WO2017047243A1 - 顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡 - Google Patents

顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡 Download PDF

Info

Publication number
WO2017047243A1
WO2017047243A1 PCT/JP2016/072139 JP2016072139W WO2017047243A1 WO 2017047243 A1 WO2017047243 A1 WO 2017047243A1 JP 2016072139 W JP2016072139 W JP 2016072139W WO 2017047243 A1 WO2017047243 A1 WO 2017047243A1
Authority
WO
WIPO (PCT)
Prior art keywords
microscope
optical
optical module
optical axis
axis shift
Prior art date
Application number
PCT/JP2016/072139
Other languages
English (en)
French (fr)
Inventor
政紀 松崎
晋一郎 寺田
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to JP2017539749A priority Critical patent/JP6749648B2/ja
Priority to CN201680051450.0A priority patent/CN107949800B/zh
Publication of WO2017047243A1 publication Critical patent/WO2017047243A1/ja
Priority to US15/920,824 priority patent/US11320639B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Definitions

  • the present invention relates to a microscope optical module, a microscope, a microscope optical module control device, and a multiphoton excitation microscope.
  • the present invention relates to an optical module for a microscope, a microscope, an optical module control device for a microscope, and a multiphoton excitation microscope that can switch an observation visual field at high speed and observe a large visual field.
  • Patent Document 1 discloses a method for moving an observation field from a specimen as a method for moving an observation field without changing or moving the objective lens and without changing the position of the stage or the specimen.
  • An optical system in a microscope comprising: a first objective lens located closest to the specimen in the optical path to the specimen; and a second objective lens that forms an intermediate image conjugate with the specimen together with the first objective lens.
  • a reflection mirror that is disposed in the optical system between the first objective lens and the second objective lens and that changes the direction of the optical path by reflection, so that the extending direction of the reflection surface of the reflection mirror changes.
  • a microscope optical system is described in which the working mirror is rotatable.
  • an objective lens is provided by arranging a variable magnification optical system including a low magnification optical system and a high magnification optical system between an eyepiece lens and a low magnification objective lens for observing a wide field of view.
  • a variable magnification optical system including a low magnification optical system and a high magnification optical system between an eyepiece lens and a low magnification objective lens for observing a wide field of view.
  • this is an observation technique using a high-magnification optical system while switching the field block with a reflecting rotary mirror. Therefore, in patent document 1, since the visual field which can be observed is restricted by the objective lens positioned with respect to the specimen, a larger observation visual field cannot be obtained.
  • Patent Document 1 since the field-of-view block switching in the X-axis direction and the Y-axis direction is performed by the reflecting rotary mirror, there are two rotating axes, and it is difficult to control the position of the reflecting rotary mirror. For this reason, when performing the scanning type observation in which the observation visual field is continuously moved, it is difficult to perform the repeated observation with high reproducibility.
  • the present invention solves the above-described problems, and provides an optical module for a microscope, a microscope, an optical module control device for a microscope, and a multiphoton excitation microscope that can switch an observation visual field at high speed and observe a large visual field.
  • an optical module for a microscope to be added to the objective beam side of a microscope an optical axis shift optical system including an optical element, and the optical axis shift optical system with respect to the objective beam of the microscope
  • the microscope optical module may further include an optical axis shift optical system including a first opening and a second opening, and an optical element disposed in the first opening and the second opening. Good.
  • an optical fiber may be used as an optical element of the optical axis shift optical system.
  • the optical element may be a prism provided with a substantially parallel opposing reflecting surface or a hollow reflecting element formed by fixing and supporting a substantially parallel opposing reflecting surface.
  • the optical element may include a GRIN lens and substantially parallel opposing reflecting surfaces or prisms disposed at both ends of the GRIN lens.
  • the optical element may be a triangular prism.
  • the optical module for a microscope may include the optical axis shift optical system supporting unit that can change an incident angle with respect to the optical element on a plane along the microscope objective optical axis.
  • a liquid may be filled between substantially parallel opposing reflecting surfaces of the hollow reflecting element.
  • the optical axis shift optical system support unit may include a drive mechanism for rotating and stopping the rotation unit.
  • the microscope which has arrange
  • control system is connected to a microscope optical module disposed in the microscope, and the microscope enables setting of an initial rotation position and a rotation angle of the optical axis shift optical system.
  • An optical module control device is provided.
  • the microscope optical module control device may further include a photographing instruction signal output unit that instructs the photographing device provided in the microscope to start photographing.
  • the microscope optical module control device may further include a photographing end signal output means for instructing the photographing device included in the microscope to finish photographing prior to the start of rotation driving of the driving mechanism of the microscope optical module. Good.
  • rotation driving may be started in response to the transmission of a signal transmitted prior to the start of rotation driving of the driving mechanism of the microscope optical module.
  • the drive mechanism of the microscope optical module may be rotated by angular velocity and position control.
  • an optical module for a microscope to be added to the objective beam side of the microscope including a prism having a surface inclined with respect to the objective beam of the microscope, Optical axis shift optical system support means for positioning the optical axis shift optical system with respect to the objective light beam of the microscope, and disposed in the optical axis shift optical system support means, in a direction parallel to the optical axis of the objective light beam and
  • a microscope optical module comprising: a moving unit that movably supports the optical axis shift optical system in a vertical direction.
  • the optical module for a microscope may include an optical axis shift optical system including a first opening and a second opening, and a prism disposed in the first opening and the second opening. .
  • the microscope which has arrange
  • control system is connected to a microscope optical module disposed in the microscope, and is an initial position of movement of the optical axis shift optical system and a direction parallel to the optical axis of the objective light beam
  • a microscope optical module control device that enables vertical position setting is provided.
  • the microscope optical module control device may further include a photographing instruction signal output unit that instructs the photographing device provided in the microscope to start photographing.
  • the microscope optical module control device may further include a photographing end signal output means for instructing the photographing device included in the microscope to finish photographing prior to the start of driving of the driving mechanism of the microscope optical module. .
  • driving may be started in response to transmission of a signal transmitted prior to starting driving of the driving mechanism of the microscope optical module.
  • the multiphoton excitation microscope provided with the optical module for microscopes in any one of the said is provided.
  • the microscope may be a multiphoton excitation microscope.
  • an optical module for a microscope capable of observing a large field of view at a high speed by switching an observation field at a high speed by arranging the objective lens on the objective beam side without switching the objective lens and moving the stage as in the prior art,
  • a microscope, an optical module controller for a microscope, and a multiphoton excitation microscope can be provided.
  • FIG. 6 shows observation fields a to d of the observed mouse brain according to an embodiment of the present invention.
  • FIG. 4 is a timing chart showing drive control of the microscope optical module 100 according to an embodiment of the present invention.
  • 4 is a timing chart showing drive control of the microscope optical module 100 according to an embodiment of the present invention.
  • (A) is a schematic diagram showing how the optical axis shift optical system 130 according to an embodiment of the present invention is rotated to the observation visual fields a to c, and (b) shows the observation visual fields a to c in the mouse brain.
  • 4 is a timing chart showing drive control of the microscope optical module 100 according to an embodiment of the present invention.
  • An optical module for a microscope, a microscope, an optical module controller for a microscope, and a multiphoton excitation microscope according to an embodiment of the present invention will be described below with reference to the drawings.
  • the following embodiments and examples are examples of an optical module for a microscope, a microscope, an optical module controller for a microscope, and a multiphoton excitation microscope of the present invention, and an optical module for a microscope, a microscope, and an optical module for a microscope of the present invention.
  • the control device and the multiphoton excitation microscope are not limited to the following embodiments and examples.
  • An optical module for a microscope according to the present invention is arranged between an objective lens of a microscope and a stage, and shifts an optical axis with respect to an objective light beam.
  • the optical module for a microscope according to the present invention has an optical axis shift optical system that is disposed on the objective lens side and includes an optical element.
  • the optical element has a function of shifting the optical axis with respect to the objective light beam. Since there are several aspects of the optical element, it will be specifically described below, but the optical module for a microscope according to the present invention is not limited to the following embodiment.
  • FIG. 1 is a schematic diagram showing a microscope 1000 to which a microscope optical module 100 according to Embodiment 1 of the present invention is added.
  • FIG. 2 is an enlarged schematic view of the vicinity of the optical axis shift optical system 130 according to Embodiment 1 of the present invention in FIG. 2A is a cross-sectional view of the optical axis shift optical system 130, the objective lens 1210, and the specimen 1330.
  • FIGS. 2B and 2C are schematic views of the optical axis shift optical system 130 and the first opening 131.
  • FIG. It is the top view seen from the side.
  • the microscope optical module 100 includes an optical axis shift optical system 130 that is disposed on the objective light beam side of the microscope 1000 and includes an optical element 110.
  • the microscope optical module 100 is disposed on the optical axis shift optical system support means 150 for positioning the optical axis shift optical system 130 with respect to the objective light flux of the microscope 1000, and the optical axis shift optical system support means 150.
  • Rotating means 170 is provided for rotatably supporting the optical axis shift optical system 130 with respect to the optical axis.
  • the optical axis shift optical system 130 includes a first opening 131 disposed on the objective light beam side of the microscope 1000 and a second opening 133 disposed on the specimen 1330 side.
  • the optical element 110 is disposed between the first opening 131 and the second opening 133.
  • the opening is an optical opening, and the first opening 131 and the second opening 133 are not necessarily required to be physically open. That is, as long as the light used by the microscope 1000 can be transmitted to an extent that does not affect the observation, a light transmissive member may be disposed in the first opening 131 and / or the second opening 133.
  • the optical element 110 includes substantially parallel opposing reflecting surfaces 111 and 113.
  • the optical element 110 is, for example, a prism having a substantially parallel opposing reflecting surface or a hollow reflecting element formed by fixing and supporting a substantially parallel opposing reflecting surface.
  • the liquid may be filled between the substantially parallel opposing reflective surfaces of the hollow reflective element.
  • the microscope optical module 100 of FIG. 1 when the microscope optical module 100 of FIG. 1 is not disposed, the vicinity 20 of the intersection between the optical axis A of the objective light beam and the sample 1330 is an observation visual field.
  • the microscope optical module 100 by using the microscope optical module 100 according to the present invention, the objective beam can be shifted to the optical axis A ′ by the distance d, and the vicinity 21 of the intersection between the optical axis A ′ and the specimen 1330 can be observed. . That is, the objective light beam is repeatedly reflected between the opposing reflecting surfaces 111 and 113 and shifted by the distance d between the first opening 131 and the second opening 133.
  • the observation field of the specimen 1330 located under 133 can be observed.
  • the optical axis shift optical system 130 can be driven to rotate by the rotating means 170.
  • the rotation means 170 rotates the optical axis shift optical system 130. By doing so, two points separated by a distance of 2d can be observed sequentially.
  • the rotating means 170 supports the optical axis shift optical system 130 to be rotatable with respect to the optical axis of the objective light beam. Further, the optical axis shift optical system support unit 150 includes a drive mechanism 175 that rotates and stops the rotation unit 170.
  • a motor can be used as the driving mechanism 175.
  • a stepping motor is preferable as the rotating unit 170 because accurate positioning control is possible.
  • other known means may be used as the rotating means 170 as long as the optical axis shift optical system 130 can be rotated and accurate positioning control is possible.
  • a stepping motor is used as the rotation means 170, for example, the observation field of view can be switched from the second opening 133a to the second opening 133b in several tens of milliseconds.
  • the optical axis shift optical system support means 150 positions and sets the first opening 131 with respect to the objective light beam, and fixes the microscope optical module 100 to the arm 1900 of the microscope 1000.
  • known fixing means such as screws and clips can be used.
  • the microscope optical module control device 10 is a control system that is connected to the microscope optical module 100 disposed in the microscope 1000, and enables the initial position and angle of rotation of the optical axis shift optical system 130 to be set.
  • the microscope optical module control device 10 is, for example, a computer including a microscope optical module control program.
  • the microscope optical module control device 10 controls the drive mechanism 175 and uses the rotating means 170 to perform the optical axis shift optical system 130.
  • the second opening 133 is moved to the initial position, and then the second opening 133 is moved to the set rotation angle.
  • the microscope optical module control device 10 may be set to return the second opening 133 to the initial position after moving the second opening 133 to a set rotation angle. Furthermore, the microscope optical module control device 10 may repeat the movement of the second opening 133 a set number of times at the initial position and the set rotation angle.
  • the rotational drive of the drive mechanism 175 of the microscope optical module 100 may be performed by angular velocity and position control.
  • angular velocity and position control By observing two or more observation fields of the specimen 1330 at a predetermined time interval by setting the angular velocity for moving the second opening 133 to the microscope optical module control device 10 and the position of the second opening 133. It becomes possible to do.
  • the microscope optical module control device 10 controls the drive mechanism 175 and uses the rotating means 170 to change the optical axis.
  • the second opening 133 of the shift optical system 130 is moved to a set position at a set angular velocity.
  • the microscope optical module control device 10 may include an imaging instruction signal output unit that instructs the imaging device to start imaging.
  • the microscope optical module control device 10 includes the photographing instruction signal output unit, the movement of the second opening 133 of the optical axis shift optical system 130 and the photographing timing of the photographing device 1700 can be controlled. Two or more observation fields can be sequentially photographed at a predetermined time interval, and events occurring in two or more observation fields can be continuously photographed. Further, for an event that is slower than the moving speed of the second opening 133 of the optical axis shift optical system 130, an effect equivalent to photographing two or more observation fields almost simultaneously can be obtained.
  • the microscope optical module control device 10 is provided with a photographing end signal output means for instructing the photographing device provided in the microscope 1000 to finish photographing prior to the start of rotational driving of the driving mechanism 175 of the microscope optical module 100. Also good.
  • the microscope optical module control device 10 outputs a photographing end signal
  • the photographing device 1700 finishes photographing, and then drives the optical axis shift optical system 130 by rotational driving of the driving mechanism 175. Thereby, unnecessary photographing at the time of driving is not performed, and only a necessary observation image can be obtained.
  • the photographing apparatus 1700 can be protected from the impact of rotation of the optical axis shift optical system 130.
  • the microscope optical module control device 10 transmits a rotation drive start signal prior to the rotation drive start of the drive mechanism 175 of the microscope optical module 100.
  • the drive mechanism 175 starts rotational drive in response to the rotational drive start signal.
  • the microscope optical module control device 10 can start the rotation drive of the drive mechanism 175 by outputting a rotation drive start signal after outputting a shooting end signal and causing the shooting device 1700 to end shooting.
  • FIG. 3 is a schematic diagram illustrating a continuous shooting method according to an embodiment of the present invention.
  • the drive mechanism 175 moves the second opening 133 to the first position
  • the imaging device 1700 images the first observation field of view for a predetermined time
  • the drive mechanism 175 opens the second opening 133.
  • the photographing apparatus 1700 can be implemented by photographing the second observation visual field for a predetermined time.
  • the drive mechanism 175 moves the second opening 133 to the first position in accordance with the shooting instruction signal output from the shooting instruction signal output means, and controls the shooting timing of the shooting apparatus 1700.
  • the first observation visual field is photographed.
  • the photographing apparatus 1700 finishes photographing in the first observation visual field by the photographing end signal output from the photographing end signal output unit.
  • the driving mechanism 175 moves the second opening 133 to the second position by the shooting instruction signal output from the shooting instruction signal output means, controls the timing of shooting in the shooting apparatus 1700, and the second Take a picture of the observation field.
  • the photographing apparatus 1700 finishes photographing in the second observation field by the photographing end signal output from the photographing end signal output unit.
  • the microscope optical module 100 is controlled by rotational driving with the optical axis A of the objective light beam as the rotation center.
  • the optical axis shift optical system 130 is rotated from the position of 133a to the position of 133b by rotating the second aperture, and the observation images obtained by scanning two points of the specimen 1330 are obtained by combining the continuously photographed observation images.
  • the observation image I is moved in the X-axis direction and the Y-axis direction on a plane perpendicular to the optical axis A of the objective light beam as the optical axis shift optical system 130 rotates. It moves in parallel with respect to it.
  • An image obtained by combining the observation images is an image that is moved in parallel on the circumference around the optical axis A.
  • the obtained image is locally linear, but if there is a large structure that spans a plurality of observation images as indicated by X in FIG. 3, the entire image can be obtained.
  • the microscope optical module 100 having one rotation axis can be controlled at high speed and with high accuracy by controlling the rotating means 170 such as a stepping motor by the microscope optical module control device 10. For this reason, when performing a scanning type observation in which the observation field of view is continuously moved, repeated observations can be performed with high reproducibility. Moreover, it is an unprecedented excellent mechanism capable of realizing such continuous observation at high speed.
  • the microscope optical module according to the present invention can be placed in an existing microscope to perform the above-described observation. Moreover, it can also provide as a microscope incorporating the optical module for microscopes concerning this invention.
  • the microscope 1000 includes an objective lens 1210, an eyepiece lens 1230, a stage 1310, a light source 1510, a window lens 1530, and an arm 1900.
  • the light supplied from the light source 1510 is transmitted from the window lens 1530 through the specimen 1330 disposed on the stage 1310 and guided from the objective lens 1210 to the eyepiece 1230, and an observation image of the portion of the specimen 1330 through which the light has passed is obtained.
  • the light source may irradiate the specimen 1330 through the optical fiber independently of the microscope, and the reflected light may be guided from the objective lens 1210 to the eyepiece 1230 to provide an observation image of the specimen 1330 portion.
  • the microscope optical module 100 is fixed to the arm 1900 by the optical axis shift optical system support means 150. As described above, by arranging the microscope optical module 100 in the microscope 1000, the optical axis is shifted with respect to the objective light beam, and high-speed observation in an unprecedented wide observation field and two or more observation fields. Allows switching of the field of view.
  • the specimen 1330 can be imaged.
  • the microscope 1000 is a fluorescence microscope
  • the second light source 1550 can irradiate the specimen 1330 with light having a wavelength that excites fluorescence through the objective lens 1210.
  • the excitation light can also be shifted in the optical axis with respect to the objective light beam by the microscope optical module 100.
  • FIG. 1 an upright microscope is illustrated, but the present invention is not limited to this and can be arranged in an inverted microscope.
  • the multiphoton excitation microscope provided with the optical module 100 for microscopes can be provided.
  • the multiphoton excitation microscope is a microscope using a multiphoton excitation process, and uses an excitation process of two or more photons.
  • the multiphoton excitation microscope may be a two-photon excitation microscope, a three-photon excitation microscope, or a microscope that excites using more photons.
  • the multiphoton excitation microscope can excite the deep part of the specimen 1330 and observe the fluorescence.
  • the multiphoton excitation microscope does not have an objective lens with a low magnification and a high numerical aperture, and it is difficult to observe a wide field of view.
  • the optical module 100 for a microscope according to the present invention, it is possible to continuously or almost simultaneously observe an event occurring at a distant site of a tissue using an existing multiphoton excitation microscope.
  • microscope optical module control device by combining the above-described microscope optical module control device with a multiphoton excitation microscope in which the microscope optical module 100 is disposed, two or more points away from an event occurring in a deep part of a living body or tissue are continuously obtained. Or it can be taken almost simultaneously.
  • FIG. 4 is a schematic diagram of an optical element 210 according to an embodiment of the present invention.
  • the optical axis shift optical system 230 according to the present embodiment can change the incident angle with respect to the optical element 210 with respect to the microscope objective optical axis by rotating the optical element 210.
  • FIG. 4A when the optical element 210 arranged in the optical axis shift optical system 230 is rotated around the rotation axis 215 on the plane along the microscope objective optical axis, the incident angle with respect to the optical element 210 is changed.
  • the observation visual field can be moved from the position A of the sample 1330 to the position A ′ of the sample 1330 by a distance d1.
  • the focal length at the position A ′ of the sample 1330 is shifted by the distance f1 with respect to the focal length of the sample 1330 at A.
  • the focal length at the position A ′′ of the sample 1330 is shifted by the distance f2 with respect to the focal length of the sample 1330 A.
  • the distance f2 shown in FIG. 4B is longer than the distance f1, that is, In the example shown in Fig. 4B, the focal length is shortened, so in this embodiment, the optical element 210 arranged in the optical axis shift optical system 230 is rotated on a plane along the microscope objective optical axis.
  • the rotation is performed around 215, the incident angle with respect to the optical element 210 can be changed, and the focal length can be changed, for example, when the observation surface of the specimen 1330 has irregularities, the rotation axis 215 is the center.
  • the focal length can be adjusted by rotating the optical element 210.
  • the range in which the optical element 210 can rotate around the rotation axis 215 is ⁇ 7.07 when the L / 2 light beam is incident on the prism having the incident surface width L x L and the counterclockwise direction is the positive direction. It is + 7.07 ° from °.
  • optical axis shift optical system 230 is a modification of the optical axis shift optical system 130 described above, it can be incorporated into the microscope optical module 100 in the microscope 1000 described above. Therefore, all the operations and effects of using the microscope optical module 100 described in the above-described embodiment are included.
  • the optical axis shift optical system 230 is rotationally driven by the rotation means 170 described above, selects an observation field at a desired distance from the optical axis A, and is on a circumference around the optical axis A. Two or more points can be observed sequentially.
  • FIG. 4 the example which changes the incident angle with respect to the optical element 210 with respect to the microscope objective optical axis by rotating the optical element 210 was demonstrated.
  • FIG. 5 illustrates an example in which only the second opposing reflection surface 313 is rotated.
  • FIG. 5A when the second opposing reflecting surface 313 of the optical element 310 disposed in the optical axis shift optical system 330 is rotated around the rotation axis 315 on a plane along the microscope objective optical axis, The incident angle with respect to the light reflected by the one opposing reflection surface 311 is changed, and the observation visual field can be moved from the position A of the specimen 1330 to the position A ′ of the specimen 1330 by a distance d1.
  • FIG. 5B when the second counter-reflecting surface 313 is rotated in the reverse direction around the rotation axis 315 on the plane along the microscope objective optical axis, it is reflected by the first counter-reflecting surface 311. The incident angle with respect to the light is changed, and the observation visual field can be moved from the position A of the specimen 1330 to the position A ′′ of the specimen 1330 by a distance d2.
  • the optical axis is inclined according to the inclination of the second opposing reflection surface 313. For this reason, even when the observation surface of the specimen 1330 is inclined with respect to the optical axis, observation is also possible. At this time, when the second opposing reflection surface 313 rotates by ⁇ , the imaging surface of the sample 1330 is inclined by 2 ⁇ .
  • the range in which the second counter-reflecting surface 313 can rotate around the rotation axis 315 is set to be counterclockwise when an L / 2 light beam is incident on a prism having an incident surface of L x L.
  • the direction is -24.29 ° to 12.15 °.
  • the optical axis shift optical system 330 is a modification of the optical axis shift optical system 130 described above, the optical axis shift optical system 330 can be incorporated into the microscope optical module 100 in the microscope 1000 described above. Therefore, all the operations and effects of using the microscope optical module 100 described in the above-described embodiment are included.
  • FIG. 6A shows an example in which an optical fiber 410 is used as an optical element.
  • the optical axis shift optical system 430 includes an optical fiber 410 disposed between the first opening 431 and the second opening 433. Between the first opening 431 and the second opening 433, the objective light beam propagates in the optical fiber 410 core, and the optical axis from the optical axis A of the objective light beam when the microscope optical module is not disposed. Shift to A 'by distance d.
  • FIG. 6A shows an example in which the optical fiber 410 is linearly arranged in the optical axis shift optical system 430, the present invention is not limited to this.
  • optical fiber Since the optical fiber has flexibility, it can be arranged in a curved shape in the optical axis shift optical system 430.
  • the optical axis shift optical system 430 is a modification of the optical axis shift optical system 130 described above, and can be incorporated in the microscope optical module 100 in the microscope 1000 described above. Therefore, all the operations and effects equivalent to those of the microscope optical module 100 described in the above-described embodiment are included.
  • FIG. 6B shows an example using a triangular prism 510 as an optical element.
  • the optical axis shift optical system 530 includes a triangular prism 510 disposed between the first opening 531 and the second opening 533. Between the first opening portion 531 and the second opening portion 533, the objective light beam is repeatedly reflected inside the triangular prism 510, and from the optical axis A of the objective light beam when the microscope optical module is not disposed. Shift to the optical axis A ′ by a distance d.
  • the optical axis shift optical system 530 is a modification of the optical axis shift optical system 130 described above, and can be incorporated into the microscope optical module 100 in the microscope 1000 described above. Therefore, all the operations and effects equivalent to those of the microscope optical module 100 described in the above-described embodiment are included.
  • the optical axis shift optical system 530 is also a modification of the optical axis shift optical system 130 of the microscope optical module 100 described above.
  • the optical axis shift optical system 530 can change the incident angle with respect to the triangular prism 510 on a plane along the microscope objective optical axis. Thereby, the distance of the observation visual field from the optical axis A can be changed and the sample 1330 can be observed.
  • the optical axis shift optical system 530 is driven to rotate by the rotation means 170, selects an observation field at a desired distance from the optical axis A, and has two points on the circumference centered on the optical axis A. The above can be observed sequentially.
  • FIG. 7 is a schematic diagram of an optical axis shift optical system 630 provided with the optical element 610.
  • the optical element 610 includes a GRIN lens 621 and substantially parallel opposing reflecting surfaces 611 and 613 disposed at both ends of the GRIN lens 621. Note that the substantially parallel opposing reflecting surfaces 611 and 613 disposed at both ends of the GRIN lens 621 may be replaced with prisms.
  • the light incident from the sample 1330 is reflected by the second opening 633 and passes through the GRIN lens 621.
  • the light transmitted through the GRIN lens 621 is reflected by the first opening 631 and enters the objective lens 1210.
  • the objective light flux can be shifted by the distance d to the optical axis A ′, and the vicinity of the intersection between the optical axis A ′ and the specimen 1330 can be observed.
  • FIG. 7B is a schematic diagram of an optical axis shift optical system 630a having two GRIN lenses 621a and 621b and an optical element 610a having substantially parallel opposing reflecting surfaces 611 and 613.
  • the optical element 610a can shift the objective light beam along the microscope objective optical axis with respect to the optical element 610.
  • FIG. 7C is a schematic diagram of an optical axis shift optical system 630b having four GRIN lenses 621a to 621d and an optical element 610b having two sets of substantially parallel opposing reflecting surfaces 611a and 613a and 611b and 613b. It is.
  • the optical element 610 includes a first optical axis shift optical unit 635 and a second optical axis shift optical unit 637, and can rotate independently of each other.
  • the first optical axis shift optical unit 635 includes opposed reflecting surfaces 611a and 613a and two GRIN lenses 621a and 621b, and rotates about the optical axis A as a rotation center.
  • the second optical axis shift optical unit 637 includes opposed reflecting surfaces 611b and 613b and two GRIN lenses 621c and 621d, and rotates about the optical axis B as a rotation center.
  • the optical axis B is an optical axis obtained by shifting the optical axis A by the first optical axis shift optical unit 635.
  • the optical axis A is sequentially guided from the opposing reflecting surface 611a by the GRIN lens 621a, the opposing reflecting surface 613a, and the GRIN lens 621b, and shifted to the optical axis B.
  • the optical axis B is sequentially guided from the opposing reflecting surface 611b by the GRIN lens 621c, the opposing reflecting surface 613b, and the GRIN lens 621d, and shifted to the optical axis A '.
  • the optical axis shift optical system 630b shifts the optical axis with two degrees of freedom on the XY plane by providing two rotation mechanisms including the first optical axis shift optical unit 635 and the second optical axis shift optical unit 637. Is possible.
  • the distance d can be arbitrarily changed by combining a plurality of opposing reflecting surfaces or prisms substantially parallel to the GRIN lens.
  • the optical axis shift optical system 630 is a modification of the optical axis shift optical system 130 described above, and can be incorporated in the microscope optical module 100 in the microscope 1000 described above. Therefore, all the operations and effects equivalent to those of the microscope optical module 100 described in the above-described embodiment are included.
  • the microscope optical module according to the present invention can switch the observation visual field at high speed and observe a large visual field.
  • the microscope optical module according to the present invention it is possible to provide a microscope, a microscope optical module control apparatus, and a multiphoton excitation microscope that can switch the observation field of view at high speed and observe a large field of view.
  • FIG. 8 is a schematic diagram showing a microscope 2000 in which the microscope optical module 700 according to Embodiment 2 of the present invention is arranged.
  • FIG. 9 is an enlarged schematic view of the vicinity of the optical axis shift optical system 730 according to Embodiment 2 of the present invention in FIG.
  • the optical axis shift optical system 730 includes a prism 710.
  • the prism 710 has a surface inclined with respect to the objective light beam of the microscope.
  • the prism 710 is disposed between the first opening 731 and the second opening 733.
  • the microscope optical module 700 is disposed in the optical axis shift optical system support means 750 for positioning the first opening 731 with respect to the objective light flux of the microscope 1000, and the optical axis shift optical system support means 750.
  • Moving means 770 is provided for movably supporting the optical axis shift optical system 730 in a direction parallel to and perpendicular to the optical axis.
  • the microscope optical module 100 when the microscope optical module 100 is not disposed, the observation visual field is near the intersection of the optical axis A of the objective light beam and the sample 1330.
  • the microscope optical module 700 by using the microscope optical module 700 according to the present invention, the objective beam can be shifted to the optical axis A ′ by the distance d, and the vicinity of the intersection between the optical axis A ′ and the sample 1330 can be observed. That is, the objective light beam is repeatedly reflected inside the prism 710 and shifted by the distance d between the first opening 731 and the second opening 733.
  • the moving means 770 supports the optical axis shift optical system 730 so as to be movable in a direction parallel to and perpendicular to the optical axis of the objective light beam. Further, the optical axis shift optical system support means 750 is provided with a drive mechanism 775 for moving and stopping the moving means 770. As the drive mechanism 775, a motor can be used. Further, as the moving unit 770, for example, an electric cylinder is preferable because accurate positioning control is possible. However, other known means may be used as the moving means 770 as long as the optical axis shift optical system 730 can be moved and accurate positioning control is possible.
  • the second opening is formed from the observation field of the optical axis A ′ to the observation field of the optical axis A ′′ by moving the optical axis shift optical system 730 forward and backward in the horizontal direction. It is possible to switch to 733.
  • the optical axis shift optical system support unit 750 positions and sets the first opening 731 with respect to the objective light beam, and fixes the microscope optical module 100 to the arm 1900 of the microscope 1000.
  • the optical axis shift optical system support means 750 includes a moving mechanism 751 and can move the optical axis shift optical system 730 along the microscope objective optical axis.
  • the moving mechanism 751 a known technique can be used in the same manner as the moving means in the direction along the objective optical axis of the stage 1310, and includes, for example, a height-adjustable knob.
  • the optical axis shift optical system 730 can change the incident angle with respect to the prism 710 on a plane along the microscope objective optical axis.
  • the microscope optical module control device 10 is a control system connected to the microscope optical module 700 disposed in the microscope 2000, and is parallel to and perpendicular to the initial position of movement of the optical axis shift optical system 730 and the optical axis of the objective light beam. Enable position setting.
  • the microscope optical module control device 10 is, for example, a computer including a microscope optical module control program. When the initial position and the position in the direction parallel to and perpendicular to the optical axis of the objective light beam are set in the microscope optical module controller 10, the microscope optical module controller 10 controls the drive mechanism 775 to move the moving unit 770.
  • the second aperture 733 of the optical axis shift optical system 730 is moved to the initial position, and then the second aperture 733 is moved to a position in the direction parallel to the optical axis of the set objective beam.
  • the microscope optical module control device 10 may be set to return the second opening 733 to the initial position after moving the second opening 733 to the set position.
  • the microscope optical module control device 10 may repeat the movement of the second opening 733 by the set number of times at the initial position and the position in the direction parallel to the optical axis of the set objective light beam. .
  • the microscope optical module control device 10 may include imaging instruction signal output means for instructing the imaging device to start imaging.
  • the microscope optical module control device 10 includes the photographing instruction signal output unit, the movement of the second opening 733 of the optical axis shift optical system 730 and the photographing timing of the photographing device 1700 can be controlled. Two or more observation fields can be sequentially photographed at a predetermined time interval, and events occurring in two or more observation fields can be continuously photographed. Further, for an event that is slower than the moving speed of the second opening 733 of the optical axis shift optical system 730, an effect equivalent to photographing two or more observation fields almost simultaneously can be obtained.
  • the microscope optical module control device 10 may also include a photographing end signal output unit that instructs the photographing device provided in the microscope 2000 to end photographing prior to the start of driving of the driving mechanism 775 of the microscope optical module 700. Good.
  • the microscope optical module control device 10 outputs a photographing end signal
  • the photographing device 1700 finishes photographing, and then drives the optical axis shift optical system 730 by driving the drive mechanism 775. Thereby, unnecessary photographing at the time of driving is not performed, and only a necessary observation image can be obtained.
  • the photographing apparatus 1700 can be protected from the impact of movement of the optical axis shift optical system 730.
  • the microscope optical module control device 10 transmits a drive start signal prior to the start of the rotational drive of the drive mechanism 775 of the microscope optical module 700.
  • the driving mechanism 775 starts driving in response to the driving start signal.
  • the microscope optical module control device 10 can start driving of the drive mechanism 775 by outputting a driving end signal after outputting a shooting end signal and causing the shooting device 1700 to end shooting.
  • the microscope optical module according to the present invention can be placed in an existing microscope to perform the above-described observation. Moreover, it can also provide as a microscope incorporating the optical module for microscopes concerning this invention.
  • the microscope 2000 includes an objective lens 1210, an eyepiece lens 1230, a stage 1310, a light source 1510, a window lens 1530, and an arm 1900.
  • the light supplied from the light source 1510 is transmitted from the window lens 1530 through the specimen 1330 disposed on the stage 1310 and guided from the objective lens 1210 to the eyepiece 1230, and an observation image of the portion of the specimen 1330 through which the light has passed is obtained.
  • the microscope optical module 700 is fixed to the arm 1900 by the optical axis shift optical system support means 750. As described above, by arranging the optical module 700 for the microscope in the microscope 2000, the optical axis is shifted with respect to the objective light beam, and high-speed observation in an unprecedented wide observation field and two or more observation fields. Allows switching of the field of view.
  • the specimen 1330 can be imaged.
  • the microscope 2000 is a fluorescence microscope
  • the second light source 1550 can irradiate the specimen 1330 with light having a wavelength that excites fluorescence through the objective lens 1210.
  • the excitation light can also be shifted in the optical axis with respect to the objective light beam by the microscope optical module 700.
  • an upright microscope is illustrated, but the present invention is not limited to this, and can be arranged in an inverted microscope.
  • a multiphoton excitation microscope including the microscope optical module 700 can be provided.
  • the multiphoton excitation microscope can excite fluorescence in the deep part of the specimen 1330 and observe the fluorescence.
  • the multiphoton excitation microscope does not have an objective lens with a high numerical aperture, and it is difficult to observe a wide field of view.
  • it can be suitably used for bioimaging because of the property of observing fluorescence in the deep part of the specimen, it has not been possible to observe events occurring at distant sites in the tissue continuously or simultaneously.
  • the optical module 700 for a microscope according to the present invention it is possible to continuously observe an event occurring at a distant site of the tissue using an existing multiphoton excitation microscope.
  • microscope optical module control device by combining the above-described microscope optical module control device with a multi-photon excitation microscope in which the microscope optical module 700 is arranged, two or more points separated from an event occurring in a deep part of a living body or tissue are continuously photographed. can do.
  • FIG. 10 is a schematic view of the microscope optical module 100 according to the present embodiment.
  • the microscope optical module 100 includes an optical axis shift optical system 130, an optical axis shift optical system support unit 150, and a rotation unit 170.
  • the rotating means 170 is a stepping motor provided with a motor as the drive mechanism 175.
  • An objective lens 1210 was connected to the first opening side of the optical axis shift optical system 130.
  • the rotational drive by the drive mechanism 175 is transmitted from the gear 171 connected to the drive mechanism 175 to the gear 173 connected to the optical axis shift optical system 130 via the gear 172.
  • the objective lens 1210 is connected to the piezo 1211 and can be moved in the optical axis direction (Z-axis direction).
  • a hollow reflective element in which substantially parallel opposing reflective surfaces are fixedly supported is used as the optical element 110.
  • the optical element 110 reflecting surfaces having a height of 2 mm and an inclination of 45 ° are arranged facing each other, the objective light beam is shifted by 2 mm with respect to the optical axis of the objective light beam.
  • the microscope optical module 100 of the present example achieved 43 ms, which is a time required for rotating the optical axis shift optical system 130 by 60.degree.
  • the microscope optical module 100 according to the present embodiment can be arranged in an optical microscope. For example, it can be placed in an upright optical microscope as shown in FIG. Moreover, the microscope optical module 100 according to the present embodiment can be arranged in an inverted microscope. The microscope optical module 100 can be arranged regardless of an upright optical microscope or an inverted microscope as long as the optical axis shift optical system 130 can be positioned and supported by the objective lens 1210. It can also be placed in a phase contrast microscope, differential interference microscope, polarizing microscope, fluorescence microscope, confocal laser microscope, and the like.
  • the microscope optical module 100 was placed in a multiphoton excitation microscope (manufacturer: Olympus Corporation, model: FVMPE-RS), and the mouse brain was observed.
  • a multiphoton excitation microscope manufactured as the multiphoton excitation microscope, but a microscope that excites with three or more photons can also be used.
  • FIG. 11 (a) shows the observed brain region of the mouse.
  • 11B shows the observation field b of FIG. 11A
  • FIG. 11C shows the observation field c of FIG. 11A.
  • FIG. 12 shows a timing chart in which the driving of the microscope optical module 100 is controlled.
  • the piezo 1211 provided in the optical system of the multiphoton excitation microscope was driven, and the Z-axis direction focusing was set for each observation visual field, and photographing was performed.
  • the period (b) indicates a period during which the observation visual field b in FIG. 11 is observed
  • the period (c) indicates a period during which the observation visual field c in FIG. 11 is observed.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field b.
  • An imaging instruction signal was output to the imaging device, and an observation image in the observation field b was taken.
  • An imaging end signal was output to the imaging apparatus, and imaging in the observation field of view b was completed.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field c.
  • the piezo 1211 was driven, the Z axis of the objective lens 1210 was moved to the brain side (downward) of the mouse, and the observation visual field c was focused.
  • An imaging instruction signal was output to the imaging device, and an observation image in the observation field c was taken.
  • An imaging end signal was output to the imaging apparatus, and imaging in the observation field c was completed.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field b.
  • the piezo 1211 was driven, the Z axis of the objective lens 1210 was moved to the original position (upward), and the observation visual field b was focused. Such control was repeated, and the observation visual field b and the observation visual field c were photographed.
  • the microscope optical module 100 was placed in a multiphoton excitation microscope (manufacturer: Olympus Corporation, model: FVMPE-RS), and two depth regions were observed in each of the two fields of view of the mouse brain.
  • a two-photon excitation microscope is used as the multiphoton excitation microscope, but a microscope that excites with three or more photons can also be used.
  • FIGS. 13 (a) to (d) show observation visual fields a to d of the mouse brain, respectively.
  • the observation visual field a in FIG. 13A and the observation visual field b in FIG. 13B show observation visual fields at different depths in the first region of the mouse brain, and the observation visual field b is a region deeper than the observation visual field a. It is.
  • the observation visual field c in FIG. 13C and the observation visual field d in FIG. 13D show observation visual fields at different depths in the second region of the mouse brain, and the observation visual field d has a depth greater than that of the observation visual field c. It is a deep area.
  • FIG. 14 is a timing chart in which the driving of the microscope optical module 100 is controlled.
  • the piezo 1211 included in the optical system of the multiphoton excitation microscope was driven, and imaging was performed by controlling the depth in the Z-axis direction for each observation field.
  • the period (a) indicates the period during which the observation visual field a in FIG. 13 (a) is observed
  • the period (b) indicates the period during which the observation visual field b in FIG. 13 (b) is observed.
  • the period (c) indicates a period during which the observation visual field c in FIG. 13 (c) is observed
  • the period (d) indicates a period during which the observation visual field d in FIG. 13 (d) is observed.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field a.
  • An imaging instruction signal was output to the imaging apparatus, and an observation image in the observation field a was captured.
  • a photographing end signal was output to the photographing device, and photographing in the observation field of view a was finished.
  • the piezo 1211 was driven, the Z axis of the objective lens 1210 was moved to the brain side (downward) of the mouse, and the focus was adjusted to the observation field b which is a deep region.
  • An imaging instruction signal was output to the imaging device, and an observation image in the observation field b was taken.
  • An imaging end signal was output to the imaging apparatus, and imaging in the observation field of view b was completed.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field c.
  • the piezo 1211 was driven to move the Z axis of the objective lens 1210 to the original position (upward).
  • An imaging instruction signal was output to the imaging device, and an observation image in the observation field c was taken.
  • An imaging end signal was output to the imaging apparatus, and imaging in the observation field c was completed.
  • the piezo 1211 was driven, the Z axis of the objective lens 1210 was moved to the brain side (downward) of the mouse, and the observation visual field d which is a deep region was focused.
  • An imaging instruction signal was output to the imaging apparatus, and an observation image in the observation field d was taken.
  • An imaging end signal was output to the imaging apparatus, and imaging in the observation field of view d was completed.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field of view a.
  • the piezo 1211 was driven to move the Z axis of the objective lens 1210 to the original position (upward). Such control was repeated, and observation fields a to d were photographed.
  • the microscope optical module 100 it is also possible to arrange the microscope optical module 100 in a multiphoton excitation microscope and observe the two fields of view of the mouse brain while changing the imaging magnification.
  • the multiphoton excitation microscope is not limited to a two-photon excitation microscope, and a microscope that excites with three or more photons can be used.
  • FIG. 15 shows a timing chart for driving and controlling the microscope optical module 100 as an example.
  • the imaging magnification can be changed using, for example, a digital zoom mechanism of a multiphoton excitation microscope, and it is also possible to perform imaging by changing the magnification for each observation field.
  • the optical axis shift optical system 130 is rotated by the rotating means 170, and the second opening is moved to the observation visual field a.
  • An imaging instruction signal is output to the imaging device, and an observation image in the observation field a is captured.
  • a photographing end signal is output to the photographing apparatus, and photographing in the observation field of view a is finished.
  • the rotation means 170 rotates the optical axis shift optical system 130 to move the second opening to the observation field b.
  • FIG. 15 shows an example in which the digital zoom mechanism is used to return the photographing magnification to the original magnification.
  • An imaging instruction signal is output to the imaging device, and an observation image in the observation field of view b is taken.
  • a photographing end signal is output to the photographing device, and photographing in the observation field of view b is finished.
  • FIG. 15 shows an example in which the digital zoom mechanism of the multiphoton excitation microscope is used and the imaging magnification is increased. By repeating such control, the observation fields a and b can be photographed.
  • the microscope optical module 100 is placed on a multiphoton excitation microscope (manufacturer: Olympus Corporation, model: FVMPE-RS), and three adjacent fields of the mouse brain are photographed to obtain one observation image with a wide field of view. It was.
  • a two-photon excitation microscope is used as the multiphoton excitation microscope, but a microscope that excites with three or more photons can also be used.
  • FIG. 16A is a schematic diagram showing how the optical axis shift optical system 130 is rotated to the observation visual fields a to c in order to obtain observation images I 1 to I 3 of the mouse brain.
  • FIG. 16B is a diagram showing the positions of the observation visual fields a to c in the mouse brain.
  • FIG. 16C is a diagram in which the observation images I 1 to I 3 are combined into one observation image with a wide field of view.
  • FIG. 17 shows a timing chart in which the driving of the microscope optical module 100 is controlled.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field a. Outputs an imaging instruction signal to the photographing apparatus, were taken observation image I 1 of the observation field a. A photographing end signal was output to the photographing device, and photographing in the observation field of view a was finished. Next, the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field b. An imaging instruction signal was output to the imaging device, and an observation image I 2 in the observation field b was taken. An imaging end signal was output to the imaging apparatus, and imaging in the observation field of view b was completed.
  • the optical axis shift optical system 130 was rotated by the rotating means 170 to move the second opening to the observation field c.
  • An imaging instruction signal was output to the imaging apparatus, and an observation image I 3 in the observation field c was taken.
  • An imaging end signal was output to the imaging apparatus, and imaging in the observation field c was completed. Such control was repeated, and the observation visual fields a to c were photographed.
  • the observation images I 1 to I 3 were synthesized to obtain one observation image with a wide field of view.
  • the microscope optical module 100 was controlled by rotational driving with the optical axis A of the objective light beam as the rotation center. It is shown that the optical axis shift optical system 130 can be combined into one observation image with a wide field of view by combining the observation images taken continuously by rotating the second aperture to the observation fields a to c. It was.
  • Optical module controller for microscope 20: Near intersection, 21: Near intersection, 100: Optical module for microscope, 110: Optical element, 111: Opposing reflecting surface, 113: Opposing reflecting surface, 130: Optical axis shift optical system 131: 1st opening, 133: 2nd opening, 133a: 2nd opening, 133b: 2nd opening, 150: Optical axis shift optical system support means, 170: Turning means, 175 : Driving mechanism, 210: optical element, 211: counter reflecting surface, 213: counter reflecting surface, 215: rotation axis, 230: optical axis shift optical system, 231: first opening, 233: second opening, 310: optical element, 311: first counter reflecting surface, 313: second counter reflecting surface, 315: rotation axis, 330: optical axis shift optical system, 331: first aperture, 333: second aperture Part, 410: optical fiber 430: Optical axis shift optical system, 431: First aperture, 433

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

観察視野を高速に切り替え、大きな視野を観察可能な顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡を提供する。本発明の顕微鏡用光学モジュールは、顕微鏡の対物光束側に付加する顕微鏡用光学モジュールであって、光学素子を備える光軸シフト光学系と、前記顕微鏡の対物光束に対して前記光軸シフト光学系を位置決め設定する光軸シフト光学系支持手段と、前記光軸シフト光学系支持手段に配置され、前記対物光束の光軸に対して前記光軸シフト光学系を回転可能に支持する回動手段と、を備える。

Description

顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡
本発明は顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡に関する。特に観察視野を高速に切り替え、大きな視野を観察可能な顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡に関する。
顕微鏡観察において広い観察視野を得るには、低倍率での観察、又は標本を走査しながら複数枚撮像して観察像を1つに合成する方法がある。しかし、高倍率での観察においては観察視野がさらに狭くなるため、広い観察視野を得るのは容易ではない。また、走査しながら撮像するには、一般にステージを水平方向に移動させるが、精度よく、高速にステージを移動させるのは困難であるため、瞬間的に生じる事象を広範囲にわたって、又は離れた2点以上について観察するのはこれまで困難であった。
このような問題に対して、例えば特許文献1には、対物レンズの切り替えや移動を伴うことなく、且つ、ステージや標本の位置を変えることなく、観察視野を移動させる方法として、標本から観察像までの光路において、最も標本側に位置する第1対物レンズと、標本に共役な中間像を、第1対物レンズと共に形成する第2対物レンズとを備えた顕微鏡における、光学系であって、第1対物レンズと第2対物レンズとの間の光学系内に配置され、反射により光路の方向を変更する反射用ミラーを有し、反射用ミラーの反射面の延在方向が変わるように、反射用ミラーが回転可能である顕微鏡の光学系が記載されている。
しかし、特許文献1は、接眼レンズと広視野を観察するための低倍率の対物レンズとの間に、低倍率光学系と高倍率光学系を備えた変倍率光学系を配置することにより、対物レンズと標本との位置関係を変化させずに、対物レンズにより観察可能な視野において、反射用回転ミラーで視野ブロックを切り替えながら高倍率光学系で観察技術である。したがって、特許文献1では、標本に対して位置決めされた対物レンズにより観察可能な視野が制限されるため、それより大きな観察視野を得ることはできない。
また、特許文献1では、X軸方向及びY軸方向への視野ブロックの切り替えを反射用回転ミラーで行うため、回転軸が2つとなり、反射用回転ミラーの位置制御が難しい。このため、観察視野を連続して移動させる走査型の観察を行う場合、再現性よく繰り返しの観察を行うことは困難である。
特開2005-321657号公報
本発明は、上述の問題を解決するものであって、観察視野を高速に切り替え、大きな視野を観察可能な顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡を提供する。
本発明の一実施形態によると、顕微鏡の対物光束側に付加する顕微鏡用光学モジュールであって、光学素子を備える光軸シフト光学系と、前記顕微鏡の対物光束に対して前記光軸シフト光学系を位置決め設定する光軸シフト光学系支持手段と、前記光軸シフト光学系支持手段に配置され、前記対物光束の光軸に対して前記光軸シフト光学系を回転可能に支持する回動手段と、を備えた顕微鏡用光学モジュールが提供される。
前記顕微鏡用光学モジュールにおいて、第1の開口部と第2の開口部と、前記第1の開口部と前記第2の開口部に配置された光学素子を備える光軸シフト光学系を備えてもよい。
前記顕微鏡用光学モジュールにおいて、前記光軸シフト光学系の光学素子に光ファイバーを用いてもよい。
前記顕微鏡用光学モジュールにおいて、前記光学素子は、略平行な対向反射面を備えたプリズム又は略平行な対向反射面を固定支持してなる中空反射素子であってもよい。
前記顕微鏡用光学モジュールにおいて、前記光学素子は、GRINレンズと、前記GRINレンズの両端に配置される略平行な対向反射面又はプリズムを備えてもよい。
前記顕微鏡用光学モジュールにおいて、前記光学素子は、三角プリズムであってもよい。
前記顕微鏡用光学モジュールにおいて、前記顕微鏡対物光軸に沿った平面上で前記光学素子に対する入射角を変更可能にした前記光軸シフト光学系支持手段を備えてもよい。
前記顕微鏡用光学モジュールにおいて、前記中空反射素子での略平行な対向反射面の間に液体を充填可能にしてもよい。
前記顕微鏡用光学モジュールにおいて、前記光軸シフト光学系支持手段に前記回動手段を回転・停止させる駆動機構を備えてもよい。
また、本発明の一実施形態によると、前記何れか一に記載の顕微鏡用光学モジュールを配置した顕微鏡が提供される。
また、本発明の一実施形態によると、前記顕微鏡に配置した顕微鏡用光学モジュールに接続する制御システムであって、前記光軸シフト光学系の回転の初期位置と回転角度の設定を可能にした顕微鏡用光学モジュール制御装置が提供される。
前記顕微鏡用光学モジュール制御装置において、前記顕微鏡に備えられた撮影装置に対して、撮影開始を指示する撮影指示信号出力手段を備えてもよい。
前記顕微鏡用光学モジュール制御装置において、前記顕微鏡用光学モジュールの駆動機構の回転駆動開始に先立って、前記顕微鏡に備えられた撮影装置に対して撮影終了を指示する撮影終了信号出力手段を備えてもよい。
前記顕微鏡用光学モジュール制御装置において、前記顕微鏡用光学モジュールの駆動機構の回転駆動開始に先立って発信する信号の発信に応じて回転駆動を開始してもよい。
前記顕微鏡用光学モジュール制御装置において、前記顕微鏡用光学モジュールの駆動機構の回転駆動は角速度及び位置制御で行ってもよい。
また、本発明の一実施形態によると、顕微鏡の対物光束側に付加する顕微鏡用光学モジュールであって、前記顕微鏡の対物光束に対して傾斜した面を有するプリズムを備える光軸シフト光学系と、前記顕微鏡の対物光束に対して前記光軸シフト光学系を位置決めする光軸シフト光学系支持手段と、前記光軸シフト光学系支持手段に配置され、前記対物光束の光軸に対して平行方向及び垂直方向に前記光軸シフト光学系を移動可能に支持する移動手段と、を備えた顕微鏡用光学モジュールが提供される。
前記顕微鏡用光学モジュールにおいて、第1の開口部と第2の開口部と、前記第1の開口部と前記第2の開口部に配置されたプリズムを備える光軸シフト光学系を備えてもよい。
また、本発明の一実施形態によると、前記顕微鏡用光学モジュールを配置した顕微鏡が提供される。
また、本発明の一実施形態によると、前記顕微鏡に配置した顕微鏡用光学モジュールに接続する制御システムであって、前記光軸シフト光学系の移動の初期位置と前記対物光束の光軸に対する平行方向及び垂直方向の位置設定を可能にした顕微鏡用光学モジュール制御装置が提供される。
前記顕微鏡用光学モジュール制御装置において、前記顕微鏡に備えられた撮影装置に対して、撮影開始を指示する撮影指示信号出力手段を備えてもよい。
前記顕微鏡用光学モジュール制御装置において、前記顕微鏡用光学モジュールの駆動機構の駆動開始に先立って、前記顕微鏡に備えられた撮影装置に対して撮影終了を指示する撮影終了信号出力手段を備えてもよい。
前記顕微鏡用光学モジュール制御装置において、前記顕微鏡用光学モジュールの駆動機構の駆動開始に先立って発信する信号の発信に応じて駆動を開始してもよい。
また、本発明の一実施形態によると、前記何れかに記載の顕微鏡用光学モジュールを備えた多光子励起顕微鏡が提供される。
前記何れかに記載の顕微鏡用光学モジュール制御装置において、前記顕微鏡が多光子励起顕微鏡であってもよい。
本発明によると、従来のような対物レンズの切り替えやステージの移動を伴わず、対物レンズの対物光束側に配置することで観察視野を高速に切り替え、大きな視野を観察可能な顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡を提供することができる。
また、特許文献1のように、従来の顕微鏡では、顕微鏡自体の光学系を変更するため、新たな顕微鏡の購入が必要となる。しかし、本発明に係る顕微鏡用光学モジュール及び顕微鏡用光学モジュール制御装置を用いることにより、既存の顕微鏡を用いて観察視野を高速に切り替え、大きな視野を観察可能にする。
本発明の一実施形態に係るに顕微鏡用光学モジュール100を配置した顕微鏡1000を示す模式図である。 図1における本発明の一実施形態に係る光軸シフト光学系130近傍を拡大した模式図である。 本発明の一実施形態に係る連続撮影方法を説明する模式図である。 本発明の一実施形態に係る光学素子210の模式図である。 本発明の一実施形態に係る光学素子310の模式図である。 本発明の一実施形態に係る光学素子の変形例を示す模式図である。 本発明の一実施形態に係る光学素子610を備えた光軸シフト光学系630の模式図である。 本発明の一実施形態に係る顕微鏡用光学モジュール700を配置した顕微鏡2000を示す模式図である。 図7における本発明の一実施形態に係る光軸シフト光学系730近傍を拡大した模式図である。 本発明の一実施例に係る顕微鏡用光学モジュール100の模式図である。 本発明の一実施例に係る観察したマウスの脳の領域を示し、(b)は(a)の観察視野bを示し、(c)は(a)の観察視野cを示す。 本発明の一実施例に係る顕微鏡用光学モジュール100の駆動制御したタイミングチャートを示す。 本発明の一実施例に係る観察したマウスの脳の観察視野a~dを示し、(a)~(d)は観察視野a~dをそれぞれ示す。 本発明の一実施例に係る顕微鏡用光学モジュール100の駆動制御したタイミングチャートを示す。 本発明の一実施例に係る顕微鏡用光学モジュール100の駆動制御したタイミングチャートを示す。 (a)は本発明の一実施例に係る光軸シフト光学系130を観察視野a~cに回転させる様子を示した模式図を示し、(b)はマウスの脳における観察視野a~cの位置を示す図であり、(c)は観察像I1~I3を広視野の1つの観察像に合成した図を示す。 本発明の一実施例に係る顕微鏡用光学モジュール100の駆動制御したタイミングチャートを示す。
以下に一実施形態に係る本発明の顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡について、図を参照して説明する。なお、以下の実施形態及び実施例は本発明の顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡の一例であり、本発明の顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡は以下の実施形態及び実施例に限定されるわけではない。
本発明に係る顕微鏡用光学モジュールは、顕微鏡の対物レンズとステージの間に配置し、対物光束に対して光軸をシフトさせることを特徴とする。本発明に係る顕微鏡用光学モジュールは、対物レンズ側に配置され、光学素子を備える光軸シフト光学系を有する。本発明において光学素子は、対物光束に対して光軸をシフトさせる機能を有する。光学素子には幾つもの態様が存在するため、以下に具体的に説明するが、本発明に係る顕微鏡用光学モジュールは以下の実施形態に限定されるものではない。
(実施形態1)
図1は、本発明の実施形態1に係る顕微鏡用光学モジュール100を付加した顕微鏡1000を示す模式図である。図2は図1における、本発明の実施形態1に係る光軸シフト光学系130近傍を拡大した模式図である。なお、図2において、(a)は光軸シフト光学系130と対物レンズ1210、標本1330の断面図であり、(b)及び(c)は光軸シフト光学系130を第1の開口部131側から見た上面図である。
顕微鏡用光学モジュール100は、顕微鏡1000の対物光束側に配置され、光学素子110を備える光軸シフト光学系130を備える。また、顕微鏡用光学モジュール100は、顕微鏡1000の対物光束に対して光軸シフト光学系130を位置決めする光軸シフト光学系支持手段150と、光軸シフト光学系支持手段150に配置され、対物光束の光軸に対して光軸シフト光学系130を回転可能に支持する回動手段170を備える。
光軸シフト光学系130は、顕微鏡1000の対物光束側に配置する第1の開口部131と、標本1330側に配置する第2の開口部133を備える。光学素子110は、第1の開口部131と第2の開口部133との間に配置される。本明細書において、開口部は光学的開口部であり、第1の開口部131及び第2の開口部133が物理的に開口していることを必須の構成とするものではない。つまり、顕微鏡1000が用いる光が観察に影響しない程度に透過可能であれば、光透過性の部材が第1の開口部131及び/又は第2の開口部133に配置されてもよい。
本実施形態において、光学素子110は略平行な対向反射面111及び113を備える。光学素子110は、例えば、略平行な対向反射面を備えたプリズム又は略平行な対向反射面を固定支持してなる中空反射素子である。一実施形態において、中空反射素子での略平行な対向反射面の間に液体を充填可能としてもよい。中空反射素子での略平行な対向反射面の間に液体を充填することにより、液浸法による観察が可能となり、対物レンズ1210と標本1330の間での空気による屈折率への影響を抑制することができる。
図2(a)において、図1の顕微鏡用光学モジュール100を配置していない時は、対物光束の光軸Aと標本1330との交点近傍20が観察視野となる。一方、本発明に係る顕微鏡用光学モジュール100を用いることにより、対物光束に対して光軸A’へ距離dだけシフトさせ、光軸A’と標本1330との交点近傍21を観察することができる。すなわち、対物光束は、対向反射面111及び113の間で反射を繰り返し、第1の開口部131と第2の開口部133の間で距離dだけシフトする。
本実施形態に係る顕微鏡用光学モジュール100を用いることにより、図2(b)に示したように、第1の開口部131から対物レンズ1210を介して、距離dだけシフトした第2の開口部133の下に位置する標本1330の観察視野を観察することができる。また、光軸シフト光学系130は、回動手段170により回転駆動することができる。回転前の第2の開口部133aに対して、回動手段170により光軸シフト光学系130を180°回転させることにより、第2の開口部133bの下に位置する標本1330の観察視野を観察することができる。このとき、回転前の第2の開口部133aと180°回転後の第2の開口部133bとは距離2d離れており、本実施形態において、回動手段170により光軸シフト光学系130を回転させることにより、距離2d離れた2点を順次観察することができる。
回動手段170は、対物光束の光軸に対して光軸シフト光学系130を回転可能に支持する。また、光軸シフト光学系支持手段150には、回動手段170を回転・停止させる駆動機構175を備える。駆動機構175としては、モータを用いることができる。また、回動手段170として、例えば、ステッピングモータは、正確な位置決め制御が可能であるため好ましい。ただし、光軸シフト光学系130を回転可能で、正確な位置決め制御が可能であれば、回動手段170として他の公知の手段を用いてもよい。回動手段170として、ステッピングモータを用いた場合、例えば、数十ミリ秒で第2の開口部133aから第2の開口部133bへと観察視野を切り替えることが可能である。
光軸シフト光学系支持手段150は、対物光束に対して第1の開口部131を位置決め設定すると共に、顕微鏡用光学モジュール100を顕微鏡1000のアーム1900に固定する。光軸シフト光学系支持手段150によるアーム1900への固定は、ネジやクリップ等の公知の固定手段を用いることができる。
回転駆動による光軸シフト光学系130の制御は、顕微鏡用光学モジュール制御装置10を用いて行うことができる。顕微鏡用光学モジュール制御装置10は、顕微鏡1000に配置した顕微鏡用光学モジュール100に接続する制御システムであり、光軸シフト光学系130の回転の初期位置と回転角度の設定を可能にする。顕微鏡用光学モジュール制御装置10は、例えば、顕微鏡用光学モジュール制御プログラムを備えたコンピュータである。顕微鏡用光学モジュール制御装置10に、初期位置と回転角度を設定すると、顕微鏡用光学モジュール制御装置10は、駆動機構175を制御して、回動手段170を用いて、光軸シフト光学系130の第2の開口部133を初期位置に移動させ、その後、第2の開口部133を設定された回転角度に移動する。これにより、標本1330の2つの観察視野を順次観察することができる。なお、複数の回転角度を設定することにより、複数の観察視野を順次観察することもできる。また、顕微鏡用光学モジュール制御装置10は、第2の開口部133を設定された回転角度に移動した後に、第2の開口部133を初期位置に戻すように設定されてもよい。さらに、顕微鏡用光学モジュール制御装置10は、初期位置と設定された回転角度とで、設定された回数で第2の開口部133の移動を繰り返すようにしてもよい。
また、顕微鏡用光学モジュール100の駆動機構175の回転駆動は、角速度及び位置制御で行ってもよい。顕微鏡用光学モジュール制御装置10に第2の開口部133を移動させる角速度と、第2の開口部133の位置を設定することにより、標本1330の2つ以上の観察視野を所定の時間間隔で観察することが可能になる。顕微鏡用光学モジュール制御装置10に、角速度と第2の開口部133の位置を設定すると、顕微鏡用光学モジュール制御装置10は、駆動機構175を制御して、回動手段170を用いて、光軸シフト光学系130の第2の開口部133を設定された角速度で、設定された位置に移動させる。これにより、第1の観察視野を観察後、所定の時間経過後の第2の観察視野を観察することで、2点間での位置的、経時的変化を観察することができる。また、駆動機構175を高速に回転駆動させることにより、ミリ秒単位で2つ以上の観察視野を観察することができ、それより遅い事象については、2つ以上の観察視野をほぼ同時に観察するに等しい効果を得ることができる。
また、顕微鏡1000が撮影装置1700を備える場合、顕微鏡用光学モジュール制御装置10は、撮影装置に対して、撮影開始を指示する撮影指示信号出力手段を備えてもよい。顕微鏡用光学モジュール制御装置10が撮影指示信号出力手段を備えることにより、光軸シフト光学系130の第2の開口部133の移動と、撮影装置1700での撮影のタイミングを制御することができる。2つ以上の観察視野を所定の時間間隔で順次撮影することが可能であり、2つ以上の観察視野で発生した事象を連続的に撮影することができる。また、光軸シフト光学系130の第2の開口部133の移動速度よりも遅い事象については、2つ以上の観察視野をほぼ同時に撮影するに等しい効果を得ることができる。
顕微鏡用光学モジュール制御装置10は、顕微鏡用光学モジュール100の駆動機構175の回転駆動開始に先立って、顕微鏡1000に備えられた撮影装置に対して撮影終了を指示する撮影終了信号出力手段を備えてもよい。顕微鏡用光学モジュール制御装置10が撮影終了信号を出力することにより、撮影装置1700は撮影を終了し、その後、駆動機構175の回転駆動により光軸シフト光学系130を駆動する。これにより、駆動時の不要な撮影が行われず、必要な観察像のみを得ることができる。また、光軸シフト光学系130の回転の衝撃から、撮影装置1700を保護することもできる。
また、顕微鏡用光学モジュール制御装置10は、顕微鏡用光学モジュール100の駆動機構175の回転駆動開始に先立って回転駆動開始信号を発信する。駆動機構175は、回転駆動開始信号に応じて回転駆動を開始する。例えば、顕微鏡用光学モジュール制御装置10は、撮影終了信号を出力して撮影装置1700に撮影を終了させた後に、回転駆動開始信号を発信して駆動機構175の回転駆動を開始させることができる。
上述した顕微鏡用光学モジュール制御装置10による初期位置と回転角度、角速度、回転駆動開始信号、撮影指示信号及び撮影終了信号を組み合わせることにより、図3に示したような連続撮影が可能となる。図3は、本発明の一実施形態に係る連続撮影方法を説明する模式図である。連続撮影は、駆動機構175は第2の開口部133を第1の位置に移動させ、撮影装置1700は第1の観察視野を所定の時間撮影し、駆動機構175は第2の開口部133を第2の位置に移動させ、撮影装置1700は第2の観察視野を所定の時間撮影することにより実施することができる。より詳細には、撮影指示信号出力手段から出力される撮影指示信号により、駆動機構175は第2の開口部133を第1の位置に移動させ、撮影装置1700での撮影のタイミングを制御して、第1の観察視野を撮影する。また、撮影終了信号出力手段から出力される撮影終了信号により、撮影装置1700は第1の観察視野での撮影を終了する。続いて撮影指示信号出力手段から出力される撮影指示信号により、駆動機構175は第2の開口部133を第2の位置に移動させ、撮影装置1700での撮影のタイミングを制御して、第2の観察視野を撮影する。また、撮影終了信号出力手段から出力される撮影終了信号により、撮影装置1700は第2の観察視野での撮影を終了する。
本実施形態において、顕微鏡用光学モジュール100は、対物光束の光軸Aを回転中心とした回転駆動により制御される。例えば、光軸シフト光学系130を第2の開口部を133aの位置から133bの位置まで回転させて、連続撮影した観察像を結合することにより、標本1330の2点を走査した観察像を得ることができる。ここで、光軸シフト光学系130を回転させて撮影すると、光軸シフト光学系130の回転と共に、観察像Iは、対物光束の光軸Aに垂直な平面におけるX軸方向及びY軸方向に対して平行に移動する。観察像を結合して得られる画像は、光軸Aを中心とする円周上を平行に移動した画像となる。しかし、得られた画像は局所的には直線状となるが、図3にXで示したような複数の観察像に渡るような大きな構造が存在する場合、その全体像を得ることもできる。
1軸の回転軸を有する顕微鏡用光学モジュール100は、顕微鏡用光学モジュール制御装置10によりステッピングモータのような回動手段170を制御することにより、高速且つ高精度の位置制御が可能である。このため、観察視野を連続して移動させる走査型の観察を行う場合、再現性よく繰り返しの観察を行うことができる。また、そのような連続観察を高速に実現することができる従来にない優れた機構である。
本発明に係る顕微鏡用光学モジュールは、既存の顕微鏡に配置して上述した観察を行うことができる。また、本発明に係る顕微鏡用光学モジュールを組み込んだ顕微鏡として提供することもできる。一実施形態において、顕微鏡1000は、対物レンズ1210、接眼レンズ1230、ステージ1310、光源1510、窓レンズ1530及びアーム1900を備える。光源1510から供給される光は窓レンズ1530からステージ1310上に配置された標本1330を透過して、対物レンズ1210から接眼レンズ1230へと導かれ、光が透過した標本1330の部分の観察像を提供する。または光源は顕微鏡とは独立に光ファイバーを通して標本1330へ照射し、その反射した光が対物レンズ1210から接眼レンズ1230へと導かれ、標本1330の部分の観察像を提供してもよい。本実施形態において、顕微鏡用光学モジュール100は、光軸シフト光学系支持手段150により、アーム1900に固定される。上述したように、顕微鏡1000に顕微鏡用光学モジュール100を配置することにより、対物光束に対して光軸をシフトさせ、これまでにない広範囲の観察視野と2点以上の観察視野での高速な観察視野の切り替えを可能とする。
また、撮影装置1700を備えることにより、標本1330の撮影をすることもできる。さらに、顕微鏡1000が蛍光顕微鏡である場合、第2の光源1550により、対物レンズ1210を介して蛍光を励起する波長の光を標本1330に照射することができる。本実施形態においては、励起光も顕微鏡用光学モジュール100により、対物光束に対して光軸をシフトさせることができる。なお、図1では、正立型の顕微鏡を例示したが、本発明はこれに限定されるものではなく、倒立顕微鏡に配置することもできる。
また、一実施形態において、顕微鏡用光学モジュール100を備えた多光子励起顕微鏡を提供することができる。多光子励起顕微鏡とは、多光子励起過程を用いた顕微鏡であり、2光子以上の励起過程を用いる。このため、本明細書においては、多光子励起顕微鏡は、2光子励起顕微鏡でもよく、3光子励起顕微鏡でもよく、それ以上の光子を用いて励起する顕微鏡であってもよい。多光子励起顕微鏡は、標本1330の深部を励起して、その蛍光を観察することができる。多光子励起顕微鏡には低倍率高開口数の対物レンズはなく、広視野の観察は困難であった。また、標本の深部の蛍光を観察可能である特性から、バイオイメージングに好適に用いられるが、組織の離れた部位で発生する事象を連続的に、又は同時に観察することはできなかった。本発明に係る顕微鏡用光学モジュール100を配置することにより、既存の多光子励起顕微鏡を用いて、組織の離れた部位で発生する事象を連続的に、又はほぼ同時に観察することができる。
また、上述した顕微鏡用光学モジュール制御装置を、顕微鏡用光学モジュール100を配置した多光子励起顕微鏡と組み合わせることにより、生体や組織の深部で発生した事象を離れた2点以上について、連続的に、又はほぼ同時に撮影することができる。
ここで、顕微鏡用光学モジュールを顕微鏡対物光軸に沿って移動可能な態様について説明する。図4は、本発明の一実施形態に係る光学素子210の模式図である。本実施形態に係る光軸シフト光学系230は、光学素子210を回転させることにより、顕微鏡対物光軸に対して光学素子210に対する入射角を変更することができる。
図4(a)において、光軸シフト光学系230に配置された光学素子210を顕微鏡対物光軸に沿った平面上で回転軸215を中心として回転させると、光学素子210に対する入射角が変更され、標本1330のAの位置から、標本1330のA’に位置に距離d1だけ観察視野を移動させることができる。このとき、標本1330のAにおける焦点距離に対して、標本1330のA’に位置での焦点距離は、距離f1だけシフトする。また、図4(b)において、光軸シフト光学系230に配置された光学素子210を顕微鏡対物光軸に沿った平面上で回転軸215を中心として逆方向に回転させると、光学素子210に対する入射角が変更され、標本1330のAの位置から、標本1330のA"に位置に距離d2だけ観察視野を移動させることができる。
標本1330のAにおける焦点距離に対して、標本1330のA"に位置での焦点距離は、距離f2だけシフトする。図4(b)に示した距離f2は、距離f1より長く、即ち、図4(b)に示した例では、焦点距離が短くなる。したがって、本実施形態においては、光軸シフト光学系230に配置された光学素子210を顕微鏡対物光軸に沿った平面上で回転軸215を中心として回転させると、光学素子210に対する入射角が変更され、焦点距離を変更することができる。例えば、標本1330の観察面に凹凸があるような場合には、回転軸215を中心として光学素子210を回転させることにより、焦点距離を調節することができる。
ここで、回転軸215を中心として光学素子210が回転可能な範囲は入射面の広さL x Lのプリズムに対しL/2の光線を入射した場合、反時計回りを正方向とすると-7.07°から+7.07°となる。
光軸シフト光学系230は上述した光軸シフト光学系130の変形例であるため、上述した顕微鏡1000において顕微鏡用光学モジュール100に組み込み可能である。したがって、上述した実施形態で説明した顕微鏡用光学モジュール100を用いることによる作用及び効果を全て包含する。
回転軸215を中心として回転角を制御することにより、顕微鏡対物光軸に対して、光学素子210への入射角を変更し、光軸Aからの観察視野の距離を変更して、標本1330を観察することができる。本実施形態において、光軸シフト光学系230は上述した回動手段170により回転駆動され、光軸Aから所望の距離にある観察視野を選択して、光軸Aを中心とする円周上の2点以上を順次観察することができる。
図4においては、光学素子210を回転させることにより、顕微鏡対物光軸に対して光学素子210に対する入射角を変更する例について説明した。図5に、第2の対向反射面313のみを回転させる例について説明する。
図5(a)において、光軸シフト光学系330に配置された光学素子310の第2の対向反射面313を顕微鏡対物光軸に沿った平面上で回転軸315を中心として回転させると、第1の対向反射面311により反射した光に対する入射角が変更され、標本1330のAの位置から、標本1330のA’に位置に距離d1だけ観察視野を移動させることができる。また、図5(b)において、第2の対向反射面313を顕微鏡対物光軸に沿った平面上で回転軸315を中心として逆方向に回転させると、第1の対向反射面311により反射した光に対する入射角が変更され、標本1330のAの位置から、標本1330のA"の位置に距離d2だけ観察視野を移動させることができる。
図5(b)に示したように、本実施形態においては、第2の対向反射面313の傾きに応じて光軸が傾く。このため、標本1330の観察面が光軸に対し斜めとなっている場合でも観察も可能となる。このとき、第2の対向反射面313がθ回転した場合、標本1330の撮像面は2θだけ傾くことになる。
ここで、回転軸315を中心として第2の対向反射面313が回転可能な範囲は、入射面の広さL x Lのプリズムに対しL/2の光線を入射した場合、反時計回りを正方向とすると-24.29°から12.15°である。
光軸シフト光学系330は上述した光軸シフト光学系130の変形例であるため、上述した顕微鏡1000において顕微鏡用光学モジュール100に組み込み可能である。したがって、上述した実施形態で説明した顕微鏡用光学モジュール100を用いることによる作用及び効果を全て包含する。
次に、実施形態1の変形例として、光学素子の別の態様を説明する。図6(a)は光学素子として光ファイバー410を用いた例を示す。光軸シフト光学系430は、第1の開口部431と第2の開口部433との間に配置された光ファイバー410を備える。第1の開口部431と第2の開口部433の間において、対物光束は、光ファイバー410コアの内部を伝搬し、顕微鏡用光学モジュールを配置していない時の対物光束の光軸Aから光軸A’へ距離dだけシフトする。図6(a)においては、光ファイバー410を光軸シフト光学系430に直線状に配置した例を示したが、これに限定されるものではない。光ファイバーは可撓性を有するため、光軸シフト光学系430に曲線状に配置することも可能である。なお、光軸シフト光学系430は、上述した光軸シフト光学系130の変形例であるため、上述した顕微鏡1000において顕微鏡用光学モジュール100に組み込み可能である。したがって、上述した実施形態で説明した顕微鏡用光学モジュール100と同等の作用及び効果を全て包含する。
図6(b)は光学素子として三角プリズム510を用いた例を示す。光軸シフト光学系530は、第1の開口部531と第2の開口部533との間に配置された三角プリズム510を備える。第1の開口部531と第2の開口部533の間において、対物光束は、三角プリズム510の内部で反射を繰り返して、顕微鏡用光学モジュールを配置していない時の対物光束の光軸Aから光軸A’へ距離dだけシフトする。なお、光軸シフト光学系530は、上述した光軸シフト光学系130の変形例であるため、上述した顕微鏡1000において顕微鏡用光学モジュール100に組み込み可能である。したがって、上述した実施形態で説明した顕微鏡用光学モジュール100と同等の作用及び効果を全て包含する。
また、光軸シフト光学系530は、上述した顕微鏡用光学モジュール100の光軸シフト光学系130の変形例でもある。光軸シフト光学系支持手段150の移動機構151を用いることにより、光軸シフト光学系530は、顕微鏡対物光軸に沿った平面上で三角プリズム510に対する入射角を変更することができる。これにより、光軸Aからの観察視野の距離を変更して、標本1330を観察することができる。本実施形態において、光軸シフト光学系530は回動手段170により回転駆動され、光軸Aから所望の距離にある観察視野を選択して、光軸Aを中心とする円周上の2点以上を順次観察することができる。
光学素子の変形例として、光学素子110で説明した対向反射面とGRINレンズを組合せた光学素子について説明する。図7は、光学素子610を備えた光軸シフト光学系630の模式図である。光学素子610は、GRINレンズ621と、GRINレンズ621の両端に配置される略平行な対向反射面611及び613を備える。なお、GRINレンズ621の両端に配置される略平行な対向反射面611及び613は、プリズムで置換してもよい。
図7(a)において、標本1330から入射した光は、第2の開口部633により反射し、GRINレンズ621を透過する。GRINレンズ621を透過した光は第1の開口部631により反射し、対物レンズ1210に入射する。この作用により、対物光束に対して光軸A’へ距離dだけシフトさせ、光軸A’と標本1330との交点近傍を観察することができる。
なお、光学素子610において、GRINレンズと略平行な対向反射面又はプリズムを複数組み合わせることにより、距離dを大きくすることもできる。図7(b)は、2つのGRINレンズ621a及び621bと、略平行な対向反射面611及び613を備える光学素子610aを有する光軸シフト光学系630aの模式図である。光学素子610aは、光学素子610に対して、顕微鏡対物光軸に沿って対物光束をシフトさせることができる。
また、図7(c)は、4つのGRINレンズ621a~621dと、二組の略平行な対向反射面611a及び613aと611b及び613bを備える光学素子610bを有する光軸シフト光学系630bの模式図である。光学素子610は、第1の光軸シフト光学部635と第2の光軸シフト光学部637を備え、それぞれ独立して回転可能である。第1の光軸シフト光学部635は対向反射面611a及び613aと2つのGRINレンズ621a及び621bを備え、光軸Aを回転中心として回転する。また、第2の光軸シフト光学部637は対向反射面611b及び613bと2つのGRINレンズ621c及び621dを備え、光軸Bを回転中心として回転する。ここで、光軸Bは、光軸Aが第1の光軸シフト光学部635によりシフトした光軸である。
光軸シフト光学系630bにおいて、光軸Aは、対向反射面611aからGRINレンズ621a、対向反射面613a及びGRINレンズ621bにより順次導かれ、光軸Bへシフトする。光軸Bは、対向反射面611bからGRINレンズ621c、対向反射面613b及びGRINレンズ621dにより順次導かれ、光軸A’へシフトする。光軸シフト光学系630bにおいては、第1の光軸シフト光学部635と第2の光軸シフト光学部637からなる2つの回転機構を与えることでXY平面上の2自由度で光軸をシフト可能である。
このように、光学素子610において、GRINレンズと略平行な対向反射面又はプリズムを複数組み合わせることにより、距離dを任意に変更可能である。
なお、光軸シフト光学系630は、上述した光軸シフト光学系130の変形例であるため、上述した顕微鏡1000において顕微鏡用光学モジュール100に組み込み可能である。したがって、上述した実施形態で説明した顕微鏡用光学モジュール100と同等の作用及び効果を全て包含する。
以上説明したように、本発明に係る顕微鏡用光学モジュールは、観察視野を高速に切り替え、大きな視野を観察可能である。また、本発明に係る顕微鏡用光学モジュールを用いることにより、観察視野を高速に切り替え、大きな視野を観察可能な顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡を提供することができる。
(実施形態2)
上述した実施形態1では光軸シフト光学系を回転駆動することにより、観察視野を切り替える態様について説明した。本実施形態においては、プリズムを用いて、対物光束の光軸に対して水平方向にプリズムを移動することにより観察視野を切り替える態様について説明する。
図8は、本発明の実施形態2に係る顕微鏡用光学モジュール700を配置した顕微鏡2000を示す模式図である。図9は図8における、本発明の実施形態2に係る光軸シフト光学系730近傍を拡大した模式図である。光軸シフト光学系730は、プリズム710を備える。プリズム710は、顕微鏡の対物光束に対して傾斜した面を有する。プリズム710は、第1の開口部731と第2の開口部733との間に配置される。
また、顕微鏡用光学モジュール700は、顕微鏡1000の対物光束に対して第1の開口部731を位置決めする光軸シフト光学系支持手段750と、光軸シフト光学系支持手段750に配置され、対物光束の光軸に対して平行方向及び垂直方向に光軸シフト光学系730を移動可能に支持する移動手段770を備える。
図9(a)において、顕微鏡用光学モジュール100を配置していない時は、対物光束の光軸Aと標本1330との交点近傍が観察視野となる。一方、本発明に係る顕微鏡用光学モジュール700を用いることにより、対物光束に対して光軸A’へ距離dだけシフトさせ、光軸A’と標本1330との交点近傍を観察することができる。すなわち、対物光束はプリズム710の内部で反射を繰り返し、第1の開口部731と第2の開口部733の間で距離dだけシフトする。
移動手段770は、対物光束の光軸に対して平行方向及び垂直方向に光軸シフト光学系730を移動可能に支持する。また、光軸シフト光学系支持手段750には、移動手段770を移動・停止させる駆動機構775を備える。駆動機構775としては、モータを用いることができる。また、移動手段770として、例えば、電動シリンダは、正確な位置決め制御が可能であるため好ましい。ただし、光軸シフト光学系730を移動可能で、正確な位置決め制御が可能であれば、移動手段770として他の公知の手段を用いてもよい。移動手段770として、電動シリンダを用いた場合、光軸シフト光学系730を水平方向に前進及び後退させることにより、光軸A’の観察視野から光軸A"の観察視野へ第2の開口部733へと切り替えることが可能である。
光軸シフト光学系支持手段750は、対物光束に対して第1の開口部731を位置決め設定すると共に、顕微鏡用光学モジュール100を顕微鏡1000のアーム1900に固定する。光軸シフト光学系支持手段750は、移動機構751を備え、光軸シフト光学系730を顕微鏡対物光軸に沿って移動させることができる。移動機構751はステージ1310の対物光軸に沿った方向への移動手段と同様に公知の技術を用いることができ、例えば、高さ調整可能な摘みを含む。移動機構751を用いることにより、光軸シフト光学系730は、顕微鏡対物光軸に沿った平面上でプリズム710に対する入射角を変更することができる。
駆動機構775及び移動機構751による光軸シフト光学系130の制御は、顕微鏡用光学モジュール制御装置10を用いて行うことができる。顕微鏡用光学モジュール制御装置10は、顕微鏡2000に配置した顕微鏡用光学モジュール700に接続する制御システムであり、光軸シフト光学系730の移動の初期位置と対物光束の光軸に対する平行方向及び垂直方向の位置設定を可能にする。顕微鏡用光学モジュール制御装置10は、例えば、顕微鏡用光学モジュール制御プログラムを備えたコンピュータである。顕微鏡用光学モジュール制御装置10に、初期位置と対物光束の光軸に対する平行方向及び垂直方向の位置を設定すると、顕微鏡用光学モジュール制御装置10は、駆動機構775を制御して、移動手段770を用いて、光軸シフト光学系730の第2の開口部733を初期位置に移動させ、その後、第2の開口部733を設定された対物光束の光軸に対する平行方向の位置に移動する。これにより、標本1330の2つの観察視野を順次観察することができる。なお、複数の位置を設定することにより、複数の観察視野を順次観察することもできる。また、顕微鏡用光学モジュール制御装置10は、第2の開口部733を設定された位置に移動した後に、第2の開口部733を初期位置に戻すように設定されてもよい。さらに、顕微鏡用光学モジュール制御装置10は、初期位置と設定された対物光束の光軸に対する平行方向の位置とで、設定されて回数で第2の開口部733の移動を繰り返すようにしてもよい。
また、顕微鏡2000が撮影装置1700を備える場合、顕微鏡用光学モジュール制御装置10は、撮影装置に対して、撮影開始を指示する撮影指示信号出力手段を備えてもよい。顕微鏡用光学モジュール制御装置10が撮影指示信号出力手段を備えることにより、光軸シフト光学系730の第2の開口部733の移動と、撮影装置1700での撮影のタイミングを制御することができる。2つ以上の観察視野を所定の時間間隔で順次撮影することが可能であり、2つ以上の観察視野で発生した事象を連続的に撮影することができる。また、光軸シフト光学系730の第2の開口部733の移動速度よりも遅い事象については、2つ以上の観察視野をほぼ同時に撮影するに等しい効果を得ることができる。
顕微鏡用光学モジュール制御装置10は、顕微鏡用光学モジュール700の駆動機構775の駆動開始に先立って、顕微鏡2000に備えられた撮影装置に対して撮影終了を指示する撮影終了信号出力手段を備えてもよい。顕微鏡用光学モジュール制御装置10が撮影終了信号を出力することにより、撮影装置1700は撮影を終了し、その後、駆動機構775の駆動により光軸シフト光学系730を駆動する。これにより、駆動時の不要な撮影が行われず、必要な観察像のみを得ることができる。また、光軸シフト光学系730の移動の衝撃から、撮影装置1700を保護することもできる。
また、顕微鏡用光学モジュール制御装置10は、顕微鏡用光学モジュール700の駆動機構775の回転駆動開始に先立って駆動開始信号を発信する。駆動機構775は、駆動開始信号に応じて駆動を開始する。例えば、顕微鏡用光学モジュール制御装置10は、撮影終了信号を出力して撮影装置1700に撮影を終了させた後に、駆動開始信号を発信して駆動機構775の駆動を開始させることができる。
上述した顕微鏡用光学モジュール制御装置10による初期位置と対物光束の光軸に対する平行方向の位置、回転駆動開始信号、撮影指示信号及び撮影終了信号を組み合わせることにより、連続撮影が可能となる。連続撮影した観察像を結合することにより、標本1330の2点間を走査した観察像を得ることができる。
本発明に係る顕微鏡用光学モジュールは、既存の顕微鏡に配置して上述した観察を行うことができる。また、本発明に係る顕微鏡用光学モジュールを組み込んだ顕微鏡として提供することもできる。一実施形態において、顕微鏡2000は、対物レンズ1210、接眼レンズ1230、ステージ1310、光源1510、窓レンズ1530及びアーム1900を備える。光源1510から供給される光は窓レンズ1530からステージ1310上に配置された標本1330を透過して、対物レンズ1210から接眼レンズ1230へと導かれ、光が透過した標本1330の部分の観察像を提供する。本実施形態において、顕微鏡用光学モジュール700は、光軸シフト光学系支持手段750により、アーム1900に固定される。上述したように、顕微鏡2000に顕微鏡用光学モジュール700を配置することにより、対物光束に対して光軸をシフトさせ、これまでにない広範囲の観察視野と2点以上の観察視野での高速な観察視野の切り替えを可能とする。
また、撮影装置1700を備えることにより、標本1330の撮影をすることもできる。さらに、顕微鏡2000が蛍光顕微鏡である場合、第2の光源1550により、対物レンズ1210を介して蛍光を励起する波長の光を標本1330に照射することができる。本実施形態においては、励起光も顕微鏡用光学モジュール700により、対物光束に対して光軸をシフトさせることができる。なお、図8では、正立型の顕微鏡を例示したが、本発明はこれに限定されるものではなく、倒立顕微鏡に配置することもできる。
また、一実施形態において、顕微鏡用光学モジュール700を備えた多光子励起顕微鏡を提供することができる。多光子励起顕微鏡は、標本1330の深部における蛍光を励起して、その蛍光を観察することができる。多光子励起顕微鏡には高開口数の対物レンズはなく、広視野の観察は困難であった。また、標本の深部の蛍光を観察可能である特性から、バイオイメージングに好適に用いられるが、組織の離れた部位で発生する事象を連続的に、又は同時に観察することはできなかった。本発明に係る顕微鏡用光学モジュール700を配置することにより、既存の多光子励起顕微鏡を用いて、組織の離れた部位で発生する事象を連続的に観察することができる。
また、上述した顕微鏡用光学モジュール制御装置を、顕微鏡用光学モジュール700を配置した多光子励起顕微鏡と組み合わせることにより、生体や組織の深部で発生した事象を離れた2点以上について、連続的に撮影することができる。
上述した実施形態1の顕微鏡用光学モジュール100を作製し、観察を行った。図10は、本実施例に係る顕微鏡用光学モジュール100の模式図である。顕微鏡用光学モジュール100は、光軸シフト光学系130と、光軸シフト光学系支持手段150と、回動手段170を備える。回動手段170は、駆動機構175としてモータを備えたステッピングモータである。光軸シフト光学系130の第1の開口部側には、対物レンズ1210を接続した。駆動機構175による回転駆動は、駆動機構175に接続したギア171からギア172を介して、光軸シフト光学系130に接続したギア173に伝達される。なお、対物レンズ1210はピエゾ1211に接続し、光軸方向(Z軸方向)への移動が可能である。
本実施例においては、略平行な対向反射面を固定支持してなる中空反射素子を光学素子110として用いた。光学素子110は、高さ2mm、傾斜45°の反射面を対向して配置し、対物光束の光軸に対して、対物光束を2mmシフトさせた。本実施例の顕微鏡用光学モジュール100は、光軸シフト光学系130を60°回転させるのに要する時間が43ミリ秒と、従来にない高速な視野の切り替えを達成することができた。
本実施例に係る顕微鏡用光学モジュール100は、光学顕微鏡に配置することができる。例えば、図1に示したような正立型の光学顕微鏡に配置することができる。また、本実施例に係る顕微鏡用光学モジュール100は、倒立顕微鏡に配置することもできる。顕微鏡用光学モジュール100は、対物レンズ1210に光軸シフト光学系130を位置決め支持可能であれば、正立型の光学顕微鏡、倒立顕微鏡に関わらず配置することができる。また、位相差顕微鏡、微分干渉顕微鏡、偏光顕微鏡、蛍光顕微鏡、共焦点レーザー顕微鏡等にも配置可能である。
一例として、顕微鏡用光学モジュール100を多光子励起顕微鏡(製造元:オリンパス株式会社、機種:FVMPE-RS)に配置して、マウスの脳を観察した。本実施例においては、多光子励起顕微鏡として、2光子励起顕微鏡を用いたが、3光子以上で励起する顕微鏡を用いることも可能である。
図11(a)は、観察したマウスの脳の領域を示す。図11(b)は図11(a)の観察視野bを示し、図11(c)は図11(a)の観察視野cを示す。また、図12は、顕微鏡用光学モジュール100の駆動制御したタイミングチャートを示す。本実施例においては、多光子励起顕微鏡の光学系が備えるピエゾ1211を駆動して、Z軸方向のピント合わせを観察視野毎に設定して撮影を行った。
図12のタイミングチャートにおいて、期間(b)は図11の観察視野bを観察した期間を示し、期間(c)は図11の観察視野cを観察した期間を示す。回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野bに移動させた。撮影指示信号を撮影装置に出力し、観察視野bの観察像を撮影した。撮影終了信号を撮影装置に出力し、観察視野bでの撮影を終了した。回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野cに移動させた。このとき、ピエゾ1211を駆動し、対物レンズ1210のZ軸をマウスの脳側(下方)に移動し、観察視野cにピントを合わせた。撮影指示信号を撮影装置に出力し、観察視野cの観察像を撮影した。撮影終了信号を撮影装置に出力し、観察視野cでの撮影を終了した。次に、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野bに移動させた。このとき、ピエゾ1211を駆動し、対物レンズ1210のZ軸を元の位置(上方)に移動し、観察視野bにピントを合わせた。このような制御を繰り返し、観察視野b及び観察視野cを撮影した。
本実施例において、1.8mm離れた2つの観察視野について、5.6フレーム/秒の高速な撮影を実現可能であることが示された。
[撮影深度の制御]
顕微鏡用光学モジュール100を多光子励起顕微鏡(製造元:オリンパス株式会社、機種:FVMPE-RS)に配置して、マウスの脳の2つの視野について、それぞれ2つの深度の領域を観察した。本実施例においては、多光子励起顕微鏡として、2光子励起顕微鏡を用いたが、3光子以上で励起する顕微鏡を用いることも可能である。
図13(a)~(d)は、マウスの脳の観察視野a~dをそれぞれ示す。図13(a)の観察視野aと図13(b)の観察視野bは、マウスの脳の第1の領域の異なる深度の観察視野を示し、観察視野bは観察視野aより深度が深い領域である。また、図13(c)の観察視野cと図13(d)の観察視野dは、マウスの脳の第2の領域の異なる深度の観察視野を示し、観察視野dは観察視野cより深度が深い領域である。
また、図14は、顕微鏡用光学モジュール100の駆動制御したタイミングチャートを示す。本実施例においては、多光子励起顕微鏡の光学系が備えるピエゾ1211を駆動して、観察視野毎にZ軸方向の深度を制御して撮影を行った。図14のタイミングチャートにおいて、期間(a)は図13(a)の観察視野aを観察した期間を示し、期間(b)は図13(b)の観察視野bを観察した期間を示す。また、期間(c)は図13(c)の観察視野cを観察した期間を示し、期間(d)は図13(d)の観察視野dを観察した期間を示す。
回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野aに移動させた。撮影指示信号を撮影装置に出力し、観察視野aの観察像を撮影した。撮影終了信号を撮影装置に出力し、観察視野aでの撮影を終了した。その後、ピエゾ1211を駆動し、対物レンズ1210のZ軸をマウスの脳側(下方)に移動し、深度が深い領域である観察視野bにピントを合わせた。撮影指示信号を撮影装置に出力し、観察視野bの観察像を撮影した。撮影終了信号を撮影装置に出力し、観察視野bでの撮影を終了した。
次に、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野cに移動させた。このとき、ピエゾ1211を駆動し、対物レンズ1210のZ軸を元の位置(上方)に移動した。撮影指示信号を撮影装置に出力し、観察視野cの観察像を撮影した。撮影終了信号を撮影装置に出力し、観察視野cでの撮影を終了した。その後、ピエゾ1211を駆動し、対物レンズ1210のZ軸をマウスの脳側(下方)に移動し、深度が深い領域である観察視野dにピントを合わせた。撮影指示信号を撮影装置に出力し、観察視野dの観察像を撮影した。撮影終了信号を撮影装置に出力し、観察視野dでの撮影を終了した。
次に、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野aに移動させた。このとき、ピエゾ1211を駆動し、対物レンズ1210のZ軸を元の位置(上方)に移動した。このような制御を繰り返し、観察視野a~dを撮影した。
本実施例において、1.8mm離れた2つの観察視野について、2つの深度の領域を高速に撮影可能であることが示された。
[撮影倍率の制御]
顕微鏡用光学モジュール100を多光子励起顕微鏡に配置して、マウスの脳の2つの視野について、撮影倍率を変更して観察することも可能である。また、多光子励起顕微鏡は2光子励起顕微鏡に限定されず、3光子以上で励起する顕微鏡を用いることも可能である。
図15は、一例として、顕微鏡用光学モジュール100を駆動制御するためのタイミングチャートを示す。撮影倍率の変更は、例えば、多光子励起顕微鏡のデジタルズーム機構を使用して実施することが可能であり、観察視野毎に倍率を変更して撮影することも可能である。
具体的な撮影倍率の制御方法としては、例えば、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野aに移動させる。撮影指示信号を撮影装置に出力し、観察視野aの観察像を撮影する。このとき、多光子励起顕微鏡のデジタルズーム機構を使用し、高倍率での撮影を行うことができる。撮影終了信号を撮影装置に出力し、観察視野aでの撮影を終了する。次に、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野bに移動させる。図15には、デジタルズーム機構を使用し、撮影倍率を元の倍率に戻す例を示す。撮影指示信号を撮影装置に出力し、観察視野bの観察像を撮影する。撮影終了信号を撮影装置に出力し、観察視野bでの撮影を終了する。
次に、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野aに移動させる。図15には、多光子励起顕微鏡のデジタルズーム機構を使用し、撮影倍率を高倍率にする例を示す。このような制御を繰り返し、観察視野a及びbを撮影することができる。
このような方法により、離れた2つの観察視野について、観察視野毎に倍率を変更して高速に撮影可能である。
[広視野の撮影]
顕微鏡用光学モジュール100を多光子励起顕微鏡(製造元:オリンパス株式会社、機種:FVMPE-RS)に配置して、マウスの脳の隣接する3つの視野を撮影し、広視野の1つの観察像を得た。本実施例においては、多光子励起顕微鏡として、2光子励起顕微鏡を用いたが、3光子以上で励起する顕微鏡を用いることも可能である。
図16(a)は、マウスの脳の観察像I1~I3を得るために、光軸シフト光学系130を観察視野a~cに回転させる様子を示した模式図である。図16(b)は、マウスの脳における観察視野a~cの位置を示す図である。図16(c)は、観察像I1~I3を、広視野の1つの観察像に合成した図である。また、図17は、顕微鏡用光学モジュール100の駆動制御したタイミングチャートを示す。
回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野aに移動させた。撮影指示信号を撮影装置に出力し、観察視野aの観察像I1を撮影した。撮影終了信号を撮影装置に出力し、観察視野aでの撮影を終了した。次に、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野bに移動させた。撮影指示信号を撮影装置に出力し、観察視野bの観察像I2を撮影した。撮影終了信号を撮影装置に出力し、観察視野bでの撮影を終了した。次に、回動手段170により光軸シフト光学系130を回転させ、第2の開口部を観察視野cに移動させた。撮影指示信号を撮影装置に出力し、観察視野cの観察像I3を撮影した。撮影終了信号を撮影装置に出力し、観察視野cでの撮影を終了した。このような制御を繰り返し、観察視野a~cを撮影した。
観察像I1~I3を合成し、広視野の1つの観察像を得た。本実施例において、顕微鏡用光学モジュール100は、対物光束の光軸Aを回転中心とした回転駆動により制御した。光軸シフト光学系130を第2の開口部を観察視野a~cまで回転させて、連続撮影した観察像を結合することにより、広視野の1つの観察像に合成可能であることが示された。
10:顕微鏡用光学モジュール制御装置、20:交点近傍、21:交点近傍、100:顕微鏡用光学モジュール、110:光学素子、111:対向反射面、113:対向反射面、130:光軸シフト光学系、131:第1の開口部、133:第2の開口部、133a:第2の開口部、133b:第2の開口部、150:光軸シフト光学系支持手段、170:回動手段、175:駆動機構、210:光学素子、211:対向反射面、213:対向反射面、215:回転軸、230:光軸シフト光学系、231:第1の開口部、233:第2の開口部、310:光学素子、311:第1の対向反射面、313:第2の対向反射面、315:回転軸、330:光軸シフト光学系、331:第1の開口部、333:第2の開口部、410:光ファイバー、430:光軸シフト光学系、431:第1の開口部、433:第2の開口部、510:三角プリズム、530:光軸シフト光学系、531:第1の開口部、533:第2の開口部、610:光学素子、611:対向反射面、613:対向反射面、621:GRINレンズ、630:光軸シフト光学系、631:第1の開口部、633:第2の開口部、635:第1の光軸シフト光学部、637:第2の光軸シフト光学部、700:顕微鏡用光学モジュール、730:光軸シフト光学系、731:第1の開口部、733:第2の開口部、750:光軸シフト光学系支持手段、751:移動機構、770:移動手段、775:駆動機構、1000:顕微鏡、1210:対物レンズ、1211:ピエゾ、1230:接眼レンズ、1310:ステージ、1330:標本、1510:光源、1530:窓レンズ、1700:撮影装置、1900:アーム、2000:顕微鏡

Claims (26)

  1. 顕微鏡の対物光束側に付加する顕微鏡用光学モジュールであって、
    光学素子を備える光軸シフト光学系と、
    前記顕微鏡の対物光束に対して前記光軸シフト光学系を位置決めする光軸シフト光学系支持手段と、
    前記光軸シフト光学系支持手段に配置され、前記対物光束の光軸に対して前記光軸シフト光学系を回転可能に支持する回動手段と、を備えたことを特徴とする顕微鏡用光学モジュール。
  2. 第1の開口部と第2の開口部と、前記第1の開口部と前記第2の開口部に配置された光学素子を備える光軸シフト光学系を備えたことを特徴とする請求項1に記載の顕微鏡用光学モジュール。
  3. 前記光軸シフト光学系の光学素子に光ファイバーを用いたことを特徴とする請求項1に記載の顕微鏡用光学モジュール。
  4. 前記光学素子は、略平行な対向反射面を備えたプリズム又は略平行な対向反射面を固定支持してなる中空反射素子であることを特徴とする請求項1に記載の顕微鏡用光学モジュール。
  5. 前記光学素子は、GRINレンズと、前記GRINレンズの両端に配置される略平行な対向反射面又はプリズムを備えることを特徴とする請求項1に記載の顕微鏡用光学モジュール。
  6. 前記光学素子は、三角プリズムであることを特徴とする請求項1に記載の顕微鏡用光学モジュール。
  7. 前記顕微鏡の対物光束の光軸に沿った平面上で前記光学素子に対する入射角を変更可能にした前記光軸シフト光学系支持手段を備えたことを特徴とする請求項4に記載の顕微鏡用光学モジュール。
  8. 前記中空反射素子での略平行な対向反射面の間に液体を充填可能にしたことを特徴とする請求項4に記載の顕微鏡用光学モジュール。
  9. 前記光軸シフト光学系支持手段に前記回動手段を回転・停止させる駆動機構を備えたことを特徴とする請求項1に記載の顕微鏡用光学モジュール。
  10. 請求項1に記載の顕微鏡用光学モジュールを配置したことを特徴とする顕微鏡。
  11. 請求項10に記載の顕微鏡に配置した顕微鏡用光学モジュールに接続する制御システムであって、前記光軸シフト光学系の回転の初期位置と回転角度の設定を可能にしたことを特徴とする顕微鏡用光学モジュール制御装置。
  12. 前記顕微鏡に備えられた撮影装置に対して、撮影開始を指示する撮影指示信号出力手段を備えたことを特徴とする請求項11に記載の顕微鏡用光学モジュール制御装置。
  13. 前記顕微鏡用光学モジュールの駆動機構の回転駆動開始に先立って、前記顕微鏡に備えられた撮影装置に対して撮影終了を指示する撮影終了信号出力手段を備えたことを特徴とする請求項11に記載の顕微鏡用光学モジュール制御装置。
  14. 前記顕微鏡用光学モジュールの駆動機構の回転駆動開始に先立って発信する信号の発信に応じて回転駆動を開始することを特徴とする請求項11に記載の顕微鏡用光学モジュール制御装置。
  15. 前記顕微鏡用光学モジュールの駆動機構の回転駆動は角速度及び位置制御で行うことを特徴とする請求項11に記載の顕微鏡用光学モジュール制御装置。
  16. 顕微鏡の対物光束側に付加する顕微鏡用光学モジュールであって、
    前記顕微鏡の対物光束に対して傾斜した面を有するプリズムを備える光軸シフト光学系と、
    前記顕微鏡の対物光束に対して前記光軸シフト光学系を位置決めする光軸シフト光学系支持手段と、
    前記光軸シフト光学系支持手段に配置され、前記対物光束の光軸に対して平行方向及び垂直方向に前記光軸シフト光学系を移動可能に支持する移動手段と、を備えたことを特徴とする顕微鏡用光学モジュール。
  17. 第1の開口部と第2の開口部と、前記第1の開口部と前記第2の開口部に配置されたプリズムを備える光軸シフト光学系を備えたことを特徴とする請求項16に記載の顕微鏡用光学モジュール。
  18. 請求項16に記載の顕微鏡用光学モジュールを配置したことを特徴とする顕微鏡。
  19. 請求項18に記載の顕微鏡に配置した顕微鏡用光学モジュールに接続する制御システムであって、前記光軸シフト光学系の移動の初期位置と前記対物光束の光軸に対する平行方向及び垂直方向の位置設定を可能にしたことを特徴とする顕微鏡用光学モジュール制御装置。
  20. 前記顕微鏡に備えられた撮影装置に対して、撮影開始を指示する撮影指示信号出力手段を備えたことを特徴とする請求項19に記載の顕微鏡用光学モジュール制御装置。
  21. 前記顕微鏡用光学モジュールの駆動機構の駆動開始に先立って、前記顕微鏡に備えられた撮影装置に対して撮影終了を指示する撮影終了信号出力手段を備えたことを特徴とする請求項19に記載の顕微鏡用光学モジュール制御装置。
  22. 前記顕微鏡用光学モジュールの駆動機構の駆動開始に先立って発信する信号の発信に応じて駆動を開始することを特徴とする請求項19に記載の顕微鏡用光学モジュール制御装置。
  23. 請求項1に記載の顕微鏡用光学モジュールを備えたことを特徴とする多光子励起顕微鏡。
  24. 請求項16に記載の顕微鏡用光学モジュールを備えたことを特徴とする多光子励起顕微鏡。
  25. 前記顕微鏡が多光子励起顕微鏡であることを特徴とする請求項11に記載の顕微鏡用光学モジュール制御装置。
  26. 前記顕微鏡が多光子励起顕微鏡であることを特徴とする請求項19に記載の顕微鏡用光学モジュール制御装置。
PCT/JP2016/072139 2015-09-17 2016-07-28 顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡 WO2017047243A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017539749A JP6749648B2 (ja) 2015-09-17 2016-07-28 顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡
CN201680051450.0A CN107949800B (zh) 2015-09-17 2016-07-28 显微镜用光学模块、显微镜、显微镜用光学模块控制装置以及多光子激发显微镜
US15/920,824 US11320639B2 (en) 2015-09-17 2018-03-14 Microscope optical module, microscope, control device for microscope optical module, and multiphoton excitation microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015184497 2015-09-17
JP2015-184497 2015-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/920,824 Continuation US11320639B2 (en) 2015-09-17 2018-03-14 Microscope optical module, microscope, control device for microscope optical module, and multiphoton excitation microscope

Publications (1)

Publication Number Publication Date
WO2017047243A1 true WO2017047243A1 (ja) 2017-03-23

Family

ID=58288808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072139 WO2017047243A1 (ja) 2015-09-17 2016-07-28 顕微鏡用光学モジュール、顕微鏡、顕微鏡用光学モジュール制御装置及び多光子励起顕微鏡

Country Status (4)

Country Link
US (1) US11320639B2 (ja)
JP (1) JP6749648B2 (ja)
CN (1) CN107949800B (ja)
WO (1) WO2017047243A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205661A (ja) * 2017-06-09 2018-12-27 オリンパス株式会社 顕微鏡装置
KR102070659B1 (ko) * 2018-09-28 2020-03-02 명지대학교 산학협력단 나노소자 손상 방지용 프로브스테이션의 광학 현미경 및 이를 이용한 나노소자의 전기적 특성 측정 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210286157A1 (en) * 2018-07-11 2021-09-16 Huawei Technologies Co., Ltd. A Detachable Optical Structure for Displacing the Optical Axis of a Camera Device
EP3796065A1 (en) * 2019-09-20 2021-03-24 Leica Microsystems CMS GmbH Light sheet microscope with exchangeable optical elements
CN110888230A (zh) * 2019-11-28 2020-03-17 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种智能生物显微镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102607A (en) * 1980-12-18 1982-06-25 Wild Heerbrugg Ag Beam course converter for optical apparatus
JP2001014621A (ja) * 1999-07-01 2001-01-19 Victor Co Of Japan Ltd ヘッド・テープ接触状態観察装置
WO2013162079A1 (ja) * 2012-04-27 2013-10-31 株式会社ハイロックス 周面立体観察装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101883A (en) * 1976-02-23 1977-08-26 Toshiba Corp Illuminator
US4714327A (en) * 1986-03-14 1987-12-22 Westinghouse Electric Corp. Oblique observation attachment for microscopes
US5253106A (en) * 1992-03-20 1993-10-12 Amarel Precision Instruments, Inc. Oblique viewing system for microscopes
US5337178A (en) * 1992-12-23 1994-08-09 International Business Machines Corporation Titlable optical microscope stage
US20030002148A1 (en) * 1998-10-24 2003-01-02 Johann Engelhardt Arrangement for optically scanning an object
JP3844114B2 (ja) * 2000-09-12 2006-11-08 独立行政法人科学技術振興機構 無限軌道並進回転ステージ
GB2385481B (en) * 2002-02-13 2004-01-07 Fairfield Imaging Ltd Microscopy imaging system and method
DE102004014048B4 (de) 2004-03-19 2008-10-30 Sirona Dental Systems Gmbh Vermessungseinrichtung und Verfahren nach dem Grundprinzip der konfokalen Mikroskopie
JP4576876B2 (ja) 2004-05-10 2010-11-10 株式会社ニコン 顕微鏡システム
JP4673000B2 (ja) * 2004-05-21 2011-04-20 株式会社キーエンス 蛍光顕微鏡、蛍光顕微鏡装置を使用した表示方法、蛍光顕微鏡画像表示プログラム及びコンピュータで読み取り可能な記録媒体並びに記憶した機器
CN2828847Y (zh) * 2005-11-14 2006-10-18 广州和创电子科技有限公司 三维旋转观察视频显微镜
US7636465B2 (en) * 2005-12-09 2009-12-22 Cytyc Corporation Cross-frame object reconstruction for image-based cytology applications
US7528374B2 (en) * 2006-03-03 2009-05-05 Vidar Systems Corporation Sensing apparatus having optical assembly that collimates emitted light for detection
US9239455B2 (en) * 2007-12-31 2016-01-19 Stc.Unm Structural illumination and evanescent coupling for the extension of imaging interferometric microscopy
US8077386B2 (en) * 2008-10-22 2011-12-13 Microbrightfield, Inc. Movable objective lens assembly for an optical microscope and optical microscopes having such an assembly
DE102009012707A1 (de) * 2009-03-11 2010-09-16 Carl Zeiss Microlmaging Gmbh Mikroskop mit mehreren optischen Systemen im Abbildungsstrahlengang
WO2011077751A1 (ja) * 2009-12-25 2011-06-30 キヤノン株式会社 中枢神経系組織標識用組成物、中枢神経系組織の標識方法、及び中枢神経系組織標識用組成物を用いたスクリーニング方法
CN102253483A (zh) * 2011-07-19 2011-11-23 桂林电子科技大学 自动正置金相显微镜
CN202204985U (zh) * 2011-08-30 2012-04-25 何晓昀 一种显微镜快速图像扩展、融合和三维成像系统
JP6203022B2 (ja) * 2013-12-04 2017-09-27 オリンパス株式会社 走査型顕微鏡
JP6987493B2 (ja) * 2016-11-11 2022-01-05 オリンパス株式会社 顕微鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102607A (en) * 1980-12-18 1982-06-25 Wild Heerbrugg Ag Beam course converter for optical apparatus
JP2001014621A (ja) * 1999-07-01 2001-01-19 Victor Co Of Japan Ltd ヘッド・テープ接触状態観察装置
WO2013162079A1 (ja) * 2012-04-27 2013-10-31 株式会社ハイロックス 周面立体観察装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205661A (ja) * 2017-06-09 2018-12-27 オリンパス株式会社 顕微鏡装置
JP7021870B2 (ja) 2017-06-09 2022-02-17 オリンパス株式会社 顕微鏡装置
KR102070659B1 (ko) * 2018-09-28 2020-03-02 명지대학교 산학협력단 나노소자 손상 방지용 프로브스테이션의 광학 현미경 및 이를 이용한 나노소자의 전기적 특성 측정 방법

Also Published As

Publication number Publication date
US20180203219A1 (en) 2018-07-19
CN107949800B (zh) 2021-12-10
JPWO2017047243A1 (ja) 2018-07-26
CN107949800A (zh) 2018-04-20
US11320639B2 (en) 2022-05-03
JP6749648B2 (ja) 2020-09-02

Similar Documents

Publication Publication Date Title
US11320639B2 (en) Microscope optical module, microscope, control device for microscope optical module, and multiphoton excitation microscope
EP2618197B1 (en) 3-dimensional confocal microscopy apparatus and focal plane scanning and aberration correction unit
JP4576876B2 (ja) 顕微鏡システム
EP1767980B1 (en) Microscope and virtual slide forming system
US11703670B2 (en) Optical assembly for scanning excitation radiation and/or manipulation radiation in a laser scanning microscope, and laser scanning microscope
JP2010061141A (ja) 顕微鏡カメラ用ビデオアダプタ
JP2013519916A (ja) 斜角光経路を形成する光学システム及びその方法
JP4834272B2 (ja) 顕微鏡ユニット
WO2011152432A1 (ja) 共焦点顕微鏡画像システム
JP3631304B2 (ja) 顕微鏡の自動焦点整合装置
US20060011824A1 (en) Process for the observation of at least one sample region with a light raster microscope with light distribution in the form of a point
JP5825476B2 (ja) 顕微鏡装置
JP4910382B2 (ja) 顕微鏡
JP4681834B2 (ja) 生体観察装置
TW202234109A (zh) 基於高速旋轉/振鏡平面反射鏡的光程平移附屬系統及方法,以及相關系統及方法
JP2005128443A (ja) 顕微鏡
JP4459108B2 (ja) 撮像装置及び顕微鏡
WO2019181553A1 (ja) 手術顕微鏡システム
EP4089461A1 (en) Light sheet microscope having streamlined field of view changes
JPH0973031A (ja) 可動鏡筒顕微鏡
JP4720141B2 (ja) マニピュレータシステム及び顕微鏡システム
JP4691784B2 (ja) 電動レボルバを備えた顕微鏡
JP6436862B2 (ja) 顕微鏡および顕微鏡画像取得方法
JP2004145372A (ja) 固定高倍率切換型顕微鏡
JP5364253B2 (ja) レーザ顕微鏡用レーザ導入装置およびレーザ顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846116

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017539749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846116

Country of ref document: EP

Kind code of ref document: A1