CN103190094A - 光通信系统容灾方法、装置和容灾系统 - Google Patents

光通信系统容灾方法、装置和容灾系统 Download PDF

Info

Publication number
CN103190094A
CN103190094A CN2012800022300A CN201280002230A CN103190094A CN 103190094 A CN103190094 A CN 103190094A CN 2012800022300 A CN2012800022300 A CN 2012800022300A CN 201280002230 A CN201280002230 A CN 201280002230A CN 103190094 A CN103190094 A CN 103190094A
Authority
CN
China
Prior art keywords
transmission link
optical
state
fault
main line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012800022300A
Other languages
English (en)
Inventor
张文斗
马立苹
张立昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HMN Technologies Co Ltd
Original Assignee
Huawei Marine Networks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Marine Networks Co Ltd filed Critical Huawei Marine Networks Co Ltd
Publication of CN103190094A publication Critical patent/CN103190094A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/035Arrangements for fault recovery using loopbacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例涉及一种光通信系统容灾方法、光分插复用器分支单元和容灾系统。使用光分插复用器OADM的光通信系统的容灾方法,包括:检测光通信系统中的传输链路故障,当检测到传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出。通过本发明实施例提出的方案,能够在光通信系统中出现传输链路故障的情况下,维持该传输链路故障所在的链路中的功率水平,从而保持稳定的传输性能,提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。

Description

光通信系统容灾方法、装置和容灾系统
技术领域
本发明涉及通信领域,具体涉及一种光通信系统容灾方法、光分插复用器分支单元和容灾系统。
背景技术
随着信息技术的快速发展,海缆网络覆盖了全球各大海域,海缆光纤通信系统一般采用密集波分复用(Dense Wavelength Division Multiplexing,DWDM)技术,已经成为承载重要国际通信业务的重要通信网络。在海缆网络中,使用光分插复用器分支单元(OpticalAdd-Drop Multiplexer Branching Unit,OADM BU)组网可以充分利用光纤纤对的容量,有效降低成本并减少传输时延。然而,OADM BU组网给网络设计和管理带来更大的困难和挑战,尤其体现在容灾和非线性管理方面。
图1示出了一种利用OADM BU组网的情形。可见,在该网络中包括A站点、B站点和C站点以及将它们连接的OADM BU,其中A站点和B站点之间的链路属于干路,而C站点和OADM BU之间的链路属于支路。在A站点、B站点、C站点与OADM BU之间分别设置有光中继器。当干路A站点到OADM BU之间发生断缆或者海缆漏电的故障情况,A侧的业务光无法到达OADM BU,那么OADM BU到B站点方向的存活业务只有C站点上波业务。海缆光中继器工作在深度饱和情况下,总输出功率恒定,由于失去A站点到B站点的穿通业务信号,这将导致C站点到B站点的业务信号被放大到更大倍数,信号单波光功率增加,有可能导致很高的非线性传输代价使得系统性能劣化,影响到C站点和B站点之间的正常通信。
发明内容
本发明实施例提出了一种光通信系统容灾方法、装置和容灾系统,以降低传输链路故障对于光通信系统的影响。
一方面,本发明实施例提出了一种使用光分插复用器OADM的光通信系统的容灾方法,包括:检测光通信系统中的传输链路故障,当检测到传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出。
另一方面,本发明实施例提出了一种光分插复用器分支单元OADM BU,被配置为当所述OADM BU所在的传输链路出现传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出,其中所述OADM BU具体包括至少一个光耦合环回装置、至少两个干路端口和至少一个支路端口,所述光耦合环回装置连接在干路端口之间的干路上,或者连接在支路端口所在的支路上,或者连接在所述干路上和所述支路上,所述光耦合环回装置具有穿通状态和环回状态,当光耦合环回装置所在的链路存在传输链路故障时,所述光耦合环回装置能够从正常工作时的穿通状态切换到环回状态,使得从所述光耦合环回装置的没有故障的一端输入的光信号环回到该端输出。
另一方面,本发明实施例提出了一种光通信的容灾系统,包括:检测装置,用于检测光通信系统中的传输链路故障,以及上述光分插复用器分支单元。
可见,通过本发明实施例提出的方案,能够在光通信系统中出现传输链路故障的情况下,维持该传输链路故障所在的链路中的功率水平,从而保持稳定的传输性能,提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了一种利用OADM BU组网的情形;
图2示出了根据本发明实施例的一种使用OADM的光通信系统的容灾方法的流程图;
图3示出了利用OADM BU组网的光通信系统出现故障的情形;
图4示出了根据本发明实施例的光通信系统的容灾系统的示意性结构图;
图5示出了根据本发明一个实施例的OADM BU在光通信系统未发生传输链路故障时的情况;
图6示出了根据本发明一个实施例的OADM BU在光通信系统发生干路传输链路故障时的情况;
图7示出了根据本发明一个实施例的OADM BU在光通信系统发生支路传输链路故障时的情况;
图8示出了仅仅在干路中实现容灾功能的本发明实施例;
图9示出了仅仅在支路中实现容灾功能的本发明实施例;
图10示出了一种四端口的OADM BU;
图11还示出了另一种四端口的OADM BU;
图12a和图12b示出了根据本发明实施例的光耦合环回装置的另一种实现形式;并且
图13示出了根据本发明实施例的光耦合环回装置的另一种实现形式。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明实施例中涉及的传输链路故障包括其中本发明实施例的方案可以产生有益效果的各种故障场景,尤其是包括海缆故障场景中的断缆、漏电、水下设备故障等。其中断缆通常是由于船锚、渔业作业、海底地质活动等而导致线缆断开,通常的故障现象是光纤和电缆同时断开。漏电通常是由于磨损、腐蚀、海洋生物破坏等原因导致海缆馈电部分对海水短路漏电。水下设备故障指的是例如水下光中继器由于自身故障(包括电气、光学等各种可能原因)原因导致光功率降低或无输出。
图2示出了根据本发明实施例的一种使用OADM的光通信系统的容灾方法的流程图。从图2可见,该方法包括以下步骤:
步骤201:检测光通信系统中的传输链路故障。在此,可以通过本领域技术人员所熟知的各种方式来检测传输链路故障,例如光时域反射(Optical Time Domain Reflectmeter,OTDR)方法、直流阻抗检测法、直流电容检测法、交流法等等,对此不进行具体描述。通过步骤201,可以确定传输链路故障所在的链路。当传输链路故障发生在干路中时,确定所述传输链路所在的链路是干路,而当传输链路故障发生在支路中时,确定所述传输链路所在的链路是支路。
步骤202:当检测到传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出。本领域技术人员知道,在光通信系统中,无论支路还是干路通常都包括两个相反的传输方向。发明人注意到,对于同一链路,从一端输入的信号与从该端输出的信号会具有相似的信号光谱分布,因此,通过在传输链路故障时将所述链路的一端输入的光信号环回到该端输出,可以利用该端输入的信号来补偿由于传输链路故障而损失的信号功率。这里要说明的是,在该步骤202中,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出,这里并未对有故障的一端的光信号是否环回进行任何限制,可以对其进行环回(如果存在光信号),也可以不进行环回。这在下面还会结合具体实施例来进行说明。
图3示出了利用OADM BU组网的光通信系统出现故障的情形。在该光通信系统中,具有A、B、C三个站点,AB之间为干路,OADM BU与C之间为支路。在图3中示意性示出了三个断缆场景,其中断缆场景1是在站点A与OADM BU之间的干路上发生故障,断缆场景2是在站点B与OADM BU之间的干路上发生故障,断缆场景3是在站点C与OADMBU之间的支路上发生故障。通常情况下OADM支路上下波较少,干路之间穿通的业务波更多。因此,在干路断缆的情况下(断缆场景1、断缆场景2),如果没有其他补偿机制,则支路信号经过连接在干路中的光中继器后单波功率变化更大,意味着干路断缆情况对支路业务的影响较大。因此,在断缆场景1的情况中,在步骤201中检测到A端与OADM BU之间的干路出现断缆故障,从而在步骤202中将从B端输入到A端的光信号仍然环回到B端输出,利用该环回的来自B端的光信号补偿由于A端与OADM BU之间的断缆故障导致损失的A端到B端的光信号,从而尽可能降低对于C端到B端的光信号的影响。换而言之,在环回的情况下,从OADM BU到B端的信号包括从C端发送到B端的信号以及从B端发送到A端然而被环回到B端的信号。类似地,在断缆场景2的情况中,将A端输入到B端的光信号环回到A端输出来补偿损失的B端到A端的光信号。
在支路上下波业务较少的情况,支路断缆(断缆场景3)对于干路站点之间的业务性能影响较小,因此在这种情况下,可以忽视支路断缆,也即支路故障时并不进行上述切换到环回状态的操作。然而在支路上下波业务较多的情况下,支路断缆对干路站点之间的业务性能影响也不能忽视。因此,同样地,将传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出。关于支路的情况,在下面的实施例中还会结合具体结构来详细描述。
容易想到的是,上述方法也可以不针对干路而只针对支路来设计,此时仅仅实现了支路的容灾方法。
优选的是,在步骤202之后,继续对光通信系统的传输链路进行检测。当检测到传输链路故障消失时,控制所述传输链路故障所在的链路从环回状态切换到穿通状态。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输链路故障而损失的信号,维持该传输链路故障所在的链路中的功率水平,从而尽可能地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。
相应地,本发明实施例提出了一种光分插复用器分支单元OADM BU,其被配置为当所述OADM BU所在的传输链路出现传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的一端输入的光信号环回到该端输出。可见,利用这种OADM BU,可以实现上述实施例中所描述的方法。
图4示出了根据本发明实施例的光通信系统的容灾系统的示意性结构图。可见,容灾系统400包括:
检测装置410,用于检测光通信系统中的传输链路故障,以及
光分插复用器分支单元420,用于当所述检测装置检测到传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出。其中所述OADM BU具体包括至少一个光耦合环回装置、至少两个干路端口和至少一个支路端口,所述光耦合环回装置连接在干路端口之间的干路上,或者连接在支路端口所在的支路上,或者连接在所述干路上和所述支路上,所述光耦合环回装置具有穿通状态和环回状态,当光耦合环回装置所在的链路存在传输链路故障时,所述光耦合环回装置能够从正常工作时的穿通状态切换到环回状态,使得从所述光耦合环回装置的没有故障的一端输入的光信号环回到该端输出。
在本发明实施例中,可以采用本领域技术人员所熟悉的各种检测装置来检测传输链路故障。例如,可以采用光时域反射检测装置,其采用光时域反射技术检测光纤链路断点。或者,可以采用直流阻抗检测装置。由于在大多数情况下,电缆的故障现象是电缆中间的导体与海水接触,因此直流阻抗检测装置在这种情况下可以用直流阻抗检测法,结合线缆、水下设备的直流阻抗参数定位故障点。或者,可以采用直流电容检测装置,其尤其适于功率电缆中的导体没有和海水接触的情况。直流电容检测装置测量中间导体和海水之间的电容,通过基于测试数据的计算结果,可以估算故障点的位置。或者,可以采用交流检测装置,其中通过供电设备(Power Feeding Equipment,PFE)在直流源上加载具有低频率和幅度的交流电流信号,而交流电流信号在导线的传输中向外部空间放射出电磁波,从而维修船只通过专用的感应探测仪器在海底中找到信号,进而确定海缆故障的位置。或者,还可以使用其他的检测装置,例如可以通过读取水下设备的输入、输出光功率是否异常来判断故障点。
根据一个实施形式,光分插复用器分支单元还包括波分复用器,用于进行上波信号和干路中的穿通信号的合路,或者进行下波信号和干路中的穿通信号的分路。在此,也可以使用耦合器来替代波分复用器。
根据一个实施形式,所述光分插复用器分支单元是三端口的光分插复用器分支单元。
关于检测装置410和光分插复用器分支单元420的具体工作过程可以参见上面相应方法部分的描述,这里不再重复。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输链路故障而损失的信号,维持该传输链路故障所在的链路中的功率水平,从而尽可能地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。
下面将结合具体的结构来对容灾系统进行进一步描述。
图5示出了根据本发明一个实施例的OADM BU在光通信系统未发生传输链路故障时的情况。该OADM BU有三个外接端口,分别为A端、B端和C端。
从图5可以看到,该OADM BU包括4个波分复用器(Wavelength Division Multiplexer,WDM)和3个光耦合环回装置。4个波分复用器分别连接在干路与支路的交叉连接处,用于实现上下波和穿通波的分波和合波。在此,也可以使用耦合器来替代波分复用器。光耦合环回装置分别连接在干路和支路中。光耦合环回装置具有4个端口,其中在端口之间的连接关系可以根据需要来进行配置。至少可配置成两种状态,穿通状态:1端口到2端口连通,3端口到4端口连通;环回状态:3端口到2端口连通,1端口到4端口连通。
在图5中,分别在干路和支路上用不同的标记表示不同的光信号。可以看到,在图5所示的光通信系统未发生传输链路故障时的情况中,包括从A->B以及B->A方向的穿通信号AB、BA,A->C以及B->C方向的下波信号AC、BC,C->A以及C->B方向的上波信号CA、CB。
A->B方向的穿通信号AB从A端输入,经过WDM1,经过光耦合环回装置1(处于穿通状态),经过WDM2,从B端输出;同理,B->A方向的穿通信号BA从B端输入,经过WDM3,经过光耦合环回装置1(处于穿通状态),经过WDM4,从A端输出。
A->C方向的下波信号AC从A端输入,经过WDM1,经过光耦合环回装置2(处于穿通状态),从C端输出;C->A方向的上波信号CA从C端输入,经过光耦合环回装置2(处于穿通状态),经过WDM4,从A端输出。
B->C方向的下波信号BC从B端输入,经过WDM3,经过光耦合环回装置3(处于穿通状态),从C端输出;C->B方向的上波信号CB从C端输入,经过光耦合环回装置3(处于穿通状态),经过WDM2,从B端输出。
图6示出了根据本发明一个实施例的OADM BU在光通信系统发生干路传输链路故障时的情况。在此,A端和B端之间的传输链路属于光通信系统的干路,而OADM BU与C端之间的传输链路属于光通信系统的支路。
在B侧发生断缆故障情况下,A->B方向穿通信号AB和C->B方向上波信号CB无法到达B端,并且B->A方向的穿通信号BA以及B->C方向下波信号BC也无法到达OADM BU,造成部分功率损失,即B端与C端以及B端与A端之间通信中断。如果要保持C端到A端通信正常,需要补偿B->A方向的损失的光功率,因此需把光耦合环回装置1的状态切换到图6所示的环回状态。这时信号流向如下:A->C下波信号AC和C->A上波信号CA流向不变;A->B方向穿通信号AB从A端输入,经过WDM1,然后经过光耦合环回装置1,然后返回到WDM4和C->A上波信号CA合路,从A端输出。这时A->C下波信号AC从A端输出占总光功率的比例与正常情况下的比例一样,使得其在链路中维持原有的功率水平,传输性能保持稳定。这样就实现了B侧断缆容灾功能。A侧容灾方法与B侧的情况相同,不再敖述。这里需要指出的是,虽然在图6中光耦合环回装置1的状态切换为将端口1、4连接以及将端口2、3连接,也可能的是仅仅将端口1、4连接,即仅仅使得从故障所在链路的没有故障的一端输入的光信号环回到该端输出,而并未对有故障的一端的光信号进行环回,这并不影响本发明的实质。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输链路故障而损失的信号,维持该传输链路故障所在的链路中的功率水平,从而尽可能地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。
图7示出了根据本发明一个实施例的OADM BU在光通信系统发生支路传输链路故障时的情况。在此,A端和B端之间的传输链路属于光通信系统的干路,而OADM BU与C端之间的传输链路属于光通信系统的支路。
在C侧发生断缆故障情况下,A->C、B->C下波信号AC、BC无法到达C端,C->A、C->B上波信号CA、CB无法到达A端和B端。A端与C端以及B端与C端之间通信中断。如果要保持A端与B端之间相互通信正常,需要补偿C->A方向以及C->B方向的损失的上波信号功率,因此需把光耦合环回装置2和光耦合环回装置3的状态切换到图7所示的环回状态。这时信号流向如下:A->B穿通信号AB和B->A穿通信号BA流向不变;A->C方向下波信号AC从A端输入,经过WDM1,然后经过光耦合环回装置2,然后返回到WDM4和B->A穿通信号合路,从A端输出。B->C方向下波信号BC从B端输入,经过WDM3,然后经过光耦合环回装置3,然后返回到WDM2和A->B穿通信号AB合路,从B端输出。这时A->B穿通信号AB和B->A穿通信号BA占总光功率的比例与正常情况下的比例一样,使得其在链路中维持原有的功率水平,传输性能保持稳定。这样就实现了C侧断缆容灾功能。
当支路C站点上下波数较少时,支路断缆对干路的影响比较小,在实际应用场景也可以省略光耦合环回装置2和光耦合环回装置3。此时并未实现针对C侧支路的容灾功能。另外,同样地,虽然在图7中光耦合环回装置2、3的状态切换为分别将端口1、4连接以及将端口2、3连接,也可能的是仅仅分别将端口2、3连接,这并不影响本发明的实质。
可见,在本发明实施例所提出的方案中,在传输链路故障时将该故障所在链路的没有故障的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输链路故障而损失的信号,维持该传输链路故障所在的链路中的功率水平,从而尽可能地降低了传输链路故障对于其他业务的影响,保持稳定的传输性能,提高了光通信系统的容灾能力。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。
另外,也可以仅仅在干路或者仅仅在支路中实现容灾功能。
图8示出了仅仅在干路中实现容灾功能的本发明实施例,其中可以看到,仅仅在A端和B端之间的干路上设置了光耦合环回装置,其中当传输链路故障在干路上时,连接在干路上的该光耦合环回装置从正常工作时的穿通状态切换到环回状态。图9示出了仅仅在支路中实现容灾功能的本发明实施例,其中可以看到,仅仅在C端所在的干路上设置了光耦合环回装置,其中当传输链路故障在支路上时,连接在支路上的光耦合环回装置从正常工作时的穿通状态切换到环回状态。
在图6至图9的实施例中,光分插复用器分支单元为三端口的OADM BU。
图10示出了一种四端口的OADM BU。在此,A端和B端之间的传输链路属于光通信系统的干路,而其他传输链路属于光通信系统的支路。可见,其中包括了5个光耦合环回装置。当A侧或B侧发生故障时,光耦合环回装置1切换为环回状态;当C侧发生故障时,光耦合环回装置2、3切换为环回状态;当D侧发生故障时,光耦合环回装置4、5切换为环回状态。
图11还示出了另一种四端口的OADM BU。在此,A端和B端之间的传输链路属于光通信系统的干路,而其他传输链路属于光通信系统的支路。可见,其中包括了6个光耦合环回装置。当A侧发生故障时,光耦合环回装置1切换为环回状态;当B侧发生故障时,光耦合环回装置4切换为环回状态;当C侧发生故障时,光耦合环回装置2、3切换为环回状态;当D侧发生故障时,光耦合环回装置5、6切换为环回状态。
关于图10和图11中切换之后的具体信号流向根据前面的实施例可以容易得到,这里不再进行详细说明。
需要指出的是,本发明实施例的方案并不局限于上述的三端口或四端口的情况。基于本发明实施例的教导,本领域技术人员容易将其扩展到具有更多端口的OADM BU。
可见,在本发明实施例所提出的方案中,在传输链路故障时将所在的链路的一端输入的光信号环回到该端输出,利用该端输入的信号来补偿由于传输链路故障而损失的信号,从而尽可能地降低了传输链路故障对于其他业务的影响,提高了光通信系统的容灾能力。此外,在本发明实施例提出的容灾方案中,传输链路结构简单,元件个数较少,因此还具有低成本的优点。另外,该容灾方案与光通信系统中的上下波长、波数没有关系,因此具有较强的普适性。另外,在本发明实施例的方案中没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。
在本发明实施例中,光耦合环回装置是一种2×2光开关,其可以通过多种方式来实现。
图12a和图12b示出了根据本发明实施例的光耦合环回装置的另一种实现形式。可见,该光耦合环回装置由光耦合器与双态光开关构成。在图12a和图12b中示出的是当没有传输链路故障时,光开光处于正常的第一位置。而发生传输链路故障时,光开关切换到与图中所示不同的另外的第二位置,使得将方向并行的两条传输链路连通。
需要指出的是,图12a和图12b都仅仅示出了光耦合环回装置的一部分,例如是图5至图11中的光耦合环回装置中涉及端口1、4的部分或者端口2、3的部分,实际应用时每个光耦合环回装置可以包括两个图12a、图12b所示的结构。例如可以分别使用两个图12a所示的结构或者两个图12b所示的结构,也可以使用一个图12a所示的结构和一个图12b所示的结构。另外,如前面的实施例中所描述的那样,也可以仅仅使得从故障所在链路的没有故障的一端输入的光信号环回到该端输出,而并未对有故障的一端的光信号进行环回,在这种情况下可以仅仅需要一个图12a或者图12b所示的结构即可,同样能够实现本发明的目的。
图13示出了根据本发明实施例的光耦合环回装置的另一种实现形式。可见,该光耦合环回装置可以由光耦合器与光阻断器构成。当没有传输链路故障时,光阻断器处于阻断状态,方向并行的两条传输链路正常工作,而发生传输链路故障时,光阻断器切换到导通状态,从而将方向并行的两条传输链路连通。
同样需要指出的是,图13仅仅示出了光耦合环回装置的一部分,例如是图5至图11中的光耦合环回装置中涉及端口1、4的部分或者端口2、3的部分,实际应用时每个光耦合环回装置可以包括两个图13所示的结构,也可以包括仅仅一个这样的结构。
可见,在本发明实施例中,没有将额外的能量引入传输链路中,因此不会引入自发辐射噪声,保证了系统的性能。
还需要指出的是,本发明实施例中的传输链路故障的含义是光信号无法正常在传输链路中传输,可以包括并非光学故障的场景,如供电开路、短路造成中继器无法工作,现象上来看光信号无法导通,这时也可以采用本发明实施例的方案来实现容灾。
上面的实施例仅仅是示例性的,本领域技术人员可以理解的是,也可以采用其他的方式来实现所述光耦合环回装置。
本领域技术人员应该理解,本发明实施例中装置模块的划分为功能划分,实际具体结构可以为上述功能模块的拆分或合并。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
权利要求的内容记载的方案也是本发明实施例的保护范围。
本领域普通技术人员可以理解上述实施例方法中的全部或部分处理是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种使用光分插复用器OADM的光通信系统的容灾方法,包括:
检测光通信系统中的传输链路故障,
当检测到传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出。
2.根据权利要求1所述的方法,其中
当所述传输链路故障所在的链路是干路时,将所述干路从穿通状态切换到环回状态。
3.根据权利要求1或2所述的方法,其中
当所述传输链路故障所在的链路是支路时,将所述支路从穿通状态切换到环回状态。
4.根据权利要求1至3中的任一项所述的方法,还包括:
当检测到所述传输链路故障消失时,控制所述传输链路故障所在的链路从环回状态切换到穿通状态。
5.一种光分插复用器分支单元OADM BU,被配置为当所述OADM BU所在的传输链路出现传输链路故障时,将所述传输链路故障所在的链路从穿通状态切换到环回状态,使得从所述链路的没有故障的一端输入的光信号环回到该端输出,
其中所述OADM BU具体包括至少一个光耦合环回装置、至少两个干路端口和至少一个支路端口,所述光耦合环回装置连接在干路端口之间的干路上,或者连接在支路端口所在的支路上,或者连接在所述干路上和所述支路上,
所述光耦合环回装置具有穿通状态和环回状态,当光耦合环回装置所在的链路存在传输链路故障时,所述光耦合环回装置能够从正常工作时的穿通状态切换到环回状态,使得从所述光耦合环回装置的没有故障的一端输入的光信号环回到该端输出。
6.根据权利要求5所述的光分插复用器分支单元,其中当传输链路故障在干路上时,连接在干路上的光耦合环回装置从正常工作时的穿通状态切换到环回状态。
7.根据权利要求5或6所述的光分插复用器分支单元,其中当传输链路故障在支路上时,连接在支路上的光耦合环回装置从正常工作时的穿通状态切换到环回状态。
8.根据权利要求5至7中的任一项所述的光分插复用器分支单元,还包括波分复用器,用于进行上波信号和干路中的穿通信号的合路,或者进行下波信号和干路中的穿通信号的分路,
9.根据权利要求5至8中的任一项所述的光分插复用器分支单元,其中所述光分插复用器分支单元是三端口的光分插复用器分支单元。
10.根据权利要求5至9中的任一项之一所述的光分插复用器分支单元,其中所述光耦合环回装置是光开关。
11.根据权利要求5至10中的任一项所述的光分插复用器分支单元,其中所述光耦合环回装置由光耦合器与光阻断器构成,或者由光耦合器与光开关构成。
12.一种光通信的容灾系统,包括:
检测装置,用于检测光通信系统中的传输链路故障,以及
根据权利要求4-11之一所述的光分插复用器分支单元。
CN2012800022300A 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统 Pending CN103190094A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076979 WO2013185338A1 (zh) 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统

Publications (1)

Publication Number Publication Date
CN103190094A true CN103190094A (zh) 2013-07-03

Family

ID=48679812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012800022300A Pending CN103190094A (zh) 2012-06-15 2012-06-15 光通信系统容灾方法、装置和容灾系统

Country Status (5)

Country Link
US (1) US20140255020A1 (zh)
EP (1) EP2770654A4 (zh)
JP (1) JP2015506148A (zh)
CN (1) CN103190094A (zh)
WO (1) WO2013185338A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125009A (zh) * 2014-07-24 2014-10-29 华中科技大学 一种水下遥控通信网络
WO2015070406A1 (zh) * 2013-11-13 2015-05-21 华为海洋网络有限公司 一种可重构光分插复用装置
CN105119681A (zh) * 2015-06-25 2015-12-02 中国船舶重工集团公司第七二四研究所 一种基于vpx平台的雷达信号波分复用模块设计方法
CN105282629A (zh) * 2014-07-03 2016-01-27 中兴通讯股份有限公司 一种硅光交叉连接的控制方法和装置
CN116582177A (zh) * 2023-07-14 2023-08-11 华海通信技术有限公司 一种海缆系统故障后的数据保密方法及海缆系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580332B (zh) * 2013-09-26 2019-03-08 日本电气株式会社 光接收装置、光发送装置、光通信系统、光通信方法以及存储程序的存储介质
WO2015096068A1 (zh) * 2013-12-25 2015-07-02 华为海洋网络有限公司 一种光分插复用光分支器
WO2020054614A1 (ja) * 2018-09-10 2020-03-19 日本電気株式会社 経路切替装置および経路切替方法
US12027844B2 (en) 2020-10-09 2024-07-02 Smart Wires Inc. Control of parallel paths during recovery of a power flow control system from a transmission line fault

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241806A1 (en) * 2000-11-22 2002-09-18 Mitsubishi Denki Kabushiki Kaisha Circuit for switching optical paths
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置
US20110076017A1 (en) * 2009-09-30 2011-03-31 Fujitsu Limited Optical transmission system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173598A (ja) * 1996-12-09 1998-06-26 Fujitsu Ltd 光合分波装置及びこれを用いた光伝送システム
CN100459477C (zh) * 2001-05-25 2009-02-04 北京邮电大学 支持端口——波长指配的光分插复用设备
JP2006180417A (ja) * 2004-12-24 2006-07-06 Hitachi Communication Technologies Ltd 光伝送装置
US8554081B2 (en) * 2008-07-09 2013-10-08 Tyco Electronics Subsea Communications, Llc Optical add/drop multiplexer including reconfigurable filters and system including the same
US8509621B2 (en) * 2010-02-16 2013-08-13 Ciena Corporation Method and system for optical connection validation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241806A1 (en) * 2000-11-22 2002-09-18 Mitsubishi Denki Kabushiki Kaisha Circuit for switching optical paths
CN1529450A (zh) * 2003-09-30 2004-09-15 烽火通信科技股份有限公司 一种基于波长或波带保护的光分插复用节点装置
US20110076017A1 (en) * 2009-09-30 2011-03-31 Fujitsu Limited Optical transmission system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070406A1 (zh) * 2013-11-13 2015-05-21 华为海洋网络有限公司 一种可重构光分插复用装置
CN104904139B (zh) * 2013-11-13 2017-06-06 华为海洋网络有限公司 一种可重构光分插复用装置
US9762348B2 (en) 2013-11-13 2017-09-12 Huawei Marine Networks Co., Ltd. Reconfigurable optical add-drop multiplexer apparatus
CN105282629A (zh) * 2014-07-03 2016-01-27 中兴通讯股份有限公司 一种硅光交叉连接的控制方法和装置
CN104125009A (zh) * 2014-07-24 2014-10-29 华中科技大学 一种水下遥控通信网络
CN104125009B (zh) * 2014-07-24 2017-01-11 华中科技大学 一种水下遥控通信网络
CN105119681A (zh) * 2015-06-25 2015-12-02 中国船舶重工集团公司第七二四研究所 一种基于vpx平台的雷达信号波分复用模块设计方法
CN116582177A (zh) * 2023-07-14 2023-08-11 华海通信技术有限公司 一种海缆系统故障后的数据保密方法及海缆系统
CN116582177B (zh) * 2023-07-14 2023-09-19 华海通信技术有限公司 一种海缆系统故障后的数据保密方法及海缆系统

Also Published As

Publication number Publication date
EP2770654A1 (en) 2014-08-27
US20140255020A1 (en) 2014-09-11
EP2770654A4 (en) 2014-12-17
JP2015506148A (ja) 2015-02-26
WO2013185338A1 (zh) 2013-12-19

Similar Documents

Publication Publication Date Title
CN103190094A (zh) 光通信系统容灾方法、装置和容灾系统
US9768899B2 (en) Optical add/drop multiplexer branching unit
CN107819510B (zh) 基于蜂窝组网技术的海底科学观测网络系统
CN101043271B (zh) 一种光业务信号保护倒换方法、设备及系统
CN107534461B (zh) 供电路径切换装置、供电路径切换系统和供电路径切换方法
CN102742199A (zh) 光分插复用器分支单元及其控制方法
US20020057477A1 (en) Underwater optical transmission system and switchable underwater repeater
CN112019262B (zh) 通信站点、光通信系统、数据传输方法及存储介质
WO2022054779A1 (ja) 障害検出装置、ケーブル分岐装置、及び伝送路監視方法
CN102437875A (zh) 密集波分复用系统中的光纤自动切换装置
CN202940821U (zh) 光旁路保护设备
CN202488457U (zh) 密集波分复用系统中的光纤自动切换装置
CN113644968B (zh) 一种海底光传输系统及其容灾方法
Li et al. Transparent optical protection ring architectures and applications
WO2020194842A1 (ja) 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体
TW387169B (en) Optical network
CN201008160Y (zh) 一种具备回损监测功能的单纤双向保护光模块
EP1202595A1 (en) Underwater optical transmission system and switchable underwater repeater
JPH11243374A (ja) 光信号伝送システム及び、これに用いる光信号伝送装置
KR101023125B1 (ko) 배전보호협조 정보전송을 위한 wdm 기반의 배전자동화 시스템
Wernz et al. Nonlinear behaviour of 112 Gb/s polarisation-multiplexed RZ-DQPSK with direct detection in a 630 km field trial
CN202435407U (zh) 光路保护和光纤监测集成系统
CN100508439C (zh) 光通道共享保护控制方法、装置及系统
CN101150366A (zh) 波分复用光传输系统
CN117439696B (zh) 一种应用于海底观测网通信设备中的光路通信结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130703