WO2017043528A1 - SiC複合基板の製造方法及び半導体基板の製造方法 - Google Patents

SiC複合基板の製造方法及び半導体基板の製造方法 Download PDF

Info

Publication number
WO2017043528A1
WO2017043528A1 PCT/JP2016/076297 JP2016076297W WO2017043528A1 WO 2017043528 A1 WO2017043528 A1 WO 2017043528A1 JP 2016076297 W JP2016076297 W JP 2016076297W WO 2017043528 A1 WO2017043528 A1 WO 2017043528A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
substrate
single crystal
layer
crystal sic
Prior art date
Application number
PCT/JP2016/076297
Other languages
English (en)
French (fr)
Inventor
芳宏 久保田
昌次 秋山
弘幸 長澤
Original Assignee
信越化学工業株式会社
株式会社Cusic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社, 株式会社Cusic filed Critical 信越化学工業株式会社
Priority to CN201680049584.9A priority Critical patent/CN108140540B/zh
Priority to RU2018112510A priority patent/RU2720397C2/ru
Priority to EP16844389.3A priority patent/EP3349237B1/en
Priority to US15/757,879 priority patent/US10612157B2/en
Publication of WO2017043528A1 publication Critical patent/WO2017043528A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy

Definitions

  • the present invention is for power devices such as Schottky barrier diodes, pn diodes, pin diodes, field effect transistors and insulated gate bipolar transistors (Insulated Gate Bipolar Transistors, IGBTs) used for power control at high temperature, high frequency, and high power.
  • the present invention relates to a method of manufacturing a SiC composite substrate having a single crystal SiC layer on a polycrystalline SiC substrate and a method of manufacturing a semiconductor substrate, which are used for manufacturing a semiconductor element and growing a gallium nitride, diamond, or nanocarbon thin film.
  • single crystal Si substrates are widely used as semiconductor substrates.
  • silicon is used by configuring a power conversion device such as an inverter or an AC / DC converter using a semiconductor element using silicon carbide (SiC), which is a semiconductor material having a wider forbidden band than silicon (Si).
  • SiC silicon carbide
  • Reduction of power loss that cannot be achieved with conventional semiconductor devices has been realized.
  • SiC silicon carbide
  • the loss associated with power conversion is reduced as compared with the prior art, and the weight reduction, size reduction, and high reliability of the device are promoted.
  • single crystal SiC substrates have been studied as raw materials for nanocarbon thin films (including graphene) as next-generation device materials.
  • single crystal SiC substrates are produced by SiC sublimation method in which seed crystals are grown while sublimating SiC at a high temperature of 2000 ° C. or higher.
  • the single-crystal GaN substrate is usually produced by a method of growing a seed crystal of GaN in high-temperature and high-pressure ammonia, or by further heteroepitaxially growing GaN on a sapphire or single-crystal SiC substrate.
  • the manufacturing process is complicated under extremely severe conditions, the quality and yield of the substrate are inevitably low, resulting in a very high cost substrate, impeding practical use and wide-area use.
  • the thickness at which the device function is actually developed is 0.5 to 100 ⁇ m in any case, and the remaining thickness portion mainly plays a role of mechanical holding / protecting function when handling the substrate. It is a portion that only bears, a so-called handle member (substrate).
  • a relatively thin single crystal SiC layer that can be handled is formed on a polycrystalline SiC substrate using ceramics such as SiO 2 , Al 2 O 3 , Zr 2 O 3 , Si 3 N 4 , AlN, Si, Ti, Substrates bonded through metals such as Ni, Cu, Au, Ag, Co, Zr, Mo, and W have been studied.
  • ceramics such as SiO 2 , Al 2 O 3 , Zr 2 O 3 , Si 3 N 4 , AlN, Si, Ti
  • metals such as Ni, Cu, Au, Ag, Co, Zr, Mo, and W
  • Patent Document 1 ion implantation of hydrogen or the like is performed on a single crystal SiC substrate having a silicon oxide thin film.
  • the applied source substrate and polycrystalline aluminum nitride (intermediate support, handle substrate) laminated with silicon oxide on the surface are bonded to each other on the silicon oxide surface, and the single crystal SiC thin film is transferred to polycrystalline aluminum nitride (intermediate support).
  • a method is disclosed in which after depositing polycrystalline SiC, it is placed in an HF bath to dissolve and separate the silicon oxide surface.
  • Patent Document 2 Japanese Patent Laid-Open No. 2015-15401
  • the surface of a polycrystalline SiC support substrate is modified to be amorphous with a high-speed atomic beam without forming an oxide film, compared to a substrate whose surface is difficult to flatten.
  • Patent Document 2 there is disclosed a method of laminating a single crystal SiC layer on a polycrystalline SiC support substrate by modifying the surface of the single crystal SiC to be amorphous and then bringing them into contact and performing thermal bonding.
  • this method not only the single crystal SiC peeling interface but also the inside of the crystal is partially altered by the high-speed atomic beam.
  • the bent single crystal SiC does not readily recover to a good quality single crystal SiC by the subsequent heat treatment.
  • a substrate, a template or the like there is a drawback that it is difficult to obtain a high-performance device or a high-quality SiC epifilm.
  • the surface roughness of the bonding interface in order to bond single crystal SiC and polycrystalline SiC of the supporting substrate, the surface roughness of the bonding interface must have an arithmetic average surface roughness Ra of 1 nm or less.
  • SiC which is said to be a difficult-to-cut material after diamond, can be used for subsequent smoothing processes such as grinding, polishing, or chemical mechanical polishing (CMP) even if the surface of single-crystal SiC is modified to amorphous. It takes an extremely long time, and cost increases are inevitable.
  • CMP chemical mechanical polishing
  • the present invention has been made in view of the above circumstances, and provides a method for manufacturing a SiC composite substrate and a method for manufacturing a semiconductor substrate from which a SiC composite substrate having a single crystal SiC layer with good crystallinity can be obtained by a simple manufacturing process. With the goal.
  • the present invention provides the following SiC composite substrate manufacturing method and semiconductor substrate manufacturing method.
  • a method for manufacturing a SiC composite substrate having a single crystal SiC layer on a polycrystalline SiC substrate, wherein a single crystal SiC layer is provided on one side of a holding substrate made of Si and a single crystal SiC layer carrier is manufactured. Then, by depositing polycrystalline SiC on the single crystal SiC layer by physical or chemical means to produce a SiC laminate in which the single crystal SiC layer and the polycrystalline SiC substrate are laminated on the holding substrate, and then holding the above A method for producing a SiC composite substrate, wherein the substrate is physically and / or chemically removed.
  • a method for producing the SiC composite substrate according to claim 1. The method for producing a SiC composite substrate according to any one of [1] to [6], wherein polycrystalline SiC is deposited on the single crystal SiC layer by chemical vapor deposition. [8] An SiC composite substrate is manufactured by the method for manufacturing an SiC composite substrate according to any one of [1] to [7], the SiC composite substrate is used as a template, and an SiC single crystal is further formed on the single crystal SiC layer.
  • the holding substrate made of Si can be easily removed, an SiC composite substrate having a single crystal SiC layer with good crystallinity can be easily manufactured.
  • a method for producing a SiC composite substrate according to the present invention is a method for producing a SiC composite substrate having a single crystal SiC layer on a polycrystalline SiC substrate, wherein a single crystal SiC layer is provided on one side of a holding substrate made of Si. After the crystalline SiC layer carrier is fabricated, an SiC stack in which polycrystalline SiC is deposited on the single crystal SiC layer by physical or chemical means, and the single crystal SiC layer and the polycrystalline SiC substrate are stacked on the holding substrate. A body is prepared, and then the holding substrate is physically and / or chemically removed.
  • the substrate made of silicon (Si) since the substrate made of silicon (Si) has mechanical strength and is easy to be physically and / or chemically removed (that is, grinding or chemical etching), it is used as a holding substrate in the manufacturing method of the present invention.
  • the holding substrate may be either a polycrystalline Si wafer or a single crystal Si wafer.
  • a single crystal Si wafer is employed as the holding substrate, a high-quality large-diameter substrate can be obtained at a low price, so that the manufacturing cost of the SiC composite substrate can be reduced.
  • a single crystal SiC layer is preferably provided on one surface of the holding substrate via an intermediate layer (also referred to as an intervening layer) made of silicon oxide, silicon nitride, or silicon oxynitride.
  • This intermediate layer not only firmly attaches the single crystal SiC layer to the holding substrate, but also removes most of the holding substrate made of Si by grinding, etc., and then removing the remainder by chemical etching. It can also function as an etch stop layer.
  • a single crystal SiC thin film peeled off from the single crystal SiC substrate by an ion implantation peeling method onto the holding substrate it is preferable to transfer and provide a single crystal SiC thin film peeled off from the single crystal SiC substrate by an ion implantation peeling method onto the holding substrate.
  • a single crystal SiC layer having the minimum necessary film thickness and affecting the characteristics of the SiC composite substrate can be obtained by a single ion implantation delamination process.
  • an SiC composite substrate having high characteristics is economically manufactured. be able to.
  • a vapor phase growth method is preferable, a chemical vapor phase growth method is more preferable, and a thermal CVD method is more preferable. Since polycrystalline SiC is deposited and formed on a single crystal SiC layer, it is possible to eliminate the need for a high planarization process by grinding, polishing, CMP, or the like of SiC, which is difficult to grind, as in the prior art.
  • the holding substrate is not a difficult-to-process AlN substrate but an easily-processable Si substrate, machining and chemical processing are extremely easy. Therefore, the holding substrate can be easily removed by simple grinding and polishing, or inexpensive chemical etching treatment such as KOH and HF, and there is no need to regenerate and recycle AlN, which is troublesome and expensive as in Patent Document 1. It is possible to manufacture a high-quality SiC composite substrate at a low cost.
  • an etching solution such as HF is in direct contact with the entire surface of the intermediate layer during the chemical etching process. As a result, the surface of the single crystal SiC layer can be obtained in an extremely smooth and clean state.
  • the holding substrate made of Si since the holding substrate made of Si has a thermal expansion coefficient different from that of the single crystal SiC layer or the polycrystalline SiC substrate, the laminated body including the holding substrate is likely to be warped due to a temperature change during the manufacture of the composite substrate. If such a warp occurs in the manufacturing process, the shape of the SiC composite substrate reflects the warp of the holding substrate as it is, so that a flat substrate may not be obtained. If the SiC composite substrate lacks flatness, it becomes difficult not only to handle the SiC composite substrate in the subsequent steps but also to manufacture a precise and fine device. For example, it becomes difficult to apply a photolithography process such as a device manufacturing process, which impedes the practical application of a SiC composite substrate.
  • the inventors have made various studies on the problem of warping, and in the manufacturing process of the SiC composite substrate, when depositing polycrystalline SiC on the single crystal SiC layer carrier, the single crystal SiC layer is formed on the holding substrate made of Si.
  • the thermal stress resulting from the difference in coefficient of thermal expansion was generated between the single crystal SiC layer carrier carrying polycrystal and the SiC, and as a result, it was understood that the SiC composite substrate was warped.
  • physical damage is applied to the holding substrate made of Si, and the heat generated when the polycrystalline SiC is deposited.
  • the single crystal SiC layer carrier is physically damaged on the surface opposite to the single crystal SiC layer carrying surface of the holding substrate, and the single crystal It is preferable to warp the SiC layer carrier.
  • the means for applying physical damage is not particularly limited in any of the above cases, but the stress is applied by mechanical processing such as sand blasting, grinding, cutting, etc. from the viewpoint of magnitude and efficiency of warpage improvement effect. It may be possible to remove the warpage by removing the warpage, or to amorphize the surface layer constituting the target substrate (holding substrate or polycrystalline SiC substrate) by laser processing, electric discharge processing, etc. You may make it remove curvature.
  • the entire surface of the target surface of the substrate or a partial region effective for improving warpage may be processed.
  • the rough fixed grindstone is used to process the entire surface of the target surface of the substrate or at a constant pitch.
  • the surface of the target surface of the substrate or the inside of the target surface may be processed in a dot or line shape (strip shape) at a constant pitch.
  • the bow amount of the SiC composite substrate is preferably 50 ⁇ m or less, and more preferably 0 ⁇ m or more and 30 ⁇ m or less.
  • Embodiments 1 and 2 of a method for manufacturing a SiC composite substrate according to the present invention will be described.
  • Step 1 a single crystal SiC substrate 12s to be bonded to the holding substrate 21 is prepared.
  • the single crystal SiC substrate 12s is preferably selected from those having a crystal structure of 4H—SiC, 6H—SiC, and 3C—SiC.
  • the sizes of the single crystal SiC substrate 12s and the holding substrate 21 described later are set based on the size, cost, and the like necessary for manufacturing semiconductor elements and growing gallium nitride, diamond, and nanocarbon films.
  • the thickness of the single crystal SiC substrate 12s is preferably in the vicinity of the SEMI standard or JEIDA standard from the viewpoint of handling.
  • the single crystal SiC substrate 12s a commercially available one, for example, a single crystal SiC wafer marketed for power devices may be used, and the surface thereof is finish-polished by a CMP (Chemical Mechanical Polishing (or Planarization)) process. It is preferable to use a flat and smooth surface.
  • CMP Chemical Mechanical Polishing (or Planarization)
  • the thin film 22a may be a dielectric film of a silicon oxide film, a silicon nitride film, or a silicon oxynitride film having a thickness of about 50 nm to 600 nm.
  • the thin film 22a may be provided after an ion implantation process described later.
  • the thin film 22a can be formed by any method as long as it can be formed on the single crystal SiC substrate 12s with good adhesion.
  • a silicon oxide film is formed by PECVD or thermal oxidation, and a silicon nitride film,
  • the silicon oxynitride film is preferably formed by a sputtering method.
  • a holding substrate 21 made of Si is prepared.
  • a polycrystalline Si wafer or a single crystal Si wafer may be used.
  • Step 1-3 an ion implantation region 12i is formed by implanting hydrogen ions or the like into the thin film 22a formation surface of the single crystal SiC substrate 12s (FIG. 1C).
  • the ion implantation energy may be set so as to obtain a desired thin film thickness.
  • He ions, B ions, and the like may be implanted at the same time, and any ions may be adopted as long as the same effect can be obtained.
  • the dose amount of hydrogen ions (H + ) implanted into the single crystal SiC substrate 12s is preferably 1.0 ⁇ 10 16 atoms / cm 2 to 9.0 ⁇ 10 17 atoms / cm 2 . If it is less than 1.0 ⁇ 10 16 atoms / cm 2 , the interface may not be embrittled. If it exceeds 9.0 ⁇ 10 17 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective.
  • the dose is preferably 5.0 ⁇ 10 15 atoms / cm 2 to 4.5 ⁇ 10 17 atoms / cm 2 . If it is less than 5.0 ⁇ 10 15 atoms / cm 2 , the interface may not be embrittled. If it exceeds 4.5 ⁇ 10 17 atoms / cm 2 , bubbles are transferred during heat treatment after bonding. It may become defective.
  • the depth from the ion-implanted substrate surface to the ion-implanted region 12i corresponds to the desired thickness of the single-crystal SiC thin film provided on the holding substrate 21, and is usually 100 to
  • the thickness is 2,000 nm, preferably 300 to 500 nm, more preferably about 400 nm.
  • the thickness of the ion implantation region 12i (that is, the ion distribution thickness) is such that it can be easily separated by mechanical impact or the like, and is preferably about 200 to 400 nm, more preferably about 300 nm.
  • Step 1-4 the surface of the single crystal SiC substrate 12s where the thin film 22a is formed and the surface of the holding substrate 21 where the thin film 22a is formed (front surfaces) are subjected to surface activation treatment and bonded together.
  • surface activation treatment plasma activation treatment, vacuum ion beam treatment, or immersion treatment in ozone water may be performed.
  • the single crystal SiC substrate 12s and / or the holding substrate 21 in which the processes up to the step 1-3 are completed are placed in a vacuum chamber, and the plasma gas is introduced under reduced pressure. After that, the surface is exposed to high-frequency plasma of about 100 W for about 5 to 10 seconds to subject the surface to plasma activation treatment.
  • the plasma gas oxygen gas, hydrogen gas, nitrogen gas, argon gas, a mixed gas thereof, or a mixed gas of hydrogen gas and helium gas can be used.
  • the single crystal SiC substrate 12s and / or the holding substrate 21 is placed in a high vacuum chamber, and an activation treatment is performed by irradiating the surface to be bonded with an ion beam of Ar or the like.
  • the single crystal SiC substrate 12s and / or the holding substrate 21 is immersed in ozone water in which ozone gas is dissolved, and the surface thereof is activated.
  • the above-described surface activation treatment may be performed only on the single crystal SiC substrate 12s or only on the holding substrate 21, but is more preferably performed on both the single crystal SiC substrate 12s and the holding substrate 21.
  • the surface activation treatment may be any one of the above methods, or a combination treatment may be performed.
  • the surface of the single crystal SiC substrate 12s and the holding substrate 21 on which the surface activation process is performed is preferably a surface to be bonded, that is, the surface of the thin film 22a.
  • the surface of the single crystal SiC substrate 12s and the holding substrate 21 subjected to the surface activation process (the surfaces of the thin films 22a and 22a) are bonded as bonding surfaces.
  • a heat treatment is preferably performed at 150 to 350 ° C., more preferably 150 to 250 ° C., to improve the bonding strength of the bonding surfaces of the thin films 22a and 22a. Good.
  • the warpage of the substrate occurs due to the difference in thermal expansion coefficient between the single crystal SiC substrate 12s and the holding substrate 21, but it is preferable to employ a temperature suitable for each material to suppress the warpage.
  • the heat treatment time is preferably 2 hours to 24 hours, although depending on the temperature to some extent.
  • the thin films 22a and 22a are in close contact with each other to form a single layer, the intervening layer 22, and the single crystal SiC substrate 12s and the holding substrate 21 are bonded to each other through the intervening layer 22 to form the bonded substrate 13 ( FIG. 1 (d)).
  • Step 1-5) With respect to the bonded substrate 13, thermal energy or mechanical energy is applied to the ion-implanted portion, and the single crystal SiC thin film separated from the single crystal SiC substrate 12 s in the ion implantation region 12 i is transferred onto the holding substrate 21.
  • the thin films 22a and 22a are firmly adhered, and the thin films 22a and 22a are firmly adhered to the single crystal SiC substrate 12s and the holding substrate 21, respectively. No peeling occurs.
  • the bonded substrate 13 is heated to a high temperature, and by this heat, a fine bubble body of a component ion-implanted in the ion-implanted region 12i is generated to cause peeling, thereby producing a single crystal SiC substrate 12s.
  • a thermal peeling method for separating can be applied.
  • mechanical peeling is generated by applying a physical impact to one end of the ion implantation region 12i while performing a low temperature heat treatment (eg, 500 to 900 ° C., preferably 500 to 700 ° C.) that does not cause thermal peeling.
  • a mechanical peeling method for separating the single crystal SiC substrate 12s can be applied.
  • the mechanical peeling method is more preferable because the roughness of the transfer surface after the transfer of the single crystal SiC thin film is relatively smaller than that of the thermal peeling method.
  • the single crystal SiC thin film carrier is heated at a heating temperature of 700 to 1000 ° C. at a temperature higher than that during the peeling treatment and for a heating time of 1 to 24 hours. You may perform the heat processing which improves the adhesiveness with 21.
  • the surface of the single crystal SiC thin film on the holding substrate 21 is mirror-finished to form a single crystal SiC layer 12 to obtain a single crystal SiC layer carrier 14 (FIG. 1 (e)).
  • the single crystal SiC thin film is subjected to chemical mechanical polishing (CMP polishing) to remove a damaged layer caused by ion implantation and finish the surface to a mirror surface.
  • CMP polishing chemical mechanical polishing
  • a conventionally known CMP polishing used for planarization of a silicon wafer may be used.
  • the single crystal SiC layer 12 is a thin film made of single crystal SiC having a thickness of 5 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 100 nm or more and 1 ⁇ m or less, further preferably 200 nm or more and 800 nm or less, and particularly preferably 300 nm or more and 500 nm or less. It is. If the thickness of the single crystal SiC layer is 5 ⁇ m or less, there is still an economic advantage over a solid single crystal SiC substrate even if the cost of making a composite substrate is considered.
  • the single-crystal SiC substrate 12s after being peeled can be reused as a bonding substrate in the method for manufacturing the single-crystal SiC layer carrier 14 by polishing or cleaning the surface again. Become.
  • Step 1-6 physical damage is applied to the surface (back surface, lower surface in the figure) opposite to the single crystal SiC layer support surface of the holding substrate 21 in the single crystal SiC layer support 14 to obtain the single crystal SiC layer support.
  • 14 ' is warped (FIG. 1 (f)).
  • 14 ′ is a single crystal SiC layer carrier after physical damage is applied
  • 21 ′ is a holding substrate after physical damage is applied.
  • the physical damage may be applied by at least one processing method selected from sandblasting, grinding, cutting, laser processing, and electric discharge processing as described above.
  • the single crystal SiC layer carrier 14 ′ is slightly warped so as to protrude in the opposite direction (for example, the single crystal SiC layer 12 side (upper side)) from the warp due to internal stress of the polycrystalline SiC substrate 11 described later. It becomes like this.
  • Step 1-7) Next, using the obtained single crystal SiC layer carrier 14 ′, polycrystalline SiC is deposited on the single crystal SiC layer 12 by chemical vapor deposition to form a polycrystalline SiC substrate 11, and an SiC laminate is formed. 15 is obtained (FIG. 1 (g)).
  • the SiC laminated body 15 here has a configuration in which an intermediate layer 22, a single crystal SiC layer 12, and a polycrystalline SiC substrate 11 are laminated in this order on a holding substrate 21 ′.
  • the thermal CVD conditions may be general conditions for depositing polycrystalline SiC.
  • the thickness of the polycrystalline SiC substrate 11 is preferably 50 to 1000 ⁇ m, and more preferably 100 to 800 ⁇ m. By making the thickness 50 ⁇ m or more, it becomes easy to ensure the function as a handle substrate, and by making the thickness 1000 ⁇ m or less, cost can be suppressed.
  • the polycrystalline SiC of the polycrystalline SiC substrate 11 is preferably cubic (3C—SiC). Note that the resistivity may be adjusted by introducing impurities into the polycrystalline SiC substrate 11. As a result, it can be suitably used as a substrate for a vertical power semiconductor device.
  • Step 1-8) the holding substrate 21 ′ in the SiC laminate 15 obtained in step 1-7 is physically and / or chemically removed to obtain the SiC composite substrate 10 (FIG. 1 (h)).
  • the holding substrate 21 ′ is made of silicon, for example, most of the holding substrate 21 ′ is first removed by grinding, and then the remaining holding substrate 21 ′ and the intermediate layer 22 are selectively removed by etching with a hydrofluoric acid solution. It is preferable to do.
  • the SiC composite substrate 10 with almost no warpage can be obtained.
  • the polycrystalline SiC substrate 11 is made of the same SiC as the upper single crystal SiC layer 12, and the thermal expansion coefficients of the single crystal SiC layer 12 and the polycrystalline SiC substrate 11 are substantially equal. Generation
  • substrate 10 is suppressed.
  • an SiC epitaxial layer 12 ′ may be formed on the single crystal SiC layer 12 of the SiC composite substrate 10 (FIG. 1 (i)).
  • a SiC epitaxial layer 12 ′ having a predetermined thickness is formed, so that an SiC composite substrate suitable for manufacturing a power semiconductor can be obtained. Is possible.
  • Step 2-6 Using the obtained single crystal SiC layer carrier 14, polycrystalline SiC is deposited on the single crystal SiC layer 12 by chemical vapor deposition to form a polycrystalline SiC substrate 11, thereby obtaining a SiC laminate 15 ( FIG. 2 (f)).
  • the conditions of the chemical vapor deposition method and the polycrystalline SiC substrate 11 may be the same as those in the first embodiment.
  • the SiC laminated body 15 here has a configuration in which an intermediate layer 22, a single crystal SiC layer 12, and a polycrystalline SiC substrate 11 are laminated in this order on a holding substrate 21.
  • Step 2-7) Next, physical damage is applied to the surface (exposed surface, upper surface in the drawing) opposite to the contact surface of the polycrystalline SiC substrate 11 with the single crystal SiC layer 12 in the SiC laminate 15 (FIG. 2G). ).
  • 15 ′ is the SiC laminated body after physical damage is applied
  • 11 ′ is the polycrystalline SiC substrate after physical damage is applied.
  • Step 2-8) the SiC composite substrate having the single-crystal SiC layer on the polycrystalline SiC substrate 11 ′ by physically and / or chemically removing the holding substrate 21 in the SiC laminate 15 ′ obtained in Step 2-7. 10 ′ is obtained (FIG. 2 (h)).
  • the method and conditions for removing the holding substrate 21 may be the same as those in the first embodiment.
  • the SiC composite substrate 10 ′ having almost no warpage can be obtained.
  • the polycrystalline SiC substrate 11 ′ is made of the same SiC as the upper single crystal SiC layer 12, and the thermal expansion coefficients of the single crystal SiC layer 12 and the polycrystalline SiC substrate 11 ′ are almost equal.
  • production of the curvature of SiC composite substrate 10 ' is suppressed.
  • an SiC epitaxial layer 12 ′ may be formed on the single crystal SiC layer 12 of the SiC composite substrate 10 ′ (FIG. 2 (i)).
  • Embodiment 1 and Embodiment 2 are manufacturing methods of this invention. That is, in the first embodiment, the single crystal SiC layer carrier 14 ′ is warped by applying physical damage to the surface opposite to the single crystal SiC layer carrier surface of the holding substrate 21 in the single crystal SiC layer carrier 14; After the polycrystalline SiC substrate 11 is formed on the single crystal SiC layer 12, the surface of the polycrystalline SiC substrate 11 in the SiC laminate 15 may be physically damaged, and then the holding substrate 11 ′ may be removed.
  • the bow amount was measured by a normal incidence Fizeau interferometer (Corning Tropel, FlatMaster) as the substrate warpage.
  • the bow amounts b1 and b2 are measured as the height difference between the center portion and the end portion of the SiC composite substrate 10, 10 ′ or the SiC laminates 15 and 15 ′.
  • the downward convex case is a negative value
  • the upward convex portion is a positive value.
  • the warpage was measured with the SiC composite substrate 10, 10 ′ or the single crystal SiC layer 12 of the SiC laminates 15, 15 ′ disposed on the upper side (surface side).
  • an SiC composite substrate was produced as follows according to the procedure of Embodiment 1 of the present invention. First, a 4H-SiC single crystal wafer having a diameter of 4 inches ⁇ is prepared as the single crystal SiC substrate 12s, and H + ions are ion-implanted to have an ion implantation depth of 700 nm on one surface thereof, and then the ion-implanted surface (O A silicon oxide film having a thickness of 300 nm was formed as a thin film 22a on the front surface) by a thermal oxidation method.
  • a single crystal Si wafer having a diameter of 4 inches ⁇ was prepared as the holding substrate 21, and a silicon oxide film having a thickness of 300 nm was formed on one surface (front surface) (FIG. 1B).
  • the silicon oxide film forming surfaces are bonded to each other (front surfaces) to form a bonded substrate. 13 was produced (FIG. 1D).
  • a mechanical impact was applied to the ion implantation region 12 i of the single crystal SiC substrate 12 s in the bonded substrate 13 to peel the single crystal SiC thin film from the single crystal SiC substrate 12 s and transferred to the holding substrate 21.
  • the surface is polished, and the single crystal supporting the 640 nm thick 4H—SiC single crystal SiC layer 12 on the holding substrate 21 via the silicon oxide film (intermediate layer 22).
  • the SiC layer carrier 14 was obtained (FIG. 1 (e)).
  • a thermal CVD process for 6 hours is performed on the single crystal SiC layer 12 of the single crystal SiC layer carrier 14 ′ after physical damage is applied using silicon tetrachloride and propane as raw materials at a temperature of 1330 ° C. and a pressure of 17 Pa.
  • 3C—SiC polycrystalline SiC was deposited to form a polycrystalline SiC substrate 11 having a thickness of 610 ⁇ m, and a SiC stack 15 was produced (FIG. 1G).
  • the single crystal SiC layer carrier 14 ' is slightly warped, so that the thermal stress generated when the polycrystalline SiC substrate 11 is formed is canceled out, and the SiC laminate 15 having almost no warpage is obtained. It was.
  • the holding substrate 21 ′ of the SiC laminate 15 was ground with a fixed grindstone.
  • the count of the fixed grindstone was changed to a fine grindstone in order of # 1000, # 2500, and # 4000, and grinding was performed until the holding substrate 21 was almost eliminated.
  • the intermediate layer 22 of the silicon oxide film is removed by etching with an HF aqueous solution so that the SiC composite substrate 10 having the single crystal SiC layer 12 having a very smooth and clean surface on the polycrystalline SiC substrate 11 is a solid single crystal. It was obtained at a much lower cost than the SiC substrate (FIG. 1 (h)).
  • the bow amount of this SiC composite substrate 10 was +20 ⁇ m, and there was almost no warpage.
  • SiC composite substrate 10 as a SiC template, homoepitaxial growth of single crystal SiC with dichlorosilane and acetylene was further performed at 1550 ° C. for 2 hours, and a SiC epitaxial layer 12 ′ having a thickness of 20 ⁇ m was stacked (FIG. 1 ( i)).
  • the SiC epi substrate thus obtained was extremely useful as a substrate for a power device having a high breakdown voltage and a high capacity of 1 KV or higher.
  • Example 1 Physical damage was not imparted to the single crystal SiC layer carrier 14 by laser light irradiation, and a SiC composite substrate was prepared under the same conditions as in Example 1 except that.
  • the amount of bow of the obtained SiC composite substrate was as extremely large as +3 mm, and the suitability for the device fabrication process was poor. As a result, the yield of device manufacturing was greatly reduced.
  • Example 2 a SiC composite substrate was produced as follows according to the procedure of Embodiment 2 of the present invention.
  • the intermediate layer 22 was changed from the silicon oxide film to the silicon oxynitride film, and other than that, the single crystal SiC layer carrier 14 was produced in the same manner as in Example 1. (FIG. 2 (e)).
  • a thermal CVD process is performed on the single crystal SiC layer 12 of the single crystal SiC layer carrier 14 using silicon tetrachloride and propane as raw materials at a temperature of 1350 ° C. and a pressure of 20 Pa for 5 hours, thereby increasing the amount of 3C—SiC.
  • the bow amount of the SiC laminate 15 ′ was greatly reduced to +50 ⁇ m.
  • the holding substrate 21 of the SiC laminate 15 ′ was ground and polished. Specifically, the count of the fixed grindstone was changed to # 1000, # 2500, and # 4000 in order of fine whetstone and fine loose abrasive in order, and then ground by CMP treatment. As a result, the holding substrate 21 is almost gone.
  • the intermediate layer 22 of the silicon oxynitride film is removed by etching with an HF aqueous solution to obtain a SiC composite substrate 10 ′ having a single crystal SiC layer 12 having a very smooth and clean surface on the polycrystalline SiC substrate 11 ′. (FIG. 2 (h)).
  • the bow amount of this SiC composite substrate 10 ′ was +35 ⁇ m, and the warpage was extremely small.
  • the obtained SiC composite substrate 10 ′ was heated for 10 minutes in an Ar atmosphere at a temperature of 1550 ° C. and a pressure of 1 bar (1 ⁇ 10 5 Pa) in a high-frequency heating furnace to form graphene.
  • Raman analysis of the obtained graphene was performed, sharp characteristic peaks derived from graphene were observed in the G band and the G ′ band, indicating the production of good quality graphene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

多結晶SiC基板11上に単結晶SiC層12を有するSiC複合基板10の製造方法であって、Siからなる保持基板21の片面に単結晶SiC層12を設けて単結晶SiC層担持体14を作製した後、該単結晶SiC層12上に物理的又は化学的手段により多結晶SiCを堆積して保持基板21上に単結晶SiC層12と多結晶SiC基板11とを積層したSiC積層体15を作製し、その後に上記保持基板21を物理的及び/又は化学的に除去するSiC複合基板の製造方法を提供する。本発明により簡便な製造プロセスで結晶性のよい単結晶SiC層を有するSiC複合基板が得られる。

Description

SiC複合基板の製造方法及び半導体基板の製造方法
 本発明は、高温、高周波、大電力での電力制御に用いられるショットキーバリアダイオード、pnダイオード、pinダイオード、電界効果型トランジスタや絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)などのパワーデバイス用半導体素子の製造、並びに窒化ガリウムやダイヤモンド、ナノカーボン薄膜の成長に用いられる、多結晶SiC基板上に単結晶SiC層を有するSiC複合基板の製造方法及び半導体基板の製造方法に関する。
 現在、半導体用基板として単結晶Si基板は広く使われている。しかし、その特性上、最近の高耐圧や高周波化に対しては必ずしも適さないため、高価ではあるが単結晶SiCや単結晶GaNの基板が使われ始めている。例えば、シリコン(Si)よりも禁制帯幅の広い半導体材料である炭化珪素(SiC)を用いた半導体素子を使用してインバータやAC/DCコンバータなどの電力変換装置を構成することによりシリコンを用いた半導体素子では到達し得ない電力損失の低減が実現されている。SiCによる半導体素子を用いることにより、従来よりも電力変換に付随する損失が低減するほか、装置の軽量化、小型化、高信頼性が促進される。また、次世代のデバイス材料としてナノカーボン薄膜(グラフェンも含む)の原材料としても単結晶SiC基板が検討されている。
 これらの単結晶SiC基板や単結晶GaN基板の製造として、(1)単結晶SiC基板は、高純度SiC粉を2000℃以上の高温でSiCを昇華させながら種結晶を成長させるSiC昇華法で作製され、(2)単結晶GaN基板は、高温高圧のアンモニア中でGaNの種結晶を成長させる方法やサファイヤあるいは単結晶SiC基板上に更にGaNをヘテロエピタキシャル成長させて作製されるのが通常である。しかし、その製造工程は極めて厳しい条件下で複雑なため、どうしても基板の品質や歩留まりが低く、非常に高コストの基板となり、実用化や広範囲の利用を妨げている。
 ところで、これらの基板上では、実際にデバイス機能を発現する厚みはいずれの場合においても0.5~100μmであり、残りの厚み部分は主として基板取り扱い時の機械的な保持・保護機能の役割を担っているだけの部分、所謂、ハンドル部材(基板)である。
 そこで、近年はハンドリングができる程度の比較的薄い単結晶SiC層を多結晶SiC基板にSiO2、Al23、Zr23、Si34、AlN等のセラミックス、やSi、Ti、Ni、Cu、Au、Ag、Co、Zr、Mo、W等の金属を介して接合した基板が検討されている。しかしながら、単結晶SiC層と多結晶SiC基板とを接合するために介在するものが前者(セラミックス)の場合は絶縁体であることからデバイス作成時の電極作製が難しく、後者(金属)の場合はデバイスに金属不純物が混入してデバイスの特性劣化を引き起こし易いため、実用的ではない。
 そこで、これらの欠点を改善すべく、これまでに種々の提案がなされており、例えば特許第5051962号公報(特許文献1)では、酸化珪素薄膜を有する単結晶SiC基板に水素などのイオン注入を施したソース基板と表面に酸化珪素を積層した多結晶窒化アルミニウム(中間サポート、ハンドル基板)とを酸化珪素面で貼り合わせ、単結晶SiC薄膜を多結晶窒化アルミニウム(中間サポート)に転写し、その後、多結晶SiCを堆積した後にHF浴に入れて酸化珪素面を溶かして分離する方法が開示されている。しかしながら、通常、酸化珪素面の接合面が極めて密に強く結合しているために、HFが酸化珪素面の全面、特に中心部にはなかなか浸透せず、分離が簡単ではなく、過大な時間を要し、生産性が極めて悪いという欠点がある。また、この発明を用いて大口径のSiC複合基板を製造する際には、多結晶SiC堆積層と窒化アルミニウム(中間サポート)との熱膨張係数差により大きな反りが発生し問題となる。
 また、特開2015-15401号公報(特許文献2)では、表面の平坦化が難しい基板に対し、酸化膜の形成なしに多結晶SiCの支持基板表面を高速原子ビームで非晶質に改質すると共に単結晶SiC表面も非晶質に改質した後、両者を接触させて熱接合を行うことにより多結晶SiC支持基板上に単結晶SiC層を積層する方法が開示されている。しかしながら、この方法では高速原子ビームで単結晶SiCの剥離界面のみならず結晶内部も一部変質するため、折角の単結晶SiCがその後の熱処理によってもなかなか良質の単結晶SiCに回復せず、デバイス基板やテンプレートなどに使用する場合、高特性のデバイスや良質なSiCエピ膜を得にくいという欠点がある。
 これらの欠点に加えて上記技術では単結晶SiCと支持基板の多結晶SiCとを貼り合わせるためには、貼り合わせ界面の表面粗さが算術平均表面粗さRaで1nm以下の平滑性が不可欠であるが、ダイヤモンドに次ぐ難削材と言われるSiCは単結晶SiC表面を非晶質に改質してもその後の研削、研磨或いは化学機械研磨(Chemical Mechanical Polishing,CMP)などの平滑化プロセスに極めて多くの時間を要し、高コスト化は避けられず、加えて多結晶は粒界があるため、高速原子ビームによる非晶質化を面内均一にすることが難しく、貼り合わせ強度や反りの発生が問題となって実用化の大きな障害となっている。
特許第5051962号公報 特開2015-15401号公報
 上述のように従来技術では単結晶SiCの結晶性が悪く、製造プロセスが煩雑であるため高コストとなるなど、SiC複合基板の実用化を妨げる大きな課題が存在した。
 本発明は、上記事情に鑑みなされたもので、簡便な製造プロセスで結晶性のよい単結晶SiC層を有するSiC複合基板が得られるSiC複合基板の製造方法及び半導体基板の製造方法を提供することを目的とする。
 本発明は、上記目的を達成するため、下記のSiC複合基板の製造方法及び半導体基板の製造方法を提供する。
〔1〕 多結晶SiC基板上に単結晶SiC層を有するSiC複合基板の製造方法であって、Siからなる保持基板の片面に単結晶SiC層を設けて単結晶SiC層担持体を作製した後、該単結晶SiC層上に物理的又は化学的手段により多結晶SiCを堆積して保持基板上に単結晶SiC層と多結晶SiC基板とを積層したSiC積層体を作製し、その後に上記保持基板を物理的及び/又は化学的に除去することを特徴とするSiC複合基板の製造方法。
〔2〕 上記単結晶SiC層上に多結晶SiCを堆積する前に、上記単結晶SiC層担持体における保持基板の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、該単結晶SiC層担持体に反りを付与することを特徴とする〔1〕記載のSiC複合基板の製造方法。
〔3〕 上記単結晶SiC層上に多結晶SiCを堆積した後に、上記SiC積層体における多結晶SiC基板の単結晶SiC層との当接面とは反対面に物理的ダメージを加えることを特徴とする〔1〕又は〔2〕記載のSiC複合基板の製造方法。
〔4〕 サンドブラスト加工、研削加工、切削加工、レーザー加工及び放電加工の中から選ばれる少なくとも一つの加工方法により上記物理的ダメージを加えることを特徴とする〔2〕又は〔3〕記載のSiC複合基板の製造方法。
〔5〕 上記保持基板の片面に酸化珪素、窒化珪素又は酸窒化珪素からなる中間層を介して単結晶SiC層を設けることを特徴とする〔1〕~〔4〕のいずれかに記載のSiC複合基板の製造方法。
〔6〕 イオン注入剥離法により単結晶SiC基板から剥離させた単結晶SiC薄膜を上記保持基板上に転写して上記単結晶SiC層を設けることを特徴とする〔1〕~〔5〕のいずれかに記載のSiC複合基板の製造方法。
〔7〕 化学気相成長法により上記単結晶SiC層上に多結晶SiCを堆積することを特徴とする〔1〕~〔6〕のいずれかに記載のSiC複合基板の製造方法。
〔8〕 〔1〕~〔7〕のいずれかに記載のSiC複合基板の製造方法によりSiC複合基板を製造し、該SiC複合基板をテンプレートとし、その単結晶SiC層上に更にSiC単結晶をヘテロエピタキシャル成長させ、単結晶SiCを積層することを特徴とする半導体基板の製造方法。
 本発明によれば、Siからなる保持基板を容易に除去することができるので、結晶性のよい単結晶SiC層を有するSiC複合基板を簡便に製造することが可能となる。
本発明に係るSiC複合基板の製造方法の実施形態1における製造工程を示す図である。 本発明に係るSiC複合基板の製造方法の実施形態2における製造工程を示す図である。 基板のBow量の測定方法を示す概略図である。
 以下に、本発明に係るSiC複合基板の製造方法について説明する。
 本発明に係るSiC複合基板の製造方法は、多結晶SiC基板上に単結晶SiC層を有するSiC複合基板の製造方法であって、Siからなる保持基板の片面に単結晶SiC層を設けて単結晶SiC層担持体を作製した後、該単結晶SiC層上に物理的又は化学的手段により多結晶SiCを堆積して保持基板上に単結晶SiC層と多結晶SiC基板とを積層したSiC積層体を作製し、その後に上記保持基板を物理的及び/又は化学的に除去することを特徴とするものである。
 ここで、シリコン(Si)からなる基板は機械的強度があると共に物理的及び/又は化学的な除去(即ち、研削加工や化学的エッチング)が行い易いため、本発明の製造方法における保持基板に好適である。なお、保持基板は、多結晶Siウエハ、単結晶Siウエハのいずれでもよい。保持基板として単結晶Siウエハを採用する場合、高品質な大口径基板を低価格で入手可能であることから、SiC複合基板の製造コストも低減できる。
 なお、上記保持基板の片面に酸化珪素、窒化珪素又は酸窒化珪素からなる中間層(介在層ともいう)を介して単結晶SiC層を設けることが好ましい。この中間層は、保持基板に単結晶SiC層を強固に付着させるだけではなく、Siからなる保持基板について研削可能などにより大部分を除去した後に、残りを化学的にエッチングして除去する際にエッチストップ層として機能させることもできる。
 また、本発明のSiC複合基板の製造方法では、イオン注入剥離法により単結晶SiC基板から剥離させた単結晶SiC薄膜を上記保持基板上に転写して設けることが好ましい。これにより、一度のイオン注入剥離処理により、必要最低限の膜厚を有し、SiC複合基板の特性を左右する単結晶SiC層が得られるので、経済的に高特性のSiC複合基板を製造することができる。
 また、多結晶SiC基板を形成するための化学的又は物理的手段としては、気相成長法が好ましく、化学的気相成長法がより好ましく、熱CVD法を用いることが更に好ましい。単結晶SiC層上に多結晶SiCを堆積して形成するため、従来技術の如き、難研削材のSiCの研削、研磨、CMPなどに依る高平坦化の工程を不要とすることができる。
 以上のように、本発明に係るSiC複合基板の製造方法によれば、保持基板が難加工性のAlN基板でなく、易加工性のSi基板であることから機械加工や化学処理が極めて容易にできるため、簡便な研削や研磨、あるいはKOH、HFなどの安価な化学的エッチング処理で保持基板を簡単に除去でき、特許文献1の様な面倒で高コストなAlNの再生・リサイクルの必要もなくなり、高品質のSiC複合基板を低コストで製造することが可能となる。また、保持基板と単結晶SiC層の間に上記中間層を設けておけば、上記化学的エッチング処理の際に中間層の表面全体にHF等のエッチング液が直に接するため、中間層を容易にかつ均一に完全除去することができ、その結果、単結晶SiC層の表面は極めて平滑、清浄な状態で得られる。
 ところで、Siからなる保持基板は単結晶SiC層や多結晶SiC基板と熱膨張係数が異なるため、複合基板製造中の温度変化により保持基板を含む積層体に反りが発生しやすい。製造過程でこのような反りが発生すると、そのままではSiC複合基板の形状は保持基板の反りを反映してしまうので、平坦な基板が得られないおそれがある。SiC複合基板が平坦性を欠いてしまうと、次工程以降のSiC複合基板の扱いが難しくなるばかりでなく、精密で微細なデバイスを製造することが困難になる。例えば、デバイス製造工程などのフォトリソグラフィー工程を適用することが難しくなり、SiC複合基板の実用化が妨げられる。
 そこで、発明者らは、この反りの問題について種々検討したところ、SiC複合基板の製造工程において単結晶SiC層担持体に多結晶SiCを堆積する際に、Siからなる保持基板に単結晶SiC層を担持させた単結晶SiC層担持体と多結晶SiCとの間に熱膨張率の差に起因する熱応力を生じ、その結果、SiC複合基板に反りが発生していることを把握した。また、更に検討を進めたところ、単結晶SiC層担持体に多結晶SiCを堆積する前にSiからなる保持基板に物理的なダメージを加えておき、多結晶SiCを堆積するときに発生する熱応力を適宜開放しつつ、この熱応力に耐えられる厚みまで多結晶SiCを堆積することにより、反りがほとんどないSiC複合基板が得られることを見出した。また、単結晶SiC層担持体に多結晶SiCを堆積して多結晶SiC基板を形成した後に、このSiC積層体における多結晶SiC基板に反りを軽減するに足る物理的ダメージを加えることにより、反りがほとんどないSiC複合基板が得られることを見出した。発明者らは、これらの知見に基づき更に鋭意検討を行い本発明を成すに至った。
 即ち、上記単結晶SiC層上に多結晶SiCを堆積する前に、上記単結晶SiC層担持体における保持基板の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、該単結晶SiC層担持体に反りを付与することが好ましい。
 また、上記単結晶SiC層上に多結晶SiCを堆積した後に、上記SiC積層体における多結晶SiC基板の単結晶SiC層との当接面とは反対面に物理的ダメージを加えることが好ましい。
 このとき、上記いずれの場合においても物理的ダメージを加える手段は特に制限はないが、反り改善の効果の大きさや効率の観点からサンドブラスト加工、研削加工、切削加工などの機械的な加工で上記応力を緩和し反りを除去するようにしてもよいし、レーザー加工及び放電加工などで対象の基板(保持基板又は多結晶SiC基板)を構成する表層の非晶質化を生じさせ上記応力を緩和し反りを除去するようにしてもよい。
 物理的ダメージの付与は、上記基板の対象面の全面において出来る限り均等となるように付与することが好ましい。例えば、サンドブラスト加工の場合、上記基板の対象面の全面又は反り改善に有効な一部領域に処理を行うとよい。また、研削加工、切削加工の場合、粗い固定砥石で上記基板の対象面の全面又は一定ピッチで条状に処理を行うとよい。更に、レーザー加工、放電加工の場合、上記基板の対象面の表面又は対象面側内部に一定ピッチで点状又は線状(条状)に処理を行うとよい。
 これらの物理的ダメージ量は、多結晶SiC基板の内部応力やSiC積層体の反りの程度に応じてそれらを打ち消す程度に適宜調整するとよい。
 なお、Siからなる保持基板にこの物理的ダメージを付与すると、後の保持基板の除去の際に物理的、化学的のいずれの方法であれ、保持基板がダメージを受けたことにより化学的に活性化され、より容易に保持基板(Si)の除去ができるという付帯効果も得られる。
 以上のように、上記単結晶SiC層上に多結晶SiCを堆積する前に、上記単結晶SiC層担持体における保持基板の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、該単結晶SiC層担持体に反りを付与しておけば、この反りがその後に形成される多結晶SiC基板による反りとは反対向きの反りとなるため、単結晶SiC層担持体の反りと多結晶SiC基板による反りとが互いに打ち消し合うこととなり反りが少なく、高品質なSiC複合基板を簡便に製造することができる。
 また、上記単結晶SiC層上に多結晶SiCを堆積した後に、上記SiC積層体における多結晶SiC基板の単結晶SiC層との当接面とは反対面に物理的ダメージを加えることにより、一旦反ったSiC積層体において多結晶SiC基板の内部応力を低減するため、SiC複合基板としての反りを除去することができ、反りが少なく、高品質なSiC複合基板を簡便に製造することが可能となる。
 なお、SiC複合基板のBow量は、50μm以下が好ましく、0μm以上30μm以下がより好ましい。
 以下、本発明に係るSiC複合基板の製造方法の実施形態1、2を説明する。
(実施形態1)
 本発明の実施形態1について図1を参照しながら説明する。
(工程1-1)
 始めに、保持基板21に貼り合わせをする単結晶SiC基板12sを用意する。ここで、単結晶SiC基板12sは、結晶構造が4H-SiC、6H-SiC、3C-SiCのものから選択をすることが好ましい。単結晶SiC基板12s及び後述する保持基板21の大きさは、半導体素子の製造や窒化ガリウム、ダイヤモンド、ナノカーボン膜の成長に必要な大きさやコスト等から設定をする。また、単結晶SiC基板12sの厚さは、SEMI規格又はJEIDA規格の基板厚さ近傍のものがハンドリングの面から好ましい。なお、単結晶SiC基板12sとして、市販のもの、例えばパワーデバイス向けに市販されている単結晶SiCウエハを用いればよく、その表面がCMP(Chemical Mechanical Polishing(or Planarization))処理で仕上げ研磨された、表面が平坦かつ平滑なものを用いることが好ましい。
 また、単結晶SiC基板12sの少なくとも保持基板21と貼り合わせをする表面(おもて面)に所定の薄膜22aを形成することが好ましい(図1(a))。ここで、薄膜22aは、厚さ50nm~600nm程度の酸化珪素膜、窒化珪素膜又は酸窒化珪素膜の誘電体膜であるとよい。これにより、保持基板21との貼り合わせが容易になるだけではなく、この後に行われるイオン注入処理の注入イオンのチャネリングを抑制する効果も得られる。なお、後述するイオン注入処理後に薄膜22aを設けてもよい。
 薄膜22aの形成方法としては、単結晶SiC基板12sに密着性よく形成できる成膜方法であればいずれの方法でもよく、例えば酸化珪素膜はPECVD法又は熱酸化法により形成し、窒化珪素膜、酸窒化珪素膜はスパッタリング法により形成するとよい。
(工程1-2)
 次に、Siからなる保持基板21を用意する。例えば、多結晶Siウエハ又は単結晶Siウエハを用いるとよい。
 また、保持基板21の少なくとも単結晶SiC基板12sと貼り合わせをする表面(おもて面)に、上記工程1-1と同様の薄膜22aを形成することが好ましい(図1(b))。
(工程1-3)
 次に、単結晶SiC基板12sの薄膜22a形成面に水素イオン等を注入してイオン注入領域12iを形成する(図1(c))。
 ここで、単結晶SiC基板12sへのイオン注入の際、その表面から所望の深さにイオン注入領域12iを形成できるような注入エネルギーで、所定の線量の少なくとも水素イオン(H+)又は水素分子イオン(H2 +)を注入する。このときの条件として、所望の薄膜の厚さになるようにイオン注入エネルギーを設定すればよい。HeイオンやBイオン等を同時にインプラしても構わないし、同じ効果が得られるモノであればどのようなイオンを採用しても構わない。
 単結晶SiC基板12sに注入する水素イオン(H+)のドーズ量は、1.0×1016atom/cm2~9.0×1017atom/cm2であることが好ましい。1.0×1016atom/cm2未満であると、界面の脆化が起こらない場合があり、9.0×1017atom/cm2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。
 注入イオンとして水素分子イオン(H2 +)を用いる場合、そのドーズ量は5.0×1015atoms/cm2~4.5×1017atoms/cm2であることが好ましい。5.0×1015atoms/cm2未満であると、界面の脆化が起こらない場合があり、4.5×1017atoms/cm2を超えると、貼り合わせ後の熱処理中に気泡となり転写不良となる場合がある。
 イオン注入された基板表面からイオン注入領域12iまでの深さ(即ち、イオン打ち込み深さ)は、保持基板21上に設ける単結晶SiC薄膜の所望の厚さに対応するものであり、通常100~2,000nm、好ましくは300~500nm、更に好ましくは400nm程度である。また、イオン注入領域12iの厚さ(即ち、イオン分布厚さ)は、機械衝撃等によって容易に剥離できる厚さが良く、好ましくは200~400nm、更に好ましくは300nm程度である。
(工程1-4)
 続いて、単結晶SiC基板12sの薄膜22a形成面と保持基板21の薄膜22a形成面と(おもて面同士)を表面活性化処理を施して貼り合わせる。表面活性化処理としてはプラズマ活性化処理、真空イオンビーム処理又はオゾン水への浸漬処理を行うとよい。
 このうち、プラズマ活性化処理をする場合、真空チャンバ中に上記工程1-3までの処理が終了した単結晶SiC基板12s及び/又は保持基板21を載置し、プラズマ用ガスを減圧下で導入した後、100W程度の高周波プラズマに5~10秒程度さらし、表面をプラズマ活性化処理する。プラズマ用ガスとしては、酸素ガス、水素ガス、窒素ガス、アルゴンガス、又はこれらの混合ガスあるいは水素ガスとヘリウムガスの混合ガスを用いることができる。
 真空イオンビーム処理は、高真空のチャンバ内に単結晶SiC基板12s及び/又は保持基板21を載置し、Ar等のイオンビームを貼り合わせをする表面に照射して活性化処理を行う。
 オゾン水への浸漬処理は、オゾンガスを溶解させたオゾン水に単結晶SiC基板12s及び/又は保持基板21を浸漬し、その表面を活性化処理をする。
 上記した表面活性化処理は、単結晶SiC基板12sのみ又は保持基板21のみに行ってもよいが、単結晶SiC基板12s及び保持基板21の両方について行うのがより好ましい。
 また、表面活性化処理は上記方法のいずれか一つでもよいし、組み合わせた処理を行っても構わない。更に、単結晶SiC基板12s、保持基板21の表面活性化処理を行う面は、貼り合わせを行う面、即ち薄膜22a表面であることが好ましい。
 次に、この単結晶SiC基板12s及び保持基板21の表面活性化処理をした表面(薄膜22a、22a表面)を接合面として貼り合わせる。
 次いで、単結晶SiC基板12sと保持基板21と貼り合わせた後に、好ましくは150~350℃、より好ましくは150~250℃の熱処理を行い、薄膜22a、22aの貼り合わせ面の結合強度を向上させるとよい。このとき、単結晶SiC基板12sと保持基板21との間の熱膨張率差により基板の反りが発生するが、それぞれの材質に適した温度を採用して反りを抑制するとよい。熱処理時間としては、温度にもある程度依存するが、2時間~24時間が好ましい。
 これにより、薄膜22a、22aは密着して一つの層、介在層22となると共に、単結晶SiC基板12sと保持基板21とが介在層22を介して強固に密着した貼り合わせ基板13となる(図1(d))。
(工程1-5)
 貼り合わせ基板13について、イオン注入した部分に熱的エネルギー又は機械的エネルギーを付与してイオン注入領域12iで単結晶SiC基板12sから剥離した単結晶SiC薄膜を保持基板21上に転写する。
 このとき、薄膜22a、22aは強固に密着し、更に薄膜22a、22aはそれぞれ単結晶SiC基板12s、保持基板21と強固に密着しているため、イオン注入領域12iにおける剥離部分以外の部分での剥離は発生しない。
 剥離方法としては、例えば貼り合わせ基板13を高温に加熱して、この熱によってイオン注入領域12iにおいてイオン注入した成分の微小なバブル体を発生させることにより剥離を生じさせて単結晶SiC基板12sを分離する熱剥離法を適用することができる。あるいは、熱剥離が生じない程度の低温熱処理(例えば、500~900℃、好ましくは500~700℃)を施しつつ、イオン注入領域12iの一端に物理的な衝撃を加えて機械的に剥離を発生させて単結晶SiC基板12sを分離する機械剥離法を適用することができる。機械剥離法は単結晶SiC薄膜転写後の転写表面の粗さが熱剥離法よりも比較的小さいため、より好ましい。
 なお、剥離処理後に、単結晶SiC薄膜担持体を加熱温度700~1000℃であって剥離処理時よりも高い温度、加熱時間1~24時間の条件で加熱して、単結晶SiC薄膜と保持基板21との密着性を改善する熱処理を行ってもよい。
 保持基板21上の単結晶SiC薄膜表面を鏡面仕上げして単結晶SiC層12とし、単結晶SiC層担持体14を得る(図1(e))。具体的には、単結晶SiC薄膜に化学機械研磨(CMP研磨)を施してイオン注入によるダメージ層を除去すると共に表面を鏡面に仕上げる。ここではシリコンウエハの平坦化等に用いられる従来公知のCMP研磨でよい。
 また、単結晶SiC層12は、厚さが5μm以下、好ましくは2μm以下、より好ましくは100nm以上1μm以下、更に好ましくは200nm以上800nm以下、特に好ましくは300nm以上500nm以下の単結晶SiCからなる薄膜である。単結晶SiC層の厚さが5μm以下であれば複合基板化のコストを考慮してもなお無垢の単結晶SiC基板よりも経済的メリットがある。
 なお、剥離した後の単結晶SiC基板12sは、表面を再度研磨や洗浄等を施すことにより再度当該単結晶SiC層担持体14の製造方法における貼り合わせ用の基板として再利用することが可能となる。
(工程1-6)
 次に、単結晶SiC層担持体14における保持基板21の単結晶SiC層担持面とは反対面(うら面、図中下側の面)に物理的ダメージを加えて、単結晶SiC層担持体14’に反りを付与する(図1(f))。図中、14’は物理的ダメージ付与後の単結晶SiC層担持体であり、21’は物理的ダメージ付与後の保持基板である。
 ここで、物理的ダメージの付与は、上述した通りサンドブラスト加工、研削加工、切削加工、レーザー加工及び放電加工の中から選ばれる少なくとも一つの加工方法によればよい。
 これにより、単結晶SiC層担持体14’は後述する多結晶SiC基板11の内部応力による反りとは反対向き(例えば、単結晶SiC層12側(上側))に凸となるように若干反るようになる。
(工程1-7)
 次に、得られた単結晶SiC層担持体14’を用いて、化学気相成長法により単結晶SiC層12上に多結晶SiCを堆積して多結晶SiC基板11を形成してSiC積層体15を得る(図1(g))。ここでのSiC積層体15は、保持基板21’上に中間層22、単結晶SiC層12、多結晶SiC基板11をこの順番で積層した構成となっている。
 ここで、化学気相成長法としては熱CVD法を用いることが好ましい。この熱CVD条件としては、多結晶SiCを堆積して成膜する一般的な条件でよい。
 多結晶SiC基板11の厚さは、50~1000μmであることが好ましく、100~800μmであることがより好ましい。厚さを50μm以上とすることによりハンドル基板としての機能を確保しやすくなり、1000μm以下とすることによりコスト面の抑制を図ることができる。
 また、多結晶SiC基板11の多結晶SiCは立方晶(3C-SiC)であることが好ましい。なお、多結晶SiC基板11に不純物を導入して抵抗率を調整してもよい。これにより縦型パワー半導体デバイスの基板として好適に使用することが可能となる。
(工程1-8)
 次に、工程1-7で得られたSiC積層体15における保持基板21’を物理的及び/又は化学的に除去して、SiC複合基板10を得る(図1(h))。このとき、保持基板21’がシリコンからなるため、例えばまず保持基板21’の大部分を研削加工により除去し、次いで残りの保持基板21’及び中間層22をフッ硝酸溶液により選択的にエッチング除去することが好ましい。
 これにより、反りのほとんどないSiC複合基板10が得られる。このとき、多結晶SiC基板11は、上層の単結晶SiC層12と同じSiCからなり、単結晶SiC層12と多結晶SiC基板11の熱膨張係数がほぼ等しくなることからいかなる温度においてもSiC複合基板10の反りの発生が抑制される。
(工程1-9)
 必要に応じて、SiC複合基板10の単結晶SiC層12上にSiCエピタキシャル層12’を形成するとよい(図1(i))。これにより、単結晶SiC層12がパワー半導体デバイスの活性層として用いるには薄すぎる場合でも、所定厚さのSiCエピタキシャル層12’を形成するのでパワー半導体の製造に適応したSiC複合基板を得ることが可能となる。
(実施形態2)
 本発明の実施形態2について図2を参照しながら説明する。なお、本実施形態において、保持基板21上に単結晶SiC層12を担持する単結晶SiC層担持体14を作製するまでは(図2(e)までは)、実施形態1における工程1-5(図1(e))までの製造工程と同じである。ここではそれ以降の工程について説明する。
(工程2-6)
 得られた単結晶SiC層担持体14を用いて、化学気相成長法により単結晶SiC層12上に多結晶SiCを堆積して多結晶SiC基板11を形成してSiC積層体15を得る(図2(f))。化学気相成長法や多結晶SiC基板11の条件は実施形態1と同じでよい。ここでのSiC積層体15は、保持基板21上に中間層22、単結晶SiC層12、多結晶SiC基板11をこの順番で積層した構成となっている。
(工程2-7)
 次に、SiC積層体15における多結晶SiC基板11の単結晶SiC層12との当接面とは反対面(露出面、図中上側の面)に物理的ダメージを加える(図2(g))。図中、15’は物理的ダメージ付与後のSiC積層体であり、11’は物理的ダメージ付与後の多結晶SiC基板である。
 これにより、SiC積層体15における多結晶SiC基板11の表面に物理的ダメージを加えることにより、該多結晶SiC基板11の内部応力を低減することができる。
(工程2-8)
 次に、工程2-7で得られたSiC積層体15’における保持基板21を物理的及び/又は化学的に除去して、多結晶SiC基板11’上に単結晶SiC層を有するSiC複合基板10’を得る(図2(h))。保持基板21の除去方法及び条件は実施形態1と同じでよい。
 これにより、反りのほとんどないSiC複合基板10’が得られる。このとき、多結晶SiC基板11’は、上層の単結晶SiC層12と同じSiCからなり、単結晶SiC層12と多結晶SiC基板11’の熱膨張係数がほぼ等しくなることからいかなる温度においてもSiC複合基板10’の反りの発生が抑制される。
(工程2-9)
 必要に応じて、SiC複合基板10’の単結晶SiC層12上にSiCエピタキシャル層12’を形成するとよい(図2(i))。
 なお、本発明の製造方法として、実施形態1と実施形態2を組み合わせてもよい。即ち、実施形態1において単結晶SiC層担持体14における保持基板21の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、単結晶SiC層担持体14’に反りを付与し、単結晶SiC層12上に多結晶SiC基板11を形成した後、SiC積層体15における多結晶SiC基板11表面に物理的ダメージを加え、その後、保持基板11’を除去するようにしてもよい。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。なお、基板の反りとして、垂直入射方式のフィゾー干渉計(Corning Tropel社製、FlatMaster)によりBow量を測定した。ここで、図3に示すように、Bow量b1、b2はSiC複合基板10、10’又はSiC積層体15、15’の中央部と端部との高低差として測定し、基板の中央部が図3(a)に示すように下方向に凸の場合をマイナスの値、図3(b)に示すように上方向に凸の場合をプラスの値とした。なお、SiC複合基板10、10’ 又はSiC積層体15、15’の単結晶SiC層12が上側(表面側)となる向きに配置して反りを測定した。
[実施例1]
 本実施例では、本発明の実施形態1の手順に従い、以下のようにしてSiC複合基板を作製した。
 まず、単結晶SiC基板12sとして直径4インチφの4H-SiC単結晶ウエハを用意し、これの片面にイオン注入深さ700nmとなるようにH+イオンをイオン注入した後、イオン注入面(おもて面)に薄膜22aとして厚さ300nmの酸化珪素膜を熱酸化法により形成した。
 また、保持基板21として、直径4インチφの単結晶Siウエハを用意し、その片面(おもて面)に厚さ300nmの酸化珪素膜を形成した(図1(b))。
 次いで、単結晶SiC基板12s、保持基板21の酸化珪素膜形成面についてそれぞれプラズマ活性化処理を施した後、両者の酸化珪素膜形成面同士(おもて面同士)を貼り合わせて貼り合わせ基板13を作製した(図1(d))。
 次に、貼り合わせ基板13における単結晶SiC基板12sのイオン注入領域12iに機械的衝撃を加えて該単結晶SiC基板12sから単結晶SiC薄膜を剥離させ、保持基板21に転写した。この単結晶SiC薄膜表面のダメージ層除去後、表面研磨し、保持基板21上に酸化珪素膜(中間層22)を介して厚さ640nmmの4H-SiCの単結晶SiC層12を担持する単結晶SiC層担持体14を得た(図1(e))。
 次いで、この単結晶SiC層担持体14における保持基板21の単結晶SiC層12担持面とは反対面(うら面)の全面に物理的ダメージ付与として、レーザー出力1.5W、繰り返し周波数90kHz、レーザー波長1064nmのシングルモードのレーザー光を焦点深度140μm、0.3mmピッチ、走査速度350mm/sで照射したところ、単結晶SiC層担持体14は割れずに基板中央部が極僅か上方向に凸となるように変形した(図1(f))。
 次に、この物理的ダメージ付与後の単結晶SiC層担持体14’の単結晶SiC層12上に四塩化珪素とプロパンを原料に温度1330℃、圧力17Paの条件で6時間の熱CVD処理を行って、3C-SiCの多結晶SiCを堆積し、厚さ610μmの多結晶SiC基板11を形成し、SiC積層体15を作製した(図1(g))。このとき、上記のように単結晶SiC層担持体14’が僅かに反っていることにより、多結晶SiC基板11形成時に発生する熱応力が打ち消されて、反りがほとんどないSiC積層体15が得られた。
 続いて、このSiC積層体15の保持基板21’について固定砥石で研削した。詳しくは、固定砥石の番手を#1000、#2500、#4000の順で順次目の細かい砥石に変えて、保持基板21がほとんどなくなる状態まで研削した。次いで、酸化珪素膜の中間層22をHF水溶液でエッチングして除去して、多結晶SiC基板11上に表面が極めて平滑かつ清浄な単結晶SiC層12を有するSiC複合基板10が無垢の単結晶SiC基板に比べ遥かに低コストで得られた(図1(h))。このSiC複合基板10のBow量は+20μmとほとんど反りがない状態であった。
 なお、得られたSiC複合基板10をSiCテンプレートとして、更に1550℃でジクロロシランとアセチレンで単結晶SiCのホモエピタキシャル成長を2時間行い、厚さ20μmのSiCエピタキシャル層12’を積層した(図1(i))。こうして得られたSiCエピ基板は1KV以上の高耐圧、高容量のパワーデバイス用基板として極めて有用であった。
[比較例1]
 実施例1において、単結晶SiC層担持体14へのレーザー光照射による物理的ダメージ付与を行わず、それ以外は実施例1と同条件でSiC複合基板を作成した。
 得られたSiC複合基板のBow量は+3mmと極めて大きく、デバイス作成のプロセスへの適合性が悪く、その結果、デバイス製造の歩留まりが大きく低下した。
[実施例2]
 本実施例では、本発明の実施形態2の手順に従い、以下のようにしてSiC複合基板を作製した。
 実施例1における単結晶SiC層担持体14の作製において、中間層22を酸化珪素膜から酸窒化珪素膜に変え、それ以外は実施例1と同様にして単結晶SiC層担持体14を作製した(図2(e))。
 次に、単結晶SiC層担持体14の単結晶SiC層12上に四塩化珪素とプロパンを原料に温度1350℃、圧力20Paの条件で5時間の熱CVD処理を行って、3C-SiCの多結晶SiCを堆積し、厚さ500μmの多結晶SiC基板11を形成し、SiC積層体15を作製した(図2(f))。このとき、SiC積層体15のBow量が+3.5mmの大きな反りが生じていた。
 次いで、このSiC積層体15における多結晶SiC基板11の単結晶SiC層12との当接面とは反対面(露出している面)の全面に物理的ダメージ付与としてサンドブラスト加工を行い、その表面にPv値(断面曲線の最大谷深さ(JIS B0601:2013)が50μmの凹凸を形成した(図2(g))。その結果、SiC積層体15’のBow量は+50μmに大きく減少した。
 続いて、このSiC積層体15’の保持基板21について研削及び研磨を行った。詳しくは、固定砥石の番手を#1000、#2500、#4000の順で順次目の細かい砥石及び細かい遊離砥粒に変えて研削し、次いでCMP処理により研磨を行った。これにより保持基板21がほとんどなくなった状態とした。次いで、酸窒化珪素膜の中間層22をHF水溶液でエッチングして除去して、多結晶SiC基板11’上に表面が極めて平滑かつ清浄な単結晶SiC層12を有するSiC複合基板10’を得た(図2(h))。このSiC複合基板10’のBow量は+35μmと反りが極めて少ない状態であった。
 なお、得られたSiC複合基板10’を用いて高周波加熱炉にて温度1550℃、圧力1bar(1×105Pa)のAr雰囲気下で10分間加熱を行い、グラフェン化を行った。得られたグラフェンのラマン分析を行ったところ、Gバンド及びG’バンドにグラフェンに由来する鋭い特性ピークが観察され、良質のグラフェンの生成を示した。
 なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
10、10’ SiC複合基板
11、11’ 多結晶SiC基板
12 単結晶SiC層
12i イオン注入領域
12s 単結晶SiC基板
12’ SiCエピタキシャル層
13 貼り合わせ基板
14、14’ 単結晶SiC層担持体
15、15’ SiC積層体
21、21’ 保持基板
22 中間層(介在層)
22a 薄膜

Claims (8)

  1.  多結晶SiC基板上に単結晶SiC層を有するSiC複合基板の製造方法であって、Siからなる保持基板の片面に単結晶SiC層を設けて単結晶SiC層担持体を作製した後、該単結晶SiC層上に物理的又は化学的手段により多結晶SiCを堆積して保持基板上に単結晶SiC層と多結晶SiC基板とを積層したSiC積層体を作製し、その後に上記保持基板を物理的及び/又は化学的に除去することを特徴とするSiC複合基板の製造方法。
  2.  上記単結晶SiC層上に多結晶SiCを堆積する前に、上記単結晶SiC層担持体における保持基板の単結晶SiC層担持面とは反対面に物理的ダメージを加えて、該単結晶SiC層担持体に反りを付与することを特徴とする請求項1記載のSiC複合基板の製造方法。
  3.  上記単結晶SiC層上に多結晶SiCを堆積した後に、上記SiC積層体における多結晶SiC基板の単結晶SiC層との当接面とは反対面に物理的ダメージを加えることを特徴とする請求項1又は2記載のSiC複合基板の製造方法。
  4.  サンドブラスト加工、研削加工、切削加工、レーザー加工及び放電加工の中から選ばれる少なくとも一つの加工方法により上記物理的ダメージを加えることを特徴とする請求項2又は3記載のSiC複合基板の製造方法。
  5.  上記保持基板の片面に酸化珪素、窒化珪素又は酸窒化珪素からなる中間層を介して単結晶SiC層を設けることを特徴とする請求項1~4のいずれか1項記載のSiC複合基板の製造方法。
  6.  イオン注入剥離法により単結晶SiC基板から剥離させた単結晶SiC薄膜を上記保持基板上に転写して上記単結晶SiC層を設けることを特徴とする請求項1~5のいずれか1項記載のSiC複合基板の製造方法。
  7.  化学気相成長法により上記単結晶SiC層上に多結晶SiCを堆積することを特徴とする請求項1~6のいずれか1項記載のSiC複合基板の製造方法。
  8.  請求項1~7のいずれか1項記載のSiC複合基板の製造方法によりSiC複合基板を製造し、該SiC複合基板をテンプレートとし、その単結晶SiC層上に更にSiC単結晶をヘテロエピタキシャル成長させ、単結晶SiCを積層することを特徴とする半導体基板の製造方法。
PCT/JP2016/076297 2015-09-11 2016-09-07 SiC複合基板の製造方法及び半導体基板の製造方法 WO2017043528A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680049584.9A CN108140540B (zh) 2015-09-11 2016-09-07 SiC复合基板的制造方法和半导体基板的制造方法
RU2018112510A RU2720397C2 (ru) 2015-09-11 2016-09-07 СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОЙ ПОДЛОЖКИ SiC И СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОЙ ПОДЛОЖКИ
EP16844389.3A EP3349237B1 (en) 2015-09-11 2016-09-07 Method for manufacturing sic composite substrate, and method for manufacturing semiconductor substrate
US15/757,879 US10612157B2 (en) 2015-09-11 2016-09-07 Method for manufacturing SiC composite substrate, and method for manufacturing semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015179290A JP6572694B2 (ja) 2015-09-11 2015-09-11 SiC複合基板の製造方法及び半導体基板の製造方法
JP2015-179290 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043528A1 true WO2017043528A1 (ja) 2017-03-16

Family

ID=58240790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076297 WO2017043528A1 (ja) 2015-09-11 2016-09-07 SiC複合基板の製造方法及び半導体基板の製造方法

Country Status (7)

Country Link
US (1) US10612157B2 (ja)
EP (1) EP3349237B1 (ja)
JP (1) JP6572694B2 (ja)
CN (1) CN108140540B (ja)
RU (1) RU2720397C2 (ja)
TW (1) TWI698908B (ja)
WO (1) WO2017043528A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6572694B2 (ja) * 2015-09-11 2019-09-11 信越化学工業株式会社 SiC複合基板の製造方法及び半導体基板の製造方法
DE102019110402A1 (de) 2018-05-25 2019-11-28 Infineon Technologies Ag Ein Verfahren zum Bearbeiten eines Halbleiterwafers, eine Halbleiter-Verbundstruktur und eine Stützstruktur für einen Halbleiterwafer
DE102019111377A1 (de) * 2018-05-28 2019-11-28 Infineon Technologies Ag Verfahren zum Verarbeiten eines Siliziumkarbid-Wafers und ein Siliziumkarbid-Halbleiterbauelement
JP7235456B2 (ja) * 2018-08-14 2023-03-08 株式会社ディスコ 半導体基板の加工方法
CN109678106B (zh) * 2018-11-13 2020-10-30 中国科学院上海微系统与信息技术研究所 一种硅基异质集成4H-SiC外延薄膜结构的制备方法
FR3099637B1 (fr) * 2019-08-01 2021-07-09 Soitec Silicon On Insulator procédé de fabrication d’unE structure composite comprenant une couche mince en Sic monocristallin sur un substrat support en sic polycristallin
US11848197B2 (en) 2020-11-30 2023-12-19 Thinsic Inc. Integrated method for low-cost wide band gap semiconductor device manufacturing
DE112021006667T5 (de) * 2021-01-25 2023-11-02 Rohm Co., Ltd. Halbleitersubstrat und verfahren zur herstellung des halbleitersubstrates und halbleitervorrichtung
TWI780901B (zh) * 2021-09-09 2022-10-11 合晶科技股份有限公司 複合基板及其製造方法
CN114075699B (zh) * 2021-11-21 2024-04-12 苏州晶瓴半导体有限公司 一种双层复合碳化硅衬底及其制备方法
FR3132381A1 (fr) * 2022-01-28 2023-08-04 Soitec Procédé de fabrication d’une plaquette de p-SiC non déformable
CN114864529A (zh) * 2022-05-18 2022-08-05 北京青禾晶元半导体科技有限责任公司 一种碳化硅复合基板及其制造方法与应用
CN115188695A (zh) * 2022-09-09 2022-10-14 苏州华太电子技术股份有限公司 半导体器件的制作方法以及半导体器件
CN117418309B (zh) * 2023-12-18 2024-03-08 北京青禾晶元半导体科技有限责任公司 一种3C-SiC单晶体的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280531A (ja) * 2001-03-19 2002-09-27 Denso Corp 半導体基板及びその製造方法
JP2011222607A (ja) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp SiC半導体素子の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028149A (en) * 1976-06-30 1977-06-07 Ibm Corporation Process for forming monocrystalline silicon carbide on silicon substrates
DE4234508C2 (de) * 1992-10-13 1994-12-22 Cs Halbleiter Solartech Verfahren zur Herstellung eines Wafers mit einer monokristallinen Siliciumcarbidschicht
JP3087070B1 (ja) * 1999-08-24 2000-09-11 日本ピラー工業株式会社 半導体デバイス製作用単結晶SiC複合素材及びその製造方法
FR2817395B1 (fr) * 2000-11-27 2003-10-31 Soitec Silicon On Insulator Procede de fabrication d'un substrat notamment pour l'optique, l'electronique ou l'optoelectronique et substrat obtenu par ce procede
FR2835096B1 (fr) 2002-01-22 2005-02-18 Procede de fabrication d'un substrat auto-porte en materiau semi-conducteur monocristallin
US6562127B1 (en) * 2002-01-16 2003-05-13 The United States Of America As Represented By The Secretary Of The Navy Method of making mosaic array of thin semiconductor material of large substrates
TWI229897B (en) * 2002-07-11 2005-03-21 Mitsui Shipbuilding Eng Large-diameter sic wafer and manufacturing method thereof
JP2007273524A (ja) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd 複層構造炭化シリコン基板の製造方法
JP2010251724A (ja) * 2009-03-26 2010-11-04 Semiconductor Energy Lab Co Ltd 半導体基板の作製方法
RU2521142C2 (ru) * 2012-09-21 2014-06-27 Общество с ограниченной ответственностью "СИКЛАБ" Способ получения гетероэпитаксиальных пленок карбида кремния на кремниевой подложке
US9613849B2 (en) * 2012-11-22 2017-04-04 Shin-Etsu Chemical Co., Ltd. Composite substrate manufacturing method, and composite substrate
JP6061251B2 (ja) 2013-07-05 2017-01-18 株式会社豊田自動織機 半導体基板の製造方法
US9761493B2 (en) * 2014-01-24 2017-09-12 Rutgers, The State University Of New Jersey Thin epitaxial silicon carbide wafer fabrication
JP6572694B2 (ja) * 2015-09-11 2019-09-11 信越化学工業株式会社 SiC複合基板の製造方法及び半導体基板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280531A (ja) * 2001-03-19 2002-09-27 Denso Corp 半導体基板及びその製造方法
JP2011222607A (ja) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp SiC半導体素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349237A4 *

Also Published As

Publication number Publication date
RU2018112510A3 (ja) 2019-12-04
TWI698908B (zh) 2020-07-11
TW201724177A (zh) 2017-07-01
EP3349237A4 (en) 2019-04-10
US10612157B2 (en) 2020-04-07
EP3349237B1 (en) 2021-10-27
CN108140540B (zh) 2022-09-06
CN108140540A (zh) 2018-06-08
US20180334757A1 (en) 2018-11-22
JP6572694B2 (ja) 2019-09-11
EP3349237A1 (en) 2018-07-18
RU2018112510A (ru) 2019-10-14
RU2720397C2 (ru) 2020-04-29
JP2017055022A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6572694B2 (ja) SiC複合基板の製造方法及び半導体基板の製造方法
JP6582779B2 (ja) SiC複合基板の製造方法
CN108028183B (zh) SiC复合基板及其制造方法
WO2017047508A1 (ja) SiC複合基板の製造方法
JP5468528B2 (ja) 単結晶ダイヤモンド成長用基材及びその製造方法並びに単結晶ダイヤモンド基板の製造方法
JP6737378B2 (ja) SiC複合基板
JP2023502571A (ja) SiCでできたキャリア基材上に単結晶SiCの薄層を備える複合構造を作成するプロセス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757879

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018112510

Country of ref document: RU

Ref document number: 2016844389

Country of ref document: EP