WO2017041928A1 - Séparation de particules provenant d'un courant de gaz par refroidissement direct puis utilisation améliorée de l'eau de lavage - Google Patents

Séparation de particules provenant d'un courant de gaz par refroidissement direct puis utilisation améliorée de l'eau de lavage Download PDF

Info

Publication number
WO2017041928A1
WO2017041928A1 PCT/EP2016/066248 EP2016066248W WO2017041928A1 WO 2017041928 A1 WO2017041928 A1 WO 2017041928A1 EP 2016066248 W EP2016066248 W EP 2016066248W WO 2017041928 A1 WO2017041928 A1 WO 2017041928A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
raw gas
gas
stage
temperature
Prior art date
Application number
PCT/EP2016/066248
Other languages
German (de)
English (en)
Inventor
Frank Hannemann
Angel PROTZE
Gregor STRASSBERGER
Friedemann Mehlhose
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2017041928A1 publication Critical patent/WO2017041928A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/06Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials combined with spraying with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/10Venturi scrubbers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]

Definitions

  • the invention relates to a device, a method and a system for the separation of particles from the water vapor-saturated raw gas of a gasification device.
  • the entrained flow gasification is used for the gasification of different carbonaceous fuels.
  • the reactors used have two rooms. In the first space 1 arranged above, the fuel is reacted and the ash, if present, is melted. The resulting hot synthesis gas, referred to below as raw gas, is fed together with the liquid slag to the second space (quencher). Under injection of water takes place in addition to the cooling of the
  • Raw gas the sudden solidification of slag instead.
  • the desired cooling of the raw gas to saturation temperature is called full quenching.
  • the raw gas wherein the steam entrained in the water-saturated raw gas particles, such as soot, ash and fine suppression ⁇ bridge, via a wet scrubber, in several purification steps are deposited is carried out.
  • the fine cleaning 3 following the rough cleaning 2 of the raw gas generally comprises one
  • Venturi wash Further separation stages for a fine purification of the raw gas may be a partial condensation of the raw gas and a separation by means of washing floors in a scrubbing tower.
  • the partial condensation of the saturated raw gas could only be achieved with a high level of plant engineering effort.
  • the achieved separation performance of fine particles by the partial condensation was below expectations.
  • a partial Condenser has proven to be problematic, which causes a partial condensation by indirect cooling by means of a cooling tube bundle 18 ( Figure 4). In plants ⁇ operation following disadvantages of the Partial Condensers have been placed firmly ⁇ : A cleaning effect of the apparatus, which has a huge component size, was undetectable.
  • Partial Condenser with its indirect cooling an adjustment of the cooling demand due to the given
  • the problem is solved by a device according to claim 1, by a method according to claim 12 and a system according to claim 17.
  • the invention achieved by atomizing a cold scrubbing liquid to a very fine droplet mist in a free flow partial condensation and thus improved
  • Fine particle separation from the saturated raw gas instead of the partial condenser (indirect gas cooling), a high pressure nozzle system is used, the very finely atomized and preheated to near process temperature drops for
  • Fine particle separation into the raw gas injected (direct cooling of the gas).
  • the droplet agglomeration and droplet separation takes place in the crude gas separation vessel 5 at the corresponding washing floors. Due to the even over the entire cross section of the free flow uniform spraying a uniform and complete penetration of the raw gas is given, whereby the effect of partial condensation on each part by volume of
  • Raw gas acts equally. By using large free flow cross-sections and the associated minimization or even the elimination of the risk of blockages, as in the cooling and partial condensation of the gas stream over
  • Heat exchanger is the case, it is a robust process in which there is almost no pressure loss.
  • the first stage may be designed as Hochlichzerstäuberdüsensystem.
  • a high-pressure nozzle system Downstream of the venturi scrubber cyclone separator a high-pressure nozzle system, which is arranged downstream of a fresh water injection.
  • the particle-laden droplets produced by the condensation are separated in the subsequent process stages via droplet separators or contact stages as gas condensate.
  • the water injection is used to supplement the water losses of the entire system.
  • gas purification according to the invention by means of gas cooling and partial condensation can be used in an advantageous manner if, for the subsequent application, such as, for example, a low steam CO shift according to DE 102013224037 or DE
  • Figure 4 Structure of a conventional partial condenser (Indirek te gas cooling).
  • FIG. 3 shows characteristic elements of the crude gas purification along the crude gas path 8.1 to 8.5.
  • the raw gas produced in an entrained flow gasifier with ⁇ 8.1 Quencher is a Grobrei- nistscut 2, such as a jet scrubber, supplied ⁇ leads.
  • the raw gas 8.2 purified in the coarse purification stage 2 of coarse particles is fed to a first fine purification stage 3, such as a Venturi scrubber.
  • the crude gas 8.3, which has been finely cleaned in the first fine-cleaning stage 3, is fed to a second fine-cleaning stage 4.
  • the crude gas 8.4 which is further purified in the second fine purification stage 4 is fed to a crude gas separation tank 5, where drops are removed from the raw gas.
  • Rohgasabscheidecie 5 is released from the drop of raw gas 8.5 for further use.
  • the first fine cleaning stage 3 is a venturi scrubber that is a cyclone connects
  • the second fine cleaning stage 4 with a partial Condenser which is designed as indirect gas cooling formed.
  • the partial condenser is to cool the incoming water vapor-saturated crude gas so that a subset of the water vapor-saturated raw gas condenses out. Due to the partial condensation fine particles are washed out of the raw gas.
  • the particles contained in the gas serve as condensation nuclei. They form droplets that surround and enlarge the particles.
  • the fine droplets formed can either be deposited in the partial condenser itself or in downstream separators.
  • the partial condenser is designed as a shell-and-tube heat exchanger in which partial cooling is to be effected by indirect cooling of the gas stream.
  • Partial Condenser the crude gas reaches 8.3 at a temperature Tl over the Rohgaseintritts ⁇ clip in the tube bundle 18.
  • the tube bundle a trailing cooling of the crude gas takes place by approximately 3 Kelvin.
  • water vapor contained in the raw gas is condensed out. Water droplets form in the gas and on the inside of the pipes.
  • the particles contained in the raw gas should serve as Konden ⁇ sationskeime and support the formation of water droplets. These particles are surrounded by water droplets and thus separated.
  • the raw gas flows from top to bottom through the tube bundle. By gravity and supported by the flow rate of the raw gas falls that form ⁇ the drop down.
  • the separation of water droplets and purified raw gas takes place.
  • the raw gas 8.4 leaves the apparatus via a connection with the temperature T2.
  • the condensate 15 is withdrawn via a funnel.
  • Boiler feed water 16 is used as the cooling medium. This enters via a nozzle in the shell space of the Partial Condensers.
  • the tube bundle is completely in the cooling water.
  • the ex ⁇ conducted heat from the raw gas is used to evaporate thedewas ⁇ ser in the shell.
  • the resulting vapor 17 is withdrawn from the container.
  • a nozzle system or another device which introduces finely atomized cold drops uniformly over the entire cross section of the surface through which the raw gas flows (FIG. 1).
  • the nozzles 20 of the nozzle system 19 are arranged uniformly over the flow cross section via nozzle rods.
  • the Darge in Figure 1 ⁇ apparatus set but may be designed as a conduit pipe part as a container. As a pipe part, for example, a venturi scrubber understood. In the case of small flow cross sections, such as in
  • the nozzle system 19 may consist only of a nozzle 20 ( Figure 2).
  • the finely atomized droplets effectively separate fine particles due to their small diameter and high relative velocity to the raw gas.
  • the droplets that are colder than the temperature difference ⁇ by comparison with the raw gas act as condensation nuclei. This takes place Verpen ⁇ tion of particle-laden droplets. As a result, the particles are confined safely and can be due to the increase in size of the partial condensation very well
  • Raw gas to be separated The raw gas leaves the cleaning ⁇ stage with a temperature T2, which is slightly less than Tl.
  • T2 a temperature slightly less than Tl.
  • ultrafine particles of partially cooled raw gas are used as condensation nuclei, which in turn can be captured and separated.
  • the presented method comprises the possibility of a multi-stage particle separation by the combination of high-pressure injection and direct cooling.
  • the process can be repeated as desired.
  • a simple multi-stage separation can be realized by connecting several similar nozzle systems in series.
  • the fine particle deposition 4 should be installed after a precleaning 3 of raw gas which can best ⁇ hen from a stage, such as a venturi scrubber, but fen from a plurality of series-connected waterssstu- (coarse cleaning stage 2 and the fine purification stage 3) ⁇ hen best.
  • particle-laden droplets are deposited in an agglomeration stage 6.
  • the agglomeration stage the agglomeration stage
  • the agglomeration stage can be designed, for example, as a lamella separator.
  • the enlarged by partial condensation drops are an agglomeration step is not absolutely necessary, so far ⁇ sufficiently large to deposit in a drop separator. 7
  • contact stages 6 and / or droplet separators 7 are used.
  • Contact stages are understood to mean all types of column bottoms (for example sieve, valve, bubble cap trays) or other column internals (for example random packings).
  • demister 7 various types of demisters come into question, for example impeller demister for the deposition of large drops, lamellar demister for the deposition of medium drops and knitted demister for the deposition of ultrafine droplets. That used for partial supercooling of the raw gas
  • Fresh water 9 and the wash water 10 also serve to supplement the water losses of the entire system, which are caused by the gas cooling by means of water quench and eliminated residual moisture in slag and filter cake as well as by discharged waste water.
  • the separated wash water and the erzeug ⁇ te in the cooling gas condensate 12 as well as the acid gas condensate 10 from the Contact stages are collected in a raw gas separation vessel 5 and used as wash water II (14) for the preceding purification stage 3, the venturi scrubber (FIG. 3).
  • wash water II (14) for the preceding purification stage 3, the venturi scrubber (FIG. 3).
  • the acidic wash water counteracts carbonate formation in the purification stage.
  • ⁇ my the separated wash water / gas condensate amount of the fine purification stage 2 is not completely required as Waschwas ⁇ sermenge for the venturi scrubber.
  • the venturi wastewater separated, for example, in a cyclone can be mixed with the excess wash water / gas condensate from the fine purification stage 2.
  • this waste water as wash water for the III Grobrei ⁇ nisticidesw (for example, a jet scrubber) and as adjunchigan is made possible in the quencher reduces the solids content of the venturi effluent.
  • the acidic character of the wash water reduces the formation of carbonate in the respective scrubbers.
  • washing waters gas condensate, wash water I 12 or venturi waste water 11
  • the washing waters entering the crude gas separation vessel are received separately such that a discharge of clean wash water (gas condensate + wash water I) 14 to the venturi scrubber 3 and dilute venturi waste water 13 to the coarse purification stage 2 is.
  • This is for example connected by a spatially separate integration of the separated wash water in Rohgassammel necessarilyer with a
  • washing water I e.g. cold demineralized water, washing liquid cold, fresh water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

L'objet de l'invention est une séparation des poussières fines provenant du gaz brut (8) saturé en vapeur d'eau d'un dispositif de gazéification (1, 2). Cet objectif est atteint par l'injection à répartition fine sous haute pression d'eau sur-refroidie au cours d'une première étape de nettoyage et donc par la mise en œuvre d'une condensation partielle. Au cours d'une deuxième étape de nettoyage, une injection d'eau à répartition grossière peut être réalisée. Il s'agit d'un procédé robuste, au cours duquel presque aucune perte de pression ne se produit. En outre, avec le présent procédé de refroidissement direct, une adaptation de la demande de refroidissement et donc du degré de la condensation partielle du gaz brut est très facilement envisageable, du fait que la quantité et/ou la température de l'eau de lavage est adaptée. L'épuration du gaz selon l'invention par refroidissement du gaz et condensation partielle peut être réalisée de manière avantageuse lorsque, pour l'application suivante, telle que par exemple une conversion de vapeur et de monoxyde de carbone à faible température, la teneur en vapeur du gaz brut peut être abaissée, ce qui permet des températures de gaz brut plus basses. De nombreux modes de réalisation de l'invention concernent le recyclage des eaux de lavage séparées.
PCT/EP2016/066248 2015-09-10 2016-07-08 Séparation de particules provenant d'un courant de gaz par refroidissement direct puis utilisation améliorée de l'eau de lavage WO2017041928A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015217303.8A DE102015217303A1 (de) 2015-09-10 2015-09-10 Partikelabscheidung aus einem Gasstrom durch Direktkühlung und anschließender verbesserter Waschwassernutzung
DE102015217303.8 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017041928A1 true WO2017041928A1 (fr) 2017-03-16

Family

ID=56413638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/066248 WO2017041928A1 (fr) 2015-09-10 2016-07-08 Séparation de particules provenant d'un courant de gaz par refroidissement direct puis utilisation améliorée de l'eau de lavage

Country Status (2)

Country Link
DE (1) DE102015217303A1 (fr)
WO (1) WO2017041928A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557040A (zh) * 2017-10-10 2018-01-09 北京神雾电力科技有限公司 一种回收高温热解气体热量的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT267479B (de) * 1966-10-19 1968-12-27 Waagner Biro Ag Regelbarer Naßwäscher
DE19755275A1 (de) * 1997-12-12 1999-06-17 Basf Ag Verfahren zum Verdampfen von Flüssigkeiten in Gasströmen
DE102009022186A1 (de) * 2009-05-20 2010-11-25 Uhde Gmbh Vorrichtung zur Beeinflussung der Strömung in einem Verbindungsrohr Kohlevergasungsreaktor/Gaskühler
DE102013203276A1 (de) * 2013-02-27 2014-08-28 Siemens Aktiengesellschaft Waschwasser- und Kreislaufwasserführung in einer Vergasungsanlage mit Kühlung der Entspannungswässer
DE102013224039A1 (de) 2013-11-25 2015-05-28 Clariant International Ltd. Behandlung von Synthesegasen aus einer Vergasungseinrichtung
DE102013224037A1 (de) 2013-11-25 2015-05-28 Siemens Aktiengesellschaft Aufbereitung und Konditionierung von Syntheserohgasen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT267479B (de) * 1966-10-19 1968-12-27 Waagner Biro Ag Regelbarer Naßwäscher
DE19755275A1 (de) * 1997-12-12 1999-06-17 Basf Ag Verfahren zum Verdampfen von Flüssigkeiten in Gasströmen
DE102009022186A1 (de) * 2009-05-20 2010-11-25 Uhde Gmbh Vorrichtung zur Beeinflussung der Strömung in einem Verbindungsrohr Kohlevergasungsreaktor/Gaskühler
DE102013203276A1 (de) * 2013-02-27 2014-08-28 Siemens Aktiengesellschaft Waschwasser- und Kreislaufwasserführung in einer Vergasungsanlage mit Kühlung der Entspannungswässer
DE102013224039A1 (de) 2013-11-25 2015-05-28 Clariant International Ltd. Behandlung von Synthesegasen aus einer Vergasungseinrichtung
DE102013224037A1 (de) 2013-11-25 2015-05-28 Siemens Aktiengesellschaft Aufbereitung und Konditionierung von Syntheserohgasen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557040A (zh) * 2017-10-10 2018-01-09 北京神雾电力科技有限公司 一种回收高温热解气体热量的系统及方法
CN107557040B (zh) * 2017-10-10 2023-09-01 北京恒丰亚业科技发展有限公司 一种回收高温热解气体热量的系统及方法

Also Published As

Publication number Publication date
DE102015217303A1 (de) 2017-03-16

Similar Documents

Publication Publication Date Title
DE4240196C2 (de) Verfahren zur Kühlung und Reinigung von ultrafeine Partikel enthaltendem Gas, insbesondere Gichtgas oder Generatorgas und Vorrichtung zu seiner Durchführung
DE3102819C2 (fr)
DE60207735T2 (de) Verfahren und anlage zur vergasung von biomassen
DE102007042543A1 (de) Verfahren und Vorrichtung zur Behandlung von beladenem Heißgas
DE2746975A1 (de) Verfahren zur trennung trockener teilchenfoermiger masse aus einem heissgas
DE102012000975A1 (de) Verfahren zum Sedimentieren von Segmentpartikeln in einem Verfahren zur Gewinnung von Dieselöl
DE3129812C2 (de) Verfahren und Vorrichtung zur Gichtgaskühlung
WO2017041928A1 (fr) Séparation de particules provenant d'un courant de gaz par refroidissement direct puis utilisation améliorée de l'eau de lavage
EP0297424A2 (fr) Procédé pour refroidir le gaz chaud de pyrolyse
DE102014203639A1 (de) Staubabscheidung aus dem Rohgas einer Flugstromvergasung
DE2436577C3 (de) Vorrichtung zur Abscheidung von im Kokereigas nach seiner Kühlung und Kondensation verbliebenen Termebeln
DE4230266A1 (de) Verfahren und Vorrichtung zur Wärmerückgewinnung beim chemischen Abbau von Klärschlamm oder Abwasser
WO2010086092A1 (fr) Procédé et dispositif pour séparer des particules solides d'une phase aqueuse
DE102013215120A1 (de) Staubabscheidung aus dem Rohgas einer Flugstromvergasung
DE202015106840U1 (de) Vorrichtung zur Behandlung von Feststoff beladenem Prozessabwasser
EP2336276B1 (fr) Refroidisseur de gaz doté d'un dispositif de martelage
DE102004026908A1 (de) Vorrichtung und Verfahren zur Kondensatabscheidung
EP0571408B1 (fr) Procede et dispositif pour l'epuration de gaz charges de substances polluantes
EP1112970B1 (fr) Procédé et dispositif pour obtenir un gaz combustible issu de boues d'épuration
EP0406632B1 (fr) Procédé et appareil pour concentrer de l'acide sulfurique contenant des sulfates métalliques
AT411767B (de) Schlackengranulierungsanlage
DE3533595A1 (de) Verfahren zum abscheiden von wasserdampf, loesungsmitteln und/oder schadstoffen aus einem gasstrom und vorrichtung zur durchfuehrung des verfahrens
DE10007503B4 (de) Verfahren zur Behandlung von Koksofenrohgas
DE2200607B2 (de) Verfahren zur direkten Kühlung von rohem Kokereigas
DE102017219401A1 (de) SO3-Absorptionsturm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16739072

Country of ref document: EP

Kind code of ref document: A1