WO2017047467A1 - 石膏の加熱方法、石膏の加熱装置および石膏の製造方法 - Google Patents
石膏の加熱方法、石膏の加熱装置および石膏の製造方法 Download PDFInfo
- Publication number
- WO2017047467A1 WO2017047467A1 PCT/JP2016/076287 JP2016076287W WO2017047467A1 WO 2017047467 A1 WO2017047467 A1 WO 2017047467A1 JP 2016076287 W JP2016076287 W JP 2016076287W WO 2017047467 A1 WO2017047467 A1 WO 2017047467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gypsum
- heating
- rotating cylinder
- heating tube
- critical speed
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/02—Methods and apparatus for dehydrating gypsum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/02—Methods and apparatus for dehydrating gypsum
- C04B11/028—Devices therefor characterised by the type of calcining devices used therefor or by the type of hemihydrate obtained
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B17/00—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
- F26B17/30—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotary or oscillating containers; with movement performed by rotary floors
- F26B17/32—Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotary or oscillating containers; with movement performed by rotary floors the movement being in a horizontal or slightly inclined plane
Definitions
- the present invention relates to a method for heating gypsum, a heating device for gypsum, and a method for producing gypsum.
- Steam dryers hereinafter referred to as “STD”), call-in tubes (Patent Document 1), rotary kilns, and the like are frequently used as dryers for drying workpieces such as coal and ore.
- the coal and ore are used as raw materials for steelmaking and refining, power generation fuel, etc., and since it is required to process them stably and in large quantities, each of the above-mentioned dryers is a dryer that meets this requirement. It has been adopted.
- STD indirectly heats the object to be treated, it has high thermal efficiency and a large amount of treatment per unit volume. Moreover, since the size can be increased, it is suitable for the demand for mass processing.
- the call-in tube also indirectly heats the object to be processed, so that the heat efficiency is high and the processing amount per unit volume is large as in the STD.
- the processing amount per unit volume is large as in the STD.
- Rotary kilns have the disadvantage of poor thermal efficiency compared to indirect heating because they are dried directly by applying hot air to the workpiece.
- the exhaust treatment facility becomes very large. For this reason, STD has an advantage as a dryer for processing a large amount of objects to be processed.
- the present inventor has found that there is a limit to the increase in the size of the above-mentioned apparatus, and that it should be directed to improve the drying speed of the object to be processed, that is, gypsum. Similarly, the present inventors have found a problem that it should be directed to improve the baking rate of gypsum.
- the subject of this invention is improving the drying and / or baking rate of the gypsum by a heating apparatus.
- Another object of the present invention is to make it possible to avoid as much as possible the above-mentioned problems associated with an increase in the size of the apparatus according to the present invention, which can increase the processing amount per size (shell diameter) of the heating apparatus.
- a rotary cylinder having a gypsum supply port on one end side and a gypsum discharge port on the other end side, rotatable around an axis, and a heating tube group through which a heating medium passes are provided in the rotary cylinder, and the rotary cylinder Using a heating device with a structure in which gypsum is scraped in the rotational direction as the In the process of moving the gypsum from the supply port to the discharge port, the gypsum heating method for indirectly heating the gypsum by the heating tube group, A gypsum heating method, wherein the gypsum is heated by rotating the rotating cylinder so that a critical speed ratio ⁇ defined by the following formulas 1 and 2 is less than 15 to 70%.
- Vc 2.21D 1/2 ...
- ⁇ V / Vc ⁇ 100 Equation 2
- Vc is the critical speed (m / s) of the rotating cylinder
- D is the inner diameter (m) of the rotating cylinder
- ⁇ is the critical speed ratio (%) of the rotating cylinder
- V is the rotational speed (m / s) of the rotating cylinder. It is.
- the number of revolutions is adjusted based on empirical rules, the number of revolutions is increased when the amount of gypsum transported is large, and the number of revolutions when the amount of gypsum transported is small. Is set to a low value.
- the drying rate and the firing rate can be dramatically improved as compared with the conventional method, and a large amount of gypsum can be processed. .
- the liquid content of gypsum supplied to the heating device is 3 to 20 wt% W.S. B.
- the gypsum drying and / or calcining speed is selected by rotating the rotating cylinder so that the critical speed ratio ⁇ of the rotating cylinder is less than 15 to 70% when the gypsum is supplied to the heating device. Can be made faster than before.
- the liquid content of gypsum is 20 wt. B. Beyond, it becomes a thick mucus. Therefore, when gypsum whose liquid content exceeds 20% is supplied to the heating device, gypsum adheres to the inner wall of the rotating cylinder, and the rotating cylinder and gypsum rotate together.
- the liquid content of gypsum is 3 wt% W.V. B. In order to make it less than that, it is necessary to dehydrate under a high load using a high-functional and expensive dehydrator in the dehydration step before the drying step, which is not preferable from the viewpoints of economy and power saving.
- a rotary cylinder having a gypsum supply port on one end side and a gypsum discharge port on the other end side, rotatable around an axis, and a heating tube group through which a heating medium passes are provided in the rotary cylinder, and the rotary cylinder
- the gypsum is scraped in the direction of rotation along with the rotation of In the process in which gypsum moves from the supply port to the discharge port, the heating device indirectly heats the gypsum by the heating tube group
- a gypsum heating device characterized in that the rotating cylinder can be rotated so that the critical speed ratio ⁇ defined by the following formulas 1 and 2 is less than 15 to 70%.
- Vc 2.21D 1/2 ...
- ⁇ V / Vc ⁇ 100 Equation 2
- Vc is the critical speed (m / s) of the rotating cylinder
- D is the inner diameter (m) of the rotating cylinder
- ⁇ is the critical speed ratio (%) of the rotating cylinder
- V is the rotational speed (m / s) of the rotating cylinder. It is.
- the crystal water present in the hemihydrate gypsum is decomposed and evaporated to form calcined anhydrous gypsum, and the anhydrous gypsum is discharged from the outlet of the rotating cylinder. Thereby, anhydrous gypsum can be obtained from dihydrate gypsum.
- the “dihydrate gypsum from which the adhering water has been removed” may be dihydrate gypsum from which all of the adhering water has been removed, or dihydrate gypsum from which part of the adhering water has been removed.
- the drying and / or firing rate of gypsum by the heating device can be improved. Further, as a result of improving the drying and / or firing rate, it is possible to increase the processing amount per size (shell diameter) of the heating device. In other words, the size of the apparatus per processing amount can be reduced.
- FIG. 5 is a sectional view taken along line XX in FIG. 4. It is a side view in case a supply system is a chute type. It is a side view in case a supply system is a vibration trough type. It is the example which made the shape of the cross section of the rotation cylinder the rectangle. It is a side view at the time of providing a jacket on the outer side of a rotating cylinder.
- Equation 3 Uoa ⁇ Aef ⁇ Tln Equation 3
- Q is the heat transfer amount (W)
- Uoa is the overall heat transfer coefficient (W / m 2 -K)
- Aef is the effective contact heat transfer area (m 2 )
- Tln is the temperature difference (° C. ).
- the drying and / or firing rate is synonymous with the heat transfer amount Q, and in order to increase the heat transfer amount Q on the left side of Equation 3, any of the overall heat transfer coefficient Uoa, the effective contact heat transfer area Aef, and the temperature difference Tln on the right side Or take measures to increase everything.
- the inventor pays attention to the overall heat transfer coefficient Uoa and the effective contact heat transfer area Aef, and in order to increase them, the relative contact speed between the heat transfer surface and the object to be dried is increased, and the dispersion of gypsum The effective contact heat transfer area between the heat transfer surface and gypsum was increased. As a result of various experiments and examinations, the effectiveness of the method of the present invention was clearly confirmed.
- gypsum calcium sulfate dihydrate. Composition formula Ca [SO 4 ] ⁇ 2H 2 O). This gypsum can be roughly classified into naturally occurring gypsum and artificially produced chemical gypsum. Natural gypsum is high in quality of gypsum produced in aquatic deposits in Europe, the United States, Africa, etc., and gypsum produced in replacement deposits in Japan in the past tended to have a high impurity content and poor quality.
- Examples of chemical gypsum include phosphate gypsum, flue gas desulfurization gypsum, titanium gypsum, hydrofluoric acid gypsum, mineral water / refining gypsum, and the like.
- the workpiece W is referred to as gypsum.
- a cake (dehydrated cake) after being dehydrated by the solid-liquid separator in the dehydration step before the drying step can be exemplified.
- the dehydrated cake may contain substances other than gypsum.
- the gypsum board paper, admixtures, additives, and the like are included in the gypsum board waste material that is recovered and used as a new raw material.
- gypsum is dihydrated gypsum (composition formula Ca [SO 4 ] ⁇ 2H 2 O), hemihydrate gypsum ( ⁇ -type hemihydrate gypsum (composition formula ⁇ ⁇ Ca [SO 4 ] ⁇ 1 / 2H 2 O) depending on the crystal form.
- the heating device according to the present invention can be used mainly when dihydrate gypsum having attached water is heated to make anhydrous gypsum, but is used only when dihydrate gypsum having adhered water is made into semi-hydrate gypsum. Or used only when hemihydrate gypsum is converted to anhydrous gypsum, or when only adhering water adhering to dihydrate gypsum is dried (ie, when obtaining dihydrate gypsum with crystal water retained inside). You may do it.
- the heating apparatus according to the present invention is an apparatus that can perform either or both of drying and baking according to the use, that is, a dryer and a calciner.
- drying and / or calcination is mainly performed by (1) heating the dihydrate gypsum having adhering water to evaporate the adhering water, and keeping the crystal water inside. In the case where only “drying” when obtaining the dihydrate gypsum of (i.e., not including “calcination”), (2) heating the dihydrate gypsum having adhering water to evaporate the adhering water is performed.
- dihydrate gypsum with attached water Is heated to evaporate the adhering water, and the crystal water present in the dihydrate gypsum is decomposed and evaporated, and calcined to obtain hemihydrate gypsum, and then the hemihydrate gypsum is further heated.
- the water crystallized inside the hemihydrate gypsum is decomposed and evaporated to perform firing.
- dihydrate gypsum without adhering water dihydrate gypsum without adhering water at all, or general dihydrate gypsum and In comparison, dihydrate gypsum with less adhering water may be heated) to decompose and evaporate the crystallization water present in the dihydrate gypsum, and to produce hemihydrate gypsum that retains some crystallization water inside.
- the raw material gypsum is dried with a dryer, (2) the dried raw material is baked in a baking furnace, (3) the baked gypsum is pulverized with a pulverizer, (4) After storage in silo, (5) Add admixtures and additives as appropriate to make a slurry, (6) sandwich the slurry between front and back board paper, (7) shape into a plate shape, (8) any size (9) Dry.
- the heating device according to the present invention is used in the case of the drying step (1), in the case of the firing step (2), or when the (1) drying step and the (2) firing step are continuously performed. be able to.
- the gypsum supplied to the heating device is preferably a material whose surface is not sticky and has low adhesion.
- FIG. 24 shows a table quoted from the explanatory diagram on page 17 of the Japanese Powder Industrial Technology Association standard SAP15-13, 2013, page 17.
- dry dry
- pendular region shreacted region
- funicular region 1 cord region 1
- funicular region 2 cord region 2
- mud mud
- the liquid content of gypsum supplied to the heating device is 3 to 20 wt% W. B. , Preferably 5 to 20 wt% W.V. B. It is preferable that
- the “liquid content” means the weight ratio (W1 / (W1 + W2) of the sum of the weight (W2) of the solid to the weight (W1) of the gypsum adhering to the cake and the weight (W1) of the liquid. )). This liquid content can be determined by the loss on drying method or the Karl Fischer method.
- the median diameter (also referred to as “median diameter”) of the present invention is determined by measuring the particle size distribution using, for example, a laser diffraction particle size distribution measuring apparatus (for example, trade name SALD-3100, manufactured by Shimadzu Corporation), and cumulative volume. Is determined as the median diameter (D 50 ).
- the median diameter of gypsum supplied to the heating apparatus is 10 ⁇ m to 500 ⁇ m, and the median diameter of dried and / or calcined gypsum (heat-treated product E) discharged from the heating apparatus is 5 ⁇ m to 200 ⁇ m. is there.
- the heating apparatus As this heating device, a horizontal rotary dryer, that is, STD (abbreviation of Steam Tube Dryer) can be exemplified.
- STD abbreviation of Steam Tube Dryer
- the structure of the heating device includes a cylindrical rotating cylinder 10, and the rotating cylinder 10 is installed such that the axis of the rotating cylinder 10 is slightly inclined with respect to a horizontal plane. One end of the is positioned higher than the other end.
- two support units 20 and a motor unit 30 are installed so as to support the rotating cylinder 10, and the rotating cylinder 10 is rotated around its own axis by the motor unit 30. It is supposed to be free.
- the rotating cylinder 10 is configured to rotate in one direction. The direction can be determined arbitrarily. For example, when viewed from the other end side (gypsum discharge port side) to one end side (gypsum supply port side), it can be rotated counterclockwise (arrow R direction). .
- the rotating cylinder 10 of the heating device is provided to be inclined with respect to a horizontal plane. This is to make it easier to move the workpiece (such as gypsum) from one end side to the other end side. If the propulsive force that moves the workpiece from one end to the other end is weak, this tilt angle must be increased. However, if the propulsive force is strong as in the present invention, this tilt angle must be decreased.
- the inclination angle of the rotary cylinder 10 of a general heating device is 0.57 to 5.7 degrees, but in the present invention, it can be 0.057 to 2.86 degrees.
- a heating pipe (also referred to as “steam tube”) 11, which is a metal pipe, extends along the axis of the rotary cylinder 10 as a heat transfer pipe with the workpiece W.
- a heating tube 11 is heated by steam or the like as a heating medium flowing through the inside of the heating tube 11.
- the amount of the heating medium flowing in the heating tube 11 is 0.001 m 3 / s to 13 m 3 / s, the temperature of the heating medium to be supplied is 180 ° C.
- the pressure of the heating medium is 1.0 to 2.0 MPa gauge pressure.
- the temperature inside the rotary cylinder 10 is 20 ° C. to 220 ° C., and the temperature of the outer surface of the heated heating tube 11 is 50 ° C. to 220 ° C.
- the pressure in the rotary cylinder 10 is minus 300 mmH2O to plus 100 mmH2O.
- the temperature of the gypsum supplied to the rotary cylinder 10 is 0 ° C. to 100 ° C., and the temperature of the calcined half water or anhydrous gypsum discharged from the rotary cylinder 10 is 140 ° C. to 220 ° C.
- gas blowing means for blowing air, inert gas, or the like as the carrier gas A from the supply port 41 which is also a gas blowing port into the rotary cylinder 10 is provided.
- the carrier gas A blown by the gas blowing means flows through the inside of the rotating cylinder 10 toward the other end side of the rotating cylinder 10.
- a plurality of openings 50 are formed through the peripheral wall on the other end side of the rotating cylinder 10.
- a plurality of discharge ports 50 are formed along the circumferential direction of the rotary cylinder 10, and in the example of FIGS. 1 and 3, the discharge ports 50 are formed apart from each other so as to form two rows.
- the several discharge port 50 is all made the same shape, it can also be made into a different shape.
- a gas pipe 72 is provided on the other end side of the rotary cylinder 10, and a supply pipe 70 and a drain pipe 71 for supplying steam into the heating pipe 11 are provided.
- the rotary cylinder 10 is provided with a classification hood 55 capable of discharging the workpiece W and the carrier gas A so as to cover the other end side having the plurality of discharge ports 50.
- the classification hood 55 is formed of a thick metal, and has a fixed discharge port 57 for discharging the classified heat-treated product E on the bottom surface and a fixed exhaust port 56 for discharging the carrier gas A on the top surface. Respectively.
- the gypsum is supplied into the screw feeder 42 from the supply port 41, and is supplied into the rotary cylinder 10 by rotating a screw 44 installed in the screw feeder 42 by a driving means (not shown).
- the gypsum supplied from the supply port 41 moves to the other end side of the rotating cylinder 10 while being dried and / or fired by contacting the outer surface of the heating tube 11 heated by the steam, and is discharged from the discharge port 50.
- the gypsum is also scraped up by the friction force between the inner surface of the rotary cylinder 10 and the gypsum. As will be described in detail later, as the critical speed ratio ⁇ of the rotating cylinder 10 increases, the amount of gypsum that is scraped up increases, and the gypsum is dispersed in a wider range within the rotating cylinder 10.
- This heating device is a device that indirectly heats gypsum by contacting the gypsum with the outer surface of the heating tube 11 heated by steam (heating medium). Therefore, when the heating medium and the gypsum are in direct contact, the mechanism of the apparatus is fundamentally different from the apparatus in which the gypsum is directly heated and dried.
- the liquid content of dihydrate gypsum having adhering water to be supplied to the rotary cylinder 10 is 3 to 20 wt% W.
- the hemihydrate gypsum or anhydrous gypsum heated to 140 to 220 ° C. by heating with the heating device is discharged from the rotary cylinder 10.
- the carrier gas A blown from the supply port 41 by the blowing means provided on one end side of the rotating cylinder 10 is a space in the rotating cylinder 10 (specifically, the inner wall of the rotating cylinder 10 and the outer wall of the heating tube 11). Between the exhaust tube 50 and the exhaust port 50 which is also the exhaust port for the workpiece W.
- the steam supplied from the supply pipe 70 into the heating pipe 11 is cooled in the process of flowing through the heating pipe 11 and becomes a liquid D when the workpiece W and the heating pipe 11 come into contact with each other to exchange heat. , And is discharged from the drain pipe 71.
- the shape of the stirring means 65 should just be a structure which can scrape up the to-be-processed object W with rotation of the rotary cylinder 10, such as the board
- FIG. the same shape as the scraping plate 60 can be taken.
- the carrier gas A blown from the supply port 41 by the blowing means provided on one end side of the rotating cylinder 10 passes through the rotating cylinder 10 and is a discharge port 50 that is also a discharge port for the workpiece W.
- the carrier gas A is exhausted from the discharge port 50 together with the fine particles C dispersed in the rotary cylinder 10 by the scraping plate 60.
- the carrier gas A exhausted from the exhaust port 50 is exhausted from the classification hood 55 through the fixed exhaust port 56.
- particles having a large particle diameter and a heavy weight fall in the rotary cylinder 10 and are not discharged from the fixed exhaust port 56 by the carrier gas A, but from the discharge port 50 located on the lower side. Fall naturally.
- the particles that have fallen naturally are discharged to the outside as the heat-treated object E from the fixed discharge port 57.
- a gas blowing tube type heating device as shown in FIG. 12 may be used.
- the gas blowing pipe 36 is provided extending in the axial direction inside the rotary cylinder 10 and rotates together with the rotary cylinder 10 and the heating pipe 11.
- it can be provided between the plurality of heating tubes 11, 11 or further inside the heating tube 11 located on the innermost side.
- the display of the heating pipe 11 is omitted for easy understanding of the gas blowing pipe 36.
- a plurality of gas blowing ports 37 are open on the wall surface of the gas blowing pipe 36. In the example of FIG. 12, two rows of gas blowing ports 37 are provided in the axial direction above the gas blowing pipe 36.
- the carrier gas A When operating the gas blowing tube type heating device, the carrier gas A is supplied into the gas blowing tube 36 from one end side of the rotary cylinder 10.
- the supplied carrier gas A is ejected from the gas inlet 37 into the rotary cylinder 10 and flows out from the other end side of the rotary cylinder 10 along with the vapor from the gypsum.
- the carrier gas A may be supplied into the gas blowing pipe 36 from the other end side of the rotating cylinder 10 and exhausted from one end side of the rotating cylinder 10.
- a chute type (FIG. 6) and a vibration trough type (FIG. 7) can be exemplified as a method for supplying gypsum to the heating device.
- the supply chute 46 is coupled to the intake box 45, and the gypsum supplied from the supply port 41 falls in the supply chute 46 and moves into the rotary cylinder 10.
- An intake box 45 is connected to the rotary cylinder 10 via a seal packing 47, and the rotary cylinder 10 rotates while maintaining a seal between the rotary cylinder 10 and the intake box 45.
- the intake box 45 is a trough (the cross-sectional shape is concave), and a vibration motor 48 and a spring 49 are coupled to the lower end of the intake box 45.
- the gypsum supplied from the supply port 41 falls on the trough. Then, when the suction box 45 is vibrated by the vibration motor 48, the gypsum moves into the rotary cylinder 10.
- the intake box 45 is attached, it is preferable to have an inclination downward toward the rotary cylinder 10 so that the gypsum can easily move.
- the cross-sectional shape of the rotating cylinder 10 may be a rectangle as well as a circle described later. As an example of a rectangle, a hexagonal rotating cylinder 10 is shown in FIG. When the rectangular rotating cylinder 10 is rotated, the gypsum is lifted by the corners 15 of the rotating cylinder 10, so that the mixing of the gypsum is improved. On the other hand, there is a demerit that the number of heating tubes 11 to be arranged is reduced because the cross-sectional area of the rotating cylinder 10 is narrower than that of a circular case. Note that the number of corners (the number of sides) of the rectangle can be changed. More specifically, the number of corners can be any number of three or more.
- a jacket 12 surrounding the rotating cylinder 10 may be provided.
- the heating medium S is caused to flow between the outer wall of the rotating cylinder 10 and the inner wall of the jacket 12, and heating is also performed from the outside of the rotating cylinder 10.
- the heating medium S include high temperature gas of 200 to 400 ° C., hot oil of 200 to 400 ° C., and the like.
- a plurality of trace pipes may be provided so as to surround the rotating cylinder 10 instead of the jacket 12.
- a form as shown in FIG. 10 can also be adopted.
- the carrier gas A is sent into the partition wall 23 from the carrier gas supply port 33 at the top of the casing 80.
- the carrier gas A is a reuse gas
- dust or the like is contained in the carrier gas A.
- the ribbon screw Z is disposed inside the partition wall 23, that is, the gas passage U2
- the gas Dust or the like mixed in is captured by the ribbon screw Z.
- the captured dust or the like is sent toward the opening 22 by the feeding action of the ribbon screw Z and is discharged into the casing 80.
- the discharged dust or the like is discharged from the discharge port 32 below the casing by free fall.
- the gas other than the dust of the carrier gas A is sent into the rotary cylinder 10 without being obstructed by the ribbon screw Z.
- the screw blades 24 also rotate. Accordingly, the heat-treated product E is sent through the delivery passage U ⁇ b> 1 toward the opening 21 by the feeding action of the screw blade 24, and is discharged from the opening 21. The discharged heat-treated product E is discharged from the discharge port 32 below the discharge casing by its own weight.
- a steam path (an internal steam supply pipe 61 and an internal drain discharge pipe 62) that penetrates the casing 80 and extends into the partition wall 23 is provided integrally with the rotary cylinder 10.
- the internal steam supply pipe 61 communicates with the inlet header part of the heating pipe 11 in the end plate part 17, and the internal drain discharge pipe 62 communicates with the outlet header part of the heating pipe 11 in the end plate part 17.
- the steam supply pipe 70 and the drain discharge pipe 71 are connected to the internal steam supply pipe 61 and the internal drain discharge pipe 62 via the rotary joint 63, respectively.
- the heating device in FIGS. 1 and 4 employs “cocurrent flow” in which the direction in which the gypsum moves and the direction in which the carrier gas A flows are the same.
- FIG. 11 shows an example of a heating device employing “countercurrent”.
- a gypsum supply port 31 is provided above the screw feeder 42, and a discharge port 32 for the heat-treated product E is provided at the lower end of the hood 35.
- gypsum is supplied from the supply port 31 of gypsum, the to-be-processed object W is moved toward the other end side from the one end side of the rotary cylinder 10, and the heat-processed object E is discharged from the discharge port 32 with a heating pipe in the movement process. Discharge.
- a carrier gas A supply port 33 is provided at the upper end of the hood 35, and a carrier gas A discharge port 34 is provided above the screw feeder 42.
- the carrier gas A is supplied from the supply port 33 of the carrier gas A, the carrier gas A is caused to flow from the other end side to the one end side of the rotating cylinder 10, and the vapor evaporated from the gypsum in the process is conveyed. Is discharged from the discharge port 34.
- the support structure of the rotary cylinder 10 includes a screw casing 42 provided on one end side and a gas pipe 72 provided on the other end side in addition to the support structure in which the two tire members 20, 20 are attached to the outer periphery of the rotary cylinder 10.
- a bearing (not shown) may be attached to the outer periphery of the tire to support the bearing, or a support structure in which the tire member 25 and the bearing are combined.
- the processing load PL of the heating device is determined. Specifically, the load PL is calculated based on the type of gypsum, the liquid content (wt% WB), the target processing amount (kg / h), and the like.
- the number of rotations of the rotating cylinder 10 is determined.
- the conventional rotational speed determination method uses the rotational speed of the rotary cylinder 10 as an important reference (in the present invention, “rotational speed” is also referred to as “peripheral speed”). Used to determine the number of revolutions.
- the value of the rotational speed V was determined based on an empirical rule within a range of about 0.1 to 0.4 [m / s].
- N (V ⁇ 60) / (D ⁇ ⁇ ) Equation 5
- N is the rotational speed (r.p.m.) of the rotating cylinder 10
- V is the rotating speed (m / s) of the rotating cylinder
- D is the inner diameter (m) of the rotating cylinder 10. .
- N V / Vc ⁇ Nc Expression 6
- N the rotational speed (r.p.m.) of the rotating cylinder 10
- V the rotating speed (m / s) of the rotating cylinder 10
- Vc the critical speed (m / s) of the rotating cylinder 10.
- Nc is the critical rotational speed (rpm) of the rotating cylinder 10.
- the “critical speed” is a rotational speed at which the gravity of gypsum and the centrifugal force acting on the gypsum balance in the heating device.
- the rotational cylinder 10 in which the gypsum rotates together with the rotary cylinder 10 is used.
- R ⁇ represents speed.
- the “critical speed ratio” refers to the ratio of the actual rotational speed to the critical speed.
- Vc 2.21D 1/2 ...
- Vc is the critical speed (m / s) of the rotating cylinder 10
- D is the inner diameter (m) of the rotating cylinder 10.
- the critical speed ratio ⁇ of the rotating cylinder indicates the ratio of the actual rotational speed V to the critical speed (Vc), and can be expressed by the following formula 2.
- ⁇ V / Vc ⁇ 100 Equation 2
- ⁇ is the critical speed ratio (%) of the rotating cylinder 10
- V is the rotating speed (m / s) of the rotating cylinder 10
- Vc is the critical speed (m / s) of the rotating cylinder 10.
- Nc 42.2 / D 1/2
- Nc is the critical rotational speed (rpm) of the rotating cylinder 10
- Vc is the critical speed (m / s) of the rotating cylinder 10
- D is the inner diameter (m) of the rotating cylinder 10.
- the critical speed ratio ⁇ at which the peak of the drying and firing rate reaches depends on the liquid content of dihydrate gypsum. Specifically, the higher the liquid content of dihydrate gypsum, the lower the critical speed ratio ⁇ and the peak of the drying and firing speed. Moreover, the lower the liquid content of dihydrate gypsum, the lower the peak value of the drying and firing rate.
- the critical speed ratio ⁇ is between 10 and 70%, the higher the gypsum liquid content, the higher the drying and firing rate.
- the critical speed ratio ⁇ is preferably 15 to 70%, more preferably 20 to 65%, and the critical speed ratio ⁇ is 25 to 58%. More preferably. Further, when the critical speed ratio ⁇ is in the range of 28 to 55%, the drying and firing speed is remarkably improved. As shown in FIG. 14, as the value of the critical speed ratio ⁇ increases from 10%, the drying and firing speed shifts in a mountain shape. Therefore, in order to obtain a desired drying and firing speed, the critical speed ratio ⁇ is low and high.
- the critical speed ratio ⁇ can be selected from two critical speed ratios ⁇ .
- a method of setting the critical rate ratio ⁇ to 18% (selecting a low critical rate ratio ⁇ ) and 70% can be considered (selecting a high critical speed ratio ⁇ ).
- a low critical speed ratio ⁇ it is preferable to select a low critical speed ratio ⁇ . This is because the lower the critical speed ratio ⁇ , that is, the lower the rotation speed of the rotary cylinder 10, the more economical the parts can be exchanged due to wear of the machine, the less power consumption, and the lower the environmental load.
- the critical rate ratio ⁇ may be set to 40% if the drying and firing rate is better. However, if the drying / firing speed is 1.5, it is preferable to set the critical speed ratio ⁇ to 18% from the viewpoints of economy and reduction of environmental load.
- the critical speed ratio ⁇ is preferably 28% to 65%, and the liquid content of gypsum is 15 wt% WB. In this case, the critical speed ratio ⁇ is preferably 15 to 70%.
- the number of rotations of the rotating cylinder 10 is increased.
- the number of rotations of the rotating cylinder 10 increases, the amount of dust generated in the rotating cylinder 10 increases, and the generated dust is discharged out of the heating device together with the carrier gas flowing in the rotating cylinder 10. Since a large amount of gypsum is contained in the dust, it is preferable to collect and recycle this gypsum.
- the carrier gas discharged from the heating device is sent to a solid gas separator (not shown), the gypsum in the carrier gas is collected by the solid gas separator, and the collected gypsum is returned to the heating device supply port 41. It is preferable.
- the gypsum is kiln-action in the right half region of the rotating cylinder 10, but is agglomerated in the right half area of the rotating cylinder 10, and the moving amount Is less distributed in the left half region of the rotating cylinder 10. This indicates that the heating tube 11 and the plaster are not sufficiently in contact with each other in the left half region in the rotary cylinder 10.
- the critical speed ratio ⁇ (%) is the same, the drying and firing rate Rd of gypsum is substantially the same, and the drying and firing rate Rd is It is hardly affected by the difference in length of the inner diameter of the cylinder 10.
- the critical rate ratio ⁇ is gradually increased from 10%, the drying and firing rate gradually increases, and finally reaches a peak.
- the critical rate ratio ⁇ is further increased, the drying and firing rate is gradually decreased.
- the filling rate of gypsum is low, the contact area between the gypsum and the heating tube 11 is small, so the drying and firing rate does not improve.
- the filling rate is high, the powder layer (powder gypsum layer) As the upper layer generates an upper slip and the amount of gypsum not in contact with the heat transfer surface increases, the drying and firing rate does not improve.
- the filling rate ⁇ is 20 to 40%, and more preferably the filling rate ⁇ is 25 to 30%. It is preferable.
- the said filling rate can be calculated
- ⁇ Ap / Af ⁇ 100 Equation 10
- ⁇ is a filling rate (%)
- Ap is a cross-sectional area occupied by gypsum with respect to the free cross-sectional area (m 2 )
- Af is a free subtracting the cross-sectional area of all the heating tubes 11 from the total cross-sectional area of the rotating cylinder 10.
- the total cross-sectional area Af of the rotating cylinder 10 refers to a cross-sectional area inside the rotating cylinder 10 in an arbitrary cross section of the rotating cylinder 10, and does not include the area of the thick portion of the rotating cylinder 10. That is, it refers to the cross-sectional area calculated based on the inner diameter of the rotating cylinder 10.
- FIG. 17 shows the gap K between the heating tubes 11.
- the same gap K is shown by four concentric circular rows.
- the diameter of the heating tube 11 is increased toward the outside.
- the distance between adjacent heating tubes 11 (gap) K is preferably 60 to 150 mm.
- the heating tube 11 can have an appropriate diameter such that the diameter of the heating tube 11 is the same, and the gap K is increased toward the outside, for example.
- positioning form can also be taken.
- the drying and firing rate gradually increases as the critical rate ratio ⁇ is gradually increased from 10%, and finally reaches a peak, from which the drying and firing rate is further increased. Gradually descends.
- the gap K of the heating tube 11 is narrow, the amount of gypsum flowing through the gap K is small, so the gypsum does not mix so much and the drying and firing rate is slow, but as the gap K of the heating tube 11 is gradually increased, The amount of gypsum flowing through the gap K is gradually increased, the gypsum is well mixed, and the drying and firing rate is gradually increased.
- the distance between adjacent heating tubes 11 is preferably 60 to 150 mm.
- D is the inner diameter, but a correction equation for using the outer diameter instead of the inner diameter will be described.
- the outer diameter of the rotating cylinder 10 is Do
- the plate thickness (thickness) of the rotating cylinder 10 is t
- D Do ⁇ (2 ⁇ t) Equation 11
- Equation 11 may be substituted for D in each equation.
- the wall thickness t of the rotating cylinder 10 such as STD is shown.
- the thickness t tends to increase in order to maintain the strength of the rotating cylinder 10, and the actual design is generally as follows.
- the wall thickness t is 3 to 100 mm.
- the inner diameter D of the heating device according to the present invention is preferably 1 m to 5 m.
- the critical speed ratio ⁇ of the rotating cylinder is the same, the smaller the inner diameter D of the rotating cylinder 10, the greater the number of rotations of the rotating cylinder 10. Therefore, when the inner diameter D is smaller than 1 m, the number of rotations of the rotary cylinder 10 is remarkably increased and electric power is applied.
- the internal diameter D is larger than 5 m, there exists a problem that a heating apparatus will enlarge and manufacturing cost will start.
- the size and arrangement of the heating tube 11 can be selected as appropriate.
- the knowledge that the means to describe was effective was acquired.
- the heating tubes 11 are arranged radially in the rotary cylinder 10.
- gypsum powder particles enters the gaps of the plurality of heating tubes 11 that have moved to the lower portion of the rotary cylinder 10, and is scraped up in the rotation direction by the plurality of heating tubes 11 as the rotary cylinder 10 rotates. It is done.
- the gypsum that has been lifted up to the angle of repose begins to collapse mainly when it exceeds the angle of repose, and then begins to fall. More specifically, it falls like an avalanche between a plurality of heating tubes 11 positioned above the repose angle limit, and collides with the heating tube 11 positioned below the rotating cylinder 10.
- the dropped gypsum reenters the gap between the plurality of heating tubes 11 and 11 at the bottom of the rotating cylinder 10. Since the angle at which the gypsum falls and the angle at which it enters the gap between the heating tubes 11 and 11 are different, the gypsum does not quickly enter the gap between the heating tubes 11 and 11, and the outside of the heating tubes 11 and 11 (the center side of the rotating cylinder 10). It was found that the contact efficiency between the gypsum and the heating tube 11 was poor. When the contact efficiency is poor, there has been a problem that the drying and / or firing rate of gypsum decreases.
- the arrangement of the heating tube 11 is improved in order to solve the above problem. That is, a gypsum supply port 31 is provided on one end side, a gypsum discharge port 50 is provided on the other end side, a rotatable cylinder 10 that is rotatable around an axis, and a plurality of heating tubes 11, 11,.
- the heating device that is provided in the rotary cylinder 10 and heats the gypsum by the heating pipes 11, 11 in the process of supplying the plaster to one end side of the rotary cylinder 10 and discharging it from the other end side, the heating pipe 11, As for the arrangement of 11..., The following arrangement form is desirable.
- the connecting line connecting up to the core is selected from one of the following arrangement forms (1) or (2) or an arrangement form combining these.
- Each heating tube 11, 11... Core is located on a straight line L1 directly connecting the first reference heating tube S1 core and the second reference heating tube S2 core, and further the first reference heating tube S1 core.
- Each heating tube 11, 11... Core is located on a curve L2 connecting the first reference heating tube S1 core and the second reference heating tube S2 core, and on the second reference heating tube S2 core.
- the second reference heating tube S2 core is located rearward in the rotation direction of the rotating cylinder 10 with respect to the radial radiation J1 passing through the first reference heating tube S1 core.
- positioning form which is located.
- the heating tubes 11, 11,... are arranged concentrically around the center F of the rotating cylinder 10, and the concentric circle r1 of the first reference heating tube S1 on the center side circle.
- the concentric circle r2 of the second reference heating tube S2 and the concentric circle r3 of the outermost heating tube 11 located on the outermost side of the rotary cylinder 10 are arranged on the respective concentric circles.
- the first reference heating tube S1 core (see FIG. 16 and FIG. 18) is arbitrarily selected from the row of heating tube 11 groups (“row 1”: see FIG. 17) located on the most central side of the rotary cylinder 10. This is the core of the heating tube 11 (the center of the heating tube).
- the second reference heating tube S2 core is identical to the heating tube 11 (first reference heating tube S1) located on the most central side of the rotary cylinder 10 in the “row” of the plurality of heating tubes (see FIG. 17). Counting outward along the “row”, the core of the heating tube S2 having the desired number of columns (the center of the heating tube) is designated.
- the position of the second reference heating pipe S2 core is derived from the flow behavior of gypsum (this flow behavior is caused by the physical properties (shape, size, viscosity, material type, etc.) of the gypsum and the operating conditions of the heating device. Depending on factors).
- the arrangement ratio ⁇ h2 (the concentric circle r2 of the second reference heating tube S2—the concentric circle r1 of the first reference (innermost) heating tube S1) / h1 (the inner surface of the rotating cylinder 10—the first reference (innermost) heating tube) It is desirable that the concentric circle r1) of S1 be more than 1/2.
- At least the section from the first reference heating pipe S1 to the second reference heating pipe S2 is the heating pipe arrangement of the first arrangement form or the second arrangement form described above.
- the present invention includes the case where the position of the second reference heating tube S2 core is on the concentric circle r3 of the outermost heating tube 11.
- the region adopting the first arrangement form or the second arrangement form can be selected as appropriate.
- the number of the heating tubes 11 is seven in total, and the core of the second reference heating tube S2 An example is shown in the fourth column.
- FIGS. 16 and 17 are the second arrangement form.
- all seven rows are in the first arrangement form. That is, it is located on a straight line L1 that directly connects the first reference heating tube S1 core and the second reference heating tube S2 core, and further, for the radial radiation J1 passing through the first reference heating tube S1 core, the second The reference heating tube S2 core is located behind the rotating cylinder 10 in the rotation direction.
- the line passing through the first reference heating tube S1 core with the center point F of the rotating cylinder 10 as a starting point is set as the radial radiation J1
- the line passing through the second reference heating tube S2 core is set with the radial radiation J2.
- the distances h1 and h2 may be obtained from the distance on the radial radiation J2.
- the gap between the adjacent heating tubes 11 can be increased as it is positioned outward from the center side.
- FIGS. 16 to 18 are examples in which the gaps between adjacent heating tubes 11 are gradually increased from the center side toward the outside.
- FIG. 19 shows an example in which the inside of the heating tubes 11, 11... Is arranged in a curved shape according to the second arrangement form, and the outer part is arranged along the radial direction (radial direction).
- the heating tubes 11, 11... are arranged in an oblique straight line according to the first arrangement form, and the outer portion extends from the middle concentric circle to the outermost concentric circle through a row of oblique straight heating tubes. An example is shown.
- the arrangement ratio ⁇ h2 (the concentric circle r2 of the second reference heating tube S2). It is desirable that the concentric circle r1 of the first reference (innermost) heating tube S1 / h1 (inner surface of the rotary cylinder 10-concentric circle r1 of the first reference (innermost) heating tube S1) be greater than 1/2.
- the gypsum quickly enters the gap between the heating tubes 11 and does not stay outside the heating tube 11 (center side of the rotating cylinder 10), and the contact between the gypsum and the heating tube 11 is good. Therefore, drying and / or firing efficiency can be improved. Further, since the contact area between the gypsum and the heating tube 11 is increased and the contact time between the two is also increased, drying and / or firing efficiency can be improved from this point.
- the plaster smoothly enters the gap between the heating tubes 11, 11, the impact received by the heating tube 11 from the plaster is reduced. Therefore, compared with the case where the heating tube 11 is arrange
- the gypsum (powder body) was crushed by colliding with the falling gypsum and the heating tube 11, but according to the above-mentioned preferred form, crushing can be prevented or suppressed. .
- the particle size distribution of the final product can be stabilized, and the fine powder can be reduced to reduce the load on the exhaust treatment facility.
- each heating tube 11, 11 ... can be selected as appropriate.
- the number of the heating tubes 11 on the concentric circles may be the same, but when the heating tubes 11 are provided in a straight line, the heating from the outermost periphery to the middle of the rotating cylinder 10 is performed as shown in FIG. It is better to increase the number of the tubes 11 than the number of the heating tubes 11 from the middle of the rotating cylinder 10 to the innermost periphery.
- the distance between the adjacent heating tubes 11, 11 can be made substantially the same from the innermost periphery to the outermost periphery.
- the heat transfer area of the heating tube 11 increases, and the drying and / or firing rate of the gypsum moved to the outer peripheral side of the rotating cylinder 10 can be improved.
- Diameter of heating tube 11 Although all the diameters of the heating tubes 11 may be the same, as shown in FIG. 17, the diameter can be gradually increased from the inner peripheral side to the outer peripheral side of the rotating cylinder 10. Thus, by changing the diameter of the heating tube 11, the distance between the adjacent heating tubes 11 can be made substantially the same from the inner periphery to the outer periphery. By increasing the diameter of the heating tube 11 in this way, the heat transfer area of the heating tube 11 is increased, and the drying and / or firing rate of the gypsum moved to the outer peripheral side of the rotating cylinder 10 can be improved.
- the arrangement of the heating tubes 11 is represented by a “matrix”, the arrangement in the radial direction of the rotating cylinder 10 (the direction from the center side of the rotating cylinder 10 toward the outside) is “column”, and the arrangement in the circumferential direction is “row”.
- the dispersibility and fluidity of the plaster can be changed.
- the distance between the rows is the distance between the heating tube 11 and the reference heating tube 11 in (1)
- the distance between the heating tube 11 and the reference heating tube 11 in (2) the distance between the heating tube 11 and the reference heating tube 11 in (8)
- the distance between the heating tube 11 and the reference heating tube 11 and the distance between the heating tube 11 and the reference heating tube 11 in (6) are considered, and these are set to be equal to or greater than the predetermined value.
- the distance between the heating tube 11 and the reference heating tube 11 in (3) and the distance between the heating tube 11 and the reference heating tube 11 in (7) can be considered, and these are also equal to or greater than the predetermined value. To do.
- the distance between adjacent heating tubes 11 is preferably 80 to 150 mm.
- the distance between the rows and the distance between the columns are the constraint conditions when determining the arrangement of the heating tubes 11. While following this restraint condition, in order to increase the heat transfer area as much as possible and improve the fluidity, various variations were tried by changing the diameter, the number of rows and the number of columns of the heating tube 11, and the heat transfer area was the widest.
- the product is designed by adopting an arrangement that improves fluidity. As a result of actually examining the arrangement of the heating tubes 11, when the curvature of the row is gradually increased, the diameter of the heating tube 11 is gradually decreased and the number of columns is gradually increased, so that the heat transfer area is maximized. I was able to.
- the heat transfer area could be maximized by gradually increasing the diameter of the heating tube 11 and gradually decreasing the number of columns.
- 15 to 22 show an example in which the heating tubes 11 are arranged in a plurality of rows, but only one row of the heating tubes 11 may be arranged.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Drying Of Solid Materials (AREA)
Abstract
乾燥焼成能力を向上させて、石膏の大量処理を容易にするとともに、小型化を可能にする石膏の加熱方法、石膏の加熱装置および石膏の製造方法を提供する。 そのために、加熱装置を用いて、石膏を加熱する方法であって、式1、式2で定められる臨界速度比αが15~70%未満となるように、回転筒を回転して、石膏を加熱する。Vc=2.21D1/2 ・・・式1 α=V/Vc・100 ・・・式2 ここに、Vcは回転筒の臨界速度(m/s)、Dは回転筒の内径(m)、αは回転筒の臨界速度比(%)、Vは回転筒の回転速度(m/s)である。
Description
本発明は、石膏の加熱方法、石膏の加熱装置および石膏の製造方法に関する。
石炭や鉱石等の被処理物を乾燥する乾燥機としては、スチームチューブドライヤー(以下「STD」という。)、コールインチューブ(特許文献1)、ロータリーキルン等が多用されている。前記石炭や鉱石は、製鉄や精錬の原料、発電燃料等として用いられ、これらを安定的にかつ大量に処理することが要求されるため、この要求に適う乾燥機として、前記の各乾燥機が採用されている。
STDは被処理物を間接加熱するため、熱効率が高く、単位容量当たりの処理量も多い。また、大型化も可能であるため、大量処理の要求に適している。
コールインチューブも被処理物を間接加熱するため、前記STDと同様に、熱効率が高く、単位容量当たりの処理量も多い。しかし、STDに比べて大型化が難しいという欠点がある。例えば、前記STD1台で処理できる量をコールインチューブで処理しようとしたとき、複数台必要となる場合がある。
ロータリーキルンは、被処理物に熱風を当てて直接乾燥させるため、間接加熱に比べて熱効率が悪いという欠点がある。また、排気処理設備が非常に大きくなるという欠点もある。かかる理由から、大量の被処理物を処理する乾燥機としては、STDに優位性がある。
近年は、被処理物の大量乾燥処理の要求が強く、その要求に応えるため、乾燥機の大型化が進んでいる。STDの大型化を例に挙げると、シェル径が4mで、本体長が30m以上の装置が作られている。
しかし、乾燥機の大型化は、設置面積が増えてしまうという問題が生じるほか、製造や輸送に問題が生じる。具体的には、強度を保持するために各部材の板厚が増加し、シェル径が4m、本体長が30mの前記STDでは、本体重量が400tonにも達する。そのため、完成までに多くの時間かかるという問題がある。また、製造に特別な設備を要するという問題もある。
さらに、大型化に伴って製品輸送の際に、その重量に耐えられる特殊車両が必要になる。加えて輸送路が狭い場合には、分割して輸送し、現場で接合し、組立てる必要があり、工事が非常に繁雑であるという問題もある。
これらの問題は、石膏を被処理物とした乾燥や焼成処理においても表われる。
本発明者は、前述の装置の大型化には限界があることを踏まえ、被処理物、すなわち石膏の乾燥速度を向上させることを指向するべきであるとの課題を見出した。同様に石膏の焼成速度を向上させることを指向するべきであるとの課題を見出した。
したがって、本発明の課題は、加熱装置による石膏の乾燥および/または焼成速度を向上させることにある。
また、加熱装置の大きさ(シェル径)当たりの処理量を増大できる本発明により装置の大型化に伴う前記問題を極力回避できるようにすることにある。
また、加熱装置の大きさ(シェル径)当たりの処理量を増大できる本発明により装置の大型化に伴う前記問題を極力回避できるようにすることにある。
上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
一端側に石膏の供給口を、他端側に石膏の排出口を有し、軸心周りに回転自在な回転筒と、加熱媒体が通る加熱管群を前記回転筒内に設け、前記回転筒の回転に伴って石膏が回転方向に掻き上げられる構成の加熱装置を用いて、
石膏が前記供給口から前記排出口まで移動する過程で、前記加熱管群により石膏を間接加熱する石膏の加熱方法であって、
下記式1、式2で定められる臨界速度比αが15~70%未満となるように、前記回転筒を回転して、石膏を加熱することを特徴とする石膏の加熱方法。
Vc=2.21D1/2 ・・・式1
α=V/Vc・100 ・・・式2
ここに、Vcは回転筒の臨界速度(m/s)、Dは回転筒の内径(m)、αは回転筒の臨界速度比(%)、Vは回転筒の回転速度(m/s)である。
<請求項1記載の発明>
一端側に石膏の供給口を、他端側に石膏の排出口を有し、軸心周りに回転自在な回転筒と、加熱媒体が通る加熱管群を前記回転筒内に設け、前記回転筒の回転に伴って石膏が回転方向に掻き上げられる構成の加熱装置を用いて、
石膏が前記供給口から前記排出口まで移動する過程で、前記加熱管群により石膏を間接加熱する石膏の加熱方法であって、
下記式1、式2で定められる臨界速度比αが15~70%未満となるように、前記回転筒を回転して、石膏を加熱することを特徴とする石膏の加熱方法。
Vc=2.21D1/2 ・・・式1
α=V/Vc・100 ・・・式2
ここに、Vcは回転筒の臨界速度(m/s)、Dは回転筒の内径(m)、αは回転筒の臨界速度比(%)、Vは回転筒の回転速度(m/s)である。
(作用効果)
従来、石膏用加熱装置の回転筒の回転数について、回転筒の内径が2.44mの場合は、回転数を2.5~3.1rpmに設定して運転を行っている。この加熱装置は、回転筒の回転により、加熱装置内部で石膏を出口へ向かって搬送する推進力を生じさせる。このとき、石膏の搬送量が多いにも関わらず回転数が低いと、加熱装置内部で石膏が溜まり過ぎて流路が詰まることがある。このようなトラブルを回避するため、石膏の流動性を鑑み、経験則に基づいて回転数を調整し、石膏の搬送量が多い場合は回転数を高め、石膏の搬送量が少ない場合は回転数を低く設定して運転を行っている。
従来、石膏用加熱装置の回転筒の回転数について、回転筒の内径が2.44mの場合は、回転数を2.5~3.1rpmに設定して運転を行っている。この加熱装置は、回転筒の回転により、加熱装置内部で石膏を出口へ向かって搬送する推進力を生じさせる。このとき、石膏の搬送量が多いにも関わらず回転数が低いと、加熱装置内部で石膏が溜まり過ぎて流路が詰まることがある。このようなトラブルを回避するため、石膏の流動性を鑑み、経験則に基づいて回転数を調整し、石膏の搬送量が多い場合は回転数を高め、石膏の搬送量が少ない場合は回転数を低く設定して運転を行っている。
他方、本発明者らの知見によれば、加熱装置の大きさ(回転筒の内径)を変えると、同じ回転数で回転しても、石膏の乾燥速度や焼成速度が変わるとともに、その速度の予測が難しいという問題がある。特に大型の加熱装置になるほどその速度の予測が困難であるため、伝熱面積を大きめに設計して処理能力に余裕を持たせていた。
かかる理由により、従来例では、テスト機から実機にスケールアップする際に、所望する処理能力を引き出すことが困難であったのに対し、本発明に係る石膏の加熱方法を用いて回転筒の回転速度を決定することで、スケールアップの際に、所望する処理能力を発揮させることが容易となる。
また、本発明の石膏の加熱方法においては、加熱装置の回転速度を高速化することにより、従来よりも乾燥速度や焼成速度を飛躍的に向上させることができ、石膏の大量処理が可能となる。
<請求項2記載の発明>
前記加熱装置に供給する石膏の含液率が3~20wt%W.B.である請求項1記載の石膏の加熱方法。
前記加熱装置に供給する石膏の含液率が3~20wt%W.B.である請求項1記載の石膏の加熱方法。
(作用効果)
含液率3~20wt%W.B.の石膏を加熱装置に供給したときに、回転筒の臨界速度比αが15~70%未満となるように回転筒の回転速度を選択して回転することで、石膏の乾燥および/または焼成速度を従来よりも速くすることができる。
一般的に、石膏の含液率が20wt%W.B.を超えると、どろどろした粘液状になる。そのため、含液率が20%を超える石膏を加熱装置に供給した場合、石膏が回転筒の内壁に付着して、回転筒と石膏が一緒に回転してしまう。石膏が回転筒の上方から下方へ回転筒内の空間を落下することが少ないため、石膏と加熱管群の接触面積が増えず、乾燥および/または焼成速度を上げることができない。
一方、石膏の含液率を3wt%W.B.未満にするためには、乾燥工程の前の脱水工程において、高機能の高価な脱水機を用いて高い負荷をかけて脱水する必要があるため、経済性や省電力等の観点から好ましくない。
含液率3~20wt%W.B.の石膏を加熱装置に供給したときに、回転筒の臨界速度比αが15~70%未満となるように回転筒の回転速度を選択して回転することで、石膏の乾燥および/または焼成速度を従来よりも速くすることができる。
一般的に、石膏の含液率が20wt%W.B.を超えると、どろどろした粘液状になる。そのため、含液率が20%を超える石膏を加熱装置に供給した場合、石膏が回転筒の内壁に付着して、回転筒と石膏が一緒に回転してしまう。石膏が回転筒の上方から下方へ回転筒内の空間を落下することが少ないため、石膏と加熱管群の接触面積が増えず、乾燥および/または焼成速度を上げることができない。
一方、石膏の含液率を3wt%W.B.未満にするためには、乾燥工程の前の脱水工程において、高機能の高価な脱水機を用いて高い負荷をかけて脱水する必要があるため、経済性や省電力等の観点から好ましくない。
<請求項3記載の発明>
一端側に石膏の供給口を、他端側に石膏の排出口を有し、軸心周りに回転自在な回転筒と、加熱媒体が通る加熱管群を前記回転筒内に設け、前記回転筒の回転に伴って石膏が回転方向に掻き上げられる構成とされ、
石膏が前記供給口から前記排出口まで移動する過程で、前記加熱管群により石膏を間接加熱する加熱装置であって、
下記式1、式2で定められる臨界速度比αが15~70%未満となるように、回転筒を回転できる構成であることを特徴とする石膏の加熱装置。
Vc=2.21D1/2 ・・・式1
α=V/Vc・100 ・・・式2
ここに、Vcは回転筒の臨界速度(m/s)、Dは回転筒の内径(m)、αは回転筒の臨界速度比(%)、Vは回転筒の回転速度(m/s)である。
一端側に石膏の供給口を、他端側に石膏の排出口を有し、軸心周りに回転自在な回転筒と、加熱媒体が通る加熱管群を前記回転筒内に設け、前記回転筒の回転に伴って石膏が回転方向に掻き上げられる構成とされ、
石膏が前記供給口から前記排出口まで移動する過程で、前記加熱管群により石膏を間接加熱する加熱装置であって、
下記式1、式2で定められる臨界速度比αが15~70%未満となるように、回転筒を回転できる構成であることを特徴とする石膏の加熱装置。
Vc=2.21D1/2 ・・・式1
α=V/Vc・100 ・・・式2
ここに、Vcは回転筒の臨界速度(m/s)、Dは回転筒の内径(m)、αは回転筒の臨界速度比(%)、Vは回転筒の回転速度(m/s)である。
(作用効果)
装置の観点から、請求項1と同様の作用効果を奏する。
装置の観点から、請求項1と同様の作用効果を奏する。
<請求項4記載の発明>
請求項1記載の加熱方法を用いて、付着水を有する二水石膏から無水石膏を得ることを特徴とする無水石膏の製造方法。
請求項1記載の加熱方法を用いて、付着水を有する二水石膏から無水石膏を得ることを特徴とする無水石膏の製造方法。
(作用効果)
請求項1記載の加熱方法を用いる場合において、回転筒の供給口に付着水を有する二水石膏を供給し、二水石膏が供給口から排出口まで移動する過程で、加熱管群により二水石膏を間接加熱して、付着水を蒸発させるとともに、二水石膏の内部に存在する結晶水を分解・蒸発させて焼成した半水石膏とし、前記加熱管群により半水石膏を間接加熱して、半水石膏の内部に存在する結晶水を分解・蒸発させて焼成した無水石膏とし、回転筒の排出口から無水石膏を排出させる。これによって、二水石膏から無水石膏を得ることができる。
請求項1記載の加熱方法を用いる場合において、回転筒の供給口に付着水を有する二水石膏を供給し、二水石膏が供給口から排出口まで移動する過程で、加熱管群により二水石膏を間接加熱して、付着水を蒸発させるとともに、二水石膏の内部に存在する結晶水を分解・蒸発させて焼成した半水石膏とし、前記加熱管群により半水石膏を間接加熱して、半水石膏の内部に存在する結晶水を分解・蒸発させて焼成した無水石膏とし、回転筒の排出口から無水石膏を排出させる。これによって、二水石膏から無水石膏を得ることができる。
<請求項5記載の発明>
請求項1記載の加熱方法を用いて、付着水を有する二水石膏から半水石膏を得ることを特徴とする半水石膏の製造方法。
請求項1記載の加熱方法を用いて、付着水を有する二水石膏から半水石膏を得ることを特徴とする半水石膏の製造方法。
(作用効果)
請求項1記載の加熱方法を用いる場合において、回転筒の供給口に付着水を有する二水石膏を供給し、二水石膏が供給口から排出口まで移動する過程で、加熱管群により二水石膏を間接加熱して、付着水を蒸発させるとともに、二水石膏の内部に存在する結晶水を分解・蒸発させて焼成した半水石膏とし、回転筒の排出口から半水石膏を排出させる。これによって、二水石膏から半水石膏を得ることができる。
請求項1記載の加熱方法を用いる場合において、回転筒の供給口に付着水を有する二水石膏を供給し、二水石膏が供給口から排出口まで移動する過程で、加熱管群により二水石膏を間接加熱して、付着水を蒸発させるとともに、二水石膏の内部に存在する結晶水を分解・蒸発させて焼成した半水石膏とし、回転筒の排出口から半水石膏を排出させる。これによって、二水石膏から半水石膏を得ることができる。
<請求項6記載の発明>
請求項1記載の加熱方法を用いて、付着水を有する二水石膏から付着水を除去した二水石膏を得ることを特徴とする二水石膏の製造方法。
請求項1記載の加熱方法を用いて、付着水を有する二水石膏から付着水を除去した二水石膏を得ることを特徴とする二水石膏の製造方法。
(作用効果)
請求項1記載の加熱方法を用いる場合において、回転筒の供給口に付着水を有する二水石膏を供給し、二水石膏が供給口から排出口まで移動する過程で、加熱管群により二水石膏を間接加熱して、付着水を蒸発させる。このとき、二水石膏の内部の結晶水は保持したままの状態に保ち、回転筒の排出口から付着水のみを除いた二水石膏を排出させる。これによって、付着水を有する二水石膏から付着水を除去した二水石膏を得ることができる。なお、前記「付着水を除去した二水石膏」は、付着水の全て除去した二水石膏でも良いし、付着水の一部を除去した二水石膏でも良い。
請求項1記載の加熱方法を用いる場合において、回転筒の供給口に付着水を有する二水石膏を供給し、二水石膏が供給口から排出口まで移動する過程で、加熱管群により二水石膏を間接加熱して、付着水を蒸発させる。このとき、二水石膏の内部の結晶水は保持したままの状態に保ち、回転筒の排出口から付着水のみを除いた二水石膏を排出させる。これによって、付着水を有する二水石膏から付着水を除去した二水石膏を得ることができる。なお、前記「付着水を除去した二水石膏」は、付着水の全て除去した二水石膏でも良いし、付着水の一部を除去した二水石膏でも良い。
以上のように、本発明によれば、加熱装置による石膏の乾燥および/または焼成速度を向上させることができる。また、乾燥および/または焼成速度が向上する結果、加熱装置の大きさ(シェル径)当たりの処理量を増大できる。逆からいえば、処理量当たりの装置の大きさを小さくできる。
以下、本発明の好適な実施形態について、図を用いて更に説明する。なお、以下の説明及び図面は、本発明の実施形態の一例を示したものにすぎず、本発明の内容をこの実施形態に限定して解釈すべきでない。
(発明の骨子)
一般に、加熱装置を用いた被処理物Wの乾燥および/または焼成速度は、下記の式3のように表すことができる。
Q=Uoa×Aef×Tln ・・・式3
ここに、Qは伝熱量(W)であり、Uoaは総括伝熱係数(W/m2-K)であり、Aefは有効接触伝熱面積(m2)であり、Tlnは温度差(℃)である。
一般に、加熱装置を用いた被処理物Wの乾燥および/または焼成速度は、下記の式3のように表すことができる。
Q=Uoa×Aef×Tln ・・・式3
ここに、Qは伝熱量(W)であり、Uoaは総括伝熱係数(W/m2-K)であり、Aefは有効接触伝熱面積(m2)であり、Tlnは温度差(℃)である。
乾燥および/または焼成速度は伝熱量Qと同義であり、前記の式3の左辺の伝熱量Qを高めるには、右辺の総括伝熱係数Uoa、有効接触伝熱面積Aef、温度差Tlnのいずれか、または全てを高めるような方策を取ればよい。
本発明者は、総括伝熱係数Uoa及び有効接触伝熱面積Aefに着目し、これらを高めるために、伝熱面と被乾燥物との相対的接触速度をより速くすること、および石膏の分散を良くして伝熱面と石膏との有効接触伝熱面積をより増大させることを考えた。実際に各種の実験・検討を行ったところ、本発明の手法の有効性を明確に確認できた。
本発明者は、総括伝熱係数Uoa及び有効接触伝熱面積Aefに着目し、これらを高めるために、伝熱面と被乾燥物との相対的接触速度をより速くすること、および石膏の分散を良くして伝熱面と石膏との有効接触伝熱面積をより増大させることを考えた。実際に各種の実験・検討を行ったところ、本発明の手法の有効性を明確に確認できた。
更に、本発明に従う高速回転化技術を詳細に分析した結果、加熱装置の回転筒10の直径が異なる場合においても、本発明の思想が適用できることを知見した。
(石膏)
被処理物Wとしては、石膏(硫酸カルシウム二水和物。組成式Ca[SO4]・2H2O。)を挙げることができる。この石膏は、天然に存在する天然石膏と、人工的に製造した化学石膏に大別することができる。天然石膏は、欧米やアフリカ等の水成鉱床で産出した石膏の品質が高く、過去に日本の交代鉱床で産出していた石膏は不純物混入量が多く品質が優れない傾向があった。また、化学石膏は、リン酸石膏、排煙脱硫石膏、チタン石膏、フッ酸石膏、鉱水・精錬石膏などを例示することができる。
被処理物Wとしては、石膏(硫酸カルシウム二水和物。組成式Ca[SO4]・2H2O。)を挙げることができる。この石膏は、天然に存在する天然石膏と、人工的に製造した化学石膏に大別することができる。天然石膏は、欧米やアフリカ等の水成鉱床で産出した石膏の品質が高く、過去に日本の交代鉱床で産出していた石膏は不純物混入量が多く品質が優れない傾向があった。また、化学石膏は、リン酸石膏、排煙脱硫石膏、チタン石膏、フッ酸石膏、鉱水・精錬石膏などを例示することができる。
前記において、被処理物Wを石膏と称したが、具体的には、乾燥工程の前の脱水工程において固液分離機によって脱水された後のケーキ(脱水ケーキ)を例示できる。この脱水ケーキには、石膏以外の物質が含まれていても良く、例えば石膏ボード廃材を回収して新たな原料とするものには、石膏ボードの紙や混和材料・添加剤等が含まれる。
また、石膏は結晶形によって、二水石膏(組成式Ca[SO4]・2H2O)、半水石膏(α型半水石膏(組成式α・Ca[SO4]・1/2H2O)とβ型半水石膏(組成式β・Ca[SO4]・1/2H2O)の2種類がある)、無水石膏(III型無水石膏(組成式γ・Ca[SO4])、II型無水石膏(組成式β・Ca[SO4])およびI型無水石膏(組成式α・Ca[SO4])の3種類がある)に分類することができる。
本発明に係る加熱装置は、主として、付着水を有する二水石膏を加熱して無水石膏にする際に用いることができるが、付着水を有する二水石膏を半水石膏にする際にのみ用いたり、半水石膏を無水石膏にする際にのみ用いたり、二水石膏に付着する付着水のみを乾燥する際(すなわち、内部に結晶水を保持したままの二水石膏を得る際)に用いたりしても良い。なお、付着水を有する二水石膏を加熱すると、まず二水石膏に付着していた付着水が蒸発し、次に二水石膏の内部に存在する結晶水が分解・蒸発し焼成された半水石膏となり、半水石膏をさらに加熱すると、半水石膏の内部に存在する結晶水が分解・蒸発し、焼成された無水石膏となる。このことを化学式で表すと、下記の通りとなる。
Ca[SO4]・2H2O → Ca[SO4]・1/2H2O → Ca[SO4]・・・式4
したがって、本発明に係る加熱装置は、用途に応じて乾燥と焼成のいずれか、または両方を行うことができる装置、すなわち乾燥機(Dryer)であるとともに焼成機(Calciner)であると言える。
Ca[SO4]・2H2O → Ca[SO4]・1/2H2O → Ca[SO4]・・・式4
したがって、本発明に係る加熱装置は、用途に応じて乾燥と焼成のいずれか、または両方を行うことができる装置、すなわち乾燥機(Dryer)であるとともに焼成機(Calciner)であると言える。
なお、本明細書における「乾燥および/または焼成」は、主に(1)付着水を有する二水石膏を加熱して、付着水を蒸発させる乾燥のみを行い、内部に結晶水を保持したままの二水石膏を得るときの「乾燥」のみを指す場合(すなわち、「焼成」を含まない場合)、(2)付着水を有する二水石膏を加熱して、付着水を蒸発させる乾燥を行うとともに、二水石膏の内部に存在する結晶水を分解・蒸発して焼成を行い、半水石膏を得るときの「乾燥」および「焼成」を指す場合、(3)付着水を有する二水石膏を加熱して、付着水を蒸発させる乾燥を行うとともに、二水石膏の内部に存在する結晶水を分解・蒸発して焼成を行って半水石膏を得た後、半水石膏をさらに加熱して、半水石膏の内部に存在する結晶水を分解・蒸発して焼成を行い、無水石膏を得るときの「乾燥」および「焼成」を指す場合、(4)付着水を有さない二水石膏(付着水を全く有さない二水石膏でも良いし、一般の二水石膏と比較して、付着水が少ない二水石膏でも良い)を加熱して、二水石膏の内部に存在する結晶水を分解・蒸発させて、内部に一部の結晶水を保持した半水石膏を得る「焼成」のみを指す場合(すなわち「乾燥」を含まない場合)、(5)半水石膏を加熱して、半水石膏の内部に存在する結晶水を分解・蒸発させて、無水石膏を得る「焼成」のみを指す場合(すなわち「乾燥」を含まない場合)、の5態様を例示できる。なお、前記「乾燥および/または焼成」と同様の意味で、「乾燥焼成」と記載することもできる。
例えば、石膏ボードを製造する際は、(1)原料石膏を乾燥機で乾かし、(2)乾燥した原料を焼成炉で焼成し、(3)焼成した石膏を粉砕機で粉砕し、(4)サイロに貯蔵した後、(5)混和材料や添加剤を適宜加えてスラリーとし、(6)スラリーを表裏のボード用紙で挟み、(7)板状の形態に成形し、(8)任意の大きさに切断し、(9)乾燥する。本発明に係る加熱装置は、前記(1)の乾燥工程の場合、前記(2)の焼成工程の場合、または前記(1)乾燥工程と前記(2)焼成工程を連続して行う場合に用いることができる。
加熱装置に供給する石膏は、物質表面がべたべたとしておらず、付着性の低いものが好ましい。図24に、日本粉体工業技術協会規格 SAP15-13、2013 解説書17頁 解説図5より引用した表を示す。本発明では、図24の点線で囲った領域にあるもの、詳しくはドライ(乾燥)、ペンジュラー域(懸垂域)、ファニキュラー域1(索状域1)、ファニキュラー域2(索状域2)、キャピラリー域(毛管域)の物質を石膏として用いることが好ましい。スラリー(泥しょう)は、付着性が極めて高い傾向にあるため適さない。
加熱装置に供給する石膏の含液率は、3~20wt%W.B.、好ましくは5~20wt%W.B.であることが好ましい。ここで、「含液率」とは、ケーキに付着する石膏の液分の重量(W1)に対する固形分の重量(W2)と液分の重量(W1)の和の重量比(W1/(W1+W2))をいう。この含液率は、乾燥減量法またはカールフィッシャー法により求めることができる。
(中位径)
本発明の中位径(「メジアン径」ともいう。)は、例えばレーザー回折式粒度分布測定装置(例えば、商品名SALD-3100、島津製作所社製)を用いて粒度分布を測定し、累積体積が50%に相当する時の粒子径を中位径(D50)として定める。
本発明の中位径(「メジアン径」ともいう。)は、例えばレーザー回折式粒度分布測定装置(例えば、商品名SALD-3100、島津製作所社製)を用いて粒度分布を測定し、累積体積が50%に相当する時の粒子径を中位径(D50)として定める。
本発明において、加熱装置に供給される石膏の中位径は10μm~500μmであり、加熱装置から排出される乾燥および/または焼成した石膏(加熱処理物E)の中位径は5μm~200μmである。
(加熱装置)
次に、本発明に係る加熱装置について説明する。この加熱装置としては、横型回転式乾燥機、すなわちSTD(Steam Tube Dryerの略称)を例示できる。この加熱装置の構造は、図1に例示するように、円筒状の回転筒10を有し、この回転筒10の軸心が水平面に対して若干傾くようにして設置されており、回転筒10の一端を他端よりも高く位置している。回転筒10の下方には、2台の支持ユニット20及びモーターユニット30が回転筒10を支持するようにして設置されており、回転筒10は、モーターユニット30によって、自身の軸心回りに回転自在とされている。この回転筒10は、一方向に回転するようになっている。その方向は任意に定めることができ、例えば、他端側(石膏の排出口側)から一端側(石膏の供給口側)を見て、反時計回り(矢印R方向)に回転させることができる。
次に、本発明に係る加熱装置について説明する。この加熱装置としては、横型回転式乾燥機、すなわちSTD(Steam Tube Dryerの略称)を例示できる。この加熱装置の構造は、図1に例示するように、円筒状の回転筒10を有し、この回転筒10の軸心が水平面に対して若干傾くようにして設置されており、回転筒10の一端を他端よりも高く位置している。回転筒10の下方には、2台の支持ユニット20及びモーターユニット30が回転筒10を支持するようにして設置されており、回転筒10は、モーターユニット30によって、自身の軸心回りに回転自在とされている。この回転筒10は、一方向に回転するようになっている。その方向は任意に定めることができ、例えば、他端側(石膏の排出口側)から一端側(石膏の供給口側)を見て、反時計回り(矢印R方向)に回転させることができる。
なお、回転筒10の臨界速度比αが15~70%未満となるように回転筒10を回転した場合、回転筒10の回転速度が従来よりも速いため、石膏を一端側から他端側へ移動させる推進力が従来よりも強くなる。
一般的に加熱装置の回転筒10は水平面に対して傾斜して設けられている。これは、一端側から他端側へ被処理物(石膏等)を移動しやすくするためである。被処理物を一端側から他端側へ移動させる推進力が弱い場合は、この傾斜角を大きくしなければならないが、本発明のように推進力が強い場合は、この傾斜角を小さくすることができる。傾斜角を小さくするほど回転筒10に生じる軸方向荷重を支持する部品(スラストローラー)を小型化でき、安価なものとすることができるという利点がある。一般的な加熱装置の回転筒10の傾斜角は0.57~5.7度であるが、本発明では0.057~2.86度にすることができる。
一般的に加熱装置の回転筒10は水平面に対して傾斜して設けられている。これは、一端側から他端側へ被処理物(石膏等)を移動しやすくするためである。被処理物を一端側から他端側へ移動させる推進力が弱い場合は、この傾斜角を大きくしなければならないが、本発明のように推進力が強い場合は、この傾斜角を小さくすることができる。傾斜角を小さくするほど回転筒10に生じる軸方向荷重を支持する部品(スラストローラー)を小型化でき、安価なものとすることができるという利点がある。一般的な加熱装置の回転筒10の傾斜角は0.57~5.7度であるが、本発明では0.057~2.86度にすることができる。
回転筒10の内部には、金属製のパイプである加熱管(「スチームチューブ」ともいう。)11が、被処理物Wとの伝熱管として、回転筒10の軸心に沿って延在して多数取り付けられている。この加熱管11は、例えば回転筒10の軸心に対して同心円を成すように周方向及び径方向に複数本ずつ配列されている。この配置形態については、後に詳説する。なお、この加熱管11は、加熱媒体である蒸気等が加熱管11の内部を流通することで加温される。この加熱管11内を流れる加熱媒体の量は0.001m3/s~13m3/sであり、供給する加熱媒体の温度は180℃~220℃であり、加熱媒体の圧力は1.0~2.0MPaゲージ圧である。また、回転筒10内の温度は20℃~220℃であり、加温された加熱管11の外面の温度は50℃~220℃である。また、回転筒10内の圧力はマイナス300mmH2O~プラス100mmH2Oである。また、回転筒10に供給される石膏の温度は0℃~100℃であり、回転筒10から排出される焼成後の半水又は無水石膏の温度は140℃~220℃である。
また、スクリューフィーダ42の近傍には、ガス吹込み口でもある供給口41からキャリアガスAとして空気、不活性ガス等を回転筒10の内部に吹き込むガス吹込み手段(図示しない)が設けられており、このガス吹込み手段によって吹き込まれたキャリアガスAは、回転筒10の他端側に向かって回転筒10の内部を流通する。
図1、図3に示すように、回転筒10の他端側における周壁には、複数の開口50が貫通して形成されている。排出口50は、回転筒10の周方向に沿って複数形成され、図1、図3の例では、2つの列を成すように相互に離間して形成されている。また、複数の排出口50は、全て同形とされているが、異形とすることもできる。
また、回転筒10の他端側には、ガス管72が備えられ、加熱管11内に蒸気を供給する供給管70とドレン管71とが設けられている。
(変形例)
なお、図4に示すように、前記回転筒10の他端側に、被処理物Wを撹拌する撹拌手段65を設けても良い。
なお、図4に示すように、前記回転筒10の他端側に、被処理物Wを撹拌する撹拌手段65を設けても良い。
また、図4、図5に示すように、回転筒10には、複数の排出口50を有する他端側を覆うように、被処理物W及びキャリアガスAを排出可能な分級フード55を設けても良い。この分級フード55は、肉厚な金属から形成されており、底面に、分級をされた加熱処理物Eを排出する固定排出口57を、天面にキャリアガスAを排気する固定排気口56を、それぞれ有する。
(乾燥、焼成過程)
次に、図1~図3を参照しながら、加熱装置で石膏を乾燥および/または焼成する過程を説明する。
次に、図1~図3を参照しながら、加熱装置で石膏を乾燥および/または焼成する過程を説明する。
石膏は、供給口41からスクリューフィーダ42内に供給され、このスクリューフィーダ42内部に設置されたスクリュー44を図示しない駆動手段によって回動させることによって、回転筒10の内部に供給される。供給口41から供給された石膏は、蒸気によって加熱された加熱管11の外面に接触することによって乾燥および/または焼成しつつ、回転筒10の他端側に移動し、排出口50から排出される。なお、加熱管群11の両端部が回転筒10に連結しているため、回転筒10の回転に伴い、加熱管群11も一緒に回転する。そして、回転する加熱管群11によって石膏が上方に掻き上げられ、回転筒10内の広い範囲に分散する。また、石膏は、回転筒10の内面と石膏の摩擦力によっても、掻き上げられる。後で詳述するように、回転筒10の臨界速度比αが上昇するにしたがって、掻き上げられる石膏の量が増え、石膏が回転筒10内のより広い範囲に分散することになる。
この加熱装置は、蒸気(加熱媒体)によって加温された加熱管11の外面と石膏が接触することにより、石膏を間接的に加熱する装置である。したがって、加熱媒体と石膏が直接接触することにより、石膏が直接的に加熱され、乾燥する装置とは、装置のメカニズムが根本的に異なる。
なお、回転筒10に供給する付着水を有する二水石膏の含液率は3~20wt%W.B.であり、加熱装置による加熱によって140~220℃に昇温された半水石膏または無水石膏が、回転筒10から排出される。
他方、回転筒10の一端側に設けられた吹込み手段によって、供給口41から吹き込まれたキャリアガスAは、回転筒10内の空間(詳しくは、回転筒10の内壁と加熱管11の外壁の間の空間)を通過して、被処理物Wの排出口でもある排出口50から回転筒10外に排気される。
また、前記供給管70から加熱管11内に供給した蒸気は、被処理物Wと加熱管11が接触して熱交換することにより、加熱管11内を流れる過程で冷却されて液体Dになり、ドレン管71から排出される。
(変形例)
次に、図4、図5を参照しながら、撹拌手段65及び分級フード55を備えた加熱装置を用いる場合についても説明する。この場合において、前記説明と重複する部分は、省略する。
次に、図4、図5を参照しながら、撹拌手段65及び分級フード55を備えた加熱装置を用いる場合についても説明する。この場合において、前記説明と重複する部分は、省略する。
回転筒10内に供給された被処理物Wは、撹拌手段65を設けた位置まで到達すると、撹拌手段65によって撹拌され、続いて、図5に示すように、回転筒10の回転に伴って回動する掻上板60によって掻き上げられる。掻き上げられた被処理物Wは、掻上板60が回転筒10の上側に位置すると、自然に落下し、その際に被処理物Wに含まれる微粒子Cが回転筒10内に分散する(いわゆるフライトアクション)。なお、撹拌手段65の形状は、回転筒10の中心方向に向けて突出した板材等、回転筒10の回転に伴い被処理物Wを掻き上げられる構造であれば良い。たとえば掻上板60と同様の形状をとることができる。
他方、回転筒10の一端側に設けられた吹込み手段によって、供給口41から吹き込まれたキャリアガスAは、回転筒10内を通過して、被処理物Wの排出口でもある排出口50から回転筒10外に排気される。この際、キャリアガスAは、掻上板60によって回転筒10内に分散された微粒子Cを伴って排出口50から排気される。排出口50から排気されたキャリアガスAは、固定排気口56を介して分級フード55から排気される。
被処理物Wのうち、粒子径が大きく重量が重い粒子は、回転筒10内において落下し、キャリアガスAによって固定排気口56から排出されることもなく、下側に位置した排出口50から自然落下する。この自然落下した粒子(被処理物W)は、固定排出口57から加熱処理物Eとして外部に排出される。
そのほか、図12に示すような、ガス吹き込み管式の加熱装置を用いても良い。ガス吹き込み管36は、回転筒10の内部に軸方向に延在して設けられ、回転筒10や加熱管11と共に回転する。例えば、複数の加熱管11、11の間や、最も内側に位置する加熱管11よりも更に内側に設けることができる。なお、図12では、ガス吹き込み管36を分かり易くするために、加熱管11の表示を省いている。このガス吹き込み管36の壁面には、複数のガス吹き出し口37が開いている。図12の例では、ガス吹き込み管36の上部に、ガス吹き込み口37を軸方向に2列設けている。
前記ガス吹き込み管式加熱装置を運転する際は、回転筒10の一端側からガス吹き込み管36内へキャリアガスAを供給する。供給されたキャリアガスAは、ガス吹き込み口37から回転筒10内へ噴き出し、石膏からの蒸気を伴って、回転筒10の他端側から流れ出る。そのほか、回転筒10の他端側からガス吹き込み管36内にキャリアガスAを供給し、回転筒10の一端側から排気する構成にしても良い。
(供給方式変形例)
本発明に係る加熱装置の変形例を説明する。
加熱装置へ石膏を供給する方式には、前記スクリュー式(図2)のほか、シュート式(図6)や振動トラフ式(図7)を例示できる。シュート式では、供給シュート46が吸気ボックス45と結合しており、供給口41から供給した石膏が、供給シュート46内を落下し、回転筒10内へ移動する。吸気ボックス45がシールパッキン47を介して回転筒10に接続しており、回転筒10と吸気ボックス45間のシールを維持しながら、回転筒10が回転する構造になっている。振動トラフ式では、吸気ボックス45がトラフ(断面形状が凹状)であり、その吸気ボックス45の下端に振動モータ48とばね49が結合している。供給口41から供給した石膏は、トラフの上に落下する。そして、振動モータ48により吸気ボックス45が振動することにより、石膏が回転筒10内へと移動する。吸気ボックス45を取り付ける際は、石膏が移動しやすいように、回転筒10へ向かって下る傾斜を持たせると良い。
本発明に係る加熱装置の変形例を説明する。
加熱装置へ石膏を供給する方式には、前記スクリュー式(図2)のほか、シュート式(図6)や振動トラフ式(図7)を例示できる。シュート式では、供給シュート46が吸気ボックス45と結合しており、供給口41から供給した石膏が、供給シュート46内を落下し、回転筒10内へ移動する。吸気ボックス45がシールパッキン47を介して回転筒10に接続しており、回転筒10と吸気ボックス45間のシールを維持しながら、回転筒10が回転する構造になっている。振動トラフ式では、吸気ボックス45がトラフ(断面形状が凹状)であり、その吸気ボックス45の下端に振動モータ48とばね49が結合している。供給口41から供給した石膏は、トラフの上に落下する。そして、振動モータ48により吸気ボックス45が振動することにより、石膏が回転筒10内へと移動する。吸気ボックス45を取り付ける際は、石膏が移動しやすいように、回転筒10へ向かって下る傾斜を持たせると良い。
(回転筒変形例)
回転筒10の断面形状は、後述する円形のほか、矩形にしても良い。矩形の例として、六角形の回転筒10を図8に示す。矩形の回転筒10を回転すると、回転筒10の角部15により石膏が持ち上がるため、石膏の混合が良くなる。一方で、円形の場合に比べて、回転筒10の断面積が狭くなるため、配置する加熱管11の数が減るというデメリットも存在する。なお、矩形の角部の数(辺の数)は変更でき、より詳しくは、角部の数を3つ以上の任意の数にすることができる。
回転筒10の断面形状は、後述する円形のほか、矩形にしても良い。矩形の例として、六角形の回転筒10を図8に示す。矩形の回転筒10を回転すると、回転筒10の角部15により石膏が持ち上がるため、石膏の混合が良くなる。一方で、円形の場合に比べて、回転筒10の断面積が狭くなるため、配置する加熱管11の数が減るというデメリットも存在する。なお、矩形の角部の数(辺の数)は変更でき、より詳しくは、角部の数を3つ以上の任意の数にすることができる。
図9に示すように、回転筒10を囲むジャケット12を設けても良い。この場合、回転筒10の外壁とジャケット12の内壁の間に加熱媒体Sを流し、回転筒10の外側からも加熱を行う。その結果、ジャケット12を設けない場合と比べて、石膏の乾燥および/または焼成速度を上げることができる。この加熱媒体Sの例として、200~400℃の高温ガス、200~400℃のホットオイル等を挙げることができる。そのほか、前記ジャケット12の代わりに、回転筒10を囲むようにトレース配管(図示しない)を複数設けても良い。
(排出方式変形例)
加熱装置から加熱処理物Eを排出する方式としては、図10のような形態も採用できる。かかる形態において、キャリアガスAは、ケーシング80の上部のキャリアガス供給口33から隔壁23の内側へ送り込まれる。このキャリアガスAが再利用ガスである場合は、キャリアガスA中に粉塵等が含まれているが、隔壁23の内側、すなわちガス通路U2には、リボンスクリューZが配されているため、ガスに混入している粉塵等は、このリボンスクリューZによって捕捉される。捕捉された粉塵等は、リボンスクリューZの送り作用により開口部22へ向かって送られ、ケーシング80内へ排出される。排出された粉塵等は、自由落下によりケーシング下方の排出口32から排出される。一方、キャリアガスAの粉塵等以外の気体は、リボンスクリューZによって妨げられることなく、回転筒10内へ送られる。
加熱装置から加熱処理物Eを排出する方式としては、図10のような形態も採用できる。かかる形態において、キャリアガスAは、ケーシング80の上部のキャリアガス供給口33から隔壁23の内側へ送り込まれる。このキャリアガスAが再利用ガスである場合は、キャリアガスA中に粉塵等が含まれているが、隔壁23の内側、すなわちガス通路U2には、リボンスクリューZが配されているため、ガスに混入している粉塵等は、このリボンスクリューZによって捕捉される。捕捉された粉塵等は、リボンスクリューZの送り作用により開口部22へ向かって送られ、ケーシング80内へ排出される。排出された粉塵等は、自由落下によりケーシング下方の排出口32から排出される。一方、キャリアガスAの粉塵等以外の気体は、リボンスクリューZによって妨げられることなく、回転筒10内へ送られる。
また、回転筒10の回転に伴って、スクリュー羽根24も回転する。従って、加熱処理物Eは、送り出し通路U1内を、開口部21へ向かってスクリュー羽根24の送り作用により送られ、開口部21から排出される。排出された加熱処理物Eは、自重により排出ケーシング下方の排出口32から排出される。
他方、ケーシング80を貫き、隔壁23内へ延在する蒸気経路(内部蒸気供給管61及び内部ドレン排出管62)が、回転筒10と一体で設けられている。内部蒸気供給管61は、端板部17における加熱管11の入口ヘッダ部に、内部ドレン排出管62は端板部17における加熱管11の出口ヘッダ部に連通している。また、蒸気供給管70及びドレン排出管71は、回転継手63を介して、内部蒸気供給管61及び内部ドレン排出管62にそれぞれ連結している。
(ガス流通方式変形例)
図1、図4における加熱装置は、石膏の移動する方向とキャリアガスAの流れる方向が同じである「並流」を採用していた。そのほか、石膏の移動する方向とキャリアガスAの流れる方向を逆にした「向流」を採用しても良い。
図1、図4における加熱装置は、石膏の移動する方向とキャリアガスAの流れる方向が同じである「並流」を採用していた。そのほか、石膏の移動する方向とキャリアガスAの流れる方向を逆にした「向流」を採用しても良い。
図11に「向流」を採用した加熱装置の一例を示す。スクリューフィーダ42の上方に石膏の供給口31を設け、フード35の下端に加熱処理物Eの排出口32を設ける。そして、石膏の供給口31から石膏を供給し、被処理物Wを回転筒10の一端側から他端側へ向かって移動させ、その移動過程で加熱管により加熱処理物Eを排出口32から排出する。一方、フード35の上端にキャリアガスAの供給口33を設け、スクリューフィーダ42の上方にキャリアガスAの排出口34を設ける。そして、キャリアガスAの供給口33からキャリアガスAを供給し、前記キャリアガスAを回転筒10の他端側から一端側へ向かって流し、その過程で石膏から蒸発した蒸気を搬送し、蒸気を伴うキャリアガスAを排出口34から排出する。
(回転筒支持構造変形例)
そのほか、回転筒10の支持構造は、回転筒10の外周に2つのタイヤ部材20、20を取り付ける前記支持構造のほか、一端側に設けたスクリューケーシング42と、他端側に設けたガス管72の外周にベアリング(図示しない)を取り付け、このベアリングを支持する構造や、前記タイヤ部材25とベアリングを組み合わせる支持構造にしても良い。
そのほか、回転筒10の支持構造は、回転筒10の外周に2つのタイヤ部材20、20を取り付ける前記支持構造のほか、一端側に設けたスクリューケーシング42と、他端側に設けたガス管72の外周にベアリング(図示しない)を取り付け、このベアリングを支持する構造や、前記タイヤ部材25とベアリングを組み合わせる支持構造にしても良い。
(回転速度)
本発明は、石膏の乾燥および/または焼成速度を上げるため、従来の加熱装置よりも、回転筒10を高速で回転させる。この回転速度の決定方法について、以下に説明する。なお以下の記載では乾燥速度を例に説明するが、焼成速度についても同様の決定方法である。
本発明は、石膏の乾燥および/または焼成速度を上げるため、従来の加熱装置よりも、回転筒10を高速で回転させる。この回転速度の決定方法について、以下に説明する。なお以下の記載では乾燥速度を例に説明するが、焼成速度についても同様の決定方法である。
(工程1)
加熱装置の処理負荷PLを決定する。具体的には、石膏の種類、含液率(wt%W.B.)、目標の処理量(kg/h)等を基に、負荷PLを算出する。
加熱装置の処理負荷PLを決定する。具体的には、石膏の種類、含液率(wt%W.B.)、目標の処理量(kg/h)等を基に、負荷PLを算出する。
(工程2)
小型の加熱装置を実験機として用いて、単位負荷当たりの石膏の乾燥速度Rdを調査する。
小型の加熱装置を実験機として用いて、単位負荷当たりの石膏の乾燥速度Rdを調査する。
(工程3)
前記工程2で調査した石膏の乾燥速度Rdを基にして、回転筒10のサイズを決定する。
前記工程2で調査した石膏の乾燥速度Rdを基にして、回転筒10のサイズを決定する。
(工程4)
回転筒10の回転数を決定する。従来の回転数決定法は、重要な基準として回転筒10の回転速度(本発明では、「回転速度」を「周速」ともいう。)を用いており、具体的には、下記式5を用いて回転数を決定していた。なお、回転速度Vの値は、約0.1~0.4[m/s]の範囲内で経験則に基づいて決定していた。
N=(V×60)/(D×π) ・・・式5
ここに、Nは回転筒10の回転数(r.p.m.)であり、Vは回転筒10の回転速度(m/s)であり、Dは回転筒10の内径(m)である。
回転筒10の回転数を決定する。従来の回転数決定法は、重要な基準として回転筒10の回転速度(本発明では、「回転速度」を「周速」ともいう。)を用いており、具体的には、下記式5を用いて回転数を決定していた。なお、回転速度Vの値は、約0.1~0.4[m/s]の範囲内で経験則に基づいて決定していた。
N=(V×60)/(D×π) ・・・式5
ここに、Nは回転筒10の回転数(r.p.m.)であり、Vは回転筒10の回転速度(m/s)であり、Dは回転筒10の内径(m)である。
本発明は、前記式5とは異なり、臨界速度比を基準に回転数を決定するものであり、具体的には、下記式6を用いて決定する。
N=V/Vc×Nc ・・・式6
ここに、Nは回転筒10の回転数(r.p.m.)であり、Vは回転筒10の回転速度(m/s)であり、Vcは回転筒10の臨界速度(m/s)であり、Ncは回転筒10の臨界回転数(r.p.m.)である。
N=V/Vc×Nc ・・・式6
ここに、Nは回転筒10の回転数(r.p.m.)であり、Vは回転筒10の回転速度(m/s)であり、Vcは回転筒10の臨界速度(m/s)であり、Ncは回転筒10の臨界回転数(r.p.m.)である。
(臨界速度、臨界速度比)
前記式6の「臨界速度」と「臨界回転数」について詳述する。図13を参照すると、「臨界速度」は、加熱装置内で、石膏の重力と石膏に作用する遠心力がつり合う回転速度であり、理論上、石膏が回転筒10と共廻りする回転筒10の回転速度をいう。なお、rωは速度を表す。また、「臨界速度比」とは、前記臨界速度に対する実際の回転速度の比をいう。
前記式6の「臨界速度」と「臨界回転数」について詳述する。図13を参照すると、「臨界速度」は、加熱装置内で、石膏の重力と石膏に作用する遠心力がつり合う回転速度であり、理論上、石膏が回転筒10と共廻りする回転筒10の回転速度をいう。なお、rωは速度を表す。また、「臨界速度比」とは、前記臨界速度に対する実際の回転速度の比をいう。
(臨界速度)
臨界速度について、詳述する。臨界速度は、石膏の重力(mg)と遠心力(mrω2)が同じであるため、下記の式7が成り立つ。
mg=mrω2 ・・・式7
ここに、mは石膏の質量(kg)、gは重力加速度(m/s2)、rは回転筒10の半径(m)、ωは角速度(rad/s)である。
臨界速度について、詳述する。臨界速度は、石膏の重力(mg)と遠心力(mrω2)が同じであるため、下記の式7が成り立つ。
mg=mrω2 ・・・式7
ここに、mは石膏の質量(kg)、gは重力加速度(m/s2)、rは回転筒10の半径(m)、ωは角速度(rad/s)である。
そして、上記式7から下記の式8を導くことができる。
g=r(Vc/r)2 ・・・式8
ここに、gは重力加速度(m/s2)であり、rは回転筒10の半径(m)であり、Vcは回転筒10の臨界速度(m/s)である。
g=r(Vc/r)2 ・・・式8
ここに、gは重力加速度(m/s2)であり、rは回転筒10の半径(m)であり、Vcは回転筒10の臨界速度(m/s)である。
従って、上記式8から下記式1を導き、回転筒10の臨界速度(m/s)を求めることができる。
Vc=(rg)1/2=(D/2・g)1/2=2.21D1/2
Vc=2.21D1/2 ・・・式1
ここに、Vcは回転筒10の臨界速度(m/s)、Dは回転筒10の内径(m)である。
Vc=(rg)1/2=(D/2・g)1/2=2.21D1/2
Vc=2.21D1/2 ・・・式1
ここに、Vcは回転筒10の臨界速度(m/s)、Dは回転筒10の内径(m)である。
(臨界速度比)
次に、回転筒の臨界速度比について説明する。回転筒の臨界速度比αは、臨界速度(Vc)に対する実際の回転速度Vの比を指すため、下記式2によって表すことができる。
α=V/Vc・100 ・・・式2
ここに、αは回転筒10の臨界速度比(%)、Vは回転筒10の回転速度(m/s)、Vcは回転筒10の臨界速度(m/s)である。
次に、回転筒の臨界速度比について説明する。回転筒の臨界速度比αは、臨界速度(Vc)に対する実際の回転速度Vの比を指すため、下記式2によって表すことができる。
α=V/Vc・100 ・・・式2
ここに、αは回転筒10の臨界速度比(%)、Vは回転筒10の回転速度(m/s)、Vcは回転筒10の臨界速度(m/s)である。
(臨界回転数)
なお、臨界速度における回転筒10の回転数を「臨界回転数」といい、下記式9により求めることができる。
Nc=Vc・60/(πD)=2.21D1/2・60/(πD)=42.2/D1/2
Nc=42.2/D1/2 ・・・式9
ここに、Ncは回転筒10の臨界回転数(r.p.m.)、Vcは回転筒10の臨界速度(m/s)、Dは回転筒10の内径(m)である。
なお、臨界速度における回転筒10の回転数を「臨界回転数」といい、下記式9により求めることができる。
Nc=Vc・60/(πD)=2.21D1/2・60/(πD)=42.2/D1/2
Nc=42.2/D1/2 ・・・式9
ここに、Ncは回転筒10の臨界回転数(r.p.m.)、Vcは回転筒10の臨界速度(m/s)、Dは回転筒10の内径(m)である。
(実験:石膏の含液率)
回転筒10の内径が1830mmの加熱装置を用いて、回転筒10の臨界速度比α(%)と石膏の乾燥および焼成速度の関係性について実験を行った。この実験では、含液率が異なる2種類の試料(付着水を有する2種類の二水石膏)を加熱装置にバッチ式で投入し、乾燥および焼成を行い、半水石膏を得た。各試料の含液率は、試料1が5wt%W.B.、試料2が15wt%W.B.である。
なお、本実験における乾燥および焼成速度を乾燥焼成速度Rdと称する。
回転筒10の内径が1830mmの加熱装置を用いて、回転筒10の臨界速度比α(%)と石膏の乾燥および焼成速度の関係性について実験を行った。この実験では、含液率が異なる2種類の試料(付着水を有する2種類の二水石膏)を加熱装置にバッチ式で投入し、乾燥および焼成を行い、半水石膏を得た。各試料の含液率は、試料1が5wt%W.B.、試料2が15wt%W.B.である。
なお、本実験における乾燥および焼成速度を乾燥焼成速度Rdと称する。
前記実験結果を図14に示す。この図14では、各試料において、回転筒10の臨界速度比αが10%のときの二水石膏の乾燥焼成速度の値を1と定め、その値を基準にした相対数値で表している。回転筒10の臨界速度比αを10%から次第に上げたところ、二水石膏の含液率の違いに関わらず、次第に乾燥焼成速度が速くなった。そして、ある臨界速度比αで乾燥焼成速度の速さのピーク(乾燥焼成速度が最も早くなる地点)を迎えた。そして、そこから臨界速度比αをさらに上げると、今度は次第に乾燥焼成速度が遅くなり、もとの乾燥焼成速度の値である1以下に下がった。
前記の実験結果において、どの臨界速度比αで乾燥焼成速度のピークを迎えるかは、二水石膏の含液率によって異なった。具体的には、二水石膏の含液率が高いほど、臨界速度比αが低い値で、乾燥焼成速度のピークを迎えた。また、二水石膏の含液率が低いほど、乾燥焼成速度のピーク値が低くなった。なお、臨界速度比αが10~70%の間にあるとき、石膏の含液率が高いほど、乾燥焼成速度が速くなる傾向がある。
この実験結果から明らかなように、臨界速度比αを15~70%にすることが好ましく、臨界速度比αを20~65%にすることがより好ましく、臨界速度比αを25~58%にすることがさらに好ましい。さらに臨界速度比αを28~55%の範囲にすると、著しく乾燥焼成速度が向上する。図14に示すように、臨界速度比αの値が10%から高まるにつれて、乾燥焼成速度は山状に変位していくため、所望する乾燥焼成速度を得るために、低い臨界速度比αと高い臨界速度比αの二つの臨界速度比αから選択することができる。たとえば、含液率15wt%W.B.の石膏において、乾燥焼成速度を1.5にしたい場合、臨界速度比αを18%にする方法(低い臨界速度比αを選択する)と、70%にする方法(高い臨界速度比αを選択する)の2つを考えることができる。このように二つの選択肢がある場合は、低い臨界速度比αを選択することが好ましい。臨界速度比αが低いほど、すなわち回転筒10の回転数が低いほど、機械の摩耗による部品交換や使用電力等が少なくなるため経済性に優れ、環境負荷を低減できるからである。なお、含液率15wt%W.B.の石膏において、乾燥焼成速度は速いほうが良いということであれば、臨界速度比αを40%にしても良い。しかし、乾燥焼成速度が1.5で十分なのであれば、前記経済性や環境負荷低減等の観点から、臨界速度比αを18%にすることが好ましい。なお、本実験では付着水を有する二水石膏から半水石膏を得る乾燥および焼成処理が行われる処理条件(処理時間)を設定したが、付着水を有する二水石膏から付着水を蒸発させる乾燥処理においても同様の傾向となる。
また、供給する石膏の含液率が低くなるほど、臨界速度比αの値を高くすることが好ましい。具体的には、石膏の含液率が5wt%W.B.である場合は、臨界速度比αを28%~65%にすることが好ましく、石膏の含液率が15wt%W.B.である場合は、臨界速度比αを15~70%にすることが好ましい。
なお、前記のように、臨界速度比αの値を高くすると、回転筒10の回転数が増えることになる。回転筒10の回転数が増えると回転筒10内で発生するダスト量が多くなり、発生したダストは回転筒10内を流れるキャリアガスとともに、加熱装置の外へ排出される。ダスト内には石膏も多く含まれるため、この石膏を回収してリサイクルするのが好ましい。具体的には、加熱装置から排出されたキャリアガスを固気分離機(図示しない)へ送り、固気分離機でキャリアガス中の石膏を回収し、回収した石膏を加熱装置供給口41へ戻すことが好ましい。
(石膏の分散)
石膏の分散については、本発明者の過去の出願である特許第5778831号の図16に示した石炭の分散や、同じく本発明者の過去の出願である特願2015-159203号の図13に示したテレフタル酸の分散と、ほぼ同様の分散を示す。
石膏の分散については、本発明者の過去の出願である特許第5778831号の図16に示した石炭の分散や、同じく本発明者の過去の出願である特願2015-159203号の図13に示したテレフタル酸の分散と、ほぼ同様の分散を示す。
すなわち、臨界速度比を10%にして運転した時は、石膏が回転筒10の右側半分の領域でキルンアクションしているが、回転筒10の右側半分の領域に塊状になっており、移動量が少なく、回転筒10の左側半分の領域にあまり分散していない。これは、回転筒10内の左側半分の領域で、加熱管11と石膏が十分に接触していないことを示している。
それから、臨界速度比を徐々に上げるにつれて、石膏の分散範囲が次第に広がり、回転筒10の左側半分の領域まで分散した。そして、さらに臨界速度比を上げると、石膏が回転筒10の内壁に張り付き、回転筒10とともに回転する現象(以下、「供回り」という。)が生じる。この供回りは、「隣り合う石膏の粒子の表面に存在する自由水同士の液架橋力」と、「回転筒10の回転により発生する遠心力」との合力が、「石膏(を含む脱水ケーキ)の重力」に勝ることで発生する。この供回りが発生すると、回転筒10内の上方から下方へ向かって石膏が落下しづらくなり、回転筒10内で石膏の混合状態が悪くなるため、加熱管11から石膏への伝熱量が低下し、石膏が有する液分の蒸発速度が遅くなる。
なお、前述の実験によると、含水率5wt%w.b.の二水石膏を乾燥焼成させた場合、臨界速度比が60%以上になると乾燥焼成速度が低下することから、臨界速度比が60%以上になると供回りが発生していることが分かる。
(回転筒10の内径)
回転筒10の内径についても、本発明者の過去の出願である特許第5778831号の図17に示した石炭の実験や、同じく本発明者の過去の出願である特願2015-159203号の図15に示したテレフタル酸の実験と、ほぼ同様である。
回転筒10の内径についても、本発明者の過去の出願である特許第5778831号の図17に示した石炭の実験や、同じく本発明者の過去の出願である特願2015-159203号の図15に示したテレフタル酸の実験と、ほぼ同様である。
すなわち、回転筒10の内径が異なる複数の加熱装置を用いた場合、臨界速度比α(%)が同じであれば、石膏の乾燥焼成速度Rdはほぼ同じであり、乾燥焼成速度Rdは、回転筒10の内径の長さの違いにほとんど影響を受けない。なお、回転筒10の臨界速度比αと石膏の乾燥速度のみ(焼成を行わない場合)の関係性、または回転筒10の臨界速度比αと焼成速度のみ(乾燥を行わない場合)の関係性についても同様である。
(石膏の充填率)
石膏の充填率を変えた場合における、回転筒10の臨界速度比αと石膏の乾燥焼成速度Rdの関係性についても、本発明者の過去の出願である特許第5778831号の図18に示した石炭の実験や、同じく本発明者の過去の出願である特願2015-159203号の図16に示したテレフタル酸の実験と、ほぼ同様である。
石膏の充填率を変えた場合における、回転筒10の臨界速度比αと石膏の乾燥焼成速度Rdの関係性についても、本発明者の過去の出願である特許第5778831号の図18に示した石炭の実験や、同じく本発明者の過去の出願である特願2015-159203号の図16に示したテレフタル酸の実験と、ほぼ同様である。
すなわち、いずれの充填率においても、臨界速度比αを10%から次第に高くするにつれて乾燥焼成速度も次第に上昇し、やがてピークを迎え、そこから臨界速度比αをさらに高くすると乾燥焼成速度が次第に下降する。また、石膏の充填率が低い場合は、石膏と加熱管11の接触面積が小さいため乾燥焼成速度は向上せず、逆に充填率が高い場合も、粉体層(粉体の石膏の層)の上層で上滑りが発生し、伝熱面と接触しない石膏が増えるため、乾燥焼成速度は向上しない。そのため、乾燥焼成速度を上げるためには、低すぎずかつ高すぎない充填率にすることが好ましく、具体的には充填率η20~40%、より好ましくは充填率ηを25~30%にすることが好ましい。なお、回転筒10の臨界速度比αと石膏の乾燥速度のみ(焼成を行わない場合)の関係性、または回転筒10の臨界速度比αと焼成速度のみ(乾燥を行わない場合)の関係性についても同様である。
なお、前記充填率は、以下の式10によって求めることができる。
η=Ap/Af・100 ・・・式10
ここに、ηは充填率(%)、Apは自由断面積に対して石膏の占める断面積(m2)、Afは回転筒10の全断面積から全加熱管11の断面積を減算した自由断面積(m2)である。なお、回転筒10の全断面積Afは、回転筒10の任意の横断面における回転筒10内部の断面積のことをいい、回転筒10の肉厚部分の面積は含まない。すなわち、回転筒10の内径に基づいて計算する断面積をいう。
η=Ap/Af・100 ・・・式10
ここに、ηは充填率(%)、Apは自由断面積に対して石膏の占める断面積(m2)、Afは回転筒10の全断面積から全加熱管11の断面積を減算した自由断面積(m2)である。なお、回転筒10の全断面積Afは、回転筒10の任意の横断面における回転筒10内部の断面積のことをいい、回転筒10の肉厚部分の面積は含まない。すなわち、回転筒10の内径に基づいて計算する断面積をいう。
(加熱管11の隙間)
図17に加熱管11の隙間Kを示す。この例においては、隙間Kは4つの同心円列ですべて同一の例が示されている。このために、加熱管11の径を外側ほど大きくしてある。隣接する加熱管11の間(隙間)Kの距離は60~150mmにすることが好ましい。もちろん、加熱管11の径は同一径とする、隙間Kはたとえば外側ほど大きくするなど、適宜の変形が可能である。また、後述する第1の配置形態又は第2の配置形態を採ることもできる。
図17に加熱管11の隙間Kを示す。この例においては、隙間Kは4つの同心円列ですべて同一の例が示されている。このために、加熱管11の径を外側ほど大きくしてある。隣接する加熱管11の間(隙間)Kの距離は60~150mmにすることが好ましい。もちろん、加熱管11の径は同一径とする、隙間Kはたとえば外側ほど大きくするなど、適宜の変形が可能である。また、後述する第1の配置形態又は第2の配置形態を採ることもできる。
加熱管11の隙間を変えた場合における、回転筒10の臨界速度比αと石膏の乾燥焼成速度Rdの関係性についても、本発明者の過去の出願である特許第5778831号の図20に示した石炭の実験や、同じく本発明者の過去の出願である特願2015-159203号の図18に示したテレフタル酸の実験と、ほぼ同様である。
すなわち、加熱管11の隙間がそれぞれ違う場合、臨界速度比αを10%から次第に高くするにつれて乾燥焼成速度も次第に上昇し、やがてピークを迎え、そこから臨界速度比αをさらに高くすると乾燥焼成速度が次第に下降する。また、加熱管11の隙間Kが狭い場合は、隙間Kを流れる石膏の量が少ないため、石膏があまり混合せず、乾燥焼成速度が遅いが、加熱管11の隙間Kを次第に長くするにつれて、隙間Kを流れる石膏の量が次第に多くなり、石膏が良く混合するようになり、乾燥焼成速度が次第に早くなる。具体的には、隣接する加熱管11の間(隙間)の距離を60~150mmにすることが好ましい。なお、回転筒10の臨界速度比αと石膏の乾燥速度のみ(焼成を行わない場合)の関係性、または回転筒10の臨界速度比αと焼成速度のみ(乾燥を行わない場合)の関係性についても同様である。
(外径と内径の関係性)
前記の各説明や各式においては、回転筒10の内径Dを用いており、外径は用いなかった。しかし、前記各式を補正して、外径を用いても良い。この点について、以下に詳述する。
前記の各説明や各式においては、回転筒10の内径Dを用いており、外径は用いなかった。しかし、前記各式を補正して、外径を用いても良い。この点について、以下に詳述する。
前記各式において、Dは内径であるが、内径の代わりとして外径を用いるための補正式を記述する。回転筒10の外径をDo、回転筒10の板厚(肉厚)をt、内径をDとすると、これらの関係は、下記式11のようになる。
D=Do-(2×t) ・・・式11
D=Do-(2×t) ・・・式11
従って、前記各式のDに、式11の右辺を代入すれば良い。例えば、臨界速度比の式は以下のように記述できる。
Vc=2.21D1/2 ・・・式1
Vc=2.21×(Do-2×t)1/2
Vc=2.21D1/2 ・・・式1
Vc=2.21×(Do-2×t)1/2
なお、参考として、STDなどの回転筒10の肉厚tの一般的な数値を示す。回転筒10が大径化するほど、これの強度を保持するために肉厚tは増す傾向があり、実際としては概ね以下の数値で設計されている。回転筒10の内径Dが0.3~6mの場合で、肉厚tが3~100mmとなる。
なお、本発明に係る加熱装置の内径Dは、1m~5mにすることが好ましい。一般に、回転筒の臨界速度比αが同じであっても、回転筒10の内径Dが小さいほど、回転筒10の回転数が多くなる。したがって、内径Dが1mよりも小さい場合は、回転筒10の回転数が著しく増し、電力がかかるため、経済性が悪いという問題がある。また、内径Dが5mよりも大きい場合は、加熱装置が大型化し、製造コストがかかるという問題がある。
<加熱管11について>
本発明において加熱管11にサイズ及び配置は適宜選択できるものの、本発明者らの高速回転化を指向する過程の中で、主に接触効率を高め、もって乾燥焼成速度を高めるためには、次述する手段が有効であるとの知見を得た。
本発明において加熱管11にサイズ及び配置は適宜選択できるものの、本発明者らの高速回転化を指向する過程の中で、主に接触効率を高め、もって乾燥焼成速度を高めるためには、次述する手段が有効であるとの知見を得た。
(加熱管11の配置)
従来は、図23に示すように、回転筒10内に加熱管11を放射状に配置していた。回転筒10内では、石膏(粉粒体)が回転筒10下部に移行した複数の加熱管11の隙間に入り込み、回転筒10の回転に伴って、複数の加熱管11により回転方向に掻き上げられる。安息角まで掻き上げられた石膏は、主に安息角を越えた時点から崩落し始め、落下運動に転じる。より詳しくは、安息角限を超えて、より上方に位置する複数の加熱管11の間から雪崩のように落下し、回転筒10下部に位置する加熱管11に衝突する。
従来は、図23に示すように、回転筒10内に加熱管11を放射状に配置していた。回転筒10内では、石膏(粉粒体)が回転筒10下部に移行した複数の加熱管11の隙間に入り込み、回転筒10の回転に伴って、複数の加熱管11により回転方向に掻き上げられる。安息角まで掻き上げられた石膏は、主に安息角を越えた時点から崩落し始め、落下運動に転じる。より詳しくは、安息角限を超えて、より上方に位置する複数の加熱管11の間から雪崩のように落下し、回転筒10下部に位置する加熱管11に衝突する。
落下した石膏は、回転筒10下部の複数の加熱管11、11の隙間に再び入り込む。石膏が落下する角度と加熱管11、11の隙間に入り込む角度が異なるため、加熱管11、11の隙間に石膏が速やかに入り込まず、加熱管11、11の外側(回転筒10の中心側)に滞留してしまい、石膏と加熱管11の接触効率が悪いことが判明した。接触効率が悪いと、石膏の乾燥および/または焼成速度が低下するという問題があった。
また、石膏が落下する方向と複数の加熱管11、11の間に入り込む方向が異なるため、落下した石膏は最内列(回転筒10の最も中心側の列)の加熱管11、11に衝突して、運動エネルギーが一旦、ゼロになってしまう(リセットされてしまう)という問題があった。
本発明は、前記問題を解決するために加熱管11の配置を改良した。
すなわち、一端側に石膏の供給口31を、他端側に石膏の排出口50を有し、軸心周りに回転自在な回転筒10と、加熱媒体が通る多数の加熱管11、11…を前記回転筒10内に設け、石膏を前記回転筒10の一端側に供給して他端側から排出する過程で、前記加熱管11、11…により石膏を加熱する加熱装置において、加熱管11、11…の配置は、次の配置形態が望ましいのである。
前記加熱管11、11…群が、前記回転筒10の中心を中心とする実質的に同心円状に配置され、その中心側円上の第1基準加熱管S1芯から、第2基準加熱管S2芯までを繋ぐ繋ぎ線が、次記(1)または(2)の配置形態の一つ又はこれらを組み合わせた配置形態から選択されるものである。
すなわち、一端側に石膏の供給口31を、他端側に石膏の排出口50を有し、軸心周りに回転自在な回転筒10と、加熱媒体が通る多数の加熱管11、11…を前記回転筒10内に設け、石膏を前記回転筒10の一端側に供給して他端側から排出する過程で、前記加熱管11、11…により石膏を加熱する加熱装置において、加熱管11、11…の配置は、次の配置形態が望ましいのである。
前記加熱管11、11…群が、前記回転筒10の中心を中心とする実質的に同心円状に配置され、その中心側円上の第1基準加熱管S1芯から、第2基準加熱管S2芯までを繋ぐ繋ぎ線が、次記(1)または(2)の配置形態の一つ又はこれらを組み合わせた配置形態から選択されるものである。
<図18参照:斜め直線状形態>
(1)各加熱管11、11…芯が、第1基準加熱管S1芯と第2基準加熱管S2芯とを直接繋ぐ直線L1上に位置しており、さらに、第1基準加熱管S1芯を通る半径放射線J1に対して、前記第2基準加熱管S2芯が、回転筒10の回転方向後方に位置している第1配置形態。
(1)各加熱管11、11…芯が、第1基準加熱管S1芯と第2基準加熱管S2芯とを直接繋ぐ直線L1上に位置しており、さらに、第1基準加熱管S1芯を通る半径放射線J1に対して、前記第2基準加熱管S2芯が、回転筒10の回転方向後方に位置している第1配置形態。
<図16参照:曲線状形態>
(2)各加熱管11、11…芯が、第1基準加熱管S1芯と第2基準加熱管S2芯とを繋ぐ曲線L2上に位置しており、かつ、第2基準加熱管S2芯に向かうほど回転筒10の回転方向後方に位置しており、さらに、第1基準加熱管S1芯を通る半径放射線J1に対して、第2基準加熱管S2芯が、回転筒10の回転方向後方に位置している第2配置形態。
(2)各加熱管11、11…芯が、第1基準加熱管S1芯と第2基準加熱管S2芯とを繋ぐ曲線L2上に位置しており、かつ、第2基準加熱管S2芯に向かうほど回転筒10の回転方向後方に位置しており、さらに、第1基準加熱管S1芯を通る半径放射線J1に対して、第2基準加熱管S2芯が、回転筒10の回転方向後方に位置している第2配置形態。
すなわち、図16及び図18に示すように、加熱管11、11…は、回転筒10の中心Fを中心にして同心円状に配置され、中心側円上の第1基準加熱管S1の同心円r1、第2基準加熱管S2の同心円r2、回転筒10の最も外側に位置する最外加熱管11の同心円r3を含めた各同心円上に配置されている。
第1基準加熱管S1芯(図16及び図18参照)は、回転筒10の最も中心側に位置する加熱管11群の列(「列1」:図17参照。)の中から任意に選んだ加熱管11の芯(加熱管の中心)である。
また、第2基準加熱管S2芯は、複数加熱管の「列」において(図17参照)、回転筒10の最も中心側に位置する加熱管11(第1基準加熱管S1)から、同一の「行」に沿って外側へ向かって数えて、所望の列数の加熱管S2の芯(加熱管の中心)を指称する。
第2基準加熱管S2芯の位置は、石膏の流動挙動(この流動挙動は、石膏の物性(形状、大きさ、粘性、材料種など)に由来する要因と、加熱装置の運転条件に由来する要因などに左右される)に応じて適宜選択できる。
このとき、配置比ε=h2(第2基準加熱管S2の同心円r2-第1基準(最内)加熱管S1の同心円r1)/h1(回転筒10内面-第1基準(最内)加熱管S1の同心円r1)を、1/2超とするのが望ましい。
また、本発明においては、少なくとも、第1基準加熱管S1から第2基準加熱管S2までの区間については、前述の第1配置形態か第2配置形態の加熱管配置とするのが望ましい。
さらに、本発明においては、第2基準加熱管S2芯の位置が、最外加熱管11の同心円r3上にある場合も含むものである。
このように、第1配置形態又は第2配置形態を採る領域は、適宜選択でき、図18に示す例では、加熱管11の列数が全7列であり、第2基準加熱管S2の芯が4列目にある例を示した。
図18の例は第1の配置形態の例であり、図16及び図17の例は第2の配置形態である。
図18の例は、全7列のすべてが第1の配置形態である。すなわち、第1基準加熱管S1芯と第2基準加熱管S2芯とを直接繋ぐ直線L1上に位置しており、さらに、第1基準加熱管S1芯を通る半径放射線J1に対して、第2基準加熱管S2芯が、回転筒10の回転方向後方に位置している。
図16及び図17の例では、全9列のすべてが第2の配置形態である。すなわち、各加熱管11,11…の芯が、第1基準加熱管S1芯と第2基準加熱管S2芯とを繋ぐ曲線L2上に位置しており、かつ、第2基準加熱管S2芯に向かうほど回転筒10の回転方向後方に位置しており、さらに、第1基準加熱管S1芯を通る半径放射線J1に対して、第2基準加熱管S2芯が、回転筒10の回転方向後方に位置している。
なお、図16及び図17において、回転筒10の中心点Fを始点として、第1基準加熱管S1芯を通る線を半径放射線J1として、第2基準加熱管S2芯を通る線を半径放射線J2として、それぞれ示した。前記h1及びh2の各距離は、半径放射線J2上の距離から求めると良い。
(加熱管の他の曲線状または直線状配置)
そのほか、本発明の別の好適な形態の下では、回転筒10の回転軸の同心円上において、中心側から外側に位置するに従って、隣り合う加熱管11の隙間を大きくした配置とすることもできる。図16~図18は、中心側から外側へ向かうに従って、隣り合う加熱管11の隙間を次第に大きくする配置とした例である。
そのほか、本発明の別の好適な形態の下では、回転筒10の回転軸の同心円上において、中心側から外側に位置するに従って、隣り合う加熱管11の隙間を大きくした配置とすることもできる。図16~図18は、中心側から外側へ向かうに従って、隣り合う加熱管11の隙間を次第に大きくする配置とした例である。
また、第1基準加熱管S1芯と、第2基準加熱管S2芯とを繋ぐ曲線L2としては、サイクロイド(粒子が最速で降下する場合に描く線)、コルニュの螺旋(滑らかに降下する場合に描く線)若しくは対数曲線、円弧線またはそれらの線と近似する線などとすることができる。
図19には、加熱管11、11…の内側を第2配置形態に従う曲線状に配置し、外側部分については半径方向(放射方向)に沿う形態の例を示した。
図22には、加熱管11,11…を第1配置形態に従う斜め直線状に配置し、外側部分については、中間の同心円上から最も外側の同心円にかけて、斜め直線状の加熱管の行を介装した例を示している。
他方、これらの例から推測できるように、図面に具体例を示さないが、第1配置形態と第2配置形態とを組み合せて配置することも可能である。
全列について、第1配置形態や第2配置形態を採用しないで、それらの配置形態を途中まで採用する場合も、前述のように、配置比ε=h2(第2基準加熱管S2の同心円r2-第1基準(最内)加熱管S1の同心円r1)/h1(回転筒10内面-第1基準(最内)加熱管S1の同心円r1)を、1/2超とするのが望ましい。
(作用効果)
前記のように加熱管11を曲線状または斜め直線状に配置することで、石膏が落下する方向と石膏が複数の加熱管11の間に入り込む方向が近似し、落下した石膏はその運動方向を大きく変えずに複数の加熱管11、11の隙間に入り込む。加熱管11、11の隙間に入り込んだ石膏は、回転筒10の内側から外側へと流れ、回転筒10の筒壁に到達する。加熱管11の配置を選定することで、加熱管11の隙間に石膏が速やかに入り込み、加熱管11の外側(回転筒10の中心側)に滞留せず、石膏と加熱管11の接触が良くなるため、乾燥および/または焼成効率を向上させることができる。また、石膏と加熱管11の接触面積が増大し、両者の接触時間も増えるため、この点からも乾燥および/または焼成効率を向上させることができる。
前記のように加熱管11を曲線状または斜め直線状に配置することで、石膏が落下する方向と石膏が複数の加熱管11の間に入り込む方向が近似し、落下した石膏はその運動方向を大きく変えずに複数の加熱管11、11の隙間に入り込む。加熱管11、11の隙間に入り込んだ石膏は、回転筒10の内側から外側へと流れ、回転筒10の筒壁に到達する。加熱管11の配置を選定することで、加熱管11の隙間に石膏が速やかに入り込み、加熱管11の外側(回転筒10の中心側)に滞留せず、石膏と加熱管11の接触が良くなるため、乾燥および/または焼成効率を向上させることができる。また、石膏と加熱管11の接触面積が増大し、両者の接触時間も増えるため、この点からも乾燥および/または焼成効率を向上させることができる。
また、石膏が加熱管11、11の隙間に滑らかに入り込むため、石膏から加熱管11が受ける衝撃が小さくなる。そのため、従来のように加熱管11を配置した場合と比べて、加熱管11の直径を小さくすることができ、加熱管11の本数を増やすことができる。その結果、全体として加熱管11の伝熱面積が増え、乾燥および/または焼成効率を向上させることができる。
そのほか、従来の装置では、落下する石膏と加熱管11とが衝突することにより、石膏(粉粒体)の破砕が生じていたが、前述の好適な形態によれば、破砕を防ぐ又は抑制できる。その結果、最終製品(乾燥製品や焼成製品)の粒度分布が安定するとともに、微粉が減少して排気処理設備の負荷を下げることもできる。
なお、各加熱管11、11…の直径や肉厚は適宜選択できる。
(加熱管11の本数)
同心円上にある加熱管11の本数を全て同じにしても良いが、加熱管11を直線状に設けた場合には、図21に示すように、回転筒10の最外周から中間付近までの加熱管11の本数を、回転筒10の中間付近から最内周までの加熱管11の本数より多くした方が良い。このように、中間付近から最外周までの加熱管11の本数を増やすことで、隣り合う加熱管11、11の間の距離を最内周から最外周までほぼ同じにすることができる。そして、加熱管11の本数を増やすことで、加熱管11の伝熱面積が増え、回転筒10の外周側へ移動した石膏の乾燥および/または焼成速度を向上させることができる。
同心円上にある加熱管11の本数を全て同じにしても良いが、加熱管11を直線状に設けた場合には、図21に示すように、回転筒10の最外周から中間付近までの加熱管11の本数を、回転筒10の中間付近から最内周までの加熱管11の本数より多くした方が良い。このように、中間付近から最外周までの加熱管11の本数を増やすことで、隣り合う加熱管11、11の間の距離を最内周から最外周までほぼ同じにすることができる。そして、加熱管11の本数を増やすことで、加熱管11の伝熱面積が増え、回転筒10の外周側へ移動した石膏の乾燥および/または焼成速度を向上させることができる。
(加熱管11の直径)
加熱管11の直径を全て同じにしても良いが、図17に示すように、回転筒10の内周側から外周側へ向かうに連れて、次第に直径を大きくすることもできる。このように、加熱管11の直径を変えることで、隣り合う加熱管11の間の距離を内周から外周までほぼ同じにすることができる。このように加熱管11の直径を大きくすることで、加熱管11の伝熱面積が増え、回転筒10の外周側へ移動した石膏の乾燥および/または焼成速度を向上させることができる。
加熱管11の直径を全て同じにしても良いが、図17に示すように、回転筒10の内周側から外周側へ向かうに連れて、次第に直径を大きくすることもできる。このように、加熱管11の直径を変えることで、隣り合う加熱管11の間の距離を内周から外周までほぼ同じにすることができる。このように加熱管11の直径を大きくすることで、加熱管11の伝熱面積が増え、回転筒10の外周側へ移動した石膏の乾燥および/または焼成速度を向上させることができる。
(加熱管11の配列の決め方)
加熱管11の配列の決定方法について、図17を参照しながら説明する。なお、加熱管11の配列を「行列」で表し、回転筒10の径方向(回転筒10の中心側から外側へ向かう方向)の配列を「列」とし、円周方向の配列を「行」とする。
加熱管11の配列の決定方法について、図17を参照しながら説明する。なお、加熱管11の配列を「行列」で表し、回転筒10の径方向(回転筒10の中心側から外側へ向かう方向)の配列を「列」とし、円周方向の配列を「行」とする。
隣接する行間の距離(例えば、行1と行2の間の距離)及び隣接する列間の距離(例えば、列1と列2の間の距離)を変えることにより、石膏の分散性や流動性を変えることができる。
例えば、図17のハッチングを施した加熱管11(以下、「基準加熱管11」という。)を基準にして考えると、行間距離として、(1)の加熱管11と基準加熱管11の距離、(5)の加熱管11と基準加熱管11の距離のほか、(2)の加熱管11と基準加熱管11の距離、(8)の加熱管11と基準加熱管11の距離、(4)の加熱管11と基準加熱管11の距離、(6)の加熱管11と基準加熱管11の距離が考えられ、これらが前記一定値以上になるようにする。また、列間距離として、(3)の加熱管11と基準加熱管11の距離、(7)の加熱管11と基準加熱管11の距離が考えられ、これらも前記一定値以上になるようにする。なお、隣接する加熱管11の距離は80~150mmにすることが好ましい。
以上のように、行間距離及び列間距離が、加熱管11の配列を決定する際の拘束条件となる。この拘束条件に従いつつ、出来る限り伝熱面積が広くなり、かつ流動性が良くなるように、加熱管11の径、行数及び列数を変えて様々なバリエーションを試し、最も伝熱面積が広くなり、かつ流動性が良くなる配列を採用し、製品を設計する。なお、実際に加熱管11の配列を検討した結果、行の曲率を次第に大きくした場合は、加熱管11の径を次第に小さくし、列数を次第に多くすることで、伝熱面積を最も広くすることができた。逆に、行の曲率を次第に小さくした場合は、加熱管11の径を次第に大きくし、列数を次第に少なくすることで、伝熱面積を最も広くすることができた。
なお、図15~図22では、加熱管11を複数列配置した例を示したが、加熱管11を1列だけ配置しても良い。
なお、図15~図22では、加熱管11を複数列配置した例を示したが、加熱管11を1列だけ配置しても良い。
10 回転筒
11 スチームチューブ(加熱管)
41 供給口
50 排出口
55 分級フード
56 固定排気口
57 固定排出口
60 掻上板
65 撹拌手段
A キャリアガス
E 加熱処理物
W 被処理物(石膏)
11 スチームチューブ(加熱管)
41 供給口
50 排出口
55 分級フード
56 固定排気口
57 固定排出口
60 掻上板
65 撹拌手段
A キャリアガス
E 加熱処理物
W 被処理物(石膏)
Claims (6)
- 一端側に石膏の供給口を、他端側に石膏の排出口を有し、軸心周りに回転自在な回転筒と、加熱媒体が通る加熱管群を前記回転筒内に設け、前記回転筒の回転に伴って石膏が回転方向に掻き上げられる構成の加熱装置を用いて、
石膏が前記供給口から前記排出口まで移動する過程で、前記加熱管群により石膏を間接加熱する石膏の加熱方法であって、
下記式1、式2で定められる臨界速度比αが15~70%未満となるように、前記回転筒を回転して、石膏を加熱することを特徴とする石膏の加熱方法。
Vc=2.21D1/2 ・・・式1
α=V/Vc・100 ・・・式2
ここに、Vcは回転筒の臨界速度(m/s)、Dは回転筒の内径(m)、αは回転筒の臨界速度比(%)、Vは回転筒の回転速度(m/s)である。 - 前記加熱装置に供給する石膏の含液率が3~20wt%W.B.である請求項1記載の石膏の加熱方法。
- 一端側に石膏の供給口を、他端側に石膏の排出口を有し、軸心周りに回転自在な回転筒と、加熱媒体が通る加熱管群を前記回転筒内に設け、前記回転筒の回転に伴って石膏が回転方向に掻き上げられる構成とされ、
石膏が前記供給口から前記排出口まで移動する過程で、前記加熱管群により石膏を間接加熱する加熱装置であって、
下記式1、式2で定められる臨界速度比αが15~70%未満となるように、回転筒を回転できる構成であることを特徴とする石膏の加熱装置。
Vc=2.21D1/2 ・・・式1
α=V/Vc・100 ・・・式2
ここに、Vcは回転筒の臨界速度(m/s)、Dは回転筒の内径(m)、αは回転筒の臨界速度比(%)、Vは回転筒の回転速度(m/s)である。 - 請求項1記載の加熱方法を用いて、付着水を有する二水石膏から無水石膏を得ることを特徴とする無水石膏の製造方法。
- 請求項1記載の加熱方法を用いて、付着水を有する二水石膏から半水石膏を得ることを特徴とする半水石膏の製造方法。
- 請求項1記載の加熱方法を用いて、付着水を有する二水石膏から付着水を除去した二水石膏を得ることを特徴とする二水石膏の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015182327A JP6578597B2 (ja) | 2015-09-15 | 2015-09-15 | 石膏の加熱方法、石膏の加熱装置および石膏の製造方法 |
JP2015-182327 | 2015-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017047467A1 true WO2017047467A1 (ja) | 2017-03-23 |
Family
ID=58289142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/076287 WO2017047467A1 (ja) | 2015-09-15 | 2016-09-07 | 石膏の加熱方法、石膏の加熱装置および石膏の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6578597B2 (ja) |
WO (1) | WO2017047467A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111939745A (zh) * | 2020-07-13 | 2020-11-17 | 中国科学院过程工程研究所 | 一种采用电石渣制备脱硫剂、高效脱硫及脱硫石膏利用的方法 |
CN112005072A (zh) * | 2018-04-02 | 2020-11-27 | 吉野石膏株式会社 | 多管式旋转型换热器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109970375A (zh) * | 2019-04-12 | 2019-07-05 | 杨连树 | 一种建筑石膏粉生产线 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5022370Y1 (ja) * | 1974-05-29 | 1975-07-05 | ||
JPS58501245A (ja) * | 1981-08-10 | 1983-07-28 | アデレ−ド・アンド・ウオラロ−・フア−チリザ−ズ・リミテツド | 粒状物質の処理 |
JP2014055687A (ja) * | 2012-09-11 | 2014-03-27 | Tsukishima Kikai Co Ltd | 間接加熱型回転乾燥機 |
JP5778831B1 (ja) * | 2014-03-31 | 2015-09-16 | 月島機械株式会社 | 被処理物の乾燥方法、および横型回転式乾燥機 |
JP5847350B1 (ja) * | 2015-09-15 | 2016-01-20 | 月島機械株式会社 | テレフタル酸の乾燥方法および横型回転式乾燥機 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS562000B2 (ja) * | 1973-07-02 | 1981-01-17 |
-
2015
- 2015-09-15 JP JP2015182327A patent/JP6578597B2/ja active Active
-
2016
- 2016-09-07 WO PCT/JP2016/076287 patent/WO2017047467A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5022370Y1 (ja) * | 1974-05-29 | 1975-07-05 | ||
JPS58501245A (ja) * | 1981-08-10 | 1983-07-28 | アデレ−ド・アンド・ウオラロ−・フア−チリザ−ズ・リミテツド | 粒状物質の処理 |
JP2014055687A (ja) * | 2012-09-11 | 2014-03-27 | Tsukishima Kikai Co Ltd | 間接加熱型回転乾燥機 |
JP5778831B1 (ja) * | 2014-03-31 | 2015-09-16 | 月島機械株式会社 | 被処理物の乾燥方法、および横型回転式乾燥機 |
JP5847350B1 (ja) * | 2015-09-15 | 2016-01-20 | 月島機械株式会社 | テレフタル酸の乾燥方法および横型回転式乾燥機 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112005072A (zh) * | 2018-04-02 | 2020-11-27 | 吉野石膏株式会社 | 多管式旋转型换热器 |
CN112005072B (zh) * | 2018-04-02 | 2022-03-25 | 吉野石膏株式会社 | 多管式旋转型换热器 |
CN111939745A (zh) * | 2020-07-13 | 2020-11-17 | 中国科学院过程工程研究所 | 一种采用电石渣制备脱硫剂、高效脱硫及脱硫石膏利用的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2017058053A (ja) | 2017-03-23 |
JP6578597B2 (ja) | 2019-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5778831B1 (ja) | 被処理物の乾燥方法、および横型回転式乾燥機 | |
JP5847350B1 (ja) | テレフタル酸の乾燥方法および横型回転式乾燥機 | |
WO2017047467A1 (ja) | 石膏の加熱方法、石膏の加熱装置および石膏の製造方法 | |
CN100363289C (zh) | 干燥和/或煅烧石膏的装置 | |
JPWO2004076042A1 (ja) | 混合装置およびスラリー化装置 | |
CN108139158B (zh) | 多级水泥煅烧设备悬挂预热器 | |
RU2476793C2 (ru) | Печь вращающаяся для приготовления цементного клинкера | |
JP5746391B1 (ja) | 横型回転式乾燥機 | |
JP5254061B2 (ja) | 横型回転式乾燥機 | |
CN106277874B (zh) | 一种α石膏的连续制备系统 | |
WO2016163044A1 (ja) | 横型回転式乾燥機による乾燥方法及び乾燥システム | |
CN107188440A (zh) | 磷石膏破碎干燥制粉生产线 | |
US7694901B2 (en) | Densifying of a bulk particulate material | |
JP6004485B2 (ja) | ロータリーキルン、乾燥方法及び混練方法 | |
JP2002317228A (ja) | 難造粒鉄鉱石粉の処理方法 | |
JPH07876Y2 (ja) | チューブドライヤ | |
JPH1047859A (ja) | 泥膏状材料またはばら材料の処理のための水平管状反応装置 | |
JPH08182926A (ja) | 焼結原料造粒用回転ドラムミキサー | |
JPS5939332A (ja) | 造粒機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16846338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16846338 Country of ref document: EP Kind code of ref document: A1 |