WO2015096068A1 - 一种光分插复用光分支器 - Google Patents

一种光分插复用光分支器 Download PDF

Info

Publication number
WO2015096068A1
WO2015096068A1 PCT/CN2013/090446 CN2013090446W WO2015096068A1 WO 2015096068 A1 WO2015096068 A1 WO 2015096068A1 CN 2013090446 W CN2013090446 W CN 2013090446W WO 2015096068 A1 WO2015096068 A1 WO 2015096068A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
switch
interface
optical signal
signal
Prior art date
Application number
PCT/CN2013/090446
Other languages
English (en)
French (fr)
Inventor
张立昆
张文斗
崔克强
Original Assignee
华为海洋网络有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为海洋网络有限公司 filed Critical 华为海洋网络有限公司
Priority to PCT/CN2013/090446 priority Critical patent/WO2015096068A1/zh
Priority to EP13900393.3A priority patent/EP3089382B1/en
Priority to CN201380002791.5A priority patent/CN104904140B/zh
Priority to JP2016542985A priority patent/JP6440127B2/ja
Publication of WO2015096068A1 publication Critical patent/WO2015096068A1/zh
Priority to US15/192,762 priority patent/US9768899B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to an optical add/drop multiplexer optical splitter. Background technique
  • the Branching Unit is a submarine optical transmission system underwater device. Its main function is to realize the fiber pair interconnection between the three ports of the BU through the connection configuration of the internal fiber of the BU.
  • the three ports of the BU are respectively connected with the sea.
  • the cable is connected to the underwater optical amplifier to realize the transmission of services between multiple stations of the submarine optical transmission system.
  • BU is a key device that constitutes a complex submarine optical transmission system.
  • OADM Optical Add Drop Multiplexer
  • the disaster recovery solution provided by the OADM BU device helps to reduce the economic loss caused by the operator's cable failure.
  • the current OADM BU disaster recovery technology generally integrates an optical amplifier inside the OADM BU, and amplifies the spontaneous emission generated by the optical amplifier. (Amplified Spontaneous Emission, ASE) Noise power to achieve disaster tolerance.
  • An integrated optical amplifier usually refers to an optical amplifier integrated in both the through and upstream directions of the OADM BU.
  • the OADM BU can still supply power from the submarine power supply line, and integrate the erbium-doped fiber amplifier through the OADM BU internal through-light path (Erbium- Doped Optical Fiber Amplifier, EDFA )
  • the resulting ASE noise compensates for the loss of service optical power from the mains cable break.
  • ASE noise passes through the optical filter After the (Wavelength Blocking Filter, WBF) and the Add (wave) optical path service, the optical coupler is combined to realize the branch disaster recovery.
  • the ASE noise generated by the EDFA integrated by the OADM BU internal optical path compensates the service optical power lost by the branch cable breakage, and the ASE noise passes through the band pass filter (BPF). After that, the light is multiplexed with the optical path of the through-passage to ensure that the faultless trunk maintains normal optical transmission services and achieves trunk road disaster recovery.
  • BPF band pass filter
  • the disaster recovery scheme of the OADM BU with integrated optical amplifier has the following disadvantages: 1.
  • the ASE noise generated by the optical amplifier can compensate the optical power of the service signal lost during the fault, but the noise optical power will transmit the service light together with the signal light.
  • the optical signal-to-noise ratio of the signal is reduced, especially for long-distance optical transmission systems, the optical signal to noise ratio (OSNR) is too expensive, and the disaster tolerance effect is limited; 2.
  • OSNR optical signal to noise ratio
  • the OADM BU system of the optical amplifier has high cost, complicated optical path, and reduced overall reliability of the product; 3.
  • the OADM BU structure of the integrated optical amplifier is increased in structure and the structure design is complicated. Summary of the invention
  • the embodiments of the present invention provide an optical add/drop multiplexer optical splitter, which implements a disaster tolerance function without using an integrated amplifier, improves disaster tolerance, reduces structural complexity, and reduces cost and reliability.
  • An embodiment of the present invention provides an optical add/drop multiplexer optical splitter, including:
  • the optical add/drop multiplexer includes An optical input; an input end of the first optical splitter is connected to the input end of the first optical splitter, and two output ends of the first optical splitter are respectively connected to the first input end of the optical switch and the input end of the first detecting circuit
  • the output end of the main circuit is connected to the first output end of the optical switch; the output end of the first detecting circuit is connected to the input end of the control circuit, and the output end of the control circuit is connected to the third input of the optical switch a branch output end is connected to the second output end of the optical switch, and a branch input end is connected to the second input end of the optical switch;
  • the first detecting circuit determines the input side of the trunk by the input optical signal Whether the trunk road is faulty, and sends the detection result to the control circuit; when the trunk road is normal,
  • a trunk optical signal including a punch-through service optical signal and a downlink optical optical signal enters the optical add/drop multiplexer optical splitter from the input end of the trunk, and enters the first optical splitter through an input end of the first optical splitter;
  • the first optical splitter couples a part of the optical signal to the first detecting circuit, and the other part is sent to the first input end of the optical switch;
  • the upper wave optical path optical signal including the upper wave service optical signal and the fake optical Dummy optical signal enters the optical add/drop multiplexer optical splitter from the branch input end, and enters the second input end of the optical switch; the uplink wave service optical signal
  • the power of the optical signal is the same as that of the downlink optical signal.
  • the Dummy optical signal has the same power as the optical signal of the punch-through service.
  • the optical signal from the first input terminal is sent to the first output terminal.
  • the wave service optical signal is sent to the second output end, the uplink wave service optical signal entering from the second input end is sent to the first output end, and the Dummy optical signal is sent to the second output end; the optical switch is in the second working mode. And transmitting an uplink wave service optical signal and a Dummy optical signal entering from the second input terminal to the first output end, and interrupting the trunk road optical signal entering from the first input end.
  • the optical add/drop multiplexer optical splitter further includes: a second optical splitter and a second detecting circuit;
  • the input end of the second beam splitter is connected to the input end of the branch, and the two output ends of the second beam splitter are respectively connected to the second detecting circuit and the second input end of the optical switch;
  • the upper optical path optical signal enters the optical add/drop multiplexer optical splitter from the branch input end, and enters the second optical splitter through the input end of the second optical splitter; the second optical splitter couples a part of the optical signal to the second detecting The circuit transmits, and another portion is sent to the second input end of the optical switch;
  • the second detecting circuit determines whether the branch of the branch input end side is faulty through the input optical signal, and sends the detection result to the control circuit; if the branch circuit fails, the control circuit sends a control command to the optical switch The working mode of the optical switch is switched to a third working mode;
  • the optical switch transmits the punch-through service optical signal and the downlink service optical signal entering from the first input terminal to the first output end, and interrupts the uplink optical path optical signal entering from the second input end.
  • the optical add/drop multiplexer optical splitter further includes:
  • Controlling a command demodulation circuit an output of the control command demodulation circuit is coupled to the control circuit Input
  • the input end of the control command demodulation circuit demodulates the control command after receiving a control command, and sends a control signal to the control circuit, so that the control circuit sends a control command to the optical switch to send the control switch
  • the working mode is switched to the second working mode or the third working mode.
  • the optical add/drop multiplexer optical splitter further includes:
  • the first detecting circuit determines that the trunk path fault recovery on the input side of the trunk circuit, sending a control command to the optical switch to operate the optical switch Switching mode to the first working mode;
  • the second detecting circuit determines that the branch fault is recovered, transmitting a control command to the optical switch to switch the operating mode of the optical switch to the first working mode.
  • the first detecting circuit includes: a fiber integrity signal detecting circuit; and the trunk optical signal is combined with the first or the second possible implementation manner.
  • the optical integrity identification signal is included in the first detecting circuit, and the first detecting circuit determines whether the trunk of the trunk input side is faulty by the input optical signal, including:
  • the optical integrity signal detection circuit detects the optical integrity identification signal in the input optical signal for detection. If there is a fiber integrity identification signal, it determines that the trunk of the trunk input side is normal, otherwise the input side of the trunk is determined. The trunk road is faulty.
  • the first detection circuit includes:
  • a first photodetector a transimpedance amplifier, a first resistor, a second resistor, a third resistor, and an optical power detecting circuit
  • the output end of the first photodetector is connected to the first end of the first resistor and the first end of the third resistor, and the output end of the first photodetector is connected to the input end of the operational amplifier, and the other input end of the transimpedance amplifier Grounding
  • a splitting signal coupled by the first beam splitter is sent to the first photodetector to generate a current by the first photodetector; and the optical power detecting circuit detects a current abnormality triggering a level signal to the control circuit, And causing the control circuit to send a control command to the optical switch to switch an operation mode of the optical switch to a second operation mode.
  • an input end of the control command demodulation circuit is connected to an output end of the transimpedance amplifier, and an output end of the transimpedance amplifier Connecting the control circuit;
  • the input end of the control command demodulation circuit demodulates the control command after receiving a control command, and sends a control signal to the control circuit, so that the control circuit sends a control command to the optical switch to send the control switch Switching the working mode to the second working mode or the third working mode includes:
  • the optical power received by the first photodetector causes the first photodetector to generate a current
  • the transimpedance amplifier outputs an electrical signal to the control command demodulation circuit
  • the control command demodulation circuit is controlled by demodulation
  • the control circuit is configured to send a control command to the optical switch to switch the working mode of the optical switch to the second working mode. Or the third mode of operation.
  • the optical add/drop multiplexer includes: a first optical switch, a second optical switch, and a first optical switch An optical switch and a second optical switch each have four interfaces, a first filter, a second filter, a third filter, and a fourth filter;
  • a third interface of the first optical switch is connected to an output end of the first optical splitter, an input end of the fourth filter is a branch input end, and an output end of the third filter is a branch output
  • the fourth interface of the first optical switch is a trunk output end
  • the first interface of the first optical switch is connected to the input port of the first filter;
  • the first filter has an input port and two output ports, and the two output ports of the first filter are respectively connected to the input port of the third filter and a second interface of the second optical switch;
  • a fourth interface of the first optical switch is connected to the output end of the trunk;
  • a second interface of the first optical switch is connected to the output of the second filter;
  • the fourth filter comprises an input port and two output ports, and the two output ports of the fourth filter are respectively connected to the third interface of the second optical switch and the input port of the second filter;
  • a first port of the second optical switch is connected to the input port of the third filter, and a fourth port of the second filter is connected to the input port of the second filter;
  • the optical switch from the first input end is sent to the first output end, the lower wave service optical signal is sent to the second output end, and the upper wave enters from the second input end.
  • the service optical signal is sent to the first output end, and the Dummy optical signal is sent to the second output end;
  • the trunk optical signal enters the first optical switch from the third interface of the first optical switch, and enters the first filter through the first interface of the first optical switch, and the first filter splits the trunk optical signal into the punch-through service
  • the optical signal and the lower-wave service optical signal send the through-service optical signal to the second interface of the second optical switch, and send the downlink optical optical signal to the third filter
  • the upper optical path optical signal enters the fourth filter from the input port of the fourth filter, and the fourth filter splits the upper optical path optical signal into an upper wave service optical signal and a Dummy optical signal, and sends the uplink wave service optical signal to
  • the input port of the second filter sends the Dummy optical signal to the third interface of the second optical switch;
  • the Dummy optical signal that enters the third interface of the second optical switch is sent to the third filtering through the first interface of the second optical switch Input port of the device, the third filter combines the input lower wave service optical signal and the Dummy optical signal and outputs the output from the output port of the third filter;
  • the punch-through service optical signal entered by the second interface of the second optical switch is sent to the input port of the second filter via the fourth interface of the second optical switch; the second filter inputs the input punch-through service optical signal and the uplink optical service optical signal After multiplexing, the second interface sent to the first optical switch is output through the fourth interface of the first optical switch; in the second working mode, the optical switch transmits the uplink optical optical signal entering from the second input end and Dummy optical signal to the first output end, interrupting the trunk optical signal entering from the first input end, including:
  • the first interface of the first optical switch is connected to the third interface, and the second interface is connected to the fourth interface; the third interface of the second optical switch is connected to the fourth interface;
  • the upper wave path optical signal enters the fourth filter from the input port of the fourth filter, and the fourth filter splits the upper wave path optical signal into an upper wave service optical signal and a Dummy optical signal, and the uplink wave service optical signal Sending to the input port of the second filter, sending the Dummy optical signal to the third interface of the second optical switch; the Dummy optical signal entering the third interface of the second optical switch is sent to the fourth interface of the second optical switch.
  • the input port of the second filter, the second filter combines the input upper wave service optical signal and the Dummy optical signal and outputs the output from the output port of the third filter.
  • the third interface and the fourth interface of the first optical switch are connected in the third working mode; the first interface of the second optical switch Connected to the third interface, and the second interface is connected to the fourth interface;
  • the control circuit includes: a microcontroller, a driving circuit;
  • the input end of the microcontroller is connected to the first detecting circuit, the second detecting circuit and the control command demodulating circuit, the output end is connected to the driving circuit, and the driving circuit is connected to the optical switch;
  • the output driving command causes the driving circuit to drive the off switch to switch to the second working mode; if the detection result indicating the branch fault sent by the second detecting circuit is received And outputting the driving command to cause the driving circuit to drive the off switch to switch to the third working mode; if receiving the control signal of the control command demodulating circuit, outputting the driving command to cause the driving circuit to drive the off switch to switch to the second Operating mode.
  • the embodiment of the present invention has the following advantages: detecting whether a fault occurs in the trunk road by the detecting circuit, and switching the working mode from the first working mode to the second working mode in the case that the trunk road fails
  • the automatic disaster recovery of the trunk road ensures the normal communication of the branch road.
  • the above solution implements the disaster recovery function without using an integrated amplifier. No manual intervention is required, the disaster recovery response speed is fast, the disaster tolerance effect is improved, and the economic loss caused by the interruption of the system service transmission is greatly reduced.
  • the optical switch device used is small in size, requires less space requirements, and has a low structural design complexity, thereby reducing structural complexity, thereby reducing cost and improving reliability.
  • FIG. 1 is a schematic structural diagram of an optical add/drop multiplexer optical splitter according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optical add/drop multiplexer optical splitter according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an optical add/drop multiplexer optical splitter according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first detecting circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first detecting circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a control command demodulation circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical add/drop multiplexer according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a control circuit according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical add/drop multiplexer optical splitter according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an optical path configuration of an OADM according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an optical path configuration of an OADM according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an optical path configuration of an OADM according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a model of a submarine cable optical transmission system according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an internal structure of an OADM BU according to an embodiment of the present invention.
  • 15 is a schematic structural diagram of a control circuit according to an embodiment of the present invention.
  • 16A is a schematic structural diagram of a model of a submarine cable optical transmission system according to an embodiment of the present invention.
  • 16B is a schematic diagram showing the internal structure of an OADM according to an embodiment of the present invention.
  • 17A is a schematic structural diagram of a model of a submarine cable optical transmission system according to an embodiment of the present invention.
  • 17B is a schematic diagram showing the internal structure of an OADM according to an embodiment of the present invention.
  • 18A is a schematic structural diagram of artificial disaster tolerance during maintenance of a trunk cable breakage fault of a submarine cable optical transmission system according to an embodiment of the present invention
  • FIG. 18B is a schematic structural diagram of an electrical connection configuration during a faulty sea cable maintenance according to an embodiment of the present invention
  • FIG. 19 is a schematic diagram of a faulty sea cable artificial disaster recovery control command issuing structure according to an embodiment of the present invention
  • 21 is a schematic flowchart of a method according to an embodiment of the present invention.
  • FIG. 22 is a schematic flowchart of a method according to an embodiment of the present invention. detailed description The present invention will be further described in detail with reference to the accompanying drawings, in which FIG. . All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • An embodiment of the present invention provides an optical add/drop multiplexer optical splitter, as shown in FIG. 1, comprising: two parts, a part of which is an optical path system portion, as shown in the upper part of FIG. 1 (first optical splitter CPL 1, light) The add/drop multiplexer); the other part is the control circuit part, as shown in the lower part of FIG. 1 (the first detection circuit and the control circuit);
  • the optical add/drop multiplexer optical splitter provided by the embodiment of the present invention specifically includes: a trunk input end (shown by an input arrow), a branch input end (shown by an Add arrow), and a trunk output end (shown by an Output arrow). a branch output terminal (shown by a drop arrow), an optical add/drop multiplexer (0DAM), a first splitter (coupler, CPL 1 ), a first detecting circuit, a control circuit; the optical add/drop multiplexer includes light Switch (Optical Switch, OS);
  • the optical switch in the optical add/drop multiplexer has three input terminals and two output terminals, which are respectively named as the first input terminal, the second input terminal, and the third input terminal, in FIG.
  • the OS has an arrow indicating the 1 ⁇ 3 identifier of the port, the first output end and the second output end, and the OS in FIG. 1 has an arrow indicating the port 1 ⁇ 2 identifier;
  • the input end of the first optical splitter is connected to the input end of the first optical splitter, and the two output ends of the first optical splitter are respectively connected to the first input end of the optical switch and the input end of the first detecting circuit;
  • the output end of the trunk is connected to the above a first output end of the optical switch;
  • an output end of the first detecting circuit is connected to an input end of the control circuit, an output end of the control circuit is connected to a third input end of the optical switch;
  • a branch output end is connected to the optical switch a second output end, the branch input end is connected to the second input end of the optical switch;
  • the first detecting circuit determines whether the trunk path of the trunk input end side is faulty by the input optical signal, and sends the detection result to the control circuit;
  • the control circuit sends a control command to the optical switch to switch the working mode of the optical switch to the second working mode;
  • a trunk optical signal including a punch-through service optical signal and a downlink optical optical signal enters the optical add/drop multiplexer optical splitter from the input end of the trunk, and enters the first optical splitter through the input end of the first optical splitter;
  • a splitter couples a part of the optical signal to the first detecting circuit, and another part to the first input end of the optical switch;
  • the upper wave optical path optical signal including the upper wave service optical signal and the fake optical (Dummy) optical signal enters the optical add/drop multiplexer optical splitter from the branch input end, and enters the second input end of the optical switch;
  • the signal is the same as the power of the lower-wave service optical signal, and the Dummy optical signal is the same as the power of the punch-through service optical signal;
  • the above-mentioned Dummy optical signal also called a matte or false optical signal or a filled optical signal, is an optical signal without modulation service.
  • the optical switch from the first input end is sent to the first output end, the lower wave service optical signal is sent to the second output end, and the uplink wave service enters from the second input end.
  • the optical signal is sent to the first output end, and the Dummy optical signal is sent to the second output end; in the second working mode, the optical switch sends the uplink optical service optical signal and the Dummy optical signal that enter from the second input end.
  • the trunk optical signal entering from the first input is interrupted.
  • the above embodiment can automatically switch to the second working mode when the trunk road on the input side of the trunk is faulty, thereby implementing service protection.
  • the detection circuit detects whether the trunk road has a fault, and when the trunk road fails, the working mode is switched from the first working mode to the second working mode to implement automatic disaster tolerance of the trunk road, and the normal communication of the branch road is ensured. .
  • the above solution realizes the disaster recovery function without using an integrated optical amplifier. No manual intervention is required, and the disaster recovery response speed is fast, which greatly reduces the economic loss caused by the interruption of the system business transmission.
  • the optical switching device used is small in size, requires small space requirements, and has low structural design complexity, thereby reducing structural complexity, thereby reducing cost and improving reliability.
  • the embodiment of the present invention further provides service protection when a branch fault occurs, as follows: As shown in FIG. 2, the optical add/drop multiplexer optical splitter further includes: a second optical splitter (CPL 2), Second detection circuit;
  • CPL 2 second optical splitter
  • Second detection circuit Second detection circuit
  • the input end of the second beam splitter is connected to the input end of the branch, and the two output ends of the second beam splitter are respectively connected to the second detecting circuit and the second input end of the optical switch;
  • optical signal After the optical path optical signal enters the optical add/drop multiplexer optical branch from the branch input end, enters the second optical splitter through the input end of the second optical splitter; the second optical splitter couples a part of the optical signal to the second detecting V The circuit transmits, and another part is sent to the second input end of the optical switch;
  • the second detecting circuit determines whether the branch of the branch input end side is faulty by the input optical signal, and sends the detection result to the control circuit; if the branch circuit is faulty, the control circuit sends a control command to the optical switch to send the optical switch
  • the working mode is switched to the third working mode; in the third working mode, the optical switch transmits the punch-through service optical signal entering the first input end and the downlink service optical signal to the first An output interrupts the optical path optical signal entering from the second input.
  • the optical add/drop multiplexer optical splitter further includes: a control command demodulation circuit; and the control command demodulation circuit The output end is connected to the input end of the above control circuit;
  • the input end of the control command demodulation circuit receives the control command, demodulates the control command, and sends a control signal to the control circuit, so that the control circuit sends a control command to the optical switch to switch the working mode of the optical switch to the second mode.
  • the embodiment of the present invention can also implement the recovery function of the working mode, as follows: In the working process of the optical switch in the second working mode, if the first detecting circuit determines the trunk fault on the input side of the trunk Resuming, sending a control command to the optical switch to restore the working mode of the optical switch to the first working mode;
  • the second detecting circuit determines that the branch fault is recovered, transmitting a control command to the optical switch to switch the operating mode of the optical switch to the first working mode.
  • the above embodiment embodies a specific implementation of the first mode of operation of switching back to the normal mode after the fault recovery of the trunk/branch.
  • the embodiment of the present invention further provides an example of a specific implementation of the detection circuit.
  • the functions of the first detection circuit and the second detection circuit are the same, and all of the corresponding optical path sides are determined to be faulty according to the signal of the optical path, so the two detection circuits are
  • the same structure may be used, or may be implemented by using different structures, which is not limited by the embodiment of the present invention.
  • An example of two implementation schemes will be given below, specifically: 3 ⁇ 4 port:
  • the first detecting circuit includes: a fiber integrity signal detecting circuit; the trunk optical signal includes a fiber integrity identification signal; and the first detecting circuit Determining whether the trunk of the trunk input side is faulty by the input optical signal includes: the optical integrity signal detecting circuit detects the optical integrity identification signal in the input optical signal for detection, and if there is a fiber integrity identification signal, determines The trunk road on the input side of the trunk is normal, otherwise the trunk fault on the input side of the trunk is determined.
  • the above scheme adopts the method of adding the optical integrity identification signal to the trunk signal.
  • the optical integrity identification signal can also be added to the optical signal, so that the second and second, as shown in FIG. 5, can refer to FIG. 1 to FIG. 3 together, and the first detection circuit (the large solid line in FIG. ) includes:
  • a first photodetector 1 (PD 1 ), a transimpedance amplifier, a first resistor (R1), a second resistor (R2), a third resistor (R3), and an optical power detecting circuit;
  • the output end of the first photodetector is connected to the first end of the first resistor and the first end of the third resistor, the output end of the first photodetector is connected to the input end of the operational amplifier, and the other input end of the transimpedance amplifier is grounded. ;
  • the second end of the first resistor and the first end of the second resistor are connected to the power interface, the second end of the second resistor and the second end of the third resistor are connected to the input end of the optical power detecting circuit; the output end of the optical power detecting circuit Connecting the above control circuit;
  • the first detecting circuit determines whether the trunk of the trunk input end is faulty by the input optical signal, and sends the detection result to the control circuit; the plurality of faults send the control command to the optical switch to the optical switch Switching the working mode to the second working mode includes:
  • the splitting signal coupled by the first beam splitter is sent to the first photodetector to generate a current by the first photodetector; and the optical power detecting circuit detects a current abnormality triggering a level signal to the control circuit to make the control circuit Sending a control command to the optical switch to switch the operation mode of the optical switch to the second operation mode.
  • the first detecting circuit uses the method of detecting the input optical power to detect whether the optical fiber on the input light source side is faulty. It can be understood that the second detecting circuit of the branch can also adopt the structure to realize the supporting branch. Whether the road fiber is faulty or not.
  • the second implementation of the specific implementation scheme is provided based on the foregoing first detection circuit.
  • the embodiment of the present invention further provides the following specific structure of the control command demodulation circuit as follows: As shown in FIG. 5, the control command demodulation circuit of FIG. 6, the input end of the control command demodulation circuit is connected to the output end of the transimpedance amplifier, and the output end of the transimpedance amplifier is connected to the control circuit; The input end of the control command demodulation circuit receives the control command, demodulates the control command, and sends a control signal to the control circuit, so that the control circuit sends a control command to the optical switch to switch the working mode of the optical switch to the second mode.
  • Working modes include:
  • the optical power received by the first photodetector causes the first photodetector to generate a current, and the electrical signal is outputted to the control command demodulation circuit via the transimpedance amplifier, and the control command demodulation circuit sends the control command after demodulation And to the control circuit, if the control command is a predefined control command, causing the control circuit to send a control command to the optical switch to switch the operation mode of the optical switch to the second working mode or the third working mode.
  • the above-described control command demodulation circuit and the above-described first detection circuit share the first photodetector (PD 1 ) and the transimpedance amplifier, which can save hardware resource consumption and save cost. It is also possible that the above-mentioned control command demodulation circuit and the above-mentioned first detection circuit can independently complete their respective functions and do not share the device.
  • the implementation of the above shared device as a preferred implementation solution should not be construed as an embodiment of the present invention. Uniqueness is limited.
  • the embodiment of the present invention further provides a specific structure of the optical add/drop multiplexer.
  • the optical add/drop multiplexer includes: The switch, the second optical switch, the first optical switch, and the second optical switch each have four interfaces, a first filter (WDM 1 ), a second filter (WDM 2 ), a third filter (WDM 3 ), and Four filters (WDM 4);
  • WDM 1 first filter
  • WDM 2 second filter
  • WDM 3 third filter
  • WDM 4 Four filters
  • 1 ⁇ 4 are marked on the side of each interface to identify the interface number to which the corresponding interface belongs, for example: the lower right corner of the second optical switch 3, indicating that: the interface in the lower right corner of the second optical switch is the third interface of the second optical switch;
  • the first optical switch and the second optical switch have two states, the first state is: interface 1 and interface 3 Connected and interface 2 is connected to interface 4 (shown by the solid line of the optical switch in Figure 7), another state is: Interface 3 is connected to interface 4, interface 1 is
  • the third interface of the first optical switch is connected to the output end of the second optical splitter CPL2, and the input end of the fourth filter is a branch input end (corresponding to FIG. 1 is a branch input end, corresponding to the fourth filter of FIG. 2
  • the input end is connected to the second beam splitter CPL2), the output end of the third filter is a branch output end, and the fourth interface of the first optical switch is a trunk output end;
  • the first interface of the first optical switch is connected to the input port of the first filter; the first filter has an input port and two output ports, and the two output ports of the first filter are respectively connected to the input of the third filter a second interface of the ingress port and the second optical switch; a fourth interface of the first optical switch is connected to the output end of the trunk; a second interface of the first optical switch is connected to the output of the second filter;
  • the fourth filter comprises an input port and two output ports, and the two output ports of the fourth filter are respectively connected to the third interface of the second optical switch and the input port of the second filter;
  • a first port of the second optical switch is connected to the input port of the third filter, and a fourth port of the second filter is connected to the input port of the second filter;
  • the optical switch from the first input end is sent to the first output end, the lower wave service optical signal is sent to the second output end, and the uplink wave service enters from the second input end.
  • the optical signal is sent to the first output end, and the Dummy optical signal is sent to the second output end;
  • the trunk optical signal enters the first optical switch from the third interface of the first optical switch, and enters the first filter through the first interface of the first optical switch, and the first filter splits the trunk optical signal into the punch-through service
  • the optical signal and the lower-wave service optical signal send the through-service optical signal to the second interface of the second optical switch, and send the downlink optical optical signal to the third filter
  • the upper optical path optical signal enters the fourth filter from the input port of the fourth filter, and the fourth filter splits the upper optical path optical signal into an upper wave service optical signal and a Dummy optical signal, and sends the uplink wave service optical signal to
  • the input port of the second filter sends the Dummy optical signal to the third interface of the second optical switch;
  • the Dummy optical signal that enters the third interface of the second optical switch is sent to the third filtering through the first interface of the second optical switch Input port of the device, the third filter combines the input lower wave service optical signal and the Dummy optical signal and outputs the output from the output port of the third filter;
  • the punch-through service optical signal entered by the second interface of the second optical switch is sent to the input port of the second filter via the fourth interface of the second optical switch; the second filter inputs the input punch-through service optical signal and the uplink optical service optical signal After multiplexing, the second interface is sent to the first optical switch, and is output through the fourth interface of the first optical switch; in the second working mode, the optical switch sends the uplink optical optical signal and Dummy from the second input end.
  • the optical signal is sent to the first output end, and the trunk optical signal entering from the first input end is interrupted, including:
  • the first interface of the first optical switch is connected to the third interface, and the second interface is connected to the fourth interface; the third interface of the second optical switch is connected to the fourth interface;
  • the upper optical path optical signal enters the fourth filter from the input port of the fourth filter, and the fourth filter splits the upper optical path optical signal into an upper wave service optical signal and a Dummy optical signal, and sends the uplink wave service optical signal to
  • the input port of the second filter sends the Dummy optical signal to the third interface of the second optical switch; the Dummy optical signal that enters the third interface of the second optical switch is sent to the second filtering through the fourth interface of the second optical switch
  • the input port of the device, the second filter combines the input upper wave service optical signal and the Dummy optical signal and outputs the output from the output port of the third filter.
  • the embodiment of the present invention further provides service protection when a branch fault occurs, as shown in FIG. 7, specifically: 3 ⁇ 4 port:
  • the third interface of the first optical switch is connected to the fourth interface;
  • the first interface of the second optical switch is connected to the third interface, and the second interface is connected to the fourth interface;
  • the trunk optical signal enters the first optical switch from the third interface of the first optical switch, and is output through the fourth interface.
  • the optical path of the above third mode of operation is schematically illustrated in the following embodiments.
  • the embodiment of the present invention further provides a specific implementation scheme of the control circuit. As shown in FIG. 8 , the internal part of the large solid line frame is divided into a control circuit. Referring to FIG. 3 together, the control circuit includes: a microcontroller and a driving circuit;
  • the input end of the microcontroller is connected to the first detecting circuit, the second detecting circuit and the control command demodulating circuit, the output end is connected to the driving circuit, and the driving circuit is connected to the optical switch; if the first detecting circuit is received The transmitted detection result indicating the trunk failure, the output drive command causes the drive circuit to drive the off switch to switch to the second operation mode; and if the detection result indicating the branch failure sent by the second detection circuit is received, the drive command is output The driving circuit drives the off switch to switch to the third working mode; if the control signal of the control command demodulating circuit is received, the driving command is output to cause the driving circuit to drive the off switch to switch to the second working mode.
  • an integrated controller (Micro Controller Unit, MCU) is integrated in the OADM BU, and an OADM input optical power detection circuit and a remote control command receiving and demodulating circuit are integrated to implement automatic disaster tolerance of the OADM BU.
  • MCU Micro Controller Unit
  • an OADM input optical power detection circuit and a remote control command receiving and demodulating circuit are integrated to implement automatic disaster tolerance of the OADM BU.
  • the OADM automatic disaster recovery mode does not require manual intervention, and the disaster recovery response speed is fast, which greatly reduces the economic loss caused by the interruption of system service transmission.
  • the artificial disaster recovery mode can fully guarantee the normal transmission of the submarine cable segment service without failure during the maintenance of the faulty submarine cable, and avoid the interruption of service transmission due to maintenance.
  • the OADM solution disclosed in the embodiment of the present invention can be implemented by using the Latched 2 X 2 Bypass optical switch and the WDM optical device.
  • the disaster recovery solution proposed by the embodiment of the present invention has low cost and light.
  • the switching device is small in size, requires small space requirements, has low structural design complexity, and has high product reliability.
  • the block diagram of the overall scheme of the embodiment of the present invention is as shown in FIG. 9, and includes: an optical path system (in the upper solid frame of FIG. 9) and a control circuit (in the lower solid frame of FIG. 9), both of which are integrated. Inside the optical add/drop multiplexer optical splitter (OADM BU).
  • OADM BU optical add/drop multiplexer optical splitter
  • the optical path system comprises: an optical add drop multiplexer (OADM) optical module integrated with the controllable optical switch OS, and an optical splitter (CPL) that couples part of the control command to modulate the power of the optical signal, for command control Single wavelength modulation schemes
  • OADM optical add drop multiplexer
  • CPL optical splitter
  • Optical filters of a particular wavelength may also be included in the optical path.
  • the OADM module including the optical switch can also realize the Input-Output optical path through and the Add (upper wave path)-Output optical path through function by configuring the working state of the optical switch. This will be explained in more detail in subsequent embodiments.
  • FIG. 9 shows a single side
  • FIG. 9 shows two sides
  • the optical paths on both sides are mirror images of each other.
  • B is the trunk device side
  • C is the branch device side.
  • the direction indicated by the arrow of the optical path system in Figure 9 is the direction of light propagation in the optical path.
  • the direction of the arrow of the control circuit in Figure 9 is the signal flow.
  • the control circuit includes: an Input Optical Power Detector for detecting the optical power of the input OADM BU, a command receiving and demodulating circuit for remote control, a minimum system of the Command Receiver and Demodulator (MCU), and an optical switch
  • the drive circuit, the circuit power supply is derived from the submarine cable system power supply.
  • the abnormality detecting circuit is used for automatically detecting whether the optical cable is faulty to realize automatic switching of the working mode, and the command receiving and demodulating circuit is configured to detect whether there is a control signal to realize manual switching of the working mode.
  • the control circuit side also includes: Micro Control Unit (MCU), optical switch All Electrical Circuit ).
  • MCU Micro Control Unit
  • optical switch All Electrical Circuit All Electrical Circuit
  • the optical splitter shown in Fig. 9 has CPL 1-CPL4, where CPL1 and CPL2 correspond to those in Fig. 3.
  • the OADM in Fig. 3 corresponds to OADM 1 in Fig. 9, and the CPU and CPL2 in Fig. 3 correspond to CPL1 and CPL2 in Fig. 9.
  • the structure corresponding to the one side in FIG. 9 is the same mirror image relationship as the structure in FIG. 3, and details are not described herein.
  • the following embodiment will explain the three working modes of OADM in more detail, as follows: 1.
  • the first working mode :
  • the optical path configuration of the OADM is as shown in FIG. 10, and can be referred to FIG. 3 together.
  • 1 and 2 are input optical signals, namely: trunk optical signals; wherein, 1 bearer downlink service can be called The lower-wave service optical signal, 2 bearer-through service can be called the punch-through service optical signal; in Figure 10, 3 and 4 are Add optical signals: the upper-wave optical path optical signal; wherein, 4 the uplink-wave service can be called the uplink service light
  • the signal, 3, as the Dummy optical signal does not carry traffic, can be called: Dummy optical signal.
  • the Dummy optical signal 3 is looped back to the Drop optical path in the OADM optical path to be coupled with the lower wave service optical signal 1 to form a lower optical transmission signal, and the Dummy optical signal mainly functions as a power equalization;
  • the optical signal 2 is coupled into an optical signal transmitted by the trunk to realize the service transmission of the branch and the trunk.
  • the uplink wave service optical signal has the same power as the downlink wave service optical signal
  • the Dummy optical signal has the same power as the punch-through service optical signal; that is, the power of 4 and 1 is the same, and the power of 2 and 3 is the same.
  • the trunk circuit has a Shunt Fault, the input optical power of the OADM module's Input port is lost, and the second working mode is used.
  • the OADM optical path configuration is as shown in Figure 11, which can be referred to together with Figure 3 and Figure
  • the Add-Output optical path is in a through state
  • the upper optical signal 4 and the Dummy optical signal 3 constitute a complete optical signal signal transmitted in the optical path
  • the Dummy optical signal 3 replaces the punch-through service optical signal 2 lost due to the fault, thereby achieving power balance.
  • the function is to ensure that the traffic carried by the Add optical path from the branch end station can be normally transmitted in the trunk line of the optical cable system, thereby achieving trunk fault fault tolerance.
  • the OADM optical path is configured to be in the through-out state of the Input-Output optical path as shown in FIG. 12, and the optical signal 1 and the through-wave signal 2 are combined to form a complete optical signal signal for transmission in the optical cable to realize branch fault tolerance.
  • the downlink signal can be scrambled at the transmitter terminal (SLTE, ie, the submarine line terminal) to achieve the transmission service.
  • SLTE transmitter terminal
  • the application environment of the embodiment of the present invention is as follows: As shown in FIG. 13, a model of a submarine cable optical transmission system integrating OADM BU is given by taking a fiber pair as an example, and the sites are densely wavelength-multiplexed ( Dense Wavelength Division Multiplexing (DWDM) optical transmission technology enables service delivery.
  • the application environment of the structure shown in Fig. 3 can be determined by comparing Fig. 13 with Fig. 3.
  • Stations A, B, and C are three different landing stations, where Station A and B are trunk end stations, which have a large amount of transmission traffic, and Station C is a branch end station.
  • the transmission traffic between the end stations A and B is small.
  • the OADM BU device wavelength (band) is used to transmit traffic to and from the end stations A and B.
  • the RPT (Router) is the optical amplifier of the submarine cable.
  • the Add and Drop of the branch end station C represent the upper and lower wave paths, respectively.
  • the direction of the arrow in Figure 13 is the direction of propagation of the optical signal.
  • Landing sites A, B, and C are equipped with SLTE (Submarine Line Terminal) equipment for carrying services, Submarine Line Power Equipment (PFE) for submarine systems, and submarine pipeline monitoring for line monitoring (Submarine line monitor (SLM) equipment and submarine network management system (SNMS) network management equipment for the entire submarine cable system operation and maintenance.
  • SLTE Submarine Line Terminal
  • PFE Submarine Line Power Equipment
  • SLM Submarine line monitor
  • SNMS submarine network management system
  • optical path of the embodiment of the present invention is as shown in FIG.
  • the OADM BU optical path integrates four Latched 2 ⁇ 2 Bypass optical switches.
  • the four optical switches have only two fixed operating states. State one: Ports 1-3 are connected, Port 2 4 connected, state 2: port 3-4 connected (end Port 1-3 is disconnected, port 2-4 is disconnected), the Latched optical switch is locked in one of the working states during normal operation, and the working state is changed only when it is driven effectively, and the original working state is maintained under any other circumstances.
  • the three-port WDM optical device realizes the OADM optical wavelength (or band).
  • the OADM module input port can use a 1:10 broadband optical coupler to couple part of the optical power input to the photodetector PD.
  • the OADM module inputs optical power.
  • the PD can also be used to receive control commands sent from the landing station, which will be described in more detail in subsequent embodiments.
  • FIG. 14 reference is made to FIG. 9 and FIG. 13, FIG. 7 and its explanatory portion, wherein FIG. 7 is the left half of FIG. 14, and the right half of FIG. 14 is an optical path mirror-symmetrical to the left half, the embodiment of the present invention I will not go into details about this.
  • the control circuit of the embodiment of the present invention may include three parts: as shown in FIG. 15, an input optical power abnormality detecting circuit (upper left part), a control command demodulating circuit (lower left part), and Micro-control unit (MCU) and optical switch drive circuit, optical switches 1 ⁇ N are optical switches in OADM, refer to Figure 14.
  • R1, R2, R3 and the input optical power detecting circuit constitute an input optical power abnormality detecting circuit, which can be referred to FIG. 5 and its description; in the circuit, R1 is a sampling resistor, and the input light received by the photodetector PD is received.
  • the amplifying circuit and the comparison circuit included in the optical power detecting circuit can obtain the level trigger signal, which is defined as the output is low when the input average optical power is normal, and the output is high when the input optical power is abnormal.
  • the trigger interrupt signal is sent to the MCU, and the MCU sends a driving signal to the optical switch through the driving circuit to drive the corresponding light-on-light conversion working state.
  • the other part R4, R5 and U1 form a transimpedance amplifier, which can be referred to together with FIG.
  • the demodulation circuit modulates the optical signal through a subsequent control command.
  • the upper control command is demodulated and sent to the MCU.
  • the MCU sends a driving signal to the optical opening through the driving circuit to drive the corresponding optical opening and changing operation state.
  • the default configuration is automatic disaster tolerance mode.
  • the trunk path carries the service transmission through the OADM BU through wavelength (band), and the trunk and branch transmit the service through the upper and lower wavelength (band) of the OADM BU. In this way, the trunk transmission service does not have to be bypassed by the branch, and the confidential transmission of the service can be maximized.
  • the following embodiment will explain the switching of the optical switch in various working modes in more detail. Bright.
  • FIG. 16A and 16B wherein FIG. 16B is the internal structure of the OADM of FIG. 16A, please refer to FIG. 13 and FIG. 15 together.
  • the submarine cable system is adjacent to the left side of the OADM BU (ie, with OANM BU)
  • FIG. 16A shows an automatic disaster tolerance system in the case of a trunk fault.
  • the operating state of the lower left optical switch (second optical switch) changes (from state one to state two), before the second optical switch state changes.
  • the changed optical path transmission can be referred to FIG. 7 and its description. Refer to Figure 11 for changing the front light path and Figure 12 for the changed light path. See Figure 7 and its description for the light-on state and the flow of the light signal.
  • FIG. 17B is the internal structure of the OADM of FIG. 17A.
  • FIG. 13 and FIG. 15 together for an example of automatic disaster tolerance of the system when the branch circuit is broken.
  • the MCU changes the working state of the upper two optical switches in FIG. 17B through the driving circuit. After changing the working state, refer to Figure 12 for the optical path. Please refer to Figure 7 for the light-opening state and the flow direction of the optical signal. At this time, the lower-wave optical signal and the through-light signal are transmitted together in the trunk, supplementing the optical power lost by the upper-wave optical signal, realizing the automatic capacity. Disaster function.
  • the original downlink service of the SLTE device of the trunk end station is sent to the end station B of the trunk.
  • the corresponding wavelength channel of the SLTE terminal can be added. Scrambling code to avoid the transmission of the original trunk to the branch service transmission.
  • the artificial disaster recovery mode is as follows: Select the end station and send the control command to the OADM BU through the end station. After receiving the control command from the end station, the OADM BU enters the MCU through the photoelectric conversion, demodulation circuit and other restoration control commands. The control command is converted into a driving signal controlled by the optical switch, and the corresponding optical switch is driven to perform state switching, thereby realizing manual disaster tolerance.
  • FIG. 18B shows The electrical connection configuration during the maintenance of the faulty submarine cable, that is: the system electrical connection configuration after the OADM BU performs the electric switch (the thick line indicates), the OADM BU detects the input because the RPT power failure no longer emits the ASE noise light during the faulty cable maintenance. The optical power is abnormal.
  • the OADM switches to the second working mode to implement the branch disaster recovery.
  • the OADM BU optical path can be manually configured from the end station to implement the disaster recovery.
  • Figure 18A shows the artificial disaster-tolerant situation when the main line is broken.
  • the direction of the dotted arrow in Figure 18A (the thread curve points to the direction) is three possible command transmission paths. Just select one of the paths to send the control command.
  • Figures 18A and 18B reference may be made to Figure 16A and its description.
  • the input optical power is detected to determine whether an open circuit is sent.
  • the fiber integrity identification signal is used to implement the open circuit detection, and the optical integrity identification signal may be a service optical topping signal, or a specific optical wavelength indicating signal or a signal that other OADM BU can recognize. details as follows:
  • the end station generates a fiber integrity identification signal and synthesizes Into the fiber transmission signal. Then, when the OADM BU detects the optical integrity identification signal contained in the input optical signal, it can be judged that the submarine cable line is normal. When the fiber integrity signal in the input fiber is not detected, the corresponding optical path may be considered to be faulty. After the fault is determined, an interrupt trigger signal can be generated to the MCU, and the MCU drives the corresponding optical switch to perform state switching, thereby implementing automatic disaster tolerance of the OADM BU.
  • the structure shown in Fig. 19 can be explained with reference to the structure of Fig. 16A.
  • the optical integrity signal detection circuit is shown in Figure 20.
  • the large solid frame on the left side includes: optical fiber integrity signal input interface and optical integrity signal detection circuit.
  • the optical signal enters from the fiber integrity signal input interface, and is detected by the fiber integrity signal detection circuit to determine whether the fiber integrity identification signal is included, and the result is sent to the microcontroller. After receiving the result, the microcontroller knows if there is a fault and the fault location, and then drives the corresponding optical switch to change the state through the drive circuit.
  • the microcontroller knows if there is a fault and the fault location, and then drives the corresponding optical switch to change the state through the drive circuit.
  • the embodiment of the present invention further provides a method for using an optical add/drop multiplexer optical splitter, as shown in FIG. 21, including:
  • optical add/drop optical splitter including the control command demodulation circuit of FIG. 3, FIG. 6 or FIG. 9 provided by the embodiment of the present invention performs optical communication transmission;
  • the above fault is a state that has actually been generated and needs to be repaired. Therefore, the above fault includes: the receiving end does not receive the optical signal to generate an alarm; or, the electrical switching needs to be performed to perform the fault repair.
  • the embodiment of the present invention provides an implementation scheme for comprehensive automatic disaster tolerance, manual disaster tolerance, and fault recovery.
  • the working principle is described as follows:
  • the system When the submarine cable system with integrated OADM BU is working normally, the system defaults to the automatic disaster recovery mode. During the system fault maintenance or when the automatic disaster recovery effect is not good, the maintenance personnel set the system to the manual disaster recovery mode through the NMS, specifically: Deliver control commands from the end station to optimize the OADM optical path configuration, thus Finally, the goal of optimizing disaster tolerance is achieved.
  • the internal input optical power detection circuit of the OADM BU detects that the optical power of the input port of the OADM module is lower than the preset threshold, and generates an abnormality of the input optical power abnormality in real time, and the alarm signal is sent as a trigger interrupt signal. After receiving the interrupt trigger signal, the MCU generates a drive signal to control the corresponding optical switch integrated in the OADM to perform state switching.
  • the OADM BU is internally configured as Add-Output to realize the automatic disaster tolerance of the branch (corresponding to the optical path of Figure 11).
  • the OADM BU is internally configured as an Input-Output connection to implement the trunk. Automatic disaster tolerance (corresponding to Figure 12 optical path).
  • the OADM BU When the Shunt Fault occurs in the submarine cable system, if the OADM BU internal input optical power detection circuit does not detect the input optical power abnormality, the OADM BU will not actively perform automatic disaster recovery.
  • this scenario is a submarine cable system trunk optical amplifier ( A Shunt Fault occurs between Repeater and RPT.
  • the power supply of the Power Feeding Equipment (PFE) can still supply power to the RPT, which will cause the ASE noise generated by the RPT to be transmitted along the submarine cable line to the OADM BU.
  • PFE Power Feeding Equipment
  • the ASE noise and the Add optical path signal synthesis optical wave signal are transmitted in the trunk.
  • This scenario is similar to integrating the optical amplifier inside the OADM BU.
  • the uplink service can maintain normal transmission, the system is not needed. For disaster recovery, real-time transmission of services between end stations will not be interrupted, and the timeliness of OADM BU disaster recovery is guaranteed. If the upstream service cannot maintain normal transmission, the receiving end station will alarm. In this case, the manual disaster recovery mode needs to be started.
  • the end station network management system sends a control command to the OADM BU to configure the OADM BU optical path to be configured as Add-Output. Artificial disaster tolerance.
  • the submarine cable system fails and needs to be repaired, the faulty submarine cable end is first switched to the ground through a power switching branching unit (PSBU), and the RPT of the failed submarine cable segment is dropped.
  • PSBU power switching branching unit
  • the ASE noise is no longer generated by the AODM BU trunk input end, and the automatic disaster recovery mode is activated to enter the first working mode. If the upstream service cannot be transmitted normally, you need to configure the OADM BU optical path through the manual disaster recovery mode to ensure that the Add optical path service can maintain normal transmission during the fault repair.
  • the OADM BU detects that the input optical power is normal, generates an interrupt signal to the MCU, and the MCU drives the optical switch integrated in the OADM to perform state switching.
  • the system is automatically restored to the normal working state (the light path corresponds to Figure 10).
  • the method flow of the embodiment of the present invention is as shown in the flowchart of the OADM BU disaster recovery solution shown in FIG. 22, and includes the following steps:
  • the OADM BU internally monitors whether the input light is abnormal. If yes, enter 2203, if no, enter 2207;
  • the OADM BU performs automatic disaster recovery switching
  • the OADM BU internally monitors whether the input light is abnormal. If yes, enter 2206, otherwise enter 2204;
  • the OADM BU performs an automatic recovery switch.
  • 2207 Determine whether there is a service interruption between the non-fault side sites, or whether it is ready to perform maintenance, if yes, enter 2208, otherwise enter 2202.
  • the manual disaster recovery switching command is sent from the end station to the OADM BU, so that the OADM BU performs manual disaster recovery switching.
  • the OADM BU internally monitors whether the input light is abnormal; if yes, enter 2209, otherwise enter 2211;
  • the manual disaster recovery switching command is sent from the end station to the OADM BU, and the OADM BU performs manual recovery switching.
  • the medium can be a read only memory, a magnetic disk or a compact disk or the like.

Abstract

一种光分插复用光分支器,其中光分插复用光分支器包括:干路输入端、支路输入端、干路输出端、支路输出端、光分插复用器、第一分光器、第一检测电路、控制电路;所述光分插复用器内包括光开关。通过检测电路检测干路是否发生了故障,在干路发生故障的情况下将工作模式从第一工作模式切换为第二工作模式实现干路的自动容灾,保证支路正常通信。以上方案在不采用集成放大器的前提下实现容灾功能。不需要人工干预,容灾响应速度快,提高容灾效果,大大降低系统业务传输中断带来的经济损失。采用的光开关器件体积小,对结构空间要求小,结构设计复杂度低,因此降低结构复杂度从而降低成本并提高可靠度。

Description

一种光分插复用光分支器
技术领域
本发明涉及光通信技术领域, 特別涉及一种光分插复用光分支器。 背景技术
海底光分支器( Branching Unit, BU )是海底光传输系统水下设备, 其主 要功能是通过 BU内部光纤的连接配置,实现 BU三个端口之间的光纤对互联, BU三个端口分別与海缆和水下光放大器连接, 进而实现海底光传输系统多个 站点之间业务传输, BU是构成复杂海底光传输系统的关键设备。
当海底光传输系统干路和支路业务传输容量比较小,且由于业务传输的保 密性需求, 要求干路之间业务传输不能绕接到支路登陆站, 通常需要在 BU内 部集成光分插复用器(Optical Add Drop Multiplexer, OADM )光模块, 通过 波长(或波带)上、 下来承载干路和支路之间的业务传输, 称为 OADM BIL 对于集成 OADM BU的海缆系统来说, 当干路或支路发生断缆故障时, 光纤中传输的实际波道数降低, 而海底光放大器的输出功率基本保持不变,造 成单波光功率增大,导致在光纤中传输的非线性效应大大增加, 非故障侧的海 缆段将无法维持正常业务传输,即使在故障维修期间也无法维持正常的业务传 输, 为解决此类问题人们提出了各种解决方案, 亦称为 OADM BU容灾技术, 容灾技术已经成为集成 OADM BU的海缆光传输系统基本需求。
OADM BU设备提供的容灾解决方案有利于降低运营商因断缆故障而导 致的经济损失, 目前采用的 OADM BU容灾技术一般是在 OADM BU内部集 成光放大器, 利用光放大器产生的放大自发辐射 ( Amplified Spontaneous Emission, ASE )噪声功率实现容灾功能。集成光放大器通常是指在 OADM BU 内部穿通和上波方向均集成光放大器。
采用在 OADM BU内部集成光放大器的方案, 当海缆系统干路发生断缆 故障时, OADM BU仍能从海缆供电线路得到电源供给, 通过 OADM BU内 部穿通光路集成掺铒光纤放大器( Erbium-doped Optical Fiber Amplifier, EDFA ) 产生的 ASE 噪声补偿干路断缆损失的业务光功率。 ASE 噪声经过光滤波器 ( Wavelength Blocking Filter, WBF )后与上波(Add )光路业务经光耦合器合 业务, 实现支路容灾。 当海缆系统支路发生断缆故障时, 通过 OADM BU内 部 Add光路集成的 EDFA产生的 ASE噪声补偿支路断缆损失的业务光功率, ASE噪声经过带通光滤波器( Band Pass Filter, BPF )后与穿通光路业务光合 波, 从而保证没有发生故障的干路维持正常的光传输业务, 实现干路容灾。
集成光放大器的 OADM BU的容灾方案存在以下几个缺点: 1、 光放大器 产生的 ASE噪声虽然能够补偿故障时丟失的业务信号光功率, 但噪声光功率 与信号光一起传输时会导致业务光信号的光信噪比降低,特別是对于长距离光 传输系统来说光信噪比( Optical Signal to Noise Ratio, OSNR )代价过大, 容 灾效果有限; 2、 相比普通 OADM BU产品, 集成光放大器的 OADM BU系统 成本高, 光路复杂, 产品总体可靠度降低; 3、 集成光放大器的 OADM BU结 构空间增大, 结构设计复杂。 发明内容
本发明实施例提供了一种光分插复用光分支器,在不采用集成放大器的前 提下实现容灾功能,提高容灾效果, 降低结构复杂度从而降低成本并提高可靠 度。
本发明实施例一方面提供了一种光分插复用光分支器, 包括:
干路输入端、 支路输入端、 干路输出端、 支路输出端、 光分插复用器、 第 一分光器、 第一检测电路、 控制电路; 所述光分插复用器内包括光开关; 干路输入端连接所述第一分光器的输入端,所述第一分光器的两个输出端 分別连接所述光开关的第一输入端和所述第一检测电路的输入端;干路输出端 连接所述光开关的第一输出端;所述第一检测电路的输出端连接所述控制电路 的输入端, 所述控制电路的输出端连接所述光开关的第三输入端; 支路输出端 连接所述光开关的第二输出端, 支路输入端连接所述光开关的第二输入端; 所述第一检测电路通过输入的光信号确定干路输入端侧的干路是否故障, 并将检测结果发送给所述控制电路; 干路正常时所述光开关处于第一工作模 式,若干路故障则所述控制电路向所述光开关发送控制指令将所述光开关的工 作模式切换为第二工作模式;
包含穿通业务光信号和下波业务光信号的干路光信号从干路输入端进入 光分插复用光分支器后, 经过所述第一分光器的输入端进入所述第一分光器; 所述第一分光器耦合一部分光信号向所述第一检测电路发送,另一部分发送至 所述光开关的第一输入端;
包含上波业务光信号和假光 Dummy光信号的上波光路光信号从支路输入 端进入光分插复用光分支器后, 进入所述光开关的第二输入端; 上波业务光信 号与下波业务光信号功率相同, Dummy光信号与穿通业务光信号功率相同; 所述光开关在第一工作模式下,从第一输入端进入的穿通业务光信号发往 第一输出端, 下波业务光信号发往第二输出端,从第二输入端进入的上波业务 光信号发往第一输出端, Dummy光信号发往第二输出端; 所述光开关在第二 工作模式下, 发送从第二输入端进入的上波业务光信号以及 Dummy光信号到 第一输出端, 中断从第一输入端进入的干路光信号。
结合一方面的实现方式,在第一种可能的实现方式中, 所述光分插复用光 分支器, 还包括: 第二分光器、 第二检测电路;
第二分光器的输入端连接所述支路输入端,第二分光器的两个输出端分別 连接第二检测电路和所述光开关的第二输入端;
所述上波光路光信号从支路输入端进入光分插复用光分支器后,经过第二 分光器的输入端进入第二分光器;第二分光器耦合出一部分光信号向第二检测 电路发送, 另一部分发送至所述光开关的第二输入端;
第二检测电路通过输入的光信号确定支路输入端侧的支路是否故障,并将 检测结果发送给所述控制电路;若支路故障则所述控制电路向所述光开关发送 控制指令将所述光开关的工作模式切换为第三工作模式;
所述光开关在第三工作模式下,发送从第一输入端进入的穿通业务光信号 以及下波业务光信号到第一输出端, 中断从第二输入端进入的上波光路光信 号。
结合一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述 光分插复用光分支器, 还包括:
控制命令解调电路;所述控制命令解调电路的输出端连接所述控制电路的 输入端;
所述控制命令解调电路的输入端接收控制命令后解调所述控制命令,并向 所述控制电路发送控制信号,使所述控制电路向所述光开关发送控制指令将所 述光开关的工作模式切换为第二工作模式或第三工作模式。
结合一方面、一方面的第一种或者第二种可能的实现方式,在第三种可能 的实现方式中, 所述光分插复用光分支器, 还包括:
所述光开关在第二工作模式下的工作过程中,若所述第一检测电路确定干 路输入端侧的干路故障恢复,则向所述光开关发送控制指令将所述光开关的工 作模式切换为第一工作模式;
所述光开关在第三工作模式下工作的过程中,若第二检测电路确定支路故 障恢复,则向所述光开关发送控制指令将所述光开关的工作模式切换为第一工 作模式。
结合一方面、一方面的第一种或者第二种可能的实现方式,在第四种可能 的实现方式中, 所述第一检测电路包括: 光纤完整性信号检测电路; 所述干路 光信号中包含光纤完整性识別信号;所述第一检测电路通过输入的光信号确定 干路输入端侧的干路是否故障包括:
光纤完整性信号检测电路检测输入的光信号中的光纤完整性识別信号进 行检测, 若有光纤完整性识別信号则确定干路输入端侧的干路正常, 否则确定 干路输入端侧的干路故障。
结合一方面、一方面的第一种或者第二种可能的实现方式,在第五种可能 的实现方式中, 所述第一检测电路包括:
第一光探测器、 跨阻抗放大器、 第一电阻、 第二电阻、 第三电阻以及光功 率检测电路;
所述第一光探测器的输出端连接第一电阻的第一端以及第三电阻的第一 端, 第一光探测器的输出端连接运算放大器的输入端,跨阻抗放大器的另一输 入端接地;
第一电阻的第二端和第二电阻的第一端连接电源接口,第二电阻的第二端 以及第三电阻的第二端连接光功率检测电路的输入端;光功率检测电路的输出 端连接所述控制电路; 所述第一检测电路通过输入的光信号确定干路输入端侧的干路是否故障, 并将检测结果发送给所述控制电路;若干路故障则所述控制电路向所述光开关 发送控制指令将所述光开关的工作模式切换为第二工作模式包括:
所述第一分光器耦合出的分光信号发往所述第一光探测器使第一光探测 器产生电流;所述光功率检测电路检测到电流异常时触发电平信号给所述控制 电路,使所述控制电路向所述光开关发送控制指令将所述光开关的工作模式切 换为第二工作模式。
结合一方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述 控制命令解调电路的输入端连接所述跨阻抗放大器的输出端,所述跨阻抗放大 器的输出端连接所述控制电路;
所述控制命令解调电路的输入端接收控制命令后解调所述控制命令,并向 所述控制电路发送控制信号,使所述控制电路向所述光开关发送控制指令将所 述光开关的工作模式切换为第二工作模式或第三工作模式包括:
所述第一光探测器接收的光功率使第一光探测器产生电流,经所述跨阻抗 放大器输出电信号给所述控制命令解调电路,所述控制命令解调电路在解调得 到控制命令后, 发送给所述控制电路, 若所述控制命令为预定义的控制命令, 则使所述控制电路向所述光开关发送控制指令将所述光开关的工作模式切换 为第二工作模式或第三工作模式。
结合一方面、一方面的第一种或者第二种可能的实现方式,在第七种可能 的实现方式中, 所述光分插复用器包括: 第一光开关、 第二光开关、 第一光开 关和第二光开关各有四个接口, 第一滤波器、 第二滤波器、 第三滤波器以及第 四滤波器;
所述第一光开关的第三接口与所述第一分光器的输出端连接,所述第四滤 波器的输入端为支路输入端, 所述第三滤波器的输出端为支路输出端, 所述第 一光开关的第四接口为干路输出端;
第一光开关的第一接口连接第一滤波器的输入端口;第一滤波器有一个输 入端口和两个输出端口,第一滤波器的两个输出端口分別连接第三滤波器的输 入端口和第二光开关的第二接口; 第一光开关的第四接口连接干路输出端; 第 一光开关的第二接口连接第二滤波器的输出端; 第四滤波器包含一个输入端口和两个输出端口,第四滤波器的两个输出端 口分別连接第二光开关的第三接口和第二滤波器的输入端口;
第二光开关的第一端口连接第三滤波器的输入端口,地第二滤波器的第四 端口连接第二滤波器的输入端口;
所述光开关在第一工作模式下,从第一输入端进入的穿通业务光信号发往 第一输出端, 下波业务光信号发往第二输出端,从第二输入端进入的上波业务 光信号发往第一输出端, Dummy光信号发往第二输出端; 包括:
第一工作模式下, 第一光开关的第一接口和第三接口连接, 第二接口和第 四接口连接; 第二光开关的第一接口和第三接口连接, 第二接口和第四接口连 接; 干路光信号从第一光开关的第三接口进入第一光开关, 经第一光开关的第 一接口进入第一滤波器,第一滤波器将干路光信号拆分为穿通业务光信号和下 波业务光信号,将穿通业务光信号发往第二光开关的第二接口,将下波业务光 信号发往第三滤波器;
上波光路光信号从第四滤波器的输入端口进入第四滤波器,第四滤波器将 上波光路光信号拆分为上波业务光信号和 Dummy光信号, 将上波业务光信号 发往第二滤波器的输入端口, 将 Dummy光信号发往第二光开关的第三接口; 第二光开关的第三接口进入的 Dummy光信号经第二光开关的第一接口发 往第三滤波器的输入端口, 第三滤波器将输入的下波业务光信号和 Dummy光 信号合波并从第三滤波器的输出端口输出;
第二光开关的第二接口进入的穿通业务光信号经第二光开关的第四接口 发往第二滤波器的输入端口;第二滤波器将输入的穿通业务光信号和上波业务 光信号合波后发往第一光开关的第二接口, 经第一光开关的第四接口输出; 所述光开关在第二工作模式下,发送从第二输入端进入的上波业务光信号 以及 Dummy光信号到第一输出端, 中断从第一输入端进入的干路光信号, 包 括:
第二工作模式下, 第一光开关的第一接口和第三接口连接, 第二接口和第 四接口连接; 第二光开关的第三接口与第四接口连接;
上波光路光信号从第四滤波器的输入端口进入第四滤波器,第四滤波器将 上波光路光信号拆分为上波业务光信号和 Dummy光信号, 将上波业务光信号 发往第二滤波器的输入端口, 将 Dummy光信号发往第二光开关的第三接口; 第二光开关的第三接口进入的 Dummy光信号经第二光开关的第四接口发 往第二滤波器的输入端口, 第二滤波器将输入的上波业务光信号和 Dummy光 信号合波并从第三滤波器的输出端口输出。
结合一方面的第七种可能的实现方式, 在第八种可能的实现方式中, 第三 工作模式下, 第一光开关的第三接口和第四接口连接; 第二光开关的第一接口 和第三接口连接, 第二接口和第四接口连接;
干路光信号从第一光开关的第三接口进入第一光开关, 经第四接口输出。 结合一方面的第二种可能的实现方式, 在第九种可能的实现方式中, 所述 控制电路包括: 微控制器、 驱动电路;
所述微控制器的输入端与所述第一检测电路、第二检测电路以及所述控制 命令解调电路连接, 输出端与驱动电路连接, 驱动电路与所述光开关连接; 若接收到所述第一检测电路发送的表示干路故障的检测结果,则输出驱动 指令使驱动电路驱动所述关开关切换为第二工作模式;若接收到第二检测电路 发送的表示支路故障的检测结果,则输出驱动指令使驱动电路驱动所述关开关 切换为第三工作模式; 若接收到所述控制命令解调电路的控制信号, 则输出驱 动指令使驱动电路驱动所述关开关切换为第二工作模式。
从以上技术方案可以看出, 本发明实施例具有以下优点: 通过检测电路检 测干路是否发生了故障,在干路发生故障的情况下将工作模式从第一工作模式 切换为第二工作模式实现干路的自动容灾,保证支路正常通信。 以上方案在不 采用集成放大器的前提下实现容灾功能。 不需要人工干预, 容灾响应速度快, 提高容灾效果, 大大降低系统业务传输中断带来的经济损失。采用的光开关器 件体积小, 对结构空间要求小, 结构设计复杂度低, 因此降低结构复杂度从而 降低成本并提高可靠度。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作筒要介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提 下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例光分插复用光分支器结构示意图;
图 2为本发明实施例光分插复用光分支器结构示意图;
图 3为本发明实施例光分插复用光分支器结构示意图;
图 4为本发明实施例第一检测电路结构示意图;
图 5为本发明实施例第一检测电路结构示意图;
图 6为本发明实施例控制命令解调电路结构示意图;
图 7为本发明实施例光分插复用器结构示意图;
图 8为本发明实施例控制电路结构示意图;
图 9为本发明实施例光分插复用光分支器结构示意图;
图 10为本发明实施例 OADM光路配置结构示意图;
图 11为本发明实施例 OADM光路配置结构示意图;
图 12为本发明实施例 OADM光路配置结构示意图;
图 13为本发明实施例海缆光传输系统模型结构示意图;
图 14为本发明实施例 OADM BU内部结构示意图;
图 15为本发明实施例控制电路结构示意图;
图 16A为本发明实施例海缆光传输系统模型结构示意图;
图 16B为本发明实施例 OADM内部结构示意图;
图 17A为本发明实施例海缆光传输系统模型结构示意图;
图 17B为本发明实施例 OADM内部结构示意图;
图 18A为本发明实施例海缆光传输系统干路断缆故障维修时的人工容灾 结构示意图;
图 18B为本发明实施例故障海缆维修期间电连接配置结构示意图; 图 19为本发明实施例故障海缆人工容灾控制命令下发结构示意图; 图 20为本发明实施例光纤完整性信号检测电路结构示意图;
图 21为本发明实施例方法流程示意图;
图 22为本发明实施例方法流程示意图。 具体实施方式 为了使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发 明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明实施例提供了一种光分插复用光分支器, 如图 1所示, 包括: 两个部分,一部分为光路系统部分,如图 1上部所示(第一分光器 CPL 1、 光分插复用器); 另一部分为控制电路部分, 如图 1所示下部所示 (第一检测 电路以及控制电路);
本发明实施例提供的光分插复用光分支器具体包括: 干路输入端 (Input 箭头所示)、 支路输入端 (Add箭头所示)、 干路输出端 ( Output箭头所示)、 支路输出端( Drop箭头所示)、光分插复用器( 0DAM )、第一分光器( coupler, CPL 1 )、 第一检测电路、 控制电路; 上述光分插复用器内包括光开关(Optical Switch, OS ); 光分插复用器内的光开关有三个输入端和两个输出端、 分別命 名为第一输入端、 第二输入端、 第三输入端, 在图 1中的 OS有箭头指入端口 的 1~3标识,第一输出端、第二输出端,在图 1中的 OS有箭头指出端口的 1~2 标识;
干路输入端连接上述第一分光器的输入端,上述第一分光器的两个输出端 分別连接上述光开关的第一输入端和上述第一检测电路的输入端;干路输出端 连接上述光开关的第一输出端;上述第一检测电路的输出端连接上述控制电路 的输入端, 上述控制电路的输出端连接上述光开关的第三输入端; 支路输出端 连接上述光开关的第二输出端, 支路输入端连接上述光开关的第二输入端; 上述第一检测电路通过输入的光信号确定干路输入端侧的干路是否故障, 并将检测结果发送给上述控制电路; 干路正常时上述光开关处于第一工作模 式,若干路故障则上述控制电路向上述光开关发送控制指令将上述光开关的工 作模式切换为第二工作模式;
包含穿通业务光信号和下波业务光信号的干路光信号从干路输入端进入 光分插复用光分支器后, 经过上述第一分光器的输入端进入上述第一分光器; 上述第一分光器耦合出一部分光信号向上述第一检测电路发送,另一部分发送 至上述光开关的第一输入端; 包含上波业务光信号和假光(Dummy ) 光信号的上波光路光信号从支路 输入端进入光分插复用光分支器后, 进入上述光开关的第二输入端; 上波业务 光信号与下波业务光信号功率相同, Dummy光信号与穿通业务光信号功率相 同; 上述 Dummy光信号, 也称为哑光或假光信号或填充光信号, 是没有调制 业务的光信号。
上述光开关在第一工作模式下,从第一输入端进入的穿通业务光信号发往 第一输出端, 下波业务光信号发往第二输出端,从第二输入端进入的上波业务 光信号发往第一输出端, 假光(Dummy ) 光信号发往第二输出端; 上述光开 关在第二工作模式下, 发送从第二输入端进入的上波业务光信号以及 Dummy 光信号到第一输出端, 中断从第一输入端进入的干路光信号。
以上实施例可以实现在干路输入端侧的干路故障时, 自动切换到第二工作 模式, 从而实现业务保护。 以上实施例, 通过检测电路检测干路是否发生了故 障,在干路发生故障的情况下将工作模式从第一工作模式切换为第二工作模式 实现干路的自动容灾,保证支路正常通信。 以上方案在不采用集成光放大器的 前提下实现容灾功能。 不需要人工干预, 容灾响应速度快, 大大降低系统业务 传输中断带来的经济损失。 采用的光开关器件体积小, 对结构空间要求小, 结 构设计复杂度低, 因此降低结构复杂度从而降低成本并提高可靠度。
进一步地, 本发明实施例还提供了支路故障时的业务保护, 具体如下: 如 图 2所示, 上述光分插复用光分支器, 还包括: 第二分光器(CPL 2)、 第二检 测电路;
第二分光器的输入端连接上述支路输入端,第二分光器的两个输出端分別 连接第二检测电路和上述光开关的第二输入端;
上述上波光路光信号从支路输入端进入光分插复用光分支器后,经过第二 分光器的输入端进入第二分光器;第二分光器耦合出一部分光信号向第二检测 V电路发送, 另一部分发送至上述光开关的第二输入端;
第二检测电路通过输入的光信号确定支路输入端侧的支路是否故障,并将 检测结果发送给上述控制电路;若支路故障则上述控制电路向上述光开关发送 控制指令将上述光开关的工作模式切换为第三工作模式;上述光开关在第三工 作模式下,发送从第一输入端进入的穿通业务光信号以及下波业务光信号到第 一输出端, 中断从第二输入端进入的上波光路光信号。
以上第三工作模式的光路示意说明在后续实施例中将给出更形象的说明。 用场景后续实施例中将会给出更详细的说明, 具体如下: 如图 3所示, 上述光 分插复用光分支器, 还包括: 控制命令解调电路; 上述控制命令解调电路的输 出端连接上述控制电路的输入端;
上述控制命令解调电路的输入端接收控制命令后解调上述控制命令,并向 上述控制电路发送控制信号,使上述控制电路向上述光开关发送控制指令将上 述光开关的工作模式切换为第二工作模式或第三工作模式。
进一步地, 本发明实施例还可以实现工作模式的恢复功能, 具体如下: 上 述上述光开关在第二工作模式下的工作过程中,若上述第一检测电路确定干路 输入端侧的干路故障恢复,则向上述光开关发送控制指令将上述光开关的工作 模式恢复为第一工作模式;
上述光开关在第三工作模式下工作的过程中,若第二检测电路确定支路故 障恢复,则向上述光开关发送控制指令将上述光开关的工作模式切换为第一工 作模式。
以上实施例体现了在干路 /支路的故障恢复以后, 回切到正常模式的第一 工作模式的具体实现方案。
本发明实施例还提供检测电路的具体实现方案举例,上述第一检测电路和 第二检测电路功能是相同的,均是依据光路的信号确定对应光路侧是否发生了 故障, 因此这两个检测电路可以采用相同的结构,也可以分別采用不同的结构 来实现, 本发明实施例对此不予限定, 以下将给出两种实现方案的举例, 具体 :¾口下:
一、 如图 4所示, 可一并参考图 1~3 , 上述第一检测电路包括: 光纤完整 性信号检测电路; 上述干路光信号中包含光纤完整性识別信号; 上述第一检测 电路通过输入的光信号确定干路输入端侧的干路是否故障包括:光纤完整性信 号检测电路检测输入的光信号中的光纤完整性识別信号进行检测,若有光纤完 整性识別信号则确定干路输入端侧的干路正常,否则确定干路输入端侧的干路 故障。 以上方案采用的是在干路信号中加入光纤完整性识別信号的方式, 在 OADM BU侧通过检测光纤完整性识別信号来确定干路是否发生了故障,可以 理解的是支路的上波光路光信号中也可以加入光纤完整性识別信号,这样第二 二、 如图 5所示, 可一并参考图 1~3, 上述第一检测电路(图 5大的实线 才匡内电路) 包括:
第一光探测器(photodetector 1 , PD 1 )、 跨阻抗放大器、 第一电阻(Rl )、 第二电阻(R2 )、 第三电阻(R3 ) 以及光功率检测电路;
上述第一光探测器的输出端连接第一电阻的第一端以及第三电阻的第一 端, 第一光探测器的输出端连接运算放大器的输入端,跨阻抗放大器的另一输 入端接地;
第一电阻的第二端和第二电阻的第一端连接电源接口,第二电阻的第二端 以及第三电阻的第二端连接光功率检测电路的输入端;光功率检测电路的输出 端连接上述控制电路;
上述第一检测电路通过输入的光信号确定干路输入端侧的干路是否故障, 并将检测结果发送给上述控制电路;若干路故障则上述控制电路向上述光开关 发送控制指令将上述光开关的工作模式切换为第二工作模式包括:
上述第一分光器耦合出的分光信号发往上述第一光探测器使第一光探测 器产生电流;上述光功率检测电路检测到电流异常时触发电平信号给上述控制 电路,使上述控制电路向上述光开关发送控制指令将上述光开关的工作模式切 换为第二工作模式。
以上实施例中上述第一检测电路使用的是通过检测输入光功率的方式来 检测输入光源侧的光纤是否故障,可以理解的是支路的第二检测电路同样可以 采用这一结构来实现对支路光纤是否故障的检测。
基于以上上述第一检测电路给出了具体的实现方案中第二个实现方案,本 发明实施例还提供了上述控制命令解调电路的具体结构如下: 如图 6所示, 可 一并参考图 5, 图 6中的控制命令解调电路, 上述控制命令解调电路的输入端 连接上述跨阻抗放大器的输出端,上述跨阻抗放大器的输出端连接上述控制电 路; 上述控制命令解调电路的输入端接收控制命令后解调上述控制命令,并向 上述控制电路发送控制信号,使上述控制电路向上述光开关发送控制指令将上 述光开关的工作模式切换为第二工作模式包括:
上述第一光探测器接收的光功率使第一光探测器产生电流,经上述跨阻抗 放大器输出电信号给上述控制命令解调电路,上述控制命令解调电路在解调得 到控制命令后, 发送给上述控制电路, 若上述控制命令为预定义的控制命令, 则使上述控制电路向上述光开关发送控制指令将上述光开关的工作模式切换 为第二工作模式或第三工作模式。
从图 5和图 6可以看出,以上实施例上述控制命令解调电路和上述第一检 测电路共用了第一光探测器( PD 1 )以及跨阻抗放大器, 这样可以节省硬件资 源消耗节省成本。上述控制命令解调电路和上述第一检测电路也可以各自独立 完成各自的功能不共用器件, 也是可以的, 以上共用器件的实现方式作为一种 优选的实现方案不应理解为对本发明实施例的唯一性限定。
可选地, 本发明实施例还提供了上述光分插复用器的具体结构,请参阅图 7所示, 可一并参阅图 1~3, 上述光分插复用器包括: 第一光开关、 第二光开 关、 第一光开关和第二光开关各有四个接口, 第一滤波器(WDM 1 )、 第二滤 波器(WDM 2 )、 第三滤波器(WDM 3 )以及第四滤波器( WDM 4 ); 第一光 开关和第二光开关中, 在各接口侧方标注有 1~4, 用来标识对应接口所属的接 口号, 例如: 第二光开关的右下角标注为 3, 表示: 第二光开关的右下角的接 口为第二光开关的第三接口; 第一光开关和第二光开关均有两种状态, 第一种 状态为: 接口 1与接口 3连接并且接口 2与接口 4连接(图 7中光开关的实线 所示), 另一种状态为: 接口 3与接口 4连接, 此时接口 1与接口 3断开并且 接口 2与接口 4断开 (图 7中光开关的虚线所示);
上述第一光开关的第三接口与第二分光器 CPL2的输出端连接,上述第四 滤波器的输入端为支路输入端(对应图 1为支路输入端,对应图 2第四滤波器 的输入端与第二分光器 CPL2连接 ),上述第三滤波器的输出端为支路输出端, 上述第一光开关的第四接口为干路输出端;
第一光开关的第一接口连接第一滤波器的输入端口;第一滤波器有一个输 入端口和两个输出端口,第一滤波器的两个输出端口分別连接第三滤波器的输 入端口和第二光开关的第二接口; 第一光开关的第四接口连接干路输出端; 第 一光开关的第二接口连接第二滤波器的输出端;
第四滤波器包含一个输入端口和两个输出端口,第四滤波器的两个输出端 口分別连接第二光开关的第三接口和第二滤波器的输入端口;
第二光开关的第一端口连接第三滤波器的输入端口,地第二滤波器的第四 端口连接第二滤波器的输入端口;
上述光开关在第一工作模式下,从第一输入端进入的穿通业务光信号发往 第一输出端, 下波业务光信号发往第二输出端,从第二输入端进入的上波业务 光信号发往第一输出端, Dummy光信号发往第二输出端; 包括:
第一工作模式下, 第一光开关的第一接口和第三接口连接, 第二接口和第 四接口连接; 第二光开关的第一接口和第三接口连接, 第二接口和第四接口连 接; 干路光信号从第一光开关的第三接口进入第一光开关, 经第一光开关的第 一接口进入第一滤波器,第一滤波器将干路光信号拆分为穿通业务光信号和下 波业务光信号,将穿通业务光信号发往第二光开关的第二接口,将下波业务光 信号发往第三滤波器;
上波光路光信号从第四滤波器的输入端口进入第四滤波器,第四滤波器将 上波光路光信号拆分为上波业务光信号和 Dummy光信号, 将上波业务光信号 发往第二滤波器的输入端口, 将 Dummy光信号发往第二光开关的第三接口; 第二光开关的第三接口进入的 Dummy光信号经第二光开关的第一接口发 往第三滤波器的输入端口, 第三滤波器将输入的下波业务光信号和 Dummy光 信号合波并从第三滤波器的输出端口输出;
第二光开关的第二接口进入的穿通业务光信号经第二光开关的第四接口 发往第二滤波器的输入端口;第二滤波器将输入的穿通业务光信号和上波业务 光信号合波后发往第一光开关的第二接口, 经第一光开关的第四接口输出; 上述光开关在第二工作模式下,发送从第二输入端进入的上波业务光信号 以及 Dummy光信号到第一输出端, 中断从第一输入端进入的干路光信号, 包 括:
第二工作模式下, 第一光开关的第一接口和第三接口连接, 第二接口和第 四接口连接; 第二光开关的第三接口与第四接口连接; 上波光路光信号从第四滤波器的输入端口进入第四滤波器,第四滤波器将 上波光路光信号拆分为上波业务光信号和 Dummy光信号, 将上波业务光信号 发往第二滤波器的输入端口, 将 Dummy光信号发往第二光开关的第三接口; 第二光开关的第三接口进入的 Dummy光信号经第二光开关的第四接口发 往第二滤波器的输入端口, 第二滤波器将输入的上波业务光信号和 Dummy光 信号合波并从第三滤波器的输出端口输出。 行以上两中工作模式下的具体应用场景进行更详细的说明。以上实施例可以实 现在干路输入端侧的干路故障时, 自动切换到第二工作模式,从而实现业务保 护。
进一步地, 本发明实施例还提供了支路故障时的业务保护, 请参阅图 7 所示, 具体: ¾口下:
第三工作模式下, 第一光开关的第三接口和第四接口连接; 第二光开关的 第一接口和第三接口连接, 第二接口和第四接口连接;
干路光信号从第一光开关的第三接口进入第一光开关, 经第四接口输出。 以上第三工作模式的光路示意说明在后续实施例中将给出更形象的说明。 本发明实施例还提供了控制电路的具体实现方案,如图 8所示, 大的实线 框内部分为控制电路, 可以一并参阅图 3, 上述控制电路包括: 微控制器、 驱 动电路;
上述微控制器的输入端与上述第一检测电路、第二检测电路以及上述控制 命令解调电路连接, 输出端与驱动电路连接, 驱动电路与上述光开关连接; 若接收到上述第一检测电路发送的表示干路故障的检测结果,则输出驱动 指令使驱动电路驱动上述关开关切换为第二工作模式;若接收到第二检测电路 发送的表示支路故障的检测结果,则输出驱动指令使驱动电路驱动上述关开关 切换为第三工作模式; 若接收到上述控制命令解调电路的控制信号, 则输出驱 动指令使驱动电路驱动上述关开关切换为第二工作模式。
本发明实施例方案, 在 OADM BU内部集成微控制器(Micro Controller Unit, MCU ),集成 OADM输入光功率的检测电路以及远程控制命令接收和解 调电路, 即可实现 OADM BU 自动容灾, 也可配置成人工容灾模式, 容灾及 时性好, 应用灵活性强。 另外, OADM自动容灾模式不需要人工干预, 容灾 响应速度快, 大大降低系统业务传输中断带来的经济损失。人工容灾模式在故 障海缆维修期间, 能够充分保障没有发生故障的海缆段业务维持正常传输,避 免因维修导致业务传输中断。 本发明实施例披露的 OADM方案应用 Latched 2 X 2 Bypass光开关和 WDM光器件就可以实现,相比于背景技术的容灾方案来 说, 本发明实施例提出的容灾解决方案成本低, 光开关器件体积小, 对结构空 间要求小, 结构设计复杂度低, 产品可靠性高。
本发明实施例总体方案框图如图 9所示, 包括: 光路系统(图 9上部大的 实线框内)及控制电路(图 9下部大的实线框内)两部分, 这两部分都集成在 光分插复用光分支器器(OADM BU ) 内部。
光路系统包括: 集成可控光开关 OS的光分插复用器(Optical Add Drop Multiplexer, OADM )光模块, 耦合部分控制命令调制光信号功率的光分支器 ( coupler, CPL ), 对于命令控制的单波长调制方案特定波长的光滤波器也可 以包括在光路中。 其中包括光开关的 OADM模块的重要特性除了实现光波长 穿通和上下功能外, 还可以通过配置光开关的工作状态实现 Input-Output光路 穿通和 Add (上波光路) -Output光路穿通功能。 后续实施例将对此进行更详 细说明。
对比图 9和图 3所示区別主要是: 图 3所示为单侧, 图 9所示为双侧, 两 侧的光路是互为镜像的, 在后续实施例的说明中, 仅对单侧进行说明, 另一侧 不再赘述。 在图 9† A、 B为干路设备侧, C为支路设备侧。 图 9中光路系统 的箭头所示方向为光路中光的传播方向。图 9中控制电路的箭头方向为信号流 向。
控制电路包括:用于检测输入 OADM BU的光功率的异常检测电路( Input Optical Power Detector )、远程控制的命令接收和解调电路、微控制器( Command Receiver and Demodulator, MCU )最小系统以及光开关驱动电路, 电路供电来 源于海缆系统供电。异常检测电路用于自动检测光缆是否故障实现工作模式的 自动切换,命令接收和解调电路用于检测是否有控制信号实现工作模式的手动 切换。
控制电路侧还包含有: 微控制器(Micro Control Unit, MCU ), 光开关的 All Electrical Circuit )。 各部分的具体功能在后续实施例中将进行更详细的说 明。
图 9中所示的光分支器有 CPL 1-CPL4, 其中 CPL1和 CPL2与图 3中的 是对应的。图 3中的 OADM与图 9中的 OADM 1对应,图 3中的 CPU、 CPL2 与图 9中的 CPL1、 CPL2对应。 可以参考图 3的单侧方案的结构, 对应图 9 中增加的一侧的结构与图 3中的结构是相同的镜像关系, 在此不予赘述。
以下实施例将就 OADM的三种工作模式进行更详细的说明, 如下: 一、 第一工作模式:
正常工作时, 即: 所有光缆都正常的情况下, 采用第一工作模式工作。 第一工作模式下, OADM光路配置如图 10所示, 可以一并参考图 3, 在 图 10中 1、 2为输入光信号即: 干路光信号; 其中, 1承载下波业务可以称为 下波业务光信号, 2承载穿通业务可以称为穿通业务光信号; 图 10中 3、 4为 Add光信号即: 上波光路光信号; 其中, 4承载上波业务可以称为上波业务光 信号, 3作为 Dummy光信号不承载业务, 可以称为: Dummy光信号。 在第一 工作模式下, Dummy光信号 3在 OADM光路中环回到 Drop光路与下波业务 光信号 1耦合组成下路传输光信号, Dummy光信号主要起功率均衡作用; Add 光信号的 4与穿通光信号 2耦合成干路传输的光信号,实现支路与干路的业务 传输。从功率的角度来看上波业务光信号与下波业务光信号功率相同, Dummy 光信号与穿通业务光信号功率相同; 即: 4与 1的功率相同、 2与 3的功率相 同。
二、 第二工作模式:
当干路发生断路故障( Shunt Fault )时, 此时 OADM模块 Input端口输入 光功率丟失, 采用第二工作模式工作。
第二工作模式下, OADM光路配置如图 11所示, 可以一并参考图 3和图
10, Add-Output光路为穿通状态, 上波光信号 4与 Dummy光信号 3组成完整 光信号信号在光路中传输, Dummy光信号 3替代了因故障而丟失的穿通业务 光信号 2,起到了功率均衡的作用,从而保证从支路端站的 Add光路承载的业 务能够在光缆系统的干路正常传输, 实现干路故障容灾。 三、 第三工作模式:
当支路发生 Shunt Fault故障时,此时 OADM模块 Add端口输入光功率丟 失, 采用第三工作模式工作。
在第三工作模式下, OADM光路配置成如图 12所示 Input-Output光路穿 通状态,下路光波信号 1与穿通光波信号 2组成完整的光信号信号在光缆中传 输, 实现支路故障容灾。 通常为了不使下波业务信号传输到干路端站, 可以在 发送端的登陆站终端 (Submarine Line Terminal, SLTE, 即: 海缆线路终端) 设备对下波信号进行扰码处理, 以达到传输业务保密的目的。
以下将就本发明实施例的具体实现以及应用场景进行更详细的说明。
以下是本发明实施例的应用环境说明如下: 如图 13所示, 以一纤对为例 给出了一个集成 OADM BU的海缆光传输系统模型, 站点之间用采密集波分 复用 ( Dense Wavelength Division Multiplexing, DWDM )光传输技术实现业务 传送。 可以比对图 13与图 3来确定图 3所示结构的应用环境。
在图 13中, Station A、 B、 C为三个不同的登陆站, 其中 Station A和 B 为干路(Trunk )端站, 传输业务量大, Station C为支路(Branch )端站, 它 与干路端站 A、 B之间传输业务量较小, 通过 OADM BU设备波长(波带)上 下与端站 A、 B进行业务传送, 图中 RPT ( Repeater )为海缆线路的光放大器, 支路端站 C的 Add和 Drop分別表示上波和下波光路。 图 13中箭头方向均为 光信号的传播方向。
登陆站点 A、 B、 C配置有承载业务的 SLTE ( Submarine Line Terminal, 海缆线路终端)设备, 海缆系统水下设备供电设备 ( Power Feeding Equipment, PFE ), 用于线路监控的海底管线监测 (submarine line monitor, SLM )设备以 及用于整个海缆系统运维的海缆网管系统 (Submarine Network Management System, SNMS ) 网管设备。
以下为本发明实施例光路说明如下: 本发明光路如图 14所示, 图中 A、
B、 C表示 OADM BU的三个端口, 分別与海缆系统三个端站 Station A、 B、 C 相连。 可一并参考图 7、 图 9以及图 13。 在图 14中, OADM BU光路集成四 个 Latched (锁定) 2 χ 2 Bypass (旁路)光开关, 四个光开关只有两种固定的 工作状态, 状态一: 端口 1-3连通, 端口 2-4连通, 状态二: 端口 3-4连通(端 口 1-3断开, 端口 2-4断开), Latched光开关正常工作时锁定在其中的一个工 作状态, 只有受到有效驱动时工作状态才发生改变, 其他任何情况下均保持原 来的工作状态。图 14中,三端口的 WDM光器件实现 OADM光波长(或波带) 上下, OADM模块输入端口可以采用 1:10宽带光耦合器耦合出部分光功率输 入到光探测器 PD , PD用来检测 OADM模块输入光功率。 另外 PD还可以用 了接收来自登陆站发送的控制命令,后续实施例中将对控制电路部分给出更详 细说明。
基于图 14, 参考图 9以及图 13、 图 7及其说明部分, 其中图 7是图 14 的左半部分, 图 14的右半部分是与左半部分成镜像对称的光路, 本发明实施 例对此不作赘述。
以下为本发明实施例控制电路说明如下:本发明实施例的控制电路可以包 含三部分: 如图 15所示, 输入光功率异常检测电路(左上部分), 控制命令解 调电路(左下部分)以及微控制器( Micro-control Unit, MCU )和光开关的驱 动电路, 光开关 1~N是 OADM内的光开关, 可以参考图 14。 图 15中, R1 , R2, R3和输入光功率检测电路组成输入光功率异常检测电路, 可以参考图 5 及其说明; 在该电路中, R1 为采样电阻, 光探测器 PD接收到的输入光功率 越高, 在 R1上产生光电流越大, 相应的电压降就越大; 反之, 当光探测器没 有输入光功率时, PD 自身的暗电流 ^艮小, 在 R1上的电压降也越小, 包含在 光功率检测电路中的放大电路和比较电路, 可以由此得到电平触发信号, 定义 为当输入平均光功率正常时输出为低电平, 当输入光功率异常时时输出高电 平。该触发中断信号发送到 MCU, MCU通过驱动电路向光开关发出驱动信号, 驱动相应光开光变换工作状态。 另一部分 R4, R5和 U1组成跨阻抗放大器, 可一并参考图 6及其说明; 在图 15中, PD将光信号转换为电信号后, 通过后 续的控制命令解调电路将调制在光信号上的控制命令解调出来,发送给 MCU , MCU通过驱动电路向光开光发出驱动信号, 驱动相应光开光变换工作状态。
海缆系统正常工作时, 默认配置为自动容灾模式, 干路通过 OADM BU 穿通波长(波带 )承载业务传输, 干路和支路通过 OADM BU上、 下波长(波 带)承载业务传输, 这样干路传输业务不必经过支路绕接, 可最大限度地实现 业务保密传输。以下实施例将就各种工作模式下光开关的切换进行更详细的说 明。
一、 干路发生断路 ( Shunt Fault )故障时系统自动容灾:
如图 16A和 16B所示, 其中图 16B为图 16A的 OADM内部结构, 请一 并参阅图 13和图 15, 当海缆系统在 OADM BU相邻左侧 (即与 OANM BU
Cut ), 图 16A和图 16B叉所示位置) 时, 故障侧输入光丟失, OADM BU内 部输入光功率检测电路检测到输入端口光功率低于预置门限,则产生触发中断 信号发送到 MCU, MCU接收到中断信号后输出控制信号驱动相应的光开关动 作, 改变光路的传输路径, 实现 OADM BU自动容灾功能。 图 16A给出了干 路故障时系统自动容灾实施例, 图 16B 中左下侧光开关(第二光开关)工作 状态改变 (从状态一变为状态二), 第二光开关状态改变前与改变后的光路传 输可以参考图 7及其说明。 改变前光路请参考图 11 , 改变后光路参阅图 12, 开光状态及光信号的流向请参阅图 7及其说明。
同理, 当 OADM BU相邻右侧发生断路故障时, 图 16中右下侧光开关工 作状态发生改变, 实现自动容灾功能, 与 OADM BU相邻左侧发生断路故障 时互为镜像对称, 在此不再赘述。
二、 支路发生 Shunt Fault故障时的自动容灾:
如图图 17A和图 17B所示, 其中图 17B为图 17A的 OADM内部结构, 请一并参阅图 13和图 15, 给出了支路断路故障时系统自动容灾的实施例。 在 OADM BU 内部电路检测到支路上波光路输入光功率丟失, 触发中断信号, MCU通过驱动电路改变图 17B中上边两个光开关的工作状态。 改变工作状态 以后, 光路参阅图 12, 开光状态及光信号的流向请参阅图 7, 这时下波光信号 与穿通光信号一起在干路中传输, 补充了上波光信号丟失的光功率, 实现自动 容灾功能。
另外, 需说明的是, 当支路发生故障自动容灾时, 干路端站的 SLTE设备 原下波业务会发送到干路的端站 B, 这种情况下可以在 SLTE终端相应波长通 道加扰码的方式来避免原干路到支路业务传输泄密。
三、 通过端站下发控制命令实现人工容灾:
如图 18A和图 18B所示, 当系统在 OADM BU非相邻跨段发生断缆故障 (包括 Cable Cut或 Fiber Cut ) 时 (图 18A所示叉位置), 调整干路端站供电 PFE电源参数,海缆系统水下产品仍能正常供电,这时 RPT输出自发辐射 ASE 噪声光会补充部分损失的光功率, 会导致 OADM BU输入光功率检测电路检 测到输入端口输入光功率高于预置门限值, 这种情况下 OADM BU不会主动 作出光路配置改变的操作。
如果此时上波业务与 ASE噪声合在一起能够维持正常传输, 则此时可以 不需要作容灾处理, 这样能保证了业务传输非人为引起中断。
如果上波业务与 ASE噪声合在一起不能够维持正常传输, 即非故障侧站 点之间的业务传输出现劣化甚至中断 (端站会告警), 此时维护人员可以将系 统从自动容灾切换到人工容灾模式, 具体如下: 选择端站并通过端站下发控制 命令到 OADM BU, OADM BU接收到来自端站的控制命令后,经过光电转换、 解调电路等还原控制命令输入 MCU, MCU将控制命令转化为光开关控制的驱 动信号, 驱动相应光开关进行状态切换, 从而实现人工容灾。
另一方面, 海缆系统发生故障并且需要对故障侧海缆进行维修时, 维护人 员可以首先从端站下发控制命令到 OADM BU,将故障侧切换到接地以确保安 全维修, 图 18B给出了故障海缆维修期间电连接配置, 即: OADM BU执行电 切换后的系统电连接配置(粗线示意), 由于故障海缆维修期间 RPT掉电不再 发出 ASE噪声光,OADM BU检测到输入光功率异常,自动容灾模式下 OADM 切换到第二工作模式实现支路容灾, 另一方面,也可以人工从端站下发控制命 令对 OADM BU光路进行配置以实现容灾。 图 18A给出了干路断缆故障维修 时的人工容灾情形, 图 18A 中虚线箭头方向 (螺纹曲线指向示意) 为三条可 能的命令发送路径, 只要选择其中一条路径发送控制命令即可。在参阅图 18A 和图 18B时, 可以一并参考图 16A及其说明。
以上实施例的举例,均采用对输入的光功率进行检测来确定是否发送了断 路, 实际上检测是否发生了断路的方式还有很多, 以下本发明实施例给出了另 一种实现方案, 采用光纤完整性识別信号来实现断路检测, 光纤完整性识別信 号可以为业务光调顶信号, 或者为特定光波长指示信号或其他 OADM BU能 够识別的信号。 具体如下:
请参阅图 19所示螺旋纹指示位置, 端站产生光纤完整性识別信号并合成 到光纤传输信号中。 那么, 当 OADM BU检测到输入光信号中包含的光纤完 整性识別信号, 则可以判断海缆线路正常。 当检测不到输入光纤中的光纤完整 性信号, 则可以认为对应光路发生故障。 在确定故障以后, 可以产生中断触发 信号到 MCU, MCU通过驱动电路驱动相应光开光进行状态切换, 从而实现 OADM BU自动容灾。 图 19所示结构可以参考图 16A的结构说明。
光纤完整性信号检测电路如图 20所示, 左边大的实线框部分, 包括: 光 纤完整性信号输入接口、光纤完整性信号检测电路。 光信号从光纤完整性信号 输入接口进入,经过光纤完整性信号检测电路检测确定是否包含光纤完整性识 別信号, 并将结果发送给微控制器。微控制器器接收到结果以后获知是否有故 障以及故障位置, 然后通过驱动电路驱动相应光开关改变状态。 敫控制器的具 体控制, 可以参考图 15其说明部分。
本发明实施例还提供了一种光分插复用光分支器的使用方法, 如图 21所 示, 包括:
2101: 本发明实施例提供的图 3、 图 6或者图 9这类包含控制命令解调电 路的光分插复用光分支器进行光通信传输;
2102:在本发明实施例提供的包含上述控制命令解调电路的光分插复用光 分支器进行光通信传输过程中, 若干路出现故障; 则向上述控制命令解调电路 发出预定的控制命令,使上述控制命令解调电路向控制电路发送控制信号,使 控制电路向光开关发送控制指令将光开关的工作模式切换为第二工作模式;若 支路故障; 则向上述控制命令解调电路发出预定的控制命令,使上述控制命令 解调电路向控制电路发送控制信号,使控制电路向光开关发送控制指令将光开 关的工作模式切换为第三工作模式。
上述故障是实际已经产生的故障并且需要进行维修的状态,所以上述故障 包括:接收端接收不到光信号产生告警;或者,需要执行电切换进行故障维修。
本发明实施例给出了综合自动容灾、 手动容灾以及故障恢复的实现方案, 工作原理描述如下:
集成 OADM BU的海缆系统正常工作时, 系统默认设置为自动容灾模式; 在系统故障维修期间或自动容灾效果不佳时,维护人员通过网管将系统设置为 人工容灾模式, 具体为: 从端站下发控制命令优化 OADM光路配置, 从而最 终达到优化容灾效果的目的。
当海缆系统发生 Shunt Fault故障时, OADM BU内部输入光功率检测电路 检测到 OADM模块的输入端口光功率低于预置门限, 实时产生输入光功率异 常告警,该告警信号作为触发中断信号发送到 MCU, MCU接收到中断触发信 号后立即产生驱动信号控制集成在 OADM 内部的相应的光开关进行状态切 换。 当干路发生故障时, 将 OADM BU内部配置成 Add-Output连通实现支路 自动容灾(对应图 11光路), 当支路发生故障时, 将 OADM BU内部配置成 Input-Output连通实现干路自动容灾(对应图 12光路)。
当海缆系统发生 Shunt Fault故障时, 如果 OADM BU内部输入光功率检 测电路没有检测到输入光功率异常, OADM BU不会主动进行自动容灾, 通常 这种场景是海缆系统干路光放大器(Repeater, RPT )之间发生 Shunt Fault故 障, 端站供电设备( Power Feeding Equipment , PFE )供电电源仍然能够向 RPT供电, 这将导致 RPT产生的 ASE噪声沿着海底光缆线路传输到 OADM BU。 在自动容灾模式下, ASE噪声与 Add光路上波信号合成光波信号在干路 中传输, 这种场景类似于在 OADM BU内部集成光放大器, 如果上波业务能 够维持正常传输则不需要进行系统容灾, 端站之间业务实时传输也不会中断, OADM BU容灾的及时性得到保障。 如果上波业务不能维持正常传输,接收端 的端站会告警, 这时需要启动人工容灾模式, 通过端站网管向 OADM BU发 送控制命令, 将 OADM BU光路人为配置成 Add-Output连通, 从而实现人工 容灾。 另一方面当海缆系统发生故障需要维修时, 首先通过具有电切换功能的 分支单元( power switching branching unit, PSBU )将故障海缆端切换到接地, 这时发生故障的海缆段的 RPT掉电不再产生 ASE噪声, OADM BU干路输入 端接收不到光信号, 自动容灾模式启动, 进入到第一工作模式。 如果上波业务 不能进行正常传输, 这时需要通过人工容灾模式配置 OADM BU光路, 确保 故障维修期间 Add光路业务能够维持正常传输。
无论是自动容灾模式还是人工容灾模式,当系统故障维修完成恢复正常供 电后, OADM BU检测到输入光功率正常, 产生中断信号给 MCU, MCU驱动 集成在 OADM中的光开光进行状态切换,将系统自动恢复到正常工作状态(光 路对应图 10 )。 本发明实施例方法流程如图 22所示的 OADM BU容灾方案流程图, 包括 如下步骤:
2201: 海缆系统故障发生;
2202: OADM BU内部监测输入光是否异常, 如果是, 进入 2203, 如果 否, 进入 2207;
本步骤具体检测方案可以参考前述实施例中关于检测电路的说明。
2203: OADM BU执行自动容灾切换;
自动容灾切换的方案可以参考前述实施例中 OADM BU内部控制电路以 及光开关状态切换的说明。
2204: 系统故障维修;
2205: OADM BU内部监测输入光是否异常, 如果是, 进入 2206, 否则 进入 2204;
2206: OADM BU执行自动恢复切换。
2207:确定非故障侧站点之间是否出现业务中断,或是否准备否执行维修, 如是, 进入 2208, 否则进入 2202。
2208: 从端站向 OADM BU发送人工容灾切换命令, 使 OADM BU执行 人工容灾切换。
本步骤中人工容灾切换的实现可以参考前述实施例中人工容灾的具体实 现的说明。
2209: 系统故障维修;
2210: OADM BU内部监测输入光是否异常; 如果是, 进入 2209, 否则 进入 2211;
本步骤具体检测方案可以参考前述实施例中关于检测电路的说明。
2211 :从端站向 OADM BU发送人工容灾切换命令, OADM BU执行人工 恢复切换。
本领域普通技术人员可以理解实现上述各方法实施例中的全部或部分步 骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计算机 可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内, 可轻 易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种光分插复用光分支器, 其特征在于, 包括:
干路输入端、 支路输入端、 干路输出端、 支路输出端、 光分插复用器、 第 一分光器、 第一检测电路、 控制电路; 所述光分插复用器内包括光开关; 干路输入端连接所述第一分光器的输入端,所述第一分光器的两个输出端 分別连接所述光开关的第一输入端和所述第一检测电路的输入端;干路输出端 连接所述光开关的第一输出端;所述第一检测电路的输出端连接所述控制电路 的输入端, 所述控制电路的输出端连接所述光开关的第三输入端; 支路输出端 连接所述光开关的第二输出端, 支路输入端连接所述光开关的第二输入端; 所述第一检测电路通过输入的光信号确定干路输入端侧的干路是否故障, 并将检测结果发送给所述控制电路; 干路正常时所述光开关处于第一工作模 式,若干路故障则所述控制电路向所述光开关发送控制指令将所述光开关的工 作模式切换为第二工作模式;
包含穿通业务光信号和下波业务光信号的干路光信号从干路输入端进入 光分插复用光分支器后, 经过所述第一分光器的输入端进入所述第一分光器; 所述第一分光器耦合一部分光信号向所述第一检测电路发送,另一部分发送至 所述光开关的第一输入端;
包含上波业务光信号和假光 Dummy光信号的上波光路光信号从支路输入 端进入光分插复用光分支器后, 进入所述光开关的第二输入端; 上波业务光信 号与下波业务光信号功率相同, Dummy光信号与穿通业务光信号功率相同; 所述光开关在第一工作模式下,从第一输入端进入的穿通业务光信号发往 第一输出端, 下波业务光信号发往第二输出端,从第二输入端进入的上波业务 光信号发往第一输出端, Dummy光信号发往第二输出端; 所述光开关在第二 工作模式下, 发送从第二输入端进入的上波业务光信号以及 Dummy光信号到 第一输出端, 中断从第一输入端进入的干路光信号。
2、 根据权利要求 1所述光分插复用光分支器, 其特征在于, 还包括: 第 二分光器、 第二检测电路;
第二分光器的输入端连接所述支路输入端,第二分光器的两个输出端分別 连接第二检测电路和所述光开关的第二输入端; 所述上波光路光信号从支路输入端进入光分插复用光分支器后,经过第二 分光器的输入端进入第二分光器;第二分光器耦合出一部分光信号向第二检测 电路发送, 另一部分发送至所述光开关的第二输入端;
第二检测电路通过输入的光信号确定支路输入端侧的支路是否故障,并将 检测结果发送给所述控制电路;若支路故障则所述控制电路向所述光开关发送 控制指令将所述光开关的工作模式切换为第三工作模式;
所述光开关在第三工作模式下,发送从第一输入端进入的穿通业务光信号 以及下波业务光信号到第一输出端, 中断从第二输入端进入的上波光路光信 号。
3、 根据权利要求 2所述光分插复用光分支器, 其特征在于, 还包括: 控制命令解调电路;所述控制命令解调电路的输出端连接所述控制电路的 输入端;
所述控制命令解调电路的输入端接收控制命令后解调所述控制命令,并向 所述控制电路发送控制信号,使所述控制电路向所述光开关发送控制指令将所 述光开关的工作模式切换为第二工作模式或第三工作模式。
4、根据权利要求 1至 3任意一项所述光分插复用光分支器, 其特征在于, 还包括:
所述所述光开关在第二工作模式下的工作过程中,若所述第一检测电路确 定干路输入端侧的干路故障恢复,则向所述光开关发送控制指令将所述光开关 的工作模式切换为第一工作模式;
所述所述光开关在第三工作模式下工作的过程中,若第二检测电路确定支 路故障恢复,则向所述光开关发送控制指令将所述光开关的工作模式切换为第 一工作模式。
5、根据权利要求 1至 3任意一项所述光分插复用光分支器, 其特征在于, 所述第一检测电路包括: 光纤完整性信号检测电路; 所述干路光信号中包含光 纤完整性识別信号;所述第一检测电路通过输入的光信号确定干路输入端侧的 干路是否故障包括:
光纤完整性信号检测电路检测输入的光信号中的光纤完整性识別信号进 行检测, 若有光纤完整性识別信号则确定干路输入端侧的干路正常, 否则确定 干路输入端侧的干路故障。
6、根据权利要求 1至 3任意一项所述光分插复用光分支器, 其特征在于, 所述第一检测电路包括:
第一光探测器、 跨阻抗放大器、 第一电阻、 第二电阻、 第三电阻以及光功 率检测电路;
所述第一光探测器的输出端连接第一电阻的第一端以及第三电阻的第一 端, 第一光探测器的输出端连接运算放大器的输入端,跨阻抗放大器的另一输 入端接地;
第一电阻的第二端和第二电阻的第一端连接电源接口,第二电阻的第二端 以及第三电阻的第二端连接光功率检测电路的输入端;光功率检测电路的输出 端连接所述控制电路;
所述第一检测电路通过输入的光信号确定干路输入端侧的干路是否故障, 并将检测结果发送给所述控制电路;若干路故障则所述控制电路向所述光开关 发送控制指令将所述光开关的工作模式切换为第二工作模式包括:
所述第一分光器耦合出的分光信号发往所述第一光探测器使第一光探测 器产生电流;所述光功率检测电路检测到电流异常时触发电平信号给所述控制 电路,使所述控制电路向所述光开关发送控制指令将所述光开关的工作模式切 换为第二工作模式。
7、 根据权利要求 6所述光分插复用光分支器, 其特征在于,
所述控制命令解调电路的输入端连接所述跨阻抗放大器的输出端,所述跨 阻抗放大器的输出端连接所述控制电路;
所述控制命令解调电路的输入端接收控制命令后解调所述控制命令,并向 所述控制电路发送控制信号,使所述控制电路向所述光开关发送控制指令将所 述光开关的工作模式切换为第二工作模式或第三工作模式包括:
所述第一光探测器接收的光功率使第一光探测器产生电流,经所述跨阻抗 放大器输出电信号给所述控制命令解调电路,所述控制命令解调电路在解调得 到控制命令后, 发送给所述控制电路, 若所述控制命令为预定义的控制命令, 则使所述控制电路向所述光开关发送控制指令将所述光开关的工作模式切换 为第二工作模式或第三工作模式。
8、根据权利要求 1至 3任意一项所述光分插复用光分支器, 其特征在于, 所述光分插复用器包括: 第一光开关、 第二光开关、 第一光开关和第二光开关 各有四个接口, 第一滤波器、 第二滤波器、 第三滤波器以及第四滤波器;
所述第一光开关的第三接口与所述第一分光器的输出端连接,所述第四滤 波器的输入端为支路输入端, 所述第三滤波器的输出端为支路输出端, 所述第 一光开关的第四接口为干路输出端;
第一光开关的第一接口连接第一滤波器的输入端口;第一滤波器有一个输 入端口和两个输出端口,第一滤波器的两个输出端口分別连接第三滤波器的输 入端口和第二光开关的第二接口; 第一光开关的第四接口连接干路输出端; 第 一光开关的第二接口连接第二滤波器的输出端;
第四滤波器包含一个输入端口和两个输出端口,第四滤波器的两个输出端 口分別连接第二光开关的第三接口和第二滤波器的输入端口;
第二光开关的第一端口连接第三滤波器的输入端口,地第二滤波器的第四 端口连接第二滤波器的输入端口;
所述光开关在第一工作模式下,从第一输入端进入的穿通业务光信号发往 第一输出端, 下波业务光信号发往第二输出端,从第二输入端进入的上波业务 光信号发往第一输出端, Dummy光信号发往第二输出端; 包括:
第一工作模式下, 第一光开关的第一接口和第三接口连接, 第二接口和第 四接口连接; 第二光开关的第一接口和第三接口连接, 第二接口和第四接口连 接; 干路光信号从第一光开关的第三接口进入第一光开关, 经第一光开关的第 一接口进入第一滤波器,第一滤波器将干路光信号拆分为穿通业务光信号和下 波业务光信号,将穿通业务光信号发往第二光开关的第二接口,将下波业务光 信号发往第三滤波器;
上波光路光信号从第四滤波器的输入端口进入第四滤波器,第四滤波器将 上波光路光信号拆分为上波业务光信号和 Dummy光信号, 将上波业务光信号 发往第二滤波器的输入端口, 将 Dummy光信号发往第二光开关的第三接口; 第二光开关的第三接口进入的 Dummy光信号经第二光开关的第一接口发 往第三滤波器的输入端口, 第三滤波器将输入的下波业务光信号和 Dummy光 信号合波并从第三滤波器的输出端口输出; 第二光开关的第二接口进入的穿通业务光信号经第二光开关的第四接口 发往第二滤波器的输入端口;第二滤波器将输入的穿通业务光信号和上波业务 光信号合波后发往第一光开关的第二接口, 经第一光开关的第四接口输出; 所述光开关在第二工作模式下,发送从第二输入端进入的上波业务光信号 以及 Dummy光信号到第一输出端, 中断从第一输入端进入的干路光信号, 包 括:
第二工作模式下, 第一光开关的第一接口和第三接口连接, 第二接口和第 四接口连接; 第二光开关的第三接口与第四接口连接;
上波光路光信号从第四滤波器的输入端口进入第四滤波器,第四滤波器将 上波光路光信号拆分为上波业务光信号和 Dummy光信号, 将上波业务光信号 发往第二滤波器的输入端口, 将 Dummy光信号发往第二光开关的第三接口; 第二光开关的第三接口进入的 Dummy光信号经第二光开关的第四接口发 往第二滤波器的输入端口, 第二滤波器将输入的上波业务光信号和 Dummy光 信号合波并从第三滤波器的输出端口输出。
9、 根据权利要求 8所述光分插复用光分支器, 其特征在于,
第三工作模式下, 第一光开关的第三接口和第四接口连接; 第二光开关的 第一接口和第三接口连接, 第二接口和第四接口连接;
干路光信号从第一光开关的第三接口进入第一光开关, 经第四接口输出。
10、 根据权利要求 3所述光分插复用光分支器, 其特征在于, 所述控制电 路包括: 微控制器、 驱动电路;
所述微控制器的输入端与所述第一检测电路、第二检测电路以及所述控制 命令解调电路连接, 输出端与驱动电路连接, 驱动电路与光开关连接;
若接收到所述第一检测电路发送的表示干路故障的检测结果,则输出驱动 指令使驱动电路驱动所述关开关切换为第二工作模式;若接收到第二检测电路 发送的表示支路故障的检测结果,则输出驱动指令使驱动电路驱动所述关开关 切换为第三工作模式; 若接收到所述控制命令解调电路的控制信号, 则输出驱 动指令使驱动电路驱动所述关开关切换为第二工作模式。
PCT/CN2013/090446 2013-12-25 2013-12-25 一种光分插复用光分支器 WO2015096068A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2013/090446 WO2015096068A1 (zh) 2013-12-25 2013-12-25 一种光分插复用光分支器
EP13900393.3A EP3089382B1 (en) 2013-12-25 2013-12-25 Optical branching unit for optical add drop multiplexing
CN201380002791.5A CN104904140B (zh) 2013-12-25 2013-12-25 一种光分插复用光分支器
JP2016542985A JP6440127B2 (ja) 2013-12-25 2013-12-25 光挿入分岐マルチプレクサ分岐ユニット
US15/192,762 US9768899B2 (en) 2013-12-25 2016-06-24 Optical add/drop multiplexer branching unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090446 WO2015096068A1 (zh) 2013-12-25 2013-12-25 一种光分插复用光分支器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/192,762 Continuation US9768899B2 (en) 2013-12-25 2016-06-24 Optical add/drop multiplexer branching unit

Publications (1)

Publication Number Publication Date
WO2015096068A1 true WO2015096068A1 (zh) 2015-07-02

Family

ID=53477343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090446 WO2015096068A1 (zh) 2013-12-25 2013-12-25 一种光分插复用光分支器

Country Status (5)

Country Link
US (1) US9768899B2 (zh)
EP (1) EP3089382B1 (zh)
JP (1) JP6440127B2 (zh)
CN (1) CN104904140B (zh)
WO (1) WO2015096068A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114153A (ko) * 2016-06-09 2018-10-17 구글 엘엘씨 서브시 광 통신 네트워크
CN112740575A (zh) * 2018-09-10 2021-04-30 日本电气株式会社 路径切换设备及路径切换方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733568A (zh) * 2015-03-28 2015-06-24 昆明豫云通信技术有限公司 一种光伏电池的制造方法
EP3334072B1 (en) * 2015-09-08 2021-05-26 Huawei Technologies Co., Ltd. Oadm node in a wdm system and method
US9832549B2 (en) * 2016-03-14 2017-11-28 Teledyne Instruments, Inc. System, method, and apparatus for subsea optical to electrical distribution
CN106199829A (zh) * 2016-08-25 2016-12-07 武汉光迅科技股份有限公司 一种具有信道监控功能的阵列波导光栅
CN111066266B (zh) * 2017-09-28 2022-06-24 日本电气株式会社 海底分支设备、光海底缆线系统和光通信方法
CN111466089B (zh) * 2017-12-15 2023-07-07 日本电气株式会社 海底光学传送装置和海底光学通信系统
EP3750260A1 (en) * 2018-02-09 2020-12-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for fiber optic line fault determination
EP3780419A4 (en) * 2018-03-26 2021-05-26 NEC Corporation SEA BOTTOM CONNECTION DEVICE, OPTIC SEA BOTTOM CABLE SYSTEM AND OPTICAL COMMUNICATION PROCESS
US10461852B1 (en) * 2018-08-07 2019-10-29 Facebook, Inc. Submarine cable network architecture
US10868614B2 (en) * 2018-09-04 2020-12-15 Ciena Corporation Optical power replacement for faulted spectrum in channel holder based optical links
CN109560865A (zh) * 2019-01-29 2019-04-02 北京瑞源芯科技有限公司 同时具备分光和旁路功能的光纤链路控制设备
JP7136317B2 (ja) * 2019-02-26 2022-09-13 日本電気株式会社 光分岐結合装置及び光分岐結合方法
EP3989593A4 (en) * 2019-06-19 2022-08-24 NEC Corporation UNDERWATER OPTICAL JUNCTION DEVICE, UNDERWATER OPTICAL CABLE SYSTEM, SWITCHING METHOD, NON-TRANSITORY COMPUTER READABLE MEDIA
EP3989461A4 (en) * 2019-06-24 2022-08-31 NEC Corporation JUNCTION DEVICE AND SUBMARINE CABLE SYSTEM
CN113301456B (zh) * 2020-02-24 2024-04-12 瑞昱半导体股份有限公司 具有异常发光检测的光网络装置
CN114765477A (zh) * 2021-01-14 2022-07-19 华为技术有限公司 产生假光信号的装置、方法以及可重构光分插复用器
CN115514443A (zh) * 2021-06-22 2022-12-23 华为技术有限公司 通信设备、通信方法以及通信系统
CN113572564B (zh) * 2021-09-22 2021-11-26 华海通信技术有限公司 一种光分插复用分支器、通信系统及信号传输方法
CN114584207B (zh) * 2022-05-05 2022-07-08 华海通信技术有限公司 一种可重构光分插复用器
WO2024083329A1 (en) * 2022-10-19 2024-04-25 Telefonaktiebolaget Lm Ericsson (Publ) A reconfigurable optical add/drop multiplexer
CN116582177B (zh) * 2023-07-14 2023-09-19 华海通信技术有限公司 一种海缆系统故障后的数据保密方法及海缆系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030793A1 (en) * 2001-08-10 2003-02-13 Adc Denmark Aps Alignment of multi-channel diffractive WDM device
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置
US20070077073A1 (en) * 2005-09-30 2007-04-05 Fujitsu Limited Optical transmission device for controlling optical level of transmission signal in optical transmission system
US20120177362A1 (en) * 2011-01-07 2012-07-12 Tyco Electronics Subsea Communications Llc System and Method for Monitoring a Branched Optical Communication System
CN102742199A (zh) * 2012-02-23 2012-10-17 华为海洋网络有限公司 光分插复用器分支单元及其控制方法
CN102823173A (zh) * 2010-02-17 2012-12-12 泰科电子海底通信有限责任公司 灵活分支单元以及包括灵活分支单元的系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9516017D0 (en) * 1995-08-04 1995-10-04 Stc Submarine Systems Ltd Optical level control in wavelength add-drop multiplexing branching units
JPH10150409A (ja) * 1996-11-19 1998-06-02 Kokusai Denshin Denwa Co Ltd <Kdd> 光海中分岐装置
AU2001215496A1 (en) * 2000-11-22 2002-06-03 Mitsubishi Denki Kabushiki Kaisha Circuit for switching optical paths
JP4029661B2 (ja) * 2002-05-14 2008-01-09 日本電気株式会社 光合分波方法及び装置
JP4594636B2 (ja) * 2004-03-23 2010-12-08 富士通株式会社 光伝送装置
JP4528147B2 (ja) * 2005-02-01 2010-08-18 株式会社日立製作所 光波長挿入分岐装置およびそれを用いた光ネットワーク装置
CN101141221B (zh) * 2007-06-22 2012-05-09 中兴通讯股份有限公司 可配置光分插复用装置
US8554081B2 (en) 2008-07-09 2013-10-08 Tyco Electronics Subsea Communications, Llc Optical add/drop multiplexer including reconfigurable filters and system including the same
JP2010028340A (ja) * 2008-07-17 2010-02-04 Mitsubishi Electric Corp 光受信器
JP5240673B2 (ja) 2009-03-19 2013-07-17 日本電気株式会社 光信号レベル調整システム及びこれにおける情報解析・制御信号生成装置並びに情報解析・制御信号生成方法
EP2430779B1 (en) * 2009-05-14 2018-10-17 Tyco Electronics Subsea Communications Llc Branching configuration including separate branching unit and predetermined wavelength filter unit and system and method including the same
CN101957476B (zh) 2009-07-21 2013-01-23 华为海洋网络有限公司 光分插复用器水下光分路器及其对应的光传输方法和系统
JP6165442B2 (ja) 2009-07-30 2017-07-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 高度な半導体応用のためのポストイオン注入フォトレジスト剥離用組成物
JP5602229B2 (ja) 2009-07-31 2014-10-08 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー 複合型光アド−ドロップ多重ネットワークおよびそのための波長割り当て
US8305877B2 (en) 2009-09-10 2012-11-06 Tyco Electronics Subsea Communications Llc System and method for distributed fault sensing and recovery
JP2011077808A (ja) * 2009-09-30 2011-04-14 Fujitsu Ltd 光伝送システム
JP5494669B2 (ja) 2009-10-16 2014-05-21 日本電気株式会社 光分岐装置、光通信システムおよび光合波方法
US8401391B2 (en) * 2009-12-08 2013-03-19 Tyco Electronics Subsea Communications Llc Channel power management in a branched optical communication system
JP5776254B2 (ja) * 2011-03-25 2015-09-09 富士通株式会社 通信システム、通信装置および通信方法
WO2012144585A1 (ja) * 2011-04-20 2012-10-26 日本電気株式会社 Oadm機能をもつ分岐装置及び波長多重光ネットワークシステム並びにその方法
US9641275B2 (en) * 2011-06-17 2017-05-02 Tyco Electronics Subsea Communications Llc Symmetric optical multiplexing node
US8891957B2 (en) 2011-07-13 2014-11-18 Tyco Electronics Subsea Communications Llc Method and system for fault recovery in an optical network
US9106983B2 (en) * 2012-04-02 2015-08-11 Nec Laboratories America, Inc. Reconfigurable branching unit for submarine optical communication networks
JP2015506148A (ja) * 2012-06-15 2015-02-26 ▲ホア▼▲ウェイ▼海洋網絡有限公司 光通信システムの災害復旧のための方法、装置、およびシステム
US9276694B2 (en) * 2012-10-08 2016-03-01 Tyco Electronics Subsea Communications Llc Fault recovery in branched optical networks
WO2014115517A1 (ja) * 2013-01-23 2014-07-31 日本電気株式会社 光分岐挿入装置、光分岐挿入方法、及び記憶媒体
US9414134B2 (en) * 2013-10-02 2016-08-09 Nec Corporation Secure wavelength selective switch-based reconfigurable branching unit for submarine network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030793A1 (en) * 2001-08-10 2003-02-13 Adc Denmark Aps Alignment of multi-channel diffractive WDM device
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置
US20070077073A1 (en) * 2005-09-30 2007-04-05 Fujitsu Limited Optical transmission device for controlling optical level of transmission signal in optical transmission system
CN102823173A (zh) * 2010-02-17 2012-12-12 泰科电子海底通信有限责任公司 灵活分支单元以及包括灵活分支单元的系统
US20120177362A1 (en) * 2011-01-07 2012-07-12 Tyco Electronics Subsea Communications Llc System and Method for Monitoring a Branched Optical Communication System
CN102742199A (zh) * 2012-02-23 2012-10-17 华为海洋网络有限公司 光分插复用器分支单元及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114153A (ko) * 2016-06-09 2018-10-17 구글 엘엘씨 서브시 광 통신 네트워크
KR102113452B1 (ko) * 2016-06-09 2020-05-21 구글 엘엘씨 서브시 광 통신 네트워크
CN112740575A (zh) * 2018-09-10 2021-04-30 日本电气株式会社 路径切换设备及路径切换方法
EP3852285A4 (en) * 2018-09-10 2021-11-17 NEC Corporation PATH SWITCHING APPARATUS AND PATH SWITCHING METHOD

Also Published As

Publication number Publication date
US9768899B2 (en) 2017-09-19
CN104904140B (zh) 2017-04-19
JP2017508331A (ja) 2017-03-23
CN104904140A (zh) 2015-09-09
EP3089382A1 (en) 2016-11-02
US20160308639A1 (en) 2016-10-20
EP3089382B1 (en) 2018-11-21
JP6440127B2 (ja) 2018-12-19
EP3089382A4 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2015096068A1 (zh) 一种光分插复用光分支器
US10826601B2 (en) Optical switch with path continuity monitoring for optical protection switching
US7286758B2 (en) Method for switching transmission route, and optical transmission device
US8139476B2 (en) Optical ring networks using circulating optical probe in protection switching with automatic reversion
JP4893700B2 (ja) リング光ネットワークで制御信号を通信する方法及びシステム
JP5050931B2 (ja) 光伝送システム、光伝送システムで用いられる光送受信装置、及び端末側送受信装置、並びに光伝送方法
CA2773883C (en) System and method for distributed fault sensing and recovery
JP5195746B2 (ja) 伝送路監視方法及び装置
WO2013123665A1 (zh) 光分插复用器分支单元及其控制方法
WO2015100575A1 (zh) 一种光分插复用器,及分支器
WO2013185338A1 (zh) 光通信系统容灾方法、装置和容灾系统
WO2006074614A1 (fr) Procede et systeme d&#39;auto-recuperation et procede de transfert d&#39;information dans un environnement de protection partagee de canaux optiques
WO2014110711A1 (zh) 一种通信设备及方法
US7076163B2 (en) Method and system for testing during operation of an open ring optical network
US6879434B2 (en) Distributed raman amplifier for optical network and method
EP1351416B1 (en) System and method for amplifying signals in an optical network
CN105049112A (zh) 基于监控波长的波分接入保护环
JP6107269B2 (ja) トランスポンダ及び光伝送装置
JP2014135679A (ja) 端末側通信装置、局側装置、通信障害復旧方法
US20150318948A1 (en) System and Method for Monitoring Filters in an Optical Add-Drop Multiplexer
WO2020261924A1 (ja) 分岐装置、及び海底ケーブルシステム
US20130051796A1 (en) Transponder device, optical branching device, and optical signal transmission method in optical transport network node
JP2023058431A (ja) 自己修復の海底リンク
JP2011044984A (ja) 光波長多重伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900393

Country of ref document: EP