WO2017041222A1 - 一种wdm系统中的oadm节点及方法 - Google Patents

一种wdm系统中的oadm节点及方法 Download PDF

Info

Publication number
WO2017041222A1
WO2017041222A1 PCT/CN2015/089117 CN2015089117W WO2017041222A1 WO 2017041222 A1 WO2017041222 A1 WO 2017041222A1 CN 2015089117 W CN2015089117 W CN 2015089117W WO 2017041222 A1 WO2017041222 A1 WO 2017041222A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
band filter
signal
coupled
sub
Prior art date
Application number
PCT/CN2015/089117
Other languages
English (en)
French (fr)
Inventor
邓宁
操时宜
罗俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15903329.9A priority Critical patent/EP3334072B1/en
Priority to PCT/CN2015/089117 priority patent/WO2017041222A1/zh
Priority to CN201580082948.9A priority patent/CN107949994B/zh
Publication of WO2017041222A1 publication Critical patent/WO2017041222A1/zh
Priority to US15/914,716 priority patent/US10530515B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/02122Colourless, directionless or contentionless [CDC] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters

Definitions

  • the present invention relates to the field of optical network technologies, and in particular, to an OADM node and method in a WDM system.
  • WDM Wavelength Division Multiplexing
  • the main components of the WDM system include an OADM (Optical Add-Drop Multiplexer) node.
  • the function of the OADM node is to selectively split (down) one or more wavelength channels from the transmission optical path. Plugging (on the way) one or more wavelength channels without affecting the optical signal transmission of other unrelated wavelength channels.
  • each OADM node in the WDM system is not reconfigurable, that is, the route of each OADM node is determined, and only one or more fixed wavelength channels can be used.
  • each OADM node needs to use a transmitter of the specific wavelength, an optical add/drop multiplexer, and a combiner/demultiplexer (MUX/DEMUX) according to the initial wavelength assignment, and the connection of the above optical devices. Relationships are also related to wavelength.
  • the embodiment of the invention provides an OADM node and a method in a WDM system, which can dynamically control the uplink wavelength of the OADM node according to requirements, so that the WDM system has the capability of dynamic reconstruction, thereby improving the flexibility of the WDM system and simplifying the WDM system. Deployment, installation, and maintenance.
  • a first aspect of the embodiments of the present invention provides an OADM node in a WDM system, including an uplink unit;
  • the uplink unit includes: a colorless light transmitter, a first waveguide array grating, a first band filter for dividing the input optical signal into sub-signals of M different bands, a first optical switch, and a first optical coupling a first optical combiner, wherein the M is an integer greater than 1, and the sub-signals of the M different bands are respectively output by the M output ends of the first band filter;
  • a transmitting end of the colorless optical transmitter is coupled to an input end of the first band filter through the first waveguide array grating;
  • the M output ends of the first band filter are coupled to the input ends of the first optical coupler/first optical combiner through the first optical switch;
  • the first optical switch is configured to communicate a target output end and an input end of the first optical coupler/first optical combiner according to a control signal, wherein the target output end is the first wave band One of the M outputs of the filter;
  • An output of the first optical coupler/first optical combiner is coupled to a transmission optical path.
  • the OADM node further includes a first downlink unit
  • the first downlink unit includes: a second band filter for dividing the input optical signal into sub-signals of N different bands, N second optical switches, a first combining device, and a second combining wave a device, a second waveguide array grating, and a first colorless optical receiver; wherein the N is an integer greater than 1, and the sub-signals of the N different bands are respectively N by the second band filter Output output
  • An input end of the second band filter is coupled to the transmission optical path, and each output end of the second band filter passes through a second optical switch and an input end of the first combining device The input of the second combiner is coupled;
  • the second off switch is configured to transmit a corresponding sub-signal to an input end of the first multiplexer device or an input end of the second multiplexer according to a control signal;
  • the first multiplexer device is configured to perform multiplex processing on the input sub-signal; the output end of the first multiplexer device passes through the second waveguide array grating and the receiving end of the first colorless optical receiver coupling;
  • the second multiplexer device is configured to perform multiplex processing on the input sub-signal; the output end of the second multiplexer device is coupled to the transmission optical path.
  • the OADM node further includes a second downlink unit
  • the second downlink unit includes: a third band filter for dividing the input optical signal into sub-signals of K different bands, K third optical switches, a third combining device, and a third waveguide array a grating and a second colorless optical receiver; wherein the K is an integer greater than 1, and the sub-signals of the K different bands are respectively output by the K output ends of the third band filter;
  • An input end of the third band filter is coupled to the transmission optical path, and each output end of the third band filter is coupled to an input end of the third combining device through a third optical switch;
  • the third optical switch is configured to determine, according to the control signal, whether to transmit a corresponding sub-signal to an input end of the third combining device;
  • the third multiplexer device is configured to perform multiplex processing on the input sub-signal; the output end of the third multiplexer device passes through the third waveguide array grating and the receiving end of the second leuco optical receiver coupling.
  • the transmission optical path is a single-fiber bidirectional transmission optical path
  • the number of the uplink units is two, and one of the uplink units is for driving the output optical signal to the first transmission direction of the transmission optical path, and the other upper unit is for driving the output optical signal to the transmission.
  • the second direction of transmission of the light path is two
  • the number of the first downlink units is two, and one of the first The downlink unit is configured to perform an off-path to the optical signal in the first transmission direction of the transmission optical path, and the other first downlink unit is configured to perform an off-path to the optical signal in the second transmission direction of the transmission optical path.
  • any one of the first to fourth implementation manners of the first aspect of the embodiment of the present invention, in a fifth implementation manner of the first aspect of the embodiment of the present invention is possible.
  • the add-on unit further includes a second optical coupler and a light partial reflection device
  • first optical switch is coupled to an input end of the first optical coupler/first optical combiner through the second optical coupler;
  • the first optical switch is also coupled to the optical partially reflective device by the second optical coupler.
  • the control signal includes a plurality of electrical signals for indicating an input of the first optical coupler/first optical combiner to a predetermined target output, wherein the plurality of electrical signals are used by the WDM system
  • the optical network management plane, the optical network control plane, or the optical network controller is sent.
  • a second aspect of the embodiments of the present invention provides an OADM node in a WDM system, which is applied to a point-to-point WDM system, and includes: a 1:2 wave for dividing an input optical signal into sub-signals of two different bands.
  • a filter a 2:2 optical switch having two first branch ports and two second branch ports, a colorless optical transmitter, a colorless optical receiver, a first waveguide array grating, and a second waveguide array grating, wherein
  • the sub-signals of the two different bands are respectively output by the two fan-out ports of the 1:2 band filter;
  • a common port of the 1:2 band filter is coupled to a transmission optical path, and two fan-out ports of the 1:2 band filter are respectively coupled to two first branch ports of the 2:2 optical switch;
  • One of the second branch ports of the 2:2 optical switch is coupled to the transmitting end of the colorless optical transmitter through the first waveguide array grating;
  • the other second branch port of the 2:2 optical switch is coupled to the receiving end of the colorless optical receiver through the second waveguide array grating;
  • the 2:2 optical switch is configured to switch between a through state and an intersecting state of the 2:2 optical switch according to a control signal.
  • the OADM node further includes an optical coupler and a light partial reflection device
  • the common port of the 1:2 band filter is coupled to the transmission optical path by the optical coupler
  • a common port of the 1:2 band filter is also coupled to the optical partially reflective device by the optical coupler.
  • the control signal is used by the optical network in the WDM system.
  • the management plane, optical network control plane, or optical network controller sends.
  • a third aspect of the embodiments of the present invention provides an optical add/drop multiplexing method in a WDM system, which is applied to an OADM node, where the OADM node includes an uplink unit, and the uplink unit includes a colorless optical transmitter and a first waveguide array grating.
  • a transmitting end of the colorless optical transmitter is coupled to an input end of the first band filter through the first waveguide array grating; M outputs of a wave filter with a first optical switch coupled to an input of the first optical coupler/first optical combiner; the first optical coupler/first optical combiner The output is coupled to the transmission optical path; the method includes:
  • An emission wavelength of the colorless optical transmitter is determined based on the filtered response.
  • the OADM node further includes a first downlink unit, where the first downlink unit includes The input optical signal is divided into a second band filter of N different band sub-signals, N second optical switches, a first combining device, a second combining device, a second waveguide array grating, and a first colorless light a receiver, wherein the N is an integer greater than 1, and the sub-signals of the N different bands are respectively output by the N output ends of the second band filter; wherein the second band An input end of the filter is coupled to the transmission optical path, and each output end of the second band filter passes through a second optical switch and an input end of the first combining device and the second combiner An input of the first combining device is coupled to a receiving end of the first colorless optical receiver through the second waveguide array grating; an output end of the second combining device and the Transmission optical path coupling; the method further includes:
  • the device multiplexed optical signal is coupled to the transmission optical path.
  • the OADM node further includes a second downlink unit, where the second downlink unit includes The input optical signal is divided into a third band filter of K different bands of sub-signals, K third optical switches, a third combining device, a third waveguide array grating, and a second colorless optical receiver; K is an integer greater than 1, and the sub-signals of the K different bands are respectively output by the K output ends of the third band filter; the input end of the third band filter and the Transmitting optical path coupling, each output end of the third band filter is coupled to an input end of the third combining device via a third optical switch; an output end of the third combining device passes the a three-waveguide array grating coupled to the receiving end of the second colorless optical receiver; the method further comprising:
  • a receiving wavelength of the second colorless optical receiver is determined based on the multiplexed optical signal.
  • the first optical switch may connect the input end of the first optical coupler/first optical combiner to different target outputs of the first band filter according to different control signals, and
  • the uplink unit can form different filtering responses when the input ends of the first optical coupler/first optical combiner are connected to different target outputs, so that the upper unit can form different by controlling the switching state of the first optical switch.
  • Filtering response, and the filtering response determines that the uplink unit allows the passage of the band, and the emission wavelength of the colorless optical transmitter can be automatically adapted to allow the access unit to pass the band. Therefore, the upper unit can be adjusted by controlling the switching state of the first optical switch.
  • the embodiment of the present invention can dynamically control the uplink wavelength of the OADM node according to requirements, so that the WDM system has the capability of dynamic reconstruction, thereby improving the flexibility of the WDM system and simplifying the deployment, installation, and maintenance of the WDM system. .
  • FIG. 1 is a schematic structural diagram of a WDM system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of an OADM node in a WDM system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a band division of an optical signal
  • FIG. 5 is a schematic diagram of filtering response of the upper module of FIG. 2;
  • FIG. 6 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • FIG. 13 is another schematic structural diagram of a WDM system according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of another embodiment of an OADM node in a WDM system according to an embodiment of the present invention.
  • Figure 15 is a schematic diagram of another band division of an optical signal.
  • the embodiment of the invention provides an OADM node and a method in a WDM system, which can dynamically control the uplink wavelength of the OADM node according to requirements, so that the WDM system has the capability of dynamic reconstruction, thereby improving the flexibility of the WDM system and simplifying the WDM system.
  • the deployment, installation and maintenance are described in detail below:
  • the embodiments of the present invention can be applied to WDM systems of various networking modes, including point-to-point networking, chain networking, or ring networking.
  • the WDM system includes an OADM node 1 and an OADM node 2
  • the OADM node 3, the OADM node 4, and the OADM node 5, and the above five nodes are networked in a ring network manner.
  • an embodiment of an OADM node in a WDM system includes an add-on unit 200 including a colorless optical transmitter 210 and an add-on module 220.
  • the transmit wavelength of the colorless optical transmitter 210 can be automatically adapted to the band allowed by the connected add-on module 220, that is, once the passband allowed by the add-on module 220 is determined, the colorless optical transmitter 210 can be adaptively The emission wavelength is adjusted to correspond to the allowed band to adapt to the optical wavelength response characteristic of the add-on module 220.
  • the colorless light transmitter 210 may be an optical transmitter including a tunable laser, a Fabry-Perot (FP) laser, a reflective semiconductor optical amplifier (RSOA), and a reflective type electroabsorption modulator.
  • the colorless optical transmitter 210 can also be other forms of Colorless optical transmitter, specifically for colorless light.
  • the specific structural form of the transmitter is not limited.
  • the uplink module 220 includes: a first waveguide array grating 221, a first band filter 222 for dividing the input optical signal into sub-signals of M different bands, a first optical switch 223, and a first optical coupler. 224, wherein M is an integer greater than 1, and the sub-signals of the M different bands are respectively output by the M output ends of the first band filter 222.
  • the first waveguide array grating 221 may be a 1:X periodic waveguide array grating having a common port and X fan-out ports, where X is an integer greater than one.
  • the fan-out port of the first waveguide array grating 221 is coupled to the transmitting end of the colorless optical transmitter 210
  • the first A common port of the waveguide array grating 221 is coupled to an input end of the first band filter 222;
  • the first band filter 222 is a 1:M band filter, and the M outputs are coupled to the input end of the first photocoupler 224 through the first optical switch 223.
  • the sub-signals of the M different bands are respectively outputted by the M output ends of the first band filter 222, and the sub-signals of each band correspond to an output end of the first band filter 222.
  • the sub-signal of WB (wave bands) 1 in FIG. 4 is outputted by the first output end of the first band filter 222, and the sub-signal of WB2 is outputted by the second output end of the first band filter 222.
  • the sub-signal of WB M is output by the Mth output of the first band filter 222.
  • the first optical switch 223 is configured to communicate the target output end and the input end of the first optical coupler 224 according to the control signal, wherein the target output end is one of the M output ends of the first band filter 222. Output. That is, it can be determined by controlling the switching state of the first optical switch 223 to connect which output end of the first band filter 222 is connected to the input end of the first optical coupler 224 so as to output the output of the target output terminal. The signal is transmitted to the input of the first optocoupler.
  • the first optical switch 223 can be an M:1 optical switch, and the M input ends of the M:1 optical switch are respectively coupled to the M output ends of the first band filter 222, the M:1 An output of the optical switch is coupled to an input of the first optical coupler 224.
  • the output of the first optical coupler 224 is coupled to the transmission optical path for coupling the input sub-signal to the transmission optical path.
  • the first optical coupler 224 may also be replaced by the first optical combiner.
  • the filtering response formed by the add-on module 220 is determined by the first waveguide array grating 221 and the first band filter 222.
  • the colorless optical transmitter 210 and the first waveguide array grating 221 The first fan-out port is coupled, and the Mth output end of the first band filter 222 is in communication with the input end of the first photocoupler 224.
  • the optical transmission channel at this time can be referred to the dotted line portion in the figure, correspondingly, 5 is a schematic diagram of the filtering response of the uplink module 220 in the current switching state, wherein FIG. 5a is a filtering response of the first band filter 222 when the Mth output terminal is connected to the input end of the first optical coupler 224.
  • FIG. 5b is the filtering response of the first waveguide array grating 221 at the first fan-out port
  • FIG. 5c is the filtering response formed by the first band filter 222 and the first waveguide array grating 221 in the current switching state of the upper module 220. It can be understood that when the switching state of the first optical switch 223 is changed, when the first output end of the first band filter 222 is in communication with the input end of the first optical coupler 224, the first band filter 222 The filtered response will change accordingly, resulting in the way module 220 The resulting filtered response changes.
  • the filtering response of the add-on module 220 characterizes its optical frequency (or optical wavelength) response characteristics and determines the band that it is allowed to pass, whereby the band allowed by the add-on module 220 can pass through the first Optical switch to control.
  • the emission wavelength of the colorless optical transmitter 210 can automatically adapt to the band allowed by the connected upper module 220, thereby adjusting the emission wavelength of the colorless optical transmitter by controlling the first optical switch, thereby dynamically Controls the upstream wavelength of the OADM node.
  • the colorless optical transmitter 210 may be an optical transmitter group including a plurality of colorless optical transmitters.
  • the first waveguide array grating The plurality of fan-out ports included in the 221 may be in one-to-one correspondence with the plurality of colorless optical transmitters, wherein each of the colorless optical transmitters 210 may transmit one optical signal; or the colorless optical transmitter 210 may also The integrated optical transmitter capable of transmitting multiple optical signals in parallel, in this case, the plurality of fan-out ports included in the first waveguide array grating 221 can be in one-to-one correspondence with the multiple optical signals transmitted by the colorless optical transmitter 210.
  • the add-on module 220 may further include a second optical coupler 225 and an FRM (Faraday rotating mirror) 226;
  • the first optical switch 223 is coupled to the input of the first optical coupler 224 via the second optical coupler 225, and the first optical switch 223 is also coupled to the FRM 226 via the second optical coupler 225.
  • the uplink unit 200 in this embodiment can be applied to the transmission optical paths of multiple transmission modes.
  • the following describes the OADM nodes in the fiber-optic transmission optical paths of the single-fiber unidirectional and single-fiber bidirectional modes:
  • the output end of the first optical coupler 224 of the upper unit 200 is coupled with the optical transmission direction of the transmission optical path to uplink the optical signal output from the upper unit 200 to the optical transmission direction of the transmission optical path.
  • the transmission optical path needs to use two optical fibers, including a first optical fiber for transmitting an optical signal in a first transmission direction and a second transmission direction for transmitting.
  • the second fiber of the optical signal is to be used.
  • the OADM node includes two uplink units 200,
  • the output end of the first optical coupler 224 of one of the upper units 200 is coupled to the first transmission direction of the first optical fiber to drive the optical signal output by the upper unit 200 to the first transmission direction of the first optical fiber;
  • the output of the first optical coupler 224 of the unit 200 is coupled to the second transmission direction of the second optical fiber to route the optical signal output by the add-on unit 200 to the second transmission direction of the second optical fiber.
  • an OADM node uses one optical fiber to transmit optical signals in two transmission directions.
  • the OADM node includes two uplink units 200, and the output end of the first optical coupler 224 of one of the uplink units 200 and the first of the optical fibers
  • the transmission direction is coupled to uplink the optical signal output by the uplink unit 200 to the first transmission direction of the optical fiber; the output of the first optical coupler 224 of the other upper unit 200 is coupled to the second transmission direction of the optical fiber to The optical signal output by the upper unit 200 is routed to the second transmission direction of the optical fiber.
  • the uplink unit 200 can be applied to the transmission optical paths of multiple transmission modes.
  • the OADM node can configure a corresponding number of the uplink units 200, and correspondingly access the first optical coupler/first optical combiner output in the uplink unit 200 to uplink the optical signal output by the uplink unit 200 to Corresponding transmission direction of the corresponding fiber.
  • the OADM node can not only dynamically control the uplink wavelength through the uplink unit 200, but also dynamically control the downlink wavelength through the downlink unit to implement arbitrary wavelengths of the OADM node, as shown in FIG. 6 to FIG. 7 .
  • the OADM node may further include a first downlink unit 300, the first downlink unit 300 includes a first downlink module 310 and a first colorless optical receiver (Colorless optical receiver) 320;
  • the receiving wavelength of the first colorless optical receiver 320 can be automatically adapted to the band allowed by the first downlink module 310 connected thereto, that is, once the band is allowed to pass by the first downlink module 310, A colorless optical receiver 320 can adaptively receive optical signals within a corresponding allowed band.
  • the first colorless optical receiver 320 may include a broadband photodetector and related circuits. The specific structure of the colorless optical receiver is not limited herein.
  • the first downlink module 310 includes: dividing the input optical signal into N different bands. a second band filter 311, N second optical switches 312, a first combining device 313, a second combining device 314, and a second waveguide array grating 315 of the sub-signals, wherein N is an integer greater than one, And the sub-signals of the N different bands are respectively output by the N output ends of the second band filter 311;
  • the second band filter 311 is a 1:N band filter, and includes an input end and N output ends.
  • the input end of the second band filter 311 is coupled to the transmission optical path.
  • the output ends of the second band filter 311 are respectively coupled to the input end of the first combining device 313 and the input end of the second combiner 314 via a second optical switch 312, wherein the second band filter 311
  • the N output ends are in one-to-one correspondence with the N second optical switches 312, that is, each output end of the second band filter 311 corresponds to a second optical switch 312.
  • the second off switch 312 is configured to transmit the corresponding sub-signal to the input end of the first combining device 313 or the input end of the second combiner 314 according to the control signal.
  • the sub-signal corresponding to the second optical switch 313 refers to the sub-signal outputted by the output end of the second band filter 311 coupled to the second optical switch 313.
  • the second off switch 312 can be a 1:2 optical switch, wherein the two output ends of the 1:2 optical switch are respectively connected to the input end of the first combining device 313 and the second combiner 314.
  • the input is coupled to determine whether to transmit the corresponding sub-signal to the input of the first multiplexer 313 or the corresponding sub-signal to the second multiplexer 314 based on the second control signal.
  • the output of the first multiplexer 313 is coupled to the receiving end of the first leuco optical receiver 320 via the second waveguide array grating 315.
  • the first multiplexer 313 is configured to perform multiplex processing on the input sub-signals.
  • the first multiplexer 313 can be an N:1 band filter or an N:1 Photosynthetic device.
  • the second waveguide array grating 315 may be a 1:Y periodic waveguide array grating having a common port and Y fan-out ports, where Y is an integer greater than one.
  • the fan-out port of the second waveguide array grating 315 is coupled to the transmitting end of the first colorless optical receiver 320, and the common port of the second waveguide array grating 315 is coupled to the output end of the first combining device 313. .
  • the output of the second combining device 314 is coupled to the transmission optical path.
  • the second multiplexer 314 is configured to perform multiplex processing on the input sub-signals. It can be understood that the second multiplexer 314 can be an N:1 band filter or an N:1 Photosynthetic device.
  • the optical signal transmitted on the transmission optical path is divided into sub-signals of N different bands after entering the second band filter 311, and is output by the N output ends of the second band filter 311.
  • the sub-signals of the wave device 313 are multiplexed, transmitted to the first colorless optical receiver 320 via the second waveguide array grating 315, and the sub-signals transmitted to the second multiplexer 314 are multiplexed and transmitted.
  • the transmission optical path To the transmission optical path.
  • the working reception wavelength of the first colorless optical receiver 320 can be automatically adapted to the first connected thereto.
  • the wave band allowed by the downlink module 310 thereby enabling dynamic control of the downstream wavelength of the OADM node by controlling the second optical switch.
  • the first colorless optical receiver 320 may be an optical receiver group including a plurality of colorless optical receivers.
  • the plurality of fan-out ports included in the waveguide array grating 315 may be in one-to-one correspondence with the plurality of colorless optical receivers, wherein each of the first colorless optical receivers 320 can receive one optical signal; or
  • the colorless optical receiver 320 may also be an integrated optical receiver capable of receiving multiple optical signals in parallel.
  • the plurality of fan-out ports included in the second waveguide array grating 315 may be received by the first clear radio receiver 320.
  • the road light signals correspond one-to-one.
  • the downlink unit when the OADM node does not need to transmit the optical signal to the next node, the downlink unit no longer needs to transmit some sub-signals to the transmission optical path.
  • the downlink unit may be in the above manner.
  • Some optical devices, such as the second combining device 314, are removed on the basis of the first lower unit 300. For details, refer to FIG. 8 to FIG. 9, and another structure of the lower unit is described in detail below:
  • the OADM node may further include a second downlink unit 400, and the second downlink unit 400 includes a second downlink module 410 and a second colorless optical receiver 420;
  • the second drop module 410 includes: a third band filter 411 for dividing the input optical signal into sub-signals of K different bands, K third optical switches 412, third combining device 413, and a third waveguide array grating 414; wherein K is an integer greater than 1, and the sub-signals of the K different bands are respectively output by the K output ends of the third band filter;
  • the input end of the third band filter 411 is coupled to the transmission optical path, and the third band filter Each output end of 411 is coupled to an input end of a third combining device 413 via a third optical switch 412;
  • the third optical switch 412 is configured to determine, according to the control signal, whether to transmit the corresponding sub-signal to the input end of the third combining device 413;
  • the third combining device 413 is configured to perform multiplexing processing on the input sub-signal; the output end of the third combining device 413 is coupled to the receiving end of the second clear radio receiver 420 through the third waveguide array grating 414.
  • the second downlink unit 400 is different from the first downlink unit 300 in that, since the optical signal reaching the OADM node does not need to be transmitted down, the second downlink unit 400 only needs to cooperate with the clear receiver.
  • the multiplexer device ie, another multiplexer device that cooperates with the transmission optical path is removed, and, at this time, the optical switch only needs to determine whether to transmit the corresponding sub-signal to the multiplexed device according to the control signal. Therefore, in the embodiment, the third optical switch 412 can be 1:1 light-on.
  • the downlink unit in this embodiment can also be adapted to the transmission optical paths of multiple transmission modes.
  • the OADM node such as from which or which optical fibers and pairs
  • the optical signal of the transmission direction of the optical fiber is downlinked, and the OADM node can configure a corresponding number of uplink units, and correspondingly access the input end of the band filter in the uplink unit, so as to correspond to the corresponding transmission direction of the corresponding optical fiber.
  • the light signal goes down the road.
  • the OADM node may include two downlink units, one of which is a lower-band unit.
  • the input end of the filter is coupled to the first transmission direction of the optical fiber to route the optical signal in the first transmission direction of the optical fiber; the input end of the band filter of the other downstream unit and the second transmission direction of the optical fiber Coupling to route the optical signal in the second transmission direction of the optical fiber.
  • the first optical fiber in the OADM node is used to transmit the optical signal in the first transmission direction
  • the second optical fiber is used to transmit the optical signal in the second transmission direction.
  • the optical signal of the first transmission direction of the OADM node 2 is transmitted by the OADM node 1 and transmitted by the OADM node 2 to the OADM node 3
  • the optical signal of the first transmission direction is Single fiber unidirectional first optical fiber transmission
  • optical signal of the second transmission direction of the OADM node 2 is transmitted by the OADM node 3 and transmitted by the OADM node 2 to the OADM node 1, and the light of the second transmission direction
  • the signal is transmitted by a single fiber unidirectional second fiber.
  • the downlink unit on the first optical fiber is used to drop a sub-signal of a certain band from the optical signal in the first transmission direction
  • the uplink unit on the first optical fiber is used to uplink the sub-signal of a certain band to
  • the specific optical signal transmission direction may be indicated by a broken line in FIG.
  • the downlink unit on the second optical fiber is configured to drop a sub-signal of a certain band from the optical signal in the second transmission direction, and the uplink unit on the first optical fiber is used to push the sub-signal of a certain band to the second In the optical signal of the transmission direction.
  • the band of the sub-signal (corresponding to port A) that is off-line from the first transmission direction is the same as the band of the sub-signal (corresponding to port C) that is on the way to the second transmission direction.
  • the OADM node 1 transmits the optical signal from the first transmission direction, and the optical signal transmitted to the OADM node 1 corresponds to the second transmission direction.
  • the band of the sub-signal (corresponding to port E) that is off-line from the second transmission direction is the same as the band of the sub-signal (corresponding to port D) that is on the way to the first transmission direction.
  • the OADM node 3 transmits the optical signal from the second transmission direction, and the optical signal transmitted to the OADM node 3 corresponds to the uplink in the first transmission direction.
  • one of the OADM nodes is used to transmit optical signals in two transmission directions (ie, an optical signal in a first transmission direction and an optical signal in a second transmission direction).
  • the optical signal of the first transmission direction of the OADM node 2 is transmitted by the OADM node 1 and transmitted by the OADM node 2 to the OADM node 3, and the light of the second transmission direction of the OADM node 2
  • the signal is transmitted by the OADM node 3 and transmitted by the OADM node 2 to the OADM node 1.
  • the downlink unit on the optical fiber is used to drop a sub-signal of a certain band from the optical signal in the first transmission direction
  • the uplink unit is used to uplink the sub-signal of a certain band to the optical signal in the second transmission direction in.
  • the band of the sub-signal that is dropped from the first transmission direction is the same as the band of the sub-signal that is on the way to the second transmission direction.
  • a lower channel unit may be further added to the optical fiber for using a sub-signal of a certain band from the optical signal in the second transmission direction, or adding an uplink unit for using a certain wave.
  • the sub-signal of the band is connected to the optical signal in the first transmission direction.
  • the band of the sub-signal that is dropped from the second transmission direction is the same as the band of the sub-signal that is on the way to the first transmission direction.
  • the order of the uplink unit and the downlink unit is not limited. As shown in FIG. 12, the uplink unit may be set first, and then the downlink unit may be set.
  • One embodiment of the optical add/drop multiplexing method in the WDM system in this embodiment includes: receiving a control signal sent by the WDM system. ;
  • the emission wavelength of the colorless optical transmitter is determined based on the filtered response.
  • the manager inputs control commands to the optical network management plane, the optical network control plane, or the optical network controller in the WDM system, and generates corresponding control signals, that is, different control commands correspond to different control signals (electricity Signal), whereby, in general, the control signal may comprise a plurality of electrical signals for indicating the connection of the input of the first optical coupler/first optical combiner to a predetermined target output, wherein different The target output corresponds to a different electrical signal. For example, when the first electrical signal is received, the input end of the first optical coupler/first optical combiner is connected to the first output end of the first band filter, and received.
  • the input end of the first optical coupler/first optical combiner is connected to the second output end of the first band filter;
  • the first optical switch in the upper circuit unit is first set according to the control signal a switching state of the optical switch to connect the target output end and the input end of the first optical coupler/first optical combiner, wherein the target output end is one of the M output ends of the first band filter An output terminal; at this time, the colorless optical transmitter can obtain the filtering response of the connected module (or as the uplink unit) connected to the current switch state through the feedback mechanism; and then determine the uplink module in the current switch state according to the filter response.
  • the passband is allowed to pass, and the band is automatically adapted to adjust the emission wavelength of the colorless optical transmitter to dynamically control the upstream wavelength of the OADM node.
  • the optical add/drop multiplexing method in the WDM system in this embodiment may further include:
  • the sub-signals input to the second multiplexer are multiplexed, and the optical signals multiplexed by the second multiplexer are coupled to the transmission optical path.
  • the manager inputs a control instruction to the optical network management plane, the optical network control plane, or the optical network controller in the WDM system, and generates a corresponding control signal;
  • the second optical switch of the first downlink unit is The control signal sets an on state of each of the second optical switches to determine whether to transmit the corresponding sub-signal to the input end of the first multiplexer or to the input of the second multiplexer; the first of the first drop unit
  • the multiplexer device combines the input sub-signals.
  • the first colorless optical receiver can determine its own receiving wavelength according to the optical signal multiplexed by the first multiplexer, and at the same time, the second multiplexer The input sub-signal is multiplexed, and the multiplexed optical signal is coupled to the transmission optical path.
  • the optical add/drop multiplexing method in the WDM system in this embodiment may further include:
  • the receiving wavelength of the second colorless optical receiver is determined based on the multiplexed optical signal.
  • the manager inputs a control command to the optical network management plane, the optical network control plane, or the optical network controller in the WDM system, and generates a corresponding control signal;
  • the third optical switch of the second downlink unit is The control signal sets the on state of each of the third optical switches to determine whether to transmit the corresponding sub-signal to the input end of the third multiplexer;
  • the third multiplexer combines the input sub-signals, at this time,
  • the two colorless optical receivers can determine their own receiving wavelengths according to the optical signals processed by the third combining device.
  • each OADM node can adopt the same hardware structure, and only the control command can change the light-on state of the light-on light to make each OADM node work on different waves. Long, it can enhance the flexibility of WDM system, simplify the deployment, installation and maintenance of WDM system, and the cost is low. It is suitable for metro access and metro optical network with strong demand for cost sensitive and flexible configurable optical layer. .
  • the WDM system includes an OADM node 1 and an OADM node 2, and the OADM node 1 and the OADM node 2 are connected by an optical fiber for transmitting optical signals in two transmission directions (ie, light in the first transmission direction). Signal and optical signal in the second transmission direction).
  • the optical signal of the first transmission direction is an optical signal of the OADM node 1 to the OADM node 2
  • the optical signal of the second transmission direction is an optical signal of the OADM node 2 to the OADM node 1.
  • the OADM node includes an add/drop module 510, a colorless optical transmitter 520, and a colorless optical receiver 530.
  • the emission wavelength of the colorless optical transmitter 520 can be automatically adapted to the transmit band allowed by the connected add/drop module 510, that is, once the transmit band allowed by the add/drop module 510 is determined, the clear light transmitter 520
  • the emission wavelength can be adaptively adjusted to a corresponding allowed emission band to adapt to the optical wavelength response characteristics of the add-drop module 510.
  • the receiving wavelength of the colorless optical receiver 530 can be automatically adapted to the receiving band that the connected upper and lower module 510 is allowed to pass, that is, once the receiving band is allowed to pass by the switching module 510, the colorless optical transmitter 520 is determined.
  • the adaptability receives an optical signal corresponding to the allowed received band.
  • the add/drop module 510 includes: a 1:2 band filter 511 for splitting the input optical signal into two different band sub-signals, and having two first branch ports and two second branch ports.
  • the 1:2 band filter 511 includes a common port and two fan-out ports.
  • the common port of the 1:2 band filter 511 is coupled to the transmission optical path
  • the 1:2 band filter Two fan-out ports of 511 are respectively coupled to two first branch ports of the 2:2 optical switch 512, wherein two fan-out ports of the 1:2 band filter 511 and two of the 2:2 optical switches 512
  • the first branch ports correspond one-to-one.
  • the a port of the 1:2 band filter 511 is used to pass the optical signal of the band one
  • the b port of the 1:2 band filter 511 is used to pass the wave.
  • the 2:2 optical switch 512 has a first branch port and a second branch port on both sides, Two second branch ports are coupled to the first waveguide array grating 513 and the second waveguide array grating 514, respectively.
  • the switch state of the 2:2 optical switch 512 includes a bar state and a cross state. Specifically, the specific structure and corresponding functions of the 2:2 optical switch can be known according to the prior art, and details are not described herein. . In the present embodiment, the 2:2 optical switch 512 is used to switch between the parallel connection state and the cross-connect state according to the control signal.
  • the first waveguide array grating 513 may be a 1:Z periodic waveguide array grating having a common port and Z fan-out ports, where Z is an integer greater than one.
  • the common port of the first waveguide array grating 513 is coupled to one of the second branch ports of the 2:2 optical switch 512 (a port in the figure), and the fan-out port of the first waveguide array grating 513 is The transmitting end of the colorless optical transmitter 520 is coupled.
  • the second waveguide array grating 514 can be a 1:W periodic waveguide array grating having a common port and W fan-out ports, where W is an integer greater than one.
  • the common port of the second waveguide array grating 514 is coupled to another second branch port of the 2:2 optical switch 512 (b port in the figure), and the fan-out port of the second waveguide array grating 514 is The receiving end of the colorless optical receiver 530 is coupled.
  • the add-drop module 510 can control the 2:2 optical switch.
  • the switch state adjusts the transmit wavelength of the colorless optical transmitter to dynamically control the upstream wavelength of the OADM node.
  • the add/drop module 510 is coupled to the different second branch port of the 2:2 optical switch 512 at the common port of the first waveguide array grating 513, the sub-signals of different bands can be transmitted to the second waveguide array grating 514.
  • the common port whereby the 2:2 optical switch can simultaneously determine which band's sub-signal is going down by controlling its on-state.
  • the working receiving wavelength of the first colorless optical receiver can automatically adapt to the receiving band that the connected upper and lower modules are allowed to pass, thereby dynamically controlling the downstream wavelength of the OADM node by controlling the 2:2 optical switch. .
  • the switching state of the 2:2 optical switch 512 by controlling the switching state of the 2:2 optical switch 512, it can be determined whether the two OADM nodes are the lower band 1, the upper band 2 or the lower band 2, and the upper band 1
  • the a port of the 1:2 band filter 511 corresponds to the band one
  • the b port of the 1:2 band filter 511 corresponds to the band two
  • the switch of the 2:2 optical switch of the OADM node When the state is the through state, the OADM node has a lower band 1 and an upper band 2; when the switching state of the 2:2 optical switch of the OADM node is a crossed state, the OADM node has a lower band 2 and an upper band 1 .
  • the switching state of the optical switch of the 2:2 is a through state
  • the OADM node 1 has a lower band 1 and an upper band 2
  • the switching state of the 2: 2 optical switch is a crossed state.
  • the OADM node 2 has a lower band 2 and an upper band 1 , that is, in the WDM system, the band 1 is used for the OADM node 2 to transmit an optical signal to the OADM node 1, and the band 2 is used for the OADM node 1 to the OADM node. 2 transmits optical signals.
  • the colorless optical transmitter 520 when it is required to simultaneously multiplex the optical signals to the optical path, the colorless optical transmitter 520 may be an optical transmitter group including a plurality of colorless optical transmitters or a colorless optical transmitter 520. It can be an integrated optical transmitter capable of transmitting multiple optical signals in parallel.
  • the colorless optical receiver 530 when it is required to simultaneously multiplex multiple optical signals from the transmission optical path, the colorless optical receiver 530 may be an optical receiver group including a plurality of colorless optical receivers or a colorless optical receiver 530. It is an integrated optical receiver capable of receiving multiple optical signals in parallel.
  • the RC module 510 may further include an optical coupler 515 and an FRM (Freddy rotating mirror). a partial reflection device) 516; wherein a common port of the 1:2 band filter 511 is coupled to the transmission optical path through the optical coupler 515, and the common port of the 1:2 band filter 511 also passes through the optical coupler 515 and the FRM 516. coupling.
  • FRM Freddy rotating mirror
  • OADM nodes in the point-to-point WDM system dynamically control the upstream and downstream wavelengths of the OADM nodes:
  • the manager inputs a control command to the optical network management plane, the optical network control plane, or the optical network controller in the WDM system, and generates a corresponding control signal; the 2:2 optical switch in the uplink and downlink module is set according to the control signal 2:2 The switching state of the optical switch to set the switching state of the 2:2 optical switch to a through state or a cross state; at this time, a transmission band that is allowed to pass based on the colorless optical transmitter can be determined and determined based on the colorless optical receiver Passing the receiving band, thereby determining the colorless The emission wavelength of the optical transmitter and the reception wavelength of the colorless optical receiver.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

一种WDM系统中的OADM节点及方法,可根据需要动态控制OADM节点的上路波长,使WDM系统具有动态重构的能力,从而提升WDM系统的灵活性,并简化WDM系统的部署、安装和维护。本发明实施例包括上路单元;上路单元包括:无色光发射机、第一波导阵列光栅、用于将输入的光信号分成M个不同波带的子信号的第一波带滤波器、第一光开关以及第一光耦合器/第一光合路器;无色光发射机的发射端通过第一波导阵列光栅与第一波带滤波器的输入端耦合;第一波带滤波器的M个输出端通过第一光开关与第一光耦合器/第一光合路器的输入端耦合;第一光开关,用于根据控制信号连通目标输出端和所述第一光耦合器/第一光合路器的输入端,第一光耦合器/第一光合路器的输出端与传输光路耦合。

Description

一种WDM系统中的OADM节点及方法 技术领域
本发明涉及光网络技术领域,尤其涉及一种WDM系统中的OADM节点及方法。
背景技术
WDM(Wavelength Division Multiplexing,波分复用)是指在一根光纤中同时传输多个不同波长的光信号的光传输技术,随着网络带宽需求的日益增长,WDM系统表现出广阔的应用前景。其中,WDM系统的主要组成元素包括OADM(Optical Add-Drop Multiplexer,光分插复用)节点,OADM节点的功能是从传输光路中选择性地分下(下路)一个或多个波长信道并插上(上路)一个或多个波长信道,且不影响其他不相关波长信道的光信号传输。
目前,WDM系统中的各OADM节点是不可重配的,即每个OADM节点的路由是确定,只能上下一个或多个固定的波长信道。这样的WDM系统中,各OADM节点需根据最初的波长分配,使用相应特定波长的发射机、光分插复用器和合波器/分波器(MUX/DEMUX),而且上述各光器件的连接关系也与波长有关。
然而,这种不可重配的OADM节点一经分配后,波长更改困难,网络弹性较差,缺乏灵活性,而且,不同的OADM节点需要采用不同的发射机、光分插复用器和合波器/分波器,这对WDM系统的设计部署、硬件安装、管理维护等带来了困难和成本。
发明内容
本发明实施例提供了一种WDM系统中的OADM节点及方法,可根据需要动态控制OADM节点的上路波长,使WDM系统具有动态重构的能力,从而提升WDM系统的灵活性,并简化WDM系统的部署、安装和维护。
本发明实施例的第一方面提供一种WDM系统中的OADM节点,包括上路单元;
所述上路单元包括:无色光发射机、第一波导阵列光栅、用于将输入的光信号分成M个不同波带的子信号的第一波带滤波器、第一光开关以及第一光耦合器/第一光合路器,其中,所述M为大于1的整数,且所述M个不同波带的子信号分别由所述第一波带滤波器的M个输出端输出;
所述无色光发射机的发射端通过所述第一波导阵列光栅与所述第一波带滤波器的输入端耦合;
所述第一波带滤波器的M个输出端通过所述第一光开关与所述第一光耦合器/第一光合路器的输入端耦合;
其中,所述第一光开关,用于根据控制信号连通目标输出端和所述第一光耦合器/第一光合路器的输入端,其中,所述目标输出端为所述第一波带滤波器的M个输出端中的其中一个输出端;
所述第一光耦合器/第一光合路器的输出端与传输光路耦合。
结合本发明实施例的第一方面,在本发明实施例的第一方面的第一种实现方式中,所述OADM节点还包括第一下路单元;
所述第一下路单元包括:用于将输入的光信号分成N个不同波带的子信号的第二波带滤波器、N个第二光开关、第一合波器件、第二合波器件、第二波导阵列光栅以及第一无色光接收机;其中,所述N为大于1的整数,且所述N个不同波带的子信号分别由所述第二波带滤波器的N个输出端输出;
所述第二波带滤波器的输入端与所述传输光路耦合,所述第二波带滤波器的各输出端分别通过一个第二光开关与所述第一合波器件的输入端和所述第二合波器的输入端耦合;
其中,所述第二关开关,用于根据控制信号将对应的子信号传输至所述第一合波器件的输入端或所述第二合波器的输入端;
所述第一合波器件,用于对输入的子信号进行合波处理;所述第一合波器件的输出端通过所述第二波导阵列光栅与所述第一无色光接收机的接收端耦合;
所述第二合波器件,用于对输入的子信号进行合波处理;所述第二合波器件的输出端与所述传输光路耦合。
结合本发明实施例的第一方面,在本发明实施例的第一方面的第二种实现 方式中,所述OADM节点还包括第二下路单元;
所述第二下路单元包括:用于将输入的光信号分成K个不同波带的子信号的第三波带滤波器、K个第三光开关、第三合波器件、第三波导阵列光栅以及第二无色光接收机;其中,所述K为大于1的整数,且所述K个不同波带的子信号分别由所述第三波带滤波器的K个输出端输出;
所述第三波带滤波器的输入端与所述传输光路耦合,所述第三波带滤波器的各输出端分别通过一个第三光开关与所述第三合波器件的输入端耦合;
其中,所述第三光开关,用于根据控制信号确定是否将对应的子信号传输至所述第三合波器件的输入端;
所述第三合波器件,用于对输入的子信号进行合波处理;所述第三合波器件的输出端通过所述第三波导阵列光栅与所述第二无色光接收机的接收端耦合。
结合本发明实施例的第一方面的第一种实现方式,本发明实施例的第一方面的第三种实现方式中,所述传输光路为单纤双向传输光路;
所述上路单元的数量为两个,且其中一个上路单元用于将输出的光信号上路至所述传输光路的第一传输方向,另一个上路单元用于将输出的光信号上路至所述传输光路的第二传输方向。
结合本发明实施例的第一方面的第三种实现方式,本发明实施例的第一方面的第四种实现方式中,所述第一下路单元的数量为两个,且其中一个第一下路单元用于对所述传输光路的第一传输方向上的光信号进行下路,另一个第一下路单元用于对所述传输光路的第二传输方向上的光信号进行下路。
结合本发明实施例的第一方面、本发明实施例的第一方面的第一种至第四种实现方式中的任意一种,在本发明实施例的第一方面的第五种实现方式中,
所述上路单元还包括第二光耦合器和光部分反射器件;
其中,所述第一光开关通过所述第二光耦合器与所述第一光耦合器/第一光合路器的输入端耦合;
所述第一光开关还通过所述第二光耦合器与所述光部分反射器件耦合。
结合本发明实施例的第一方面、本发明实施例的第一方面的第一种至第五种实现方式中的任意一种,在本发明实施例的第一方面的第六种实现方式中, 所述控制信号包括多个用于指示将所述第一光耦合器/第一光合路器的输入端连通至一个预设的目标输出端的电信号,其中,多个电信号由所述WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器发送。
本发明实施例第二方面提供了一种WDM系统中的OADM节点,应用于点到点的WDM系统,包括:用于将输入的光信号分成两个不同波带的子信号的1:2波带滤波器、具有两个第一分支端口和两个第二分支端口的2:2光开关、无色光发射机、无色光接收机、第一波导阵列光栅以及第二波导阵列光栅,其中,所述两个不同波带的子信号分别由所述1:2波带滤波器的两个扇出端口输出;
所述1:2波带滤波器的公共端口与传输光路耦合,所述1:2波带滤波器的两个扇出端口分别与所述2:2光开关的两个第一分支端口耦合;
所述2:2光开关的其中一个第二分支端口通过所述第一波导阵列光栅与所述无色光发射机的发射端耦合;
所述2:2光开关的另一个第二分支端口通过所述第二波导阵列光栅与所述无色光接收机的接收端耦合;
所述2:2光开关,用于根据控制信号在所述2:2光开关的直通状态和交叉状态之间切换。
结合本发明实施例的第二方面,在本发明实施例的第二方面的第一种实现方式中,所述OADM节点还包括光耦合器和光部分反射器件;
其中,所述1:2波带滤波器的公共端口通过所述光耦合器与所述传输光路耦合;
所述1:2波带滤波器的公共端口还通过所述光耦合器与所述光部分反射器件耦合。
结合本发明实施例的第二方面或第二方面的第一种实现方式,在本发明实施例的第二方面的第二种实现方式中,所述控制信号由所述WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器发送。
本发明实施例第三方面提供了一种WDM系统中的光分插复用方法,应用于OADM节点,所述OADM节点包括上路单元;所述上路单元包括无色光发射机、第一波导阵列光栅、用于将输入的光信号分成M个不同波带的子信号 的第一波带滤波器、第一光开关以及第一光耦合器/第一光合路器,其中,所述M为大于1的整数,且所述M个不同波带的子信号分别由所述第一波带滤波器的M个输出端输出;其中,所述无色光发射机的发射端通过所述第一波导阵列光栅与所述第一波带滤波器的输入端耦合;所述第一波带滤波器的M个输出端通过所述第一光开关与所述第一光耦合器/第一光合路器的输入端耦合;所述第一光耦合器/第一光合路器的输出端与传输光路耦合;所述方法包括:
接收WDM系统发送的控制信号;
根据所述控制信号设置所述第一光开关的开关状态,以连通目标输出端和所述第一光耦合器/第一光合路器的输入端,其中,所述目标输出端为所述第一波带滤波器的M个输出端中的其中一个输出端;
确定所述上路单元在当前开关状态下的滤波响应;
根据所述滤波响应确定无色光发射机的发射波长。
结合本发明实施例的第三方面,在本发明实施例的第三方面的第一种实现方式中,所述OADM节点还包括第一下路单元,所述第一下路单元包括用于将输入的光信号分成N个不同波带的子信号的第二波带滤波器、N个第二光开关、第一合波器件、第二合波器件、第二波导阵列光栅以及第一无色光接收机;其中,所述N为大于1的整数,且所述N个不同波带的子信号分别由所述第二波带滤波器的N个输出端输出;其中,所述第二波带滤波器的输入端与所述传输光路耦合,所述第二波带滤波器的各输出端分别通过一个第二光开关与所述第一合波器件的输入端和所述第二合波器的输入端耦合;所述第一合波器件的输出端通过所述第二波导阵列光栅与所述第一无色光接收机的接收端耦合;所述第二合波器件的输出端与所述传输光路耦合;所述方法还包括:
接收WDM系统发送的控制信号;
根据所述控制信号设置各第二光开关的开光状态,以确定是将对应的子信号传输至所述第一合波器件的输入端还是传输至所述第二合波器的输入端;
对输入至所述第一合波器件的子信号进行合波处理,并根据经所述第一合波器件合波处理后的光信号确定所述第一无色光接收机的接收波长;
对输入至所述第二合波器件的子信号进行合波处理,并将经所述第二合波 器件合波处理后的光信号耦合至所述传输光路。
结合本发明实施例的第三方面,在本发明实施例的第三方面的第二种实现方式中,所述OADM节点还包括第二下路单元,所述第二下路单元包括用于将输入的光信号分成K个不同波带的子信号的第三波带滤波器、K个第三光开关、第三合波器件、第三波导阵列光栅以及第二无色光接收机;其中,所述K为大于1的整数,且所述K个不同波带的子信号分别由所述第三波带滤波器的K个输出端输出;所述第三波带滤波器的输入端与所述传输光路耦合,所述第三波带滤波器的各输出端分别通过一个第三光开关与所述第三合波器件的输入端耦合;所述第三合波器件的输出端通过所述第三波导阵列光栅与所述第二无色光接收机的接收端耦合;所述方法还包括:
接收WDM系统发送的控制信号;
根据所述控制信号设置各第三光开关的开光状态,以确定是否将对应的子信号传输至所述第三合波器件的输入端;
对输入至所述第三合波器件的子信号进行合波处理;
根据经合波处理的光信号确定所述第二无色光接收机的接收波长。
本发明实施例提供的技术方案中,第一光开关可以根据不同的控制信号将第一光耦合器/第一光合路器的输入端连通至第一波带滤波器的不同目标输出端,且上路单元在第一光耦合器/第一光合路器的输入端与不同的目标输出端连通时可以形成不同的滤波响应,这样上路单元就可以通过控制第一光开关的开关状态来形成不同的滤波响应,而滤波响应决定了上路单元允许通过波带,且无色光发射机的发射波长可以自动适配上路单元允许通过波带,因此,上路单元可通过控制第一光开关的开关状态来调节无色光发射机的发射波长,从而动态控制OADM节点的上路波长。因此相对于现有技术,本发明实施例可根据需要动态控制OADM节点的上路波长,使WDM系统具有动态重构的能力,从而提升WDM系统的灵活性,并简化WDM系统的部署、安装和维护。
附图说明
图1为本发明实施例中WDM系统的一种结构示意图;
图2为本发明实施例中WDM系统中的OADM节点的一个实施例示意图;
图3为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图4为光信号的一种波带划分示意图;
图5为图2中上路模块的滤波响应示意图;
图6为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图7为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图8为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图9为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图10为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图11为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图12为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图13为本发明实施例中WDM系统的另一种结构示意图;
图14为本发明实施例中WDM系统中的OADM节点的另一实施例示意图;
图15为光信号的另一种波带划分示意图。
具体实施方式
本发明实施例提供了一种WDM系统中的OADM节点及方法,可根据需要动态控制OADM节点的上路波长,使WDM系统具有动态重构的能力,从而提升WDM系统的灵活性,并简化WDM系统的部署、安装和维护,以下分别进行详细说明:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的 顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例可以应用于各种组网方式的WDM系统,包括点到点组网、链形组网或环形组网等,例如,在图1中,WDM系统包括OADM节点1、OADM节点2、OADM节点3、OADM节点4以及OADM节点5,且上述五个节点以环形组网方式组网。
请参阅图2至图3,本发明实施例中WDM系统中的OADM节点一个实施例包括上路单元200,该上路单元200包括无色光发射机(Colorless光发射机)210和上路模块220。
其中,无色光发射机210的发射波长可自动适配其所连接的上路模块220所允许通过的波带,即一旦上路模块220所允许通过的波带确定,无色光发射机210可适应性地将发射波长调整到对应允许的波带内,以适配上路模块220的光波长响应特性。在本实施例中,无色光发射机210可以是包含可调激光器的光发射机、法布里-帕罗(FP)激光器、反射型的半导体光放大器(RSOA)、反射型的电吸收调制器(REAM)或者REAM再集成半导体光放大器(REAM-SOA),可以理解的是,在其他一些实施例中,无色光发射机210也可以是其他形式的Colorless光发射机,具体此处对无色光发射机的具体结构形式不做限定。
其中,上路模块220包括:第一波导阵列光栅221、用于将输入的光信号分成M个不同波带的子信号的第一波带滤波器222、第一光开关223、第一光耦合器224,其中,M为大于1的整数,且M个不同波带的子信号分别由第一波带滤波器222的M个输出端输出。
其中,第一波导阵列光栅221可以为1:X周期性的波导阵列光栅,其具有一个公共端口和X个扇出端口,其中,X为大于1的整数。在本实施例中,第一波导阵列光栅221的扇出端口与无色光发射机210的发射端耦合,该第一 波导阵列光栅221的公共端口与第一波带滤波器222的输入端耦合;
其中,第一波带滤波器222为1:M波带滤波器,其M个输出端通过第一光开关223与第一光耦合器224的输入端耦合。在本实施例中,M个不同波带的子信号分别由第一波带滤波器222的M个输出端输出,每个波带的子信号对应第一波带滤波器222的一个输出端,如图4中的WB(wave bands,波带)1的子信号由第一波带滤波器222第一输出端输出,WB2的子信号由第一波带滤波器222的第二输出端输出,WB M的子信号由第一波带滤波器222第M输出端输出。
其中,第一光开关223,用于根据控制信号连通目标输出端和第一光耦合器224的输入端,其中,目标输出端为第一波带滤波器222的M个输出端中的其中一个输出端。也就是说,可以通过控制第一光开关223的开关状态来决定将第一波带滤波器222的哪一个输出端与第一光耦合器224的输入端连通,以便将目标输出端输出的子信号传输至第一光耦合器的输入端。在本实施例中,第一光开关223可以为M:1光开关,该M:1光开关的M个输入端分别与第一波带滤波器222的M个输出端耦合,该M:1光开关的输出端与第一光耦合器224的输入端耦合。
第一光耦合器224的输出端与传输光路耦合,用于将输入的子信号耦合至传输光路,在本实施例中,第一光耦合器224也可以由第一光合路器代替。
在本实施例中,上路模块220形成的滤波响应由第一波导阵列光栅221和第一波带滤波器222共同决定,例如,在图3中,无色光发射机210与第一波导阵列光栅221的第一扇出端口耦合,第一波带滤波器222的第M输出端与第一光耦合器224的输入端连通,此时的光传输通道可参见图中的虚线部分,对应地,图5为上路模块220在当前开关状态下的滤波响应的示意图,其中,图5a为第一波带滤波器222在第M输出端与第一光耦合器224的输入端连通时的滤波响应,图5b为第一波导阵列光栅221在第一扇出端口的滤波响应,图5c为上路模块220当前开关状态下,由第一波带滤波器222和第一波导阵列光栅221共同形成的滤波响应。可以理解的是,当更改第一光开关223的开关状态,由第一波带滤波器222的第一输出端与第一光耦合器224的输入端连通时,第一波带滤波器222的滤波响应将相应改变,从而导致上路模块220 共同形成的滤波响应改变。
在实施例中,上路模块220的滤波响应表征其光频率(或光波长)响应特性,并决定了其所允许通过的波带,由此,上路模块220所允许通过的波带可以通过第一光开关来控制。而无色光发射机210的发射波长可自动适配其所连接的上路模块220所允许通过的波带,由此,可以实现通过控制第一光开关来调节无色光发射机的发射波长,从而动态控制OADM节点的上路波长。
可选地,在本实施例中,当需要同时向传输光路上路多路光信号时,无色光发射机210可以是包括多个无色光发射机的光发射机组,此时,第一波导阵列光栅221包括的多个扇出端口可以与多个无色光发射机一一对应,其中,无色光发射机210中的每个无色光发射机可发射一路光信号;或者,无色光发射机210也可以是能够并行发射多路光信号的集成式光发射机,此时,第一波导阵列光栅221包括的多个扇出端口可以与无色光发射机210发射的多路光信号一一对应。
可选地,当无色光发射机210为FP激光器、RSOA、REAM或者REAM-SOA时,上路模块220还可以包括第二光耦合器225和FRM(Faraday rotating mirror,光部分反射器件)226;其中,上述第一光开关223通过第二光耦合器225与第一光耦合器224的输入端耦合,且第一光开关223还通过第二光耦合器225与FRM 226耦合。
可以理解的是,本实施例中的上路单元200可以适用于多种传输模式的传输光路,下面分别就单纤单向和单纤双向模式的光纤传输光路对OADM节点进行描述:
一、单纤单向的传输光路
在单纤单向的传输光路中,上路单元200的第一光耦合器224的输出端与传输光路的光传输方向耦合,以便将上路单元200输出的光信号上路至传输光路的光传输方向。
可以理解的是,若OADM节点要实现两个方向的光信号传输,则传输光路需使用两根光纤,包括用于传输第一传输方向的光信号的第一光纤和用于传输第二传输方向的光信号的第二光纤。此时,若OADM节点需要分别向上述两个传输方向上路某一波长信道,则OADM节点包括两个上路单元200,其 中一个上路单元200的第一光耦合器224的输出端与第一光纤的第一传输方向耦合,以便将该上路单元200输出的光信号上路到第一光纤的第一传输方向;另一个上路单元200的第一光耦合器224的输出端与第二光纤的第二传输方向耦合,以便将该上路单元200输出的光信号上路到第二光纤的第二传输方向。
二、单纤双向的传输光路
在单纤双向的传输光路中,OADM节点使用一根光纤传输两个传输方向的光信号。此时,若OADM节点需要分别向上述两个传输方向上路某一波长信道,则OADM节点包括两个上路单元200,其中一个上路单元200的第一光耦合器224的输出端与光纤的第一传输方向耦合,以便将该上路单元200输出的光信号上路到光纤的第一传输方向;另一个上路单元200的第一光耦合器224的输出端与光纤的第二传输方向耦合,以便将该上路单元200输出的光信号上路到光纤的第二传输方向。
可以看出,上路单元200可以适用于多种传输模式的传输光路,在实际应用过程中,根据OADM节点实际需要(如需要向哪一跟或哪几根光纤以及光纤的哪一个传输方向上路波长信道),OADM节点可以配置相应数量的上路单元200,且对上路单元200中第一光耦合器/第一光合路器输出端进行相应的接入,以便将上路单元200输出的光信号上路至对应光纤的对应传输方向。
可选地,在本实施例中,OADM节点不仅可以通过上路单元200动态控制上路波长,还可以通过下路单元动态控制下路波长,实现OADM节点上下路任意波长,请参阅图6至图7,下面对OADM节点中的下路单元的其中一种结构进行详细描述:
在本实施例中,OADM节点还可以包括第一下路单元300,第一下路单元300包括第一下路模块310和第一无色光接收机(Colorless光接收机)320;
其中,第一无色光接收机320的接收波长可自动适配其所连接的第一下路模块310所允许通过的波带,即一旦第一下路模块310所允许通过的波带确定,第一无色光接收机320可适应性接收对应允许的波带内的光信号。在本实施例中,第一无色光接收机320可以包括宽带的光探测器及相关的电路,具体此处对无色光接收机的具体结构不做限定。
其中,第一下路模块310包括:用于将输入的光信号分成N个不同波带 的子信号的第二波带滤波器311、N个第二光开关312、第一合波器件313、第二合波器件314以及第二波导阵列光栅315,其中,N为大于1的整数,且N个不同波带的子信号分别由第二波带滤波器311的N个输出端输出;
其中,第二波带滤波器311为1:N波带滤波器,其包括一个输入端和N个输出端,在本实施例中,第二波带滤波器311的输入端与传输光路耦合,第二波带滤波器311的各输出端分别通过一个第二光开关312与第一合波器件313的输入端和第二合波器314的输入端耦合,其中,第二波带滤波器311的N个输出端与N个第二光开关312一一对应,即第二波带滤波器311的每个输出端对应一个第二光开关312。
其中,第二关开关312,用于根据控制信号将对应的子信号传输至第一合波器件313的输入端或第二合波器314的输入端。在本实施例中,与第二光开关313对应的子信号是指与第二光开关313耦合的第二波带滤波器311的输出端所输出的子信号。在本实施例中,第二关开关312可以为1:2光开关,其中,该1:2光开关的2个输出端分别与第一合波器件313的输入端和第二合波器314的输入端耦合,以便根据第二控制信号确定是将对应的子信号传输至第一合波器件313的输入端,还是将对应的子信号传输至第二合波器314。
其中,第一合波器件313的输出端通过第二波导阵列光栅315与第一无色光接收机320的接收端耦合。在本实施例中,第一合波器件313,用于对输入的子信号进行合波处理,可以理解的是,第一合波器件313可以为N:1波带滤波器或者N:1的光合路器。例如,在实际应用过程中,有三路第二关开关312将对应的子信号传输至第一合波器件313的输入端,则第一合波器件313的输入端将对上述三个子信号进行合波处理。
其中,第二波导阵列光栅315可以为1:Y周期性的波导阵列光栅,其具有一个公共端口和Y个扇出端口,其中,Y为大于1的整数。在本实施例中,第二波导阵列光栅315的扇出端口与第一无色光接收机320的发射端耦合,该第二波导阵列光栅315的公共端口与第一合波器件313的输出端耦合。
其中,第二合波器件314输出端与传输光路耦合。在本实施例中,第二合波器件314,用于对输入的子信号进行合波处理,可以理解的是,第二合波器件314可以为N:1波带滤波器或者N:1的光合路器。
可以看出,传输光路上传输的光信号在进入第二波带滤波器311后被分成N个不同波带的子信号,并由第二波带滤波器311的N个输出端输出,此时,可通过控制N个第二光开关的开光状态来决定每个子信号是被传输至第一合波器件313的输入端还是第二合波器件314的输入端,其中,被传输至第一合波器件313的子信号经合波处理后,经由第二波导阵列光栅315被传输至第一无色光接收机320,而被传输至第二合波器件314的子信号经合波处理后被传输至传输光路。
由此,可通过控制N个第二光开关的开光状态来决定对哪些波带的子信号进行下路,而第一无色光接收机320的工作接收波长可自动适配其所连接的第一下路模块310所允许通过的波带,由此,可以实现通过控制第二光开关动态控制OADM节点的下路波长。
可选地,在本实施例中,当需要同时从传输光路下路多路光信号时,第一无色光接收机320可以是包括多个无色光接收机的光接收机组,此时,第二波导阵列光栅315包括的多个扇出端口可以与多个无色光接收机一一对应,其中,第一无色光接收机320中的每个无色光接收机可接收一路光信号;或者,第一无色光接收机320也可以是能够并行接收多路光信号的集成式光接收机,此时,第二波导阵列光栅315包括的多个扇出端口可以与第一无色光接收机320接收的多路光信号一一对应。
可选地,在一些应用场景中,当OADM节点不需要再向下一个节点传输光信号时,下路单元不再需要将某些子信号传输至传输光路,此时,下路单元可以在上述第一下路单元300的基础上去掉一些光器件,如第二合波器件314,具体可参见图8至图9,下面对下路单元的另一个结构进行详细描述:
在本实施例中,OADM节点还可以包括第二下路单元400,第二下路单元400包括第二下路模块410和第二无色光接收机420;
其中,第二下路模块410包括:用于将输入的光信号分成K个不同波带的子信号的第三波带滤波器411、K个第三光开关412、第三合波器件413以及第三波导阵列光栅414;其中,K为大于1的整数,且K个不同波带的子信号分别由所述第三波带滤波器的K个输出端输出;
其中,第三波带滤波器411的输入端与传输光路耦合,第三波带滤波器 411的各输出端分别通过一个第三光开关412与第三合波器件413的输入端耦合;
其中,第三光开关412,用于根据控制信号确定是否将对应的子信号传输至第三合波器件413的输入端;
其中,第三合波器件413,用于对输入的子信号进行合波处理;第三合波器件413的输出端通过第三波导阵列光栅414与第二无色光接收机420的接收端耦合。
可以看出,第二下路单元400与第一下路单元300的不同点在于,由于到达OADM节点的光信号无需再往下传,第二下路单元400仅需一个与无色光接收机配合的合波器件(即去掉了与传输光路配合的另一个合波器件),而且,,此时光开关也只需根据控制信号确定是否将对应的子信号传输至与该合波器件。由此,在本实施例中,第三光开关412可以为1:1光开光。
可以理解的是,在本实施例中的下路单元同样可以适应于多种传输模式的传输光路,在实际应用过程中,根据OADM节点实际需要(如从哪一跟或哪几根光纤以及对光纤的哪一个传输方向的光信号进行下路),OADM节点可以配置相应数量的上路单元,且对上路单元中波带滤波器的输入端进行相应的接入,以便对对应光纤的对应传输方向的光信号进行下路。例如,在单纤双向的传输光路中,若OADM节点需要分别对光纤中的两个传输方向的光信号进行下路,则OADM节点可以包括两个下路单元,其中一个下路单元的波带滤波器的输入端与光纤的第一传输方向耦合,以便对光纤的第一传输方向上的光信号进行下路;另一个下路单元的波带滤波器的输入端与光纤的第二传输方向耦合,以便对光纤的第二传输方向上的光信号进行下路。
下面对基于不同传输模式的OADM节点结构进行举例:
例如,在图10中,OADM节点中的第一光纤用于传输第一传输方向的光信号,第二光纤用于传输第二传输方向的光信号。例如,以图1的OADM节点2为例,OADM节点2的第一传输方向的光信号由OADM节点1传送过来并由OADM节点2向OADM节点3传送,且该第一传输方向的光信号由单纤单向的第一光纤传输;OADM节点2的第二传输方向的光信号由OADM节点3传送过来并由OADM节点2向OADM节点1传送,且该第二传输方向的光 信号由单纤单向的第二光纤传输。
其中,第一光纤上的下路单元用于从第一传输方向的光信号中下路某一波带的子信号,第一光纤上的上路单元用于将某一波带的子信号上路到第一传输方向的光信号中,具体光信号传输方向可参考图10中的虚线指示。
第二光纤上的下路单元用于从第二传输方向的光信号中下路某一波带的子信号,第一光纤上的上路单元用于将某一波带的子信号上路到第二传输方向的光信号中。
可选地,从第一传输方向下路的子信号(对应端口A)的波带与向第二传输方向上路的子信号(对应端口C)的波带相同。例如,在OADM节点2中,从第一传输方向下路对应的是OADM节点1传送过来光信号,向第二传输方向上路对应的是向OADM节点1传送的光信号。
可选地,从第二传输方向下路的子信号(对应端口E)的波带与向第一传输方向上路的子信号(对应端口D)的波带相同。例如,在OADM节点2中,从第二传输方向下路对应的是OADM节点3传送过来光信号,向第一传输方向上路对应的是向OADM节点3传送的光信号。
例如,在图11中,OADM节点中的一根光纤用于传输两个传输方向的光信号(即第一传输方向的光信号和第二传输方向的光信号)。例如,以图1的OADM节点2为例,OADM节点2的第一传输方向的光信号由OADM节点1传送过来并由OADM节点2向OADM节点3传送,OADM节点2的第二传输方向的光信号由OADM节点3传送过来并由OADM节点2向OADM节点1传送。
其中,光纤上的下路单元用于从第一传输方向的光信号中下路某一波带的子信号,上路单元用于将某一波带的子信号上路到第二传输方向的光信号中。此时,可选地,从第一传输方向下路的子信号的波带与向第二传输方向上路的子信号的波带相同。
可选地,该光纤上还可以再添加一个下路单元,用于从第二传输方向的光信号中下路某一波带的子信号,或者还添加一个上路单元,用于将某一波带的子信号上路到第一传输方向的光信号中。此时,可选地,从第二传输方向下路的子信号的波带与向第一传输方向上路的子信号的波带相同。
可以理解的是,在本实施例中,对于上路单元和下路单元的先后顺序不做限定,如图12所示,可以先设置上路单元,再设置下路单元。
下面对各OADM节点中如何利用上述上路单元动态控制OADM节点的上路波长进行说明,本实施例中WDM系统中的光分插复用方法的一种实施例包括:接收WDM系统发送的控制信号;
根据控制信号设置所述第一光开关的开关状态,以连通目标输出端和所述第一光耦合器/第一光合路器的输入端,其中,目标输出端为所述第一波带滤波器的M个输出端中的其中一个输出端;
确定上路单元在当前开关状态下的滤波响应;
根据滤波响应确定无色光发射机的发射波长。
即在实际应用过程中,管理人员向WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器输入控制指令,并生成对应的控制信号,即不同控制指令对应不同的控制信号(电信号),由此,总体来说,控制信号可以包括多个用于指示将第一光耦合器/第一光合路器的输入端连通至一个预设的目标输出端的电信号,其中,不同的目标输出端对应不同的电信号,例如,接收到第一电信号时,将第一光耦合器/第一光合路器的输入端连通至第一波带滤波器的第一输出端,接收到第二电信号时,将第一光耦合器/第一光合路器的输入端连通至第一波带滤波器的第二输出端;上路单元中的第一光开关根据该控制信号设置第一光开关的开关状态,以连通目标输出端和第一光耦合器/第一光合路器的输入端,其中,目标输出端为第一波带滤波器的M个输出端中的其中一个输出端;此时,无色光发射机可以通过反馈机制获取与其连接的上路模块(或者看作上路单元)在当前开关状态下的滤波响应;再根据滤波响应确定上路模块在当前开关状态下所允许通过的波带,并自动适配该波带,从而调节无色光发射机的发射波长,动态控制OADM节点的上路波长。
下面对各OADM节点中如何利用上述下路单元动态控制OADM节点的下路波长进行说明:
关于第一下路单元,本实施例中WDM系统中的光分插复用方法还可以包括:
接收WDM系统发送的控制信号;
根据控制信号设置各第二光开关的开光状态,以确定是将对应的子信号传输至第一合波器件的输入端还是传输至第二合波器的输入端;
对输入至第一合波器件的子信号进行合波处理,并根据经第一合波器件合波处理后的光信号确定第一无色光接收机的接收波长;
对输入至第二合波器件的子信号进行合波处理,并将经第二合波器件合波处理后的光信号耦合至传输光路。
即在实际应用过程中,管理人员向WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器输入控制指令,并生成对应的控制信号;第一下路单元的第二光开关根据控制信号设置各第二光开关的开光状态,以确定是将对应的子信号传输至第一合波器件的输入端还是传输至第二合波器的输入端;第一下路单元的第一合波器件对输入的子信号进行合波处理,此时,第一无色光接收机可以根据经第一合波器件合波处理后的光信号确定自身的接收波长,同时,第二合波器件对输入的子信号进行合波处理,并将经其合波处理后的光信号耦合至传输光路。
关于第二下路单元,本实施例中WDM系统中的光分插复用方法还可以包括:
接收WDM系统发送的控制信号;
根据控制信号设置各第三光开关的开光状态,以确定是否将对应的子信号传输至第三合波器件的输入端;
对输入至第三合波器件的子信号进行合波处理;
根据经合波处理的光信号确定第二无色光接收机的接收波长。
即在实际应用过程中,管理人员向WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器输入控制指令,并生成对应的控制信号;第二下路单元的第三光开关根据控制信号设置各第三光开关的开光状态,以确定是否将对应的子信号传输至第三合波器件的输入端;第三合波器件对输入的子信号进行合波处理,此时,第二无色光接收机可以根据经第三合波器件合波处理后的光信号确定自身的接收波长。
可以理解,在本方案中,各OADM节点均可以采用相同的硬件结构,只需通过控制指令改变光开光的开光状态便可使各OADM节点工作在不同的波 长,可提升WDM系统的灵活性,并简化WDM系统的部署、安装和维护,且成本较低,适合对成本敏感且对灵活可配光层需求强烈的城域接入和城域汇聚光网络。
下面对应用于点到点的WDM系统的OADM节点进行描述:
如图13所示,WDM系统包括OADM节点1和OADM节点2,OADM节点1和OADM节点2通过一根光纤连接,该光纤用于传输两个传输方向的光信号(即第一传输方向的光信号和第二传输方向的光信号)。此处,第一传输方向的光信号为OADM节点1到OADM节点2的光信号,第二传输方向的光信号为OADM节点2到OADM节点1的光信号。
请参阅图14,在本实施例中,OADM节点包括上下路模块510、无色光发射机520以及无色光接收机530。
其中,无色光发射机520的发射波长可自动适配其所连接的上下路模块510所允许通过的发射波带,即一旦上下路模块510所允许通过的发射波带确定,无色光发射机520可适应性地将发射波长调整到对应允许的发射波带内,以适配上下路模块510的光波长响应特性。
其中,无色光接收机530的接收波长可自动适配其所连接的上下路模块510所允许通过的接收波带,即一旦上下路模块510所允许通过的接收波带确定,无色光发射机520可适应性接收对应允许的接收波带内的光信号。
其中,上下路模块510包括:用于将输入的光信号分成两个不同波带的子信号的1:2波带滤波器511、具有两个第一分支端口和两个第二分支端口的2:2光开关512、第一波导阵列光栅513以及第二波导阵列光栅514,其中,两个不同波带的子信号分别由1:2波带滤波器511的两个扇出端口输出。
其中,1:2波带滤波器511包括一个公共端口和两个扇出端口,在本实施例中,1:2波带滤波器511的公共端口与传输光路耦合,1:2波带滤波器511的两个扇出端口分别与2:2光开关512的两个第一分支端口耦合,其中,1:2波带滤波器511的两个扇出端口与2:2光开关512的两个第一分支端口一一对应。例如,在本实施例中,如图15所示,1:2波带滤波器511的a端口用于通过波带一的光信号,1:2波带滤波器511的b端口用于通过波带二的光信号。
其中,2:2光开关512具有位于两侧的第一分支端口和第二分支端口,其 两个第二分支端口分别与第一波导阵列光栅513和第二波导阵列光栅514耦合。2:2光开关512的开关状态包括直通状态(bar state)和交叉状态(cross state),具体此处可以根据现有技术获知2:2光开关的具体结构以及相应功能,此处不再赘述。在本实施例中,2:2光开关512用于根据控制信号在平行连接状态和交叉连接状态之间切换。
其中,第一波导阵列光栅513可以为1:Z周期性的波导阵列光栅,其具有一个公共端口和Z个扇出端口,其中,Z为大于1的整数。在本实施例中,第一波导阵列光栅513的公共端口与2:2光开关512的其中一个第二分支端口(如图中的a端口)耦合,第一波导阵列光栅513的扇出端口与无色光发射机520的发射端耦合。
其中,第二波导阵列光栅514可以为1:W周期性的波导阵列光栅,其具有一个公共端口和W个扇出端口,其中,W为大于1的整数。在本实施例中,第二波导阵列光栅514的公共端口与2:2光开关512的另一个第二分支端口(如图中的b端口)耦合,第二波导阵列光栅514的扇出端口与无色光接收机530的接收端耦合。
可以看出,可以通过控制2:2光开关的开关状态决定第一波导阵列光栅513的公共端口与2:2光开关512的哪一个第二分支端口耦合,且上下路模块510在第一波导阵列光栅513的公共端口与2:2光开关512的不同第二分支端口耦合时可以形成不同的滤波响应,这样上下路模块510就可以通过控制2:2光开关的开关状态来形成不同的滤波响应,而滤波响应决定了上下路模块允许通过发射波带,且无色光发射机的发射波长可以自动适配上路单元允许通过发射波带,因此,上下路模块可通过控制2:2光开关的开关状态来调节无色光发射机的发射波长,从而动态控制OADM节点的上路波长。
同时,在上下路模块510在第一波导阵列光栅513的公共端口与2:2光开关512的不同第二分支端口耦合时,可以将不同波带的子信号传输至第二波导阵列光栅514的公共端口,由此,2:2光开关同时可以通过控制其开光状态来决定对哪个波带的子信号进行下路。而第一无色光接收机的工作接收波长可自动适配其所连接的上下路模块所允许通过的接收波带,由此,可以实现通过控制2:2光开关动态控制OADM节点的下路波长。
由此,在本实施例中,可通过控制2:2光开关512的开关状态来决定两个OADM节点是下路波带一、上路波带二还是下路波带二、上路波带一,例如,在图14中,1:2波带滤波器511的a端口对应波带一、1:2波带滤波器511的b端口对应波带二,当OADM节点的2:2光开关的开关状态为直通状态时,该OADM节点下路波带一、上路波带二;当OADM节点的2:2光开关的开关状态为交叉状态时,该OADM节点下路波带二、上路波带一。
例如,在OADM节点1,2:2光开关的开关状态为直通状态,该OADM节点1下路波带一、上路波带二;在OADM节点2,2:2光开关的开关状态为交叉状态,该OADM节点2下路波带二、上路波带一,即在本WDM系统中,波带一用于OADM节点2向OADM节点1传送光信号,波带二用于OADM节点1向OADM节点2传送光信号。
同样,可选地,在本实施例中,当需要同时向传输光路上路多路光信号时,无色光发射机520可以是包括多个无色光发射机的光发射机组或者无色光发射机520也可以是能够并行发射多路光信号的集成式光发射机。可选地,在本实施例中,当需要同时从传输光路下路多路光信号时,无色光接收机530可以是包括多个无色光接收机的光接收机组或者无色光接收机530也可以是能够并行接收多路光信号的集成式光接收机。
同样,可选地,在本实施例中,当无色光发射机530为FP激光器、RSOA、REAM或者REAM-SOA时,上下路模块510还可以包括光耦合器515和FRM(Freddy rotating mirror,光部分反射器件)516;其中,1:2波带滤波器511的公共端口通过光耦合器515与上述传输光路耦合,1:2波带滤波器511的公共端口还通过光耦合器515与FRM 516耦合。
下面对点到点的WDM系统中各OADM节点如何动态控制OADM节点的上、下路波长进行说明:
管理人员向WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器输入控制指令,并生成对应的控制信号;上下路模块中的2:2光开关根据该控制信号设置2:2光开关的开关状态,以将2:2光开关的开关状态设置为直通状态或者交叉状态;此时,可以确定基于该无色光发射机允许通过的发射波带以及确定基于该无色光接收机允许通过的接收波带,由此,可以确定无色 光发射机的发射波长和无色光接收机的接收波长。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽 管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种波分复用WDM系统中的光分插复用OADM节点,其特征在于,包括上路单元;
    所述上路单元包括:无色光发射机、第一波导阵列光栅、用于将输入的光信号分成M个不同波带的子信号的第一波带滤波器、第一光开关以及第一光耦合器/第一光合路器,其中,所述M为大于1的整数,且所述M个不同波带的子信号分别由所述第一波带滤波器的M个输出端输出;
    所述无色光发射机的发射端通过所述第一波导阵列光栅与所述第一波带滤波器的输入端耦合;
    所述第一波带滤波器的M个输出端通过所述第一光开关与所述第一光耦合器/第一光合路器的输入端耦合;
    其中,所述第一光开关,用于根据控制信号连通目标输出端和所述第一光耦合器/第一光合路器的输入端,其中,所述目标输出端为所述第一波带滤波器的M个输出端中的其中一个输出端;
    所述第一光耦合器/第一光合路器的输出端与传输光路耦合。
  2. 如权利要求1所述的WDM系统中的OADM节点,其特征在于,所述OADM节点还包括第一下路单元;
    所述第一下路单元包括:用于将输入的光信号分成N个不同波带的子信号的第二波带滤波器、N个第二光开关、第一合波器件、第二合波器件、第二波导阵列光栅以及第一无色光接收机;其中,所述N为大于1的整数,且所述N个不同波带的子信号分别由所述第二波带滤波器的N个输出端输出;
    所述第二波带滤波器的输入端与所述传输光路耦合,所述第二波带滤波器的各输出端分别通过一个第二光开关与所述第一合波器件的输入端和所述第二合波器的输入端耦合;
    其中,所述第二关开关,用于根据控制信号将对应的子信号传输至所述第一合波器件的输入端或所述第二合波器的输入端;
    所述第一合波器件,用于对输入的子信号进行合波处理;所述第一合波器件的输出端通过所述第二波导阵列光栅与所述第一无色光接收机的接收端耦合;
    所述第二合波器件,用于对输入的子信号进行合波处理;所述第二合波器件的输出端与所述传输光路耦合。
  3. 如权利要求1所述的WDM系统中的OADM节点,其特征在于,所述OADM节点还包括第二下路单元;
    所述第二下路单元包括:用于将输入的光信号分成K个不同波带的子信号的第三波带滤波器、K个第三光开关、第三合波器件、第三波导阵列光栅以及第二无色光接收机;其中,所述K为大于1的整数,且所述K个不同波带的子信号分别由所述第三波带滤波器的K个输出端输出;
    所述第三波带滤波器的输入端与所述传输光路耦合,所述第三波带滤波器的各输出端分别通过一个第三光开关与所述第三合波器件的输入端耦合;
    其中,所述第三光开关,用于根据控制信号确定是否将对应的子信号传输至所述第三合波器件的输入端;
    所述第三合波器件,用于对输入的子信号进行合波处理;所述第三合波器件的输出端通过所述第三波导阵列光栅与所述第二无色光接收机的接收端耦合。
  4. 如权利要求2所述的WDM系统中的OADM节点,其特征在于,所述传输光路为单纤双向传输光路;
    所述上路单元的数量为两个,且其中一个上路单元用于将输出的光信号上路至所述传输光路的第一传输方向,另一个上路单元用于将输出的光信号上路至所述传输光路的第二传输方向。
  5. 如权利要求4所述的WDM系统中的OADM节点,其特征在于,所述第一下路单元的数量为两个,且其中一个第一下路单元用于对所述传输光路的第一传输方向上的光信号进行下路,另一个第一下路单元用于对所述传输光路的第二传输方向上的光信号进行下路。
  6. 如权利要求1至5中任意一项所述的WDM系统中的OADM节点,其特征在于,
    所述上路单元还包括第二光耦合器和光部分反射器件;
    其中,所述第一光开关通过所述第二光耦合器与所述第一光耦合器/第一光合路器的输入端耦合;
    所述第一光开关还通过所述第二光耦合器与所述光部分反射器件耦合。
  7. 如权利要求1至6中任意一项所述的WDM系统中的OADM节点,其特征在于,所述控制信号包括多个用于指示将所述第一光耦合器/第一光合路器的输入端连通至一个预设的目标输出端的电信号,其中,多个电信号由所述WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器发送。
  8. 一种WDM系统中的OADM节点,应用于点到点的WDM系统,其特征在于,包括:用于将输入的光信号分成两个不同波带的子信号的1:2波带滤波器、具有两个第一分支端口和两个第二分支端口的2:2光开关、无色光发射机、无色光接收机、第一波导阵列光栅以及第二波导阵列光栅,其中,所述两个不同波带的子信号分别由所述1:2波带滤波器的两个扇出端口输出;
    所述1:2波带滤波器的公共端口与传输光路耦合,所述1:2波带滤波器的两个扇出端口分别与所述2:2光开关的两个第一分支端口耦合;
    所述2:2光开关的其中一个第二分支端口通过所述第一波导阵列光栅与所述无色光发射机的发射端耦合;
    所述2:2光开关的另一个第二分支端口通过所述第二波导阵列光栅与所述无色光接收机的接收端耦合;
    所述2:2光开关,用于根据控制信号在所述2:2光开关的直通状态和交叉状态之间切换。
  9. 如权利要求8所述的OADM节点,其特征在于,所述OADM节点还包括光耦合器和光部分反射器件;
    其中,所述1:2波带滤波器的公共端口通过所述光耦合器与所述传输光路耦合;
    所述1:2波带滤波器的公共端口还通过所述光耦合器与所述光部分反射器件耦合。
  10. 如权利要求8或9所述的OADM节点,其特征在于,
    所述控制信号由所述WDM系统中的光网络管理平面、光网络控制平面或者光网络控制器发送。
  11. 一种WDM系统中的光分插复用方法,应用于OADM节点,其特征在于,所述OADM节点包括上路单元;所述上路单元包括无色光发射机、第 一波导阵列光栅、用于将输入的光信号分成M个不同波带的子信号的第一波带滤波器、第一光开关以及第一光耦合器/第一光合路器,其中,所述M为大于1的整数,且所述M个不同波带的子信号分别由所述第一波带滤波器的M个输出端输出;其中,所述无色光发射机的发射端通过所述第一波导阵列光栅与所述第一波带滤波器的输入端耦合;所述第一波带滤波器的M个输出端通过所述第一光开关与所述第一光耦合器/第一光合路器的输入端耦合;所述第一光耦合器/第一光合路器的输出端与传输光路耦合;所述方法包括:
    接收WDM系统发送的控制信号;
    根据所述控制信号设置所述第一光开关的开关状态,以连通目标输出端和所述第一光耦合器/第一光合路器的输入端,其中,所述目标输出端为所述第一波带滤波器的M个输出端中的其中一个输出端;
    确定所述上路单元在当前开关状态下的滤波响应;
    根据所述滤波响应确定无色光发射机的发射波长。
  12. 如权利要求11所述的WDM系统中的光分插复用方法,其特征在于,所述OADM节点还包括第一下路单元,所述第一下路单元包括用于将输入的光信号分成N个不同波带的子信号的第二波带滤波器、N个第二光开关、第一合波器件、第二合波器件、第二波导阵列光栅以及第一无色光接收机;其中,所述N为大于1的整数,且所述N个不同波带的子信号分别由所述第二波带滤波器的N个输出端输出;其中,所述第二波带滤波器的输入端与所述传输光路耦合,所述第二波带滤波器的各输出端分别通过一个第二光开关与所述第一合波器件的输入端和所述第二合波器的输入端耦合;所述第一合波器件的输出端通过所述第二波导阵列光栅与所述第一无色光接收机的接收端耦合;所述第二合波器件的输出端与所述传输光路耦合;所述方法还包括:
    接收WDM系统发送的控制信号;
    根据所述控制信号设置各第二光开关的开光状态,以确定是将对应的子信号传输至所述第一合波器件的输入端还是传输至所述第二合波器的输入端;
    对输入至所述第一合波器件的子信号进行合波处理,并根据经所述第一合波器件合波处理后的光信号确定所述第一无色光接收机的接收波长;
    对输入至所述第二合波器件的子信号进行合波处理,并将经所述第二合波 器件合波处理后的光信号耦合至所述传输光路。
  13. 如权利要求11所述的WDM系统中的光分插复用方法,其特征在于,所述OADM节点还包括第二下路单元,所述第二下路单元包括用于将输入的光信号分成K个不同波带的子信号的第三波带滤波器、K个第三光开关、第三合波器件、第三波导阵列光栅以及第二无色光接收机;其中,所述K为大于1的整数,且所述K个不同波带的子信号分别由所述第三波带滤波器的K个输出端输出;所述第三波带滤波器的输入端与所述传输光路耦合,所述第三波带滤波器的各输出端分别通过一个第三光开关与所述第三合波器件的输入端耦合;所述第三合波器件的输出端通过所述第三波导阵列光栅与所述第二无色光接收机的接收端耦合;所述方法还包括:
    接收WDM系统发送的控制信号;
    根据所述控制信号设置各第三光开关的开光状态,以确定是否将对应的子信号传输至所述第三合波器件的输入端;
    对输入至所述第三合波器件的子信号进行合波处理;
    根据经合波处理的光信号确定所述第二无色光接收机的接收波长。
PCT/CN2015/089117 2015-09-08 2015-09-08 一种wdm系统中的oadm节点及方法 WO2017041222A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15903329.9A EP3334072B1 (en) 2015-09-08 2015-09-08 Oadm node in a wdm system and method
PCT/CN2015/089117 WO2017041222A1 (zh) 2015-09-08 2015-09-08 一种wdm系统中的oadm节点及方法
CN201580082948.9A CN107949994B (zh) 2015-09-08 2015-09-08 一种wdm系统中的oadm节点及方法
US15/914,716 US10530515B2 (en) 2015-09-08 2018-03-07 OADM node and method in WDM system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089117 WO2017041222A1 (zh) 2015-09-08 2015-09-08 一种wdm系统中的oadm节点及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/914,716 Continuation US10530515B2 (en) 2015-09-08 2018-03-07 OADM node and method in WDM system

Publications (1)

Publication Number Publication Date
WO2017041222A1 true WO2017041222A1 (zh) 2017-03-16

Family

ID=58240493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089117 WO2017041222A1 (zh) 2015-09-08 2015-09-08 一种wdm系统中的oadm节点及方法

Country Status (4)

Country Link
US (1) US10530515B2 (zh)
EP (1) EP3334072B1 (zh)
CN (1) CN107949994B (zh)
WO (1) WO2017041222A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355554B (zh) * 2018-12-20 2023-04-28 中兴通讯股份有限公司 路由合波器、路由合波方法、波分路由方法及网络系统
CN112995804B (zh) * 2020-12-29 2022-02-08 北京理工大学 一种光交换方法、装置及系统
CN117439696B (zh) * 2023-12-19 2024-02-27 华海通信技术有限公司 一种应用于海底观测网通信设备中的光路通信结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184666B1 (en) * 2003-10-01 2007-02-27 Ciena Corporation Reconfigurable optical add-drop multiplexer
CN101420286A (zh) * 2007-10-23 2009-04-29 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
CN102790653A (zh) * 2011-05-19 2012-11-21 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
CN103023599A (zh) * 2011-09-20 2013-04-03 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
CN104661117A (zh) * 2013-11-22 2015-05-27 华为技术有限公司 一种光网络交换设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449073B1 (en) * 1998-07-21 2002-09-10 Corvis Corporation Optical communication system
US6608709B2 (en) 2000-10-03 2003-08-19 Gary Duerksen Bidirectional WDM optical communication system with bidirectional add-drop multiplexing
US7010228B2 (en) * 2001-11-02 2006-03-07 Hon Hai Precision Ind. Co., Ltd. Optical add-drop multiplexer
CN1885755B (zh) * 2005-06-22 2011-05-04 华为技术有限公司 光分插复用站点
US20090047019A1 (en) * 2007-08-13 2009-02-19 Paparao Palacharla Method and System for Communicating Optical Traffic
CN101227247A (zh) * 2007-10-30 2008-07-23 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
US8126332B2 (en) * 2008-08-20 2012-02-28 Lg-Ericsson Co., Ltd. Method of wavelength alignment for a wavelength division multiplexed passive optical network
US8417118B2 (en) * 2009-08-14 2013-04-09 Futurewei Technologies, Inc. Colorless dense wavelength division multiplexing transmitters
US8929738B2 (en) 2012-05-30 2015-01-06 Telefonaktiebolaget L M Ericsson (Publ) Resilience in an access subnetwork ring
US8873963B2 (en) * 2012-07-25 2014-10-28 Doron Handelman Apparatus and methods for generating and receiving optical signals at substantially 100Gb/s and beyond
JP6015365B2 (ja) * 2012-11-06 2016-10-26 富士通株式会社 伝送装置及び伝送方法
WO2015096068A1 (zh) * 2013-12-25 2015-07-02 华为海洋网络有限公司 一种光分插复用光分支器
US20160301495A1 (en) * 2015-04-08 2016-10-13 Nec Laboratories America, Inc. Power Efficient Multi-Degree ROADM Using Variable Optical Splitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184666B1 (en) * 2003-10-01 2007-02-27 Ciena Corporation Reconfigurable optical add-drop multiplexer
CN101420286A (zh) * 2007-10-23 2009-04-29 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
CN102790653A (zh) * 2011-05-19 2012-11-21 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
CN103023599A (zh) * 2011-09-20 2013-04-03 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
CN104661117A (zh) * 2013-11-22 2015-05-27 华为技术有限公司 一种光网络交换设备

Also Published As

Publication number Publication date
EP3334072B1 (en) 2021-05-26
CN107949994B (zh) 2019-07-19
EP3334072A4 (en) 2018-12-05
CN107949994A (zh) 2018-04-20
US10530515B2 (en) 2020-01-07
EP3334072A1 (en) 2018-06-13
US20180198550A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
US7620321B2 (en) Optical transmitting apparatus, method of increasing the number of paths of the apparatus, and optical switch module for increasing the number of paths of the apparatus
JP3822897B2 (ja) 光波長多重アクセスシステム
EP3176968B1 (en) Optical communication device, optical communication system, and optical communication method
CN111355554B (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
JP4843659B2 (ja) 光伝送ネットワークシステム、光伝送装置、及びそれらを用いた通過帯域割り当て方法
US8811817B2 (en) Optical signal transmission device, optical signal reception device, wavelength division multiplexing optical communication device, and wavelength path system
JP2007148042A (ja) 波長選択光スイッチ、光合流器、光分岐器および波長選択光スイッチモジュール
CN103812597A (zh) 传输装置和传输方法
EP2860571A1 (en) Optical transmission apparatus
US20140023373A1 (en) Optical signal dropper and optical signal adder for use in a roadm system
EP3057247B1 (en) Reconfigurable optical add-drop multiplexer apparatus
US7133616B2 (en) Wavelength-selective routing using an optical add/drop architecture
EP2982066B1 (en) Optical switch
JP2013258530A (ja) 双方向モニタモジュール、光モジュール及び光分岐挿入装置
US10530515B2 (en) OADM node and method in WDM system
KR20100040532A (ko) 파장 분할 다중화 시스템에서 광 회선 분배 장치 및 방법
EP2434774B1 (en) Apparatus and method for colorless optical switch
JP2007243508A (ja) 光信号切替え装置および光信号切替え方法
EP2426841B1 (en) Optical add and/or drop device for an optical network element
US20040131356A1 (en) Optical line terminal arrangement, apparatus and methods
US9025915B2 (en) Method and module for switching optical signals having different modes of propagation
JP4852260B2 (ja) 1心双方向波長多重伝送システム
JP3292843B2 (ja) 光波長分割多重伝送ネットワーク装置
JP5450274B2 (ja) 光経路制御方法
US9332326B2 (en) Optical transmission device and monitoring method of optical signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015903329

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE