WO2013185338A1 - 光通信系统容灾方法、装置和容灾系统 - Google Patents

光通信系统容灾方法、装置和容灾系统 Download PDF

Info

Publication number
WO2013185338A1
WO2013185338A1 PCT/CN2012/076979 CN2012076979W WO2013185338A1 WO 2013185338 A1 WO2013185338 A1 WO 2013185338A1 CN 2012076979 W CN2012076979 W CN 2012076979W WO 2013185338 A1 WO2013185338 A1 WO 2013185338A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transmission link
state
loopback
branch
Prior art date
Application number
PCT/CN2012/076979
Other languages
English (en)
French (fr)
Inventor
张文斗
马立苹
张立昆
Original Assignee
华为海洋网络有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为海洋网络有限公司 filed Critical 华为海洋网络有限公司
Priority to JP2014546284A priority Critical patent/JP2015506148A/ja
Priority to CN2012800022300A priority patent/CN103190094A/zh
Priority to PCT/CN2012/076979 priority patent/WO2013185338A1/zh
Priority to EP12878754.6A priority patent/EP2770654A4/en
Publication of WO2013185338A1 publication Critical patent/WO2013185338A1/zh
Priority to US14/282,156 priority patent/US20140255020A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/035Arrangements for fault recovery using loopbacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)

Definitions

  • the present invention relates to the field of communications, and in particular, to an optical communication system disaster tolerance method, an optical add/drop multiplexer branch unit, and a disaster tolerance system. Background technique
  • the submarine cable network covers the global sea areas.
  • the submarine cable optical communication system generally adopts Dense Wavelength Division Multiplexing (DWDM) technology, and has become an important communication for carrying important international communication services.
  • DWDM Dense Wavelength Division Multiplexing
  • the internet The Optical Add-Drop Multiplexer Branching Unit (OADM BU) network can fully utilize the capacity of the fiber optic fiber pair, effectively reducing costs and reducing transmission delay.
  • OADM BU networking brings more difficulties and challenges to network design and management, especially in disaster tolerance and nonlinear management.
  • Figure 1 shows a situation in which the OADM BU is used for networking.
  • the network includes the A site, the B site, and the C site, and the OADM BU connecting them, wherein the link between the site A and the site B belongs to the trunk, and the link between the site C and the OADM BU belongs to Branch road.
  • An optical repeater is disposed between the A site, the B site, the C site, and the OADM BU.
  • the submarine cable optical repeater works under deep saturation conditions, and the total output power is constant. Due to the loss of the punch-through service signal from the A site to the B site, this will cause the traffic signals from the C site to the B site to be amplified to a larger multiple, the signal list. The increase of the wave power, which may result in a high nonlinear transmission cost, degrades the system performance and affects the normal communication between the C site and the B site. Summary of the invention
  • the embodiment of the invention provides a disaster recovery method, device and disaster tolerance system for an optical communication system, so as to reduce the impact of the transmission link fault on the optical communication system.
  • the embodiment of the present invention provides a disaster tolerance method for an optical communication system using an optical add/drop multiplexer OADM, including: detecting a transmission link failure in an optical communication system, when detecting a transmission link failure, The link in which the transmission link fails is switched from the through state to the loopback state, so that the optical signal input from the non-faulty end of the link is looped back to the end output.
  • an embodiment of the present invention provides an optical add/drop multiplexer branch unit 0ADM BU configured to fail the transmission link when a transmission link fault occurs on a transmission link where the OADM BU is located.
  • the link is switched from the through state to the loopback state, so that the optical signal input from the non-faulty end of the link is looped back to the end output
  • the OADM BU specifically includes at least one optical coupling loopback device, At least two trunk ports and at least one branch port, the optical coupling loopback device being connected to a trunk road between the trunk ports, or connected to a branch road where the branch port is located, or connected to the trunk road and
  • the optical coupling loopback device has a punch-through state and a loopback state, and when the link where the optical coupling loopback device is located has a transmission link fault, the optical coupling loopback device can be operated from normal operation.
  • the punch-through state is switched to the loopback state such that the optical signal input from the non-faulty end of the optical coupling loopback device loops back to the terminal output.
  • an embodiment of the present invention provides a disaster recovery system for optical communication, including: a detecting device, configured to detect a transmission link failure in an optical communication system, and the optical add/drop multiplexer branching unit.
  • the power level in the link where the transmission link is faulty can be maintained in the case of a transmission link failure in the optical communication system, thereby maintaining stable transmission performance and improving The disaster tolerance capability of optical communication systems.
  • no additional energy is introduced into the transmission link, so spontaneous emission noise is not introduced, and the performance of the system is ensured.
  • Figure 1 shows a situation in which the OADM BU is used for networking
  • FIG. 2 is a flow chart showing a disaster tolerance method of an optical communication system using an OADM according to an embodiment of the present invention
  • FIG. 3 shows a situation in which an optical communication system using the OADM BU network fails
  • FIG. 4 is a schematic structural diagram of a disaster tolerance system of an optical communication system according to an embodiment of the present invention
  • FIG. 5 is a diagram showing an OADM BU in a case where no transmission link failure occurs in an optical communication system according to an embodiment of the present invention. happening;
  • FIG. 6 illustrates a situation in which an OADM BU fails in a trunk transmission link of an optical communication system according to an embodiment of the present invention
  • FIG. 7 illustrates a branch transmission chain of an OADM BU in an optical communication system according to an embodiment of the present invention. The situation when the road is faulty;
  • Figure 8 illustrates an embodiment of the invention that implements a disaster tolerance function only in the trunk
  • Figure 9 illustrates an embodiment of the invention that implements a disaster tolerance function only in a branch
  • Figure 10 shows a four port OADM BU
  • Figure 11 also shows another four-port OADM BU
  • FIGS 12a and 12b illustrate another implementation of an optical coupling loopback device in accordance with an embodiment of the present invention
  • Figure 13 illustrates another implementation of an optical coupling loopback device in accordance with an embodiment of the present invention. detailed description
  • the transmission link faults involved in the embodiments of the present invention include various fault scenarios in which the solution of the embodiment of the present invention can produce beneficial effects, especially including cable breakage, leakage, and underwater in a submarine cable fault scenario.
  • Equipment failure, etc. cable breakage is usually caused by anchors, fishery operations, seabed geological activities, etc. The usual failure phenomenon is that the fiber and cable are disconnected at the same time. Leakage is usually caused by wear and tear, corrosion, damage to marine organisms, etc., causing short-circuit leakage of seawater in the feeder part of the cable.
  • Underwater equipment failure refers to, for example, underwater optical repeaters that have reduced optical power or no output due to their own faults (including electrical, optical, and other possible causes).
  • Fig. 2 is a flow chart showing a disaster tolerance method of an optical communication system using an OADM according to an embodiment of the present invention. As can be seen from Figure 2, the method includes the following steps:
  • Step 201 Detect a transmission link failure in the optical communication system.
  • the transmission link failure can be detected by various methods well known to those skilled in the art, such as an Optical Time Domain Reflectometer (OTDR) method, a DC impedance detection method, a DC capacitance detection method, an AC method, and the like. Etc., this is not specifically described.
  • the link where the transmission link failure is located can be determined. Determining that the link where the transmission link is a trunk when the transmission link failure occurs in the trunk, and determining that the link of the transmission link is when the transmission link failure occurs in the branch Branch road.
  • Step 202 When detecting a transmission link failure, switching the link where the transmission link is faulty from the through state to the loopback state, so that the optical signal input from the non-faulty end of the link is looped back The output is output.
  • both the branch and the trunk usually include two opposites. The direction of transmission. The inventors have noted that for the same link, the signal input from one end and the signal output from that end will have a similar signal spectral distribution, thus, by inputting an optical signal at one end of the link when the transmission link fails.
  • the loop returns to the output of the terminal, and the signal input from the terminal can be utilized to compensate for the signal power lost due to the transmission link failure.
  • the link in which the transmission link is faulty is switched from the through state to the loopback state, so that the optical signal input from the non-faulty end of the link is looped back.
  • the output of the terminal does not impose any restriction on whether the optical signal of the faulty end is looped back, and may be looped back (if there is an optical signal), or may not be looped back. This will be explained below in conjunction with specific embodiments.
  • Fig. 3 shows a case where an optical communication system using the OADM BU network fails.
  • the optical communication system there are three stations A, B, and C, and the AB is a trunk road, and the OADM BU and the C are branches.
  • Three cable break scenarios are schematically illustrated in Figure 3, where cable break scenario 1 is a fault on the trunk road between Site A and OADM BU, and cable break scenario 2 is between Site B and OADM BU.
  • a fault occurs on the road
  • the cable disconnection scenario 3 is a failure on the branch road between the site C and the OADM BU.
  • there are fewer waves on the OADM branch and more traffic waves are passed through between the trunks.
  • trunk cable disconnection (cable scenario 1, cable disconnect scenario 2)
  • the single-wave power will change more after the tributary signal passes through the optical repeater connected in the trunk. , which means that the trunk road disconnection has a greater impact on the branch business. Therefore, in the case of the cable disconnection scenario 1, it is detected in step 201 that the trunk circuit between the A terminal and the OADM BU has a cable breakage, so that the optical signal input from the B terminal to the A terminal is still looped back in step 202.
  • the signal from the OADM BU to the B terminal includes a signal transmitted from the C terminal to the B terminal and a signal transmitted from the B terminal to the A terminal but looped back to the B terminal.
  • the optical signal input from terminal A to terminal B is looped back to the output of terminal A to compensate for the lost optical signal from terminal B to terminal A.
  • the branch cable breakage (cable line scenario 3) has less impact on the service performance between the trunk road stations, so in this case, the branch circuit cable can be ignored, that is, The above operation of switching to the loopback state is not performed when the branch is faulty.
  • the impact of the branch cable disconnection on the service performance between the trunk road stations cannot be ignored. Therefore, similarly, the link in which the transmission link failure is located is switched from the through state to the loopback state, so that the optical signal input from the non-faulty end of the link is looped back to the terminal output.
  • the branch it will be described in detail in the following embodiments in conjunction with a specific structure.
  • the transmission link of the optical communication system is continuously detected.
  • the link controlling the failure of the transmission link is switched from the loopback state to the punchthrough state.
  • an embodiment of the present invention provides an optical add/drop multiplexer branch unit OADM BU configured to fail the transmission link when a transmission link failure occurs on a transmission link where the OADM BU is located.
  • the link is switched from the through state to the loopback state, so that the optical signal input from one end of the link is looped back to the output.
  • FIG. 4 is a schematic structural diagram of a disaster tolerance system of an optical communication system according to an embodiment of the present invention. It can be seen that the disaster tolerance system 400 includes:
  • a detecting device 410 configured to detect a transmission link failure in the optical communication system
  • the optical add/drop multiplexer branching unit 420 is configured to: when the detecting device detects a transmission link failure, switch the link where the transmission link is faulty from a through state to a loopback state, so that the chain is from the chain The optical signal input to the non-faulted end of the circuit loops back to the output of the terminal.
  • the OADM BU specifically includes at least one optical coupling loopback device, at least two trunk ports, and at least one branch port, the optical coupling loopback device being connected to the trunk road between the trunk ports, or connected to the branch
  • the optical coupling loopback device has a punch-through state and a loopback state on a branch road where the road port is located, or is connected to the trunk road and the branch road, and there is a transmission link failure when the optical coupling loopback device is located on the link
  • the optical coupling loopback device is capable of switching from a through state to a loopback state during normal operation such that an optical signal input from a non-faulty end of the optical coupling loopback device is looped back to the terminal output.
  • various detection devices familiar to those skilled in the art may be employed to detect transmission link failures.
  • an optical time domain reflectometry device can be employed that uses optical time domain reflectometry to detect fiber link breakpoints.
  • a DC impedance detecting device can be employed.
  • the cable failure phenomenon is that the conductor in the middle of the cable is in contact with the seawater. Therefore, the DC impedance detecting device can use the DC impedance detection method in combination with the DC impedance parameter of the cable and the underwater device to locate the fault. point.
  • a DC capacitance detecting device may be employed, which is particularly suitable for the case where the conductor in the power cable is not in contact with seawater.
  • the DC capacitance detecting device measures the capacitance between the intermediate conductor and the seawater, and based on the calculation result of the test data, the fault point can be estimated. Location.
  • an AC detecting device can be used, in which a power feeding device (Power Feeding Equipment,
  • PFE loads an AC current signal with low frequency and amplitude on the DC source, and the AC current signal radiates electromagnetic waves to the external space during the transmission of the wire, so that the maintenance vessel finds the signal in the seabed through a dedicated inductive detection instrument, and then determines The location of the submarine cable fault.
  • other detecting means may be used. For example, it is possible to judge the point of failure by reading whether the input and output optical power of the underwater device is abnormal.
  • the optical add/drop multiplexer branching unit further comprises a wavelength division multiplexer for combining the up-wave signal and the through-pass signal in the trunk, or performing the lower-wave signal and the wear in the trunk.
  • the split of the signal can also be used instead of the wavelength division multiplexer.
  • the optical add/drop multiplexer branch unit is a three-port optical add/drop multiplexer branch unit.
  • the specific working process of the detecting device 410 and the optical add/drop multiplexer branching unit 420 can be referred to the description of the corresponding method section above, and will not be repeated here.
  • the disaster tolerance system will be further described below in conjunction with a specific structure.
  • Figure 5 illustrates the OADM BU in the absence of a transmission link failure in an optical communication system in accordance with one embodiment of the present invention.
  • the OADM BU has three external ports, A, B, and C.
  • the OADM BU includes four Wavelength Division Multiplexers (WDMs) and three optically coupled loopback devices.
  • WDMs Wavelength Division Multiplexers
  • Four wavelength division multiplexers are respectively connected at the intersection of the trunk and the branch, and are used to realize the splitting and combining of the upper and lower waves and the through wave.
  • a coupler can also be used instead of the wavelength division multiplexer.
  • the optical coupling loopback devices are respectively connected in the trunk road and the branch road.
  • the optical coupling loopback device has four ports, and the connection relationship between the ports can be configured as needed. It can be configured in at least two states.
  • the punch-through state 1 port to 2 ports, 3 ports to 4 ports; Loopback status: 3 ports to 2 ports, 1 port to 4 ports.
  • FIG. 5 different optical signals are indicated by different marks on the trunk and the branch, respectively. It can be seen that in the case where the optical communication system shown in FIG. 5 does not have a transmission link failure, the punch-through signals AB, BA, A->C, and B from the A->B and B->A directions are included. -> Down-wave signals AC, BC, C->A and C->B in the C direction Up-wave signals CA, CB in the direction.
  • the punch-through signal AB in the A->B direction is input from the A terminal, passes through the WDM1, passes through the optical coupling loopback device 1 (in the through state), passes through the WDM2, and outputs from the B terminal; similarly, the through signal in the 8-> direction
  • the BA is input from the B terminal, passes through the WDM3, passes through the optical coupling loopback device 1 (in the through state), passes through the WDM4, and is output from the A terminal.
  • the lower-wave signal AC in the A->C direction is input from the A terminal, passes through the WDM1, passes through the optical coupling loopback device 2 (in the punch-through state), and is output from the C terminal; the upper wave signal CA in the 0 direction is input from the C terminal, and passes through the light.
  • the lower-wave signal B->C direction is input from the B terminal, passes through the WDM3, passes through the optical coupling loopback device 3 (in the punch-through state), and is output from the C terminal;
  • ->8-direction up-wave signal CB is input from the C terminal, passes through the optical coupling loopback device 3 (in the through state), and passes through the WDM2 and is output from the B terminal.
  • Figure 6 illustrates the OADM BU in the event of a trunk transmission link failure in an optical communication system in accordance with one embodiment of the present invention.
  • the transmission link between the A terminal and the B terminal belongs to the trunk of the optical communication system
  • the transmission link between the OADM BU and the C terminal belongs to the branch of the optical communication system.
  • the A->B direction punch-through signal AB and C->B direction up-wave signal CB cannot reach the B-end, and the B->A direction punch-through signal BA and B->C
  • the direction down-wave signal BC cannot reach the OADM BU, causing partial power loss, that is, communication between the B terminal and the C terminal, and between the B terminal and the A terminal is interrupted. If you want to keep the C-to-A communication normal, you need to compensate for the lost optical power in the > direction. Therefore, you need to switch the state of the optical coupling loopback device 1 to the loopback state shown in Figure 6. At this time, the signal flow is as follows: ->.
  • the lower wave signal AC and the C->A upper wave signal CA flow direction are unchanged; the A->B direction punch-through signal AB is input from the A terminal, passes through the WDM1, then passes through the optical coupling loopback device 1, and then returns to the WDM4 and C- >A Up-wave signal CA is combined and output from the A terminal.
  • the lower-wave signal AC has the same ratio of the output from the A terminal to the total optical power as in the normal case, so that it maintains the original power level in the link, and the transmission performance remains stable. In this way, the B-side cable loss tolerance function is realized.
  • the A-side disaster recovery method is the same as that on the B side, and will not be described again.
  • the optical signal input to the non-faulty end of the link where the fault is located is looped back to the output of the end, and the signal input by the end is used to compensate A signal lost by a transmission link failure, maintaining the power level in the link where the transmission link fails, thereby It reduces the impact of transmission link failures on other services, maintains stable transmission performance, and improves the disaster tolerance of optical communication systems.
  • no additional energy is introduced into the transmission link, so spontaneous emission noise is not introduced, and the performance of the system is ensured.
  • Figure 7 illustrates the OADM BU in the event of a branch transmission link failure in an optical communication system in accordance with one embodiment of the present invention.
  • the transmission link between the A terminal and the B terminal belongs to the trunk of the optical communication system
  • the transmission link between the OADM BU and the C terminal belongs to the branch of the optical communication system.
  • the signal flow direction is as follows: A->B punch-through signal AB and 8-> the punch-through signal BA flow direction is unchanged; A->C-direction down-wave signal AC is input from the A terminal, passes through WDM1, and then passes through the optical coupling loopback device. 2, then return to the WDM4 and B->A punch-through signal combination, output from the A terminal. B -> C-direction down-wave signal BC is input from terminal B, passes through WDM3, then passes through optical coupling loopback device 3, and then returns to WDM2 and ->8 punch-through signal AB combined, output from terminal B.
  • the ratio of the A->B punch-through signal AB and the B->A punch-through signal BA to the total optical power is the same as that under normal conditions, so that it maintains the original power level in the link, and the transmission performance remains stable. . This achieves the C-side cable loss tolerance function.
  • the optical coupling loopback device 2 and the optical coupling loopback device 3 can be omitted in the practical application scene.
  • the disaster recovery function for the C-side branch is not implemented at this time.
  • the state of the optical coupling loopback devices 2, 3 is switched to connect the ports 1, 4 and connect the ports 2, 3 respectively in FIG. 7, it is also possible to connect only the ports 2, 3, respectively. This does not affect the essence of the invention.
  • the disaster tolerance function can also be implemented only in the trunk road or only in the branch road.
  • Figure 8 shows an embodiment of the invention that implements the disaster tolerance function only in the trunk, where it can be seen that only
  • An optical coupling loopback device is disposed on the trunk road between the A terminal and the B terminal, wherein when the transmission link fails on the trunk road, The optical coupling loopback device connected to the main road switches from a through state in normal operation to a loopback state.
  • Figure 9 shows an embodiment of the invention in which the disaster tolerance function is implemented only in the branch, wherein it can be seen that only the optical coupling loopback device is provided on the trunk where the C terminal is located, wherein when the transmission link fails on the branch road At this time, the optical coupling loopback device connected to the branch road is switched from the through state in the normal operation to the loopback state.
  • the optical add/drop multiplexer branch unit is a three-port OADM BU.
  • Figure 10 shows a four port OADM BU.
  • the transmission link between the A terminal and the B terminal belongs to the trunk of the optical communication system, and the other transmission links belong to the branch of the optical communication system. It can be seen that it includes 5 optical coupling loopback devices.
  • the optical coupling loopback device 1 switches to the loopback state;
  • the optical coupling loopback device 2, 3 switches to the loopback state; when the fault occurs on the D side,
  • the optical coupling loopback devices 4, 5 are switched to a loopback state.
  • Figure 11 also shows another four port OADM BU.
  • the transmission link between the A terminal and the B terminal belongs to the trunk of the optical communication system, and the other transmission links belong to the branch of the optical communication system.
  • six optical coupling loopback devices are included.
  • the optical coupling loopback device 1 switches to the loopback state
  • the optical coupling loopback device 4 switches to the loopback state
  • the optical coupling loopback device 2 switches to the loopback state
  • the optical coupling loopback device 2, 3 switches to the loopback state
  • the optical coupling loopback devices 5, 6 are switched to the loopback state.
  • the transmission link when the transmission link is faulty, the optical signal input at one end of the link is looped back to the output of the link, and the signal input by the terminal is used to compensate for the failure of the transmission link.
  • the lost signal thus reduces the impact of the transmission link failure on other services as much as possible, and improves the disaster tolerance capability of the optical communication system.
  • the transmission link has a simple structure and a small number of components, and therefore has the advantage of low cost.
  • the disaster recovery scheme has no relationship with the upper and lower wavelengths and wave numbers in the optical communication system, and therefore has strong universality.
  • no additional energy is introduced into the transmission link, so spontaneous emission noise is not introduced, and the performance of the system is guaranteed.
  • the optical coupling loopback device is a 2 X 2 optical switch that can be implemented in a variety of ways.
  • Figures 12a and 12b illustrate another implementation of an optical coupling loopback device in accordance with an embodiment of the present invention.
  • the optical coupling loopback device is composed of an optical coupler and a two-state optical switch. Shown in Figures 12a and 12b is the first position in which the light-on is in a normal state when there is no transmission link failure. In the event of a transmission link failure, the optical switch switches to a different second position than shown, such that the two transmission links in parallel are connected.
  • each optical coupling loopback device may include two structures as shown in Figs. 12a and 12b.
  • two structures as shown in Fig. 12a or two structures shown in Fig. 12b may be used, and a structure shown in Fig. 12a and a structure shown in Fig. 12b may be used.
  • only the optical signal input from the non-faulty end of the link where the fault is located may be looped back to the output of the end without the optical signal of the faulty end.
  • Loopback in this case, only one structure as shown in Fig. 12a or Fig. 12b may be required, and the object of the present invention can be achieved as well.
  • Figure 13 illustrates another implementation of an optical coupling loopback device in accordance with an embodiment of the present invention.
  • the optical coupling loopback device can be composed of an optical coupler and a light blocker.
  • the optical blocker When there is no transmission link failure, the optical blocker is in the blocking state, and the two transmission links in the parallel direction work normally.
  • the transmission link fails, the optical blocker switches to the conducting state, thereby paralleling the direction.
  • the two transmission links are connected.
  • FIG. 13 only shows a portion of the optical coupling loopback device, such as the portion of the optical coupling loopback device of FIGS. 5-11 that relates to ports 1, 4 or ports 2, 3.
  • each of the optical coupling loopback devices may include two structures as shown in FIG. 13, and may include only one such structure.
  • the meaning of the transmission link failure in the embodiment of the present invention is that the optical signal cannot be normally transmitted in the transmission link, and may include a scenario that is not an optical failure, such as an open circuit or a short circuit, causing the repeater to fail to work. In this case, the optical signal cannot be turned on. In this case, the solution of the embodiment of the present invention can also be used to implement disaster tolerance.
  • optical coupling loopback device can also be implemented in other ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例涉及一种光通信系统容灾方法、光分插复用器分支单元和容灾系统。使用光分插复用器OADM的光通信系统的容灾方法,包括:检测光通信系统中的传输链路故障,当检测到传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出。通过本发明实施例提出的方案,能够在光通信系统中出现传输链路故障的情况下,维持该传输链路故障所在的链路中的功率水平,从而保持稳定的传输性能,提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。

Description

光通信系统容灾方法、 装置和容灾系统 技术领域 本发明涉及通信领域, 具体涉及一种光通信系统容灾方法、光分插复用器分支单 元和容灾系统。 背景技术
随着信息技术的快速发展,海缆网络覆盖了全球各大海域,海缆光纤通信系统一 般采用密集波分复用 (Dense Wavelength Division Multiplexing, DWDM) 技术, 已经 成为承载重要国际通信业务的重要通信网络。在海缆网络中, 使用光分插复用器分支 单元(Optical Add-Drop Multiplexer Branching Unit, OADM BU)组网可以充分利用光 纤纤对的容量, 有效降低成本并减少传输时延。然而, OADM BU组网给网络设计和 管理带来更大的困难和挑战, 尤其体现在容灾和非线性管理方面。
图 1示出了一种利用 OADM BU组网的情形。可见, 在该网络中包括 A站点、 B 站点和 C站点以及将它们连接的 OADM BU, 其中 A站点和 B站点之间的链路属于 干路, 而 C站点和 OADM BU之间的链路属于支路。 在 A站点、 B站点、 C站点与 OADM BU之间分别设置有光中继器。 当干路 A站点到 OADM BU之间发生断缆或 者海缆漏电的故障情况, A侧的业务光无法到达 OADM BU, 那么 OADM BU到 B 站点方向的存活业务只有 C站点上波业务。 海缆光中继器工作在深度饱和情况下, 总输出功率恒定, 由于失去 A站点到 B站点的穿通业务信号, 这将导致 C站点到 B 站点的业务信号被放大到更大倍数,信号单波光功率增加,有可能导致很高的非线性 传输代价使得系统性能劣化, 影响到 C站点和 B站点之间的正常通信。 发明内容
本发明实施例提出了一种光通信系统容灾方法、装置和容灾系统, 以降低传输链 路故障对于光通信系统的影响。
一方面, 本发明实施例提出了一种使用光分插复用器 OADM的光通信系统的容 灾方法, 包括: 检测光通信系统中的传输链路故障, 当检测到传输链路故障时, 将所 述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障 的一端输入的光信号环回到该端输出。 另一方面, 本发明实施例提出了一种光分插复用器分支单元 0ADM BU, 被配置 为当所述 OADM BU所在的传输链路出现传输链路故障时, 将所述传输链路故障所 在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信 号环回到该端输出, 其中所述 OADM BU具体包括至少一个光耦合环回装置、 至少 两个干路端口和至少一个支路端口,所述光耦合环回装置连接在干路端口之间的干路 上, 或者连接在支路端口所在的支路上, 或者连接在所述干路上和所述支路上, 所述 光耦合环回装置具有穿通状态和环回状态,当光耦合环回装置所在的链路存在传输链 路故障时,所述光耦合环回装置能够从正常工作时的穿通状态切换到环回状态, 使得 从所述光耦合环回装置的没有故障的一端输入的光信号环回到该端输出。
另一方面, 本发明实施例提出了一种光通信的容灾系统, 包括: 检测装置, 用于 检测光通信系统中的传输链路故障, 以及上述光分插复用器分支单元。
可见,通过本发明实施例提出的方案, 能够在光通信系统中出现传输链路故障的 情况下, 维持该传输链路故障所在的链路中的功率水平, 从而保持稳定的传输性能, 提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引 入传输链路中, 因此不会引入自发辐射噪声, 保证了系统的性能。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1示出了一种利用 OADM BU组网的情形;
图 2示出了根据本发明实施例的一种使用 OADM的光通信系统的容灾方法的流 程图;
图 3示出了利用 OADM BU组网的光通信系统出现故障的情形;
图 4示出了根据本发明实施例的光通信系统的容灾系统的示意性结构图; 图 5示出了根据本发明一个实施例的 OADM BU在光通信系统未发生传输链路 故障时的情况;
图 6示出了根据本发明一个实施例的 OADM BU在光通信系统发生干路传输链 路故障时的情况;
图 7示出了根据本发明一个实施例的 OADM BU在光通信系统发生支路传输链 路故障时的情况;
图 8示出了仅仅在干路中实现容灾功能的本发明实施例;
图 9示出了仅仅在支路中实现容灾功能的本发明实施例;
图 10示出了一种四端口的 OADM BU;
图 11还示出了另一种四端口的 OADM BU;
图 12a和图 12b示出了根据本发明实施例的光耦合环回装置的另一种实现形式; 并且
图 13示出了根据本发明实施例的光耦合环回装置的另一种实现形式。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完 整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得 的所有其他实施例, 都属于本发明保护的范围。
需要说明的是,本发明实施例中涉及的传输链路故障包括其中本发明实施例的方 案可以产生有益效果的各种故障场景, 尤其是包括海缆故障场景中的断缆、漏电、水 下设备故障等。其中断缆通常是由于船锚、渔业作业、海底地质活动等而导致线缆断 开, 通常的故障现象是光纤和电缆同时断开。 漏电通常是由于磨损、 腐蚀、 海洋生物 破坏等原因导致海缆馈电部分对海水短路漏电。水下设备故障指的是例如水下光中继 器由于自身故障 (包括电气、 光学等各种可能原因) 原因导致光功率降低或无输出。
图 2示出了根据本发明实施例的一种使用 OADM的光通信系统的容灾方法的流 程图。 从图 2可见, 该方法包括以下步骤:
步骤 201 : 检测光通信系统中的传输链路故障。 在此, 可以通过本领域技术人员 所熟知的各种方式来检测传输链路故障, 例如光时域反射 (Optical Time Domain Reflectmeter, OTDR) 方法、 直流阻抗检测法、 直流电容检测法、 交流法等等, 对此 不进行具体描述。 通过步骤 201, 可以确定传输链路故障所在的链路。 当传输链路故 障发生在干路中时,确定所述传输链路所在的链路是干路, 而当传输链路故障发生在 支路中时, 确定所述传输链路所在的链路是支路。
步骤 202: 当检测到传输链路故障时, 将所述传输链路故障所在的链路从穿通状 态切换到环回状态, 使得从所述链路的没有故障的一端输入的光信号环回到该端输 出。本领域技术人员知道, 在光通信系统中, 无论支路还是干路通常都包括两个相反 的传输方向。 发明人注意到, 对于同一链路, 从一端输入的信号与从该端输出的信号 会具有相似的信号光谱分布, 因此,通过在传输链路故障时将所述链路的一端输入的 光信号环回到该端输出,可以利用该端输入的信号来补偿由于传输链路故障而损失的 信号功率。这里要说明的是, 在该步骤 202中, 将所述传输链路故障所在的链路从穿 通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端 输出,这里并未对有故障的一端的光信号是否环回进行任何限制,可以对其进行环回 (如果存在光信号), 也可以不进行环回。这在下面还会结合具体实施例来进行说明。
图 3示出了利用 OADM BU组网的光通信系统出现故障的情形。 在该光通信系 统中, 具有 A、 B、 C三个站点, AB之间为干路, OADM BU与 C之间为支路。 在 图 3中示意性示出了三个断缆场景, 其中断缆场景 1是在站点 A与 OADM BU之间 的干路上发生故障, 断缆场景 2是在站点 B与 OADM BU之间的干路上发生故障, 断缆场景 3是在站点 C与 OADM BU之间的支路上发生故障。通常情况下 OADM支 路上下波较少, 干路之间穿通的业务波更多。 因此, 在干路断缆的情况下(断缆场景 1、 断缆场景 2), 如果没有其他补偿机制, 则支路信号经过连接在干路中的光中继器 后单波功率变化更大, 意味着干路断缆情况对支路业务的影响较大。 因此, 在断缆场 景 1的情况中, 在步骤 201中检测到 A端与 OADM BU之间的干路出现断缆故障, 从而在步骤 202中将从 B端输入到 A端的光信号仍然环回到 B端输出, 利用该环回 的来自 B端的光信号补偿由于 A端与 OADM BU之间的断缆故障导致损失的 A端到 B端的光信号, 从而尽可能降低对于 C端到 B端的光信号的影响。 换而言之, 在环 回的情况下,从 OADM BU到 B端的信号包括从 C端发送到 B端的信号以及从 B端 发送到 A端然而被环回到 B端的信号。 类似地, 在断缆场景 2的情况中, 将 A端输 入到 B端的光信号环回到 A端输出来补偿损失的 B端到 A端的光信号。
在支路上下波业务较少的情况, 支路断缆 (断缆场景 3 )对于干路站点之间的业 务性能影响较小, 因此在这种情况下, 可以忽视支路断缆, 也即支路故障时并不进行 上述切换到环回状态的操作。然而在支路上下波业务较多的情况下,支路断缆对干路 站点之间的业务性能影响也不能忽视。 因此, 同样地, 将传输链路故障所在的链路从 穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该 端输出。 关于支路的情况, 在下面的实施例中还会结合具体结构来详细描述。
容易想到的是, 上述方法也可以不针对干路而只针对支路来设计,此时仅仅实现 了支路的容灾方法。
优选的是, 在步骤 202之后, 继续对光通信系统的传输链路进行检测。 当检测到 传输链路故障消失时, 控制所述传输链路故障所在的链路从环回状态切换到穿通状 态。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的 没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输 链路故障而损失的信号, 维持该传输链路故障所在的链路中的功率水平, 从而尽可能 地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系 统的容灾能力。 另外, 在本发明实施例的方案中没有将额外的能量引入传输链路中, 因此不会引入自发辐射噪声, 保证了系统的性能。
相应地, 本发明实施例提出了一种光分插复用器分支单元 OADM BU, 其被配置 为当所述 OADM BU所在的传输链路出现传输链路故障时, 将所述传输链路故障所 在的链路从穿通状态切换到环回状态,使得从所述链路的一端输入的光信号环回到该 端输出。 可见, 利用这种 OADM BU, 可以实现上述实施例中所描述的方法。
图 4示出了根据本发明实施例的光通信系统的容灾系统的示意性结构图。 可见, 容灾系统 400包括:
检测装置 410, 用于检测光通信系统中的传输链路故障, 以及
光分插复用器分支单元 420, 用于当所述检测装置检测到传输链路故障时, 将所 述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障 的一端输入的光信号环回到该端输出。 其中所述 OADM BU具体包括至少一个光耦 合环回装置、至少两个干路端口和至少一个支路端口,所述光耦合环回装置连接在干 路端口之间的干路上, 或者连接在支路端口所在的支路上, 或者连接在所述干路上和 所述支路上,所述光耦合环回装置具有穿通状态和环回状态, 当光耦合环回装置所在 的链路存在传输链路故障时,所述光耦合环回装置能够从正常工作时的穿通状态切换 到环回状态,使得从所述光耦合环回装置的没有故障的一端输入的光信号环回到该端 输出。
在本发明实施例中,可以采用本领域技术人员所熟悉的各种检测装置来检测传输 链路故障。例如, 可以采用光时域反射检测装置, 其采用光时域反射技术检测光纤链 路断点。 或者, 可以采用直流阻抗检测装置。 由于在大多数情况下, 电缆的故障现象 是电缆中间的导体与海水接触,因此直流阻抗检测装置在这种情况下可以用直流阻抗 检测法, 结合线缆、 水下设备的直流阻抗参数定位故障点。 或者, 可以采用直流电容 检测装置,其尤其适于功率电缆中的导体没有和海水接触的情况。直流电容检测装置 测量中间导体和海水之间的电容,通过基于测试数据的计算结果,可以估算故障点的 位置。或者, 可以采用交流检测装置, 其中通过供电设备(Power Feeding Equipment,
PFE)在直流源上加载具有低频率和幅度的交流电流信号, 而交流电流信号在导线的 传输中向外部空间放射出电磁波,从而维修船只通过专用的感应探测仪器在海底中找 到信号, 进而确定海缆故障的位置。 或者, 还可以使用其他的检测装置, 例如可以通 过读取水下设备的输入、 输出光功率是否异常来判断故障点。
根据一个实施形式, 光分插复用器分支单元还包括波分复用器, 用于进行上波信 号和干路中的穿通信号的合路,或者进行下波信号和干路中的穿通信号的分路。在此, 也可以使用耦合器来替代波分复用器。
根据一个实施形式,所述光分插复用器分支单元是三端口的光分插复用器分支单 元。
关于检测装置 410和光分插复用器分支单元 420的具体工作过程可以参见上面相 应方法部分的描述, 这里不再重复。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的 没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输 链路故障而损失的信号, 维持该传输链路故障所在的链路中的功率水平, 从而尽可能 地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系 统的容灾能力。 另外, 在本发明实施例的方案中没有将额外的能量引入传输链路中, 因此不会引入自发辐射噪声, 保证了系统的性能。
下面将结合具体的结构来对容灾系统进行进一步描述。
图 5示出了根据本发明一个实施例的 OADM BU在光通信系统未发生传输链路 故障时的情况。 该 OADM BU有三个外接端口, 分别为 A端、 B端和 C端。
从图 5 可以看到, 该 OADM BU包括 4 个波分复用器 (Wavelength Division Multiplexer, WDM) 和 3个光耦合环回装置。 4个波分复用器分别连接在干路与支路 的交叉连接处, 用于实现上下波和穿通波的分波和合波。在此, 也可以使用耦合器来 替代波分复用器。 光耦合环回装置分别连接在干路和支路中。 光耦合环回装置具有 4 个端口,其中在端口之间的连接关系可以根据需要来进行配置。至少可配置成两种状 态, 穿通状态: 1端口到 2端口连通, 3端口到 4端口连通; 环回状态: 3端口到 2 端口连通, 1端口到 4端口连通。
在图 5中, 分别在干路和支路上用不同的标记表示不同的光信号。可以看到, 在 图 5所示的光通信系统未发生传输链路故障时的情况中, 包括从 A->B以及 B->A方 向的穿通信号 AB、 BA, A->C以及 B->C方向的下波信号 AC、 BC, C->A以及 C->B 方向的上波信号 CA、 CB。
A->B方向的穿通信号 AB从 A端输入,经过 WDM1, 经过光耦合环回装置 1 (处 于穿通状态), 经过 WDM2, 从 B端输出; 同理, 8-> 方向的穿通信号 BA从 B端 输入, 经过 WDM3, 经过光耦合环回装置 1 (处于穿通状态), 经过 WDM4, 从 A端 输出。
A->C方向的下波信号 AC从 A端输入,经过 WDM1, 经过光耦合环回装置 2(处 于穿通状态), 从 C端输出; 0 方向的上波信号 CA从 C端输入, 经过光耦合环 回装置 2 (处于穿通状态), 经过 WDM4, 从 A端输出。
B->C方向的下波信号 BC从 B端输入,经过 WDM3, 经过光耦合环回装置 3 (处 于穿通状态), 从 C端输出; 。->8方向的上波信号 CB从 C端输入, 经过光耦合环 回装置 3 (处于穿通状态), 经过 WDM2, 从 B端输出。
图 6示出了根据本发明一个实施例的 OADM BU在光通信系统发生干路传输链 路故障时的情况。在此, A端和 B端之间的传输链路属于光通信系统的干路,而 OADM BU与 C端之间的传输链路属于光通信系统的支路。
在 B侧发生断缆故障情况下, A->B方向穿通信号 AB和 C->B方向上波信号 CB 无法到达 B端, 并且 B->A方向的穿通信号 BA以及 B->C方向下波信号 BC也无法 到达 OADM BU,造成部分功率损失, 即 B端与 C端以及 B端与 A端之间通信中断。 如果要保持 C端到 A端通信正常, 需要补偿 > 方向的损失的光功率, 因此需把 光耦合环回装置 1的状态切换到图 6所示的环回状态。 这时信号流向如下: ->。下 波信号 AC和 C->A上波信号 CA流向不变; A->B方向穿通信号 AB从 A端输入, 经过 WDM1 ,然后经过光耦合环回装置 1,然后返回到 WDM4和 C->A上波信号 CA 合路, 从 A端输出。 这时 ->。下波信号 AC从 A端输出占总光功率的比例与正常 情况下的比例一样, 使得其在链路中维持原有的功率水平, 传输性能保持稳定。这样 就实现了 B侧断缆容灾功能。 A侧容灾方法与 B侧的情况相同, 不再敖述。 这里需 要指出的是, 虽然在图 6中光耦合环回装置 1的状态切换为将端口 1、 4连接以及将 端口 2、 3连接, 也可能的是仅仅将端口 1、 4连接, 即仅仅使得从故障所在链路的没 有故障的一端输入的光信号环回到该端输出,而并未对有故障的一端的光信号进行环 回, 这并不影响本发明的实质。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的 没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输 链路故障而损失的信号, 维持该传输链路故障所在的链路中的功率水平, 从而尽可能 地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系 统的容灾能力。 另外, 在本发明实施例的方案中没有将额外的能量引入传输链路中, 因此不会引入自发辐射噪声, 保证了系统的性能。
图 7示出了根据本发明一个实施例的 OADM BU在光通信系统发生支路传输链 路故障时的情况。在此, A端和 B端之间的传输链路属于光通信系统的干路,而 OADM BU与 C端之间的传输链路属于光通信系统的支路。
在 C侧发生断缆故障情况下, A ->C、 8 ->。下波信号 AC、 BC无法到达 C端, C->A、 C ->B上波信号 CA、 CB无法到达 A端和 B端。 A端与 C端以及 B端与 C 端之间通信中断。 如果要保持 A端与 B端之间相互通信正常, 需要补偿 C->A方向 以及。->8方向的损失的上波信号功率, 因此需把光耦合环回装置 2和光耦合环回装 置 3的状态切换到图 7所示的环回状态。 这时信号流向如下: A->B穿通信号 AB和 8-> 穿通信号 BA流向不变; A ->C方向下波信号 AC从 A端输入, 经过 WDM1 , 然后经过光耦合环回装置 2, 然后返回到 WDM4和 B->A穿通信号合路, 从 A端输 出。 B ->C方向下波信号 BC从 B端输入,经过 WDM3 ,然后经过光耦合环回装置 3, 然后返回到 WDM2和 ->8穿通信号 AB合路, 从 B端输出。 这时 A->B穿通信号 AB和 B->A穿通信号 BA占总光功率的比例与正常情况下的比例一样, 使得其在链 路中维持原有的功率水平, 传输性能保持稳定。 这样就实现了 C侧断缆容灾功能。
当支路 C站点上下波数较少时, 支路断缆对干路的影响比较小, 在实际应用场 景也可以省略光耦合环回装置 2和光耦合环回装置 3。此时并未实现针对 C侧支路的 容灾功能。 另外, 同样地, 虽然在图 7中光耦合环回装置 2、 3的状态切换为分别将 端口 1、 4连接以及将端口 2、 3连接, 也可能的是仅仅分别将端口 2、 3连接, 这并 不影响本发明的实质。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的 没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输 链路故障而损失的信号, 维持该传输链路故障所在的链路中的功率水平, 从而尽可能 地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系 统的容灾能力。 另外, 在本发明实施例的方案中没有将额外的能量引入传输链路中, 因此不会引入自发辐射噪声, 保证了系统的性能。
另外, 也可以仅仅在干路或者仅仅在支路中实现容灾功能。
图 8示出了仅仅在干路中实现容灾功能的本发明实施例,其中可以看到,仅仅在
A端和 B端之间的干路上设置了光耦合环回装置, 其中当传输链路故障在干路上时, 连接在干路上的该光耦合环回装置从正常工作时的穿通状态切换到环回状态。 图 9 示出了仅仅在支路中实现容灾功能的本发明实施例, 其中可以看到, 仅仅在 C端所 在的干路上设置了光耦合环回装置,其中当传输链路故障在支路上时,连接在支路上 的光耦合环回装置从正常工作时的穿通状态切换到环回状态。
在图 6至图 9的实施例中, 光分插复用器分支单元为三端口的 OADM BU。 图 10示出了一种四端口的 OADM BU。 在此, A端和 B端之间的传输链路属于 光通信系统的干路, 而其他传输链路属于光通信系统的支路。 可见, 其中包括了 5 个光耦合环回装置。 当 A侧或 B侧发生故障时, 光耦合环回装置 1切换为环回状态; 当 C侧发生故障时, 光耦合环回装置 2、 3切换为环回状态; 当 D侧发生故障时, 光 耦合环回装置 4、 5切换为环回状态。
图 11还示出了另一种四端口的 OADM BU。 在此, A端和 B端之间的传输链路 属于光通信系统的干路, 而其他传输链路属于光通信系统的支路。可见, 其中包括了 6个光耦合环回装置。 当 A侧发生故障时, 光耦合环回装置 1切换为环回状态; 当 B 侧发生故障时, 光耦合环回装置 4切换为环回状态; 当 C侧发生故障时, 光耦合环 回装置 2、 3切换为环回状态; 当 D侧发生故障时, 光耦合环回装置 5、 6切换为环 回状态。
关于图 10和图 11中切换之后的具体信号流向根据前面的实施例可以容易得到, 这里不再进行详细说明。
需要指出的是, 本发明实施例的方案并不局限于上述的三端口或四端口的情况。 基于本发明实施例的教导, 本领域技术人员容易将其扩展到具有更多端口的 OADM BU。
可见,在本发明实施例所提出的方案中,在传输链路故障时将所在的链路的一端 输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输链路故障而损失 的信号, 从而尽可能地降低了传输链路故障对于其他业务的影响,提高了光通信系统 的容灾能力。 此外, 在本发明实施例提出的容灾方案中, 传输链路结构简单, 元件个 数较少, 因此还具有低成本的优点。 另外, 该容灾方案与光通信系统中的上下波长、 波数没有关系, 因此具有较强的普适性。 另外, 在本发明实施例的方案中没有将额外 的能量引入传输链路中, 因此不会引入自发辐射噪声, 保证了系统的性能。
在本发明实施例中, 光耦合环回装置是一种 2 X 2光开关, 其可以通过多种方式 来实现。
图 12a和图 12b示出了根据本发明实施例的光耦合环回装置的另一种实现形式。 可见, 该光耦合环回装置由光耦合器与双态光开关构成。在图 12a和图 12b中示出的 是当没有传输链路故障时, 光开光处于正常的第一位置。 而发生传输链路故障时, 光 开关切换到与图中所示不同的另外的第二位置, 使得将方向并行的两条传输链路连 通。
需要指出的是, 图 12a和图 12b都仅仅示出了光耦合环回装置的一部分, 例如是 图 5至图 11中的光耦合环回装置中涉及端口 1、 4的部分或者端口 2、 3的部分, 实 际应用时每个光耦合环回装置可以包括两个图 12a、 图 12b所示的结构。 例如可以分 别使用两个图 12a所示的结构或者两个图 12b所示的结构,也可以使用一个图 12a所 示的结构和一个图 12b所示的结构。 另外, 如前面的实施例中所描述的那样, 也可以 仅仅使得从故障所在链路的没有故障的一端输入的光信号环回到该端输出,而并未对 有故障的一端的光信号进行环回, 在这种情况下可以仅仅需要一个图 12a或者图 12b 所示的结构即可, 同样能够实现本发明的目的。
图 13示出了根据本发明实施例的光耦合环回装置的另一种实现形式。 可见, 该 光耦合环回装置可以由光耦合器与光阻断器构成。当没有传输链路故障时,光阻断器 处于阻断状态, 方向并行的两条传输链路正常工作, 而发生传输链路故障时, 光阻断 器切换到导通状态, 从而将方向并行的两条传输链路连通。
同样需要指出的是, 图 13仅仅示出了光耦合环回装置的一部分, 例如是图 5至 图 11中的光耦合环回装置中涉及端口 1、 4的部分或者端口 2、 3的部分, 实际应用 时每个光耦合环回装置可以包括两个图 13所示的结构, 也可以包括仅仅一个这样的 结构。
可见, 在本发明实施例中, 没有将额外的能量引入传输链路中, 因此不会引入自 发辐射噪声, 保证了系统的性能。
还需要指出的是,本发明实施例中的传输链路故障的含义是光信号无法正常在传 输链路中传输, 可以包括并非光学故障的场景, 如供电开路、 短路造成中继器无法工 作, 现象上来看光信号无法导通, 这时也可以采用本发明实施例的方案来实现容灾。
上面的实施例仅仅是示例性的,本领域技术人员可以理解的是, 也可以采用其他 的方式来实现所述光耦合环回装置。
本领域技术人员应该理解,本发明实施例中装置模块的划分为功能划分, 实际具 体结构可以为上述功能模块的拆分或合并。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
权利要求的内容记载的方案也是本发明实施例的保护范围。 本领域普通技术人员可以理解上述实施例方法中的全部或部分处理是可以通过 程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储介质中。
以上所述仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围。凡在 本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求
1. 一种使用光分插复用器 OADM的光通信系统的容灾方法, 包括: 检测光通信系统中的传输链路故障,
当检测到传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换 到环回状态, 使得从所述链路的没有故障的一端输入的光信号环回到该端输出。
2. 根据权利要求 1所述的方法, 其中
当所述传输链路故障所在的链路是干路时,将所述干路从穿通状态切换到环 回状态。
3. 根据权利要求 1或 2所述的方法, 其中
当所述传输链路故障所在的链路是支路时,将所述支路从穿通状态切换到环 回状态。
4. 根据权利要求 1至 3中的任一项所述的方法, 还包括:
当检测到所述传输链路故障消失时,控制所述传输链路故障所在的链路从环 回状态切换到穿通状态。
5. 一种光分插复用器分支单元 OADM BU, 被配置为当所述 OADM BU所 在的传输链路出现传输链路故障时,将所述传输链路故障所在的链路从穿通状态 切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输 出,
其中所述 OADM BU具体包括至少一个光耦合环回装置、 至少两个干路端 口和至少一个支路端口, 所述光耦合环回装置连接在干路端口之间的干路上, 或 者连接在支路端口所在的支路上, 或者连接在所述干路上和所述支路上,
所述光耦合环回装置具有穿通状态和环回状态,当光耦合环回装置所在的链 路存在传输链路故障时,所述光耦合环回装置能够从正常工作时的穿通状态切换 到环回状态,使得从所述光耦合环回装置的没有故障的一端输入的光信号环回到 该端输出。
6. 根据权利要求 5 所述的光分插复用器分支单元, 其中当传输链路故障在 干路上时,连接在干路上的光耦合环回装置从正常工作时的穿通状态切换到环回 状态。
7. 根据权利要求 5或 6所述的光分插复用器分支单元, 其中当传输链路故 障在支路上时,连接在支路上的光耦合环回装置从正常工作时的穿通状态切换到 环回状态。
8. 根据权利要求 5至 7中的任一项所述的光分插复用器分支单元, 还包括 波分复用器, 用于进行上波信号和干路中的穿通信号的合路, 或者进行下波信号 和干路中的穿通信号的分路,
9. 根据权利要求 5至 8中的任一项所述的光分插复用器分支单元, 其中所 述光分插复用器分支单元是三端口的光分插复用器分支单元。
10. 根据权利要求 5至 9中的任一项之一所述的光分插复用器分支单元, 其 中所述光耦合环回装置是光开关。
11. 根据权利要求 5至 10中的任一项所述的光分插复用器分支单元, 其中 所述光耦合环回装置由光耦合器与光阻断器构成, 或者由光耦合器与光开关构 成。
12. 一种光通信的容灾系统, 包括:
检测装置, 用于检测光通信系统中的传输链路故障, 以及
根据权利要求 4一 11之一所述的光分插复用器分支单元。
PCT/CN2012/076979 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统 WO2013185338A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014546284A JP2015506148A (ja) 2012-06-15 2012-06-15 光通信システムの災害復旧のための方法、装置、およびシステム
CN2012800022300A CN103190094A (zh) 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统
PCT/CN2012/076979 WO2013185338A1 (zh) 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统
EP12878754.6A EP2770654A4 (en) 2012-06-15 2012-06-15 EMERGENCY RECOVERY METHOD, DEVICE AND SYSTEM FOR AN OPTICAL COMMUNICATION SYSTEM
US14/282,156 US20140255020A1 (en) 2012-06-15 2014-05-20 Method, Apparatus, and System for Disaster Recovery of Optical Communication System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076979 WO2013185338A1 (zh) 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/282,156 Continuation US20140255020A1 (en) 2012-06-15 2014-05-20 Method, Apparatus, and System for Disaster Recovery of Optical Communication System

Publications (1)

Publication Number Publication Date
WO2013185338A1 true WO2013185338A1 (zh) 2013-12-19

Family

ID=48679812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076979 WO2013185338A1 (zh) 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统

Country Status (5)

Country Link
US (1) US20140255020A1 (zh)
EP (1) EP2770654A4 (zh)
JP (1) JP2015506148A (zh)
CN (1) CN103190094A (zh)
WO (1) WO2013185338A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3852285A4 (en) * 2018-09-10 2021-11-17 NEC Corporation PATH SWITCHING APPARATUS AND PATH SWITCHING METHOD

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045303A1 (ja) * 2013-09-26 2015-04-02 日本電気株式会社 光受信装置、光送信装置、光通信システム、光通信方法及びプログラムが記憶された記憶媒体
WO2015070406A1 (zh) * 2013-11-13 2015-05-21 华为海洋网络有限公司 一种可重构光分插复用装置
WO2015096068A1 (zh) * 2013-12-25 2015-07-02 华为海洋网络有限公司 一种光分插复用光分支器
CN105282629A (zh) * 2014-07-03 2016-01-27 中兴通讯股份有限公司 一种硅光交叉连接的控制方法和装置
CN104125009B (zh) * 2014-07-24 2017-01-11 华中科技大学 一种水下遥控通信网络
CN105119681A (zh) * 2015-06-25 2015-12-02 中国船舶重工集团公司第七二四研究所 一种基于vpx平台的雷达信号波分复用模块设计方法
CN116582177B (zh) * 2023-07-14 2023-09-19 华海通信技术有限公司 一种海缆系统故障后的数据保密方法及海缆系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318925A (zh) * 2001-05-25 2001-10-24 北京邮电大学 支持端口—波长指配的光分插复用设备
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置
US20110200324A1 (en) * 2010-02-16 2011-08-18 Ciena Corporation Method and system for optical connection validation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173598A (ja) * 1996-12-09 1998-06-26 Fujitsu Ltd 光合分波装置及びこれを用いた光伝送システム
WO2002043286A1 (fr) * 2000-11-22 2002-05-30 Mitsubishi Denki Kabushiki Kaisha Circuit pour la commutation de trajets optiques
JP2006180417A (ja) * 2004-12-24 2006-07-06 Hitachi Communication Technologies Ltd 光伝送装置
US8554081B2 (en) * 2008-07-09 2013-10-08 Tyco Electronics Subsea Communications, Llc Optical add/drop multiplexer including reconfigurable filters and system including the same
JP2011077808A (ja) * 2009-09-30 2011-04-14 Fujitsu Ltd 光伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318925A (zh) * 2001-05-25 2001-10-24 北京邮电大学 支持端口—波长指配的光分插复用设备
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置
US20110200324A1 (en) * 2010-02-16 2011-08-18 Ciena Corporation Method and system for optical connection validation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770654A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3852285A4 (en) * 2018-09-10 2021-11-17 NEC Corporation PATH SWITCHING APPARATUS AND PATH SWITCHING METHOD

Also Published As

Publication number Publication date
EP2770654A4 (en) 2014-12-17
US20140255020A1 (en) 2014-09-11
EP2770654A1 (en) 2014-08-27
JP2015506148A (ja) 2015-02-26
CN103190094A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
WO2013185338A1 (zh) 光通信系统容灾方法、装置和容灾系统
US9768899B2 (en) Optical add/drop multiplexer branching unit
US10826601B2 (en) Optical switch with path continuity monitoring for optical protection switching
US11258509B2 (en) Optical time-domain reflectometer interoperable trunk switch
US7415211B2 (en) Interconnections and protection between optical communications networks
CN109155674B (zh) 用于增强传输网络中的可靠性的系统和方法
CN101043271B (zh) 一种光业务信号保护倒换方法、设备及系统
JP2007173943A (ja) 光海底伝送システム
US6556319B2 (en) Split redundant trunk architecture using passive splitters and path switching
US20130223837A1 (en) Optical add-drop multiplexer branching unit and its control method
WO2022054779A1 (ja) 障害検出装置、ケーブル分岐装置、及び伝送路監視方法
CN202940821U (zh) 光旁路保护设备
WO2018137212A1 (zh) 一种无源波分移动前传网络系统
CN116582177B (zh) 一种海缆系统故障后的数据保密方法及海缆系统
WO2012103696A1 (zh) 光线路传输保护系统和方法
CN210093235U (zh) 一种wdm的半有源olp的新系统
CN117439696B (zh) 一种应用于海底观测网通信设备中的光路通信结构
JPH11243374A (ja) 光信号伝送システム及び、これに用いる光信号伝送装置
Huang et al. Failure detection and localization in OTN based on optical power analysis
Izquierdo et al. Optical fibre bus protection architecture for the networking of sensors
Hirota et al. Experimental Demonstration of Suppression of Cascaded Performance Degradation in Multi-core Fiber Networks with Burst-mode EDFA
Zhu et al. A survivable colorless wavelength division multiplexed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878754

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012878754

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014546284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE