WO2017043355A1 - 殺菌装置 - Google Patents

殺菌装置 Download PDF

Info

Publication number
WO2017043355A1
WO2017043355A1 PCT/JP2016/075191 JP2016075191W WO2017043355A1 WO 2017043355 A1 WO2017043355 A1 WO 2017043355A1 JP 2016075191 W JP2016075191 W JP 2016075191W WO 2017043355 A1 WO2017043355 A1 WO 2017043355A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflow
processing chamber
inlet
end surface
ultraviolet light
Prior art date
Application number
PCT/JP2016/075191
Other languages
English (en)
French (fr)
Inventor
木内裕紀
越智鉄美
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to CN201680040767.4A priority Critical patent/CN109069674A/zh
Publication of WO2017043355A1 publication Critical patent/WO2017043355A1/ja
Priority to US15/873,394 priority patent/US20180140729A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0047Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/121Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for cleaning post-use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/12Apparatus for isolating biocidal substances from the environment
    • A61L2202/122Chambers for sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3228Units having reflectors, e.g. coatings, baffles, plates, mirrors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/328Having flow diverters (baffles)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a sterilization apparatus, and more particularly to an apparatus for sterilization by irradiating a fluid with ultraviolet light.
  • ultraviolet light has a sterilizing ability
  • an apparatus for irradiating ultraviolet light is used for sterilization treatment at medical or food processing sites.
  • an apparatus for continuously sterilizing a fluid by irradiating a fluid such as water with ultraviolet light is also used.
  • a sterilizing apparatus for example, a structure is known in which a turbulent flow plate or a turbulent flow generating mechanism is provided in the middle of a flow path to make the liquid turbulent and the irradiation efficiency of ultraviolet light to the liquid is increased ( For example, see Patent Documents 1 and 2).
  • the apparatus can increase the irradiation efficiency of ultraviolet light while using a simpler channel structure.
  • the present invention has been made in view of these problems, and one of exemplary purposes thereof is to provide a sterilization apparatus capable of improving the sterilization ability while using a simple flow path structure.
  • a sterilization apparatus includes a processing chamber having a plurality of inlets and outlets, and a plurality of light sources that irradiate the fluid flowing in the processing chamber with ultraviolet light.
  • Each of the plurality of light sources is arranged to irradiate the ultraviolet light toward the fluid flowing near the corresponding inlet rather than the outlet.
  • the processing chamber since a plurality of inlets are provided in the processing chamber, it is possible to provide a plurality of locations in the processing chamber that are in a turbulent state due to inflow into the processing chamber.
  • the light source since the light source is arranged so as to irradiate the fluid flowing near the inlet that is in a turbulent state with the ultraviolet light, the irradiation efficiency of the ultraviolet light to the fluid can be increased.
  • the irradiation efficiency of ultraviolet light to the fluid in the processing chamber is increased, and the sterilization ability is improved. be able to.
  • the processing chamber may have a shape extending in the longitudinal direction from the first end surface toward the second end surface.
  • the plurality of light sources may include a first light source disposed on the first end surface and a second light source disposed on the second end surface.
  • the plurality of inlets may include a first inlet provided in the vicinity of the first end face and a second inlet provided in the vicinity of the second end face.
  • the outlet may be provided between the first inlet and the second inlet.
  • a plurality of inflow paths connected to each of the plurality of inflow ports and extending in a direction crossing the longitudinal direction of the processing chamber may be further provided.
  • the plurality of inflow paths may extend in a direction orthogonal to the longitudinal direction of the processing chamber.
  • the plurality of inflow channels may include a first inflow channel connected to the first inflow port and a second inflow channel connected to the second inflow port.
  • the first inflow path has both a longitudinal direction of the processing chamber and a direction orthogonal to the longitudinal direction so that the fluid passing through the first inflow path toward the processing chamber has a velocity component from the first inflow port toward the first end surface.
  • the second inflow path extends in a direction intersecting with the longitudinal direction of the processing chamber and the longitudinal direction of the processing chamber so that a fluid passing through the second inflow passage toward the processing chamber has a velocity component from the second inlet toward the second end surface. You may extend in the direction which cross
  • the outlet may be provided at a position where the distance from the first end face and the second end face is equal, and the first inlet and the second inlet may be provided at a position where the distance from the outlet is equal.
  • the sterilization ability of the apparatus can be improved using a simple flow path structure.
  • FIG. 6 is an external perspective view schematically showing the flow channel structure of FIG. 5.
  • FIG. 1 is a diagram schematically showing a configuration of a sterilizer 10 according to an embodiment
  • FIG. 2 is an external perspective view schematically showing a flow channel structure 20 in FIG.
  • the sterilizer 10 includes a plurality of light sources (first light source 12 and second light source 14) and a flow path structure 20.
  • the flow path structure 20 partitions the processing chamber 50, a plurality of inflow paths (first inflow path 52, second inflow path 54), and outflow path 56.
  • the sterilization apparatus 10 irradiates the fluid flowing into the processing chamber 50 through the first inflow path 52 or the second inflow path 54 with the ultraviolet light from the first light source 12 and the second light source 14 and is sterilized by the ultraviolet light irradiation.
  • the discharged fluid is discharged from the outflow path 56.
  • the flow path structure 20 includes a first inflow pipe 22, a second inflow pipe 24, an outflow pipe 26, and a housing 28.
  • the channel structure 20 is made of a metal material or a resin material.
  • the channel structure 20 is made of a member having high durability against ultraviolet light and high reflectivity of ultraviolet light.
  • the flow path structure 20 is made of, for example, a fluorine resin such as aluminum (Al) or polytetrafluoroethylene (PTFE). In particular, it is desirable to use these materials for the inner wall surface of the housing 28 that is directly irradiated with ultraviolet light from the first light source 12 and the second light source 14.
  • the housing 28 has a side wall 30, a first end face wall 38, and a second end face wall 40.
  • the side wall 30 has a cylindrical shape as shown in FIG. 2 and extends in the longitudinal direction from the first end face wall 38 toward the second end face wall 40.
  • a first end face wall 38 and a second end face wall 40 are provided at both ends of the side wall 30.
  • the casing 28 defines a processing chamber 50 by the side wall 30, the first end face wall 38, and the second end face wall 40. Therefore, the processing chamber 50 is a cylindrical space extending in the longitudinal direction surrounded by the casing 28.
  • the processing chamber 50 is formed to have a larger water flow cross-sectional area than the first inflow path 52 and the second inflow path 54.
  • the first end wall 38 is provided with a first window 42 for transmitting ultraviolet light from the first light source 12.
  • the second end face wall 40 is provided with a second window 44 for transmitting the ultraviolet light from the second light source 14.
  • the first window 42 and second window 44 for example, quartz (SiO 2), sapphire (Al 2 O 3), ultraviolet light transmittance, such as amorphous fluororesin is constituted by a high member.
  • the side wall 30 is provided with a first inlet 32, a second inlet 34, and an outlet 36.
  • the first inlet 32 is provided in the vicinity of the first end wall 38
  • the second inlet 34 is provided in the vicinity of the second end wall 40.
  • the outflow port 36 is provided at a position between the first inflow port 32 and the second inflow port 34, and is preferably provided at a position just between the first inflow port 32 and the second inflow port 34.
  • the first inlet pipe 22 is connected to the first inlet 32, and the second inlet pipe 24 is connected to the second inlet 34.
  • the first inflow pipe 22 and the second inflow pipe 24 extend in a direction intersecting the longitudinal direction of the housing 28 and extend in a radial direction orthogonal to the longitudinal direction as shown in the drawing.
  • the first inflow pipe 22 and the second inflow pipe 24 may be connected to different fluid sources, respectively, or pipes from a common fluid source may be branched and connected.
  • the outflow pipe 26 is connected to the outflow port 36 and extends in the radial direction perpendicular to the longitudinal direction of the housing 28, similarly to the inflow pipe.
  • the first light source 12 and the second light source 14 have LEDs (Light Emitting Diodes) that emit ultraviolet light, and the center wavelength or peak wavelength is included in the range of about 200 nm to 350 nm.
  • the first light source 12 and the second light source 14 preferably have LEDs that emit ultraviolet light in the vicinity of 260 nm to 270 nm, which is a wavelength with high sterilization efficiency.
  • an ultraviolet light LED for example, one using aluminum gallium nitride (AlGaN) is known.
  • the first light source 12 is disposed near the first end wall 38 and irradiates ultraviolet light through the first window 42 toward the inside of the processing chamber 50.
  • the second light source 14 is disposed near the second end face wall 40 and irradiates ultraviolet light toward the inside of the processing chamber 50 through the second window 44. At least a part of the ultraviolet light from the first light source 12 is reflected by the inner surface of the side wall 30 and travels toward the second end surface wall 40 in the longitudinal direction of the processing chamber 50. Similarly, at least a part of the ultraviolet light from the second light source 14 is reflected by the inner surface of the side wall 30 and travels toward the first end wall 38 in the longitudinal direction of the processing chamber 50.
  • the sterilizer 10 sterilizes the fluid flowing into the processing chamber 50 through the first inflow path 52 and the second inflow path 54 by irradiating the ultraviolet light from the first light source 12 and the second light source 14. Then, the processed fluid is caused to flow out of the outflow path 56. At this time, the fluid flowing in through the first inflow path 52 collides with the side wall 30 and the first end surface wall 38 facing the first inflow port 32, and turbulent in the first end region 58 near the first end surface wall 38. It becomes a state. Similarly, the fluid flowing in through the second inflow path 54 collides with the side wall 30 and the second end surface wall 40 facing the second inflow port 34, and turbulent in the second end region 60 near the second end surface wall 40. It becomes a state.
  • the first light source 12 irradiates ultraviolet light to the fluid that becomes turbulent in the first end region 58
  • the second light source 14 irradiates ultraviolet light to the fluid that becomes turbulent in the second end region 60.
  • the fluid that has flowed into the processing chamber 50 gradually shifts to a laminar flow state toward the central region 62 in the vicinity of the outflow port 36, and flows out of the sterilizer 10 through the outflow port 36 and the outflow path 56. .
  • turbulent flow can be generated in a plurality of regions inside the processing chamber 50 by providing a plurality of inflow ports.
  • a plurality of light sources corresponding to a plurality of turbulent flow generation locations it is possible to irradiate a fluid in a turbulent state with high intensity ultraviolet light.
  • the irradiation efficiency of the ultraviolet light with respect to a fluid can be improved compared with the case where only one inflow port is provided, or the case where a light source is provided in the vicinity of the outflow port which becomes a laminar flow state.
  • turbulent flow is not generated by providing a turbulent flow plate or a turbulent flow generation mechanism in the processing chamber 50, but depending on the position of the inlet leading to the processing chamber 50 and the direction of the inflow path. Since the turbulent flow state is created, the flow path structure 20 can be a simple structure. Therefore, it is possible to increase the irradiation efficiency of the ultraviolet light to the fluid while suppressing an increase in the number of parts and an increase in manufacturing cost due to the provision of the turbulent flow generation mechanism.
  • the ultraviolet light is irradiated from the both end surfaces of the tube-shaped processing chamber 50 in the longitudinal direction of the processing chamber 50, the entire interior of the processing chamber 50 can be irradiated with ultraviolet light. it can. Accordingly, the ultraviolet light can be propagated not only to the end region of the processing chamber 50 in a turbulent state but also to the central region 62 of the processing chamber 50, and the irradiation efficiency of the ultraviolet light to the fluid can be further increased.
  • the cross-sectional area of the processing chamber 50 is larger than the cross-sectional areas of the plurality of inflow passages, the flow rate inside the processing chamber 50 is reduced to reduce the flow rate of the processing chamber 50. Residence time can be lengthened. Moreover, by providing a difference in the water flow cross-sectional area, it is possible to easily generate a turbulent flow state in the vicinity of the inlet. By these actions, the ultraviolet light irradiation efficiency for the fluid can be further increased.
  • the flow path structure 20 desirably has a symmetric shape with the outflow pipe 26 as the center. More specifically, the flow path structure 20 desirably has a shape that is plane-symmetric with respect to a plane that is orthogonal to the longitudinal direction of the processing chamber 50 and that passes through the center position of the outflow pipe 26.
  • the outflow port 36 is provided at a position where the distances from the first end surface wall 38 and the second end surface wall 40 are equal, and the first inflow port 32 and the second inflow port 34 are equal in distance from the outflow port 36.
  • the 1st inflow pipe 22 and the 2nd inflow pipe 24 are formed so that a water flow cross-sectional area may become equal.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the sterilizer 10 according to the modification.
  • This modification is different from the above-described embodiment in that the first inflow passage 52 and the second inflow passage 54 are provided so as to extend in an oblique direction intersecting both the longitudinal direction and the radial direction of the processing chamber 50. .
  • the difference from the above-described embodiment will be mainly described.
  • the first inflow pipe 22 is attached to the first inflow port 32 so as to extend in a direction inclined by an angle ⁇ with respect to the radial direction of the processing chamber 50.
  • the first inflow pipe 22 is attached so that the fluid flowing through the first inflow path 52 toward the processing chamber 50 has a velocity component from the first inflow port 32 toward the first end face wall 38. Accordingly, the first inflow pipe 22 is attached obliquely so that the distance from the outflow pipe 26 decreases as the distance from the housing 28 increases.
  • the fluid flowing into the processing chamber 50 from the first inflow passage 52 easily passes toward the outlet 36 after passing near the first end face wall 38.
  • the vicinity of the first end face wall 38 is a position where the intensity of the ultraviolet light from the first light source 12 is the highest. Therefore, by allowing the fluid to pass closer to the first end face wall 38, Irradiation efficiency can be further increased.
  • the angle ⁇ formed by the radial direction of the processing chamber 50 and the extending direction of the first inflow pipe 22 may be any angle, but is preferably about 5 degrees to 60 degrees, for example, 10 degrees to 45 degrees. It is more preferable to set the degree. By setting such an angle value, it is possible to easily generate turbulent flow in the first end region 58 and to allow the fluid to pass through the vicinity of the first end face wall 38 and then to the outlet 36.
  • the second inflow pipe 24 is attached to the second inflow port 34 so as to extend in a direction inclined with respect to the radial direction of the processing chamber 50, similarly to the first inflow pipe 22.
  • the second inflow pipe 24 is attached so that the fluid flowing through the second inflow path 54 toward the processing chamber 50 has a velocity component from the second inlet 34 toward the second end face wall 40. Therefore, the second inflow pipe 24 is attached obliquely so that the distance from the outflow pipe 26 decreases as the distance from the housing 28 increases.
  • the fluid flowing into the processing chamber 50 from the second inflow path 54 passes through the vicinity of the second end face wall 40 and then goes to the outflow outlet 36 as in the first inflow pipe 22. It becomes easy.
  • the vicinity of the second end face wall 40 is a position where the intensity of the ultraviolet light from the second light source 14 is the highest. Therefore, by allowing the fluid to pass closer to the second end face wall 40, the ultraviolet light with respect to the fluid can be transmitted. Irradiation efficiency can be further increased.
  • the angle formed between the radial direction of the processing chamber 50 and the extending direction of the second inflow pipe 24 may be any angle, but is preferably about 5 to 60 degrees, for example, 10 to 45 degrees. More preferably, it is about. By setting such an angle value, it is possible to easily generate a turbulent flow in the second end region 60 and to allow the fluid to pass through the vicinity of the second end face wall 40 and then to the outlet 36.
  • the inclination angle of the second inflow pipe 24 is preferably the same as the inclination angle of the first inflow pipe 22.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of the sterilizer 10 according to the modification.
  • the first window 42 that transmits ultraviolet light from the first light source 12 and the second window 44 that transmits ultraviolet light from the second light source 14 are provided on the side wall 30. It differs from the form. Hereinafter, the difference from the above-described embodiment will be mainly described.
  • the first window 42 is provided near the first end face wall 38 of the side wall 30, and is provided at a position facing the first inlet 32, for example.
  • the second window 44 is provided near the second end face wall 40 of the side wall 30, for example, at a position corresponding to the second inlet 34.
  • the first light source 12 is disposed in the vicinity of the first window 42 and is disposed so as to irradiate ultraviolet light toward the first end region 58.
  • the second light source 14 is disposed in the vicinity of the second window 44 and is disposed so as to irradiate the second end region 60 with ultraviolet light.
  • turbulent flow is generated in each of the first end region 58 in the vicinity of the first end wall 38 and the second end region 60 in the vicinity of the second end surface wall 40, and the turbulent state Since it is possible to irradiate the fluid with ultraviolet light, the efficiency of irradiating the fluid with ultraviolet light can be increased.
  • the position where the first light source 12 and the second light source 14 are provided may not be a position facing the first inlet 32 and the second inlet 34, and the first inlet 32 and the second inlet 34 may be connected. You may provide in the position where the angle shifted
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the sterilizer 110 according to the second embodiment
  • FIG. 6 is an external perspective view schematically showing the flow channel structure of FIG.
  • the sterilizer 110 according to the present embodiment has the four inflow ports 131 to 134 as shown in FIG. 5, and the four inflow pipes 121 to 124 as shown in FIG. This is different from the embodiment.
  • the difference from the first embodiment will be mainly described.
  • the sterilizer 110 includes a plurality of light sources 111 to 118 and a flow path structure 120.
  • the flow channel structure 120 defines a processing chamber 170, a plurality of inflow channels 171 to 174, and a single outflow channel 176.
  • the sterilizer 110 irradiates the fluid flowing into the processing chamber 170 through the plurality of inflow paths 171 to 174 with ultraviolet light from the plurality of light sources 111 to 118, and the fluid sterilized by the ultraviolet light irradiation from the outflow path 176. Spill.
  • the flow path structure 120 includes a plurality of inflow pipes 121 to 124, one outflow pipe 126, and a housing 140.
  • the housing 140 has a substantially rectangular parallelepiped box shape, and includes a first side wall 141, a second side wall 142, a third side wall 143, a fourth side wall 144, an upper surface wall 146, and a lower surface wall 148. .
  • the direction in which the first side wall 141 and the second side wall 142 face each other is defined as the y direction
  • the direction in which the third side wall 143 and the fourth side wall 144 face each other is defined as the x direction.
  • the direction in which the upper wall 146 and the lower wall 148 face each other is defined as the z direction.
  • these directions are prescribed
  • the top wall 146 is provided with a first inlet 131, a second inlet 132, a third inlet 133, a fourth inlet 134, and an outlet 136.
  • the first inlet 131 is provided in the vicinity of the first corner 161 where the first side wall 141 and the third side wall 143 are in contact
  • the second inlet 132 is the second corner 162 where the first side wall 141 and the fourth side wall 144 are in contact with each other. It is provided in the vicinity.
  • the third inlet 133 is provided in the vicinity of the third corner 163 where the second side wall 142 and the third side wall 143 are in contact
  • the fourth inlet 134 is the fourth corner 164 where the second side wall 142 and the fourth side wall 144 are in contact. It is provided in the vicinity.
  • the outlet 136 is provided near the center of the top wall 146. Therefore, the plurality of inlets 131 to 134 are provided at diagonal positions so as to surround the outlet 136.
  • a plurality of windows 151 to 158 are provided on the side walls 141 to 144 of the housing 140.
  • the first window 151 is provided in the vicinity of the first corner 161 of the first side wall 141
  • the second window 152 is provided in the vicinity of the first corner 161 of the third side wall 143.
  • the third window 153 is provided in the vicinity of the second corner 162 of the first side wall 141
  • the fourth window 154 is provided in the vicinity of the second corner 162 of the fourth side wall 144.
  • the fifth window 155 is provided in the vicinity of the third corner 163 in the second side wall 142
  • the sixth window 156 is provided in the vicinity of the third corner 163 in the third side wall 143.
  • the seventh window 157 is provided in the vicinity of the fourth corner 164 in the second side wall 142
  • the eighth window 158 is provided in the vicinity of the fourth corner 164 in the fourth side wall 144.
  • Each of the plurality of light sources 111 to 118 is provided corresponding to the plurality of windows 151 to 158.
  • the first light source 111 is provided in the vicinity of the first window 151 and is arranged to irradiate ultraviolet light toward the fluid flowing near the first inflow port 131.
  • the second light source 112 is provided in the vicinity of the second window 152 and is arranged to irradiate ultraviolet light toward the fluid flowing near the first inflow port 131.
  • the third light source 113 is provided in the vicinity of the third window 153 and is arranged to irradiate the ultraviolet light toward the fluid flowing near the second inflow port 132.
  • the fourth light source 114 is provided in the vicinity of the fourth window 154 and is arranged to irradiate ultraviolet light toward the fluid flowing near the second inflow port 132.
  • the fifth light source 115 is provided in the vicinity of the fifth window 155 and is arranged so as to irradiate ultraviolet light toward the fluid flowing near the third inflow port 133.
  • the sixth light source 116 is provided in the vicinity of the sixth window 156 and is arranged to irradiate the ultraviolet light toward the fluid flowing near the third inflow port 133.
  • the seventh light source 117 is provided in the vicinity of the seventh window 157 and is arranged to irradiate the ultraviolet light toward the fluid flowing near the fourth inflow port 134.
  • the eighth light source 118 is provided in the vicinity of the eighth window 158 and is arranged to irradiate ultraviolet light toward the fluid flowing near the fourth inlet 134.
  • Each of the plurality of inflow pipes 121 to 124 and the outflow pipe 126 is attached to the housing 140 so as to extend in the z direction orthogonal to the upper surface wall 146.
  • the first inlet pipe 121 is connected to the first inlet 131
  • the second inlet pipe 122 is connected to the second inlet 132
  • the third inlet pipe 123 is connected to the third inlet 133
  • the fourth The inflow pipe 124 is connected to the fourth inflow port 134.
  • Outflow pipe 126 is connected to outlet 136.
  • the plurality of inflow pipes 121 to 124 are configured to have equal water cross sections.
  • the outflow pipe 126 is configured to have a larger water cross-sectional area than the inflow pipes 121 to 124.
  • the sterilization apparatus 110 causes the fluid to be sterilized to flow into the processing chamber 170 through the plurality of inflow paths 171 to 174, thereby generating turbulent flow in the vicinity of the plurality of inlets 131 to 134.
  • the turbulent fluid is irradiated with high-intensity ultraviolet light. To do.
  • the fluid that has been sterilized by irradiation with ultraviolet light flows out of the sterilizer 110 through an outlet 136 and an outlet 176 provided near the center of the processing chamber 170.
  • a turbulent flow is generated in the vicinity of the plurality of corners 161 to 164 of the housing 140, and high intensity ultraviolet light is emitted from the plurality of light sources 111 to 118 disposed in the vicinity of the plurality of corners 161 to 164.
  • Light can be applied to a turbulent fluid. Therefore, similarly to the above-described embodiment, the irradiation efficiency of the ultraviolet light with respect to the fluid inside the processing chamber 170 can be increased.
  • the flow path structure 120 preferably has a symmetrical shape with the outflow pipe 126 as the center.
  • the flow path structure 120 may have a shape that is plane-symmetric with respect to the yz plane passing through the center of the outflow pipe 126, and a shape in which the vicinity of the first corner 161 and the vicinity of the second corner 162 correspond to each other.
  • the vicinity of the third corner 163 and the vicinity of the fourth corner 164 may have a corresponding shape.
  • the flow path structure 120 may have a shape that is plane-symmetric with respect to the xz plane passing through the center of the outflow pipe 126, and the vicinity of the first corner 161 corresponds to the vicinity of the third corner 163.
  • the fluid flowing into the processing chamber 170 through the plurality of inflow paths 171 to 174 can flow out of the outflow path 176 smoothly.
  • the processing chamber 50 has a cylindrical shape
  • the processing chamber may have a prismatic shape, and the shape of both end faces facing in the longitudinal direction may be a triangle, a quadrangle, a hexagon, or an octagon.
  • a case where a plurality of light sources are arranged on the end face of the processing chamber is shown, and in the above-described modification, a case where a plurality of light sources are arranged on the side wall is shown. In a further modification, a plurality of light sources may be arranged on both the end surface and the side wall of the processing chamber.
  • the processing chamber 170 has a rectangular parallelepiped shape.
  • the processing chamber may be formed in a cylindrical shape, or may be formed in a prismatic shape such that the upper wall and the lower wall are triangular, hexagonal, or octagonal.
  • the number of the some inflow path connected to the process chamber 170 is four was shown, the number of the inflow paths connected to a process chamber is not restricted to this, Three may be sufficient, It may be more than a book. In this case, it is desirable to form the flow path structure so that the plurality of inflow paths are symmetrically arranged around the outflow path.
  • the sterilization apparatus has been described as an apparatus for performing sterilization treatment by irradiating a fluid with ultraviolet light.
  • the present sterilization apparatus may be used for a purification process for decomposing organic substances contained in a fluid by irradiation with ultraviolet light.
  • the sterilization ability of the apparatus can be improved using a simple flow path structure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physical Water Treatments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

殺菌装置10は、複数の流入口(第1流入口32,第2流入口34)と、流出口36とを有する処理室50と、処理室50内を流れる流体に紫外光を照射する複数の光源(第1光源12,第2光源14)とを備える。複数の光源(第1光源12,第2光源14)のそれぞれは、流出口36よりも対応する流入口(第1流入口32,第2流入口34)の近くを流れる流体に向けて紫外光を照射するよう配置される。処理室50は、第1端面から第2端面に向けて長手方向に延びる形状を有してもよい。複数の光源は、第1端面に配置される第1光源12と、第2端面に配置される第2光源14とを含んでもよい。

Description

殺菌装置
 本発明は、殺菌装置に関し、特に、流体に紫外光を照射して殺菌する装置に関する。
 紫外光には殺菌能力があることが知られており、医療や食品加工の現場などでの殺菌処理に紫外光を照射する装置が用いられている。また、水などの流体に紫外光を照射することで、流体を連続的に殺菌する装置も用いられている。このような殺菌装置として、例えば、流路の途中に乱流板や乱流発生機構を設けることで液体を乱流状態とし、液体に対する紫外光の照射効率を高めた構造が知られている(例えば、特許文献1、2参照)。
実公平7-33918号公報 特開2014-87544号公報
 乱流板や乱流発生機構を設ける場合、流路の構造が複雑化し、部品点数や製造コストの増加につながってしまう。より単純な流路構造を用いながら紫外光の照射効率を高められる装置であることが好ましい。
 本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、シンプルな流路構造を用いながら殺菌能力を向上できる殺菌装置を提供することにある。
 本発明のある態様の殺菌装置は、複数の流入口と、流出口とを有する処理室と、処理室内を流れる流体に紫外光を照射する複数の光源と、を備える。複数の光源のそれぞれは、流出口よりも対応する流入口の近くを流れる流体に向けて紫外光を照射するよう配置される。
 この態様によると、処理室に複数の流入口が設けられるため、処理室への流入によって乱流状態となる場所を処理室内に複数設けることができる。また、乱流状態となる流入口の近くを流れる流体に紫外光を照射するように光源を配置するため、流体に対する紫外光の照射効率を高めることができる。このように、複数の流入口と、それぞれの流入口に対応して配置される複数の紫外光源とを組み合わせることで、処理室内の流体に対する紫外光の照射効率を高めて、殺菌能力を向上させることができる。
 処理室は、第1端面から第2端面に向けて長手方向に延びる形状を有してもよい。複数の光源は、第1端面に配置される第1光源と、第2端面に配置される第2光源と、を含んでもよい。
 複数の流入口は、第1端面の近傍に設けられる第1流入口と、第2端面の近傍に設けられる第2流入口と、を含んでもよい。流出口は、第1流入口と第2流入口の間に設けられてもよい。
 複数の流入口のそれぞれに接続され、処理室の長手方向と交差する方向に延びる複数の流入路をさらに備えてもよい。
 複数の流入路は、処理室の長手方向と直交する方向に延びてもよい。
 複数の流入路は、第1流入口に接続される第1流入路と、第2流入口に接続される第2流入路と、を含んでもよい。第1流入路は、第1流入路を通って処理室へ向かう流体が第1流入口から第1端面へ向かう速度成分を有するように、処理室の長手方向および長手方向と直交する方向の双方と交差する方向に延び、第2流入路は、第2流入路を通って処理室へ向かう流体が第2流入口から第2端面へ向かう速度成分を有するように、処理室の長手方向および長手方向と直交する方向の双方と交差する方向に延びてもよい。
 流出口は、第1端面および第2端面からの距離が等しい位置に設けられ、第1流入口および第2流入口は、流出口からの距離が等しい位置に設けられてもよい。
 本発明の殺菌装置によれば、シンプルな流路構造を用いて装置の殺菌能力を向上させることができる。
第1の実施の形態に係る殺菌装置の構成を概略的に示す断面図である。 図1の流路構造を概略的に示す外観斜視図である。 変形例に係る殺菌装置の構成を概略的に示す断面図である。 変形例に係る殺菌装置の構成を概略的に示す断面図である。 第2の実施の形態に係る殺菌装置の構成を概略的に示す断面図である。 図5の流路構造を概略的に示す外観斜視図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
(第1の実施の形態)
 図1は、実施の形態に係る殺菌装置10の構成を概略的に示す図であり、図2は、図1の流路構造20を概略的に示す外観斜視図である。殺菌装置10は、複数の光源(第1光源12、第2光源14)と、流路構造20とを備える。流路構造20は、処理室50と、複数の流入路(第1流入路52、第2流入路54)と、流出路56とを区画する。殺菌装置10は、第1流入路52または第2流入路54を通じて処理室50に流入する流体に対して第1光源12および第2光源14からの紫外光を照射し、紫外光照射によって殺菌された流体を流出路56から流出させる。
 流路構造20は、第1流入管22と、第2流入管24と、流出管26と、筐体28とを有する。流路構造20は、金属材料や樹脂材料で構成される。流路構造20は、紫外光に対する耐久性が高く、紫外光の反射率の高い部材で構成される。流路構造20は、例えば、アルミニウム(Al)や、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂で構成される。特に、第1光源12および第2光源14からの紫外光が直接照射される筐体28の内壁面にこれらの材料を用いることが望ましい。
 筐体28は、側壁30と、第1端面壁38と、第2端面壁40とを有する。側壁30は、図2に示されるような円筒形状を有し、第1端面壁38から第2端面壁40に向けて長手方向に延在する。側壁30の両端部には、第1端面壁38および第2端面壁40が設けられる。筐体28は、側壁30と、第1端面壁38と、第2端面壁40とにより処理室50を区画する。したがって、処理室50は、筐体28に囲われた長手方向に延在する円柱形状の空間となる。処理室50は、第1流入路52や第2流入路54と比べて通水断面積が大きくなるように形成される。
 第1端面壁38には、第1光源12からの紫外光を透過させるための第1窓42が設けられる。第2端面壁40には、第2光源14からの紫外光を透過させるための第2窓44が設けられる。第1窓42および第2窓44は、例えば、石英(SiO)やサファイア(Al)、非晶質のフッ素系樹脂などの紫外光の透過率が高い部材で構成される。
 側壁30には、第1流入口32と、第2流入口34と、流出口36とが設けられる。第1流入口32は、第1端面壁38の近傍に設けられ、第2流入口34は、第2端面壁40の近傍に設けられる。流出口36は、第1流入口32と第2流入口34の間の位置に設けられ、好ましくは、第1流入口32と第2流入口34のちょうど中間の位置に設けられる。
 第1流入管22は、第1流入口32に接続され、第2流入管24は、第2流入口34に接続されている。第1流入管22および第2流入管24は、筐体28の長手方向と交差する方向に延びており、図示されるように、長手方向と直交する径方向に延びている。第1流入管22および第2流入管24は、それぞれ別の流体源に接続されてもよいし、共通の流体源からの配管が分岐されて接続されてもよい。流出管26は、流出口36に接続され、流入管と同様に、筐体28の長手方向と直交する径方向に延びている。
 第1光源12および第2光源14は、紫外光を発するLED(Light Emitting Diode)を有し、その中心波長またはピーク波長が約200nm~350nmの範囲に含まれる。第1光源12および第2光源14は、殺菌効率の高い波長である260nm~270nm付近の紫外光を発するLEDを有することが好ましい。このような紫外光LEDとして、例えば、窒化アルミニウムガリウム(AlGaN)を用いたものが知られている。
 第1光源12は、第1端面壁38の近くに配置され、第1窓42を通じて処理室50の内部に向けて紫外光を照射する。第2光源14は、第2端面壁40の近くに配置され、第2窓44を通じて処理室50の内部に向けて紫外光を照射する。第1光源12からの紫外光は、その少なくとも一部が側壁30の内面で反射され、処理室50の長手方向に第2端面壁40へ向かって進む。同様に、第2光源14からの紫外光は、その少なくとも一部が側壁30の内面で反射され、処理室50の長手方向に第1端面壁38へ向かって進む。
 以上の構成により、殺菌装置10は、第1流入路52および第2流入路54を通じて処理室50に流入する流体に対して第1光源12および第2光源14からの紫外光を照射して殺菌し、処理後の流体を流出路56から流出させる。このとき、第1流入路52を通じて流入する流体は、第1流入口32と対向する側壁30や第1端面壁38にぶつかり、第1端面壁38の近傍の第1端部領域58において乱流状態となる。同様に、第2流入路54を通じて流入する流体は、第2流入口34と対向する側壁30や第2端面壁40にぶつかり、第2端面壁40の近傍の第2端部領域60において乱流状態となる。第1光源12は、第1端部領域58において乱流状態となる流体に紫外光を照射し、第2光源14は、第2端部領域60において乱流状態となる流体に紫外光を照射する。処理室50に流入した流体は、流出口36の近傍の中央領域62に向かって徐々に層流状態へと移行し、流出口36および流出路56を介して、殺菌装置10の外へ流出する。
 本実施の形態によれば、複数の流入口を設けることで、処理室50の内部の複数の領域で乱流を発生させることができる。また、複数の乱流発生箇所に対応させて複数の光源を配置することで、乱流状態となる流体に強度の高い紫外光を照射できる。これにより、流入口を一つだけ設ける場合や、層流状態となる流出口の近傍に光源を設ける場合と比べて、流体に対する紫外光の照射効率を高めることができる。
 本実施の形態によれば、処理室50の内部に乱流板や乱流発生機構を設けることで乱流を発生させるのではなく、処理室50につながる流入口の位置や流入路の向きによって乱流状態を作り出しているため、流路構造20をシンプルな構造とすることができる。したがって、乱流発生機構を設けることによる部品点数の増加や製造コストの上昇を抑えつつ、流体に対する紫外光の照射効率を高めることができる。
 本実施の形態によれば、チューブ形状の処理室50の両端面から処理室50の長手方向に紫外光を照射する構成としているため、処理室50の内部の全体にわたって紫外光を照射させることができる。したがって、乱流状態となる処理室50の端部領域だけではなく、処理室50の中央領域62にまで紫外光を伝播させることができ、流体に対する紫外光の照射効率をより高めることができる。
 本実施の形態によれば、複数の流入路の通水断面積よりも処理室50の通水断面積を大きくしているため、処理室50の内部での流速を低下させて処理室50の滞留時間を長くすることができる。また、通水断面積に差を設けることで、流入口の近傍において乱流状態を発生させやすくすることができる。これらの作用により、流体に対する紫外光照射効率をより高めることができる。
 なお、流路構造20は、流出管26を中心として対称となる形状を有することが望ましい。より具体的には、流路構造20は、処理室50の長手方向に直交する平面であって流出管26の中心の位置を通る平面に対して、面対称となる形状を有することが望ましい。この場合、流出口36は、第1端面壁38および第2端面壁40からの距離が等しい位置に設けられ、第1流入口32および第2流入口34は、流出口36からの距離が等しい位置に設けられる。また、第1流入管22および第2流入管24は、通水断面積が等しくなるように形成される。このような対称構造を採用することにより、第1流入管22および第2流入管24から流入する流体の流れを均一化し、処理された流体を流出管26からスムーズに流出させることができる。
 (変形例1)
 図3は、変形例に係る殺菌装置10の構成を概略的に示す断面図である。本変形例は、第1流入路52および第2流入路54が処理室50の長手方向および径方向の双方と交差する斜めの方向に延びるよう設けられている点で上述の実施の形態と異なる。以下、上述の実施の形態との相違点を中心に説明する。
 第1流入管22は、処理室50の径方向に対して角度θだけ傾いた方向に延びるようにして第1流入口32に取り付けられている。第1流入管22は、第1流入路52を通って処理室50に向かう流体が第1流入口32から第1端面壁38に向かう速度成分を有するように取り付けられている。したがって、第1流入管22は、筐体28から離れるにしたがって流出管26との距離が小さくなるようにして斜めに取り付けられている。
 第1流入管22を斜めに取り付けることにより、第1流入路52から処理室50に流入する流体が第1端面壁38の近くを通ってから流出口36に向かいやすくなる。第1端面壁38の近傍は、第1光源12からの紫外光強度が最も高い位置であるため、第1端面壁38のより近くを流体が通過するようにすることで、流体に対する紫外光の照射効率をより高めることができる。
 処理室50の径方向と第1流入管22の延在方向とのなす角度θは、任意の角度であってもよいが、例えば5度~60度程度とすることが望ましく、10度~45度程度とすることがより好ましい。このような角度値にすることで、第1端部領域58において乱流を生じさせやすくするとともに、流体を第1端面壁38の近傍を通過させてから流出口36に向かわせることができる。
 第2流入管24は、第1流入管22と同様に、処理室50の径方向に対して傾いた方向に延びるようにして第2流入口34に取り付けられている。第2流入管24は、第2流入路54を通って処理室50に向かう流体が第2流入口34から第2端面壁40に向かう速度成分を有するように取り付けられている。したがって、第2流入管24は、筐体28から離れるにしたがって流出管26との距離が小さくなるようにして斜めに取り付けられている。
 第2流入管24を斜めに取り付けることにより、第1流入管22と同様、第2流入路54から処理室50に流入する流体が第2端面壁40の近くを通ってから流出口36に向かいやすくなる。第2端面壁40の近傍は、第2光源14からの紫外光強度が最も高い位置であるため、第2端面壁40のより近くを流体が通過するようにすることで、流体に対する紫外光の照射効率をより高めることができる。
 処理室50の径方向と第2流入管24の延在方向とのなす角度は、任意の角度であってもよいが、例えば5度~60度程度とすることが望ましく、10度~45度程度とすることがより好ましい。このような角度値にすることで、第2端部領域60において乱流を生じさせやすくするとともに、流体を第2端面壁40の近傍を通過させてから流出口36に向かわせることができる。なお、第2流入管24の傾斜角は、第1流入管22の傾斜角と同じ角度にすることが望ましい。
 (変形例2)
 図4は、変形例に係る殺菌装置10の構成を模式的に示す断面図である。本変形例は、第1光源12からの紫外光を透過させる第1窓42と、第2光源14からの紫外光を透過させる第2窓44とが側壁30に設けられる点で上述の実施の形態と相違する。以下、上述の実施の形態との相違点を中心に説明する。
 第1窓42は、側壁30の第1端面壁38の近くに設けられ、例えば、第1流入口32と対向する位置に設けられる。第2窓44は、側壁30の第2端面壁40の近くに設けられ、例えば、第2流入口34と対応する位置に設けられる。第1光源12は、第1窓42の近傍に配置され、第1端部領域58に向けて紫外光を照射するように配置される。第2光源14は、第2窓44の近傍に配置され、第2端部領域60に向けて紫外光を照射するように配置される。
 本変形例においても、第1端面壁38の近傍の第1端部領域58と、第2端面壁40の近傍の第2端部領域60のそれぞれにて乱流を発生させるとともに、乱流状態の流体に向けて紫外光を照射できるため、流体に対する紫外光照射効率を高めることができる。なお、第1光源12や第2光源14の設けられる位置は、第1流入口32や第2流入口34と対向する位置でなくてもよく、第1流入口32や第2流入口34と周方向に角度がずれた位置に設けられてもよい。
 (第2の実施の形態)
 図5は、第2の実施の形態に係る殺菌装置110の構成を概略的に示す断面図であり、図6は、図5の流路構造を概略的に示す外観斜視図である。本実施の形態に係る殺菌装置110は、図5に示されるように四つの流入口131~134を有し、図6に示されるように四本の流入管121~124を有する点で上述の実施の形態と相違する。以下、第1の実施の形態との相違点を中心に説明する。
 殺菌装置110は、複数の光源111~118と、流路構造120とを備える。流路構造120は、処理室170と、複数の流入路171~174と、一つの流出路176とを区画する。殺菌装置110は、複数の流入路171~174を通じて処理室170に流入する流体に対して複数の光源111~118からの紫外光を照射し、紫外光照射により殺菌された流体を流出路176から流出させる。
 流路構造120は、複数の流入管121~124と、一つの流出管126と、筐体140とを有する。筐体140は、略直方体の箱形形状を有し、第1側壁141と、第2側壁142と、第3側壁143と、第4側壁144と、上面壁146と、下面壁148とを有する。本実施の形態に係る説明において、第1側壁141と第2側壁142が対向する方向をy方向とし、第3側壁143と第4側壁144が対向する方向をx方向とする。また、上面壁146と下面壁148が対向する方向をz方向とする。なお、これらの方向は、殺菌装置110の構造の理解を助けるために規定されるものであり、殺菌装置110が使用される際の方向を規定するものではない。
 上面壁146には、第1流入口131と、第2流入口132と、第3流入口133と、第4流入口134と、流出口136とが設けられる。第1流入口131は、第1側壁141と第3側壁143が接する第1コーナ161の近傍に設けられ、第2流入口132は、第1側壁141と第4側壁144が接する第2コーナ162の近傍に設けられる。第3流入口133は、第2側壁142と第3側壁143が接する第3コーナ163の近傍に設けられ、第4流入口134は、第2側壁142と第4側壁144が接する第4コーナ164の近傍に設けられる。流出口136は、上面壁146の中央付近に設けられる。したがって、複数の流入口131~134は、流出口136を囲むようにして対角の位置にそれぞれ設けられる。
 筐体140の側壁141~144には、複数の窓151~158が設けられる。第1窓151は、第1側壁141のうち第1コーナ161の近傍に設けられ、第2窓152は、第3側壁143のうち第1コーナ161の近傍に設けられる。第3窓153は、第1側壁141のうち第2コーナ162の近傍に設けられ、第4窓154は、第4側壁144のうち第2コーナ162の近傍に設けられる。第5窓155は、第2側壁142のうち第3コーナ163の近傍に設けられ、第6窓156は、第3側壁143のうち第3コーナ163の近傍に設けられる。第7窓157は、第2側壁142のうち第4コーナ164の近傍に設けられ、第8窓158は、第4側壁144のうち第4コーナ164の近傍に設けられる。
 複数の光源111~118のそれぞれは、複数の窓151~158に対応して設けられる。第1光源111は、第1窓151に近接して設けられ、第1流入口131の近くを流れる流体に向けて紫外光を照射するよう配置される。第2光源112は、第2窓152に近接して設けられ、第1流入口131の近くを流れる流体に向けて紫外光を照射するよう配置される。第3光源113は、第3窓153に近接して設けられ、第2流入口132の近くを流れる流体に向けて紫外光を照射するよう配置される。第4光源114は、第4窓154に近接して設けられ、第2流入口132の近くを流れる流体に向けて紫外光を照射するよう配置される。第5光源115は、第5窓155に近接して設けられ、第3流入口133の近くを流れる流体に向けて紫外光を照射するよう配置される。第6光源116は、第6窓156に近接して設けられ、第3流入口133の近くを流れる流体に向けて紫外光を照射するよう配置される。第7光源117は、第7窓157に近接して設けられ、第4流入口134の近くを流れる流体に向けて紫外光を照射するよう配置される。第8光源118は、第8窓158に近接して設けられ、第4流入口134の近くを流れる流体に向けて紫外光を照射するよう配置される。
 複数の流入管121~124および流出管126のそれぞれは、上面壁146と直交するz方向に延びるようにして筐体140に取り付けられる。第1流入管121は、第1流入口131に接続され、第2流入管122は、第2流入口132に接続され、第3流入管123は、第3流入口133に接続され、第4流入管124は、第4流入口134に接続される。流出管126は、流出口136に接続される。複数の流入管121~124は、それぞれ通水断面積が等しくなるように構成される。一方、流出管126は、流入管121~124と比べて通水断面積が大きくなるように構成される。
 以上の構成によれば、殺菌装置110は、殺菌処理の対象となる流体を複数の流入路171~174を通じて処理室170に流入させて、複数の流入口131~134の近傍において乱流を生じさせる。また、複数の光源111~118からの紫外光を複数の流入口131~134の近傍を流れる流体に向けて照射させることにより、乱流状態の流体に強度の高い紫外光が照射されるようにする。紫外光の照射により殺菌処理が施された流体は、処理室170の中央付近に設けられる流出口136および流出路176を通じて殺菌装置110の外へ流出する。
 本実施の形態によれば、筐体140の複数のコーナ161~164の近傍において乱流を生じさせるとともに、複数のコーナ161~164の近傍に配置した複数の光源111~118から強度の高い紫外光を乱流状態の流体に照射することができる。したがって、上述の実施の形態と同様、処理室170の内部の流体に対する紫外光の照射効率を高めることができる。
 なお、流路構造120は、流出管126を中心として対称となる形状となることが望ましい。例えば、流路構造120は、流出管126の中心を通るyz平面に対して面対称となる形状を有してもよく、第1コーナ161の近傍と第2コーナ162の近傍とが対応する形状を有し、第3コーナ163の近傍と第4コーナ164の近傍とが対応する形状を有してもよい。同様に、流路構造120は、流出管126の中心を通るxz平面に対して面対称となる形状を有してもよく、第1コーナ161の近傍と第3コーナ163の近傍とが対応する形状を有し、第2コーナ162の近傍と第4コーナ164の近傍とが対応する形状を有してもよい。流路構造120を対称構造とすることで、複数の流入路171~174を通じて処理室170に流れ込む流体をスムーズに流出路176から流出させることができる。
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
 上述の第1の実施の形態では、処理室50が円柱形状となる場合について示した。さらなる変形例においては、処理室を角柱形状としてもよく、長手方向に対向する両端面の形状が三角形、四角形、六角形、八角形となるようにしてもよい。
 上述の第1の実施の形態では、複数の光源が処理室の端面に配置される場合について示し、上述の変形例では、複数の光源が側壁に配置される場合について示した。さらなる変形例においては、複数の光源を処理室の端面と側壁の双方に配置することとしてもよい。
 上述の第2の実施の形態では、処理室170が直方体形状となる場合について示した。さらなる変形例においては、処理室を円柱形状にしてもよいし、上面壁および下面壁が三角形、六角形または八角形となるような角柱形状にしてもよい。また、処理室170に接続される複数の流入路の本数が4本の場合を示したが、処理室に接続される流入路の本数はこれに限られず、3本にしてもよいし、5本以上としてもよい。この場合、複数の流入路が流出路を中心として対称配置となるように流路構造を形成することが望ましい。
 上述の実施の形態に係る殺菌装置は、流体に紫外光を照射して殺菌処理を施すための装置として説明した。変形例においては、紫外光の照射により流体に含まれる有機物を分解させる浄化処理に本殺菌装置を用いてもよい。
 10…殺菌装置、12…第1光源、14…第2光源、32…第1流入口、34…第2流入口、36…流出口、38…第1端面壁、40…第2端面壁、50…処理室、52…第1流入路、54…第2流入路。
 本発明の殺菌装置によれば、シンプルな流路構造を用いて装置の殺菌能力を向上させることができる。

Claims (7)

  1.  複数の流入口と、流出口とを有する処理室と、
     前記処理室内を流れる流体に紫外光を照射する複数の光源と、を備え、
     前記複数の光源のそれぞれは、前記流出口よりも対応する流入口の近くを流れる流体に向けて紫外光を照射するよう配置されることを特徴とする殺菌装置。
  2.  前記処理室は、第1端面から第2端面に向けて長手方向に延びる形状を有し、
     前記複数の光源は、前記第1端面に配置される第1光源と、前記第2端面に配置される第2光源と、を含むことを特徴とする請求項1に記載の殺菌装置。
  3.  前記複数の流入口は、前記第1端面の近傍に設けられる第1流入口と、前記第2端面の近傍に設けられる第2流入口と、を含み、
     前記流出口は、前記第1流入口と前記第2流入口の間に設けられることを特徴とする請求項2に記載の殺菌装置。
  4.  前記複数の流入口のそれぞれに接続され、前記処理室の長手方向と交差する方向に延びる複数の流入路をさらに備えることを特徴とする請求項3に記載の殺菌装置。
  5.  前記複数の流入路は、前記処理室の長手方向と直交する方向に延びることを特徴とする請求項4に記載の殺菌装置。
  6.  前記複数の流入路は、前記第1流入口に接続される第1流入路と、前記第2流入口に接続される第2流入路と、を含み、
     前記第1流入路は、前記第1流入路を通って前記処理室へ向かう流体が前記第1流入口から前記第1端面へ向かう速度成分を有するように、前記処理室の長手方向および前記長手方向と直交する方向の双方と交差する方向に延び、
     前記第2流入路は、前記第2流入路を通って前記処理室へ向かう流体が前記第2流入口から前記第2端面へ向かう速度成分を有するように、前記処理室の長手方向および前記長手方向と直交する方向の双方と交差する方向に延びることを特徴とする請求項4に記載の殺菌装置。
  7.  前記流出口は、前記第1端面および前記第2端面からの距離が等しい位置に設けられ、
     前記第1流入口および前記第2流入口は、前記流出口からの距離が等しい位置に設けられることを特徴とする請求項3から6のいずれか一項に記載の殺菌装置。
PCT/JP2016/075191 2015-09-07 2016-08-29 殺菌装置 WO2017043355A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680040767.4A CN109069674A (zh) 2015-09-07 2016-08-29 杀菌装置
US15/873,394 US20180140729A1 (en) 2015-09-07 2018-01-17 Sterilization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015176157A JP6571460B2 (ja) 2015-09-07 2015-09-07 殺菌装置
JP2015-176157 2015-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/873,394 Continuation US20180140729A1 (en) 2015-09-07 2018-01-17 Sterilization device

Publications (1)

Publication Number Publication Date
WO2017043355A1 true WO2017043355A1 (ja) 2017-03-16

Family

ID=58239651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075191 WO2017043355A1 (ja) 2015-09-07 2016-08-29 殺菌装置

Country Status (5)

Country Link
US (1) US20180140729A1 (ja)
JP (1) JP6571460B2 (ja)
CN (1) CN109069674A (ja)
TW (1) TWI679032B (ja)
WO (1) WO2017043355A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221733A1 (ja) * 2016-06-22 2017-12-28 野村マイクロ・サイエンス株式会社 紫外線殺菌装置、紫外線殺菌方法及び超純水製造システム
EP3363468A4 (en) * 2015-10-13 2019-07-24 Nikkiso Co., Ltd. FLUID STERILIZATION DEVICE AND FLUID STERILIZATION PROCESS
WO2019185829A1 (de) * 2018-03-28 2019-10-03 Bwt Ag Verfahren zum aufbereiten von trinkwasser, uv-desinfektionsanlage sowie wasserspender
CN110944679A (zh) * 2017-05-26 2020-03-31 阿库瓦技术有限公司 流体消毒设备和方法
US11312642B2 (en) 2017-03-31 2022-04-26 Industrial Technology Research Institute Fluid sterilizing device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6559577B2 (ja) * 2016-01-06 2019-08-14 日機装株式会社 流体殺菌装置及び流体殺菌方法
JP6404404B1 (ja) * 2017-06-06 2018-10-10 日機装株式会社 流体殺菌装置
JP7048412B2 (ja) * 2018-05-23 2022-04-05 スタンレー電気株式会社 流体殺菌装置
KR20200049434A (ko) * 2018-10-29 2020-05-08 서울바이오시스 주식회사 유체 처리 모듈
WO2020091318A1 (ko) * 2018-10-29 2020-05-07 서울바이오시스 주식회사 유체 처리 모듈
EP4005668A4 (en) * 2019-07-31 2022-09-14 Asahi Kasei Kabushiki Kaisha ULTRAVIOLET IRRADIATION APPARATUS AND ULTRAVIOLET IRRADIATION METHOD
US10981807B1 (en) * 2019-10-08 2021-04-20 Bolb Inc. Disinfecting fluid using disinfection light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141686A (en) * 1977-03-24 1979-02-27 Lewis James H Disposable liquid sterilizer unit
JP2009045517A (ja) * 2007-08-14 2009-03-05 Toshiba Corp 紫外線照射水処理装置
JP2010264238A (ja) * 2009-05-18 2010-11-25 Dental Equipment Llc Dba Pelton & Crane 消毒反応器を備えた歯科用ハンドツール
WO2014058011A1 (ja) * 2012-10-10 2014-04-17 イーグル工業株式会社 殺菌装置
WO2014187523A1 (en) * 2013-05-22 2014-11-27 Merck Patent Gmbh Biocidal purification reactor
JP2014233712A (ja) * 2013-06-05 2014-12-15 Ckd株式会社 紫外線殺菌装置
US20150129776A1 (en) * 2013-11-08 2015-05-14 Mag Aerospace Industries, Llc Point of use water treatment device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447721B1 (en) * 2000-07-31 2002-09-10 Remotelight, Inc. Drinking water UV disinfection system and method
CN2699886Y (zh) * 2004-03-04 2005-05-18 中国农业大学 湍流式紫外线杀菌消毒装置
EP2344353B1 (de) * 2008-11-05 2014-08-20 Johnson Controls GmbH Luftreinigungssystem für fahrzeuge
US9802840B2 (en) * 2013-07-08 2017-10-31 Sensor Electronic Technology, Inc. Ultraviolet water disinfection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141686A (en) * 1977-03-24 1979-02-27 Lewis James H Disposable liquid sterilizer unit
JP2009045517A (ja) * 2007-08-14 2009-03-05 Toshiba Corp 紫外線照射水処理装置
JP2010264238A (ja) * 2009-05-18 2010-11-25 Dental Equipment Llc Dba Pelton & Crane 消毒反応器を備えた歯科用ハンドツール
WO2014058011A1 (ja) * 2012-10-10 2014-04-17 イーグル工業株式会社 殺菌装置
WO2014187523A1 (en) * 2013-05-22 2014-11-27 Merck Patent Gmbh Biocidal purification reactor
JP2014233712A (ja) * 2013-06-05 2014-12-15 Ckd株式会社 紫外線殺菌装置
US20150129776A1 (en) * 2013-11-08 2015-05-14 Mag Aerospace Industries, Llc Point of use water treatment device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3363468A4 (en) * 2015-10-13 2019-07-24 Nikkiso Co., Ltd. FLUID STERILIZATION DEVICE AND FLUID STERILIZATION PROCESS
WO2017221733A1 (ja) * 2016-06-22 2017-12-28 野村マイクロ・サイエンス株式会社 紫外線殺菌装置、紫外線殺菌方法及び超純水製造システム
JP2017225925A (ja) * 2016-06-22 2017-12-28 野村マイクロ・サイエンス株式会社 紫外線殺菌装置、紫外線殺菌方法及び超純水製造システム
US11312642B2 (en) 2017-03-31 2022-04-26 Industrial Technology Research Institute Fluid sterilizing device
CN110944679A (zh) * 2017-05-26 2020-03-31 阿库瓦技术有限公司 流体消毒设备和方法
EP3630205A4 (en) * 2017-05-26 2021-02-24 Acuva Technologies Inc. LIQUID DISINFECTING DEVICE AND PROCEDURE
WO2019185829A1 (de) * 2018-03-28 2019-10-03 Bwt Ag Verfahren zum aufbereiten von trinkwasser, uv-desinfektionsanlage sowie wasserspender

Also Published As

Publication number Publication date
TW201716090A (zh) 2017-05-16
US20180140729A1 (en) 2018-05-24
JP6571460B2 (ja) 2019-09-04
CN109069674A (zh) 2018-12-21
TWI679032B (zh) 2019-12-11
JP2017051289A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6571460B2 (ja) 殺菌装置
JP6530681B2 (ja) 殺菌装置
WO2017064950A1 (ja) 流体殺菌装置および流体殺菌方法
CN108472396B (zh) 流体杀菌装置
JP6373792B2 (ja) 殺菌装置
WO2017077767A1 (ja) 流体殺菌装置
US20160185623A1 (en) Ultraviolet sterilization device
WO2015046014A1 (ja) 紫外線殺菌装置
WO2018074359A1 (ja) 紫外光照射装置
WO2017038764A1 (ja) 殺菌装置
WO2018037938A1 (ja) 流水殺菌装置および流水殺菌方法
JP6654888B2 (ja) 流体殺菌装置
JP6936644B2 (ja) 流体殺菌装置
JP6676749B2 (ja) Uv放射が照射される液状の媒質を基板に塗布するための装置
JP7071144B2 (ja) 紫外線殺菌装置および紫外線照射装置
JP6236629B2 (ja) 流体用uv殺菌装置
WO2021070350A1 (ja) 紫外線殺菌装置および紫外線照射装置
JP2018528471A (ja) Uv放射が照射される液状の媒質を基板に塗布するための装置
WO2020183767A1 (ja) 紫外線殺菌装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844216

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844216

Country of ref document: EP

Kind code of ref document: A1