WO2017064950A1 - 流体殺菌装置および流体殺菌方法 - Google Patents
流体殺菌装置および流体殺菌方法 Download PDFInfo
- Publication number
- WO2017064950A1 WO2017064950A1 PCT/JP2016/076422 JP2016076422W WO2017064950A1 WO 2017064950 A1 WO2017064950 A1 WO 2017064950A1 JP 2016076422 W JP2016076422 W JP 2016076422W WO 2017064950 A1 WO2017064950 A1 WO 2017064950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- ultraviolet light
- longitudinal direction
- flow path
- straight pipe
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 118
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 35
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 13
- 238000010030 laminating Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 description 11
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3222—Units using UV-light emitting diodes [LED]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3227—Units with two or more lamps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/32—Details relating to UV-irradiation devices
- C02F2201/322—Lamp arrangement
- C02F2201/3228—Units having reflectors, e.g. coatings, baffles, plates, mirrors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/02—Fluid flow conditions
- C02F2301/022—Laminar
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Definitions
- the present invention relates to a fluid sterilization apparatus and a fluid sterilization method, and more particularly to a technique for sterilizing a fluid by irradiating ultraviolet light.
- ultraviolet light has a sterilizing ability
- an apparatus for irradiating ultraviolet light is used for sterilization treatment at medical or food processing sites.
- an apparatus for continuously sterilizing a fluid by irradiating a fluid such as water with ultraviolet light is also used.
- a device in which an ultraviolet LED is arranged on the inner wall of a pipe end of a flow path formed of a straight tubular metal pipe can be cited (for example, see Patent Document 1).
- the present invention has been made in view of these problems, and one of the exemplary purposes thereof is to provide a fluid sterilization apparatus that improves the irradiation efficiency of ultraviolet light to the fluid flowing through the flow path.
- a fluid sterilization apparatus includes a straight pipe that forms a flow path extending in a longitudinal direction, and a light source that irradiates ultraviolet light in the longitudinal direction toward a fluid that flows in a laminar flow through the flow path.
- the light source has a light emitting element that emits ultraviolet light, and irradiates the ultraviolet light so that the ultraviolet light intensity in the vicinity of the center is higher than the ultraviolet light intensity in the vicinity of the cross section of the flow path perpendicular to the longitudinal direction.
- the sterilization efficiency can be increased as compared with the case where the ultraviolet light is irradiated to the turbulent fluid.
- the sterilization efficiency is about 7 times higher in the laminar flow state than in the turbulent flow state.
- the laminar flow fluid has a velocity distribution near the center where the flow velocity is fast and the velocity near the inner wall of the pipe is slow, so by increasing the ultraviolet light intensity near the center according to the velocity distribution, Sterilization efficiency can be improved by effectively irradiating the fluid flowing in the flow path with ultraviolet light.
- the straight pipe may have a first end provided with an inflow port through which a fluid flows in in the longitudinal direction, and a second end opposite to the first end.
- the light source may be disposed at the second end.
- the light source and the inlet may be disposed on the central axis of the straight pipe.
- the straight pipe may have an outflow port that is provided at the second end and allows the fluid to flow out in a direction crossing the longitudinal direction.
- the straight pipe may be provided at the second end, and may have an outlet that allows the fluid to flow out in the longitudinal direction.
- the light source may have a plurality of light emitting elements arranged to surround the outlet. The plurality of light emitting elements may irradiate ultraviolet light in the longitudinal direction toward the fluid flowing through the flow path.
- a rectifying plate for laminating the fluid flowing through the flow path may be further provided.
- Another aspect of the present invention is a fluid sterilization method.
- This method creates a laminar fluid flow inside a straight pipe that forms a channel extending in the longitudinal direction, and the ultraviolet light intensity near the center in the cross section of the channel perpendicular to the longitudinal direction is the surrounding ultraviolet light.
- Ultraviolet light is irradiated in the longitudinal direction toward the fluid flowing in a laminar flow state so that the intensity distribution is higher than the light intensity.
- the sterilization efficiency can be increased as compared with the case where the ultraviolet light is irradiated to the turbulent fluid.
- the laminar flow fluid has a velocity distribution near the center where the flow velocity is fast and the velocity near the inner wall of the pipe is slow, so by increasing the ultraviolet light intensity near the center according to the velocity distribution, Sterilization efficiency can be improved by effectively irradiating the fluid flowing in the flow path with ultraviolet light.
- the present invention it is possible to improve the sterilization ability by increasing the irradiation efficiency of ultraviolet light to the fluid flowing through the flow path.
- FIG. 1 is a diagram schematically showing a configuration of a fluid sterilization apparatus 10 according to the first embodiment.
- the fluid sterilizer 10 includes a straight tube 20, an outflow tube 30, and a light source 40.
- the light source 40 is disposed at the end portion (second end portion 22) of the straight tube 20 and irradiates ultraviolet light toward the inside of the straight tube 20.
- the fluid sterilizer 10 is used for sterilizing a fluid such as water flowing inside the straight pipe 20 by irradiating it with ultraviolet light.
- the straight pipe 20 includes a first end portion 21, a second end portion 22, a first flange 26, and a window portion 28.
- the straight pipe 20 extends in the longitudinal direction from the first end 21 toward the second end 22.
- the first end 21 is provided with an inflow port 23 for allowing fluid to flow in the longitudinal direction of the straight pipe 20 and a first flange 26 for connecting the inflow port 23 to other piping or the like.
- the second end portion 22 is provided with a window portion 28 for transmitting ultraviolet light from the light source 40.
- Window 28 of quartz (SiO 2), sapphire (Al 2 O 3), ultraviolet light transmittance, such as amorphous fluororesin is constituted by a high member.
- the second end portion 22 is provided with an outlet 24 through which fluid flows out in a direction intersecting or orthogonal to the longitudinal direction of the straight pipe 20.
- the outlet 24 is provided on the side wall of the straight pipe 20, and the outlet pipe 30 is attached to the outlet 24.
- One end of the outflow pipe 30 is attached to the outlet 24, and the second flange 32 is provided at the other end. Therefore, the straight pipe 20 and the outflow pipe 30 form an L-shaped flow path 12.
- the fluid flowing in from the first flange 26 flows out from the second flange 32 through the inlet 23, the straight pipe 20, the outlet 24, and the outlet pipe 30.
- the straight pipe 20 and the outflow pipe 30 are made of a metal material or a resin material.
- the inner wall surface 20a of the straight pipe 20 is preferably made of a material having a high ultraviolet light reflectivity.
- a material having a high ultraviolet light reflectivity For example, mirror-polished aluminum (Al) or polytetrafluoroethylene (PTFE) which is a perfluorinated resin is used. Consists of.
- Al mirror-polished aluminum
- PTFE polytetrafluoroethylene
- PTFE polytetrafluoroethylene
- the inner diameter d of the straight pipe 20 and the average flow velocity v of the fluid flowing through the flow path 12 are adjusted so that the fluid flowing through the flow path 12 is in a laminar flow state.
- the average flow velocity v is adjusted.
- the value below the critical Reynolds number is, for example, a Reynolds number Re of 3000 or less, preferably 2500 or less, and more preferably 2320 or less.
- the fluid flows in the laminar flow state toward the second end portion 22 by flowing the fluid in the longitudinal direction from the inlet 23 into the flow path 12.
- relatively fast flow velocity v 1 of the fluid flowing in the vicinity of the central axis of the straight pipe 20 the flow velocity v 2 of the fluid flowing in the vicinity of the inner wall surface 20a of the straight tube 20 are relatively Slow flow velocity distribution.
- the fluid flowing through the flow path 12 has a velocity distribution represented by the rotary paraboloid equation.
- the light source 40 includes a light emitting element 42 and a substrate 44.
- the light emitting element 42 is an LED (Light Emitting Diode) that emits ultraviolet light, and its center wavelength or peak wavelength is included in the range of about 200 nm to 350 nm.
- the light emitting element 42 preferably emits ultraviolet light in the vicinity of 260 nm to 270 nm, which is a wavelength with high sterilization efficiency.
- an ultraviolet light LED for example, one using aluminum gallium nitride (AlGaN) is known.
- the light emitting element 42 is an LED having a predetermined directivity angle or light distribution angle, for example, an LED having a wide light distribution angle with a light distribution angle (full angle value) of 120 degrees or more.
- Examples of such a light emitting element 42 include a surface mount (SMD) type LED having a high output intensity.
- the light emitting element 42 is disposed on the central axis of the straight tube 20 and is attached to the substrate 44 so as to face the window portion 28.
- the substrate 44 is composed of a member having high thermal conductivity, and for example, copper (Cu), aluminum (Al), or the like is used as a base material. Heat generated by the light emitting element 42 is radiated through the substrate 44.
- FIG. 2 is a contour diagram showing the ultraviolet light intensity distribution in the flow path 12. Since the light emitting element 42 irradiates ultraviolet light having a predetermined light distribution angle, the ultraviolet light intensity near the center has a higher intensity distribution than the surrounding ultraviolet light intensity. As a result, the ultraviolet light intensity distribution inside the straight pipe 20 has a high ultraviolet light intensity near the central axis and a low ultraviolet light intensity near the inner wall surface 20a in a cross-sectional view of the flow path 12 orthogonal to the longitudinal direction. .
- the fluid sterilization apparatus 10 sterilizes the fluid by irradiating the fluid flowing in the straight pipe 20 with ultraviolet light.
- the ultraviolet light from the light source 40 is irradiated so that the intensity near the center of the straight tube 20 is high and the intensity near the inner wall surface 20a of the straight tube 20 is low.
- Fluid flowing through the flow passage 12 is flowed velocity v 1 near the center is fast, as the flow velocity v 2 of the vicinity of the inner wall surface 20a becomes laminar flow slower.
- the energy amount of ultraviolet light acting on the fluid passing through the straight pipe 20 in a laminar flow state can be made uniform regardless of the radial position through which the fluid passes.
- the entire fluid flowing through the straight pipe 20 can be irradiated with ultraviolet light having a predetermined energy amount or more, and the sterilizing effect on the entire fluid can be enhanced.
- the flow velocity in the vicinity of the inner wall surface 20a is the fastest and the flow velocity in the vicinity of the center is a negative value.
- the fluid velocity distribution is not constant but changes with time.
- the portion with the highest flow velocity is shifted to the upper right, but the flow velocity distribution in the vicinity of the center is fast and the flow velocity in the vicinity of the inner wall surface 20a is slow.
- the survival rate of E. coli contained in the fluid after passing was 0.07%. From these results, it was found that the sterilization effect was about 7 times higher in the laminar flow state than in the turbulent flow state.
- the laminar fluid can be irradiated with ultraviolet light having an intensity distribution corresponding to the flow velocity distribution in the laminar flow state, so that the sterilization efficiency for the fluid can be improved. it can.
- the inflow port 23 and the light source 40 are arranged on the central axis of the straight pipe 20, a smooth flow of fluid is created in the direction in which the ultraviolet light from the light source 40 is irradiated. Can do. Further, by providing the inflow port 23 at a position opposite to the light source 40, it is possible to irradiate the fluid in a laminar flow state with less turbulence by traveling through the straight pipe 20 with high intensity ultraviolet light. As a result, the amount of energy of the ultraviolet light that is irradiated when a part of the fluid passes through the part where the ultraviolet light intensity is low or the part of the fluid stays in a vortex where the ultraviolet light intensity is high. This can suppress the influence of unevenness and a decrease in the bactericidal effect.
- FIG. 5 is a front view schematically showing a configuration of a light source 140 according to a modification.
- the light source 140 includes a plurality of light emitting elements 142 a and 142 b and a substrate 144.
- the light source 140 includes a plurality of first light emitting elements 142a arranged densely in the central area C1 of the substrate 144, and a plurality of second light emitting elements 142b arranged scattered in the peripheral area C2 of the substrate 144.
- the first light emitting element 142a and the second light emitting element 142b are configured in the same manner as the light emitting element 42 described above.
- the light source 140 Since the first light emitting elements 142a are densely arranged in the central region C1, the light source 140 outputs ultraviolet light having relatively high intensity in the central region C1. On the other hand, since the second light emitting elements 142b are mottled in the peripheral region C2, ultraviolet light having a relatively low intensity is output in the peripheral region C2. Therefore, by applying the light source 140 according to this modification to the fluid sterilizer 10 described above, the ultraviolet light intensity near the center is high even when the diameter d of the straight pipe 20 is increased to increase the treatment flow rate. Irradiation with ultraviolet light having a low intensity distribution near the inner wall surface 20a is possible.
- FIG. 6 and 7 are cross-sectional views schematically showing the configuration of the fluid sterilizer 210 according to the second embodiment, and FIG. 7 corresponds to a cross section taken along line AA of FIG.
- the fluid sterilizer 210 includes a straight tube 220, an inflow tube 231, an outflow tube 232, a plurality of first light sources 240a, and a plurality of second light sources 240b.
- the fluid sterilizer 210 has the above-described first embodiment in that the inflow pipe 231 and the outflow pipe 232 are arranged on the central axis of the straight pipe 220 and the straight flow path 212 is formed instead of the L-shape. Is different.
- the present embodiment will be described focusing on differences from the first embodiment.
- the straight pipe 220 extends from the first end 221 toward the second end 222.
- the first end 221 is provided with a first end surface 221a orthogonal to the longitudinal direction of the straight pipe 220 and an inlet 223 located near the center of the first end surface 221a.
- the first end face 221a is provided with a plurality of first window portions 227 for transmitting the ultraviolet light from the first light source 240a.
- An inflow pipe 231 extending in the longitudinal direction of the straight pipe 220 is attached to the inflow port 223. The inflow pipe 231 allows the fluid to flow in the longitudinal direction of the straight pipe 220 and suppresses the disturbance in the flow in the flow path 212.
- the second end 222 is configured in the same manner as the first end 221.
- the second end portion 222 is provided with a second end surface 222a orthogonal to the longitudinal direction of the straight pipe 220 and an outlet 224 located near the center of the second end surface 222a.
- the second end face 222a is provided with a plurality of second window portions 228 for transmitting the ultraviolet light from the second light source 240b.
- An outflow pipe 232 extending in the longitudinal direction of the straight pipe 220 is attached to the outflow port 224.
- the outflow pipe 232 causes the fluid to flow out in the longitudinal direction of the straight pipe 220, and suppresses disturbance in the flow in the flow path 212.
- the first light source 240a includes a plurality of first light emitting elements 242a and a plurality of first substrates 244a. As shown in FIG. 7, the plurality of first light emitting elements 242a are arranged in four directions so as to surround the inflow port 223, and are attached to the first substrate 244a. Each of the plurality of first light emitting elements 242a irradiates ultraviolet light in the longitudinal direction of the straight tube 220 toward the inside of the straight tube 220 through the corresponding first window portion 227.
- the first light emitting elements 242a are provided at four places, but the first light emitting elements 242a may be provided at three places or less, or may be provided at five places or more.
- the plurality of first light emitting elements 242a are preferably arranged at equal intervals so that the entire fluid flowing through the flow path 212 can be irradiated with ultraviolet light.
- the first light source 240a has high ultraviolet intensity near the center of the straight tube 220, and ultraviolet light near the inner wall surface 220a of the straight tube 220. It is possible to irradiate ultraviolet light having an intensity distribution that reduces the intensity.
- the second light source 240b includes a plurality of second light emitting elements 242b and a plurality of second substrates 244b, and is configured in the same manner as the first light source 240a.
- the plurality of second light emitting elements 242b are arranged in four directions so as to surround the outlet 224, and are attached to the second substrate 244b.
- Each of the plurality of second light emitting elements 242b irradiates ultraviolet light in the longitudinal direction of the straight tube 220 toward the inside of the straight tube 220 through the corresponding second window portion 228.
- the second light source 240b emits ultraviolet light having an intensity distribution such that the ultraviolet intensity near the center of the straight tube 220 is high and the ultraviolet intensity near the inner wall surface 220a of the straight tube 220 is low.
- the inner diameter of the straight pipe 220 and the average flow velocity of the fluid flowing through the flow path 112 are adjusted so that the fluid flowing through the flow path 212 is in a laminar flow state.
- the flow velocity of the fluid flowing in the vicinity of the central axis of the straight pipe 220 is relatively high, and the flow velocity of the fluid flowing in the vicinity of the inner wall surface 220a of the straight pipe 220 is relatively low.
- the fluid having such a velocity distribution is irradiated with ultraviolet light having a high intensity distribution near the center of the straight tube 220 and a low intensity distribution near the inner wall surface 220a from the first light source 240a and the second light source 240b. Is done. Therefore, also in this embodiment, the sterilization efficiency for the fluid can be improved by irradiating the laminar fluid with ultraviolet light having an intensity distribution corresponding to the flow velocity distribution in the laminar flow.
- the inlet 223 and the outlet 224 are arranged on the central axis of the straight pipe 220, it is possible to suppress the occurrence of turbulence and vortices in the fluid flowing through the flow path 212.
- the light sources 240a and 240b are arranged at both the inlet 223 and the outlet 224, the amount of energy of ultraviolet light acting on the fluid is increased compared to the case of irradiating ultraviolet light from only one of the two, so Sterilization efficiency can be improved.
- the light source may be arranged only in one of the inflow port 223 and the outflow port 224.
- the light sources 240a and 240b may be provided inside the straight tube 220.
- the light sources 240 a and 240 b are attached to the end surfaces 221 a and 222 b of the straight tube 220 and transmit ultraviolet light so as not to directly contact the fluid flowing through the flow channel 212.
- a cover member or the like is provided.
- the fluid sterilization apparatus 10 has been described as an apparatus for performing sterilization treatment by irradiating the fluid with ultraviolet light.
- the fluid sterilization apparatus may be used for a purification process for decomposing organic substances contained in the fluid by irradiation with ultraviolet light.
- a rectifying plate may be provided in the middle of the flow path constituted by the straight pipe described above, or at a position upstream of the inlet. This rectifying plate may have a function of adjusting the flow of fluid flowing through the flow path to make it laminar. By providing the current plate, a laminar flow state with less turbulence can be formed and the sterilizing effect can be enhanced.
- the light source may have an adjustment mechanism for adjusting the intensity distribution of ultraviolet light emitted from the light emitting element.
- the adjustment mechanism may include a transmissive optical element such as a lens and a reflective optical element such as a concave mirror.
- the adjusting mechanism may adjust the intensity distribution of the ultraviolet light from the light emitting element so that the intensity distribution of the ultraviolet light output from the light source has a shape corresponding to the velocity distribution in the laminar flow state.
- the present invention it is possible to improve the sterilization ability by increasing the irradiation efficiency of ultraviolet light to the fluid flowing through the flow path.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Hydrology & Water Resources (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Physical Water Treatments (AREA)
Abstract
流体殺菌装置10は、長手方向に延びる流路12を構成する直管20と、流路12を層流状態で流れる流体に向けて長手方向に紫外光を照射する光源40と、を備える。光源40は、紫外光を発する発光素子42を有し、長手方向と直交する流路の断面において中央付近の紫外光強度がその周囲の紫外光強度よりも高い強度分布となるように紫外光を照射する。
Description
本発明は、流体殺菌装置および流体殺菌方法に関し、特に、紫外光を照射して流体を殺菌する技術に関する。
紫外光には殺菌能力があることが知られており、医療や食品加工の現場などでの殺菌処理に紫外光を照射する装置が用いられている。また、水などの流体に紫外光を照射することで、流体を連続的に殺菌する装置も用いられている。このような装置として、例えば、直管状の金属パイプで形成される流路の管端部内壁に紫外線LEDを配置した装置が挙げられる(例えば、特許文献1参照)。
流体に高効率で紫外光を照射するためには、流路内の流体の流れの状態を適切に制御するとともに、流れの状態に適した態様で紫外光を照射することが望ましい。
本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、流路を流れる流体への紫外光の照射効率を高めた流体殺菌装置を提供することにある。
本発明のある態様の流体殺菌装置は、長手方向に延びる流路を構成する直管と、流路を層流状態で流れる流体に向けて長手方向に紫外光を照射する光源と、を備える。光源は、紫外光を発する発光素子を有し、長手方向と直交する流路の断面において中央付近の紫外光強度がその周囲の紫外光強度よりも高い強度分布となるように紫外光を照射する。
この態様によると、層流状態で流れる流体に紫外光を照射するため、乱流状態の流体に紫外光を照射する場合と比べて殺菌効率を高めることができる。本発明者らの知見により、直管状の流路内に紫外光を照射して殺菌処理をする場合、乱流状態とするよりも層流状態とする方が約7倍の殺菌効率が得られることがわかっている。また、層流状態の流体は、中央付近の流速が速く、管内壁付近の流速が遅い速度分布を有しているため、その速度分布に対応させて中央付近の紫外光強度を高めることで、流路内を流れる流体に効果的に紫外光を照射して殺菌効率を向上させることができる。
直管は、長手方向に流体を流入させる流入口が設けられる第1端部と、第1端部と反対側の第2端部と、を有してもよい。光源は、第2端部に配置されてもよい。
光源および流入口は、直管の中心軸上に配置されてもよい。
直管は、第2端部に設けられ、長手方向と交差する方向に流体を流出させる流出口を有してもよい。
直管は、第2端部に設けられ、長手方向に流体を流出させる流出口を有してもよい。光源は、流出口を囲むように配置される複数の発光素子を有してもよい。複数の発光素子は、流路を流れる流体に向けて長手方向に紫外光を照射してもよい。
流路を流れる流体を層流化するための整流板をさらに備えてもよい。
本発明の別の態様は、流体殺菌方法である。この方法は、長手方向に延びる流路を構成する直管の内部に層流状態の流体の流れを作りながら、長手方向と直交する流路の断面において中央付近の紫外光強度がその周囲の紫外光強度よりも高い強度分布となるように流路を層流状態で流れる流体に向けて長手方向に紫外光を照射する。
この態様によると、層流状態で流れる流体に紫外光を照射するため、乱流状態の流体に紫外光を照射する場合と比べて殺菌効率を高めることができる。また、層流状態の流体は、中央付近の流速が速く、管内壁付近の流速が遅い速度分布を有しているため、その速度分布に対応させて中央付近の紫外光強度を高めることで、流路内を流れる流体に効果的に紫外光を照射して殺菌効率を向上させることができる。
本発明によれば、流路を流れる流体への紫外光の照射効率を高めて殺菌能力を向上させることができる。
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
(第1の実施の形態)
図1は、第1の実施の形態に係る流体殺菌装置10の構成を概略的に示す図である。流体殺菌装置10は、直管20と、流出管30と、光源40とを備える。光源40は、直管20の端部(第2端部22)に配置され、直管20の内部に向けて紫外光を照射する。流体殺菌装置10は、直管20の内部を流れる水などの流体に紫外光を照射して殺菌処理を施すために用いられる。
図1は、第1の実施の形態に係る流体殺菌装置10の構成を概略的に示す図である。流体殺菌装置10は、直管20と、流出管30と、光源40とを備える。光源40は、直管20の端部(第2端部22)に配置され、直管20の内部に向けて紫外光を照射する。流体殺菌装置10は、直管20の内部を流れる水などの流体に紫外光を照射して殺菌処理を施すために用いられる。
直管20は、第1端部21と、第2端部22と、第1フランジ26と、窓部28とを有する。直管20は、第1端部21から第2端部22に向けて長手方向に延在する。第1端部21には、直管20の長手方向に流体を流入させる流入口23と、流入口23を他の配管等に接続するための第1フランジ26が設けられる。第2端部22には、光源40からの紫外光を透過させるための窓部28が設けられる。窓部28は、石英(SiO2)やサファイア(Al2O3)、非晶質のフッ素系樹脂などの紫外光の透過率が高い部材で構成される。
第2端部22には、直管20の長手方向と交差する方向または直交する方向に流体を流出させる流出口24が設けられる。流出口24は、直管20の側壁に設けられ、流出口24には、流出管30が取り付けられている。流出管30は、一端が流出口24に取り付けられ、他端に第2フランジ32が設けられる。したがって、直管20および流出管30は、L字状の流路12を形成する。第1フランジ26から流入する流体は、流入口23、直管20、流出口24および流出管30を通って第2フランジ32から流出する。
直管20および流出管30は、金属材料や樹脂材料で構成される。直管20の内壁面20aは、紫外光の反射率が高い材料で構成されることが望ましく、例えば、鏡面研磨されたアルミニウム(Al)や、全フッ素化樹脂であるポリテトラフルオロエチレン(PTFE)で構成される。これらの材料で直管20の内壁面20aを構成することで、光源40が発する紫外光を内壁面20aで反射させて直管20の長手方向に紫外光を伝搬させることができる。なお、PTFEは、化学的に安定した材料であり、紫外光の反射率が高い材料であるため、流体殺菌装置の流路を構成する直管20の材料として好適である。
直管20の内径dおよび流路12を流れる流体の平均流速vは、流路12を流れる流体が層流状態となるように調整される。具体的には、流路12のレイノルズ数Reが層流状態の臨界レイノルズ数以下となるように、Re=v・d/ν(ν:流体の動粘性係数)の式を用いて内径dおよび平均流速vが調整される。臨界レイノルズ数以下の値とは、例えば、レイノルズ数Reが3000以下であり、好ましくは2500以下であり、さらに好ましくは2320以下である。また、流入口23から流路12に長手方向に流体を流入させることにより、第2端部22に向かって流体が層流状態で流れるようにする。流体が層流状態で流れる場合、直管20の中心軸の近傍を流れる流体の流速v1が相対的に速く、直管20の内壁面20aの近傍を流れる流体の流速v2が相対的に遅い流速分布となる。理想的な層流状態である場合、流路12を流れる流体は、回転放物面の式で表される速度分布となる。
光源40は、発光素子42と、基板44とを有する。発光素子42は、紫外光を発するLED(Light Emitting Diode)であり、その中心波長またはピーク波長が約200nm~350nmの範囲に含まれる。発光素子42は、殺菌効率の高い波長である260nm~270nm付近の紫外光を発することが好ましい。このような紫外光LEDとして、例えば、窒化アルミニウムガリウム(AlGaN)を用いたものが知られている。
発光素子42は、所定の指向角または配光角を有するLEDであり、例えば、配光角(全角値)が120度以上となる広配光角のLEDである。このような発光素子42として、出力強度の高い表面実装(SMD;surface mount device)型のLEDが挙げられる。発光素子42は、直管20の中心軸上に配置され、窓部28と対向するように基板44に取り付けられる。基板44は、熱伝導性の高い部材で構成され、例えば、銅(Cu)やアルミニウム(Al)などがベース材料として用いられる。発光素子42が発する熱は、基板44を通じて放熱される。
図2は、流路12内の紫外光強度分布を示すコンター図である。発光素子42は、所定の配光角を有する紫外光を照射するため、中央付近の紫外光強度がその周囲の紫外光強度よりも高い強度分布となる。その結果、直管20の内部における紫外光の強度分布は、長手方向と直交する流路12の断面視において、中心軸付近の紫外光強度が高く、内壁面20a付近の紫外光強度が低くなる。
以上の構成により、流体殺菌装置10は、直管20の内部を流れる流体に紫外光を照射して流体に殺菌処理を施す。光源40からの紫外光は、直管20の中央付近の強度が高く、直管20の内壁面20a付近の強度が低くなるように照射される。流路12を流れる流体は、中央付近の流速v1が速く、内壁面20a付近の流速v2が遅くなる層流状態となるようにして流される。その結果、層流状態となって直管20を通過する流体に作用する紫外光のエネルギー量を流体が通過する径方向の位置によらずに均一化できる。これにより、直管20を流れる流体の全体に対して所定以上のエネルギー量の紫外光を照射することができ、流体全体に対する殺菌効果を高めることができる。
つづいて、流体殺菌装置10の効果について比較例を参照しながら説明する。図3は、乱流状態の流体の速度分布を示すコンター図であり、レイノルズ数Re=4961となる条件下で直管20に流体を流した場合の速度分布を示す。図示する例では、内壁面20a付近の一部分の流速が最も速く、中央付近の流速が負の値となる状態を示すが、流体の速度分布は一定ではなく時間とともに随時変化する。このような乱流状態となる条件下において、流体として大腸菌を含む菌液を流したところ、通過後の流体に含まれる大腸菌の生存率が0.53%であった。
図4は、層流状態の流体の速度分布を示すコンター図であり、レイノルズ数Re=2279となる条件下で直管20に流体を流した場合の速度分布を示す。図示する例では、流速が最も高い箇所が右上の方にずれているが、概ね中央付近の流速が速く、内壁面20a付近の流速が遅い流速分布となっている。このような層流状態となる条件下にて大腸菌を含む菌液を流したところ、通過後の流体に含まれる大腸菌の生存率が0.07%となった。これらの結果から、乱流状態と比べて層流状態では約7倍の殺菌効果が得られることがわかった。このように、本実施の形態によれば、層流状態の流体に対して層流状態の流速分布に対応した強度分布の紫外光を照射することできるため、流体に対する殺菌効率を向上させることができる。
また、本実施の形態によれば、直管20の中心軸上に流入口23と光源40が配置されるため、光源40からの紫外光が照射される方向に流体のスムーズな流れを作ることができる。また、流入口23を光源40と反対側の位置に設けることで直管20を進んでいくことで乱れの少ない層流状態となった流体に強度の高い紫外光を照射できる。これにより、紫外光強度の低い箇所を流体の一部が高速で通過したり、紫外光強度の高い箇所で流体の一部が渦となって滞留したりして照射される紫外光のエネルギー量にムラが生じ、殺菌効果が低下する影響を抑えることができる。
図5は、変形例に係る光源140の構成を概略的に示す正面図である。光源140は、複数の発光素子142a,142bと、基板144とを有する。光源140は、基板144の中央領域C1に密集して配置される複数の第1発光素子142aと、基板144の周縁領域C2に点在して配置される複数の第2発光素子142bとを有する。第1発光素子142aおよび第2発光素子142bは、上述の発光素子42と同様に構成される。
光源140は、中央領域C1に第1発光素子142aが密集して配置されるため、中央領域C1において相対的に強度の高い紫外光を出力する。一方、周縁領域C2には第2発光素子142bがまだらに配置されるため、周縁領域C2において相対的に強度の低い紫外光を出力する。したがって、本変形例に係る光源140を上述の流体殺菌装置10に適用することで、直管20の直径dを大きくして処理流量を増やす場合であっても、中央付近の紫外光強度が高く、内壁面20a付近の紫外光強度が低い強度分布の紫外光を照射できる。
(第2の実施の形態)
図6および図7は、第2の実施の形態に係る流体殺菌装置210の構成を概略的に示す断面図であり、図7は、図6のA-A線断面に対応する。流体殺菌装置210は、直管220と、流入管231と、流出管232と、複数の第1光源240aと、複数の第2光源240bとを備える。流体殺菌装置210は、流入管231および流出管232が直管220の中心軸上に配置され、L字状ではなく直線状の流路212が構成される点で上述の第1の実施の形態と相違する。以下、本実施の形態について第1の実施の形態との相違点を中心に述べる。
図6および図7は、第2の実施の形態に係る流体殺菌装置210の構成を概略的に示す断面図であり、図7は、図6のA-A線断面に対応する。流体殺菌装置210は、直管220と、流入管231と、流出管232と、複数の第1光源240aと、複数の第2光源240bとを備える。流体殺菌装置210は、流入管231および流出管232が直管220の中心軸上に配置され、L字状ではなく直線状の流路212が構成される点で上述の第1の実施の形態と相違する。以下、本実施の形態について第1の実施の形態との相違点を中心に述べる。
直管220は、第1端部221から第2端部222に向けて延在する。第1端部221には、直管220の長手方向と直交する第1端面221aと、第1端面221aの中央付近に位置する流入口223とが設けられる。第1端面221aには、第1光源240aからの紫外光を透過させるための複数の第1窓部227が設けられる。流入口223には、直管220の長手方向に延びる流入管231が取り付けられている。流入管231は、直管220の長手方向に流体を流入させ、流路212内の流れに乱れが生じるのを抑える。
第2端部222は、第1端部221と同様に構成されている。第2端部222には、直管220の長手方向と直交する第2端面222aと、第2端面222aの中央付近に位置する流出口224とが設けられる。第2端面222aには、第2光源240bからの紫外光を透過させるための複数の第2窓部228が設けられる。流出口224には、直管220の長手方向に延びる流出管232が取り付けられている。流出管232は、直管220の長手方向に流体を流出させ、流路212内の流れに乱れが生じるのを抑える。
第1光源240aは、複数の第1発光素子242aと、複数の第1基板244aとを有する。複数の第1発光素子242aは、図7に示されるように、流入口223を囲むように四方に配置され、第1基板244aに取り付けられる。複数の第1発光素子242aのそれぞれは、対応する第1窓部227を通じて直管220の内部に向けて直管220の長手方向に紫外光を照射する。
図示する例では、第1発光素子242aが四箇所に設けられる場合を示しているが、第1発光素子242aは三箇所以下に設けられてもよいし、五箇所以上に設けられてもよい。なお、複数の第1発光素子242aは、流路212を流れる流体全体に紫外光を照射できるように、等間隔に配置されることが好ましい。流入口223を囲むようにして複数の第1発光素子242aを等間隔に配置することで、第1光源240aは、直管220の中央付近の紫外強度が高く、直管220の内壁面220a付近の紫外強度が低くなるような強度分布の紫外光を照射できる。
第2光源240bは、複数の第2発光素子242bと、複数の第2基板244bとを有し、第1光源240aと同様に構成される。複数の第2発光素子242bは、流出口224を囲むように四方に配置され、第2基板244bに取り付けられる。複数の第2発光素子242bのそれぞれは、対応する第2窓部228を通じて直管220の内部に向けて直管220の長手方向に紫外光を照射する。第2光源240bは、第1光源240aと同様、直管220の中央付近の紫外強度が高く、直管220の内壁面220a付近の紫外強度が低くなるような強度分布の紫外光を照射する。
直管220の内径および流路112を流れる流体の平均流速は、流路212を流れる流体が層流状態となるように調整される。その結果、直管220の中心軸の近傍を流れる流体の流速が相対的に速く、直管220の内壁面220aの近傍を流れる流体の流速が相対的に遅い流速分布となる。このような速度分布を有する流体に対して、第1光源240aおよび第2光源240bから直管220の中央付近の紫外強度が高く、内壁面220a付近の紫外強度が低い強度分布の紫外光が照射される。したがって、本実施の形態においても、層流状態の流体に対して層流状態の流速分布に対応した強度分布の紫外光を照射することで、流体に対する殺菌効率を向上させることができる。
また、本実施の形態によれば、直管220の中心軸上に流入口223と流出口224が配置されるため、流路212を流れる流体に乱れや渦が生じるのを抑えることができる。また、流入口223と流出口224の双方に光源240a,240bを配置しているため、いずれか一方のみから紫外光を照射する場合よりも流体に作用する紫外光のエネルギー量を増やして流体に対する殺菌効率を向上させることができる。
なお、変形例においては、流入口223と流出口224のいずれか一方のみに光源を配置してもよい。また、光源240a,240bは、直管220の内部に設けられてもよい。直管220の内部に光源240a,240bを設ける場合、光源240a,240bは、直管220の端面221a,222bに取り付けられるとともに、流路212を流れる流体に直接触れないように紫外光を透過するカバー部材等が設けられる。
以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
上述の実施の形態に係る流体殺菌装置10は、流体に紫外光を照射して殺菌処理を施すための装置として説明した。変形例においては、紫外光の照射により流体に含まれる有機物を分解させる浄化処理に本流体殺菌装置を用いてもよい。
変形例においては、上述の直管で構成される流路の途中、流入口または流入口よりも上流の位置に整流板が設けられてもよい。この整流板は、流路を流れる流体の流れを整えて層流化させる機能を有してもよい。整流板を設けることで、より乱れの少ない層流状態を形成して殺菌効果を高めることができる。
変形例において、光源は、発光素子が発する紫外光の強度分布を調整するための調整機構を有してもよい。調整機構は、レンズなどの透過型の光学素子や、凹面鏡などの反射型の光学素子を含んでもよい。調整機構は、発光素子からの紫外光の強度分布を調整することにより、光源から出力される紫外光の強度分布が層流状態の速度分布に対応した形状となるようにしてもよい。このような調整機構を設けることで、流体の流れの態様に適した強度分布の紫外光を照射することができ、殺菌効率をより高めることができる。
10…流体殺菌装置、12…流路、20…直管、21…第1端部、22…第2端部、23…流入口、24…流出口、40…光源、42…発光素子、140…光源、210…流体殺菌装置、212…流路、220…直管、221…第1端部、222…第2端部、223…流入口、224…流出口、240a…第1光源、240b…第2光源。
本発明によれば、流路を流れる流体への紫外光の照射効率を高めて殺菌能力を向上させることができる。
Claims (7)
- 長手方向に延びる流路を構成する直管と、
前記流路を層流状態で流れる流体に向けて前記長手方向に紫外光を照射する光源と、を備え、
前記光源は、紫外光を発する発光素子を有し、前記長手方向と直交する前記流路の断面において中央付近の紫外光強度がその周囲の紫外光強度よりも高い強度分布となるように紫外光を照射することを特徴とする流体殺菌装置。 - 前記直管は、前記長手方向に流体を流入させる流入口が設けられる第1端部と、前記第1端部と反対側の第2端部と、を有し、
前記光源は、前記第2端部に配置されることを特徴とする請求項1に記載の流体殺菌装置。 - 前記光源および前記流入口は、前記直管の中心軸上に配置されることを特徴とする請求項2に記載の流体殺菌装置。
- 前記直管は、前記第2端部に設けられ、前記長手方向と交差する方向に流体を流出させる流出口を有することを特徴とする請求項2または3に記載の流体殺菌装置。
- 前記直管は、前記第2端部に設けられ、前記長手方向に流体を流出させる流出口を有し、
前記光源は、前記流出口を囲むように配置される複数の発光素子を有し、
前記複数の発光素子は、前記流路を流れる流体に向けて前記長手方向に紫外光を照射することを特徴とする請求項2に記載の流体殺菌装置。 - 前記流路を流れる流体を層流化するための整流板をさらに備えることを特徴とする請求項1から5のいずれか一項に記載の流体殺菌装置。
- 長手方向に延びる流路を構成する直管の内部に層流状態の流体の流れを作りながら、前記長手方向と直交する前記流路の断面において中央付近の紫外光強度がその周囲の紫外光強度よりも高い強度分布となるように前記流路を層流状態で流れる流体に向けて前記長手方向に紫外光を照射することを特徴とする流体殺菌方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680059746.7A CN108136060A (zh) | 2015-10-13 | 2016-09-08 | 流体杀菌装置以及流体杀菌方法 |
EP16855204.0A EP3363468A4 (en) | 2015-10-13 | 2016-09-08 | FLUID STERILIZATION DEVICE AND FLUID STERILIZATION PROCESS |
KR1020187011640A KR20180059859A (ko) | 2015-10-13 | 2016-09-08 | 유체 살균 장치 및 유체 살균 방법 |
US15/950,721 US20180228928A1 (en) | 2015-10-13 | 2018-04-11 | Fluid sterilization device and fluid sterilization method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-202206 | 2015-10-13 | ||
JP2015202206A JP2017074114A (ja) | 2015-10-13 | 2015-10-13 | 流体殺菌装置および流体殺菌方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/950,721 Continuation US20180228928A1 (en) | 2015-10-13 | 2018-04-11 | Fluid sterilization device and fluid sterilization method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017064950A1 true WO2017064950A1 (ja) | 2017-04-20 |
Family
ID=58518116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/076422 WO2017064950A1 (ja) | 2015-10-13 | 2016-09-08 | 流体殺菌装置および流体殺菌方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180228928A1 (ja) |
EP (1) | EP3363468A4 (ja) |
JP (1) | JP2017074114A (ja) |
KR (1) | KR20180059859A (ja) |
CN (1) | CN108136060A (ja) |
TW (1) | TWI626958B (ja) |
WO (1) | WO2017064950A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019188127A (ja) * | 2018-04-20 | 2019-10-31 | 旭化成株式会社 | 紫外線照射装置 |
US11312642B2 (en) | 2017-03-31 | 2022-04-26 | Industrial Technology Research Institute | Fluid sterilizing device |
US11464885B2 (en) | 2018-04-20 | 2022-10-11 | Asahi Kasei Kabushiki Kaisha | Ultraviolet light irradiation device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6559577B2 (ja) * | 2016-01-06 | 2019-08-14 | 日機装株式会社 | 流体殺菌装置及び流体殺菌方法 |
KR101918383B1 (ko) * | 2017-01-18 | 2019-01-29 | 엘지전자 주식회사 | 정수기 |
JP7035337B2 (ja) * | 2017-05-22 | 2022-03-15 | 三菱電機株式会社 | 殺菌装置及び給湯装置 |
JP6863135B2 (ja) * | 2017-06-29 | 2021-04-21 | 東芝ライテック株式会社 | 流体殺菌装置 |
JP7011931B2 (ja) * | 2017-12-07 | 2022-02-10 | スタンレー電気株式会社 | 流体殺菌装置 |
JP2020009858A (ja) * | 2018-07-05 | 2020-01-16 | 株式会社エンプラス | 発光装置および殺菌装置 |
WO2020090331A1 (ja) * | 2018-10-31 | 2020-05-07 | パナソニックIpマネジメント株式会社 | 水処理システム |
JP7262985B2 (ja) * | 2018-12-04 | 2023-04-24 | スタンレー電気株式会社 | 光源モジュール装置、流体殺菌装置 |
JP7182447B2 (ja) * | 2018-12-12 | 2022-12-02 | スタンレー電気株式会社 | 流体殺菌装置及び駆動方法 |
WO2021020536A1 (ja) * | 2019-07-31 | 2021-02-04 | 旭化成株式会社 | 紫外線照射装置及び紫外線照射方法 |
JP2022542296A (ja) | 2019-07-31 | 2022-09-30 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | 水処理システム |
CN111617302A (zh) * | 2020-03-20 | 2020-09-04 | 珠海码硕科技有限公司 | 一种光杀菌装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0455353U (ja) * | 1990-09-21 | 1992-05-12 | ||
US6524447B1 (en) * | 1999-11-22 | 2003-02-25 | Titan Technologies | Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water |
JP2006346676A (ja) * | 2005-06-17 | 2006-12-28 | Philips Lumileds Lightng Co Llc | 紫外線光エミッタを備えた流体浄化システム |
WO2014115146A1 (en) * | 2013-01-24 | 2014-07-31 | Atlantium Technologies Ltd. | Method and apparatus for liquid disinfection by light emitted from light emitting diodes |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6902653B2 (en) * | 1999-11-22 | 2005-06-07 | Titan Technologies | Apparatus and method for photocatalytic purification and disinfection of fluids |
CN2699886Y (zh) * | 2004-03-04 | 2005-05-18 | 中国农业大学 | 湍流式紫外线杀菌消毒装置 |
US7560704B2 (en) * | 2005-09-06 | 2009-07-14 | Atlantium Technologies Ltd. | Method, device and system of illumination-based disinfection |
JP4690872B2 (ja) * | 2005-11-30 | 2011-06-01 | 株式会社東芝 | 紫外線照射水処理装置 |
US20090289015A1 (en) * | 2008-05-21 | 2009-11-26 | Uri Levy | Back-surface mirrors for ultraviolet liquid disinfection systems |
CN101678133B (zh) * | 2007-02-23 | 2014-07-30 | 智能医院体系有限公司 | 药房环境的紫外线消毒 |
JP5374697B2 (ja) | 2009-07-09 | 2013-12-25 | ユーヴィックス株式会社 | 紫外線殺菌浄水装置とそれに使用する紫外線ledユニット |
CN102018968A (zh) * | 2010-07-01 | 2011-04-20 | 诸城东晓生物科技有限公司 | 管道式杀菌装置 |
KR20130058574A (ko) * | 2011-11-25 | 2013-06-04 | 에스앤피환경주식회사 | 관로 및 수로 겸용 자외선 살균 장치 |
WO2015069680A1 (en) * | 2013-11-08 | 2015-05-14 | Mag Aerospace Industries, Llc | Point of use water treatment device |
JP6530681B2 (ja) * | 2015-09-07 | 2019-06-12 | 日機装株式会社 | 殺菌装置 |
JP6571460B2 (ja) * | 2015-09-07 | 2019-09-04 | 日機装株式会社 | 殺菌装置 |
JP2017064610A (ja) * | 2015-09-29 | 2017-04-06 | 日機装株式会社 | 照射装置および流体殺菌方法 |
-
2015
- 2015-10-13 JP JP2015202206A patent/JP2017074114A/ja active Pending
-
2016
- 2016-09-08 WO PCT/JP2016/076422 patent/WO2017064950A1/ja active Application Filing
- 2016-09-08 KR KR1020187011640A patent/KR20180059859A/ko not_active Application Discontinuation
- 2016-09-08 CN CN201680059746.7A patent/CN108136060A/zh active Pending
- 2016-09-08 EP EP16855204.0A patent/EP3363468A4/en not_active Withdrawn
- 2016-09-30 TW TW105131665A patent/TWI626958B/zh active
-
2018
- 2018-04-11 US US15/950,721 patent/US20180228928A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0455353U (ja) * | 1990-09-21 | 1992-05-12 | ||
US6524447B1 (en) * | 1999-11-22 | 2003-02-25 | Titan Technologies | Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water |
JP2006346676A (ja) * | 2005-06-17 | 2006-12-28 | Philips Lumileds Lightng Co Llc | 紫外線光エミッタを備えた流体浄化システム |
WO2014115146A1 (en) * | 2013-01-24 | 2014-07-31 | Atlantium Technologies Ltd. | Method and apparatus for liquid disinfection by light emitted from light emitting diodes |
Non-Patent Citations (1)
Title |
---|
See also references of EP3363468A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11312642B2 (en) | 2017-03-31 | 2022-04-26 | Industrial Technology Research Institute | Fluid sterilizing device |
JP2019188127A (ja) * | 2018-04-20 | 2019-10-31 | 旭化成株式会社 | 紫外線照射装置 |
US11464885B2 (en) | 2018-04-20 | 2022-10-11 | Asahi Kasei Kabushiki Kaisha | Ultraviolet light irradiation device |
Also Published As
Publication number | Publication date |
---|---|
CN108136060A (zh) | 2018-06-08 |
EP3363468A1 (en) | 2018-08-22 |
KR20180059859A (ko) | 2018-06-05 |
US20180228928A1 (en) | 2018-08-16 |
TW201718033A (zh) | 2017-06-01 |
TWI626958B (zh) | 2018-06-21 |
EP3363468A4 (en) | 2019-07-24 |
JP2017074114A (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017064950A1 (ja) | 流体殺菌装置および流体殺菌方法 | |
JP7011931B2 (ja) | 流体殺菌装置 | |
CN108472396B (zh) | 流体杀菌装置 | |
WO2017043357A1 (ja) | 殺菌装置 | |
TWI679032B (zh) | 殺菌裝置 | |
CN111320229B (zh) | 流体杀菌装置 | |
WO2017056902A1 (ja) | 照射装置および流体殺菌方法 | |
JP6373792B2 (ja) | 殺菌装置 | |
JP6698496B2 (ja) | 紫外光照射装置 | |
JP6559577B2 (ja) | 流体殺菌装置及び流体殺菌方法 | |
JP6192679B2 (ja) | 液体の殺菌方法及び殺菌装置 | |
WO2018037938A1 (ja) | 流水殺菌装置および流水殺菌方法 | |
WO2017038764A1 (ja) | 殺菌装置 | |
JP2020000285A (ja) | 流体殺菌装置 | |
JP2017113700A (ja) | 流体殺菌装置 | |
JP2019134888A (ja) | 流体殺菌装置 | |
JP2022069596A (ja) | 照射装置 | |
EP4420686A1 (en) | Fluid sterilization device | |
WO2020183767A1 (ja) | 紫外線殺菌装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16855204 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187011640 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016855204 Country of ref document: EP |