との間のリセット電位障壁を可変することにより、電荷読出領域15の電荷をリセット生成領域12に吐き出させてリセット動作を行うことができる。したがって、従来の画素におけるリセットゲート電極を有するリセットトランジスタが不要となる。このため、従来の画素におけるリセットゲート電極と電荷読出領域間の寄生容量を除去できるので、浮遊拡散容量を低減できる。この結果、高い画素変換利得を得られるとともに、ピクセル内部のノイズが低減され、時間的なゆらぎを低減できる。又、ファインプロセスを使わなくても標準的なCMOS技術を用いて、高い変換利得やフォトン計数レベルの極低ノイズを達成できるので、従来の技術と比べて効率的で実現性が高い。
 [第1の実施の形態の第1の変形例]
 第1の実施の形態の第1の変形例に係る半導体素子の構成を図20(a)に示し、図20(a)に対応する、下向きが電位の正の方向であるポテンシャル図を図20(b)に示す。図20(a)に示すように、第1の実施の形態の第1の変形例に係る半導体素子では、電荷読出領域15に接続する信号読み出し回路の読み出しトランジスタQのソース側にスイッチングトランジスタQSW1が接続され、垂直信号線BにスイッチングトランジスタQSW2のドレイン側が接続されている点が、図4に示した第1の実施の形態に係る半導体素子の信号読み出し回路の構成と異なる。
 第1の実施の形態の第1の変形例においては、リセット生成領域12に印加する可変電圧と、垂直信号線Bと、スイッチングトランジスタQSW1と、読み出しトランジスタQと、スイッチングトランジスタQSW2の状態をそれぞれ変化させることで、電荷読出領域15に蓄積された電荷を排出させる。このとき、読み出しトランジスタQのゲート容量をブートストラップ容量として用いて電荷読出領域15の電位を変化させ、電荷読出領域15に蓄積された電荷を排出させる。
 電荷読出領域15に蓄積された電荷を排出させる動作としては、まず、図21(a)に示すように、リセット生成領域12に印加されるリセット信号RTとしての電圧VDrain=0.5Vを考える。スイッチングトランジスタQSW1をオフ状態として、スイッチングトランジスタQSW2がオンし、選択トランジスタQSLがオンすることにより、図21(b)に示すように、読み出しトランジスタQRのソース領域に所定の電圧VR=0Vが印加され、読み出しトランジスタQRのソース領域が接地電位とされる。リセット生成領域12には可変電圧として電圧VDrain=0.5Vを印加する。これにより、リセット生成領域12を電荷読出領域15の電位よりも低い一定の電位に設定して、リセット電位障壁を越えてリセット生成領域12に電荷を供給し、電荷読出領域15の電位をリセット生成領域12に印加した電位VDrain=0.5Vと同一の電位に設定する。このとき、図21(b)に示すポテンシャル図のように、電荷読出領域15のポテンシャル井戸PW2及びリセット生成領域12のポテンシャル井戸PW3に電子が充満された状態になり、フェルミレベルも0.5Vとなる。
 次に、図22(a)及び図22(b)に示すように、スイッチングトランジスタQSW1がオフ状態、スイッチングトランジスタQSW2がオン状態で、リセット信号に対応する可変電圧として電圧VDrain=3Vをリセット生成領域12に印加する。これにより、リセット生成領域12を、電荷読出領域15が読出動作において取り得る電位よりも高い一定の電位に設定し、リセット電位障壁の高さを変化させて電荷読出領域15の電位をリセット電位障壁の電位と同一の電位VFD=1Vとする。この読み出し電圧VFD=1Vが読み出しトランジスタQRのゲート電極に印加される。電荷読出領域15のポテンシャル井戸PW2の底の電位とリセット電位障壁の間の電位差は2Vある。
 次に、図23(a)に示すように、スイッチングトランジスタQSW2がオフし、スイッチングトランジスタQSW1がオンすると、電圧VDD=3.3Vが読み出しトランジスタQRのドレイン領域に印加される。このときの読み出しトランジスタQRのゲート容量をブートストラップ容量として用い、読み出しトランジスタQRのゲートの電位VFD、即ち電荷読出領域15の電位が、電荷の排出に必要な電位VFD=3Vとなる。そして、図22(b)で示した電荷読出領域15のポテンシャル井戸PW2の底の電位とリセット電位障壁の間の電位差2Vを維持したまま、図23(b)に示すようにブートストラップ効果により電荷読出領域15のポテンシャル井戸PW2の底の電位が3Vとなり、電荷読出領域15のポテンシャル井戸PW2のリセットが完了する。
 第1の実施の形態の第1の変形例に係る半導体素子の全体の等価回路は、図24に示すように、電源VDDと読み出しトランジスタQRの間に接続されたスイッチングトランジスタQSW1と、所定の電圧VRを有する制御信号線と垂直信号線Bの間に接続されたスイッチングトランジスタQSW2を有する回路として表現できる。半導体領域11と電荷生成埋込領域16でなすフォトダイオードDに電荷転送手段(18,19)により構成される転送トランジスタQTXが接続されている。転送トランジスタQTXの一方の電極で示される電荷読出領域には読み出しトランジスタQのゲート電極が接続されている。読み出しトランジスタQのドレイン領域はスイッチングトランジスタQSW1に接続され、読み出しトランジスタQのソース領域は画素選択用のスイッチングトランジスタQSLのドレイン領域に接続される。スイッチングトランジスタQSLのソース領域は垂直信号線Bjに接続されている。図24においては、図20に示したリセット生成領域12による機能を模式的に、ゲート電極を破線で示したトランジスタに類似したシンボルマークによって、リセット機構QRTを表現し、ゲート電極を有するリセット電極を用いないでリセットできることをモデル化している。
 [第1の実施の形態の第2の変形例]
 第1の実施の形態の第2の変形例として、第1の実施の形態に係る半導体素子の構成の変形例を説明する。図25に示すように、複数(2個)のフォトダイオードD,Dと、複数(2個)のフォトダイオードD,Dのそれぞれに接続された複数(2個)の転送トランジスタQTX1,QTX2を有していてもよい。複数(2個)のフォトダイオードD,Dに対して1個の電荷読出領域15が設けられることにより、各画素Xijのサイズを縮小できるので、高空間解像度を実現可能となる。なお、フォトダイオードD,D及び転送トランジスタQTX1,QTX2の組み合わせは3個以上であってもよい。
 更に、図26に示すように、2個のフォトダイオードD,Dと、2個のフォトダイオードD,Dのそれぞれに接続された2個の転送トランジスタQTX1,QTX2に加えて、電源VDDと読み出しトランジスタQRの間に接続されたスイッチングトランジスタQSW1と、所定の電圧VRを有する制御信号線と垂直信号線Bの間に接続されたスイッチングトランジスタQSW2を有していてもよい。又、図27に示すように、図24に示した構成からスイッチングトランジスタQSW2を除去した構成であってもよく、図28に示すように、図26に示した構成からスイッチングトランジスタQSW2を除去した構成であってもよい。
 (第2の実施の形態)
 本発明の第2の実施の形態に係る固体撮像装置の全体構成は、図1に示した構成と実質的に同様であるので、重複した説明を省略する。第2の実施の形態に係る固体撮像装置の画素Xijを構成する半導体素子は、図29の平面図及び図29のA-A方向から見た断面図に対応する図30(a)に示すように、一対の横電界制御ゲート電極51,52を有する横電界制御トランジスタを設け、この一対の横電界制御ゲート電極51,52の間に転送チャネルを設けている点が、第1の実施の形態に係る半導体素子と異なる。図29に示すように、一対の横電界制御ゲート電極51,52のそれぞれは、電荷生成埋込領域16と電荷読出領域15との間の転送チャネルを挟んで対称に配置されている。
 図30(a)の断面図に示すように、横電界制御ゲート電極51,52の間の半導体領域11の上部には、電荷生成埋込領域16よりも狭い幅のn型の転送チャネル56cと、電荷生成埋込領域16よりも広い幅のn型の半導体領域57が配置されている。図29の平面図から分かるように、転送チャネル56cの右側には、電荷生成埋込領域16から転送された電荷を電荷読出領域15へ導く電荷誘導領域56bが設けられ、電荷誘導領域56bは電荷読出領域15と接している。転送チャネル56cの左側には、電荷生成埋込領域16から転送チャネル56cに電荷を導入するn型の電荷導入部56aが設けられ、横電界制御ゲート電極51,52の隣り合う側と反対側の半導体領域11の上部には、n型の半導体領域53,54がそれぞれ配置されている。図30(a)に示すように、半導体領域57の底部は電荷生成埋込領域16の底部よりも深く、転送チャネル56cの底部は半導体領域57の底部よりも深い。例えば、半導体領域57の不純物密度nは電荷生成埋込領域16の不純物密度nよりも低く設定され、電荷導入部56a、転送チャネル56c、電荷誘導領域56bの不純物密度nは電荷生成埋込領域16の不純物密度nおよび半導体領域57の不純物密度nよりも高く設定されている。なお、半導体領域57の不純物密度n、電荷生成埋込領域16の不純物密度n、電荷導入部56a、転送チャネル56c、電荷誘導領域56bの不純物密度nの大小関係はこれに限定されない。
 図30(b)に示すように、電荷生成埋込領域16、転送チャネル56c、半導体領域57に対応して段差を有するポテンシャル分布となる。横電界制御ゲート電極51,52に印加する電圧VGを共通して-1V、0V、1Vと変化させた場合、相対的な段差を有したまま電位が変化する。横電界制御ゲート電極51,52の電圧により、横電界制御ゲート電極51,52に挟まれた転送チャネル56cの電位を制御して、電荷生成埋込領域16から電荷誘導領域56bへ電荷を転送できる。
 図31に、第2の実施の形態に係る半導体素子の等価回路を示す。図31では、一対の横電界制御ゲート電極51,52を有する横電界制御トランジスタQTXをゲート電極が破線で表示されたシンボルマークで示し、破線は転送チャネル上にゲート電極の無いトランジスタが設けられた構造と等価であることを意味している。半導体領域11と電荷生成埋込領域16でなすフォトダイオードDに一対の横電界制御ゲート電極51,52が等価的に機能する横電界制御トランジスタQTXが仮想的に接続されている。一対の横電界制御ゲート電極51,52で定義される横電界制御トランジスタQTXの一方の電極で示される電荷読出領域には読み出しトランジスタQのゲート電極が接続されている。読み出しトランジスタQのドレイン領域は、電源VDDに接続され、読み出しトランジスタQのソース領域は画素選択用のスイッチングトランジスタQSLのドレイン領域に接続される。スイッチングトランジスタQSLのソース領域は垂直信号線Bjに接続される。
 第2の実施の形態に係る半導体素子によれば、第1の実施の形態と同様に、図29に示したリセット生成領域12に正の電圧を印加し、リセット生成領域12からの静電誘導電界を利用して、リセット生成領域12と電荷読出領域15との間のリセット電位障壁を可変することにより、電荷読出領域15の電荷をリセット生成領域12に吐き出させてリセット動作を行うことができ、高い画素変換利得及び極低ノイズを実現可能となる。更に、電荷生成埋込領域16と電荷読出領域15との間の転送チャネルの直上には転送ゲート電極が配置されていないため、電荷読出領域15の周辺の寄生容量を第1の実施の形態の場合に比して更に低減できる。
 [第2の実施の形態の変形例]
 第2の実施の形態の変形例として、第2の実施の形態に係る半導体素子の構成の変形例を説明する。図32に示すように、複数(2個)のフォトダイオードD,Dと、複数(2個)のフォトダイオードD,Dのそれぞれに接続された複数(2個)の横電界制御トランジスタQTX1,QTX2を有していてもよい。横電界制御トランジスタQTX1,QTX2のそれぞれは、一対の横電界制御ゲート電極を転送チャネルを挟むように対向させて配置している。複数(2個)の横電界制御トランジスタQTX1,QTX2のそれぞれは、ゲート電極が破線で表されたシンボルマークで示され、ゲート電極の無いトランジスタと等価であることを意味している。複数(2個)のフォトダイオードD,Dに対して1個の電荷読出領域15が設けられることにより、各画素Xijのサイズを縮小できるので、高空間解像度を実現可能となる。なお、フォトダイオードD,D及び転送トランジスタQTX1,QTX2の組み合わせは3個以上であってもよい。
 又、図33に示すように、電源VDDと読み出しトランジスタQRの間に接続されたスイッチングトランジスタQSW1と、所定の電圧VRを有する制御信号線と垂直信号線Bの間に接続されたスイッチングトランジスタQSW2を有していてもよい。又、図34に示すように、2個のフォトダイオードD,Dと、2個のフォトダイオードD,Dのそれぞれに接続された2個の横電界制御トランジスタQTX1,QTX2と、電源VDDと読み出しトランジスタQRの間に接続されたスイッチングトランジスタQSW1と、所定の電圧VRを有する制御信号線と垂直信号線Bの間に接続されたスイッチングトランジスタQSW2を有していてもよい。又、図35に示すように、図33に示した構成からスイッチングトランジスタQSW2を除去した構成であってもよく、図36に示すように、図34に示した構成からスイッチングトランジスタQSW2を除去した構成であってもよい。
 (第3の実施の形態)
 本発明の第3の実施の形態に係る固体撮像装置は、図37に示すように、スイッチングトランジスタQ11,Q12,Q13,…Q1mが画素Xijの外側の周辺回路に設けられている点が、第1の実施の形態に係る固体撮像装置の構成と異なる。図38に示すように、第3の実施の形態に係る固体撮像装置の画素Xijを構成する半導体素子の信号読み出し回路を構成するスイッチングトランジスタQSLが接続されるビット線Bjには、画素Xijの外側の周辺回路のスイッチングトランジスタQ1jが接続される。又、第3の実施の形態に係る半導体素子の信号読み出し回路を構成する読み出しトランジスタQRにはスイッチングトランジスタQSW1が接続されている。
 次に、図39のタイミングチャートを参照しながら、第3の実施の形態に係る固体撮像装置の読み出し方法の一例を説明する。第3の実施の形態に係る固体撮像装置の読み出し方法は、図20~図23を用いて説明したブートストラップの動作に対応する。
 (a)時刻t1において、転送ゲート電極18に印加される制御信号TXをロー(L)レベル(0V)に維持して、スイッチングトランジスタQSW1のゲート電極に印加される制御信号SWをロー(L)レベル(0V)とする。スイッチングトランジスタQ1jのゲート電極には制御信号SWの反転信号が印加されるため、スイッチングトランジスタQ1jはハイ(H)レベルとなる。時刻t2において、リセット生成領域12に印加されるリセット信号RTがハイ(H)レベル(3V)からロー(L)レベル(0.5V)に移行すると、電荷読出領域15の電圧VFD=0.5Vに低下する。
 (b)時刻t3において、制御信号TX及び制御信号SWをロー(L)レベルに維持して、リセット信号RTとしてハイ(H)レベル(3V)がリセット生成領域12に印加されると、電荷読出領域15の電位が読み出し電圧VFD=1Vとなる。この読み出し電圧VFD=1Vが読み出しトランジスタQのゲート電極に印加される。
 (c)時刻t4において、スイッチングトランジスタQSW1に印加される制御信号SWがハイ(H)レベル(3.3V)になり、スイッチングトランジスタQSW1がオンする。このとき、電荷読出領域15の電位が読み出し電圧VFD=3Vとなり、ブートストラップ効果により電荷読出領域15のポテンシャル井戸PW2のリセットが完了する。
 (d)時刻t4以降のタイミングで、図38に示した画素Xijのフォトダイオードに光が入射する。フォトダイオードは、入射した光を光信号として受光し、この光信号を電荷に変換する。時刻t5で、転送ゲート電極18に印加される制御信号TXがハイ(H)レベル(3.3V)になると、図7に示したポテンシャル谷PW1とポテンシャル井戸PW2の間の転送電位障壁の高さが低下し、時刻t5~t6で電荷生成埋込領域16から電荷読出領域15へ電荷が転送される。電荷生成埋込領域16から電荷読出領域15へ転送された電荷量に対応して、電荷読出領域15の電位VFDがΔVSIGだけ低下する。
 (e)画素選択用のスイッチングトランジスタQSLがオン状態にある画素Xijにおいては、図38に示す信号読み出し回路を構成する読み出しトランジスタ(増幅トランジスタ)Qのゲート電位に依存する電流が垂直信号線Bに読み出される。
 第3の実施の形態に係る固体撮像装置によれば、スイッチングトランジスタQ11,Q12,Q13,…Q1mを画素Xijの外側の周辺回路に設けた場合でも、高い画素変換利得及び極低ノイズを実現可能となる。
 (第4の実施の形態)
 本発明の第4の実施の形態に係る固体撮像装置は、図40に示すように、スイッチングトランジスタQ11,Q12,Q13,…Q1m及びスイッチングトランジスタQ21,Q22,Q23,…Q2mが画素Xijの外側の周辺回路に設けられている点が、本発明の第3の実施の形態に係る固体撮像装置の構成と異なる。図41に示すように、第4の実施の形態に係る半導体素子の信号読み出し回路を構成する読み出しトランジスタ(増幅トランジスタ)Qのドレイン領域が、画素Xijの周辺回路であるスイッチングトランジスタQ2jに接続される。
 第4の実施の形態に係る固体撮像装置に係る固体撮像装置の駆動方法は、第3の実施の形態に係る固体撮像装置の駆動方法と実質的に同様である。第4の実施の形態に係る固体撮像装置によれば、スイッチングトランジスタQ11,Q12,Q13,…Q1m及びスイッチングトランジスタQ21,Q22,Q23,…Q2mを画素Xijの外側の周辺回路に設けることにより、各画素Xijのサイズを縮小することができるので、高空間解像度を実現可能となる。
 (その他の実施の形態)
 上記のように、本発明は第1~第4の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 既に述べた第1~第4の実施の形態に係る固体撮像装置の説明では、第1導電型をp型、第2導電型をn型として説明したが、第1導電型をn型、第2導電型をp型としても、電気的な極性を反対にすれば同様な効果が得られることは容易に理解できるであろう。
 又、既に述べた第1~第4の実施の形態の説明においては、本発明の半導体素子を2次元に複数配列した2次元固体撮像装置(エリアセンサ)を例示的に説明したが、本発明の半導体素子は2次元固体撮像装置の画素のみに用いられるように限定して解釈するべきではない。例えば、図1に示した2次元マトリクスにおいて、j=m=1とした1次元固体撮像装置(ラインセンサ)の画素として複数の半導体素子を1次元に配列しても良いことは、上記開示の内容から、容易に理解できるはずである。
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明は、超高感度を活用した防犯カメラや、放送用カメラ等のナイトビジョンへの応用を目的とした超高感度車載用カメラ、超解像バイオ顕微鏡用カメラ等の種々の撮像素子に利用可能である。
11,X12,X13,X1m,X21,X22,X23,X2m,X31,X32,X33,X3m,Xn1,Xn2,Xn3,Xnm…画素
1…画素アレイ部
2…水平走査回路
3…垂直走査回路
4…タイミング発生回路
6…ノイズキャンセル回路
7…信号処理回路
8…信号読み出し回路
11…半導体領域
12…リセット生成領域
13,56b…電荷誘導領域
14,17…ピニング層
15…電荷読出領域
16…電荷生成埋込領域
18…転送ゲート電極
19…ゲート絶縁膜
20…遮光膜
21,23,25,27,33,34…表面配線
22…リセット配線
30…共通領域
31,32…ゲート電極
35…ドレイン領域
37…ソース領域
41…スイッチ回路
42…スイッチ
43…加算器
44…サンプルホールド(S/H)回路
45…アナログ・デジタル変換器(ADC)
46…レジスタ
51,52…横電界制御ゲート電極
53,54,57…半導体領域
56a…電荷導入部
56c…転送チャネル

Claims (10)

  1.  第1導電型の半導体領域と、
     前記半導体領域の上部の一部に埋め込まれ、前記半導体領域とフォトダイオードをなして電荷を生成する第2導電型の電荷生成埋込領域と、
     前記電荷生成埋込領域から離間して前記半導体領域の他の一部に設けられ、前記電荷生成埋込領域から転送された前記電荷を蓄積する第2導電型の電荷読出領域と、
     前記電荷生成埋込領域から前記電荷読出領域への前記電荷の転送を制御する電荷転送手段と、
     前記電荷読出領域から離間した前記半導体領域の更に他の一部に設けられた第2導電型のリセット生成領域とを備え、
     前記電荷読出領域と前記リセット生成領域の間に挟まれた半導体領域に生じた電位障壁の高さを変化させるように可変電圧を前記リセット生成領域に印加して、前記電荷読出領域に蓄積された電荷を排出させることを特徴とする半導体素子。
  2.  前記電荷生成埋込領域側で前記電荷読出領域に接して設けられ、前記電荷読出領域よりも低不純物密度の第2導電型の電荷誘導領域を更に備えることを特徴とする請求項1に記載の半導体素子。
  3.  前記電荷生成埋込領域の上の前記半導体領域の上部の一部に、前記半導体領域よりも高不純物密度の第1導電型のピニング層を更に備えることを特徴とする請求項1又は2に記載の半導体素子。
  4.  第1導電型の半導体領域と、
     前記半導体領域の上部の一部に埋め込まれ、前記半導体領域とフォトダイオードをなして電荷を生成する第2導電型の電荷生成埋込領域と、
     前記電荷生成埋込領域から離間して前記半導体領域の他の一部に設けられ、前記電荷生成埋込領域から転送された前記電荷を蓄積する第2導電型の電荷読出領域と、
     前記電荷生成埋込領域から前記電荷読出領域への前記電荷の転送を制御する電荷転送手段と、
     前記電荷読出領域から離間した前記半導体領域の更に他の一部に設けられた第2導電型のリセット生成領域とを備え、
     前記電荷読出領域と前記リセット生成領域の間に挟まれた半導体領域に生じた電位障壁の高さを変化させるように可変電圧を前記リセット生成領域に印加して、前記電荷読出領域に蓄積された電荷を排出させる画素を複数配列したことを特徴とする固体撮像装置。
  5.  前記電荷生成埋込領域側で前記電荷読出領域に接して設けられ、前記電荷読出領域よりも低不純物密度の第2導電型の電荷誘導領域を更に備えることを特徴とする請求項4に記載の固体撮像装置。
  6.  前記電荷生成埋込領域の上の前記半導体領域の上部の一部に、前記半導体領域よりも高不純物密度の第1導電型のピニング層を更に備えることを特徴とする請求項4又は5に記載の固体撮像装置。
  7.  前記電荷読出領域が、前記画素にそれぞれ設けられた読み出しトランジスタのゲート電極に接続されることを特徴とする請求項4~6のいずれか1項に記載の固体撮像装置。
  8.  前記読み出しトランジスタのドレイン領域と電源との間に、第1のスイッチングトランジスタが前記画素にそれぞれ設けられ、
     所定の電圧を有する制御信号線と垂直信号線の間に、第2のスイッチングトランジスタが前記画素にそれぞれ設けられ、
     前記可変電圧と、前記垂直信号線と、前記第1のスイッチングトランジスタと、前記読み出しトランジスタと、前記第2のスイッチングトランジスタの状態を、それぞれ変化させることで、前記電荷読出領域に蓄積された電荷を排出させることを特徴とする請求項7に記載の固体撮像装置。
  9.  前記読み出しトランジスタのゲート容量をブートストラップ容量として用いて前記電荷読出領域の電位を変化させ、前記電荷読出領域に蓄積された電荷を排出させることを特徴とする請求項8に記載の固体撮像装置。
  10.  前記電荷読出領域に蓄積された電荷を排出させる動作において、
     前記第1のスイッチングトランジスタをオフ状態、かつ前記第2のスイッチングトランジスタをオン状態として前記読み出しトランジスタのソース領域を接地電位とし、
     前記リセット生成領域に、前記可変電圧として第1の電圧を印加することにより、前記リセット生成領域を前記電荷読出領域の電位よりも低い一定の第1の電位に設定して前記電位障壁を越えて前記リセット生成領域に電荷を供給し、前記電荷読出領域の電位を前記第1の電位に設定し、
     前記リセット生成領域に、前記可変電圧として第2の電圧を印加することにより、前記リセット生成領域を前記電荷読出領域が読出動作において取り得る電位よりも高い一定の第2の電位に設定し、前記電位障壁の高さを変化させて前記電荷読出領域の電位を前記電位障壁の電位と同一である第3の電位とし、
     前記第1のスイッチングトランジスタをオン状態、かつ前記第2のスイッチングトランジスタをオフ状態として前記読み出しトランジスタのゲート容量をブートストラップ容量として用い、前記読み出しトランジスタのゲートの電位と等価な前記電荷読出領域の電位を電荷の排出に必要な電位とする
     ことを特徴とする請求項9に記載の固体撮像装置。
PCT/JP2016/077507 2015-09-18 2016-09-16 半導体素子及び固体撮像装置 WO2017047774A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/760,743 US10453880B2 (en) 2015-09-18 2016-09-16 Semiconductor element and solid-state imaging device
EP16846645.6A EP3352220A4 (en) 2015-09-18 2016-09-16 SEMICONDUCTOR ELEMENT AND FIXED BODY RECORDING DEVICE
JP2017540015A JP7029037B2 (ja) 2015-09-18 2016-09-16 固体撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185718 2015-09-18
JP2015-185718 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047774A1 true WO2017047774A1 (ja) 2017-03-23

Family

ID=58288990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077507 WO2017047774A1 (ja) 2015-09-18 2016-09-16 半導体素子及び固体撮像装置

Country Status (4)

Country Link
US (1) US10453880B2 (ja)
EP (1) EP3352220A4 (ja)
JP (1) JP7029037B2 (ja)
WO (1) WO2017047774A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3723133A4 (en) * 2017-12-08 2021-01-06 National University Corporation Shizuoka University PHOTOELECTRIC CONVERSION ELEMENT AND SEMICONDUCTOR IMAGING DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7159568B2 (ja) * 2018-02-23 2022-10-25 株式会社リコー 光電変換素子、画像読取装置、および画像形成装置
US11750944B2 (en) * 2021-05-28 2023-09-05 Varex Imaging Corporation Pixel noise cancellation system
EP4391573A1 (en) * 2022-12-21 2024-06-26 Prophesee Merged frame-based and event-based image sensor pixel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070262A (ja) * 1996-05-22 1998-03-10 Eastman Kodak Co パンチスルーリセットとクロストーク抑制を持つ能動画素センサー
JP2007335681A (ja) * 2006-06-15 2007-12-27 Texas Instr Japan Ltd 電界効果トランジスタ及び固体撮像装置
JP2008218756A (ja) * 2007-03-05 2008-09-18 Canon Inc 光電変換装置及び撮像システム
JP2009135319A (ja) * 2007-11-30 2009-06-18 Sony Corp 固体撮像装置及びカメラ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106553A (ja) 1993-10-06 1995-04-21 Nec Corp 固体撮像素子
JP3919243B2 (ja) * 1995-08-23 2007-05-23 キヤノン株式会社 光電変換装置
US5872371A (en) 1997-02-27 1999-02-16 Eastman Kodak Company Active pixel sensor with punch-through reset and cross-talk suppression
EP2244295B1 (en) * 1999-10-05 2011-12-21 Canon Kabushiki Kaisha Solid-state image pickup device
JP3501743B2 (ja) * 1999-10-05 2004-03-02 キヤノン株式会社 固体撮像装置および撮像システム
JP3958144B2 (ja) * 2001-08-09 2007-08-15 株式会社半導体エネルギー研究所 半導体装置及びそれを用いる電子機器
JP4285388B2 (ja) * 2004-10-25 2009-06-24 セイコーエプソン株式会社 固体撮像装置
JP2008227255A (ja) * 2007-03-14 2008-09-25 Fujifilm Corp 電荷検出アンプ付き電子装置
US8350723B2 (en) * 2010-01-29 2013-01-08 Guesswhat, Llc Method and system for improved traffic signage
US8575531B2 (en) * 2011-04-26 2013-11-05 Aptina Imaging Corporation Image sensor array for back side illumination with global shutter using a junction gate photodiode
JP5999402B2 (ja) * 2011-08-12 2016-09-28 ソニー株式会社 固体撮像素子および製造方法、並びに電子機器
JP2013055448A (ja) * 2011-09-02 2013-03-21 National Institute Of Information & Communication Technology 光検出装置
US9369648B2 (en) * 2013-06-18 2016-06-14 Alexander Krymski Image sensors, methods, and pixels with tri-level biased transfer gates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070262A (ja) * 1996-05-22 1998-03-10 Eastman Kodak Co パンチスルーリセットとクロストーク抑制を持つ能動画素センサー
JP2007335681A (ja) * 2006-06-15 2007-12-27 Texas Instr Japan Ltd 電界効果トランジスタ及び固体撮像装置
JP2008218756A (ja) * 2007-03-05 2008-09-18 Canon Inc 光電変換装置及び撮像システム
JP2009135319A (ja) * 2007-11-30 2009-06-18 Sony Corp 固体撮像装置及びカメラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352220A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3723133A4 (en) * 2017-12-08 2021-01-06 National University Corporation Shizuoka University PHOTOELECTRIC CONVERSION ELEMENT AND SEMICONDUCTOR IMAGING DEVICE

Also Published As

Publication number Publication date
JP7029037B2 (ja) 2022-03-04
JPWO2017047774A1 (ja) 2018-08-23
EP3352220A4 (en) 2019-08-07
EP3352220A1 (en) 2018-07-25
US20180269242A1 (en) 2018-09-20
US10453880B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
EP2448253B1 (en) Solid-state imaging device and camera
JP5648923B2 (ja) 半導体素子及び固体撮像装置
US8048711B2 (en) Method for forming deep isolation in imagers
KR102220639B1 (ko) 광 센서의 신호 판독방법, 및 촬상장치의 신호 판독방법
US8692303B2 (en) Solid-state imaging device, electronic device, and manufacturing method for solid-state imaging device
JP5023808B2 (ja) 固体撮像装置およびカメラ
JP5269425B2 (ja) 固体撮像素子および固体撮像装置
WO2014141900A1 (ja) 固体撮像素子およびその製造方法、並びに電子機器
JP2016219849A (ja) 固体撮像装置
WO2013129559A1 (ja) 固体撮像装置
JP2018139269A (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
US8780248B2 (en) Image pickup apparatus and image pickup system
JP2009253149A (ja) 光電変換装置及びそれを用いた撮像システム
KR20090079817A (ko) 센서, 고체 촬상 디바이스, 및 촬상 장치 및 그 제조 방법
JP2015082592A (ja) 固体撮像素子およびその製造方法、並びに電子機器
WO2017047774A1 (ja) 半導体素子及び固体撮像装置
CN109791934B (zh) 光电转换元件及固态摄像装置
TW201336062A (zh) 固體攝像裝置
JP2010056345A (ja) 増幅型固体撮像装置
CN116057953A (zh) 固态摄像元件和电子设备
JP5167693B2 (ja) 固体撮像装置およびカメラ
JP7316046B2 (ja) 光電変換装置およびカメラ
JP6029698B2 (ja) 光電変換装置及びそれを用いた撮像システム
JP2016111224A (ja) 光検出素子及び固体撮像装置
JP5701344B2 (ja) 光電変換装置及びそれを用いた撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846645

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017540015

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846645

Country of ref document: EP