WO2017042867A1 - 積層型ヘッダ、熱交換器、及び、空気調和装置 - Google Patents

積層型ヘッダ、熱交換器、及び、空気調和装置 Download PDF

Info

Publication number
WO2017042867A1
WO2017042867A1 PCT/JP2015/075351 JP2015075351W WO2017042867A1 WO 2017042867 A1 WO2017042867 A1 WO 2017042867A1 JP 2015075351 W JP2015075351 W JP 2015075351W WO 2017042867 A1 WO2017042867 A1 WO 2017042867A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
branch
plate
channel
refrigerant
Prior art date
Application number
PCT/JP2015/075351
Other languages
English (en)
French (fr)
Inventor
繁佳 松井
真哉 東井上
毅浩 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP15903533.6A priority Critical patent/EP3348946B1/en
Priority to JP2017538491A priority patent/JP6584514B2/ja
Priority to US15/748,759 priority patent/US11421947B2/en
Priority to PCT/JP2015/075351 priority patent/WO2017042867A1/ja
Priority to CN201580082824.0A priority patent/CN108027223B/zh
Publication of WO2017042867A1 publication Critical patent/WO2017042867A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0292Other particular headers or end plates with fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0295Other particular headers or end plates comprising cooling circuits

Definitions

  • the present invention relates to a laminated header, a heat exchanger, and an air conditioner used for a thermal circuit or the like.
  • a distributor laminated header that distributes and supplies a fluid to each heat transfer tube of a heat exchanger.
  • This distributor distributes the fluid to each heat transfer tube of the heat exchanger by laminating a plurality of plate-like bodies forming a branch channel that branches into a plurality of outlet channels for one inlet channel.
  • the ratio of the flow rate of the liquid fluid flowing out from each of the plurality of outlet channels is important for maintaining the performance of the heat exchanger functioning as an evaporator to keep the temperature uniform.
  • the conventional distributor in a use state where the branching direction of the branch channel is affected by gravity, the liquid fluid flows in a biased manner in one branch channel. Then, the liquid fluid flows out non-uniformly through the plurality of outlet channels of the distributor, and the fluid is supplied non-uniformly to the heat transfer tubes of the heat exchanger. Therefore, there is a problem that the heat exchange performance in the heat exchanger is lowered.
  • the present invention has been made against the background of the problems described above, and is a distributor (laminated type) that uniformly distributes fluid to each heat transfer tube of the heat exchanger to ensure the heat exchange performance of the heat exchanger. (Header). Moreover, it aims at obtaining the heat exchanger provided with such a divider
  • the laminated header according to the present invention includes a flat plate-shaped first flow channel plate in which a first flow channel is formed, a flat plate-shaped second flow channel plate in which a plurality of second flow channels are formed, and a plurality of first flow channels.
  • a plate-shaped third flow channel plate formed with three flow channels, and a plate-shaped first branch flow channel plate formed with an upstream branch flow channel that branches the first flow channel into a plurality of second flow channels;
  • a second branch flow channel plate having a flat plate shape formed with a downstream branch flow channel that branches one of the plurality of second flow channels into a plurality of third flow channels.
  • first branch channel plate, second channel plate, second branch channel plate, and third channel plate are stacked in this order, and the first section that becomes the maximum value of the channel cross-sectional area of the upstream branch channel
  • the area is configured to be larger than the second cross-sectional area that is the maximum value of the cross-sectional area of the downstream branch flow path.
  • the multilayer header it is possible to maintain the flow velocity in the branch flow path at a certain value or more even if the flow rate of the fluid decreases by branching in each branch flow path. That is, the maximum flow cross-sectional area of the branch flow path is set to be equal to or smaller than the maximum flow path cross-sectional area of the branch flow path located upstream thereof, and the flow velocity of the fluid is reduced by reducing the flow path cross-sectional area of the downstream branch flow path. To raise. Thereby, the influence of the gravity on the liquid component of the fluid can be relaxed, the retention of the liquid film can be suppressed, and the distribution ratio in the branch channel can be made uniform.
  • FIG. 3 is an exploded perspective view of the multilayer header according to Embodiment 1.
  • FIG. 2A and 2B are a cross-sectional view taken along line AA and a line BB of the laminated header 2 showing the structure of each branch flow channel according to the first embodiment. It is explanatory drawing which showed the state in the branch flow path in the divider
  • FIG. 3 is a diagram showing a relationship between an average flow velocity Vm of a refrigerant at an inlet of a branch channel and a distribution ratio of the refrigerant in the branch channel according to the first embodiment.
  • FIG. 3 is an enlarged view of a terminal end portion of a branch flow channel according to Embodiment 1.
  • FIG. FIG. 6 is a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the laminated header showing the structure of each branch channel according to the modification of the first embodiment. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied.
  • the laminated header and the heat exchanger according to the present invention are applied to an air conditioner.
  • the present invention is not limited to such a case. It may be applied to the refrigeration cycle apparatus.
  • the heat medium used is described as a refrigerant that changes phase, a fluid that does not change phase may be used.
  • the laminated header and the heat exchanger according to the present invention are outdoor heat exchangers of an air conditioner is described, the present invention is not limited to such a case, and the indoor heat exchanger of the air conditioner It may be.
  • an air conditioning apparatus switches between heating operation and cooling operation is demonstrated, it is not limited to such a case, You may perform only heating operation or cooling operation.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger 1 according to the first embodiment.
  • the heat exchanger 1 includes a laminated header 2, a cylindrical header 3, a plurality of heat transfer tubes 4, a holding member 5, and a plurality of fins 6.
  • the laminated header 2 has one first flow path 10A and a plurality of fifth flow paths 10E.
  • the cylindrical header 3 has a plurality of first flow paths 3A and one second flow path 3B.
  • Refrigerant piping of the refrigeration cycle apparatus is connected to the first flow path 10A of the stacked header 2 and the second flow path 3B of the cylindrical header 3.
  • a heat transfer tube 4 is connected between the fifth flow path 10 ⁇ / b> E of the laminated header 2 and the first flow path 3 ⁇ / b> A of the cylindrical header 3.
  • the heat transfer tube 4 is a flat tube or a circular tube in which a plurality of flow paths are formed.
  • the heat transfer tube 4 is made of, for example, copper or aluminum.
  • the end of the heat transfer tube 4 on the laminated header 2 side is connected to the fifth flow path 10 ⁇ / b> E of the laminated header 2 while being held by the plate-like holding member 5.
  • the holding member 5 is made of aluminum, for example.
  • a plurality of fins 6 are joined to the heat transfer tube 4.
  • the fin 6 is made of aluminum, for example.
  • FIG. 1 although the case where the number of the heat exchanger tubes 4 is eight is shown, it is not limited to such a case. For example, two may be used.
  • the refrigerant flowing through the plurality of heat transfer tubes 4 flows into and joins the cylindrical header 3 through the plurality of first flow paths 3A, and flows out to the refrigerant pipe through the second flow paths 3B.
  • the heat exchanger 1 functions as a condenser, the refrigerant flows in the direction opposite to this flow.
  • FIG. 2 is an exploded perspective view of the stacked header according to the first embodiment.
  • the laminated header 2 (distributor) shown in FIG. 2 is, for example, a rectangular first plate-like body 111, 112, 113, 114, 115 and a second plate-like sandwiched between the first plate-like bodies. It consists of bodies 121, 122, 123, and 124.
  • the first plate bodies 111, 112, 113, 114, and 115 and the second plate bodies 121, 122, 123, and 124 have the same outer shape in plan view.
  • the first plate-like bodies 111, 112, 113, 114, and 115 before brazing and joining are not clad (coated), and the second plate-like bodies 121, 122, and 123 are not coated.
  • , 124 is configured such that a brazing material is clad (coated) on both sides or one side. From this state, the first plate-like bodies 111, 112, 113, 114, and 115 are stacked via the second plate-like bodies 121, 122, 123, and 124, and are heated and brazed and joined in a heating furnace.
  • the first plate-like bodies 111, 112, 113, 114, 115 and the second plate-like bodies 121, 122, 123, 124 are, for example, about 1 to 10 mm in thickness and made of aluminum.
  • the holding member 5 is a plate-like member held by the end of the heat transfer tube 4 of the heat exchanger 1.
  • the holding member 5 has the same outer shape in plan view as the first plate-like bodies 111, 112, 113, 114, 115 and the second plate-like bodies 121, 122, 123, 124.
  • the heat transfer tube 4 is brazed to the holding member 5, and the heat transfer tube 4 is connected to the fifth channel 10 ⁇ / b> E of the first plate 115 by stacking the holding member 5 and the first plate 115. Is done.
  • the heat transfer tube 4 may be directly connected to the fifth flow path 10 ⁇ / b> E of the first plate 115 without the holding member 5 being provided. In that case, the cost of parts is reduced.
  • Each plate-like body is processed by pressing or cutting.
  • a plate material having a thickness that can be pressed is 5 mm or less
  • a plate material having a thickness of 5 mm or more may be used.
  • the split flow channel 2 a is formed by the channels formed in the first plate bodies 111, 112, 113, 114, 115 and the second plate bodies 121, 122, 123, 124.
  • the diversion flow channel 2a is a first flow channel 10A, a second flow channel 10B, a third flow channel 10C, a fourth flow channel 10D, a fifth flow channel 10E, which is a circular through hole, a substantially S-shape or a substantially Z-shape.
  • the first branch flow path 11, the second branch flow path 12, and the third branch flow path 13, which are shaped through grooves, are formed.
  • a circular first flow path 10 ⁇ / b> A is opened substantially at the center of the first plate-like body 111 and the second plate-like body 121 (corresponding to the first flow path plate of the present invention).
  • a pair of second flow paths 10B are also circular at positions that are symmetrical with respect to the first flow path 10A in the stacked state. It is open at.
  • the second plate-like body 123 (corresponding to the third flow-path plate of the present invention) has four third flow paths 10C at positions symmetrical to the second flow path 10B in the laminated body, Open in a circle.
  • the second plate-like body 124 has eight fourth flow passages 10D opened in a circular shape at positions symmetrical to the third flow passage 10C in the laminated body.
  • the first plate 115 is open with a fifth flow path 10E that communicates with the fourth flow path 10D and has the same shape as the outer shape of the heat transfer tube 4.
  • the fifth flow path 10 ⁇ / b> E communicates with the heat transfer tube 4.
  • the first plate 112 (corresponding to the first branch channel plate of the present invention) includes a first branch channel 11 (upstream branch flow of the present invention) that is a substantially S-shaped or Z-shaped through groove. (Corresponding to the road) is formed in one place.
  • the first plate-like body 113 (corresponding to the second branch channel plate of the present invention) has a second branch channel 12 (a downstream of the present invention) that is also a substantially S-shaped or substantially Z-shaped through groove. Are formed in two places.
  • the first plate-like body 114 is formed with four third branch flow passages 13 that are also substantially S-shaped or substantially Z-shaped through grooves.
  • the first flow passage 10A is connected to the center of the first branch flow passage 11 formed in the first plate-like body 112.
  • the second flow path 10B is connected to both ends of the first branch flow path 11.
  • the second flow path 10B is connected to the center of the second branch flow path 12 formed in the first plate-like body 113, and the third flow path is connected to both ends of the second branch flow path 12. 10C is connected.
  • the third flow path 10C is connected to the center of the third branch flow path 13 formed in the first plate-like body 114, and the fourth flow path is connected to both ends of the third branch flow path 13. 10D is connected. The fourth flow path 10D is connected to the fifth flow path 10E.
  • the first plate bodies 111, 112, 113, 114, 115 and the second plate bodies 121, 122, 123, 124 are laminated and brazed to connect the respective flow paths, so that the combined flow The path 2a can be formed.
  • FIGS. 3A and 3B are an AA cross-sectional view and a BB cross-sectional view of the laminated header 2 showing the structure of each branch channel according to the first embodiment.
  • the first branch channel 11 is a substantially S-shaped or substantially Z-shaped through groove formed at one location on the first plate-like body 112 as described above.
  • the first branch channel 11 includes a first branch portion 11a that extends in the short direction of the first plate-like body 112 (X direction in FIG. 3) and opens, and a first plate from both ends of the first branch portion 11a.
  • the upper and lower second branch portions 11b and 11c are opened in such a way as to extend in the longitudinal direction of the shape body 112 (Y direction in FIG. 3).
  • the first branch part 11a and the upper second branch part 11b, and the first branch part 11a and the lower second branch part 11c are smoothly connected by a bent part.
  • the first branch portion 11a extends in the horizontal direction (X direction in FIG. 3) in order to use the Y direction in FIG.
  • the upper second branch portion 11b extends upward from one end side of the first branch portion 11a.
  • the lower second branch portion 11c extends downward from the other end side of the first branch portion 11a.
  • the second branch flow path 12 is a substantially S-shaped or substantially Z-shaped through groove formed in two locations on the first plate-like body 113 as described above.
  • the second branch flow path 12 includes a first branch portion 12a that extends in the short direction of the first plate-like body 113 (X direction in FIG. 3) and opens, and a first plate from both ends of the first branch portion 12a.
  • the upper body 113 includes two upper second branch portions 12b and a lower second branch portion 12c that extend in the longitudinal direction (Y direction in FIG. 3) of the shape body 113 and open.
  • the first branch portion 12a and the upper second branch portion 12b, and the first branch portion 12a and the lower second branch portion 12c are smoothly connected by a bent portion.
  • the first branch portion 12a extends in the horizontal direction (X direction in FIG. 3) because the Y direction in FIG.
  • the upper second branch portion 12b extends upward from one end side of the first branch portion 12a.
  • the lower second branch portion 12c extends downward from the other end side of the first branch portion 12a.
  • the third branch flow path 13 is a substantially S-shaped or substantially Z-shaped through groove formed in four locations on the first plate-like body 114 as described above.
  • the third branch flow path 13 includes a first branch portion 13a that extends in the short direction of the first plate-like body 114 (X direction in FIG. 3) and opens, and a first plate from both ends of the first branch portion 13a. It consists of two upper second branch parts 13b and a lower second branch part 13c that extend in the longitudinal direction (Y direction in FIG. 3) of the shape body 114 and open.
  • the first branch part 13a and the upper second branch part 13b, and the first branch part 13a and the lower second branch part 13c are smoothly connected by a bent part.
  • the first branch portion 13a is extended in the horizontal direction (X direction in FIG. 3) in order to use the Y direction in FIG.
  • the upper second branch portion 13b extends upward from one end side of the first branch portion 13a.
  • the lower second branch portion 13c extends downward from the other end side of the first branch portion 13a.
  • the first branch channel 11, the second branch channel 12, and the third branch channel 13 When the cross-sectional areas of the first branch channel 11, the second branch channel 12, and the third branch channel 13 are compared, the first branch channel 11, the second branch channel 12, and the third branch channel are compared. It is comprised so that it may become small in order of 13.
  • the 1st branch flow path 11, the 2nd branch flow path 12, and the 3rd branch flow path 13 which are shown in FIG. 3 become a fixed flow path cross-sectional area in each branch flow path.
  • the inflowing refrigerant travels straight in the first flow path 10A, collides with the surface of the second plate body 122 in the first branch flow path 11 of the first plate body 112, and the first branch flow path 11
  • the current is diverted in the horizontal direction in the direction of gravity at the one branch portion 11a.
  • the refrigerant that has traveled to both ends of the first branch portion 11a travels upward in the gravitational direction in the upper second branch portion 11b, and travels downward in the gravitational direction in the lower second branch portion 11c. And it flows in into a pair of 2nd flow paths 10B.
  • the refrigerant that has flowed into the second flow path 10B travels straight in the second flow path 10B in the same direction as the refrigerant traveling in the first flow path 10A.
  • This refrigerant collides with the surface of the second plate-like body 123 in the second branch passage 12 of the first plate-like body 113, and in the horizontal direction in the direction of gravity at the first branch portion 12a of the second branch passage 12.
  • the refrigerant that has advanced to both ends of the first branch portion 12a travels upward in the gravity direction in the upper second branch portion 12b, and travels downward in the gravity direction in the lower second branch portion 12c. Then, it flows into the four third flow paths 10C.
  • the refrigerant that has flowed into the third flow path 10C travels straight through the third flow path 10C in the same direction as the refrigerant traveling through the second flow path 10B.
  • This refrigerant collides with the surface of the second plate-like body 124 in the third branch passage 13 of the first plate-like body 114, and in the horizontal direction in the gravity direction at the first branch portion 13a of the third branch passage 13.
  • the refrigerant that has traveled to both ends of the first branch portion 13a travels upward in the gravity direction in the upper second branch portion 13b, and travels downward in the gravity direction in the lower second branch portion 13c. Then, it flows into the eight fourth flow paths 10D.
  • the refrigerant that has flowed into the fourth flow path 10D travels in the same direction as the refrigerant that travels through the third flow path 10C and flows into the fifth flow path 10E. And it flows out out of the 5th flow path 10E, is uniformly distributed with respect to the several heat exchanger tube 4 hold
  • the example of the laminated header 2 in which the branching flow channel 2a according to Embodiment 1 passes through three branch channels and has eight branches is shown, the number of branches and the number of branches are not limited to this example. .
  • FIG. 4 is an explanatory view showing a state in the branch channel in the distributor of the comparative example.
  • the refrigerant flowing toward the flow path 10 particularly in the upward direction in the direction of gravity, has a lower flow velocity at the upper branch portion 21.
  • the liquid film 22 stays in the branch flow path 20.
  • the substantial flow path area through which the refrigerant flows is reduced, and the pressure loss of the flow path toward the upper side in the direction of gravity increases. For this reason, the distribution ratio of the refrigerant in the branch flow path 20 is biased.
  • the laminated header of the comparative example realizes multi-branching by repeating branching in a plurality of branch channels having the same channel cross-sectional area. Therefore, the flow rate of the refrigerant flowing in the downstream branch channel becomes smaller, and the liquid component becomes gravity. The liquid film tends to stay under the influence of the above.
  • the first branch channel 11, the second branch channel 12, and the third branch channel 13 according to the first embodiment are configured so that the channel cross-sectional area decreases in this order. Even if the flow rate of the refrigerant decreases by branching in each branch flow path, the flow velocity in the branch flow path can be maintained at a certain value or more.
  • the flow velocity of the refrigerant can be reduced by setting the maximum channel cross-sectional area of the branch channel to be equal to or less than the maximum channel cross-sectional area of the branch channel located upstream thereof, and reducing the channel cross-sectional area of the downstream branch channel. To raise. Thereby, the influence of gravity on the liquid component can be relaxed, the retention of the liquid film can be suppressed, and the distribution ratio in the branch channel can be made uniform.
  • FIG. 5 is a diagram showing the relationship between the average flow velocity Vm of the refrigerant at the entrance of the branch flow channel and the distribution ratio of the refrigerant in the branch flow channel according to the first embodiment.
  • the allowable range of the distribution ratio in the branch flow path branched into two is approximately 48% or more and 52% or less. As shown in FIG.
  • the average refrigerant flow velocity at each inlet of the first branch channel 11, the second branch channel 12, and the third branch channel 13 is set to Vm ⁇ 0.3 [m / s].
  • the average flow velocity Vm of the refrigerant is assumed to be a homogeneous flow, and is calculated by the following equations (1) and (2).
  • Vm in all the branch flow paths It is preferable to set the flow path cross-sectional area so that ⁇ 0.3 [m / s].
  • the first plate bodies 111, 112, 113, 114, 115 and the second plate bodies 121, 122, 123, 124 of the laminated header 2 according to the present invention are brazed using a clad material.
  • the equivalent diameter D of each branch flow path of the first branch flow path 11, the second branch flow path 12, and the third branch flow path 13 is small, when brazing, brazing material will enter and block or The flow path is deformed, and the distribution ratio is biased. Therefore, in order to suppress the deformation of the flow path due to the intrusion of the brazing material, the equivalent diameter D of each branch flow path is preferably set to 3 [mm] or more.
  • the equivalent diameter D of the branch channel is calculated by the following equation (4).
  • the equivalent diameter D of the flow path is 3 [mm] or more, and satisfies the formula (3).
  • the refrigerant can be evenly distributed in the laminated header 2 manufactured by brazing.
  • 10A of 1st flow paths, 10B of 2nd flow paths, and 10C of 3rd flow paths are refrigerant
  • the refrigerant that has flowed from the first flow path 10A, the second flow path 10B, and the third flow path 10C into the first branch flow path 11, the second branch flow path 12, and the third branch flow path 13 is formed by each branch flow path. It is stirred by colliding with the opposing wall surface. Due to this agitation effect, the liquid component of the refrigerant is not easily affected by gravity, and the refrigerant can be evenly distributed in each branch channel. When the flow rate of the refrigerant is small and the liquid component of the refrigerant branches without colliding with the opposing wall surface, the influence of gravity and inertial force on the liquid component becomes dominant, and the distribution ratio is biased.
  • the equivalent diameter D of the first flow path 10A, the second flow path 10B, and the third flow path 10C is formed to be equal to or less than the equivalent diameter D of the branch flow path on the downstream side, Collision can be promoted and a stirring effect can be obtained.
  • FIG. 6 is an enlarged view of a terminal portion of the branch flow channel according to the first embodiment.
  • FIGS. 7A and 7B are an AA cross-sectional view and a BB cross-sectional view of the laminated header 2 showing the structure of each branch channel according to the modification of the first embodiment.
  • the equivalent diameter D of the first flow path 10A, the second flow path 10B, and the third flow path 10C according to Embodiment 1 is the first branch flow path that is the respective branch flow path on the downstream side thereof. 11, by forming the second branch flow path 12 and the third branch flow path 13 to be equal to or less than the equivalent diameter D, the collision of the liquid film with the opposing wall surface can be promoted and the stirring effect can be obtained. Then, as shown in FIG. 6, the equivalent diameters D of the second flow path 10B, the third flow path 10C, and the fourth flow path 10D are the first branch flow path 11 and the first branch flow path 11 that are the respective branch flow paths on the upstream side. It is surely smaller than the equivalent diameter D of the two branch channels 12 and the third branch channel 13.
  • a sharply reduced portion of the channel cross-sectional area may be formed at the end portion 30 of each branch channel.
  • the liquid film 31 stays in the sudden reduction portion, obstructs the flow of the refrigerant, and causes a distribution ratio in the branch flow path to be biased.
  • the upper second branch portion 11b and the upper second branch portion in the first branch channel 11, the second branch channel 12, and the third branch channel 13, as shown in FIG. 12b the upper second branch portion 13b is provided with a tapered portion 32 whose flow passage cross-sectional area gradually decreases toward the downstream side. Then, the terminal end 30 and the second flow path 10B of the first branch flow path 11, the terminal end 30 and the third flow path 10C of the second branch flow path 12, and the terminal end 30 and the fourth flow of the third branch flow path 13 are provided. Each of the paths 10D is smoothly connected.
  • the tapered portion 32 may be provided only in the upper second branch portion 11b, the upper second branch portion 12b, and the upper second branch portion 13b, and further, the lower second branch portion 11c and the lower second branch portion. You may provide also in the branch part 12c and the lower 2nd branch part 13c. By providing the tapered portions 32 on both sides of the upper and lower second branch portions, the channel resistance of the second branch portion is made uniform, and a more even distribution ratio can be realized in each branch channel.
  • FIG. 8 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 1 is applied.
  • the air conditioner 50 includes a compressor 51, a four-way valve 52, an outdoor heat exchanger (heat source side heat exchanger) 53, a throttle device 54, and an indoor heat exchanger (load side).
  • the compressor 51, the four-way valve 52, the outdoor heat exchanger 53, the expansion device 54, and the indoor heat exchanger 55 are connected by a refrigerant pipe to form a refrigerant circulation circuit.
  • a compressor 51 For example, a compressor 51, a four-way valve 52, a throttle device 54, an outdoor fan 56, an indoor fan 57, various sensors, and the like are connected to the control device 58.
  • the control device 58 By switching the flow path of the four-way valve 52 by the control device 58, the cooling operation and the heating operation are switched.
  • the flow of the refrigerant during the cooling operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 51 flows into the outdoor heat exchanger 53 via the four-way valve 52, and heat-condenses with the air supplied by the outdoor fan 56 to condense.
  • the condensed refrigerant enters a high-pressure liquid state, flows out of the outdoor heat exchanger 53, and enters a low-pressure gas-liquid two-phase state by the expansion device 54.
  • the low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 55 and evaporates by heat exchange with the air supplied by the indoor fan 57, thereby cooling the room.
  • the evaporated refrigerant enters a low-pressure gas state, flows out from the indoor heat exchanger 55, and is sucked into the compressor 51 through the four-way valve 52.
  • the flow of the refrigerant during the heating operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 51 flows into the indoor heat exchanger 55 via the four-way valve 52 and is condensed by heat exchange with the air supplied by the indoor fan 57, Heat up.
  • the condensed refrigerant becomes a high-pressure liquid state, flows out of the indoor heat exchanger 55, and becomes a low-pressure gas-liquid two-phase refrigerant by the expansion device 54.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 53, exchanges heat with the air supplied by the outdoor fan 56, and evaporates.
  • the evaporated refrigerant enters a low-pressure gas state, flows out of the outdoor heat exchanger 53, and is sucked into the compressor 51 through the four-way valve 52.
  • the heat exchanger 1 is used for at least one of the outdoor heat exchanger 53 and the indoor heat exchanger 55.
  • the heat exchanger 1 acts as an evaporator
  • the heat exchanger 1 is connected so that the refrigerant flows from the laminated header 2 and flows out to the cylindrical header 3. That is, when the heat exchanger 1 acts as an evaporator, the refrigerant in the gas-liquid two-phase state flows from the refrigerant pipe to the stacked header 2, branches, and flows into the heat transfer tubes 4 of the heat exchanger 1. Further, when the heat exchanger 1 acts as a condenser, liquid refrigerant flows from each heat transfer tube 4 into the laminated header 2 and joins and flows out to the refrigerant pipe.
  • the laminated header according to Embodiment 1 includes a flat plate-shaped first flow channel plate in which the first flow channel 10A is formed and a flat plate-shaped second flow in which a plurality of second flow channels 10B are formed.
  • a flat plate-shaped second branch flow in which a flat first branched flow channel plate and a downstream branch flow channel that branches one of the plurality of second flow channels 10B into a plurality of third flow channels 10C are formed.
  • the first cross-sectional area that becomes the maximum value of is configured to be larger than the second cross-sectional area that becomes the maximum value of the cross-sectional area of the downstream branch flow path.
  • the flow velocity of the refrigerant can be reduced by setting the maximum channel cross-sectional area of the branch channel to be equal to or less than the maximum channel cross-sectional area of the branch channel located upstream thereof, and reducing the channel cross-sectional area of the downstream branch channel.
  • the influence of gravity on the liquid component of the refrigerant can be alleviated to suppress the retention of the liquid film, and the distribution ratio in the branch flow path can be made uniform.
  • the minimum value of the equivalent diameter D of the upstream branch flow channel and the minimum value of the equivalent diameter D of the downstream branch flow channel are equal to or greater than a minimum specified value (for example, 3 mm or more), even when the brazing material penetrates into each branch flow path when the plate-like body is brazed, the distribution ratio of the refrigerant is biased due to the blockage of the branch flow paths or deformation of the flow paths. Can be prevented.
  • the equivalent diameter D of the first flow path 10A is configured to be equal to or less than the minimum value of the equivalent diameter D of the upstream branch flow path.
  • the refrigerant that has flowed into the upstream branch flow channel from the first flow channel 10A is agitated by colliding with the opposing wall surface. Due to this stirring effect, the liquid component of the refrigerant is less affected by gravity, and the refrigerant can be evenly distributed in the upstream branch flow path.
  • the equivalent diameter D of the second flow path 10B is configured to be equal to or less than the minimum value of the equivalent diameter D of the downstream branch flow path.
  • the refrigerant that has flowed into the downstream branch flow path from the second flow path 10B is agitated by colliding with the opposing wall surface. Due to this agitation effect, the liquid component of the refrigerant is less affected by gravity, and the refrigerant can be evenly distributed in the downstream branch flow path.
  • the maximum flow area of the upstream branch flow path or the downstream branch flow path to be calculated is An [m 2 ], and the first flow
  • the minimum refrigerant flow rate flowing into the passage 10A is Gr [kg / s]
  • the number of branches branched upstream of the upstream branch flow channel or the downstream branch flow channel to be calculated is n, and the refrigerant flows into the first flow channel 10A.
  • the saturation density of the refrigerant to be used is ⁇ ave [m 3 / kg], the dryness of the refrigerant flowing into the first flow path 10A is x, and the saturated liquid density of the liquid refrigerant flowing into the first flow path 10A is ⁇ L [ m 3 / kg], the saturated gas density of the gas refrigerant flowing into the first flow path 10A: ⁇ G [m 3 / kg], and the relationship of the following formula (5) is satisfied.
  • the flow rate of the refrigerant becomes 0.3 [m / s] or more. Then, the influence of gravity on the liquid refrigerant can be suppressed to prevent the liquid film from staying in the branch flow path, and the refrigerant can be evenly distributed. ... (5)
  • the upstream branch flow path has a first taper portion in which the cross-sectional area of the flow path gradually decreases with the connection with the second flow path 10B as an end. Therefore, the terminal end 30 of the upstream branch flow path and the second flow path 10B are smoothly connected. Therefore, the retention of the liquid film at the terminal end portion 30 of the branch channel can be suppressed, and the distribution ratio in the branch channel can be made uniform.
  • the downstream branch flow path has a second cross-sectional area that gradually decreases with the connection portion with the third flow path 10C as a terminal portion 30. Since the tapered portion is formed, the terminal portion 30 of the downstream branch flow path and the third flow path 10C are smoothly connected. Therefore, the retention of the liquid film at the terminal end portion 30 of the branch channel can be suppressed, and the distribution ratio in the branch channel can be made uniform.
  • the upstream branch flow path includes a first branch portion 11a extending in a substantially horizontal direction, and an upper side in the gravity direction from one end side of the first branch portion. And an upper second branch portion 11b that extends downward from the other end side of the first branch portion 11a in the direction of gravity. Since the first tapered portion is formed in the portion 11b, the liquid film can be prevented from staying at the terminal portion of the upper second branching portion 11b, which is particularly affected by the gravity of the liquid refrigerant. The distribution ratio can be made uniform.
  • the downstream branch flow path includes a first branch portion 12a extending in a substantially horizontal direction, and a gravity direction from one end side of the first branch portion 12a.
  • An upper second branching portion 12b extending upward, and a lower second branching portion 12c extending downward in the direction of gravity from the other end of the first branching portion 12a. Since the first tapered portion is formed in the branching portion 12b, the retention of the liquid film can be suppressed particularly at the terminal portion of the upper second branching portion where the influence of gravity on the liquid refrigerant is large.
  • the distribution ratio can be made uniform.
  • the heat exchange capacity can be increased and the air conditioning performance can be improved.
  • 1 heat exchanger 2 stacked header, 2a mixing flow channel, 3 cylindrical header, 3A 1st channel, 3B 2nd channel, 4 heat transfer tube, 5 holding member, 6 fins, 10A 1st channel, 10B 2nd flow path, 10C 3rd flow path, 10D 4th flow path, 10E 5th flow path, 11 1st branch flow path, 11a 1st branch part, 11b Upper 2nd branch part, 11c Lower 2nd branch Part, 12 second branch channel, 12a first branch unit, 12b upper second branch unit, 12c lower second branch unit, 13 third branch channel, 13a first branch unit, 13b upper second branch unit, 13c Lower second branch section, 20 Branch flow path, 21 Upper branch section, 22 Liquid film, 30 End section, 31 Liquid film, 32 Taper section, 50 Air conditioner, 51 Compressor, 52 Four-way valve, 53 Outdoor heat Exchanger, 54 throttle 55, Indoor heat exchanger, 56 Outdoor fan, 57 Indoor fan, 58 Control device, 111, 112, 113, 114, 115 First plate,

Abstract

 本発明に係る積層型ヘッダは、第1流路が形成された平板形状の第1流路板と、複数の第2流路が形成された平板形状の第2流路板と、複数の第3流路が形成された平板形状の第3流路板と、第1流路を複数の第2流路に分岐する上流側分岐流路が形成された平板形状の第1分岐流路板と、複数の第2流路のうちの1つを複数の第3流路に分岐する下流側分岐流路が形成された平板形状の第2分岐流路板と、を有し、第1流路板、第1分岐流路板、第2流路板、第2分岐流路板、第3流路板の順に積層され、上流側分岐流路の流路断面積の最大値となる第1断面積は、下流側分岐流路の流路断面積の最大値となる第2断面積より大きくなるよう構成されたものである。

Description

積層型ヘッダ、熱交換器、及び、空気調和装置
 本発明は、熱回路等に使用する積層型ヘッダ、熱交換器、及び、空気調和装置に関するものである。
 従来、熱交換器の各伝熱管に対して流体を分配して供給する分配器(積層型ヘッダ)が知られている。この分配器は、1つの入口流路に対して複数の出口流路に分岐する分岐流路を形成する板状体を複数枚積層することによって、熱交換器の各伝熱管に流体を分配して供給するものである(例えば、特許文献1参照)。
特開平9-189463号公報(図1等を参照)
 このような分配器(積層型ヘッダ)では、熱交換器の各伝熱管に均一に流体を供給するために、複数の出口流路のそれぞれから流出する液流体の流量の比率、つまり、分配比を均一に保つことが蒸発器として機能する熱交換器の性能を確保する上で重要である。
 従来の分配器では、分岐流路の分岐方向が重力の影響を受ける使用状態において、液流体が一方の分岐流路に偏って流れる状態となっていた。すると、分配器の複数の出口流路で液流体が不均一に流出し、熱交換器の各伝熱管に流体が不均一に供給される。よって、熱交換器での熱交換性能が低下するという問題があった。
 本発明は、上記のような課題を背景としてなされたものであり、熱交換器の各伝熱管に対して流体を均一に分配して熱交換器の熱交換性能を担保する分配器(積層型ヘッダ)を得ることを目的とする。また、そのような分配器(積層型ヘッダ)を備えた熱交換器を得ることを目的とする。また、本発明は、そのような熱交換器を備えた空気調和装置を得ることを目的とする。
 本発明に係る積層型ヘッダは、第1流路が形成された平板形状の第1流路板と、複数の第2流路が形成された平板形状の第2流路板と、複数の第3流路が形成された平板形状の第3流路板と、第1流路を複数の第2流路に分岐する上流側分岐流路が形成された平板形状の第1分岐流路板と、複数の第2流路のうちの1つを複数の第3流路に分岐する下流側分岐流路が形成された平板形状の第2分岐流路板と、を有し、第1流路板、第1分岐流路板、第2流路板、第2分岐流路板、第3流路板の順に積層され、上流側分岐流路の流路断面積の最大値となる第1断面積は、下流側分岐流路の流路断面積の最大値となる第2断面積より大きくなるよう構成されたものである。
 本発明に係る積層型ヘッダでは、各分岐流路で分岐して流体の流量が少なくなっても分岐流路内の流速を一定値以上に維持することが可能となる。すなわち、分岐流路の最大流路断面積を、その上流側に位置する分岐流路の最大流路断面積以下とし、下流側の分岐流路ほど流路断面積を小さくすることで流体の流速を上昇させる。これにより、流体の液成分への重力の影響を緩和して液膜の滞留を抑制し、分岐流路での分配比を均等にすることができる。
実施の形態1に係る熱交換器の構成を示す図である。 実施の形態1に係る積層型ヘッダにおける分解斜視図である。 実施の形態1に係る各分岐流路の構造を示す積層型ヘッダ2のA-A断面図、及び、B-B断面図である。 比較例の分配器における分岐流路内の状態を示した説明図である。 実施の形態1に係る分岐流路の入口における冷媒の平均流速Vmと分岐流路での冷媒の分配比との関係を示した図である。 実施の形態1に係る分岐流路の終端部の拡大図である。 実施の形態1の変形例に係る各分岐流路の構造を示す積層型ヘッダのA-A断面図、及び、B-B断面図である。 実施の形態1に係る熱交換器が適用される空気調和装置の構成を示す図である。
 以下、本発明に係る積層型ヘッダ、熱交換器、及び、空気調和装置について、図面を用いて説明する。
 なお、以下で説明する構成、動作等は、一例にすぎず、本発明に係る積層型ヘッダ、熱交換器、及び、空気調和装置は、そのような構成、動作等である場合に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
 また、以下では、本発明に係る積層型ヘッダ、熱交換器が、空気調和装置に適用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に適用されてもよい。また、使用される熱媒体を相変化する冷媒として記載したが、相変化しない流体を用いてもよい。また、本発明に係る積層型ヘッダ、熱交換器が、空気調和装置の室外熱交換器である場合を説明しているが、そのような場合に限定されず、空気調和装置の室内熱交換器であってもよい。また、空気調和装置が、暖房運転と冷房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、暖房運転又は冷房運転のみを行うものであってもよい。
実施の形態1.
 実施の形態1に係る積層型ヘッダ、熱交換器、及び、空気調和装置について説明する。
<熱交換器1の構成>
 以下に、実施の形態1に係る熱交換器の構成について説明する。
 図1は、実施の形態1に係る熱交換器1の構成を示す図である。
 図1に示されるように、熱交換器1は、積層型ヘッダ2と、円筒型ヘッダ3と、複数の伝熱管4と、保持部材5と、複数のフィン6と、を有する。
 積層型ヘッダ2は、1つの第1流路10Aと、複数の第5流路10Eと、を有する。円筒型ヘッダ3は、複数の第1流路3Aと、1つの第2流路3Bと、を有する。積層型ヘッダ2の第1流路10A及び円筒型ヘッダ3の第2流路3Bには、冷凍サイクル装置の冷媒配管が接続される。積層型ヘッダ2の第5流路10Eと円筒型ヘッダ3の第1流路3Aとの間には、伝熱管4が接続される。
 伝熱管4は、複数の流路が形成された扁平管もしくは円管である。伝熱管4は、例えば、銅製やアルミニウム製である。伝熱管4の積層型ヘッダ2側の端部は、板状の保持部材5によって保持された状態で、積層型ヘッダ2の第5流路10Eに接続される。保持部材5は、例えば、アルミニウム製である。伝熱管4には、複数のフィン6が接合される。フィン6は、例えば、アルミニウム製である。なお、図1では、伝熱管4が8本である場合を示しているが、そのような場合に限定されない。例えば、2本であってもよい。
<熱交換器における冷媒の流れ>
 以下に、実施の形態1に係る熱交換器1における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、例えば熱交換器1が蒸発器として機能する際に、第1流路10Aを介して積層型ヘッダ2に流入して分配され、複数の第5流路10Eを介して複数の伝熱管4に流出する。冷媒は、複数の伝熱管4において、例えば、送風機によって供給される空気等と熱交換する。複数の伝熱管4を流れる冷媒は、複数の第1流路3Aを介して円筒型ヘッダ3に流入して合流し、第2流路3Bを介して冷媒配管に流出する。なお、熱交換器1が凝縮器として機能する場合には冷媒は、この流れと逆方向に流れる。
<積層型ヘッダの構成>
 以下に、実施の形態1に係る熱交換器1の積層型ヘッダ2の構成について説明する。
 図2は、実施の形態1に係る積層型ヘッダにおける分解斜視図である。
 図2に示す積層型ヘッダ2(分配器)は、例えば長方形形状の第1板状体111、112、113、114、115と、この各第1板状体の間に挟み込まれる第2板状体121、122、123、124とで構成されている。第1板状体111、112、113、114、115と、第2板状体121、122、123、124とは平面視で同一形状の外形となっている。
 ろう材について、例えば、ろう付け接合前の第1板状体111、112、113、114、115には、ろう材がクラッド(塗布)されておらず、第2板状体121、122、123、124の両面又は片面には、ろう材がクラッド(塗布)されて構成されている。
 この状態から第1板状体111、112、113、114、115を、第2板状体121、122、123、124を介して積層し、加熱炉で加熱してろう付け接合する。第1板状体111、112、113、114、115と、第2板状体121、122、123、124とは、例えば、厚さ1~10mm程度であり、アルミニウム製である。
 保持部材5は、熱交換器1の伝熱管4の端部が保持する板状の部材である。保持部材5は、第1板状体111、112、113、114、115、第2板状体121、122、123、124と平面視で同一形状の外形となっている。保持部材5には、伝熱管4がろう付けされ、保持部材5と第1板状体115とが積層されることにより、第1板状体115の第5流路10Eに伝熱管4が接続される。保持部材5が設けられず、第1板状体115の第5流路10Eに伝熱管4が直接接続されてもよい。その場合は、部品のコスト等が削減される。
 なお、各板状体は、プレス加工や切削加工によって加工される。プレス加工によって加工する場合は、プレス加工が可能な厚みが5mm以下の板材を使用し、切削加工によって加工する場合は、厚みが5mm以上の板材を使用してもよい。
(分配合流流路2aの構成)
 積層型ヘッダ2には、第1板状体111、112、113、114、115、及び、第2板状体121、122、123、124に形成された流路により分配合流流路2aが形成されている。分配合流流路2aは、円形の貫通穴である第1流路10A、第2流路10B、第3流路10C、第4流路10D、第5流路10E、略S字もしくは略Z字形状の貫通溝である第1分岐流路11、第2分岐流路12、第3分岐流路13によって構成されている。
 第1板状体111、及び、第2板状体121(本発明の第1流路板に相当する)の略中央には円形の第1流路10Aが開口している。また、第2板状体122(本発明の第2流路板に相当する)には、積層状態において第1流路10Aに対して対称となる位置に一対の第2流路10Bが同じく円形で開口している。
 さらに、第2板状体123(本発明の第3流路板に相当する)には、積層状体において第2流路10Bに対して対称となる位置に第3流路10Cが4箇所、円形で開口している。
 また、第2板状体124には、積層状体において第3流路10Cに対して対称となる位置に第4流路10Dが8箇所、円形で開口している。
 そして、第1板状体115には、第4流路10Dと連通し、伝熱管4の外形と同形状として形成された第5流路10Eが開口している。第5流路10Eは、伝熱管4と連通する。
 第1板状体112(本発明の第1分岐流路板に相当する)には、略S字もしくは略Z字形状の貫通溝である第1分岐流路11(本発明の上流側分岐流路に相当する)が1箇所形成されている。また、第1板状体113(本発明の第2分岐流路板に相当する)には、同じく略S字もしくは略Z字形状の貫通溝である第2分岐流路12(本発明の下流側分岐流路に相当する)が2箇所形成されている。そして、第1板状体114には、同じく略S字もしくは略Z字形状の貫通溝である第3分岐流路13が4箇所形成されている。
 ここで、各板状体が積層され分配合流流路2aが形成された際には、第1板状体112に形成された第1分岐流路11の中央に、第1流路10Aが接続されるとともに、第1分岐流路11の両端部には、第2流路10Bが接続される。
 また、第1板状体113に形成された第2分岐流路12の中央には、第2流路10Bが接続されるとともに、第2分岐流路12の両端部には、第3流路10Cが接続される。
 さらに、第1板状体114に形成された第3分岐流路13の中央には、第3流路10Cが接続されるとともに、第3分岐流路13の両端部には、第4流路10Dが接続される。そして、第4流路10Dは第5流路10Eに接続される。
 このように第1板状体111、112、113、114、115、及び、第2板状体121、122、123、124を積層してろう付けすることで各流路を接続し分配合流流路2aを形成することができる。
(第1分岐流路11、第2分岐流路12、第3分岐流路13の構成)
 次に、第1分岐流路11、第2分岐流路12、第3分岐流路13の構造について図3を用いて詳述する。
 図3は、実施の形態1に係る各分岐流路の構造を示す積層型ヘッダ2のA-A断面図、及び、B-B断面図である。
 第1分岐流路11は、上述のように第1板状体112に1箇所形成された略S字もしくは略Z字形状の貫通溝である。第1分岐流路11は、第1板状体112の短手方向(図3のX方向)に延設して開口した第1分岐部11aと、第1分岐部11aの両端から第1板状体112の長手方向(図3のY方向)に延設して開口した2本の上側第2分岐部11bと下側第2分岐部11cとにより構成されている。
 第1分岐部11aと上側第2分岐部11b、及び、第1分岐部11aと下側第2分岐部11cは、曲折部により滑らかに接続されている。積層型ヘッダ2の使用時には、図3のY方向を重力方向と一致させて使用するため、第1分岐部11aは水平方向(図3のX方向)に延設される。また、上側第2分岐部11bは、第1分岐部11aの一端側から上方に向かって延設される。さらに、下側第2分岐部11cは、第1分岐部11aの他端側から下方に向かって延設される。
 第2分岐流路12は、上述のように第1板状体113に2箇所形成された略S字もしくは略Z字形状の貫通溝である。第2分岐流路12は、第1板状体113の短手方向(図3のX方向)に延設して開口した第1分岐部12aと、第1分岐部12aの両端から第1板状体113の長手方向(図3のY方向)に延設して開口した2本の上側第2分岐部12bと下側第2分岐部12cとにより構成されている。
 第1分岐部12aと上側第2分岐部12b、及び、第1分岐部12aと下側第2分岐部12cは、曲折部により滑らかに接続されている。積層型ヘッダ2の使用時には、図3のY方向を重力方向と一致させて使用するため、第1分岐部12aは水平方向(図3のX方向)に延設される。また、上側第2分岐部12bは、第1分岐部12aの一端側から上方に向かって延設される。さらに、下側第2分岐部12cは、第1分岐部12aの他端側から下方に向かって延設される。
 第3分岐流路13は、上述のように第1板状体114に4箇所形成された略S字もしくは略Z字形状の貫通溝である。第3分岐流路13は、第1板状体114の短手方向(図3のX方向)に延設して開口した第1分岐部13aと、第1分岐部13aの両端から第1板状体114の長手方向(図3のY方向)に延設して開口した2本の上側第2分岐部13bと下側第2分岐部13cとにより構成されている。
 第1分岐部13aと上側第2分岐部13b、及び、第1分岐部13aと下側第2分岐部13cは、曲折部により滑らかに接続されている。積層型ヘッダ2の使用時には、図3のY方向を重力方向と一致させて使用するため、第1分岐部13aは水平方向(図3のX方向)に延設される。また、上側第2分岐部13bは、第1分岐部13aの一端側から上方に向かって延設される。さらに、下側第2分岐部13cは、第1分岐部13aの他端側から下方に向かって延設される。
 第1分岐流路11、第2分岐流路12、第3分岐流路13のそれぞれの流路断面積を比較すると、第1分岐流路11、第2分岐流路12、第3分岐流路13の順に小さくなるように構成されている。
 なお、図3に示す第1分岐流路11、第2分岐流路12、第3分岐流路13は、それぞれの分岐流路において一定の流路断面積となっている。
<積層型ヘッダ2における冷媒の流れ>
 次に、積層型ヘッダ2内の分配合流流路2a内の冷媒の流れについて説明する。
 以下、熱交換器1が蒸発器として機能する場合を例に、分配合流流路2aの上流側と下流側とを定義する。
 はじめに、気液二相流の冷媒が、第1板状体111の第1流路10Aから積層型ヘッダ2内に流入する。流入した冷媒は、第1流路10A内を直進し、第1板状体112の第1分岐流路11内で第2板状体122の表面に衝突し、第1分岐流路11の第1分岐部11aで重力方向における水平方向に分流する。第1分岐部11aの両端まで進んだ冷媒は、上側第2分岐部11b内を重力方向の上方に向かって進み、下側第2分岐部11c内を重力方向の下方に向かって進む。そして、一対の第2流路10B内に流入する。
 第2流路10B内に流入した冷媒は、第1流路10A内を進む冷媒と同一向きに第2流路10B内を直進する。この冷媒は、第1板状体113の第2分岐流路12内で第2板状体123の表面に衝突し、第2分岐流路12の第1分岐部12aで重力方向における水平方向に分流する。第1分岐部12aの両端まで進んだ冷媒は、上側第2分岐部12b内を重力方向の上方に向かって進み、下側第2分岐部12c内を重力方向の下方に向かって進む。そして、4つの第3流路10C内に流入する。
 第3流路10C内に流入した冷媒は、第2流路10B内を進む冷媒と同一向きに第3流路10C内を直進する。この冷媒は、第1板状体114の第3分岐流路13内で第2板状体124の表面に衝突し、第3分岐流路13の第1分岐部13aで重力方向における水平方向に分流する。第1分岐部13aの両端まで進んだ冷媒は、上側第2分岐部13b内を重力方向の上方に向かって進み、下側第2分岐部13c内を重力方向の下方に向かって進む。そして、8つの第4流路10D内に流入する。
 第4流路10D内に流入した冷媒は、第3流路10C内を進む冷媒と同一向きに進み第5流路10Eに流入する。そして第5流路10Eから流出し、保持部材5に保持された複数の伝熱管4に対して均一に分配されて流入する。
 なお、実施の形態1に係る分配合流流路2aでは、3回分岐流路を通り、8分岐とした積層型ヘッダ2の例を示したが、分岐の回数や分岐数はこの例に限定されない。
(分岐流路内での液冷媒の滞留)
 ここで、分岐流路内での液冷媒の滞留について図4を用いて説明する。
 図4は、比較例の分配器における分岐流路内の状態を示した説明図である。
 分岐流路20において、特に重力方向の上向きに流路10へ向かう冷媒が、上側分岐部21で流速が低下する。すると、図4に示すように、液膜22が分岐流路20内で滞留する。液膜22が滞留することにより、冷媒が流れる実質的な流路面積が縮小し、重力方向の上側に向かう流路の圧力損失が増加する。このため、分岐流路20での冷媒の分配比に偏りが生じる。
 比較例の積層型ヘッダは、同一流路断面積の複数の分岐流路で分岐を繰り返すことで多分岐を実現するため、下流の分岐流路ほど流れる冷媒の流速が小さくなり、液成分が重力の影響を受けて液膜が滞留しやすくなる。
 これに対して、実施の形態1に係る第1分岐流路11、第2分岐流路12、第3分岐流路13は、この順に流路断面積が小さくなるように構成されているため、各分岐流路で分岐して冷媒の流量が少なくなっても分岐流路内の流速を一定値以上に維持することが可能となる。
 すなわち、分岐流路の最大流路断面積を、その上流側に位置する分岐流路の最大流路断面積以下とし、下流側の分岐流路ほど流路断面積を小さくすることで冷媒の流速を上昇させる。これにより、液成分への重力の影響を緩和して液膜の滞留を抑制し、分岐流路での分配比を均等にすることができる。
(各分岐流路における冷媒の必要流速)
 次に、各分岐流路における冷媒の必要流速について図5を用いて説明する。
 図5は、実施の形態1に係る分岐流路の入口における冷媒の平均流速Vmと分岐流路での冷媒の分配比との関係を示した図である。
 分配比に偏りが生じると熱交換器1の熱交換性能が低下するため、2つに分岐する分岐流路での分配比の許容範囲は、およそ48%以上52%以下である。図5に示すように、第1分岐流路11、第2分岐流路12、第3分岐流路13の各入口における冷媒の平均流速をVm≧0.3[m/s]とすることにより、特に上側第2分岐部11b、12b、13bにおいて液膜の滞留を防ぎ、冷媒の分配比を上記許容範囲内とすることができる。ここで、冷媒の平均流速Vmは、均質流れと仮定し、以下の式(1)(2)で算出されるものとする。
 はじめに、冷媒の乾き度:xと、飽和液密度:ρ[m/kg]と、飽和ガス密度:ρ[m/kg]と、から、式(1)を用いて冷媒の飽和密度ρaveを算出する。
Figure JPOXMLDOC01-appb-M000002
        ・・・(1)
 次に、積層型ヘッダ2に流入する最小の冷媒流量:Gr[kg/s]と、演算対象の分岐流路の上流で分岐した分岐数:nと、演算対象の分岐流路の最大流路断面積:An[m]と、冷媒の飽和密度:ρave[m/kg]と、から式(2)を用いて必要冷媒平均流速[m/s]を算出する。
Figure JPOXMLDOC01-appb-M000003
        ・・・(2)
 したがって、Vm≧0.3[m/s]を満たす分岐流路の最大流路断面積An[m]は、以下の式(3)から決定される。
Figure JPOXMLDOC01-appb-M000004
               ・・・(3)
 第1分岐流路11、第2分岐流路12、第3分岐流路13の各分岐流路において、冷媒への重力の影響を抑制して均等に分配するため、全ての分岐流路においてVm≧0.3[m/s]となるよう、流路断面積を設定することが好ましい。
 しかし、本発明に係る積層型ヘッダ2の第1板状体111、112、113、114、115、及び、第2板状体121、122、123、124は、クラッド材を用いてロウ付けにより接合されるため、第1分岐流路11、第2分岐流路12、第3分岐流路13の各分岐流路の相当直径Dが小さいとロウ付けした際にロウ材が侵入して閉塞や流路の変形が生じ、分配比に偏りが生じる。
 そこで、ロウ材の侵入による流路の変形を抑制するために、各分岐流路の相当直径Dを3[mm]以上とするとよい。分岐流路の相当直径Dは、以下の式(4)により算出される。
Figure JPOXMLDOC01-appb-M000005
                ・・・(4)
 よって、第1分岐流路11、第2分岐流路12、第3分岐流路13の各分岐流路において流路の相当直径Dを3[mm]以上、かつ、式(3)を満たす各分岐流路の最大流路断面積An[m]とすることにより、ロウ付けにより製作した積層型ヘッダ2において、冷媒を均等に分配することが可能となる。
(第1流路10A、第2流路10B、第3流路10Cの構成)
 次に、第1流路10A、第2流路10B、第3流路10Cの構成について詳述する。
 第1流路10A、第2流路10B、第3流路10Cは、それぞれ、第1分岐流路11、第2分岐流路12、第3分岐流路13の各分岐流路に対して冷媒を流入させる流入口として構成されている。
 第1流路10A、第2流路10B、第3流路10Cから第1分岐流路11、第2分岐流路12、第3分岐流路13に流入した冷媒は、各分岐流路によって形成される対向壁面に衝突することにより攪拌される。この攪拌効果により、冷媒の液成分が重力の影響を受けにくくなり、各分岐流路内で冷媒を均等に分配することができる。冷媒の流速が小さく、冷媒の液成分が対向壁面に衝突せずに分岐すると、液成分への重力及び慣性力の影響が支配的となり、分配比に偏りが生じる。
 よって、第1流路10A、第2流路10B、第3流路10Cの相当直径Dを、その下流側の分岐流路の相当直径D以下として形成することにより、液膜の対向壁面への衝突を促進し、撹拌効果を得ることができる。
<各分岐流路の形状の変形例>
 上記実施の形態1に係る第1分岐流路11、第2分岐流路12、第3分岐流路13は、それぞれの流路断面積は一定で、かつ、この順に流路断面積が小さくなるように構成されているとして説明したが、各分岐流路の流路断面積は、下流側に向かって漸次小さく変化させても良い。
 図6は、実施の形態1に係る分岐流路の終端部の拡大図である。
 図7は、実施の形態1の変形例に係る各分岐流路の構造を示す積層型ヘッダ2のA-A断面図、及び、B-B断面図である。
 上述のように、実施の形態1に係る第1流路10A、第2流路10B、第3流路10Cの相当直径Dは、その下流側のそれぞれの分岐流路である第1分岐流路11、第2分岐流路12、第3分岐流路13の相当直径D以下として形成することにより、液膜の対向壁面への衝突を促進し、撹拌効果を得ることができる。
 すると、図6に示すように第2流路10B、第3流路10C、第4流路10Dの相当直径Dは、その上流側のそれぞれの分岐流路である第1分岐流路11、第2分岐流路12、第3分岐流路13の相当直径Dよりも確実に小さくなる。この相当直径Dの差が大きい時には、各分岐流路の終端部30に流路断面積の急縮小部分が形成されることがある。急縮小部分には、液膜31が滞留し、冷媒の流れを妨げ、分岐流路での分配比が偏る原因となる。
 この液冷媒の滞留を防止するために、図7に示すように第1分岐流路11、第2分岐流路12、第3分岐流路13における上側第2分岐部11b、上側第2分岐部12b、上側第2分岐部13bに、下流側に向けて流路断面積が漸次縮小するテーパー部32を設ける。すると、第1分岐流路11の終端部30と第2流路10B、第2分岐流路12の終端部30と第3流路10C、第3分岐流路13の終端部30と第4流路10D、がそれぞれ滑らかに接続される。
 よって、各分岐流路の終端部30における液膜の滞留を抑制することができ、各分岐流路での分配比を均等にすることができる。
 このように、テーパー部32は、上側第2分岐部11b、上側第2分岐部12b、上側第2分岐部13bのみに設けても良く、さらに、下側第2分岐部11c、下側第2分岐部12c、下側第2分岐部13cにも設けても良い。上側と下側の第2分岐部の両側にテーパー部32を設けることで、第2分岐部の流路抵抗が均一化され、各分岐流路においてさらに均等な分配比を実現することができる。
<熱交換器1の使用態様>
 以下に、実施の形態1に係る熱交換器1の使用態様の一例について説明する。
 なお、以下では、実施の形態1に係る熱交換器1が、空気調和装置50に使用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に使用されてもよい。また、空気調和装置50が、冷房運転と暖房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、冷房運転又は暖房運転のみを行うものであってもよい。
 図8は、実施の形態1に係る熱交換器が適用される空気調和装置の構成を示す図である。
 なお、図8では、冷房運転時の冷媒の流れが点線の矢印で示され、暖房運転時の冷媒の流れが実線の矢印で示される。
 図8に示されるように、空気調和装置50は、圧縮機51と、四方弁52と、室外熱交換器(熱源側熱交換器)53と、絞り装置54と、室内熱交換器(負荷側熱交換器)55と、室外ファン(熱源側ファン)56と、室内ファン(負荷側ファン)57と、制御装置58と、を有する。圧縮機51と四方弁52と室外熱交換器53と絞り装置54と室内熱交換器55とが冷媒配管で接続されて、冷媒循環回路が形成される。
 制御装置58には、例えば、圧縮機51、四方弁52、絞り装置54、室外ファン56、室内ファン57、各種センサ等が接続される。制御装置58によって、四方弁52の流路が切り替えられることで、冷房運転と暖房運転とが切り替えられる。
 冷房運転時の冷媒の流れについて説明する。
 圧縮機51から吐出される高圧高温のガス状態の冷媒は、四方弁52を介して室外熱交換器53に流入し、室外ファン56によって供給される空気と熱交換を行い、凝縮する。凝縮した冷媒は、高圧の液状態となり、室外熱交換器53から流出し、絞り装置54によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室内熱交換器55に流入し、室内ファン57によって供給される空気との熱交換によって蒸発することで、室内を冷却する。蒸発した冷媒は、低圧のガス状態となり、室内熱交換器55から流出し、四方弁52を介して圧縮機51に吸入される。
 暖房運転時の冷媒の流れについて説明する。
 圧縮機51から吐出される高圧高温のガス状態の冷媒は、四方弁52を介して室内熱交換器55に流入し、室内ファン57によって供給される空気との熱交換によって凝縮することで、室内を暖房する。凝縮した冷媒は、高圧の液状態となり、室内熱交換器55から流出し、絞り装置54によって、低圧の気液二相状態の冷媒となる。低圧の気液二相状態の冷媒は、室外熱交換器53に流入し、室外ファン56によって供給される空気と熱交換を行い、蒸発する。蒸発した冷媒は、低圧のガス状態となり、室外熱交換器53から流出し、四方弁52を介して圧縮機51に吸入される。
 室外熱交換器53及び室内熱交換器55の少なくとも一方に、熱交換器1が用いられる。熱交換器1は、蒸発器として作用する際に、積層型ヘッダ2から冷媒が流入し、円筒型ヘッダ3に冷媒を流出するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダ2に気液二相状態の冷媒が流入し、分岐して熱交換器1の各伝熱管4に流入する。また、熱交換器1が凝縮器として作用する際は、各伝熱管4から積層型ヘッダ2に液冷媒が流入して合流し冷媒配管に流出する。
<効果>
 (1)実施の形態1に係る積層型ヘッダは、第1流路10Aが形成された平板形状の第1流路板と、複数の第2流路10Bが形成された平板形状の第2流路板と、複数の第3流路10Cが形成された平板形状の第3流路板と、第1流路10Aを複数の第2流路10Bに分岐する上流側分岐流路が形成された平板形状の第1分岐流路板と、複数の第2流路10Bのうちの1つを複数の第3流路10Cに分岐する下流側分岐流路が形成された平板形状の第2分岐流路板と、を有し、第1流路板、第1分岐板、第2流路板、第2分岐板、第3流路板の順に積層され、上流側分岐流路の流路断面積の最大値となる第1断面積は、下流側分岐流路の流路断面積の最大値となる第2断面積より大きくなるよう構成されたものである。すると、各分岐流路で分岐して冷媒の流量が少なくなっても分岐流路内の流速を一定値以上に維持することが可能となる。
 すなわち、分岐流路の最大流路断面積を、その上流側に位置する分岐流路の最大流路断面積以下とし、下流側の分岐流路ほど流路断面積を小さくすることで冷媒の流速を上昇させる。これにより、冷媒の液成分への重力の影響を緩和して液膜の滞留を抑制し、分岐流路での分配比を均等にすることができる。
 (2)上記(1)に記載の積層型ヘッダにおいて、上流側分岐流路の相当直径Dの最小値と、下流側分岐流路の相当直径Dの最小値とは、最小規定値以上(例えば3mm以上)となるよう構成されているため、板状体をロウ付けした際にロウ材が各分岐流路に侵入しても分岐流路の閉塞や流路の変形から冷媒の分配比に偏りが生じることを防止することができる。
 (3)上記(1)または(2)に記載の積層型ヘッダにおいて、第1流路10Aの相当直径Dは、上流側分岐流路の相当直径Dの最小値以下として構成されているため、第1流路10Aから上流側分岐流路に流入した冷媒は、対向壁面に衝突することにより攪拌される。この攪拌効果により、冷媒の液成分が重力の影響を受けにくくなり、上流側分岐流路内で冷媒を均等に分配することができる。
 (4)上記(1)~(3)に記載の積層型ヘッダにおいて、第2流路10Bの相当直径Dは、下流側分岐流路の相当直径Dの最小値以下として構成されているため、第2流路10Bから下流側分岐流路に流入した冷媒は、対向壁面に衝突することにより攪拌される。この攪拌効果により、冷媒の液成分が重力の影響を受けにくくなり、下流側分岐流路内で冷媒を均等に分配することができる。
 (5)上記(1)~(4)に記載の積層型ヘッダにおいて、演算対象の上流側分岐流路または下流側分岐流路の最大流路断面積をAn[m]とし、第1流路10Aに流入する最小の冷媒流量をGr[kg/s]とし、演算対象の上流側分岐流路または下流側分岐流路の上流で分岐した分岐数をnとし、第1流路10Aに流入する冷媒の飽和密度をρave[m/kg]とし、第1流路10Aに流入する冷媒の乾き度をxとし、第1流路10Aに流入する液冷媒の飽和液密度をρ[m/kg]とし、第1流路10Aに流入するガス冷媒の飽和ガス密度:ρ[m/kg]とし、下記式(5)の関係が成立するよう構成されたため、分岐流路において冷媒の流速が0.3[m/s]以上となる。すると、液冷媒への重力の影響を抑制して分岐流路内での液膜の滞留を防止し、冷媒を均等に分配することができる。
Figure JPOXMLDOC01-appb-M000006
                 ・・・(5)
 (6)上記(1)~(5)に記載の積層型ヘッダにおいて、上流側分岐流路には、第2流路10Bとの接続部を終端として流路断面積が漸減する第1テーパー部が形成されているため、上流側分岐流路の終端部30と第2流路10Bと、が滑らかに接続される。よって、分岐流路の終端部30における液膜の滞留を抑制することができ、分岐流路での分配比を均等にすることができる。
 (7)上記(1)~(6)に記載の積層型ヘッダにおいて、下流側分岐流路には、第3流路10Cとの接続部を終端部30として流路断面積が漸減する第2テーパー部が形成されているため、下流側分岐流路の終端部30と第3流路10Cと、が滑らかに接続される。よって、分岐流路の終端部30における液膜の滞留を抑制することができ、分岐流路での分配比を均等にすることができる。
 (8)上記(6)に記載の積層型ヘッダにおいて、上流側分岐流路は、略水平方向に延設された第1分岐部11aと、該第1分岐部の一端側から重力方向における上方に延設された上側第2分岐部11bと、第1分岐部11aの他端側から重力方向における下方に延設された下側第2分岐部11cと、を有し、少なくとも上側第2分岐部11bには第1テーパー部が形成されているため、特に液冷媒への重力の影響が大きい上側第2分岐部11bの終端部分で液膜の滞留を抑制することができ、分岐流路での分配比を均等にすることができる。
 (9)上記(7)に記載の積層型ヘッダにおいて、下流側分岐流路は、略水平方向に延設された第1分岐部12aと、該第1分岐部12aの一端側から重力方向における上方に延設された上側第2分岐部12bと、第1分岐部12aの他端側から重力方向における下方に延設された下側第2分岐部12cと、を有し、少なくとも上側第2分岐部12bには第1テーパー部が形成されているため、特に液冷媒への重力の影響が大きい上側第2分岐部の終端部分で液膜の滞留を抑制することができ、分岐流路での分配比を均等にすることができる。
 また、上記(1)~(9)に記載の積層型ヘッダを、熱交換器1や空気調和装置50に採用することで、熱交換能力が上昇し、冷暖房性能を向上させることができる。
 1 熱交換器、2 積層型ヘッダ、2a 分配合流流路、3 円筒型ヘッダ、3A 第1流路、3B 第2流路、4 伝熱管、5 保持部材、6 フィン、10A 第1流路、10B 第2流路、10C 第3流路、10D 第4流路、10E 第5流路、11 第1分岐流路、11a 第1分岐部、11b 上側第2分岐部、11c 下側第2分岐部、12 第2分岐流路、12a 第1分岐部、12b 上側第2分岐部、12c 下側第2分岐部、13 第3分岐流路、13a 第1分岐部、13b 上側第2分岐部、13c 下側第2分岐部、20 分岐流路、21 上側分岐部、22 液膜、30 終端部、31 液膜、32 テーパー部、50 空気調和装置、51 圧縮機、52 四方弁、53 室外熱交換器、54 絞り装置、55 室内熱交換器、56 室外ファン、57 室内ファン、58 制御装置、111,112,113,114,115 第1板状体、121,122,123,124 第2板状体、An 最大流路断面積、D 相当直径、Vm 平均流速。

Claims (11)

  1.  第1流路が形成された平板形状の第1流路板と、
     複数の第2流路が形成された平板形状の第2流路板と、
     複数の第3流路が形成された平板形状の第3流路板と、
     前記第1流路を前記複数の第2流路に分岐する上流側分岐流路が形成された平板形状の第1分岐流路板と、
     前記複数の第2流路のうちの1つを前記複数の第3流路に分岐する下流側分岐流路が形成された平板形状の第2分岐流路板と、
     を有し、
     前記第1流路板、前記第1分岐流路板、前記第2流路板、前記第2分岐流路板、前記第3流路板の順に積層され、
     前記上流側分岐流路の流路断面積の最大値となる第1断面積は、前記下流側分岐流路の流路断面積の最大値となる第2断面積より大きくなるよう構成された積層型ヘッダ。
  2.  前記上流側分岐流路の相当直径の最小値と、前記下流側分岐流路の相当直径の最小値とは、最小規定値以上となるよう構成された請求項1に記載の積層型ヘッダ。
  3.  前記第1流路の相当直径は、前記上流側分岐流路の相当直径の最小値以下として構成された請求項1または2に記載の積層型ヘッダ。
  4.  前記第2流路の相当直径は、前記下流側分岐流路の相当直径の最小値以下として構成された請求項1~3のいずれか1項に記載の積層型ヘッダ。
  5.  前記上流側分岐流路または前記下流側分岐流路の最大流路断面積をAn[m]とし、
     前記第1流路に流入する最小の冷媒流量をGr[kg/s]とし、
     前記上流側分岐流路または前記下流側分岐流路の上流で分岐した分岐数をnとし、
     前記第1流路に流入する冷媒の飽和密度をρave[m/kg]とし、
     前記第1流路に流入する冷媒の乾き度をxとし、
     前記第1流路に流入する液冷媒の飽和液密度をρ[m/kg]とし、
     前記第1流路に流入するガス冷媒の飽和ガス密度:ρ[m/kg]とし、
     下記関係式(1)の関係が成立するよう構成された請求項1~4のいずれか1項に記載の積層型ヘッダ。
    Figure JPOXMLDOC01-appb-M000001
                     ・・・関係式(1)
  6.  前記上流側分岐流路には、前記第2流路との接続部を終端として流路断面積が漸減する第1テーパー部が形成された請求項1~5のいずれか1項に記載の積層型ヘッダ。
  7.  前記下流側分岐流路には、前記第3流路との接続部を終端として流路断面積が漸減する第2テーパー部が形成された請求項1~6のいずれか1項に記載の積層型ヘッダ。
  8.  前記上流側分岐流路は、略水平方向に延設された第1分岐部と、該第1分岐部の一端側から重力方向における上方に延設された上側第2分岐部と、前記第1分岐部の他端側から重力方向における下方に延設された下側第2分岐部と、を有し、
     少なくとも前記上側第2分岐部には前記第1テーパー部が形成された請求項6に記載の積層型ヘッダ。
  9.  前記下流側分岐流路は、略水平方向に延設された第1分岐部と、該第1分岐部の一端側から重力方向における上方に延設された上側第2分岐部と、前記第1分岐部の他端側から重力方向における下方に延設された下側第2分岐部と、を有し、
     少なくとも前記上側第2分岐部には前記第2テーパー部が形成された請求項7または8に記載の積層型ヘッダ。
  10.  請求項1~9に記載の積層型ヘッダと、複数の伝熱管とを有する熱交換器であって、
     前記複数の伝熱管と前記積層型ヘッダとを接続した熱交換器。
  11.  請求項10に記載の熱交換器を有する空気調和装置。
PCT/JP2015/075351 2015-09-07 2015-09-07 積層型ヘッダ、熱交換器、及び、空気調和装置 WO2017042867A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15903533.6A EP3348946B1 (en) 2015-09-07 2015-09-07 Laminated header, heat exchanger, and air conditioner
JP2017538491A JP6584514B2 (ja) 2015-09-07 2015-09-07 積層型ヘッダ、熱交換器、及び、空気調和装置
US15/748,759 US11421947B2 (en) 2015-09-07 2015-09-07 Laminated header, heat exchanger, and air-conditioning apparatus
PCT/JP2015/075351 WO2017042867A1 (ja) 2015-09-07 2015-09-07 積層型ヘッダ、熱交換器、及び、空気調和装置
CN201580082824.0A CN108027223B (zh) 2015-09-07 2015-09-07 层叠型集管、热交换器及空气调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075351 WO2017042867A1 (ja) 2015-09-07 2015-09-07 積層型ヘッダ、熱交換器、及び、空気調和装置

Publications (1)

Publication Number Publication Date
WO2017042867A1 true WO2017042867A1 (ja) 2017-03-16

Family

ID=58239227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075351 WO2017042867A1 (ja) 2015-09-07 2015-09-07 積層型ヘッダ、熱交換器、及び、空気調和装置

Country Status (5)

Country Link
US (1) US11421947B2 (ja)
EP (1) EP3348946B1 (ja)
JP (1) JP6584514B2 (ja)
CN (1) CN108027223B (ja)
WO (1) WO2017042867A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466047B1 (ja) * 2018-08-22 2019-02-06 三菱電機株式会社 熱交換器及び空気調和装置
JP6767606B1 (ja) * 2019-12-09 2020-10-14 日立ジョンソンコントロールズ空調株式会社 分配装置、分配装置を備えた熱交換器およびその熱交換器を備えた空気調和機
WO2021024991A1 (ja) * 2019-08-06 2021-02-11 ダイキン工業株式会社 ヘッダを有する熱交換器
JPWO2019234836A1 (ja) * 2018-06-05 2021-04-08 三菱電機株式会社 分配器および冷凍サイクル装置
WO2022085113A1 (ja) * 2020-10-21 2022-04-28 三菱電機株式会社 分配器、熱交換器および空気調和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348945B1 (en) * 2015-09-07 2021-03-17 Mitsubishi Electric Corporation Distributor, laminated header, heat exchanger, and air conditioner
JP7097986B2 (ja) * 2018-10-29 2022-07-08 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JP6822525B2 (ja) * 2019-06-28 2021-01-27 ダイキン工業株式会社 熱交換器およびヒートポンプ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734224A (en) * 1956-02-14 winstead
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
US5992453A (en) * 1995-10-17 1999-11-30 Zimmer; Johannes Flow-dividing arrangement
WO2014184914A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309987A (en) * 1980-02-14 1982-01-12 H & H Tube & Mfg. Co. Fluid flow assembly for solar heat collectors or radiators
US4502297A (en) * 1981-12-18 1985-03-05 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co., Kg Evaporator particularly suitable for air conditioners in automotive vehicles
JP3210062B2 (ja) * 1992-03-23 2001-09-17 松下冷機株式会社 冷媒分流器
US5242016A (en) * 1992-04-02 1993-09-07 Nartron Corporation Laminated plate header for a refrigeration system and method for making the same
ES2115242T3 (es) * 1993-07-03 1998-06-16 Flitsch E Gmbh & Co Intercambiador de calor a placas, con dispositivo distribuidor de agente de refrigeracion.
JPH09189463A (ja) 1996-02-29 1997-07-22 Mitsubishi Electric Corp 熱交換器の分配装置及びその製造方法
ATE268214T1 (de) * 1998-03-23 2004-06-15 Amalgamated Res Inc Fraktale struktur zur massstabsregelung und zur verteilung von fluiden
US6688381B2 (en) * 2000-06-05 2004-02-10 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Multiscale transport apparatus and methods
JP2003161594A (ja) * 2001-09-14 2003-06-06 Denso Corp 沸騰冷却装置
DE50214296D1 (de) * 2001-12-21 2010-04-29 Behr Gmbh & Co Kg Vorrichtung zum austausch von wärme
JP3960233B2 (ja) * 2002-04-03 2007-08-15 株式会社デンソー 熱交換器
US6892805B1 (en) * 2004-04-05 2005-05-17 Modine Manufacturing Company Fluid flow distribution device
US7275394B2 (en) * 2005-04-22 2007-10-02 Visteon Global Technologies, Inc. Heat exchanger having a distributer plate
US7908126B2 (en) * 2005-04-28 2011-03-15 Emerson Climate Technologies, Inc. Cooling system design simulator
JP4622962B2 (ja) * 2005-11-30 2011-02-02 株式会社デンソー インタークーラの出入口配管構造
JP4724594B2 (ja) * 2006-04-28 2011-07-13 昭和電工株式会社 熱交換器
WO2008060270A1 (en) * 2006-11-13 2008-05-22 Carrier Corporation Minichannel heat exchanger header insert for distribution
JP5061065B2 (ja) * 2008-08-26 2012-10-31 株式会社豊田自動織機 液冷式冷却装置
CN103649668B (zh) * 2011-06-24 2016-02-17 三菱电机株式会社 板式换热器和冷冻循环装置
US20140202672A1 (en) * 2013-01-22 2014-07-24 Visteon Global Technologies, Inc. Heat exchanger manifold improvements for transient start-up
CN105229404B (zh) * 2013-05-15 2018-07-17 三菱电机株式会社 层叠型联管箱、热交换器和空气调节装置
AU2013389570B2 (en) * 2013-05-15 2016-04-07 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
WO2014184915A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005268B2 (ja) * 2013-05-15 2016-10-12 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
CN203940771U (zh) * 2013-05-15 2014-11-12 三菱电机株式会社 层叠型集管、热交换器以及空调装置
WO2015004719A1 (ja) * 2013-07-08 2015-01-15 三菱電機株式会社 積層型ヘッダー、熱交換器、空気調和装置、及び、積層型ヘッダーの板状体と管とを接合する方法
JP6138263B2 (ja) * 2013-09-26 2017-05-31 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
US10222141B2 (en) * 2013-10-01 2019-03-05 Mitsubishi Electric Corporation Stacking type header, heat exchanger and air-conditioning apparatus
CN106796092B (zh) * 2014-10-07 2019-06-21 三菱电机株式会社 换热器以及空调装置
AU2014410872B2 (en) * 2014-11-04 2018-09-20 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
US10563895B2 (en) * 2016-12-07 2020-02-18 Johnson Controls Technology Company Adjustable inlet header for heat exchanger of an HVAC system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734224A (en) * 1956-02-14 winstead
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
US5992453A (en) * 1995-10-17 1999-11-30 Zimmer; Johannes Flow-dividing arrangement
WO2014184914A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019234836A1 (ja) * 2018-06-05 2021-04-08 三菱電機株式会社 分配器および冷凍サイクル装置
JP7023355B2 (ja) 2018-06-05 2022-02-21 三菱電機株式会社 分配器および冷凍サイクル装置
US11656013B2 (en) 2018-06-05 2023-05-23 Mitsubishi Electric Corporation Distributor and refrigeration cycle apparatus
JP6466047B1 (ja) * 2018-08-22 2019-02-06 三菱電機株式会社 熱交換器及び空気調和装置
WO2020039513A1 (ja) * 2018-08-22 2020-02-27 三菱電機株式会社 熱交換器及び空気調和装置
WO2021024991A1 (ja) * 2019-08-06 2021-02-11 ダイキン工業株式会社 ヘッダを有する熱交換器
JP2021025718A (ja) * 2019-08-06 2021-02-22 ダイキン工業株式会社 ヘッダを有する熱交換器
JP7055779B2 (ja) 2019-08-06 2022-04-18 ダイキン工業株式会社 ヘッダを有する熱交換器
JP6767606B1 (ja) * 2019-12-09 2020-10-14 日立ジョンソンコントロールズ空調株式会社 分配装置、分配装置を備えた熱交換器およびその熱交換器を備えた空気調和機
WO2021117107A1 (ja) * 2019-12-09 2021-06-17 日立ジョンソンコントロールズ空調株式会社 分配装置、分配装置を備えた熱交換器およびその熱交換器を備えた空気調和機
WO2022085113A1 (ja) * 2020-10-21 2022-04-28 三菱電機株式会社 分配器、熱交換器および空気調和装置

Also Published As

Publication number Publication date
US20190170456A1 (en) 2019-06-06
CN108027223A (zh) 2018-05-11
EP3348946A1 (en) 2018-07-18
EP3348946B1 (en) 2020-03-25
JPWO2017042867A1 (ja) 2018-04-12
CN108027223B (zh) 2019-11-05
US11421947B2 (en) 2022-08-23
JP6584514B2 (ja) 2019-10-02
EP3348946A4 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6584514B2 (ja) 積層型ヘッダ、熱交換器、及び、空気調和装置
US10060685B2 (en) Laminated header, heat exchanger, and air-conditioning apparatus
CN105492855B (zh) 层叠型集管、换热器以及空调装置
JP6388716B2 (ja) 積層型ヘッダ、熱交換器、及び、空気調和装置
JP6080982B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
CN105593630B (zh) 层叠型集管、换热器和空调装置
CN109564070B (zh) 热交换器和使用它的制冷系统
JPWO2015063875A1 (ja) 積層型ヘッダー、熱交換器、熱交換器の製造方法、及び、空気調和装置
WO2019234836A1 (ja) 分配器および冷凍サイクル装置
WO2015162678A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
TWI768340B (zh) 熱交換器及冷凍循環裝置
JP2020112274A (ja) 熱交換器
WO2020090015A1 (ja) 冷媒分配器、熱交換器および空気調和装置
JP2019045063A (ja) 熱交換器
JP2019066132A (ja) 多パス型熱交換器およびそれを用いた冷凍システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE