WO2017043293A1 - 複合構造体及びそれを備えたバルブタイミング調整装置 - Google Patents

複合構造体及びそれを備えたバルブタイミング調整装置 Download PDF

Info

Publication number
WO2017043293A1
WO2017043293A1 PCT/JP2016/074316 JP2016074316W WO2017043293A1 WO 2017043293 A1 WO2017043293 A1 WO 2017043293A1 JP 2016074316 W JP2016074316 W JP 2016074316W WO 2017043293 A1 WO2017043293 A1 WO 2017043293A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
side fitting
hole
countersunk
fitting hole
Prior art date
Application number
PCT/JP2016/074316
Other languages
English (en)
French (fr)
Inventor
祐樹 松永
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/569,189 priority Critical patent/US10208635B2/en
Priority to CN201680024142.9A priority patent/CN107532630B/zh
Priority to DE112016004100.4T priority patent/DE112016004100B4/de
Publication of WO2017043293A1 publication Critical patent/WO2017043293A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B17/00Connecting constructional elements or machine parts by a part of or on one member entering a hole in the other and involving plastic deformation
    • F16B17/004Connecting constructional elements or machine parts by a part of or on one member entering a hole in the other and involving plastic deformation of rods or tubes mutually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B5/0216Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread the position of the plates to be connected being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B5/025Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread specially designed to compensate for misalignement or to eliminate unwanted play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B5/0275Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread the screw-threaded element having at least two axially separated threaded portions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/02Initial camshaft settings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/02Formulas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts
    • F16B35/044Specially-shaped ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts
    • F16B35/048Specially-shaped necks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/06Specially-shaped heads

Definitions

  • the present disclosure relates to a composite structure and a valve timing adjusting device including the composite structure.
  • a technique for constructing a composite structure by fastening a countersunk hole member having a countersink hole and a screw hole member having a screw hole with a countersunk screw member is widely known.
  • the male screw-like screw portion in the countersunk screw member is the female screw-like screw in the screw hole member until the tapered surface-like seat surface portion in the countersunk screw member is seated in the tapered surface-like countersink hole in the countersunk hole member.
  • the countersunk hole member and the screw hole member are fastened by being screwed into the hole. According to this, it becomes possible to reduce the size of the composite structure in the axial direction of the countersunk screw member.
  • Patent Document 1 discloses a valve timing adjusting device.
  • the outer rotor is constructed as a composite structure in order to relatively rotate the inner rotor that rotates in conjunction with the camshaft inside the outer rotor that rotates in conjunction with the crankshaft. .
  • An object of the present disclosure is to provide a composite structure that achieves both high productivity and high durability, and a valve timing adjusting device including the composite structure.
  • the composite structure includes a countersink member having a countersunk-side fitting hole provided on the small-diameter side of the countersunk hole together with a countersunk hole having a tapered hole, and a screw including a countersunk hole member and a female screw-like screw hole
  • a screw hole member having a screw-side fitting hole provided on the opposite side of the counter-side fitting hole across the hole, a tapered seat surface portion seated on the counter-bore, and a male screw screwed into the screw hole
  • a countersunk screw member having a countersunk-side fitting part and a screw-side fitting part that can be individually fitted and aligned with the countersunk-side fitting hole and the screw-side fitting hole.
  • the diameter difference ⁇ a between the countersunk-side fitting hole and the countersunk-side fitting part, the diameter difference ⁇ b between the screw-side fitting hole and the screw-side fitting part, and the effective diameter difference ⁇ c between the screw hole and the screw part are ⁇ a ⁇ c And the dimensional relationship of ⁇ b ⁇ c is satisfied.
  • the male screw-like screw portion of the countersunk screw member is screwed into the female screw-like screw hole of the screw hole member until the tapered surface seat surface portion of the countersunk screw member is seated in the tapered hole-like countersunk hole of the countersunk hole member.
  • the countersunk hole member and the screw hole member are fastened.
  • the countersunk-side fitting part and the screw-side fitting part of the countersunk screw member are individually fitted into the countersunk-side fitting hole of the countersink hole member and the screw-side fitting hole of the screw hole member, respectively. Alignment is possible with respect to the holes to be fitted.
  • the diameter difference ⁇ a between the countersunk-side fitting hole and the countersunk-side fitting part, the diameter difference ⁇ b between the screw-side fitting hole and the screw-side fitting part, and the effective diameter difference ⁇ c between the screw hole and the screw part are ⁇ a ⁇ c And the dimensional relationship of ⁇ b ⁇ c is satisfied.
  • the aligning function of each fitting portion individually fitting into each fitting hole is not easily hindered by screwing between the screw hole and the screw portion. Therefore, according to such a centering function, the countersink hole and the screw hole can be aligned with each other by aligning the countersunk side fitting hole and the screw side fitting hole via the countersunk screw member. .
  • the countersink hole and the screw hole can be aligned with each other while the countersunk hole member and the screw hole member are fastened by the countersunk screw member, and the inclination of the countersunk screw member with respect to these holes can be suppressed. Therefore, it is possible to increase the productivity by eliminating the mutual alignment work between the countersunk hole and the screw hole before fastening, and to increase the durability by securing the fastening axial force by suppressing the inclination of the countersunk screw member. Is possible.
  • a valve timing adjustment device that adjusts a valve timing of a valve that opens and closes a camshaft by transmission of crank torque from a crankshaft in an internal combustion engine is constructed as the composite structure and interlocks with the crankshaft.
  • An outer rotor that rotates, and an inner rotor that rotates in conjunction with the camshaft and that is housed in the outer rotor and relatively rotates.
  • the outer rotor In order to relatively rotate the inner rotor that rotates in conjunction with the camshaft inside the outer rotor that rotates in conjunction with the crankshaft, the outer rotor is constructed as a composite structure. According to this, when constructing the outer rotor as a composite structure in which the inner rotor is accommodated in the interior, it is possible to increase the durability after the construction, in addition to improving the productivity.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a view taken along the line III-III in FIG. 1.
  • the valve timing adjusting device 1 is a hydraulic type that uses the pressure of hydraulic oil.
  • the apparatus 1 is installed in a transmission system in which crank torque output from the crankshaft is transmitted to the camshaft 2 in the internal combustion engine.
  • the camshaft 2 opens and closes an intake valve as a “valve” by transmission of crank torque from the crankshaft. Therefore, the device 1 adjusts the valve timing of the intake valve.
  • the device 1 is configured by combining an outer rotor 10 and an inner rotor 20.
  • the apparatus 1 adjusts the valve timing according to the rotational phase between the rotors 10 and 20 by relatively rotating the inner rotor 20 with hydraulic oil inside the outer rotor 10.
  • the metal outer rotor 10 is a so-called housing rotor in which a bearing plate 13 and a cover plate 14 are fastened to both sides of the timing sprocket 12 in the axial direction.
  • the bearing plate 13 and the cover plate 14 are fastened by a plurality of countersunk screw members 18 with the timing sprocket 12 sandwiched therebetween.
  • These countersunk screw members 18 are arranged at predetermined intervals in the circumferential direction common to the cylindrical timing sprocket 12 and the annular plate-like plates 13 and 14.
  • the outer rotor 10 is constructed as a “composite structure” including the elements 12, 13, 14, and 18.
  • the timing sprocket 12 has a housing cylinder 120 and a plurality of shoes 122.
  • Each shoe 122 protrudes in a substantially fan shape radially inward from locations spaced apart from each other in the circumferential direction in the housing cylinder 120.
  • a storage chamber 123 is formed between the shoes 122 adjacent in the circumferential direction as shown in FIG.
  • the timing sprocket 12 also has a plurality of sprocket teeth 124. Each sprocket tooth 124 protrudes in a substantially fan shape outwardly in the radial direction from a portion spaced at equal intervals in the circumferential direction in the housing cylinder 120.
  • the timing sprocket 12 is linked to the crankshaft by spanning a timing chain between the sprocket teeth 124 and a plurality of teeth of the crankshaft. Thereby, the timing sprocket 12 receives the crank torque from the crankshaft through the timing chain during operation of the internal combustion engine.
  • the constituent elements 12, 13, 14, and 18 of the outer rotor 10 rotate integrally with one side in the circumferential direction (clockwise in FIGS. 2 and 3) in conjunction with the crankshaft.
  • the camshaft 2 is fitted in the center hole 130 of the bearing plate 13.
  • the bearing plate 13 is supported by the cam shaft 2.
  • the bearing plate 13 slides the inner peripheral surface of the center hole 130 with respect to the outer peripheral surface of the cam shaft 2.
  • the metal inner rotor 20 is a so-called vane rotor housed in the outer rotor 10.
  • the inner rotor 20 has a rotating shaft 200 and a plurality of vanes 202.
  • the rotating shaft 200 is coaxially disposed inside the outer rotor 10.
  • the rotating shaft 200 is coaxially connected to the cam shaft 2.
  • the inner rotor 20 can rotate relative to the outer rotor 10 on both sides in the circumferential direction while rotating in one circumferential direction (clockwise in FIG. 2) in conjunction with the camshaft 2.
  • the rotary shaft 200 slides one end surface and the other end surface in the axial direction with respect to the bearing plate 13 and the cover plate 14, respectively.
  • the rotary shaft 200 slides the outer peripheral surface with respect to the protruding front end surface of each shoe 122 in the radial direction.
  • each vane 202 protrudes in a substantially fan shape outwardly in the radial direction from a position spaced apart by a predetermined interval in the circumferential direction on the rotating shaft 200.
  • Each vane 202 enters the corresponding storage chamber 123.
  • each vane 202 slides one end surface and the other end surface in the axial direction with respect to the bearing plate 13 and the cover plate 14, respectively.
  • each vane 202 slides the protruding front end surface in the radial direction with respect to the inner peripheral surface of the housing cylinder 120.
  • Each vane 202 in the outer rotor 10 forms a plurality of advance working chambers 34 and retard working chambers 36 by partitioning the corresponding accommodating chambers 123 in the circumferential direction.
  • the inner rotor 20 is relatively rotated to the advance angle side Da with respect to the outer rotor 10 in the circumferential direction.
  • a rotational torque is generated.
  • the hydraulic oil is discharged from each retarded working chamber 36 to the drain by the operation of the hydraulic control valve, whereby the rotational phase of the inner rotor 20 with respect to the outer rotor 10 is advanced, and the valve timing is also advanced. To do.
  • each structure of the countersunk screw member 18 provided with two or more and the fastening structure by the said structure are mutually substantially the same. Therefore, hereinafter, the configuration of the countersunk screw member 18 shown in FIGS. 4 and 5 and the fastening structure based on the configuration will be described as representative.
  • the countersunk screw member 18 is formed in a long bar shape from metal.
  • the countersunk screw member 18 includes a countersunk head 180, a seat surface part 181, a countersunk-side fitting part 182, a connecting surface part 183, a screw part 184, and a screw-side fitting part 185 from the one end 18a side in the longitudinal direction to the other end 18b side. It has in this order.
  • These portions 180, 181, 182, 183, 184, and 185 are provided coaxially in the countersunk screw member 18.
  • the dish head 180 is formed in a disk shape at one end 18a.
  • the dish head 180 has a substantially constant diameter in the longitudinal direction.
  • a bottomed hole-shaped star-shaped hole 180b is opened on an end surface 180a opposite to the dish-side fitting portion 182 in the dish head 180 (see FIGS. 3, 4, and 5).
  • a star-shaped bar wrench is inserted into the star-shaped hole 180b at the time of fastening.
  • the end surface 180a of the countersunk head 180 may have, for example, a square hole, a hexagonal hole, a cross hole, or the like other than the star-shaped hole 180b depending on the type of the bar spanner or screw screw inserted at the time of fastening. Good.
  • the seat surface portion 181 is coaxially adjacent to the dish head 180 and is formed in a tapered surface shape.
  • the seat surface portion 181 is gradually reduced in diameter from the dish head 180 toward the other end 18b in the longitudinal direction. As a result, the maximum diameter of the seat surface portion 181 substantially matches the diameter of the countersunk head 180.
  • the dish-side fitting portion 182 is formed in a cylindrical shape adjacent to the seat surface portion 181 on the same axis.
  • the dish side fitting portion 182 has a substantially constant diameter in the longitudinal direction, and extends straight in the longitudinal direction.
  • the diameter of the dish-side fitting portion 182 substantially matches the minimum diameter of the seat surface portion 181.
  • the connecting surface portion 183 is formed in a tapered shape adjacent to the dish-side fitting portion 182 on the same axis.
  • the connecting surface portion 183 is gradually reduced in diameter from the plate-side fitting portion 182 toward the other end 18b in the longitudinal direction. Thereby, the maximum diameter of the connection surface portion 183 is set to be smaller than the diameter of the dish-side fitting portion 182.
  • the screw portion 184 is formed in a male screw shape adjacent to the connection surface portion 183 on the same axis.
  • the screw portion 184 has a complete screw portion 184a between the pair of incomplete screw portions 184b and 184c in the longitudinal direction.
  • the complete screw portion 184a is a portion in which the top of the screw thread and the bottom of the screw groove have the complete desired shape in the male screw.
  • the incomplete screw portions 184b and 184c are portions of the male screw having a shape in which the shape of the peak and the valley bottom deviates from the expected shape by the chamfered portion or the biting portion.
  • the diameter of the crest in the screw part 184 is set to be larger than the minimum diameter of the connection surface part 183 and smaller than the dish side fitting part 182.
  • the diameter of the crest in the screw portion 184 means the diameter of the virtual cylinder when assuming a virtual cylinder in contact with the top of the screw crest in the male screw.
  • the screw-side fitting portion 185 is formed in a cylindrical shape at the other end 18b adjacent to the incomplete screw portion 184c on the opposite side to the connection surface portion 183 in the screw portion 184 on the same axis.
  • the screw side fitting portion 185 has a substantially constant diameter in the longitudinal direction, and extends straight in the longitudinal direction.
  • the axial length of the screw-side fitting portion 185 is set longer than the axial length of the pan-side fitting portion 182.
  • the diameter of the screw side fitting portion 185 is set to be smaller than the diameter of the valley in the screw portion 184.
  • the diameter of the valley in the screw part 184 means the diameter of the virtual cylinder when assuming a virtual cylinder in contact with the valley bottom of the screw groove in the male screw.
  • the countersunk screw member 18 having the respective parts 180, 181, 182, 183, 184 and 185 as described above is extended along the axial direction of the outer rotor 10 as shown in FIG. , 13 and 14 are assembled. Therefore, for such assembly, the outer rotor 10 has a countersink 101, a countersunk-side fitting hole 102, a loose insertion hole 103, a screw hole 104, and a screw-side fitting hole 105 arranged from one end 10a side to the other end 10b side. It has in this order toward.
  • These holes 101, 102, 103, 104, 105 are provided coaxially in the outer rotor 10.
  • a cover plate 14 as a “dish hole member” formed of metal is provided with a countersink 101 and a countersink fitting hole 102.
  • a loose insertion hole 103 is provided in the timing sprocket 12 as a “free insertion hole member” formed of metal.
  • a screw hole 104 and a screw-side fitting hole 105 are provided in the bearing plate 13 as a “screw hole member” formed of metal.
  • the countersink 101 as a so-called counterbore is formed in a tapered hole shape in the portion of the cover plate 14 constituting the one end 10a.
  • the countersink 101 is gradually reduced in diameter from the end surface 14a on the cover plate 14 opposite to the countersink fitting hole 102 toward the other end 10b in the axial direction (see FIGS. 3 and 4).
  • a countersunk head 180 and a seat surface part 181 are coaxially inserted.
  • the maximum diameter of the countersunk hole 101 is set to be larger than the diameter of the countersunk head 180 and the maximum diameter of the seat surface portion 181.
  • the minimum diameter of the countersink 101 is set larger than the minimum diameter of the seat surface portion 181.
  • the taper angle of the countersink 101 is set smaller than the taper angle of the seat surface portion 181.
  • the seat surface portion 181 makes the edge portion (that is, the maximum diameter portion) 181a between the counter plate head 180 and the inner peripheral surface of the countersink hole 101 in an annular line contact, It is seated in the countersink 101.
  • the dish-side fitting hole 102 is coaxially adjacent to the dish hole 101 and is formed in a cylindrical hole shape.
  • the dish-side fitting hole 102 has a substantially constant diameter in the axial direction, so that the other end 10b side of the cover plate 14 extends straight in the axial direction from the one end 10a.
  • the countersunk-side fitting hole 102 is provided on the small diameter side of the countersink 101. As a result, the diameter of the countersunk-side fitting hole 102 substantially matches the minimum diameter of the countersink 101.
  • a dish-side fitting portion 182 is coaxially inserted into the dish-side fitting hole 102.
  • the diameter of the dish-side fitting hole 102 is set to be larger than the diameter of the dish-side fitting part 182 by the minute gap 102a (see FIGS. 4 and 6).
  • the dish-side fitting portion 182 is aligned with the dish-side fitting hole 102 by fitting into the dish-side fitting hole 102 by such a diameter setting. Therefore, the minute gap 102a is secured as a fitting gap for allowing the alignment function between the dish-side fitting portion 182 and the dish-side fitting hole 102.
  • the loose insertion hole 103 is coaxially adjacent to the dish-side fitting hole 102 and is formed in a cylindrical hole shape.
  • the dish-side fitting hole 102 has a substantially constant diameter in the axial direction, so that the entire region of the timing sprocket 12 in the axial direction extends straight.
  • the diameter of the loose insertion hole 103 is set to be smaller than the diameter of the dish-side fitting hole 102.
  • connection surface portion 183 is coaxially inserted into the loose insertion hole 103.
  • a loose insertion portion 184 d that is a specific portion of the screw portion 184 is coaxially inserted into the loose insertion hole 103.
  • the loose insertion portion 184d inserted into the loose insertion hole 103 is composed of an incomplete screw portion 184b on the connection surface portion 183 side and a part of the complete screw portion 184a on the incomplete screw portion 184b side. Yes.
  • the diameter of the loose insertion hole 103 is larger by the cylindrical gap 103a (see FIGS. 4 and 7) than the maximum diameter of the connection surface portion 183 and the diameter of the crest of the screw portion 184.
  • the cylindrical gap 103a is secured sufficiently larger than the minute gap 102a in the radial direction.
  • the connection surface portion 183 and the loose insertion portion 184d which is a specific portion of the screw portion 184 are provided between the plate-side fitting portion 182 and the screw portion 184e which is the remaining portion of the screw portion 184.
  • the cylindrical gap 103 a is opened to be loosely inserted into the loose insertion hole 103.
  • the screw hole 104 is coaxially adjacent to the loose insertion hole 103 and is formed in a female screw shape.
  • the screw hole 104 extends in the axial direction on the one end 10a side of the bearing plate 13 from the other end 10b.
  • the screw hole 104 has a trough diameter smaller than the diameter of the loose insertion hole 103 provided between the screw hole 104 and the countersunk-side fitting hole 102.
  • the diameter of the valley in the screw hole 104 means the diameter of the virtual cylinder when assuming a virtual cylinder in contact with the valley bottom of the screw groove in the female screw.
  • a screwed portion 184e on the other end 18b side of the loosely inserted portion 184d of the screw portion 184 that is loosely inserted in the loosely inserted hole 103 is coaxially inserted.
  • the screwed portion 184e inserted into the screw hole 104 is composed of an incomplete screw portion 184c opposite to the connection surface portion 183 and a part of the complete screw portion 184a on the incomplete screw portion 184c side. Has been.
  • the effective diameter of the screw hole 104 is set to be larger than the effective diameter of the screw portion 184 by the amount of the spiral gap 104a (see FIG. 8).
  • the spiral gap 104a is sufficiently smaller than the cylindrical gap 103a, but is slightly larger than the minute gap 102a.
  • the effective diameter of the screw hole 104 means the diameter of the virtual cylinder when assuming a virtual cylinder in which the width of the screw groove is equal to the width of the screw thread in the female screw.
  • the effective diameter of the screw portion 184 means the diameter of the virtual cylinder when assuming a virtual cylinder in which the width of the screw groove is equal to the width of the screw thread in the male screw.
  • the screw side fitting hole 105 is adjacent to the screw hole 104 on the same axis and is formed in a cylindrical hole shape.
  • the screw-side fitting hole 105 is located on the opposite side of the loose insertion hole 103 and the dish-side fitting hole 102 with the screw hole 104 interposed therebetween.
  • the screw-side fitting hole 105 has a substantially constant diameter in the axial direction, so that a portion constituting the other end 10b of the bearing plate 13 extends straight in the axial direction.
  • the diameter of the screw side fitting hole 105 is set to be smaller than the diameter of the crest in the screw hole 104.
  • the diameter of the crest in the screw hole 104 means the diameter of the virtual cylinder when assuming a virtual cylinder in contact with the top of the screw crest in the female screw.
  • a screw side fitting portion 185 is coaxially inserted into the screw side fitting hole 105.
  • the diameter of the screw side fitting hole 105 is set to be larger than the diameter of the screw side fitting portion 185 by the minute gap 105a (see FIGS. 4 and 9).
  • the screw side fitting portion 185 is aligned with the screw side fitting hole 105 by fitting into the screw side fitting hole 105. Therefore, the minute gap 105 a is secured as a fitting gap for allowing the alignment function between the screw side fitting portion 185 and the screw side fitting hole 105.
  • the minute gap 105a is secured sufficiently smaller than the cylindrical gap 103a and slightly smaller than the spiral gap 104a.
  • the minute gap 105a may be any of small, large and equal in the radial direction with respect to the minute gap 102a.
  • the diameter of the dish-side fitting hole 102 is represented as ⁇ ah and the diameter of the dish-side fitting part 182 is represented as ⁇ as
  • the difference ⁇ a is defined by the following formula 1.
  • the diameter of the screw side fitting hole 105 is expressed as ⁇ bh and the diameter of the screw side fitting portion 185 is expressed as ⁇ bs
  • the diameters of the screw side fitting hole 105 and the screw side fitting portion 185 are shown.
  • the difference ⁇ b is defined by the following equation 2. As shown in FIGS.
  • FIG. 8 shows the half value ⁇ c / 2 of the effective diameter difference ⁇ c in an ideal configuration.
  • the diameter of the loose insertion hole 103 is expressed as ⁇ dh
  • the peak diameter of the loose insertion portion 184 d particularly into the hole 103 is expressed as ⁇ ds as the maximum diameter of the “free insertion portion”.
  • the diameter difference ⁇ d between the loose insertion hole 103 and the “loose insertion portion” is defined by the following equation 4.
  • the diameter difference ⁇ a and the effective diameter difference ⁇ c are set so as to satisfy the dimensional relationship of the following formula 5.
  • the diameter difference ⁇ b and the effective diameter difference ⁇ c are set so as to satisfy the dimensional relationship of Expression 6 below.
  • the effective diameter difference ⁇ c and the diameter difference ⁇ d are set so as to satisfy the dimensional relationship of the following formula 7.
  • the dimensional relationship between the diameter difference ⁇ a and the diameter difference ⁇ b is set according to the size relationship between the minute gap 102a and the minute gap 105a.
  • the dish-side fitting portion 182 and the screw-side fitting portion 185 are individually fitted into the dish-side fitting hole 102 and the screw-side fitting hole 105, respectively.
  • a dish-side fitting place Pa and a screw-side fitting place Pb are formed.
  • the dish-side fitting hole Pa and the dish-side fitting part Pa of the dish-side fitting part 182 are screw-side fitting holes with respect to the screw hole 104 and the screwing part Pc of the screw part 184.
  • 105 and the screw-side fitting portion 185 of the screw-side fitting portion 185 are located away from each other.
  • the axial length in which the dish-side fitting hole 102 is actually fitted with the dish-side fitting portion 182 is defined as the fitting length La of the dish-side fitting portion Pa.
  • the axial length in which the screw-side fitting hole 105 is actually fitted with the screw-side fitting portion 185 is defined as the fitting length Lb of the screw-side fitting portion Pb.
  • the fitting length La of the dish-side fitting hole 102 and the dish-side fitting part 182 at the dish-side fitting point Pa, and the screw-side fitting of the screw-side fitting hole 105 and the screw-side fitting part 185 are as follows.
  • the fitting length Lb at the location Pb is set so as to satisfy the dimensional relationship of the following formula 8.
  • the bearing plate 13 and the cover plate 14 are set to overlap each other on both sides in the axial direction of the timing sprocket 12 in which the inner rotor 20 is coaxially disposed.
  • the timing sprocket 12 and the plates 13, 14 are fastened by the countersunk screw member 18.
  • a star-shaped bar wrench is inserted into the star-shaped hole 180b, and the countersunk screw member 18 is rotated while the countersunk screw member 18 is screwed into the holes 101, 102, 103, Insert into 104 and 105 sequentially.
  • the screw side fitting portion 185 is fitted into the screw side fitting hole 105 as shown in FIG. Aligned.
  • the screw-side fitting portion 185 is easily aligned with respect to the screw-side fitting hole 105 by being allowed to shake as indicated by the white arrow in FIG. 10B within the range of the spiral gap 104a. It becomes.
  • the countersunk-side fitting part 182 When the countersunk screw member 18 is inserted, the countersunk-side fitting part 182 is positioned on the countersink side while the screw-side fitting part 185 is aligned with the screw-side fitting hole 105 as shown in FIG. It is aligned by fitting into the fitting hole 102. At this time, the dish-side fitting portion 182 is allowed to shake as indicated by the white arrow in FIG. 10C within the range of the spiral gap 104a and the minute gap 102a, so that the dish-side fitting hole 182 And easy alignment.
  • the seating surface portion 181 is countersunk with the countersunk hole 101 while the fitting portions 185 and 182 are aligned with the fitting holes 105 and 102 as shown in FIG. Sit on.
  • the manufacture of the apparatus 1 is completed by performing the above fastening operation for all the countersunk screw members 18.
  • the inner rotor 20 is connected to the camshaft 2 passed through the center hole 130 of the bearing plate 13 and the timing sprocket 12 is connected to the crankshaft. It becomes possible to use.
  • the male screw-like screw part 184 in the countersunk screw member 18 is in the bearing plate 13 until the tapered surface-like seating part 181 in the countersunk screw member 18 is seated in the tapered hole-like countersink 101 in the cover plate 14. It is screwed into the female screw-like screw hole 104. Thereby, the cover plate 14 and the bearing plate 13 are fastened. At the time of this fastening, the countersunk-side fitting part 182 and the screw-side fitting part 185 of the countersunk screw member 18 are individually fitted into the countersunk-side fitting hole 102 of the cover plate 14 and the screw-side fitting hole 105 of the bearing plate 13, respectively. By aligning, the holes 102 and 105 to be fitted can be aligned.
  • the effective diameter difference ⁇ c of the portion 184 satisfies the dimensional relationship of ⁇ a ⁇ c and ⁇ b ⁇ c.
  • the countersunk hole 101 and the screw hole 104 are aligned with each other via the countersunk screw member 18 so that the countersink hole 101 and the screw hole 104 are also aligned. Can be reciprocally aligned.
  • the countersunk hole 101 and the screw hole 104 are aligned with each other while the cover plate 14 and the bearing plate 13 are fastened by the countersunk screw member 18, and the countersunk screw member 18 with respect to the holes 101 and 104 is aligned. Can be suppressed. Therefore, it eliminates the mutual alignment work between the countersunk hole 101 and the screw hole 104 before fastening and enhances the productivity, and secures the fastening axial force by suppressing the inclination of the countersunk screw member 18 and increases the durability. It is possible.
  • the straight cylindrical dish-side fitting portion 182 and the screw-side fitting portion 185 are fitted into the straight cylindrical hole-like dish-side fitting hole 102 and the screw-side fitting hole 105, respectively.
  • the holes 102 and 105 to be fitted can be accurately aligned.
  • the mutual alignment accuracy of the countersunk-side fitting hole 102 and the screw-side fitting hole 105 through the countersunk screw member 18 and the mutual alignment accuracy of the countersink hole 101 and the screw hole 104 can be improved. This is particularly effective in securing the fastening axial force by suppressing the inclination of the countersunk screw member 18 and enhancing the durability.
  • the countersunk screw member 18 includes a connecting surface portion 183 and a “free insertion portion” between the countersunk-side fitting portion 182 and the screw portion 184 and the screwed portion 184e.
  • a loose insertion portion 184d of the screw portion 184 is provided.
  • the “free insertion portion” is timed between the counter-side fitting hole 102 and the screw hole 104.
  • the sprocket 12 is loosely inserted into the free insertion hole 103.
  • the timing sprocket 12 is clamped between the cover plate 14 having the countersunk-side fitting hole 102 and the bearing plate 13 having the screw hole 104.
  • the countersunk-side fitting part 182 and the screw-side fitting part 185 of the countersunk screw member 18 are individually fitted into the countersunk-side fitting hole 102 of the cover plate 14 and the screw-side fitting hole 105 of the bearing plate 13, respectively.
  • aligning the holes 102 and 105 to be fitted can be aligned.
  • the effective diameter difference ⁇ c of the screw hole 104 and the screw portion 184 and the diameter difference ⁇ d of the loose insertion hole 103 and the “loose insertion portion” satisfy the dimensional relationship of ⁇ c ⁇ d.
  • the aligning function by individually fitting the fitting portions 182 and 185 into the fitting holes 102 and 105 is not easily disturbed by the loose insertion of the “free insertion portion” into the loose insertion hole 103.
  • the outer rotor 10 is constructed as a “composite structure” in which the timing sprocket 12, which is a separate member, is sandwiched between the cover plate 14 and the bearing plate 13, both high productivity and high durability can be achieved. It becomes possible.
  • the dish-side fitting hole Pa and the dish-side fitting part Pa of the dish-side fitting part 182 are screw-side fitting holes with respect to the screw hole 104 and the screwing part Pc of the screw part 184. 105 and the screw-side fitting portion 185 of the screw-side fitting portion 185 are located away from each other.
  • the deflection width allowed for the countersunk screw member 18 with respect to the bearing plate 13 during fastening can be increased. According to this, it is easy to align the countersunk-side fitting part 182 with the countersunk-side fitting hole 102 by largely swinging the countersunk screw member 18 with respect to the bearing plate 13. Therefore, such ease of alignment is particularly effective in improving productivity.
  • the fitting length La of the dish-side fitting hole 102 and the dish-side fitting part 182 at the dish-side fitting part Pa, and the screw-side fitting hole 105 and the screw of the screw-side fitting part 185 are also shown.
  • the fitting length Lb at the side fitting point Pb satisfies the dimensional relationship of La ⁇ Lb.
  • the countersunk screw member 18 can be largely swung with respect to the cover plate 14 and the bearing plate 13, so that the countersunk-side fitting portion 182 can be easily aligned with the countersink-side fitting hole 102, and the adjustment can be performed. It becomes easy to ensure the accuracy of the mind. Therefore, such alignment ease and alignment accuracy are particularly effective in improving both productivity and durability.
  • the outer rotor 10 is constructed as a “composite structure” in order to relatively rotate the inner rotor 20 that rotates in conjunction with the camshaft 2 inside the outer rotor 10 that rotates in conjunction with the crankshaft. . According to this, when constructing the outer rotor 10 as a “composite structure” in which the inner rotor 20 is accommodated, it is possible to enhance the durability after the construction, in addition to improving the productivity. It becomes.
  • At least one of the countersunk-side fitting hole 102 and the screw-side fitting hole 105 may be formed in a tapered hole shape.
  • the minimum value at the dish-side fitting portion Pa of the diameter difference from the dish-side fitting portion 182 is defined as ⁇ a.
  • the minimum value at the screw-side fitting portion Pb in the difference in diameter from the screw-side fitting portion 185 is defined as ⁇ b.
  • the modification 1 which formed both the saucer side fitting hole 102 and the screw side fitting hole 105 in the shape of a taper hole is shown.
  • At least one of the dish-side fitting portion 182 and the screw-side fitting portion 185 may be formed in a tapered column shape.
  • the minimum value at the dish-side fitting portion Pa of the diameter difference from the dish-side fitting hole 102 is defined as ⁇ a.
  • the minimum value at the screw-side fitting portion Pb in the diameter difference from the screw-side fitting hole 105 is defined as ⁇ b.
  • board side fitting part 182 and the screw side fitting part 185 in the taper hole shape is shown.
  • Modifications 1 and 2 may be combined.
  • the timing sprocket 12 may be formed integrally with the bearing plate 13 and the loose insertion hole 103 may be changed to the screw hole 104.
  • the dish-side fitting place Pa and the screw-side fitting place Pb may be arranged at the same distance from the screwing place Pc. .
  • the outer rotor as a “composite structure” of a valve timing adjustment device that adjusts the valve timing of an exhaust valve as a “valve valve”, or a “composite structure” of a device different from the valve timing adjustment device
  • the present disclosure may be applied to “body” and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Connection Of Plates (AREA)

Abstract

複合構造体は、テーパ穴状の皿穴(101)と共に、皿穴の小径側に皿側嵌合穴(102)を有するカバープレート(14)と、雌螺子状の螺子穴(104)と共に、螺子穴を挟んで皿側嵌合穴と反対側に螺子側嵌合穴(105)を有する軸受プレート(13)と、101に着座するテーパ面状の座面部(181)及び螺子穴に螺着される雄螺子状の螺子部(184)と共に、皿側嵌合穴及び螺子側嵌合穴に嵌合して調心可能な皿側嵌合部(182)及び螺子側嵌合部(185)を有する皿螺子部材(18)とを備える。皿側嵌合穴及び皿側嵌合部の直径差δφaと、螺子側嵌合穴及び螺子側嵌合部の直径差δφbと、螺子穴及び螺子部の有効径差δφcとは、δφa<δφc且つδφb<δφcの寸法関係を満たす。

Description

複合構造体及びそれを備えたバルブタイミング調整装置 関連出願の相互参照
 本出願は、2015年9月11日に出願された日本特許出願2015-180001号に基づくもので、ここにその記載内容を援用する。
 本開示は、複合構造体及びそれを備えたバルブタイミング調整装置に、関する。
 従来、皿穴を有する皿穴部材と、螺子穴を有する螺子穴部材とを、皿螺子部材により締結して複合構造体を構築する技術は、広く知られている。この技術では、皿螺子部材におけるテーパ面状の座面部が皿穴部材におけるテーパ面状の皿穴に着座するまで、皿螺子部材における雄螺子状の螺子部が螺子穴部材における雌螺子状の螺子穴に螺着されることにより、それら皿穴部材及び螺子穴部材が締結される。これによれば、皿螺子部材の軸方向において複合構造体を小型化することが可能となる。
 こうした技術を適用した一例として特許文献1には、バルブタイミング調整装置が開示されている。この特許文献1に開示のバルブタイミング調整装置では、クランク軸と連動回転するアウタロータの内部にて、カム軸と連動回転するインナロータを相対回転させるために、当該アウタロータが複合構造体として構築されている。
特開2009-215881号公報
 しかし、特許文献1に開示のバルブタイミング調整装置では、皿穴部材の皿穴と螺子穴部材の螺子穴とが心ずれしていると、それらの穴に対して挿入される皿螺子部材は、傾斜することになる。その結果、皿螺子部材による締結軸力が所期の軸力よりも小さくなるため、複合構造体の耐久性、ひいてはバルブタイミング調整装置の耐久性が低下してしまう。そこで、皿螺子部材による締結前に、皿穴部材の皿穴と螺子穴部材の螺子穴とを高精度に相互調心させようとすると、当該相互調心の作業が煩雑となるため、生産性が低下してしまう。
 本開示の目的は、高い生産性と高い耐久性とを両立させる複合構造体及びそれを備えたバルブタイミング調整装置を、提供することにある。
 本開示の一態様において、複合構造体は、テーパ穴状の皿穴と共に、皿穴の小径側に設けられる皿側嵌合穴を、有する皿穴部材と、雌螺子状の螺子穴と共に、螺子穴を挟んで皿側嵌合穴とは反対側に設けられる螺子側嵌合穴を、有する螺子穴部材と、皿穴に着座するテーパ面状の座面部及び螺子穴に螺着される雄螺子状の螺子部と共に、皿側嵌合穴及び螺子側嵌合穴にそれぞれ個別に嵌合して調心可能な皿側嵌合部及び螺子側嵌合部を、有する皿螺子部材とを備える。皿側嵌合穴及び皿側嵌合部の直径差δφaと、螺子側嵌合穴及び螺子側嵌合部の直径差δφbと、螺子穴及び螺子部の有効径差δφcとは、δφa<δφc且つδφb<δφcの寸法関係を満たす。
 皿螺子部材におけるテーパ面状の座面部が皿穴部材におけるテーパ穴状の皿穴に着座するまで、皿螺子部材における雄螺子状の螺子部が螺子穴部材における雌螺子状の螺子穴に螺着されることにより、それら皿穴部材及び螺子穴部材が締結される。この締結時において、皿螺子部材の皿側嵌合部及び螺子側嵌合部はそれぞれ、皿穴部材の皿側嵌合穴及び螺子穴部材の螺子側嵌合穴に個別に嵌合することで、それら嵌合対象の穴に対して調心可能となる。
 皿側嵌合穴及び皿側嵌合部の直径差δφaと、螺子側嵌合穴及び螺子側嵌合部の直径差δφbと、螺子穴及び螺子部の有効径差δφcとは、δφa<δφc且つδφb<δφcの寸法関係を満たす。その結果、各嵌合部が各嵌合穴に個別に嵌合することによる調心機能は、螺子穴と螺子部との螺着によっては妨げられ難くなる。故に、そうした調心機能によれば、皿螺子部材を介して皿側嵌合穴と螺子側嵌合穴とが相互調心されることで、皿穴と螺子穴とについても相互調心され得る。
 以上のことから、皿穴部材及び螺子穴部材を皿螺子部材により締結しながら、皿穴及び螺子穴を相互調心させて、それらの穴に対する皿螺子部材の傾斜を抑制できる。したがって、締結前における皿穴と螺子穴との相互調心の作業を省いて生産性を高めることと両立させて、皿螺子部材の傾斜抑制により締結軸力を確保して耐久性を高めることが可能である。
 本開示の一態様において、内燃機関においてクランク軸からのクランクトルクの伝達によりカム軸が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置は、当該複合構造体として構築され、クランク軸と連動回転するアウタロータと、カム軸と連動回転し、アウタロータの内部に収容されて相対回転するインナロータとを、備える。
 クランク軸と連動回転するアウタロータの内部にて、カム軸と連動回転するインナロータを相対回転させるために、当該アウタロータが複合構造体として構築される。これによれば、インナロータを内部に収容させた複合構造体としてのアウタロータを構築する際には、生産性を高めることと両立させて、当該構築後には耐久性を高めることが可能となる。
一実施形態によるバルブタイミング調整装置を示す断面図であって、図2のI-I線断面図である。 図1のII-II線断面図である。 図1のIII-III線矢視図である。 図1の皿螺子部材による締結構造を拡大して示す断面図である。 図1の皿螺子部材を拡大して示す側面図である。 図1の皿螺子部材による締結構造の寸法関係を説明するための摸式図である。 図1の皿螺子部材による締結構造の寸法関係を説明するための摸式図である。 図1の皿螺子部材による締結構造の寸法関係を説明するための摸式図である。 図1の皿螺子部材による締結構造の寸法関係を説明するための摸式図である。 図1のバルブタイミング調整装置の製造方法を説明するための摸式図である。 図4の変形例を示す断面図である。 図4の変形例を示す断面図である。 図4の変形例を示す断面図である。
 一実施形態を図面に基づいて説明する。
 図1に示すように、一実施形態によるバルブタイミング調整装置1は、作動油の圧力を利用する油圧式である。装置1は、内燃機関においてクランク軸から出力のクランクトルクがカム軸2へと伝達される伝達系に、設置されている。ここでカム軸2は、クランク軸からのクランクトルクの伝達により、「動弁」としての吸気弁を開閉駆動する。そこで装置1は、吸気弁のバルブタイミングを調整する。
 図1~3に示すように装置1は、アウタロータ10及びインナロータ20を組み合わせて構成されている。装置1は、アウタロータ10の内部にてインナロータ20を作動油により相対回転させることで、それらロータ10,20間の回転位相に応じてバルブタイミングを調整する。
 金属製のアウタロータ10は、タイミングスプロケット12の軸方向両側に、それぞれ軸受プレート13及びカバープレート14を締結してなる、所謂ハウジングロータである。アウタロータ10において軸受プレート13及びカバープレート14は、タイミングスプロケット12を相互間に挟んだ状態にて、複数の皿螺子部材18により締結されている。それら各皿螺子部材18は、円筒状のタイミングスプロケット12及び円環板状のプレート13,14に共通な周方向にて、所定間隔ずつをあけた箇所に配置されている。以上よりアウタロータ10は、要素12,13,14,18を備えた「複合構成体」として、構築されている。
 図1,2に示すようにタイミングスプロケット12は、収容筒120及び複数のシュー122を有している。各シュー122は、収容筒120において周方向に所定間隔ずつあけた箇所から、径方向内側へ略扇形状に突出している。周方向に隣り合うシュー122の間には、それぞれ収容室123が図2の如く形成されている。
 図1~3に示すようにタイミングスプロケット12は、複数のスプロケット歯124も有している。各スプロケット歯124は、収容筒120において周方向に等間隔ずつあけた箇所から、径方向外側へと略扇形状に突出している。タイミングスプロケット12は、それらスプロケット歯124とクランク軸の複数の歯との間にタイミングチェーンを掛け渡されることで、当該クランク軸と連繋する。これにより、内燃機関の運転時にタイミングスプロケット12は、タイミングチェーンを通じてクランク軸からのクランクトルクを受ける。このとき、アウタロータ10の構成要素12,13,14,18は、クランク軸と連動して周方向の片側(図2,3の時計方向)に一体回転する。
 図1に示すように軸受プレート13の中心穴130には、カム軸2が嵌合している。これにより軸受プレート13は、カム軸2に軸受されている。ここで、ロータ10,20間での相対回転時に軸受プレート13は、中心穴130の内周面をカム軸2の外周面に対して摺動させる。
 図1,2に示すように金属製のインナロータ20は、アウタロータ10の内部に収容される、所謂ベーンロータである。インナロータ20は、回転軸200及び複数のベーン202を有している。
 回転軸200は、アウタロータ10の内部に同軸上に配置されている。回転軸200は、カム軸2に対して同軸上に連結される。これによりインナロータ20は、カム軸2と連動して周方向の片側(図2の時計方向)に回転しつつ、アウタロータ10に対して周方向の両側に相対回転可能となっている。ここで、ロータ10,20間での相対回転時に回転軸200は、軸方向における一端面及び他端面を、それぞれ軸受プレート13及びカバープレート14に対して摺動させる。それと共に回転軸200は、径方向において外周面を各シュー122の突出先端面に対して摺動させる。
 図2に示すように各ベーン202は、回転軸200において周方向に所定間隔ずつあけた箇所から、径方向外側へと略扇形状に突出している。各ベーン202は、それぞれ対応する収容室123に突入されている。ロータ10,20間での相対回転時に各ベーン202は、軸方向における一端面及び他端面を、それぞれ軸受プレート13及びカバープレート14に対して摺動させる。それと共に各ベーン202は、径方向における突出先端面を収容筒120の内周面に対して摺動させる。
 アウタロータ10の内部において各ベーン202は、それぞれ対応する収容室123を周方向に仕切ることで、進角作動室34及び遅角作動室36を複数ずつ形成している。これにより内燃機関では、ポンプから吐出の作動油が油圧制御弁の作動により各進角作動室34へと導入されると、周方向のうちアウタロータ10に対する進角側Daにインナロータ20を相対回転させる回転トルクが、発生する。このとき内燃機関では、油圧制御弁の作動により作動油が各遅角作動室36からドレンへと排出されることで、アウタロータ10に対するインナロータ20の回転位相が進角して、バルブタイミングも進角する。
 一方で内燃機関では、ポンプから吐出の作動油が油圧制御弁の作動により各遅角作動室36へと導入されると、周方向のうちアウタロータ10に対する遅角側Drにインナロータ20を相対回転させる回転トルクが、発生する。このとき内燃機関では、油圧制御弁の作動により作動油が各進角作動室34からドレンへと排出されることで、アウタロータ10に対するインナロータ20の回転位相が遅角して、バルブタイミングも遅角する。
 (締結構造)
 次に、皿螺子部材18による要素12,13,14の締結構造について、説明する。尚、本実施形態では複数設けられる皿螺子部材18の各構成及び当該各構成による締結構造は、相互に実質同一である。そこで以下では、図4,5に示す皿螺子部材18の構成及び当該構成による締結構造を代表的に採り上げて、説明する。
 図4,5に示すように皿螺子部材18は、金属により長手棒状に形成されている。皿螺子部材18は、皿頭部180、座面部181、皿側嵌合部182、接続面部183、螺子部184及び螺子側嵌合部185を、長手方向の一端18a側から他端18b側に向かってこの順に有している。これらの各部180,181,182,183,184,185は、皿螺子部材18において同軸上に設けられている。
 皿頭部180は、一端18aにおいて円盤状に形成されている。皿頭部180は、長手方向にて実質一定の直径を有している。皿頭部180において皿側嵌合部182とは反対側の端面180aには、有底穴状の星形穴180bが開口している(図3,4,5参照)。この星形穴180bには、締結時に星形棒スパナが挿し込まれる。尚、皿頭部180の端面180aには、締結時に挿し込まれる棒スパナ又は螺子回しの種類に応じて、星形穴180b以外の例えば四角穴や六角穴、十字穴等が開口していてもよい。
 座面部181は、皿頭部180と同軸上に隣接して、テーパ面状に形成されている。座面部181は、皿頭部180から長手方向の他端18b側に向かって漸次縮径している。これにより座面部181の最大直径は、皿頭部180の直径と実質一致している。
 皿側嵌合部182は、座面部181と同軸上に隣接して、円柱状に形成されている。皿側嵌合部182は、長手方向に実質一定の直径を有することで、当該長手方向にストレートに延伸している。皿側嵌合部182の直径は、座面部181の最小直径と実質一致している。
 接続面部183は、皿側嵌合部182と同軸上に隣接して、テーパ面状に形成されている。接続面部183は、皿側嵌合部182から長手方向の他端18b側に向かって漸次縮径している。これにより接続面部183の最大直径は、皿側嵌合部182の直径よりも小径に、設定されている。
 螺子部184は、接続面部183と同軸上に隣接して、雄螺子状に形成されている。螺子部184は、長手方向における一対の不完全螺子部184b,184cの間に、完全螺子部184aを有している。ここで完全螺子部184aとは、雄螺子において螺子山の山頂及び螺子溝の谷底が完全な所期形状を、有している部分である。一方で不完全螺子部184b,184cとは、雄螺子において山頂及び谷底の形状が面取り部や食い付き部により所期形状から外れた形状を、有している部分である。
 このような螺子部184における山の径は、接続面部183の最小直径よりも大径且つ皿側嵌合部182よりも小径に、設定されている。ここで螺子部184における山の径とは、雄螺子において螺子山の山頂に接するような仮想円筒を想定した場合の当該仮想円筒の直径を、意味する。
 螺子側嵌合部185は、螺子部184のうち接続面部183とは反対側の不完全螺子部184cと同軸上に隣接して、他端18bに円柱状に形成されている。螺子側嵌合部185は、長手方向にて実質一定の直径を有することで、当該長手方向にストレートに延伸している。螺子側嵌合部185の軸方向長は、皿側嵌合部182の軸方向長よりも長く設定されている。螺子側嵌合部185の直径は、螺子部184における谷の径よりも小径に設定されている。ここで螺子部184における谷の径とは、雄螺子において螺子溝の谷底に接するような仮想円筒を想定した場合の当該仮想円筒の直径を、意味する。
 以上の如き各部180,181,182,183,184,185を有した皿螺子部材18は、図4の如くアウタロータ10の軸方向に沿って延伸する形態に、同ロータ10の他の構成要素12,13,14に対して組み付けられている。そこで、かかる組み付けのためにアウタロータ10は、皿穴101、皿側嵌合穴102、遊挿穴103、螺子穴104及び螺子側嵌合穴105を、軸方向の一端10a側から他端10b側に向かってこの順に有している。これらの各穴101,102,103,104,105は、アウタロータ10において同軸上に設けられている。
 具体的にはアウタロータ10のうち、金属により形成される「皿穴部材」としてのカバープレート14には、皿穴101及び皿側嵌合穴102が設けられている。アウタロータ10のうち、金属により形成される「遊挿穴部材」としてのタイミングスプロケット12には、遊挿穴103が設けられている。アウタロータ10のうち、金属により形成される「螺子穴部材」としての軸受プレート13には、螺子穴104及び螺子側嵌合穴105が設けられている。
 所謂座ぐりとしての皿穴101は、カバープレート14のうち一端10aを構成する部分において、テーパ穴状に形成されている。皿穴101は、カバープレート14において皿側嵌合穴102とは反対側の端面14aから、軸方向の他端10b側に向かって漸次縮径している(図3,4参照)。
 皿穴101には、皿頭部180及び座面部181が同軸上に挿入されている。この挿入形態下にて皿穴101の最大直径は、皿頭部180の直径及び座面部181の最大直径よりも大径に設定されている。それと共に皿穴101の最小直径は、座面部181の最小直径よりも大径に設定されている。さらに皿穴101のテーパ角度は、座面部181のテーパ角度よりも小さく設定されている。こうした直径設定及び角度設定により座面部181は、皿頭部180との間のエッジ部(即ち、最大直径部)181aを皿穴101の内周面に対して円環状に線接触させることで、当該皿穴101に着座している。
 皿側嵌合穴102は、皿穴101と同軸上に隣接して、円筒穴状に形成されている。皿側嵌合穴102は、軸方向にて実質一定の直径を有することで、カバープレート14のうち一端10aよりも他端10b側を、当該軸方向にストレートに延伸している。ここで皿側嵌合穴102は、皿穴101の小径側に設けられている。これにより皿側嵌合穴102の直径は、皿穴101の最小直径と実質一致している。
 皿側嵌合穴102には、皿側嵌合部182が同軸上に挿入されている。この挿入形態下にて皿側嵌合穴102の直径は、皿側嵌合部182の直径よりも微小隙間102a(図4,6参照)の分だけ大径に、設定されている。こうした直径設定により皿側嵌合部182は、皿側嵌合穴102に嵌合することで、当該皿側嵌合穴102に対して調心されている。そこで微小隙間102aは、皿側嵌合部182及び皿側嵌合穴102の間にて調心機能を許容するための嵌合隙間として、確保されている。
 遊挿穴103は、皿側嵌合穴102と同軸上に隣接して、円筒穴状に形成されている。皿側嵌合穴102は、軸方向にて実質一定の直径を有することで、タイミングスプロケット12のうち当該軸方向の全域をストレートに延伸している。遊挿穴103の直径は、皿側嵌合穴102の直径よりも小径に設定されている。
 遊挿穴103には、接続面部183が同軸上に挿入されている。それと共に遊挿穴103には、螺子部184のうち特定部分である遊挿部分184dが同軸上に挿入されている。本実施形態において遊挿穴103に挿入される遊挿部分184dは、接続面部183側の不完全螺子部184bと、完全螺子部184aにおける不完全螺子部184b側の一部とから、構成されている。
 このような挿入形態下にて遊挿穴103の直径は、接続面部183の最大直径及び螺子部184における山の径よりも、円筒状隙間103a(図4,7参照)の分だけ大径に設定されている。ここで、径方向において円筒状隙間103aは、微小隙間102aよりも十分に大きく確保されている。こうした直径設定により接続面部183と螺子部184の特定部分である遊挿部分184dとは、皿側嵌合部182と螺子部184の残り部分である螺着部分184eとの間に設けられる「遊挿部」として、円筒状隙間103aを大きくあけて遊挿穴103に遊挿されている。
 螺子穴104は、遊挿穴103と同軸上に隣接して、雌螺子状に形成されている。螺子穴104は、軸受プレート13のうち他端10bよりも一端10a側を、軸方向に延伸している。螺子穴104は、皿側嵌合穴102との間に設けられた遊挿穴103の直径よりも小径に、谷の径を有している。ここで螺子穴104における谷の径とは、雌螺子において螺子溝の谷底に接するような仮想円筒を想定した場合の当該仮想円筒の直径を、意味する。
 螺子穴104には、螺子部184のうち遊挿穴103に遊挿される遊挿部分184dよりも他端18b側の螺着部分184eが、同軸上に挿入されている。本実施形態において螺子穴104に挿入される螺着部分184eは、接続面部183とは反対側の不完全螺子部184cと、完全螺子部184aにおける不完全螺子部184c側の一部とから、構成されている。
 このような挿入形態下にて螺子穴104の有効径は、螺子部184の有効径よりも螺旋状隙間104a(図8参照)の分だけ大径に、設定されている。ここで、径方向において螺旋状隙間104aは、円筒状隙間103aよりも十分に小さいが、微小隙間102aよりも僅かに大きく確保されている。また、螺子穴104の有効径とは、雌螺子において螺子溝の幅が螺子山の幅に等しくなるような仮想円筒を想定した場合の当該仮想円筒の直径を、意味する。さらに、螺子部184の有効径とは、雄螺子において螺子溝の幅が螺子山の幅に等しくなるような仮想円筒を想定した場合の当該仮想円筒の直径を、意味する。こうした直径設定により、螺子部184の遊挿部分184dよりも他端18b側の螺着部分184eは、螺子穴104に対して螺旋状隙間104aをあけて螺着している(図8参照)。
 螺子側嵌合穴105は、螺子穴104と同軸上に隣接して、円筒穴状に形成されている。螺子側嵌合穴105は、螺子穴104を挟んで遊挿穴103及び皿側嵌合穴102とは反対側に、位置している。螺子側嵌合穴105は、軸方向にて実質一定の直径を有することで、軸受プレート13のうち他端10bを構成する部分を、当該軸方向にストレートに延伸している。螺子側嵌合穴105の直径は、螺子穴104における山の径よりも小径に、設定されている。ここで、螺子穴104における山の径とは、雌螺子において螺子山の山頂に接するような仮想円筒を想定した場合の当該仮想円筒の直径を、意味する。
 螺子側嵌合穴105には、螺子側嵌合部185が同軸上に挿入されている。この挿入形態下にて螺子側嵌合穴105の直径は、螺子側嵌合部185の直径よりも微小隙間105a(図4,9参照)の分だけ大径に、設定されている。こうした直径設定により螺子側嵌合部185は、螺子側嵌合穴105に嵌合することで、当該螺子側嵌合穴105に対して調心されている。そこで微小隙間105aは、螺子側嵌合部185及び螺子側嵌合穴105の間にて調心機能を許容するための嵌合隙間として、確保されている。ここで、径方向において微小隙間105aは、円筒状隙間103aよりも十分に小さく、且つ螺旋状隙間104aよりも僅かに小さく確保されている。但し、微小隙間105aについて微小隙間102aに対しては、径方向において小さい、大きい及び等しいのうち、いずれであってもよい。
 以上の如き各穴101,102,103,104,105を有したアウタロータ10と、各部180,181,182,183,184,185を有した皿螺子部材18との間には、特徴的な寸法関係が成立している。そこで以下では、その寸法関係を説明する。
 図6に示すように、皿側嵌合穴102の直径をφahと表し、皿側嵌合部182の直径をφasと表すと、それら皿側嵌合穴102及び皿側嵌合部182の直径差δφaは、下記式1により定義される。図9に示すように、螺子側嵌合穴105の直径をφbhと表し、螺子側嵌合部185の直径をφbsと表すと、それら螺子側嵌合穴105及び螺子側嵌合部185の直径差δφbは、下記式2により定義される。図8,9に示すように、螺子穴104の有効径をφchと表し、螺子部184のうち特に同穴104への螺着部分184eの有効径をφcsと表すと、それら螺子穴104及び螺子部184の有効径差δφcは、下記式3により定義される。ここで図8では、理想的な構成における有効径差δφcの半値δφc/2を示している。図7に示すように遊挿穴103の直径をφdhと表し、螺子部184のうち特に同穴103への遊挿部分184dにおける山の径を「遊挿部」の最大の直径としてφdsと表すと、それら遊挿穴103及び「遊挿部」の直径差δφdは、下記式4により定義される。
 δφa=φah-φas …(式1)
 δφb=φbh-φbs …(式2)
 δφc=φch-φcs …(式3)
 δφd=φdh-φds …(式4)
 こうした定義下、直径差δφaと有効径差δφcとは、下記式5の寸法関係を満たすように設定される。それと共に、直径差δφbと有効径差δφcとは、下記式6の寸法関係を満たすように設定される。さらに、有効径差δφcと直径差δφdとは、下記式7の寸法関係を満たすように設定される。尚、直径差δφaと直径差δφbとの寸法関係については、微小隙間102aと微小隙間105aとの大小関係に応じて、設定される。
 δφa<δφc …(式5)
 δφb<δφc …(式6)
 δφc<δφd …(式7)
 さて、図4,6,9に示すように皿側嵌合部182及び螺子側嵌合部185は、皿側嵌合穴102及び螺子側嵌合穴105に個別に嵌合することで、それぞれ皿側嵌合箇所Pa及び螺子側嵌合箇所Pbを形成している。ここで、本実施形態において皿側嵌合穴102及び皿側嵌合部182の皿側嵌合箇所Paは、螺子穴104及び螺子部184の螺着箇所Pcに対して、螺子側嵌合穴105及び螺子側嵌合部185の螺子側嵌合箇所Pbよりも離れて位置している。
 図6に示すように、皿側嵌合穴102が皿側嵌合部182と実際に嵌合している軸方向長さは、皿側嵌合箇所Paの嵌合長Laとして定義される。図9に示すように、螺子側嵌合穴105が螺子側嵌合部185と実際に嵌合している軸方向長さは、螺子側嵌合箇所Pbの嵌合長Lbとして定義される。これらの定義下、皿側嵌合穴102及び皿側嵌合部182の皿側嵌合箇所Paにおける嵌合長Laと、螺子側嵌合穴105及び螺子側嵌合部185の螺子側嵌合箇所Pbにおける嵌合長Lbとは、下記式8の寸法関係を満たすように設定される。
 La<Lb …(式8)
 (製造方法)
 次に、インナロータ20を内部に収容させた「複合構造体」としてのアウタロータ10を構築して、装置1を製造する方法について、説明する。
 まず、図10(a)に示すように、インナロータ20を内部に同軸上に配置したタイミングスプロケット12の軸方向両側に、それぞれ軸受プレート13とカバープレート14とを重ね合わせてセットする。
 次に、図10(b),(c),(d)に示すように、タイミングスプロケット12及びプレート13,14を皿螺子部材18により締結する。具体的には、星形穴180bに星形棒スパナを挿入して、皿螺子部材18を螺子回ししつつ、当該皿螺子部材18を螺子側嵌合部185から各穴101,102,103,104,105へと順次挿入する。
 その結果として本実施形態では、螺子穴104への螺子部184の螺合が開始してから、図10(b)の如く螺子側嵌合部185が螺子側嵌合穴105に嵌合して調心される。このとき螺子側嵌合部185は、螺旋状隙間104aの範囲内にて図10(b)の白抜矢印の如き振れを許容されることで、螺子側嵌合穴105に対して調心容易となる。
 また、皿螺子部材18の挿入が進むと、図10(c)の如く螺子側嵌合部185が螺子側嵌合穴105に対して調心されたまま、皿側嵌合部182が皿側嵌合穴102に嵌合して調心される。このとき皿側嵌合部182は、螺旋状隙間104a及び微小隙間102aの範囲内にて図10(c)の白抜矢印の如き振れを許容されることで、皿側嵌合穴102に対して調心容易となる。
 さらに、皿螺子部材18の挿入が進むと、図10(d)の如く各嵌合部185,182が各嵌合穴105,102に対して調心されたまま、座面部181が皿穴101に着座する。以上の締結作業を全ての皿螺子部材18について行うことで、装置1の製造が完了する。尚、こうして完成した装置1については、図1に示すように、軸受プレート13の中心穴130に通されたカム軸2に対してインナロータ20を連結させると共に、タイミングスプロケット12をクランク軸と連繋させることで、使用可能となる。
 (作用効果)
 ここまで説明した装置1の作用効果を、以下に説明する。
 装置1では、皿螺子部材18におけるテーパ面状の座面部181がカバープレート14におけるテーパ穴状の皿穴101に着座するまで、皿螺子部材18における雄螺子状の螺子部184が軸受プレート13における雌螺子状の螺子穴104に螺着される。これにより、カバープレート14及び軸受プレート13が締結される。この締結時に、皿螺子部材18の皿側嵌合部182及び螺子側嵌合部185はそれぞれ、カバープレート14の皿側嵌合穴102及び軸受プレート13の螺子側嵌合穴105に個別に嵌合することで、それら嵌合対象の穴102,105に対して調心可能となる。
 ここで装置1によると、皿側嵌合穴102及び皿側嵌合部182の直径差δφaと、螺子側嵌合穴105及び螺子側嵌合部185の直径差δφbと、螺子穴104及び螺子部184の有効径差δφcとは、δφa<δφc且つδφb<δφcの寸法関係を満たす。その結果、各嵌合部182,185が各嵌合穴102,105に個別に嵌合することによる調心機能は、螺子穴104と螺子部184との螺着によっては妨げられ難くなる。故に、そうした調心機能によれば、皿螺子部材18を介して皿側嵌合穴102と螺子側嵌合穴105とが相互調心されることで、皿穴101と螺子穴104とについても相互調心され得る。
 以上のことから装置1では、カバープレート14及び軸受プレート13を皿螺子部材18により締結しながら、皿穴101及び螺子穴104を相互調心させて、それらの穴101,104に対する皿螺子部材18の傾斜を抑制できる。したがって、締結前における皿穴101及び螺子穴104の相互調心の作業を省いて生産性を高めることと両立させて、皿螺子部材18の傾斜抑制により締結軸力を確保して耐久性を高めることが可能である。
 さらに装置1のように、ストレートな円柱状の皿側嵌合部182及び螺子側嵌合部185はそれぞれ、ストレートな円筒穴状の皿側嵌合穴102及び螺子側嵌合穴105に嵌合することで、それら嵌合対象の穴102,105に対して正確に調心され得る。これによれば、皿螺子部材18を介した皿側嵌合穴102及び螺子側嵌合穴105の相互調心精度、ひいては皿穴101及び螺子穴104の相互調心精度を高めることができる。これは、皿螺子部材18の傾斜抑制により締結軸力を確保して耐久性を高める上で、特に有効となる。
 またさらに装置1によると、皿側嵌合部182と螺子部184のうち螺子穴104への螺着部分184eとの間の「遊挿部」として、皿螺子部材18には、接続面部183と螺子部184の遊挿部分184dとが設けられている。ここで、座面部181が皿穴101に着座するまで螺子部184が螺子穴104に螺着される際に「遊挿部」は、皿側嵌合穴102及び螺子穴104の間にてタイミングスプロケット12の遊挿穴103に遊挿される。これによりタイミングスプロケット12は、皿側嵌合穴102を有するカバープレート14と、螺子穴104を有する軸受プレート13との間に挟まれて、締結される。この締結時に、皿螺子部材18の皿側嵌合部182及び螺子側嵌合部185はそれぞれ、カバープレート14の皿側嵌合穴102及び軸受プレート13の螺子側嵌合穴105に個別に嵌合することで、それら嵌合対象の穴102,105に対して調心可能となる。
 ここで装置1によると、螺子穴104及び螺子部184の有効径差δφcと、遊挿穴103及び「遊挿部」の直径差δφdとは、δφc<δφdの寸法関係を満たす。その結果、各嵌合部182,185が各嵌合穴102,105に個別に嵌合することによる調心機能は、遊挿穴103への「遊挿部」の遊挿によっても妨げられ難くなる。故に、カバープレート14及び軸受プレート13の間に別部材のタイミングスプロケット12を挟んだ「複合構造体」として、アウタロータ10を構築する場合にあっても、高い生産性と高い耐久性との両立が可能となる。
 加えて装置1によると、皿側嵌合穴102及び皿側嵌合部182の皿側嵌合箇所Paは、螺子穴104及び螺子部184の螺着箇所Pcに対して、螺子側嵌合穴105及び螺子側嵌合部185の螺子側嵌合箇所Pbよりも離れて位置する。その結果、螺子側嵌合箇所Pbよりも螺着箇所Pcから離れた皿側嵌合箇所Paでは、締結時の軸受プレート13に対して皿螺子部材18に許容される振れ幅が増大し得る。これによれば、軸受プレート13に対して皿螺子部材18を大きく振れさせることで、皿側嵌合部182を皿側嵌合穴102に調心させ易くなる。故に、そうした調心容易性は、生産性を高める上で特に有効となる。
 また加えて装置1によると、皿側嵌合穴102及び皿側嵌合部182の皿側嵌合箇所Paにおける嵌合長Laと、螺子側嵌合穴105及び螺子側嵌合部185の螺子側嵌合箇所Pbにおける嵌合長Lbとは、La<Lbの寸法関係を満たす。その結果、螺子側嵌合箇所Pbよりも螺着箇所Pcから離れた皿側嵌合箇所Paでは、締結時にカバープレート14に対しても、皿螺子部材18に許容される振れ幅が増大し得る。これによれば、カバープレート14及び軸受プレート13に対して皿螺子部材18を大きく振れさせることができるで、皿側嵌合部182を皿側嵌合穴102に調心させ易く、且つ当該調心の精度も確保し易くなる。故に、そうした調心容易性及び調心精度は、生産性及び耐久性を共に高める上で、特に有効となる。
 さらに加えて装置1によると、クランク軸と連動回転するアウタロータ10の内部にて、カム軸2と連動回転するインナロータ20を相対回転させるために、当該アウタロータ10が「複合構造体」として構築される。これによれば、インナロータ20を内部に収容させた「複合構造体」としてのアウタロータ10を構築する際には、生産性を高めることと両立させて、当該構築後には耐久性を高めることが可能となる。
 (他の実施形態)
 一実施形態について説明したが、本開示は、当該実施形態に限定して解釈されるものではなく、要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
 具体的に変形例1では、図11に示すように、皿側嵌合穴102及び螺子側嵌合穴105の少なくとも一方を、テーパ穴状に形成してもよい。このとき、テーパ穴状の皿側嵌合穴102については、皿側嵌合部182との直径差のうち皿側嵌合箇所Paでの最小値を、δφaとして定義する。また、テーパ穴状の螺子側嵌合穴105については、螺子側嵌合部185との直径差のうち螺子側嵌合箇所Pbでの最小値を、δφbとして定義する。尚、図11では、皿側嵌合穴102及び螺子側嵌合穴105の双方をテーパ穴状に形成した変形例1を、示している。
 図12に示すように変形例2では、皿側嵌合部182及び螺子側嵌合部185の少なくとも一方を、テーパ柱状に形成してもよい。このとき、テーパ柱状の皿側嵌合部182については、皿側嵌合穴102との直径差のうち皿側嵌合箇所Paでの最小値を、δφaとして定義する。また、テーパ柱状の螺子側嵌合部185については、螺子側嵌合穴105との直径差のうち螺子側嵌合箇所Pbでの最小値を、δφbとして定義する。尚、図12では、皿側嵌合部182及び螺子側嵌合部185の双方をテーパ穴状に形成した変形例2を、示している。
 変形例3では、変形例1,2を組み合わせてもよい。変形例4では、皿側嵌合箇所Paにおける嵌合長Laと、螺子側嵌合箇所Pbにおける嵌合長Lbとを、La>Lbの寸法関係を満たす値に設定してもよい。
 図13に示すように変形例5では、タイミングスプロケット12を軸受プレート13と一体に形成して、遊挿穴103を螺子穴104に変更してもよい。このとき、図13に示すように接続面部183を設けないことで、皿側嵌合箇所Paと螺子側嵌合箇所Pbとを、螺着箇所Pcからは同程度の距離に配置してもよい。
 以上の他に変形例6では、「動弁」としての排気弁のバルブタイミングを調整するバルブタイミング調整装置の「複合構造体」としてのアウタロータや、バルブタイミング調整装置とは異なる装置の「複合構造体」等に、本開示を適用してもよい。

 

Claims (6)

  1.  テーパ穴状の皿穴(101)と共に、前記皿穴の小径側に設けられる皿側嵌合穴(102)を、有する皿穴部材(14)と、
     雌螺子状の螺子穴(104)と共に、前記螺子穴を挟んで前記皿側嵌合穴とは反対側に設けられる螺子側嵌合穴(105)を、有する螺子穴部材(13)と、
     前記皿穴に着座するテーパ面状の座面部(181)及び前記螺子穴に螺着される雄螺子状の螺子部(184,184e)と共に、前記皿側嵌合穴及び前記螺子側嵌合穴にそれぞれ個別に嵌合して調心可能な皿側嵌合部(182)及び螺子側嵌合部(185)を、有する皿螺子部材であって、前記皿側嵌合穴及び前記皿側嵌合部の直径差δφaと、前記螺子側嵌合穴及び前記螺子側嵌合部の直径差δφbと、前記螺子穴及び前記螺子部の有効径差δφcとは、δφa<δφc且つδφb<δφcの寸法関係を満たす皿螺子部材(18)とを、備える複合構造体。
  2.  前記皿側嵌合穴及び前記螺子側嵌合穴は、ストレートな円筒穴状に形成され、
     前記皿側嵌合部及び前記螺子側嵌合部は、ストレートな円柱状に形成される請求項1に記載の複合構造体。
  3.  前記皿側嵌合穴及び前記螺子穴の間に設けられる遊挿穴(103)を、有する遊挿穴部材(12)を、備え、
     前記皿螺子部材は、前記皿側嵌合部及び前記螺子部の間に設けられて前記遊挿穴に遊挿される遊挿部(183,184d)を、有し、
     前記螺子穴及び前記螺子部の有効径差δφcと、前記遊挿穴及び前記遊挿部の直径差δφdとは、δφc<δφdの寸法関係を満たす請求項1又は2に記載の複合構造体。
  4.  前記皿側嵌合穴及び前記皿側嵌合部の皿側嵌合箇所(Pa)は、前記螺子穴及び前記螺子部の螺着箇所(Pc)に対して、前記螺子側嵌合穴及び前記螺子側嵌合部の螺子側嵌合箇所(Pb)よりも離れて位置する請求項1~3のいずれか一項に記載の複合構造体。
  5.  前記皿側嵌合穴及び前記皿側嵌合部の皿側嵌合箇所(Pa)における嵌合長Laと、前記螺子側嵌合穴及び前記螺子側嵌合部の螺子側嵌合箇所(Pb)における嵌合長Lbとは、La<Lbの寸法関係を満たす請求項1~4のいずれか一項に記載の複合構造体。
  6.  内燃機関においてクランク軸からのクランクトルクの伝達によりカム軸(2)が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置(1)であって、
     請求項1~5のいずれか一項に記載の複合構造体として構築され、前記クランク軸と連動回転するアウタロータ(10)と、
     前記カム軸と連動回転し、前記アウタロータの内部に収容されて相対回転するインナロータ(20)とを、備えるバルブタイミング調整装置。

     
PCT/JP2016/074316 2015-09-11 2016-08-22 複合構造体及びそれを備えたバルブタイミング調整装置 WO2017043293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/569,189 US10208635B2 (en) 2015-09-11 2016-08-22 Composite structure and valve timing adjustment device having the same
CN201680024142.9A CN107532630B (zh) 2015-09-11 2016-08-22 复合构造体及具备复合构造体的阀定时调整装置
DE112016004100.4T DE112016004100B4 (de) 2015-09-11 2016-08-22 Verbundstruktur und eine diese aufweisende Ventilsteuerzeit-Einstellvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015180001A JP6332208B2 (ja) 2015-09-11 2015-09-11 複合構造体及びそれを備えたバルブタイミング調整装置
JP2015-180001 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043293A1 true WO2017043293A1 (ja) 2017-03-16

Family

ID=58239683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074316 WO2017043293A1 (ja) 2015-09-11 2016-08-22 複合構造体及びそれを備えたバルブタイミング調整装置

Country Status (5)

Country Link
US (1) US10208635B2 (ja)
JP (1) JP6332208B2 (ja)
CN (1) CN107532630B (ja)
DE (1) DE112016004100B4 (ja)
WO (1) WO2017043293A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076301A (ja) * 2005-09-05 2006-03-23 Matsumura Seikei:Kk 位置決め機構、及び位置決め治具
WO2007060737A1 (ja) * 2005-11-25 2007-05-31 Matsumura Mold & Pattern Co., Ltd. 位置決め治具及び金型
JP2009215881A (ja) * 2006-07-05 2009-09-24 Mitsubishi Electric Corp バルブタイミング調整装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807052A (en) * 1997-06-27 1998-09-15 Illinois Tool Works Inc. Pre-assembled manifold fastener system and method therefor
JP2000240628A (ja) 1999-02-24 2000-09-05 Kazuyuki Sano 調心ボルト
JP4570977B2 (ja) * 2005-02-14 2010-10-27 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置及びその組付方法
DE102011054861A1 (de) * 2011-10-27 2013-05-02 Böllhoff Verbindungstechnik GmbH Befestigungselement mit Toleranzausgleichsfunktion
JP6395407B2 (ja) 2014-03-19 2018-09-26 Kddi株式会社 受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076301A (ja) * 2005-09-05 2006-03-23 Matsumura Seikei:Kk 位置決め機構、及び位置決め治具
WO2007060737A1 (ja) * 2005-11-25 2007-05-31 Matsumura Mold & Pattern Co., Ltd. 位置決め治具及び金型
JP2009215881A (ja) * 2006-07-05 2009-09-24 Mitsubishi Electric Corp バルブタイミング調整装置

Also Published As

Publication number Publication date
CN107532630A (zh) 2018-01-02
JP6332208B2 (ja) 2018-05-30
DE112016004100T5 (de) 2018-05-30
JP2017053478A (ja) 2017-03-16
US20180106168A1 (en) 2018-04-19
CN107532630B (zh) 2019-05-28
US10208635B2 (en) 2019-02-19
DE112016004100B4 (de) 2023-03-23

Similar Documents

Publication Publication Date Title
US8371257B2 (en) Engine with dual cam phaser for concentric camshaft
US9297281B2 (en) Concentric camshaft phaser flex plate
US8910605B2 (en) Valve timing control device
CN108625922B (zh) 用于凸轮轴装置的凸轮轴调整器和凸轮轴装置
JP2012172558A5 (ja)
US9797277B2 (en) Camshaft phaser
JP2012172558A (ja) 弁開閉時期制御装置
US9835224B2 (en) Torsional vibration damper
US8752517B2 (en) Impeller of a device for variable adjustment of the control times of gas exchange valves of an internal combustion engine
US20170254232A1 (en) Camshaft adjuster having two ball joints
WO2016163119A1 (ja) バルブタイミング調整装置
JP2016200031A (ja) バルブタイミング調整装置
WO2017043293A1 (ja) 複合構造体及びそれを備えたバルブタイミング調整装置
JP5920632B2 (ja) バルブタイミング調整装置
US9500105B2 (en) Camshaft adjuster
JP6187203B2 (ja) 弁開閉時期制御装置
CN102269024A (zh) 用于可变调整换气阀控制时间的装置和用于该装置的螺栓
US10954828B2 (en) Variable camshaft phaser with magnetic locking cover bushing
US10895177B2 (en) Timing wheel for a camshaft phaser arrangement for a concentric camshaft assembly
US10190448B2 (en) Camshaft adjuster
JP6904219B2 (ja) バルブタイミング調整装置
US6966289B1 (en) VCT mechanism incorporating camshaft bearing journal
JP6432413B2 (ja) バルブタイミング調整装置
JP7345558B2 (ja) バルブタイミング調整装置
JP2019044602A (ja) 内燃機関のバルブタイミング制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15569189

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004100

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844156

Country of ref document: EP

Kind code of ref document: A1