WO2017038851A1 - Cha zeolite containing phosphorus and method for producing same - Google Patents

Cha zeolite containing phosphorus and method for producing same Download PDF

Info

Publication number
WO2017038851A1
WO2017038851A1 PCT/JP2016/075412 JP2016075412W WO2017038851A1 WO 2017038851 A1 WO2017038851 A1 WO 2017038851A1 JP 2016075412 W JP2016075412 W JP 2016075412W WO 2017038851 A1 WO2017038851 A1 WO 2017038851A1
Authority
WO
WIPO (PCT)
Prior art keywords
cha
type zeolite
ratio
sio
zeolite
Prior art date
Application number
PCT/JP2016/075412
Other languages
French (fr)
Japanese (ja)
Inventor
庸治 佐野
正洋 定金
直 津野地
泰之 高光
Original Assignee
国立大学法人広島大学
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学, 東ソー株式会社 filed Critical 国立大学法人広島大学
Publication of WO2017038851A1 publication Critical patent/WO2017038851A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent

Definitions

  • the present invention relates to a CHA-type zeolite and a method for producing the same. More specifically, the present invention relates to a CHA type zeolite suitable for a catalyst or a base material thereof and a method for producing the same.
  • CHA-type zeolite is a crystalline aluminosilicate that is used for various catalyst applications such as a catalyst for olefin production and a selective catalytic reduction catalyst.
  • the CHA-type zeolite is a naturally occurring zeolite
  • synthetic CHA-type zeolites using various structure directing agents have been reported as CHA-type zeolites more suitable for catalyst applications.
  • N-methyl-3-quinuclidinol, N, N, N-trimethyl-1-adamantanammonium, or N, N, N-trimethylexoaminonorbornene is structurally oriented as a CHA-type zeolite suitable for an olefin production catalyst.
  • Non-patent Document 1 A CHA-type zeolite obtained as an agent has been reported (Patent Document 1). In addition, it has been studied to contain copper in CHA-type zeolite and use it as a selective reduction catalyst for nitrogen oxides (Patent Document 2). In order to directly obtain a CHA-type zeolite containing copper, a CHA-type zeolite obtained by using a copper amine complex as a structure directing agent has been reported (Non-patent Document 1).
  • Non-patent Document 2 benzyltrimethylammonium (Non-patent Document 2), choline (Non-patent Document 3), tetraethylphosphonium (Non-patent Document 4), for the purpose of CHA-type zeolite used as an olefin synthesis catalyst or a denitration catalyst, Alternatively, a synthetic CHA-type zeolite obtained using tetraethylammonium (Non-patent Document 5) as a structure directing agent has been reported.
  • the CHA-type zeolite when used as a cracking catalyst or a selective reduction catalyst, the CHA-type zeolite needs to be resistant to deterioration at a high temperature, so-called heat resistance.
  • the CHA-type zeolites that have been reported so far tend to deteriorate at a temperature of about 900 ° C., and did not have sufficient heat resistance when used in these catalyst applications.
  • An object of the present invention is to provide a CHA-type zeolite having higher heat resistance than that of a conventional CHA-type zeolite. Furthermore, another object of the present invention is to provide a method for producing such a CHA-type zeolite.
  • the present inventors examined a CHA-type zeolite and a production method thereof. As a result, it was found that the heat resistance of the CHA-type zeolite is improved by adding phosphorus to the CHA-type zeolite. Furthermore, it has been found that such a CHA-type zeolite can be obtained by a production method in which crystallization and phosphorus modification are simultaneously performed. That is, the gist of the present invention is as follows. [1] A CHA-type zeolite containing phosphorus and having a SiO 2 / Al 2 O 3 ratio of 16 or more and 50 or less. [2] The CHA-type zeolite according to [1], wherein phosphorus is contained in the pores.
  • Method. [8] The production method according to [7], wherein the phosphonium cation source is at least one member selected from the group consisting of tetraethylphosphonium hydroxide, tetraethylphosphonium bromide, tetraethylphosphonium chloride, and tetraethylphosphonium iodide.
  • the ammonium cation source is at least one selected from the group consisting of trimethyl-1-adamantanammonium hydroxide, trimethyl-1-adamantanammonium bromide, trimethyl-1-adamantanammonium chloride, and trimethyl-1-adamantanammonium iodide.
  • a catalyst comprising the CHA-type zeolite according to any one of [1] to [6].
  • the present invention it is possible to provide a CHA-type zeolite having higher heat resistance as compared with a conventional CHA-type zeolite. Furthermore, the present invention can provide a method for producing such a CHA-type zeolite.
  • the CHA type zeolite of the present invention has a CHA structure.
  • the CHA structure is a crystal structure that becomes a CHA structure with a structure code defined by the International Zeolite Society.
  • the CHA-type zeolite of the present invention is a crystalline aluminosilicate having a CHA structure.
  • the crystalline aluminosilicate has a skeletal structure in which the skeletal metal (hereinafter also referred to as “T atom”) is aluminum (Al) and silicon (Si), and is composed of a network of these skeletal metal and oxygen (O).
  • zeolite related substances such as aluminophosphate and silicoaluminophosphate having a CHA structure and having a skeleton structure composed of phosphorus (P) in the T atom are different from the CHA-type zeolite of the present invention.
  • the CHA-type zeolite of the present invention contains phosphorus. Thereby, the thermal stability of frame
  • the zeolitic acid point is modified with phosphorus to obtain an acid strength suitable for a specific catalytic reaction.
  • Phosphorus is contained other than the CHA-type zeolite framework, that is, other than T atoms.
  • phosphorus is contained in the pores of the CHA-type zeolite, and particularly preferably contained in the oxygen 8-membered ring pores.
  • the T atom in the CHA-type zeolite of the present invention is a metal contained in the skeleton, that is, Si and Al.
  • the state of phosphorus contained in the CHA-type zeolite of the present invention is at least either a phosphate ion or a phosphorus compound.
  • the molar ratio of silica to alumina (hereinafter also referred to as “SiO 2 / Al 2 O 3 ratio”) is 16 or more, preferably 18 or more, and more preferably 20 or more.
  • SiO 2 / Al 2 O 3 ratio is 16 or more, preferably 18 or more, and more preferably 20 or more.
  • SiO 2 / Al 2 O 3 ratio is 100 or less, further 50 or less, and further 35 or less
  • the CHA-type zeolite of the present invention has a sufficient amount of acid sites as a catalyst.
  • Particularly preferred SiO 2 / Al 2 O 3 ratio is 18 or more and 30 or less, and further 20 or more and 28 or less.
  • the composition of the CHA-type zeolite of the present invention can be measured by the ICP method.
  • the CHA-type zeolite of the present invention preferably contains phosphorus in the pores. That is, the CHA-type zeolite of the present invention preferably contains phosphorus at an acid point, that is, in the vicinity of Al which is a T atom. Thereby, it can be used as various catalysts such as catalysts for producing lower olefins from alcohols and ketones, cracking catalysts, dewaxing catalysts, isomerization catalysts, and nitrogen oxide reduction catalysts, or as base materials for various catalysts.
  • the molar ratio of phosphorus to T atoms in the CHA-type zeolite of the present invention (hereinafter also referred to as “P / T ratio”) is 0.06 or less, further 0.05 or less, and further 0.04 or less. If it exceeds 0.06, the pores of the CHA-type zeolite are blocked by phosphorus. For this reason, the pores cannot be used effectively for a catalytic reaction or the like.
  • the P / T ratio may be 0.0005 or more, and further 0.001 or more. When the P / T ratio is 0.001 or more, the heat resistance of the CHA-type zeolite is increased.
  • Particularly preferred P / T ratio is 0.005 or more and 0.05 or less, and further 0.008 or more and 0.02 or less.
  • the CHA-type zeolite of the present invention preferably has a molar ratio of phosphorus to Al as the T atom (hereinafter also referred to as “P / Al ratio”) of less than 0.55, and more preferably 0.5 or less. If P / Al is less than 0.55, it becomes a CHA-type zeolite having an acid point required as a catalyst and having practical heat resistance as a catalyst. Further, Al as a T atom functions as an acid point. When the P / Al ratio is 0.01 or more, and further 0.02 or more, a CHA-type zeolite having a large amount of Al as an acid point exhibiting catalytic activity is obtained. From the viewpoint of catalyst characteristics and heat resistance, the P / Al ratio is particularly preferably 0.05 or more and 0.5 or less, more preferably 0.1 or more and 0.2 or less.
  • the CHA-type zeolite of the present invention does not substantially contain fluorine (F), that is, the fluorine content is 0 ppm.
  • F fluorine
  • the fluorine contained in a zeolite originates from a raw material. Zeolite obtained using a compound containing fluorine as a raw material tends to be expensive to produce.
  • the fluorine content of the CHA-type zeolite of the present invention may be 100 ppm or less, more preferably 50 ppm or less.
  • the CHA-type zeolite of the present invention preferably has a crystal grain size of 4 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 2 ⁇ m or less. Since the reactivity is improved when the crystal grain size is 4 ⁇ m or less, the catalyst performance is improved.
  • the crystal grain size can be confirmed by observation with a scanning electron microscope (hereinafter also referred to as “SEM”). That is, the CHA-type zeolite crystal particles of the present invention have at least one of a substantially cubic shape and a substantially cubic twin shape. The crystal grain size can be confirmed by observing the side lengths of these crystal grains.
  • the CHA-type zeolite of the present invention may contain at least one of copper and iron, and further copper.
  • a CHA-type zeolite containing at least one of copper and iron can be used as a catalyst having nitrogen oxide reduction characteristics.
  • the CHA-type zeolite of the present invention exhibits a high nitrogen oxide reduction rate as an SCR catalyst at a low temperature of 200 ° C. or lower, further 150 ° C. or lower, particularly after being exposed to a high temperature and high humidity atmosphere.
  • examples of the high temperature and high humidity atmosphere include an atmosphere in which air containing 10% by volume of H 2 O is circulated at 300 mL / min at 900 ° C.
  • the CHA-type zeolite of the present invention comprises a crystallization step of crystallizing a composition containing a silica source, an alumina source, a phosphonium cation source, and an ammonium cation source (hereinafter also referred to as “raw material composition”). Is obtained.
  • the raw material composition containing the phosphonium cation source is crystallized.
  • the phosphonium cation not only functions as a structure directing agent (hereinafter also referred to as “SDA”), but also serves as a source of phosphorus.
  • SDA structure directing agent
  • Phosphorus can be contained simultaneously with crystallization of the CHA-type zeolite. Thereby, a post-treatment step for modifying phosphorus after the crystallization step is not essential.
  • Examples of the phosphonium cation source include compounds containing a phosphonium cation, and at least one member selected from the group consisting of phosphonium cation sulfates, nitrates, halides and hydroxides.
  • the phosphonium cation is preferably tetraethylphosphonium cation (hereinafter also referred to as “TEP”) or tetramethylphosphonium cation, and more preferably TEP.
  • tetraethylphosphonium hydroxide hereinafter also referred to as “TEPOH”
  • TEPBr tetraethylphosphonium bromide
  • TEPCl tetraethylphosphonium chloride
  • TEPI tetraethylphosphonium iodide
  • the raw material composition contains an ammonium cation source.
  • a CHA zeolite having a high SiO 2 / Al 2 O 3 ratio can be obtained.
  • the amount of phosphorus contained in the CHA-type zeolite can be adjusted by adjusting the ratio of the phosphonium cation source and the ammonium cation source.
  • the ammonium cation source include compounds containing an ammonium cation, and at least one member selected from the group consisting of ammonium cation sulfates, nitrates, halides, and hydroxides.
  • the ammonium cation include trimethyl-1-adamantanammonium (hereinafter also referred to as “TMAda”), choline and trimethylbenzylammonium, and TMAda.
  • ammonium cation sources include trimethyl-1-adamantanammonium hydroxide (hereinafter also referred to as “TMAdaOH”), trimethyl-1-adamantanammonium bromide (hereinafter also referred to as “TMAdaBr”), trimethyl-1-adamantane.
  • TMAdaOH trimethyl-1-adamantanammonium hydroxide
  • TMAdaBr trimethyl-1-adamantanammonium bromide
  • TMAdaCl ammonium chloride
  • TMAdaI trimethyl-1-adamantanammonium iodide
  • the silica source and alumina source contained in the raw material composition are preferably crystalline aluminosilicate (zeolite). Crystalline aluminosilicate has a regular crystal structure. When crystalline aluminum silicate is treated in the presence of a structure directing agent, it is considered that crystallization proceeds while maintaining regularity of the crystal structure. Therefore, when the silica source and the alumina source are separate compounds, or when the silica source and the alumina source are crystalline aluminosilicate, compared with the case where the silica source and the alumina source are non-crystalline compounds, the CHA type Zeolite crystallizes more efficiently.
  • zeolite crystalline aluminosilicate
  • the crystalline aluminosilicate is preferably a FAU-type zeolite, more preferably at least one of an X-type zeolite or a Y-type zeolite, or even a Y-type zeolite.
  • the SiO 2 / Al 2 O 3 ratio of the crystalline aluminosilicate is 1.25 or more, more preferably 10 or more, and further 20 or more.
  • the SiO 2 / Al 2 O 3 ratio may be 100 or less, and further 50 or less.
  • Preferred SiO 2 / Al 2 O 3 ratio of crystalline aluminosilicate is 18 or more and 40 or less, and further 20 or more and 40 or less.
  • the cation type of the crystalline aluminosilicate contained in the raw material composition is arbitrary.
  • the cation type is preferably at least one selected from the group consisting of sodium type (Na type), proton type (H + type) and ammonium type (NH 4 type), and more preferably a proton type.
  • the raw material composition may not contain a silica source or an alumina source other than the crystalline aluminosilicate. From the viewpoint of increasing the efficiency of crystallization of the CHA-type zeolite, the raw material composition preferably does not contain an amorphous silica source and an alumina source, and the silica source and the alumina source are more preferably only crystalline aluminosilicate. preferable.
  • the raw material composition may contain an alkali source and water in addition to a silica source, an alumina source, a phosphonium cation source and an ammonium cation source.
  • the alkali source include a hydroxide containing an alkali metal. More specifically, it is a hydroxide containing at least one selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, further a hydroxide containing at least one of sodium or potassium, and further It is a hydroxide containing sodium.
  • the silica source and the alumina source contain an alkali metal
  • the alkali metal can also be used as the alkali source. Pure water may be used as the water, but each raw material may be used as an aqueous solution.
  • the molar ratio of silica to alumina in the raw material composition may be 18 or more, and more preferably 20 or more.
  • the SiO 2 / Al 2 O 3 ratio may be 100 or less, and further 50 or less.
  • a preferred SiO 2 / Al 2 O 3 ratio is 18 or more and 40 or less, and further 20 or more and 40 or less.
  • the molar ratio of phosphonium cation to silica in the raw material composition (hereinafter also referred to as “P-SDA / SiO 2 ratio”) is preferably 0.01 or more, more preferably 0.05 or more. Phosphorus is easily contained in the CHA-type zeolite obtained at a P-SDA / SiO 2 ratio of 0.01 or more. When the P-SDA / SiO 2 ratio is 0.5 or less, and further 0.3 or less, the effect of improving the heat resistance due to the phosphorus content is easily obtained.
  • N-SDA / SiO 2 ratio The molar ratio of the ammonium cation to the silica of the raw material composition (hereinafter also referred to as “N-SDA / SiO 2 ratio”) is 0.01 or more, and further 0.02 or more. On the other hand, if the N-SDA / SiO 2 ratio is 0.5 or less, further 0.3 or less, a CHA-type zeolite can be obtained in a single phase.
  • the raw material composition includes a phosphonium cation and an ammonium cation. Therefore, the molar ratio of the phosphonium cation and the ammonium cation to the silica of the raw material composition (hereinafter also referred to as “SDA / SiO 2 ratio”) exceeds zero. Furthermore, the SDA / SiO 2 ratio is preferably 0.15 or more, more preferably 0.21 or more. However, if the amount of phosphonium cation and ammonium cation is too large, the production cost of the CHA-type zeolite increases. Therefore, the SDA / SiO 2 ratio is preferably 0.6 or less, and more preferably 0.4 or less.
  • the ratio of the phosphonium cation and the ammonium cation in the raw material composition can be set to any ratio depending on the phosphorus content of the target CHA-type zeolite.
  • the molar ratio of the ammonium cation to the total of the phosphonium cation and the ammo cation (hereinafter also referred to as “N-SDA / SDA ratio”) may be more than 0 and less than 1.
  • the N-SDA / SDA ratio is 0.01 or more and 0.9 or less, and further 0.05 or more and 0.9 or less.
  • the N-SDA / SDA ratio can be 0.1 or more and 0.4 or less.
  • the molar ratio of the alkali metal to silica of the raw material composition (hereinafter also referred to as “alkali / SiO 2 ratio”) is preferably 0.3 or less.
  • alkali / SiO 2 ratio is preferably 0.2 or less, more preferably 0.15 or less.
  • the molar ratio of OH to silica (hereinafter also referred to as “OH / SiO 2 ratio”) is 0.5 or less.
  • OH / SiO 2 ratio When the OH / SiO 2 ratio is 0.5 or less, a CHA-type zeolite can be obtained with a higher yield.
  • the OH / SiO 2 ratio of the raw material composition may be 0.1 or more, further 0.26 or more.
  • the molar ratio of water (H 2 O) to silica (hereinafter also referred to as “H 2 O / SiO 2 ratio”) is 20 or less, and further 15 or less, a CHA-type zeolite can be obtained more efficiently.
  • the H 2 O / SiO 2 ratio may be 3 or more, and further 5 or more.
  • the raw material composition contains a compound containing fluorine, the production cost tends to increase. Therefore, it is preferable that the raw material composition does not substantially contain fluorine (F).
  • the composition of the raw material composition of the present invention can be measured by the ICP method.
  • the raw material composition containing each of the above raw materials is hydrothermally synthesized to be crystallized.
  • the crystallization treatment may be performed by filling the raw material composition in a sealed container and heating it. If the crystallization temperature is 80 ° C. or higher, the crystallization of the raw material composition is crystallized. Higher temperatures promote crystallization. Therefore, the crystallization temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. If the raw material composition is crystallized, it is not necessary to raise the crystallization temperature more than necessary. Therefore, the crystallization temperature may be 200 ° C. or lower, further 160 ° C. or lower, and further 150 ° C. or lower. Crystallization can be carried out in either a state where the raw material composition is stirred or a state where it is allowed to stand.
  • the production method of the present invention is a production method for crystallizing CHA-type zeolite from a raw material composition having a phosphonium cation, it exhibits a high yield equivalent to the conventional industrial production method of CHA-type zeolite.
  • Examples of the yield of the production method of the present invention include 70% or more, and further 80% or more.
  • W CHA is the dry weight (g) of the obtained CHA-type zeolite
  • W raw is the weight of Si in the raw material composition converted as SiO 2
  • W CHA can be obtained by drying the obtained CHA-type zeolite in the atmosphere at 50 ° C. or more and 90 ° C. or less and 6 hours or more and 24 hours or less.
  • W raw can be obtained by obtaining Si and Al in the raw material composition by ICP or the like and converting them.
  • the production method of the present invention may include at least one of a washing step, a drying step, and an ion exchange step (hereinafter referred to as “post-treatment step”) after the crystallization step.
  • the crystallized CHA-type zeolite and the liquid phase are solid-liquid separated.
  • solid-liquid separation may be performed by a known method, and the CHA-type zeolite obtained as a solid phase may be washed with pure water.
  • the drying step moisture is removed from the CHA-type zeolite after the crystallization step or the washing step.
  • the conditions for the drying step are arbitrary, it can be exemplified that the CHA-type zeolite after the crystallization step or the washing step is allowed to stand in the atmosphere at 50 ° C. or higher and 150 ° C. or lower for 2 hours or longer.
  • the CHA-type zeolite after crystallization may have metal ions such as alkali metal ions on its ion exchange site. In the ion exchange step, this is ion-exchanged to a non-metallic cation such as ammonium ion (NH 4 + ) or proton (H + ). Examples of ion exchange to ammonium ions include mixing and stirring CHA-type zeolite in an ammonium chloride aqueous solution. In addition, ion exchange for protons includes calcination of CHA-type zeolite after ion exchange with ammonia.
  • the CHA-type zeolite of the present invention contains copper (Cu) or iron (Fe), a compound containing at least one of copper and iron (hereinafter also referred to as “copper compound etc.”) and the CHA-type zeolite of the present invention It can obtain by the manufacturing method which has a metal containing process made to contact.
  • the metal-containing step may be a method in which at least one of copper or iron is contained in at least one of the ion exchange sites or pores of the CHA zeolite. Specific examples of the method include at least one member selected from the group consisting of an ion exchange method, an evaporation to dryness method, and an impregnation support method.
  • an impregnation support method, and an aqueous solution containing a transition metal compound and CHA zeolite are mixed. It is preferable that it is a method to do.
  • the copper compound include an inorganic acid salt containing at least one of copper and iron, and at least one selected from the group consisting of sulfate, nitrate, acetate and chloride containing at least one of copper and iron. it can.
  • the metal-containing step After the metal-containing step, at least one step of a washing step, a drying step, or an activation step may be included.
  • any cleaning method can be used as long as impurities and the like are removed.
  • the CHA-type zeolite after the metal-containing step can be washed with a sufficient amount of pure water. What is necessary is just to remove a water
  • the activation process removes organic matter. It can be exemplified that the metal-containing CHA-type zeolite is treated at 200 ° C. or more and 600 ° C. or less in the atmosphere.
  • CHA-type zeolite containing at least one of copper and iron, and further copper is a catalyst for producing lower olefins from alcohols and ketones, cracking catalysts, dewaxing catalysts, isomerization catalysts, and nitrogen oxidation from exhaust gas. It can be used as a product reduction catalyst. In particular, it is preferably used as a nitrogen oxide reduction catalyst.
  • composition analysis A sample solution was prepared by dissolving a sample in a mixed aqueous solution of hydrofluoric acid and nitric acid. The sample solution was measured by inductively coupled plasma optical emission spectrometry (ICP-AES) using a general ICP device (device name: OPTIMA5300DV, manufactured by PerkinElmer). From the measured values of Si, Al and P obtained, the SiO 2 / Al 2 O 3 ratio and P / Al ratio of the sample were determined.
  • ICP-AES inductively coupled plasma optical emission spectrometry
  • Yield (%) (W CHA / W raw ) ⁇ 100 W CHA dried the obtained CHA-type zeolite in the atmosphere at 70 ° C. for 12 hours, and measured its weight.
  • W raw is the weight of the FAU-type zeolite that is the silica source and the alumina source contained in the raw material composition.
  • the yield was 90%.
  • Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example. Further, the XRD pattern of the CHA-type zeolite of this example is shown in FIG. 1, and the SEM photograph is shown in FIG. From FIG. 2, it was confirmed that the primary particles of the CHA-type zeolite of this example were 1 ⁇ m or less.
  • Example 2 A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
  • the zeolite was a CHA type zeolite composed of a single phase having a CHA structure.
  • the yield was 90%.
  • Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
  • Example 3 A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
  • the zeolite was a CHA type zeolite composed of a single phase having a CHA structure.
  • Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
  • Example 4 A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
  • the zeolite was a CHA type zeolite composed of a single phase having a CHA structure.
  • Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
  • Example 5 A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
  • the zeolite was a CHA type zeolite composed of a single phase having a CHA structure.
  • Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example. Moreover, the SEM photograph of the CHA type zeolite of the present example is shown in FIG. From FIG. 3, it was confirmed that the primary particles of the CHA-type zeolite of this example were 1 ⁇ m or less.
  • Example 6 A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
  • the zeolite was a CHA type zeolite composed of a single phase having a CHA structure.
  • the yield was 90%.
  • Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
  • the zeolite was a CHA type zeolite composed of a single phase having a CHA structure.
  • Comparative Example 2 A zeolite of this comparative example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
  • TEP / SiO 2 ratio 0.15
  • the zeolite was a mixture of AEI zeolite and MFI zeolite. From this comparative example, it was confirmed that CHA-type zeolite cannot be obtained when TEP is low.
  • a CHA-type zeolite containing phosphorus was produced. That is, a zeolite of this comparative example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
  • TEP / SiO 2 ratio 0.2
  • the zeolite was a CHA type zeolite composed of a single phase having a CHA structure.
  • the yield was 50%.
  • the SiO 2 / Al 2 O 3 ratio of the obtained CHA-type zeolite tends to be low, and the yield is significantly higher than that of the production method of the present invention. It was confirmed that it was lowered.
  • the SiO 2 / Al 2 O 3 ratio of the CHA-type zeolite of this comparative example was measured by EDX (device name: S-4800, manufactured by Hitachi, Ltd.), and the SiO 2 / Al 2 O 3 ratio was 15.6. there were.
  • Example 1 From Table 1, it was confirmed that in all Examples, a CHA-type zeolite containing phosphorus was obtained. Further, the phosphorus in the CHA-type zeolite can be easily controlled by changing the amount of TEP. Further, the P / T ratio is 0.04 or less, further 0.02 or less, and further 0.01 or less. It was confirmed that a CHA-type zeolite having a low phosphorus content can be produced. Furthermore, from Example 1 and Comparative Example 1, it can be confirmed that the present invention has a high yield comparable to the conventional method for producing CHA-type zeolite containing no phosphorus, although it is a production method containing TEP. It was.
  • Measurement example 1 The CHA-type zeolite of Example 5 and the CHA-type zeolite of Comparative Example 1 were each calcined in air at 600 ° C. for 6 hours to remove SDA, and then ion-exchanged with an aqueous ammonium chloride solution to obtain an ammonia type. Thereafter, it was calcined in air at 550 ° C. for 1 hour to obtain a proton type CHA zeolite. The obtained proton-type CHA-type zeolite was calcined in air at 1,050 ° C. for 1 hour, and powder X-ray diffraction measurement after the calcining was performed. The results are shown in FIG. In FIG.
  • a) is the XRD pattern of Example 5
  • b) is the XRD pattern of Comparative Example 1.
  • the CHA type zeolite of Example 5 maintained the CHA structure even after the heat treatment at 1,050 ° C.
  • the CHA-type zeolite of Comparative Example 1 had a CHA-type structure collapsed by calcination at 1,050 ° C.
  • the CHA-type zeolite of the present invention containing phosphorus did not collapse even after heat treatment at a temperature exceeding 900 ° C. and had high heat resistance.
  • Example 7 The CHA-type zeolite of Example 3 was calcined in the atmosphere at 600 ° C. for 10 hours, and then ion-exchanged with an aqueous ammonium chloride solution to obtain an NH 4 -type zeolite.
  • An aqueous copper nitrate solution was added to 1.3 g of NH 4 type zeolite, and this was mixed in a mortar.
  • the copper nitrate aqueous solution used what prepared copper nitrate aqueous solution by melt
  • the mixed sample was dried at 110 ° C. overnight and then calcined in air at 550 ° C. for 1 hour to obtain a copper-containing CHA-type zeolite of this example.
  • the evaluation results are shown in Table 2.
  • Example 8 A copper-containing CHA-type zeolite of this comparative example was obtained in the same manner as in Example 7 except that the CHA-type zeolite of Example 5 was used. The evaluation results are shown in Table 2.
  • Example 9 A copper-containing CHA-type zeolite of this comparative example was obtained in the same manner as in Example 7 except that the CHA-type zeolite of Example 6 was used. The evaluation results are shown in Table 2.
  • Comparative Example 4 A copper-containing CHA-type zeolite of this comparative example was obtained in the same manner as in Example 7 except that the CHA-type zeolite of Comparative Example 1 was used. The evaluation results are shown in Table 2.
  • the raw material composition after crystallization was separated into solid and liquid, washed with pure water, and dried at 70 ° C. to obtain the zeolite of this example.
  • the zeolite was an AEI type zeolite composed of a single phase having an AEI structure.
  • the obtained AEI zeolite was press-molded and then agglomerated particles having an agglomerated diameter of 12 to 20 mesh.
  • the obtained agglomerated particles (3 g) were filled into a normal pressure fixed bed flow type reaction tube, and the amount of phosphorus was adjusted by heat treatment at 750 ° C. for 1 hour under a flow of 5% by volume of hydrogen and 95% by volume of nitrogen at 500 mL / min. .
  • Measurement example 2 The copper-containing CHA-type zeolites of Examples 8 to 9 and Comparative Example 4 were each subjected to a hydrothermal durability treatment for 8 hours.
  • Table 3 shows the evaluation results of the nitrogen oxide reduction characteristics before and after the hydrothermal durability treatment.
  • the treatment conditions and the evaluation conditions when copper is contained in the CHA-type zeolite of the present invention and the nitrogen oxide reduction characteristics as the selective reduction catalyst are evaluated are as follows (the same applies to Measurement Example 3).
  • the sample was press-molded to obtain aggregated particles having an aggregate diameter of 12 to 20 mesh.
  • the obtained agglomerated particles (3 mL) were filled in a normal pressure fixed bed flow type reaction tube, and air containing 10% by volume of H 2 O was circulated at 300 mL / min for hydrothermal durability treatment.
  • the hydrothermal durability treatment was performed at 900 ° C.
  • the nitrogen oxide reduction rate of the sample was measured by the ammonia SCR method shown below. That is, after the sample was press-molded, aggregated particles having an aggregate diameter of 12 to 20 mesh were obtained. The obtained agglomerated particles were weighed in 1.5 mL and filled into a reaction tube. Then, the process gas which consists of the following compositions containing nitrogen oxide was distribute
  • SV space velocity
  • Nitrogen oxide reduction rate (%) ⁇ 1 ⁇ (nitrogen oxide concentration in treated gas after contact / nitrogen oxide concentration in treated gas before contact) ⁇ ⁇ 100
  • the comparative example was equivalent to an Example about the nitrogen oxide reduction rate of 200 degreeC or more before a hydrothermal durability process. From this, it was confirmed that the CHA-type zeolite of this example had the same initial activity as that of the conventional CHA-type zeolite. However, although the CHA-type zeolite of the example has a lower SiO 2 / Al 2 O 3 ratio than the CHA-type zeolite of the comparative example, the nitrogen oxide reduction rate after hydrothermal durability treatment at any temperature is It became higher than the comparative example, and the nitrogen oxide reduction rate at a low temperature, particularly at 150 ° C. or lower, was significantly higher. From this, it was confirmed that the CHA-type zeolite of the present invention has high heat resistance and becomes a catalyst exhibiting high nitrogen oxide reduction characteristics even after being exposed to high temperature and high humidity.
  • Example 8 The content of copper exhibiting catalytic activity is less in Example 8 than in Examples 7 and 9. However, from Table 4, it was confirmed that the nitrogen oxide reduction rate of Example 8 was high at any temperature, and the nitrogen oxide reduction rate was high at lower temperatures.
  • Measurement example 4 Similar to Measurement Example 2 except that the copper-containing zeolite of Example 8 and Comparative Example 5 was used, the treatment temperature was 150 ° C., and the treatment time was any one of 1, 4 and 8 hours. The hydrothermal durability treatment was applied by the method. Table 5 shows the evaluation results of the nitrogen oxide reduction characteristics before and after the hydrothermal durability treatment.
  • the CHA-type zeolite of Example 8 has a P / T ratio comparable to that of the AEI-type zeolite of Comparative Example 5, and has a low copper content as a catalytically active species. Nevertheless, the CHA-type zeolite of Example 8 shows a nitrogen oxide reduction characteristic equal to or higher than that of the AEI-type zeolite of Comparative Example 5, and particularly the nitrogen oxide reduction rate after 4 hours from the initial stage of hydrothermal durability treatment. It was higher than the AEI zeolite of Comparative Example 5.
  • Conventional CHA-type zeolites are known to have lower nitrogen oxide reduction characteristics, particularly nitrogen oxide reduction characteristics at 150 ° C. or lower, than AEI zeolites. From this, it was confirmed that the CHA-type zeolite of the present invention not only has higher nitrogen oxide characteristics than the conventional CHA-type zeolite, but also has nitrogen oxide reduction characteristics equal to or higher than that of AEI zeolite. .
  • the CHA-type zeolite of the present invention is, for example, a catalyst for producing lower olefins from alcohols and ketones, cracking catalyst, dewaxing catalyst, isomerization catalyst, and nitrogen oxide reduction catalyst from exhaust gas, and as a base material for these catalysts. Can be used. Furthermore, it can be used as a nitrogen oxide reduction catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Provided is a CHA zeolite which has higher heat resistance in comparison to conventional CHA zeolites. A CHA zeolite which contains phosphorus and has an SiO2/Al2O3 ratio of from 16 to 50 (inclusive). This CHA zeolite is preferably obtained by a production method which comprises a crystallization step wherein a composition containing a silica source, an alumina source, a phosphonium cation source and an ammonium cation source is crystallized.

Description

リンを含有するCHA型ゼオライトおよびその製造方法CHA-type zeolite containing phosphorus and method for producing the same
<基礎出願のインコーポレーション・バイ・レファレンス>
 なお、2015年9月3日に出願された日本国特許出願2015-173594号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 本発明は、CHA型ゼオライト及びその製造方法に関する。より詳しくは、本発明は、触媒又はその基材に適した、CHA型ゼオライトおよびその製造方法に関する。
<Incorporation by reference of basic application>
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2015-173594 filed on September 3, 2015 are cited here as disclosure of the specification of the present invention. Incorporate.
The present invention relates to a CHA-type zeolite and a method for producing the same. More specifically, the present invention relates to a CHA type zeolite suitable for a catalyst or a base material thereof and a method for producing the same.
 CHA型ゼオライトは、オレフィン製造用触媒や選択的接触還元触媒などの各種の触媒用途として利用されている結晶性アルミノシリケートである。CHA型ゼオライトは天然にも存在するゼオライトであるが、より触媒用途に適したCHA型ゼオライトとして、各種の構造指向剤を使用した合成CHA型ゼオライトが報告されている。
 例えば、オレフィン製造用触媒に適したCHA型ゼオライトとして、N-メチル-3-キヌクリジノール、N,N,N-トリメチル-1-アダマンタンアンモニウム、又はN,N,N-トリメチルエキソアミノノルボルネンなどを構造指向剤として得られたCHA型ゼオライトが報告されている(特許文献1)。
 また、CHA型ゼオライトに銅を含有させ、窒素酸化物の選択還元触媒として使用することが検討されている(特許文献2)。銅を含有するCHA型ゼオライトを直接得るため、銅アミン錯体を構造指向剤として使用して得られたCHA型ゼオライトが報告されている(非特許文献1)。
 これら以外にも、オレフィン合成用触媒や脱硝触媒として使用されるCHA型ゼオライトを目的として、ベンジルトリメチルアンモニウム(非特許文献2)、コリン(非特許文献3)、テトラエチルホスホニウム(非特許文献4)、又はテトラエチルアンモニウム(非特許文献5)を構造指向剤として得られた合成CHA型ゼオライトが報告されている。
CHA-type zeolite is a crystalline aluminosilicate that is used for various catalyst applications such as a catalyst for olefin production and a selective catalytic reduction catalyst. Although the CHA-type zeolite is a naturally occurring zeolite, synthetic CHA-type zeolites using various structure directing agents have been reported as CHA-type zeolites more suitable for catalyst applications.
For example, N-methyl-3-quinuclidinol, N, N, N-trimethyl-1-adamantanammonium, or N, N, N-trimethylexoaminonorbornene is structurally oriented as a CHA-type zeolite suitable for an olefin production catalyst. A CHA-type zeolite obtained as an agent has been reported (Patent Document 1).
In addition, it has been studied to contain copper in CHA-type zeolite and use it as a selective reduction catalyst for nitrogen oxides (Patent Document 2). In order to directly obtain a CHA-type zeolite containing copper, a CHA-type zeolite obtained by using a copper amine complex as a structure directing agent has been reported (Non-patent Document 1).
In addition to these, benzyltrimethylammonium (Non-patent Document 2), choline (Non-patent Document 3), tetraethylphosphonium (Non-patent Document 4), for the purpose of CHA-type zeolite used as an olefin synthesis catalyst or a denitration catalyst, Alternatively, a synthetic CHA-type zeolite obtained using tetraethylammonium (Non-patent Document 5) as a structure directing agent has been reported.
 ところで、クラッキング触媒や選択還元触媒として使用される場合、CHA型ゼオライトは高温での劣化が生じにくいこと、いわゆる耐熱性が必要とされる。しかしながら、これまで報告されてきたCHA型ゼオライトは、900℃程度の温度での劣化が進行しやすく、これらの触媒用途で使用する際に十分な耐熱性を有していなかった。 By the way, when used as a cracking catalyst or a selective reduction catalyst, the CHA-type zeolite needs to be resistant to deterioration at a high temperature, so-called heat resistance. However, the CHA-type zeolites that have been reported so far tend to deteriorate at a temperature of about 900 ° C., and did not have sufficient heat resistance when used in these catalyst applications.
米国特許4,544,538号明細書US Pat. No. 4,544,538 米国特許7,601,662号明細書US Pat. No. 7,601,662
 本発明は、従来のCHA型ゼオライトと比較して、より耐熱性が高いCHA型ゼオライトを提供することを目的とする。さらに、本発明は、このようなCHA型ゼオライトの製造方法を提供することを別の目的とする。 An object of the present invention is to provide a CHA-type zeolite having higher heat resistance than that of a conventional CHA-type zeolite. Furthermore, another object of the present invention is to provide a method for producing such a CHA-type zeolite.
 本発明者等は、CHA型ゼオライト及びその製造方法について検討した。その結果、CHA型ゼオライトにリンを含有させることでCHA型ゼオライトの耐熱性が向上することを見出した。さらに、この様なCHA型ゼオライトは、結晶化とリン修飾とを同時に行う製造方法により得られることを見出した。
 すなわち、本発明の要旨は、以下のとおりである。
[1]リンを含み、SiO/Al比が16以上50以下であることを特徴とするCHA型ゼオライト。
[2]リンを細孔内に含む上記[1]に記載のCHA型ゼオライト。
[3]骨格金属に対するリンのモル比が0.001以上、0.05以下である上記[1]又は[2]に記載のCHA型ゼオライト。
[4]アルミナに対するシリカのモル比が20以上、35以下である上記[1]乃至[3]のいずれかに記載のCHA型ゼオライト。
[5]結晶粒径が4μm以下である上記[1]乃至[4]のいずれかに記載のCHA型ゼオライト。
[6]銅又は鉄の少なくともいずれかを含む上記[1]乃至[5]のいずれかに記載のCHA型ゼオライト。
[7]シリカ源、アルミナ源、ホスホニウムカチオン源及びアンモニウムカチオン源を含む組成物を結晶化する結晶化工程、を有する、上記[1]乃至[6]のいずれかに記載のCHA型ゼオライトの製造方法。
[8]上記ホスホニウムカチオン源が、テトラエチルホスホニウム水酸化物、テトラエチルホスホニウムブロミド、テトラエチルホスホニウムクロライド及びテトラエチルホスホニウムヨージドからなる群の少なくとも1種である上記[7]に記載の製造方法。
[9]上記アンモニウムカチオン源が、トリメチル-1-アダマンタンアンモニウム水酸化、トリメチル-1-アダマンタンアンモニウムブロミド、トリメチル-1-アダマンタンアンモニウムクロライド及びトリメチル-1-アダマンタンアンモニウムヨージドからなる群の少なくとも1種である上記[7]又は[8]に記載の製造方法。
[10]上記シリカ源及びアルミナ源が結晶性アルミノシリケートである上記[7]乃至[9]のいずれかに記載の製造方法。
[11]上記シリカ源及びアルミナ源がFAU型ゼオライトである上記[7]乃至[10]のいずれかに記載の製造方法。
[12]上記[1]乃至[6]のいずれかに記載のCHA型ゼオライトを含む触媒。
[13]上記[1]乃至[6]のいずれかに記載のCHA型ゼオライトを使用する窒素酸化物の還元方法。
The present inventors examined a CHA-type zeolite and a production method thereof. As a result, it was found that the heat resistance of the CHA-type zeolite is improved by adding phosphorus to the CHA-type zeolite. Furthermore, it has been found that such a CHA-type zeolite can be obtained by a production method in which crystallization and phosphorus modification are simultaneously performed.
That is, the gist of the present invention is as follows.
[1] A CHA-type zeolite containing phosphorus and having a SiO 2 / Al 2 O 3 ratio of 16 or more and 50 or less.
[2] The CHA-type zeolite according to [1], wherein phosphorus is contained in the pores.
[3] The CHA-type zeolite according to the above [1] or [2], wherein the molar ratio of phosphorus to the skeleton metal is 0.001 or more and 0.05 or less.
[4] The CHA-type zeolite according to any one of the above [1] to [3], wherein the molar ratio of silica to alumina is 20 or more and 35 or less.
[5] The CHA-type zeolite according to any one of [1] to [4], wherein the crystal grain size is 4 μm or less.
[6] The CHA-type zeolite according to any one of the above [1] to [5], which contains at least one of copper and iron.
[7] Production of a CHA-type zeolite according to any one of the above [1] to [6], comprising a crystallization step of crystallizing a composition comprising a silica source, an alumina source, a phosphonium cation source and an ammonium cation source. Method.
[8] The production method according to [7], wherein the phosphonium cation source is at least one member selected from the group consisting of tetraethylphosphonium hydroxide, tetraethylphosphonium bromide, tetraethylphosphonium chloride, and tetraethylphosphonium iodide.
[9] The ammonium cation source is at least one selected from the group consisting of trimethyl-1-adamantanammonium hydroxide, trimethyl-1-adamantanammonium bromide, trimethyl-1-adamantanammonium chloride, and trimethyl-1-adamantanammonium iodide. The manufacturing method according to [7] or [8] above.
[10] The production method according to any one of [7] to [9], wherein the silica source and the alumina source are crystalline aluminosilicates.
[11] The production method according to any one of [7] to [10], wherein the silica source and the alumina source are FAU-type zeolite.
[12] A catalyst comprising the CHA-type zeolite according to any one of [1] to [6].
[13] A method for reducing nitrogen oxides using the CHA-type zeolite according to any one of [1] to [6].
 本発明により、従来のCHA型ゼオライトと比較して、より耐熱性が高いCHA型ゼオライトを提供することができる。さらに、本発明は、このようなCHA型ゼオライトの製造方法を提供することができる。 According to the present invention, it is possible to provide a CHA-type zeolite having higher heat resistance as compared with a conventional CHA-type zeolite. Furthermore, the present invention can provide a method for producing such a CHA-type zeolite.
実施例1のCHA型ゼオライトのXRDパターンXRD pattern of the CHA-type zeolite of Example 1 実施例1のCHA型ゼオライトの走査型電子顕微鏡観察図Scanning electron microscope observation of the CHA-type zeolite of Example 1 実施例5のCHA型ゼオライトの走査型電子顕微鏡観察図Scanning electron microscope observation of the CHA-type zeolite of Example 5 測定例1のXRDパターン[a)実施例5、b)比較例1]XRD pattern of Measurement Example 1 [a) Example 5, b) Comparative Example 1]
 以下、本発明のチャバザイト(CHA)型ゼオライトについて詳細に説明する。
 本発明のCHA型ゼオライトは、CHA構造を有する。CHA構造は、国際ゼオライト学会で定義される構造コードでCHA構造となる結晶構造である。
 また、本発明のCHA型ゼオライトは、CHA構造を有する結晶性アルミノシリケートである。結晶性アルミノシリケートは、骨格金属(以下、「T原子」ともいう。)がアルミニウム(Al)とケイ素(Si)であり、これら骨格金属と酸素(O)のネットワークからなる骨格構造を有する。したがって、CHA構造を有し、なおかつ、そのT原子にリン(P)を含むネットワークからなる骨格構造を有するアルミノフォスフェートやシリコアルミノホスフェートなどのゼオライト類縁物質と、本発明のCHA型ゼオライトとは異なる。
Hereinafter, the chabazite (CHA) type zeolite of the present invention will be described in detail.
The CHA type zeolite of the present invention has a CHA structure. The CHA structure is a crystal structure that becomes a CHA structure with a structure code defined by the International Zeolite Society.
The CHA-type zeolite of the present invention is a crystalline aluminosilicate having a CHA structure. The crystalline aluminosilicate has a skeletal structure in which the skeletal metal (hereinafter also referred to as “T atom”) is aluminum (Al) and silicon (Si), and is composed of a network of these skeletal metal and oxygen (O). Therefore, zeolite related substances such as aluminophosphate and silicoaluminophosphate having a CHA structure and having a skeleton structure composed of phosphorus (P) in the T atom are different from the CHA-type zeolite of the present invention. .
 本発明のCHA型ゼオライトは、リンを含有する。これにより、骨格アルミニウムの熱安定性が向上し、本発明のCHA型ゼオライトの耐熱性が高くなる。これに加え、ゼオライト酸点がリンで修飾され、特定の触媒反応に適した酸強度が得られる。リンは、CHA型ゼオライトの骨格以外、すなわち、T原子以外として含有される。例えば、リンはCHA型ゼオライトの細孔内に含有されており、特に酸素8員環細孔内に含有されていることが好ましい。上記のとおり、本発明のCHA型ゼオライトにおけるT原子とは、その骨格に含まれる金属、即ち、Si及びAlである。
 本発明のCHA型ゼオライトに含有されるリンの状態は、リン酸イオン又はリン化合物少なくともいずれかであることが挙げられる。
The CHA-type zeolite of the present invention contains phosphorus. Thereby, the thermal stability of frame | skeleton aluminum improves and the heat resistance of the CHA type zeolite of this invention becomes high. In addition, the zeolitic acid point is modified with phosphorus to obtain an acid strength suitable for a specific catalytic reaction. Phosphorus is contained other than the CHA-type zeolite framework, that is, other than T atoms. For example, phosphorus is contained in the pores of the CHA-type zeolite, and particularly preferably contained in the oxygen 8-membered ring pores. As described above, the T atom in the CHA-type zeolite of the present invention is a metal contained in the skeleton, that is, Si and Al.
The state of phosphorus contained in the CHA-type zeolite of the present invention is at least either a phosphate ion or a phosphorus compound.
 本発明のCHA型ゼオライトにおける、アルミナに対するシリカのモル比(以下、「SiO/Al比」ともいう。)は16以上であり、18以上、更には20以上であることが好ましい。SiO/Al比が16未満では、本発明のCHA型ゼオライトの触媒等の用途における実用的な耐熱性を有さない。一方、SiO/Al比が100以下、更には50以下、また更には35以下であれば、本発明のCHA型ゼオライトが触媒として十分な量の酸点を有する。特に好ましいSiO/Al比として、18以上30以下、更には20以上28以下を挙げることができる。
 なお、本発明のCHA型ゼオライトの組成はICP法により測定することができる。
In the CHA-type zeolite of the present invention, the molar ratio of silica to alumina (hereinafter also referred to as “SiO 2 / Al 2 O 3 ratio”) is 16 or more, preferably 18 or more, and more preferably 20 or more. When the SiO 2 / Al 2 O 3 ratio is less than 16, it does not have practical heat resistance in applications such as the catalyst of the CHA-type zeolite of the present invention. On the other hand, if the SiO 2 / Al 2 O 3 ratio is 100 or less, further 50 or less, and further 35 or less, the CHA-type zeolite of the present invention has a sufficient amount of acid sites as a catalyst. Particularly preferred SiO 2 / Al 2 O 3 ratio is 18 or more and 30 or less, and further 20 or more and 28 or less.
The composition of the CHA-type zeolite of the present invention can be measured by the ICP method.
 本発明のCHA型ゼオライトは、リンを細孔内に含むものが好ましい。すなわち、本発明のCHA型ゼオライトは、酸点、即ち、T原子であるAlの近傍にリンを含有することが好ましい。これにより、アルコールやケトンからの低級オレフィン製造用触媒、クラッキング触媒、脱ろう触媒、異性化触媒、及び窒素酸化物還元触媒などの各種の触媒又は、各種触媒の基材として使用することができる。 The CHA-type zeolite of the present invention preferably contains phosphorus in the pores. That is, the CHA-type zeolite of the present invention preferably contains phosphorus at an acid point, that is, in the vicinity of Al which is a T atom. Thereby, it can be used as various catalysts such as catalysts for producing lower olefins from alcohols and ketones, cracking catalysts, dewaxing catalysts, isomerization catalysts, and nitrogen oxide reduction catalysts, or as base materials for various catalysts.
 本発明のCHA型ゼオライトのT原子に対するリンのモル比(以下、「P/T比」ともいう。)は0.06以下、更には0.05以下、また更には0.04以下である。0.06を超えるとCHA型ゼオライトの細孔がリンによって閉塞される。そのため、細孔を触媒反応等に有効に使うことができない。P/T比は0.0005以上、更には0.001以上であればよい。P/T比が0.001以上であることでCHA型ゼオライトの耐熱性が高くなる。特に好ましいP/T比として0.005以上0.05以下、更には0.008以上0.02以下を挙げることができる。 The molar ratio of phosphorus to T atoms in the CHA-type zeolite of the present invention (hereinafter also referred to as “P / T ratio”) is 0.06 or less, further 0.05 or less, and further 0.04 or less. If it exceeds 0.06, the pores of the CHA-type zeolite are blocked by phosphorus. For this reason, the pores cannot be used effectively for a catalytic reaction or the like. The P / T ratio may be 0.0005 or more, and further 0.001 or more. When the P / T ratio is 0.001 or more, the heat resistance of the CHA-type zeolite is increased. Particularly preferred P / T ratio is 0.005 or more and 0.05 or less, and further 0.008 or more and 0.02 or less.
 本発明のCHA型ゼオライトは、T原子としてのAlに対するリンのモル比(以下、「P/Al比」ともいう。)が0.55未満、更には0.5以下であることが好ましい。P/Alが0.55未満であれば、触媒として必要とされる酸点を有し、なおかつ、触媒用途として実用的な耐熱性を有するCHA型ゼオライトとなる。また、T原子としてのAlは酸点として機能する。P/Al比は0.01以上、更には0.02以上であれば、触媒活性を示す酸点としてのAlが多いCHA型ゼオライトとなる。触媒特性及び耐熱性の観点から、P/Al比は0.05以上0.5以下、更には0.1以上0.2以下であることが特に好ましい。 The CHA-type zeolite of the present invention preferably has a molar ratio of phosphorus to Al as the T atom (hereinafter also referred to as “P / Al ratio”) of less than 0.55, and more preferably 0.5 or less. If P / Al is less than 0.55, it becomes a CHA-type zeolite having an acid point required as a catalyst and having practical heat resistance as a catalyst. Further, Al as a T atom functions as an acid point. When the P / Al ratio is 0.01 or more, and further 0.02 or more, a CHA-type zeolite having a large amount of Al as an acid point exhibiting catalytic activity is obtained. From the viewpoint of catalyst characteristics and heat resistance, the P / Al ratio is particularly preferably 0.05 or more and 0.5 or less, more preferably 0.1 or more and 0.2 or less.
 なお、本発明のCHA型ゼオライトは、フッ素(F)を実質的に含んでいないこと、すなわちフッ素含有量が0ppmであることが好ましい。一般的に、ゼオライトに含まれるフッ素は、原料に由来する。原料にフッ素を含む化合物を使用して得られたゼオライトは、その製造コストが高くなりやすい。
 ランタン-アリザリンコンプレキソン吸光光度法など、通常の組成分析法により得られる測定値の測定限界を考慮すると、本発明のCHA型ゼオライトのフッ素含有量は100ppm以下、更には50ppm以下であればよい。
In addition, it is preferable that the CHA-type zeolite of the present invention does not substantially contain fluorine (F), that is, the fluorine content is 0 ppm. Generally, the fluorine contained in a zeolite originates from a raw material. Zeolite obtained using a compound containing fluorine as a raw material tends to be expensive to produce.
Considering the measurement limit of the measurement values obtained by ordinary composition analysis methods such as lanthanum-alizarin complexone spectrophotometry, the fluorine content of the CHA-type zeolite of the present invention may be 100 ppm or less, more preferably 50 ppm or less.
 本発明のCHA型ゼオライトは、結晶粒径が4μm以下、更には3μm以下、また更には2μm以下であることが好ましい。結晶粒径が4μm以下であることで、反応性が改善されるため、触媒性能が向上する。
 なお、本発明において結晶粒径は走査型電子顕微鏡(以下、「SEM」ともいう。)観察により確認することができる。すなわち、本発明のCHA型ゼオライトの結晶粒子は、略立方体形状又は略立方体の双晶形状の少なくともいずれかの形状を有する。結晶粒径は、これら結晶粒子の辺の長さを観察することで確認できる。
The CHA-type zeolite of the present invention preferably has a crystal grain size of 4 μm or less, more preferably 3 μm or less, and even more preferably 2 μm or less. Since the reactivity is improved when the crystal grain size is 4 μm or less, the catalyst performance is improved.
In the present invention, the crystal grain size can be confirmed by observation with a scanning electron microscope (hereinafter also referred to as “SEM”). That is, the CHA-type zeolite crystal particles of the present invention have at least one of a substantially cubic shape and a substantially cubic twin shape. The crystal grain size can be confirmed by observing the side lengths of these crystal grains.
 本発明のCHA型ゼオライトは、銅又は鉄の少なくともいずれか、更には銅を含有していてもよい。銅又は鉄の少なくともいずれかを含有するCHA型ゼオライトは、窒素酸化物還元特性を有する触媒として使用することができる。本発明のCHA型ゼオライトは、特に高温高湿雰囲気に晒された後において、200℃以下、更には150℃以下の低温でSCR触媒として、高い窒素酸化物還元率を示す。
 ここで、高温高湿雰囲気として、900℃で、10体積%のHOを含む空気を300mL/分で流通させた雰囲気を挙げることができる。当該雰囲気に晒される時間が長くなることで、ゼオライトへの熱負荷が大きくなる。一般的には高温高湿下に晒される時間が長くなるほど、脱アルミニウムをはじめとする、ゼオライトの結晶性の低下が生じやすくなる。
The CHA-type zeolite of the present invention may contain at least one of copper and iron, and further copper. A CHA-type zeolite containing at least one of copper and iron can be used as a catalyst having nitrogen oxide reduction characteristics. The CHA-type zeolite of the present invention exhibits a high nitrogen oxide reduction rate as an SCR catalyst at a low temperature of 200 ° C. or lower, further 150 ° C. or lower, particularly after being exposed to a high temperature and high humidity atmosphere.
Here, examples of the high temperature and high humidity atmosphere include an atmosphere in which air containing 10% by volume of H 2 O is circulated at 300 mL / min at 900 ° C. By increasing the time of exposure to the atmosphere, the heat load on the zeolite increases. In general, the longer the time of exposure to high temperature and high humidity, the easier it is for the zeolite crystallinity to decrease, including dealumination.
 次に、本発明のCHA型ゼオライトの製造方法について説明する。
 本発明のCHA型ゼオライトは、シリカ源、アルミナ源、ホスホニウムカチオン源、及びアンモニウムカチオン源を含む組成物(以下、「原料組成物」ともいう。)を結晶化する結晶化工程、を有する製造方法により得られる。
Next, a method for producing the CHA-type zeolite of the present invention will be described.
The CHA-type zeolite of the present invention comprises a crystallization step of crystallizing a composition containing a silica source, an alumina source, a phosphonium cation source, and an ammonium cation source (hereinafter also referred to as “raw material composition”). Is obtained.
 結晶化工程では、ホスホニウムカチオン源を含有する原料組成物を結晶化する。ホスホニウムカチオンは、構造指向剤(以下、「SDA」ともいう。)としての機能を有するだけでなく、リンの供給源となる。CHA型ゼオライトを結晶化すると同時にリンを含有させることができる。これにより、結晶化工程の後にリンを修飾するための後処理工程を必須とすることがない。 In the crystallization step, the raw material composition containing the phosphonium cation source is crystallized. The phosphonium cation not only functions as a structure directing agent (hereinafter also referred to as “SDA”), but also serves as a source of phosphorus. Phosphorus can be contained simultaneously with crystallization of the CHA-type zeolite. Thereby, a post-treatment step for modifying phosphorus after the crystallization step is not essential.
 ホスホニウムカチオン源は、ホスホニウムカチオンを含む化合物、更にはホスホニウムカチオンの硫酸塩、硝酸塩、ハロゲン化物及び水酸化物からなる群の少なくとも1種を挙げることができる。ホスホニウムカチオンは、テトラエチルホスホニウムカチオン(以下、「TEP」ともいう。)又はテトラメチルホスホニウムカチオンの少なくともいずれか、更にはTEPであることが好ましい。
 特に好ましいホスホニウムカチオン源として、テトラエチルホスホニウム水酸化物(以下、「TEPOH」ともいう。)、テトラエチルホスホニウムブロミド(以下、「TEPBr」ともいう。)、テトラエチルホスホニウムクロライド(以下、「TEPCl」ともいう。)、及びテトラエチルホスホニウムヨージド(以下、「TEPI」ともいう。)からなる群の少なくとも1種、更にはTEPOHを挙げることができる。
Examples of the phosphonium cation source include compounds containing a phosphonium cation, and at least one member selected from the group consisting of phosphonium cation sulfates, nitrates, halides and hydroxides. The phosphonium cation is preferably tetraethylphosphonium cation (hereinafter also referred to as “TEP”) or tetramethylphosphonium cation, and more preferably TEP.
As particularly preferred phosphonium cation sources, tetraethylphosphonium hydroxide (hereinafter also referred to as “TEPOH”), tetraethylphosphonium bromide (hereinafter also referred to as “TEPBr”), and tetraethylphosphonium chloride (hereinafter also referred to as “TEPCl”). And at least one selected from the group consisting of tetraethylphosphonium iodide (hereinafter, also referred to as “TEPI”), and TEPOH.
 原料組成物は、アンモニウムカチオン源を含有する。原料組成物がアンモニウムカチオン源を含有することで、SiO/Al比の高いCHA型ゼオライトが得られる。これに加え、ホスホニウムカチオン源とアンモニウムカチオン源との割合を調整することで、CHA型ゼオライトに含まれるリンの量を調整することができる。アンモニウムカチオン源としては、アンモニウムカチオンを含む化合物、更にはアンモニウムカチオンの硫酸塩、硝酸塩、ハロゲン化物及び水酸化物からなる群の少なくとも1種を挙げることができる。アンモニウムカチオンは、トリメチル-1-アダマンタンアンモニウム(以下、「TMAda」ともいう。)、コリン及びトリメチルベンジルアンモニウムからなる群の少なくとも1種、更にはTMAdaを挙げることができる。 The raw material composition contains an ammonium cation source. When the raw material composition contains an ammonium cation source, a CHA zeolite having a high SiO 2 / Al 2 O 3 ratio can be obtained. In addition to this, the amount of phosphorus contained in the CHA-type zeolite can be adjusted by adjusting the ratio of the phosphonium cation source and the ammonium cation source. Examples of the ammonium cation source include compounds containing an ammonium cation, and at least one member selected from the group consisting of ammonium cation sulfates, nitrates, halides, and hydroxides. Examples of the ammonium cation include trimethyl-1-adamantanammonium (hereinafter also referred to as “TMAda”), choline and trimethylbenzylammonium, and TMAda.
 特に好ましいアンモニウムカチオン源として、トリメチル-1-アダマンタンアンモニウム水酸化物(以下、「TMAdaOH」ともいう。)、トリメチル-1-アダマンタンアンモニウムブロミド(以下、「TMAdaBr」ともいう。)、トリメチル-1-アダマンタンアンモニウムクロライド(以下、「TMAdaCl」ともいう。)、及びトリメチル-1-アダマンタンアンモニウムヨージド(以下、「TMAdaI」ともいう。)からなる群の少なくとも1種、更にはTMAdaOHを挙げることができる。 Particularly preferred ammonium cation sources include trimethyl-1-adamantanammonium hydroxide (hereinafter also referred to as “TMAdaOH”), trimethyl-1-adamantanammonium bromide (hereinafter also referred to as “TMAdaBr”), trimethyl-1-adamantane. There may be mentioned at least one member selected from the group consisting of ammonium chloride (hereinafter also referred to as “TMAdaCl”) and trimethyl-1-adamantanammonium iodide (hereinafter also referred to as “TMAdaI”), and further TMAdaOH.
 原料組成物に含まれるシリカ源及びアルミナ源は、結晶性アルミノシリケート(ゼオライト)であることが好ましい。結晶性アルミノシリケートは、規則性がある結晶構造をしている。構造指向剤の存在下で結晶性アルミシリケートを処理すると、結晶構造の規則性が適度に維持されながら結晶化が進行すると考えられる。そのため、シリカ源とアルミナ源が個別の化合物である場合、若しくはシリカ源及びアルミナ源が非結晶性の化合物である場合と比べ、シリカ源及びアルミナ源が結晶性アルミノシリケートであることで、CHA型ゼオライトがより効率よく結晶化する。 The silica source and alumina source contained in the raw material composition are preferably crystalline aluminosilicate (zeolite). Crystalline aluminosilicate has a regular crystal structure. When crystalline aluminum silicate is treated in the presence of a structure directing agent, it is considered that crystallization proceeds while maintaining regularity of the crystal structure. Therefore, when the silica source and the alumina source are separate compounds, or when the silica source and the alumina source are crystalline aluminosilicate, compared with the case where the silica source and the alumina source are non-crystalline compounds, the CHA type Zeolite crystallizes more efficiently.
 単一相のCHA型ゼオライトを得られやすくなるため、結晶性アルミノシリケートはFAU型ゼオライト、更にはX型ゼオライト又はY型ゼオライトの少なくともいずれか、また更にはY型ゼオライトであることが好ましい。
 結晶性アルミノシリケートのSiO/Al比として1.25以上、更には10以上、更には20以上が挙げられる。一方、SiO/Al比は100以下、更には50以下であればよい。好ましい結晶性アルミノシリケートのSiO/Al比として18以上40以下、更には20以上40以下を挙げることができる。
In order to easily obtain a single-phase CHA-type zeolite, the crystalline aluminosilicate is preferably a FAU-type zeolite, more preferably at least one of an X-type zeolite or a Y-type zeolite, or even a Y-type zeolite.
The SiO 2 / Al 2 O 3 ratio of the crystalline aluminosilicate is 1.25 or more, more preferably 10 or more, and further 20 or more. On the other hand, the SiO 2 / Al 2 O 3 ratio may be 100 or less, and further 50 or less. Preferred SiO 2 / Al 2 O 3 ratio of crystalline aluminosilicate is 18 or more and 40 or less, and further 20 or more and 40 or less.
 原料組成物が含有する結晶性アルミノシリケートのカチオンタイプは任意である。カチオンタイプとして、ナトリウム型(Na型)、プロトン型(H型)及びアンモニウム型(NH型)からなる群の少なくとも1種、更にはプロトン型であることが好ましい。 The cation type of the crystalline aluminosilicate contained in the raw material composition is arbitrary. The cation type is preferably at least one selected from the group consisting of sodium type (Na type), proton type (H + type) and ammonium type (NH 4 type), and more preferably a proton type.
 原料組成物は、結晶性アルミノシリケート以外のシリカ源又はアルミナ源を含有しなくてもよい。CHA型ゼオライトの結晶化の効率化の観点から、原料組成物は非晶質のシリカ源及びアルミナ源を含んでいないことが好ましく、シリカ源及びアルミナ源は結晶性アルミノシリケートのみであることがより好ましい。 The raw material composition may not contain a silica source or an alumina source other than the crystalline aluminosilicate. From the viewpoint of increasing the efficiency of crystallization of the CHA-type zeolite, the raw material composition preferably does not contain an amorphous silica source and an alumina source, and the silica source and the alumina source are more preferably only crystalline aluminosilicate. preferable.
 原料組成物は、シリカ源、アルミナ源、ホスホニウムカチオン源及びアンモニウムカチオン源に加え、アルカリ源、及び水を含んでいてもよい。
 アルカリ源は、アルカリ金属を含む水酸化物を挙げることができる。より具体的には、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムの群からなる少なくとも1種を含む水酸化物であり、更にはナトリウム又はカリウムの少なくともいずれかを含む水酸化物であり、また更にはナトリウムを含む水酸化物である。また、シリカ源及びアルミナ源がアルカリ金属を含む場合、当該アルカリ金属もアルカリ源とすることができる。
 水は純水を使用してもよいが、各原料を水溶液として使用してもよい。
The raw material composition may contain an alkali source and water in addition to a silica source, an alumina source, a phosphonium cation source and an ammonium cation source.
Examples of the alkali source include a hydroxide containing an alkali metal. More specifically, it is a hydroxide containing at least one selected from the group consisting of lithium, sodium, potassium, rubidium and cesium, further a hydroxide containing at least one of sodium or potassium, and further It is a hydroxide containing sodium. Further, when the silica source and the alumina source contain an alkali metal, the alkali metal can also be used as the alkali source.
Pure water may be used as the water, but each raw material may be used as an aqueous solution.
 原料組成物のアルミナに対するシリカのモル比(SiO/Al比)は18以上、更には20以上であればよい。一方、SiO/Al比は100以下、更には50以下であればよい。好ましいSiO/Al比として18以上40以下、更には20以上40以下を挙げることができる。 The molar ratio of silica to alumina in the raw material composition (SiO 2 / Al 2 O 3 ratio) may be 18 or more, and more preferably 20 or more. On the other hand, the SiO 2 / Al 2 O 3 ratio may be 100 or less, and further 50 or less. A preferred SiO 2 / Al 2 O 3 ratio is 18 or more and 40 or less, and further 20 or more and 40 or less.
 原料組成物のシリカに対するホスホニウムカチオンのモル比(以下、「P-SDA/SiO比」ともいう。)は0.01以上、更には0.05以上であることが好ましい。P-SDA/SiO比が0.01以上で得られるCHA型ゼオライト中にリンが含まれやすくなる。P-SDA/SiO比は0.5以下、更には0.3以下であれば、リン含有による耐熱性向上の効果が得られやすくなる。 The molar ratio of phosphonium cation to silica in the raw material composition (hereinafter also referred to as “P-SDA / SiO 2 ratio”) is preferably 0.01 or more, more preferably 0.05 or more. Phosphorus is easily contained in the CHA-type zeolite obtained at a P-SDA / SiO 2 ratio of 0.01 or more. When the P-SDA / SiO 2 ratio is 0.5 or less, and further 0.3 or less, the effect of improving the heat resistance due to the phosphorus content is easily obtained.
 原料組成物のシリカに対するアンモニウムカチオンのモル比(以下、「N-SDA/SiO比」ともいう。)は0.01以上、更には0.02以上である。一方、N-SDA/SiO比は0.5以下、更には0.3以下であれば、単一相でCHA型ゼオライトが得られる。 The molar ratio of the ammonium cation to the silica of the raw material composition (hereinafter also referred to as “N-SDA / SiO 2 ratio”) is 0.01 or more, and further 0.02 or more. On the other hand, if the N-SDA / SiO 2 ratio is 0.5 or less, further 0.3 or less, a CHA-type zeolite can be obtained in a single phase.
 原料組成物はホスホニウムカチオン及びアンモニウムカチオンを含む。そのため、原料組成物のシリカに対する、ホスホニウムカチオン及びアンモウムカチオンのモル比(以下、「SDA/SiO比」ともいう。)は0を超える。さらに、SDA/SiO比は0.15以上、更には0.21以上であることが好ましい。しかしながら、ホスホニウムカチオン及びアンモウムカチオンが多くなりすぎると、CHA型ゼオライトの製造コストが高くなる。そのため、SDA/SiO比は0.6以下、更には0.4以下であることが好ましい。 The raw material composition includes a phosphonium cation and an ammonium cation. Therefore, the molar ratio of the phosphonium cation and the ammonium cation to the silica of the raw material composition (hereinafter also referred to as “SDA / SiO 2 ratio”) exceeds zero. Furthermore, the SDA / SiO 2 ratio is preferably 0.15 or more, more preferably 0.21 or more. However, if the amount of phosphonium cation and ammonium cation is too large, the production cost of the CHA-type zeolite increases. Therefore, the SDA / SiO 2 ratio is preferably 0.6 or less, and more preferably 0.4 or less.
 原料組成物のホスホニウムカチオン及びアンモニウムカチオンの割合は、目的とするCHA型ゼオライトのリン含有量により任意の割合とすることができる。ホスホニウムカチオン及びアンモにオウムカチオンの合計に対するアンモニウムカチオンのモル比(以下、「N-SDA/SDA比」ともいう。)は0を超え1未満であればよい。本発明の製造方法においては、N-SDA/SDA比が0.01以上0.9以下、更には0.05以上0.9以下であることが挙げられる。高温高湿雰囲気に晒された後の触媒活性が特に高いCHA型ゼオライトを得るため、N-SDA/SDA比は0.1以上0.4以下を挙げることができる。 The ratio of the phosphonium cation and the ammonium cation in the raw material composition can be set to any ratio depending on the phosphorus content of the target CHA-type zeolite. The molar ratio of the ammonium cation to the total of the phosphonium cation and the ammo cation (hereinafter also referred to as “N-SDA / SDA ratio”) may be more than 0 and less than 1. In the production method of the present invention, the N-SDA / SDA ratio is 0.01 or more and 0.9 or less, and further 0.05 or more and 0.9 or less. In order to obtain a CHA-type zeolite having a particularly high catalytic activity after being exposed to a high temperature and high humidity atmosphere, the N-SDA / SDA ratio can be 0.1 or more and 0.4 or less.
 原料組成物のシリカに対するアルカリ金属のモル比(以下、「アルカリ/SiO比」ともいう。)は0.3以下であることが好ましい。アルカリ/SiO比が0.3以下であることで、高いSiO/Al比を有するCHA型ゼオライトが得られやすくなる。より高いSiO/Al比のCHA型ゼオライトを得るため、アルカリ/SiO比は0.2以下、更には0.15以下であることが好ましい。 The molar ratio of the alkali metal to silica of the raw material composition (hereinafter also referred to as “alkali / SiO 2 ratio”) is preferably 0.3 or less. When the alkali / SiO 2 ratio is 0.3 or less, a CHA-type zeolite having a high SiO 2 / Al 2 O 3 ratio is easily obtained. In order to obtain a CHA-type zeolite having a higher SiO 2 / Al 2 O 3 ratio, the alkali / SiO 2 ratio is preferably 0.2 or less, more preferably 0.15 or less.
 シリカに対するOHのモル比(以下、「OH/SiO比」ともいう。)は0.5以下である。OH/SiO比が0.5以下であることで、より高い収率でCHA型ゼオライトを得ることができる。原料組成物のOH/SiO比は、0.1以上、更には0.26以上であればよい。 The molar ratio of OH to silica (hereinafter also referred to as “OH / SiO 2 ratio”) is 0.5 or less. When the OH / SiO 2 ratio is 0.5 or less, a CHA-type zeolite can be obtained with a higher yield. The OH / SiO 2 ratio of the raw material composition may be 0.1 or more, further 0.26 or more.
 シリカに対する水(HO)のモル比(以下、「HO/SiO比」ともいう。)は20以下、更には15以下であれば、より効率よくCHA型ゼオライトが得られる。適度な流動性を有する原料組成物とするため、HO/SiO比は3以上、更には5以上であればよい。 If the molar ratio of water (H 2 O) to silica (hereinafter also referred to as “H 2 O / SiO 2 ratio”) is 20 or less, and further 15 or less, a CHA-type zeolite can be obtained more efficiently. In order to obtain a raw material composition having appropriate fluidity, the H 2 O / SiO 2 ratio may be 3 or more, and further 5 or more.
 特に好ましい原料組成物の組成として以下のものを挙げることができる。
   SiO/Al比  =18以上、50以下
   アルカリ/SiO比   =0.01以上、0.3以下
   P-SDA/SiO比  =0.01以上、0.5以下
   N-SDA/SiO比  =0.01以上、0.5以下
   N-SDA/SDA比=  =0.01以上、0.9以下
   OH/SiO比     =0.1以上、0.5以下
   HO/SiO比    =3以上、20以下
Particularly preferable raw material compositions include the following.
SiO 2 / Al 2 O 3 ratio = 18 or more, 50 or less Alkali / SiO 2 ratio = 0.01 or more, 0.3 or less P-SDA / SiO 2 ratio = 0.01 or more, 0.5 or less N-SDA / SiO 2 ratio = 0.01 or more, 0.5 or less N-SDA / SDA ratio = = 0.01 or more, 0.9 or less OH / SiO 2 ratio = 0.1 or more, 0.5 or less H 2 O / SiO 2 ratio = 3 or more, 20 or less
 なお、原料組成物にフッ素を含む化合物が含まれると、製造コストが高くなりやすい。そのため、原料組成物はフッ素(F)を実質的に含んでいないことが好ましい。
 なお、本発明の原料組成物の組成は、ICP法により測定することができる。
In addition, when the raw material composition contains a compound containing fluorine, the production cost tends to increase. Therefore, it is preferable that the raw material composition does not substantially contain fluorine (F).
The composition of the raw material composition of the present invention can be measured by the ICP method.
 結晶化工程では、上記の各原料を含む原料組成物を水熱合成することにより、これを結晶化処理する。結晶化処理は、原料組成物を密閉容器に充填し、これを加熱すればよい。
 結晶化温度は80℃以上であれば、原料組成物の結晶化が結晶化する。温度が高いほど、結晶化が促進される。そのため、結晶化温度は100℃以上、更には120℃以上であることが好ましい。原料組成物が結晶化すれば、必要以上に結晶化温度を高くする必要はない。そのため、結晶化温度は200℃以下、更には160℃以下、また更には150℃以下であればよい。また、結晶化は原料組成物を攪拌した状態、又は静置した状態のいずれの状態で行うことができる。
In the crystallization step, the raw material composition containing each of the above raw materials is hydrothermally synthesized to be crystallized. The crystallization treatment may be performed by filling the raw material composition in a sealed container and heating it.
If the crystallization temperature is 80 ° C. or higher, the crystallization of the raw material composition is crystallized. Higher temperatures promote crystallization. Therefore, the crystallization temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. If the raw material composition is crystallized, it is not necessary to raise the crystallization temperature more than necessary. Therefore, the crystallization temperature may be 200 ° C. or lower, further 160 ° C. or lower, and further 150 ° C. or lower. Crystallization can be carried out in either a state where the raw material composition is stirred or a state where it is allowed to stand.
 本発明の製造方法は、ホスホニウムカチオンを有する原料組成物からCHA型ゼオライトを結晶化させる製造方法であるにもかかわらず、従来のCHA型ゼオライトの工業的な製造方法と同等の高い収率を示す。本発明の製造方法の収率として、例えば、70%以上、更には80%以上を挙げることができる。 Although the production method of the present invention is a production method for crystallizing CHA-type zeolite from a raw material composition having a phosphonium cation, it exhibits a high yield equivalent to the conventional industrial production method of CHA-type zeolite. . Examples of the yield of the production method of the present invention include 70% or more, and further 80% or more.
 なお、本発明において、収率は以下の式から求めればよい。
 収率(%) =(WCHA/Wraw)×100
 上記式において、WCHAは得られたCHA型ゼオライトの乾燥重量(g)及び、Wrawは原料組成物中のSiをSiOとして換算した重量と、AlをAlとして換算した重量との合計重量(g)である。
 WCHAは、得られたCHA型ゼオライトを大気中、50℃以上90℃以下、6時間以上24時間以下で乾燥し、その重量を求めることができる。また、Wrawは、ICP等により原料組成物中のSi及びAlを求め、これをそれぞれ換算して求めることができる。
 本発明の製造方法では、結晶化工程の後、洗浄工程、乾燥工程及びイオン交換工程の少なくともいずれか(以下、「後処理工程」とする。)を含んでいてもよい。
In the present invention, the yield may be obtained from the following formula.
Yield (%) = (W CHA / W raw ) × 100
In the above formula, W CHA is the dry weight (g) of the obtained CHA-type zeolite, W raw is the weight of Si in the raw material composition converted as SiO 2 , and the weight of Al converted as Al 2 O 3 The total weight (g).
W CHA can be obtained by drying the obtained CHA-type zeolite in the atmosphere at 50 ° C. or more and 90 ° C. or less and 6 hours or more and 24 hours or less. In addition, W raw can be obtained by obtaining Si and Al in the raw material composition by ICP or the like and converting them.
The production method of the present invention may include at least one of a washing step, a drying step, and an ion exchange step (hereinafter referred to as “post-treatment step”) after the crystallization step.
 洗浄工程は、結晶化後のCHA型ゼオライトと液相とを固液分離する。洗浄工程は、公知の方法で固液分離をし、固相として得られるCHA型ゼオライトを純水で洗浄すればよい。 In the washing step, the crystallized CHA-type zeolite and the liquid phase are solid-liquid separated. In the washing step, solid-liquid separation may be performed by a known method, and the CHA-type zeolite obtained as a solid phase may be washed with pure water.
 乾燥工程は、結晶化工程後又は洗浄工程後のCHA型ゼオライトから水分を除去する。乾燥工程の条件は任意であるが、結晶化工程後又は洗浄工程後のCHA型ゼオライトを、大気中、50℃以上、150℃以下で2時間以上、静置することが例示できる。 In the drying step, moisture is removed from the CHA-type zeolite after the crystallization step or the washing step. Although the conditions for the drying step are arbitrary, it can be exemplified that the CHA-type zeolite after the crystallization step or the washing step is allowed to stand in the atmosphere at 50 ° C. or higher and 150 ° C. or lower for 2 hours or longer.
 結晶化後のCHA型ゼオライトは、そのイオン交換サイト上にアルカリ金属イオン等の金属イオンを有する場合がある。イオン交換工程では、これをアンモニウムイオン(NH )や、プロトン(H)等の非金属カチオンにイオン交換する。アンモニウムイオンへのイオン交換は、CHA型ゼオライトを塩化アンモニウム水溶液に混合、攪拌することが挙げられる。また、プロトンへのイオン交換は、CHA型ゼオライトをアンモニアでイオン交換した後、これを焼成することが挙げられる。 The CHA-type zeolite after crystallization may have metal ions such as alkali metal ions on its ion exchange site. In the ion exchange step, this is ion-exchanged to a non-metallic cation such as ammonium ion (NH 4 + ) or proton (H + ). Examples of ion exchange to ammonium ions include mixing and stirring CHA-type zeolite in an ammonium chloride aqueous solution. In addition, ion exchange for protons includes calcination of CHA-type zeolite after ion exchange with ammonia.
 本発明のCHA型ゼオライトに銅(Cu)又は鉄(Fe)を含有させる場合、銅又は鉄の少なくともいずれかを含む化合物(以下、「銅化合物等」ともいう。)と本発明のCHA型ゼオライトとを接触させる金属含有工程、を有する製造方法により得ることができる。
 金属含有工程は、CHA型ゼオライトのイオン交換サイト又は細孔の少なくともいずれかに銅又は鉄の少なくともいずれかが含有される方法であればよい。具体的な方法として、イオン交換法、蒸発乾固法及び含浸担持法からなる群の少なくとも1種を挙げることができ、含浸担持法、更には遷移金属化合物を含む水溶液とCHA型ゼオライトとを混合する方法であることが好ましい。
 銅化合物等は、銅又は鉄の少なくともいずれかを含む無機酸塩、更には銅又は鉄の少なくともいずれかを含む硫酸塩、硝酸塩、酢酸塩及び塩化物からなる群の少なくとも1種を挙げることができる。
When the CHA-type zeolite of the present invention contains copper (Cu) or iron (Fe), a compound containing at least one of copper and iron (hereinafter also referred to as “copper compound etc.”) and the CHA-type zeolite of the present invention It can obtain by the manufacturing method which has a metal containing process made to contact.
The metal-containing step may be a method in which at least one of copper or iron is contained in at least one of the ion exchange sites or pores of the CHA zeolite. Specific examples of the method include at least one member selected from the group consisting of an ion exchange method, an evaporation to dryness method, and an impregnation support method. Further, an impregnation support method, and an aqueous solution containing a transition metal compound and CHA zeolite are mixed. It is preferable that it is a method to do.
Examples of the copper compound include an inorganic acid salt containing at least one of copper and iron, and at least one selected from the group consisting of sulfate, nitrate, acetate and chloride containing at least one of copper and iron. it can.
 金属含有工程の後、洗浄工程、乾燥工程、又は活性化工程の少なくともいずれか1以上の工程を含んでいてもよい。
 洗浄工程は、不純物等が除去されれば、任意の洗浄方法を用いることができる。例えば、金属含有工程後のCHA型ゼオライトを十分量の純水で洗浄することが挙げられる。
 乾燥工程は水分を除去すればよく、大気中で、100℃以上、200℃以下で処理することが例示できる。
 活性化工程は有機物を除去する。金属含有CHA型ゼオライトを、大気中、200℃を超え、600℃以下で処理することが例示できる。
After the metal-containing step, at least one step of a washing step, a drying step, or an activation step may be included.
In the cleaning step, any cleaning method can be used as long as impurities and the like are removed. For example, the CHA-type zeolite after the metal-containing step can be washed with a sufficient amount of pure water.
What is necessary is just to remove a water | moisture content in a drying process, and it can illustrate treating at 100 degreeC or more and 200 degrees C or less in air | atmosphere.
The activation process removes organic matter. It can be exemplified that the metal-containing CHA-type zeolite is treated at 200 ° C. or more and 600 ° C. or less in the atmosphere.
 銅又は鉄の少なくともいずれか、更には銅を含有するCHA型ゼオライトは、例えば、アルコールやケトンからの低級オレフィン製造用触媒、クラッキング触媒、脱ろう触媒、異性化触媒、及び排気ガスからの窒素酸化物還元触媒として使用することできる。特に、窒素酸化物還元触媒として使用することが好ましい。 CHA-type zeolite containing at least one of copper and iron, and further copper, for example, is a catalyst for producing lower olefins from alcohols and ketones, cracking catalysts, dewaxing catalysts, isomerization catalysts, and nitrogen oxidation from exhaust gas. It can be used as a product reduction catalyst. In particular, it is preferably used as a nitrogen oxide reduction catalyst.
 以下、実施例を挙げて本発明を説明する。しかしながら、本発明はこれら実施例に限定されるものではない。なお、「比」は特に断らない限り、「モル比」である。
 (結晶構造の同定)
 一般的なX線回折装置(装置名:Mini Flex、リガク社製)を使用し、試料のXRD測定をした。線源にはCuKα線(λ=1.5405Å)を用い、測定範囲は2θとして5°から50°の範囲で測定した。
 得られたXRDパターンと、非特許文献1のFig.1(f)に記載のXRDパターンとを比較することで、試料の構造を同定した。
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to these examples. “Ratio” is “molar ratio” unless otherwise specified.
(Identification of crystal structure)
A general X-ray diffractometer (device name: Mini Flex, manufactured by Rigaku Corporation) was used to perform XRD measurement of the sample. A CuKα ray (λ = 1.5405 mm) was used as the radiation source, and the measurement range was 2θ and the measurement was performed in the range of 5 ° to 50 °.
The obtained XRD pattern and FIG. The structure of the sample was identified by comparing with the XRD pattern described in 1 (f).
 (組成分析)
 フッ酸と硝酸の混合水溶液に試料を溶解して試料溶液を調製した。一般的なICP装置(装置名:OPTIMA5300DV、PerkinElmer社製)を使用して、当該試料溶液を誘導結合プラズマ発光分光分析(ICP-AES)で測定した。
 得られたSi、Al及びPの測定値から、試料のSiO/Al比、P/Al比を求めた。
(Composition analysis)
A sample solution was prepared by dissolving a sample in a mixed aqueous solution of hydrofluoric acid and nitric acid. The sample solution was measured by inductively coupled plasma optical emission spectrometry (ICP-AES) using a general ICP device (device name: OPTIMA5300DV, manufactured by PerkinElmer).
From the measured values of Si, Al and P obtained, the SiO 2 / Al 2 O 3 ratio and P / Al ratio of the sample were determined.
 (収率)
 CHA型ゼオライトの収率は、以下の式から求めればよい。
 収率(%) =(WCHA/Wraw)×100
 WCHAは、得られたCHA型ゼオライトを大気中、70℃×12時間で乾燥し、その重量を測定した。また、Wrawは、原料組成物に含まれるシリカ源及びアルミナ源であるFAU型ゼオライトの重量である。
(yield)
What is necessary is just to obtain | require the yield of a CHA type zeolite from the following formula | equation.
Yield (%) = (W CHA / W raw ) × 100
W CHA dried the obtained CHA-type zeolite in the atmosphere at 70 ° C. for 12 hours, and measured its weight. W raw is the weight of the FAU-type zeolite that is the silica source and the alumina source contained in the raw material composition.
 実施例1
 純水、水酸化ナトリウム、FAU型ゼオライト(Y型、カチオンタイプ:プロトン型、SiO/Al比=32)及び25%TMAdaOH水溶液を、40%TEPOH水溶液に添加し、これを混合して以下の組成を有する原料組成物を得た。
   SiO/Al比    =32
   Na/SiO比      =0.1
   TEP/SiO比     =0.05
   TMAda/SiO比   =0.25
   N-SDA/SDA比    =0.83
   OH/SiO比      =0.4
   HO/SiO比      =5
 得られた原料組成物を密閉容器内に充填し、この容器を10rpmで回転させた状態で150℃、7日間の条件で原料組成物を結晶化させた。結晶化後の原料組成物を固液分離し、純水で洗浄した後、70℃で乾燥して本実施例のゼオライトを得た。当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであり、なおかつ、SiO/Al比=24、P/Al比=0.02、及びP/T比=0.015であった。また、収率は90%であった。
 原料組成物の主な組成及び本実施例のCHA型ゼオライトの評価結果を表1に示した。また、本実施例のCHA型ゼオライトのXRDパターンを図1に、SEM写真を図2に示した。図2より、本実施例のCHA型ゼオライトの一次粒子は1μm以下であることが確認できた。
Example 1
Pure water, sodium hydroxide, FAU type zeolite (Y type, cation type: proton type, SiO 2 / Al 2 O 3 ratio = 32) and 25% TMAdaOH aqueous solution are added to 40% TEPOH aqueous solution and mixed. Thus, a raw material composition having the following composition was obtained.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.05
TMAda / SiO 2 ratio = 0.25
N-SDA / SDA ratio = 0.83
OH / SiO 2 ratio = 0.4
H 2 O / SiO 2 ratio = 5
The obtained raw material composition was filled in an airtight container, and the raw material composition was crystallized under conditions of 150 ° C. and 7 days in a state where the container was rotated at 10 rpm. The raw material composition after crystallization was separated into solid and liquid, washed with pure water, and dried at 70 ° C. to obtain the zeolite of this example. The zeolite is a CHA-type zeolite composed of a single phase having a CHA structure, and the SiO 2 / Al 2 O 3 ratio = 24, the P / Al ratio = 0.02, and the P / T ratio = 0.015. there were. The yield was 90%.
Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example. Further, the XRD pattern of the CHA-type zeolite of this example is shown in FIG. 1, and the SEM photograph is shown in FIG. From FIG. 2, it was confirmed that the primary particles of the CHA-type zeolite of this example were 1 μm or less.
 実施例2
 原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本実施例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比     =0.1
   TEP/SiO比    =0.1
   TMAda/SiO比  =0.2
   N-SDA/SDA比   =0.67
   OH/SiO比     =0.4
   HO/SiO比    =5
 当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであった。組成は、SiO/Al比=22、P/Al比=0.05、P/T比=0.042であった。また、収率は90%であった。
 原料組成物の主な組成及び本実施例のCHA型ゼオライトの評価結果を表1に示した。
Example 2
A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.1
TMAda / SiO 2 ratio = 0.2
N-SDA / SDA ratio = 0.67
OH / SiO 2 ratio = 0.4
H 2 O / SiO 2 ratio = 5
The zeolite was a CHA type zeolite composed of a single phase having a CHA structure. The composition was SiO 2 / Al 2 O 3 ratio = 22, P / Al ratio = 0.05, and P / T ratio = 0.042. The yield was 90%.
Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
 実施例3
 原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本実施例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比    =0.1
   TEP/SiO比   =0.15
   TMAda/SiO比 =0.15
   N-SDA/SDA比  =0.50
   OH/SiO比    =0.4
   HO/SiO比   =5
 当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであった。組成は、SiO/Al比=22、P/Al比=0.06、P/T比=0.005であった。また、収率は90%であった。
 原料組成物の主な組成及び本実施例のCHA型ゼオライトの評価結果を表1に示した。
Example 3
A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.15
TMAda / SiO 2 ratio = 0.15
N-SDA / SDA ratio = 0.50
OH / SiO 2 ratio = 0.4
H 2 O / SiO 2 ratio = 5
The zeolite was a CHA type zeolite composed of a single phase having a CHA structure. The composition was SiO 2 / Al 2 O 3 ratio = 22, P / Al ratio = 0.06, and P / T ratio = 0.005. The yield was 90%.
Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
 実施例4
 原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本実施例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比    =0.1
   TEP/SiO比   =0.2
   TMAda/SiO比 =0.1
   N-SDA/SDA比  =0.33
   OH/SiO比    =0.4
   HO/SiO比    =5
 当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであった。組成は、SiO/Al比=22、P/Al比=0.12、P/T比=0.010であった。また、収率は90%であった。
 原料組成物の主な組成及び本実施例のCHA型ゼオライトの評価結果を表1に示した
Example 4
A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.2
TMAda / SiO 2 ratio = 0.1
N-SDA / SDA ratio = 0.33
OH / SiO 2 ratio = 0.4
H 2 O / SiO 2 ratio = 5
The zeolite was a CHA type zeolite composed of a single phase having a CHA structure. The composition was SiO 2 / Al 2 O 3 ratio = 22, P / Al ratio = 0.12, and P / T ratio = 0.010. The yield was 90%.
Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
 実施例5
 原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本実施例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比    =0.1
   TEP/SiO比   =0.25
   TMAda/SiO比  =0.05
   N-SDA/SDA比  =0.17
   OH/SiO比     =0.4
   HO/SiO比    =5
 当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであった。組成は、SiO/Al比=22、P/Al比=0.19、P/T比=0.016であった。また、収率は85%であった。
 原料組成物の主な組成及び本実施例のCHA型ゼオライトの評価結果を表1に示した。
 また、本実施例のCHA型ゼオライトのSEM写真を図3に示した。図3より、本実施例のCHA型ゼオライトの一次粒子は1μm以下であることが確認できた。
Example 5
A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.25
TMAda / SiO 2 ratio = 0.05
N-SDA / SDA ratio = 0.17
OH / SiO 2 ratio = 0.4
H 2 O / SiO 2 ratio = 5
The zeolite was a CHA type zeolite composed of a single phase having a CHA structure. The composition was SiO 2 / Al 2 O 3 ratio = 22, P / Al ratio = 0.19, and P / T ratio = 0.016. The yield was 85%.
Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
Moreover, the SEM photograph of the CHA type zeolite of the present example is shown in FIG. From FIG. 3, it was confirmed that the primary particles of the CHA-type zeolite of this example were 1 μm or less.
 実施例6
 原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本実施例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比    =0.1
   TEP/SiO比   =0.27
   TMAda/SiO比 =0.03
   N-SDA/SDA比  =0.1
   OH/SiO比    =0.4
   HO/SiO比   =5
 当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであった。組成は、SiO/Al比=22、P/Al比=0.47、P/T比=0.038であった。また、収率は90%であった。
 原料組成物の主な組成及び本実施例のCHA型ゼオライトの評価結果を表1に示した。
Example 6
A zeolite of this example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.27
TMAda / SiO 2 ratio = 0.03
N-SDA / SDA ratio = 0.1
OH / SiO 2 ratio = 0.4
H 2 O / SiO 2 ratio = 5
The zeolite was a CHA type zeolite composed of a single phase having a CHA structure. The composition was SiO 2 / Al 2 O 3 ratio = 22, P / Al ratio = 0.47, and P / T ratio = 0.038. The yield was 90%.
Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this example.
 比較例1
 従来のCHA型ゼオライトの合成として、原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本比較例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比    =0.1
   TEP/SiO比   =0
   TMAda/SiO比 =0.3
   OH/SiO比    =0.4
   HO/SiO比   =5
 当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであった。組成は、SiO/Al比=24、P/Al比=0、P/T比=0であった。また、収率は100%であった。
 原料組成物の主な組成及び本比較例のCHA型ゼオライトの評価結果を表1に示した。
Comparative Example 1
As a synthesis of conventional CHA-type zeolite, a zeolite of this comparative example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0
TMAda / SiO 2 ratio = 0.3
OH / SiO 2 ratio = 0.4
H 2 O / SiO 2 ratio = 5
The zeolite was a CHA type zeolite composed of a single phase having a CHA structure. The composition was SiO 2 / Al 2 O 3 ratio = 24, P / Al ratio = 0, and P / T ratio = 0. The yield was 100%.
Table 1 shows the main composition of the raw material composition and the evaluation results of the CHA-type zeolite of this comparative example.
 比較例2
 原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本比較例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比    =0.1
   TEP/SiO比   =0.15
   TMAda/SiO比 =0
   OH/SiO比    =0.25
   HO/SiO比    =5
 当該ゼオライトは、AEI型ゼオライトとMFI型ゼオライトの混合物であった。本比較例より、TEPが少ない場合、CHA型ゼオライトが得られないことが確認できた。
Comparative Example 2
A zeolite of this comparative example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.15
TMAda / SiO 2 ratio = 0
OH / SiO 2 ratio = 0.25
H 2 O / SiO 2 ratio = 5
The zeolite was a mixture of AEI zeolite and MFI zeolite. From this comparative example, it was confirmed that CHA-type zeolite cannot be obtained when TEP is low.
 比較例3
 非特許文献4を参照し、リンを含有するCHA型ゼオライトを製造した。すなわち、原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本比較例のゼオライトを得た。
   SiO/Al比  =32
   Na/SiO比    =0.4
   TEP/SiO比   =0.2
   TMAda/SiO比 =0
   OH/SiO比    =0.6
   HO/SiO比    =5
 当該ゼオライトは、CHA構造の単一相からなるCHA型ゼオライトであった。組成は、SiO/Al比=13、P/Al比=0.55、P/T比=0.071であった。また、収率は50%であった。これより、非特許文献4で開示された製造方法では、得られるCHA型ゼオライトのSiO/Al比が低くなる傾向があり、また、本発明の製造方法と比べ、収率が著しく低くなることが確認できた。
 なお、本比較例のCHA型ゼオライトのSiO/Al比をEDX(装置名:S-4800、日立製作所製)によって測定したところ、SiO/Al比は15.6であった。
Comparative Example 3
Referring to Non-Patent Document 4, a CHA-type zeolite containing phosphorus was produced. That is, a zeolite of this comparative example was obtained in the same manner as in Example 1 except that the raw material composition was changed to the following composition.
SiO 2 / Al 2 O 3 ratio = 32
Na / SiO 2 ratio = 0.4
TEP / SiO 2 ratio = 0.2
TMAda / SiO 2 ratio = 0
OH / SiO 2 ratio = 0.6
H 2 O / SiO 2 ratio = 5
The zeolite was a CHA type zeolite composed of a single phase having a CHA structure. The composition was SiO 2 / Al 2 O 3 ratio = 13, P / Al ratio = 0.55, and P / T ratio = 0.071. The yield was 50%. As a result, in the production method disclosed in Non-Patent Document 4, the SiO 2 / Al 2 O 3 ratio of the obtained CHA-type zeolite tends to be low, and the yield is significantly higher than that of the production method of the present invention. It was confirmed that it was lowered.
The SiO 2 / Al 2 O 3 ratio of the CHA-type zeolite of this comparative example was measured by EDX (device name: S-4800, manufactured by Hitachi, Ltd.), and the SiO 2 / Al 2 O 3 ratio was 15.6. there were.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、いずれの実施例においてもリンを含有するCHA型ゼオライトが得られることが確認できた。また、TEP量を変化させることでCHA型ゼオライトのリンを容易に制御することができ、更には、P/T比が0.04以下、更には0.02以下、また更には0.01以下である、リン含有量が少ないCHA型ゼオライトが製造できることが確認できた。さらに、実施例1と比較例1より、本発明ではTEPを含む製造方法であるにもかかわらず、従来のリンを含まないCHA型ゼオライトの製造方法に匹敵する高い収率を有することが確認できた。
 また、比較例2及び3より、SDAがTEPのみであると、SiO/Al比の低いCHA型ゼオライトしか製造できず、また、リン含有量が低いCHA型ゼオライトが得られないことが分かった。
From Table 1, it was confirmed that in all Examples, a CHA-type zeolite containing phosphorus was obtained. Further, the phosphorus in the CHA-type zeolite can be easily controlled by changing the amount of TEP. Further, the P / T ratio is 0.04 or less, further 0.02 or less, and further 0.01 or less. It was confirmed that a CHA-type zeolite having a low phosphorus content can be produced. Furthermore, from Example 1 and Comparative Example 1, it can be confirmed that the present invention has a high yield comparable to the conventional method for producing CHA-type zeolite containing no phosphorus, although it is a production method containing TEP. It was.
Further, from Comparative Examples 2 and 3, when SDA is only TEP, only CHA zeolite having a low SiO 2 / Al 2 O 3 ratio can be produced, and CHA zeolite having a low phosphorus content cannot be obtained. I understood.
 測定例1
 実施例5のCHA型ゼオライト、及び、比較例1のCHA型ゼオライトを、それぞれ、空気中600℃で6時間焼成してSDAを除いた後、塩化アンモニウム水溶液でイオン交換してアンモニア型とした。その後空気中550℃で1時間焼成してプロトン型のCHA型ゼオライトとした。
 得られたプロトン型のCHA型ゼオライトを空気中1,050℃で1時間焼成し、焼成後の粉末X線回折測定を行った。結果を図4に示す。図4中、a)は実施例5のXRDパターンで、b)は比較例1のXRDパターンである。
 図4より、実施例5のCHA型ゼオライトは、1,050℃の熱処理後であってもCHA構造を維持していることが確認できた。一方、比較例1のCHA型ゼオライトは1,050℃の焼成でCHA型構造が崩壊していることが確認できた。このように、リンを含む本発明のCHA型ゼオライトは900℃を超える温度による熱処理後であっても結晶構造が崩壊することがなく、耐熱性が高いことが確認できた。
Measurement example 1
The CHA-type zeolite of Example 5 and the CHA-type zeolite of Comparative Example 1 were each calcined in air at 600 ° C. for 6 hours to remove SDA, and then ion-exchanged with an aqueous ammonium chloride solution to obtain an ammonia type. Thereafter, it was calcined in air at 550 ° C. for 1 hour to obtain a proton type CHA zeolite.
The obtained proton-type CHA-type zeolite was calcined in air at 1,050 ° C. for 1 hour, and powder X-ray diffraction measurement after the calcining was performed. The results are shown in FIG. In FIG. 4, a) is the XRD pattern of Example 5, and b) is the XRD pattern of Comparative Example 1.
From FIG. 4, it was confirmed that the CHA type zeolite of Example 5 maintained the CHA structure even after the heat treatment at 1,050 ° C. On the other hand, it was confirmed that the CHA-type zeolite of Comparative Example 1 had a CHA-type structure collapsed by calcination at 1,050 ° C. Thus, it was confirmed that the CHA-type zeolite of the present invention containing phosphorus did not collapse even after heat treatment at a temperature exceeding 900 ° C. and had high heat resistance.
 実施例7
 実施例3のCHA型ゼオライトを、大気中、600℃で10時間焼成した後、塩化アンモニウム水溶液を用いてイオン交換して、NH型のゼオライトとした。NH型ゼオライト1.3gに硝酸銅水溶液を添加し、これを乳鉢で混合した。なお、硝酸銅水溶液は硝酸銅3水和物60mgを純水0.5gに溶解して硝酸銅水溶液を調製したものを使用した。
 混合後の試料を110℃で一晩乾燥した後、空気中、550℃で1時間焼成し、これを本実施例の銅含有CHA型ゼオライトとした。評価結果を表2に示す。
Example 7
The CHA-type zeolite of Example 3 was calcined in the atmosphere at 600 ° C. for 10 hours, and then ion-exchanged with an aqueous ammonium chloride solution to obtain an NH 4 -type zeolite. An aqueous copper nitrate solution was added to 1.3 g of NH 4 type zeolite, and this was mixed in a mortar. In addition, the copper nitrate aqueous solution used what prepared copper nitrate aqueous solution by melt | dissolving 60 mg of copper nitrate trihydrate in 0.5 g of pure waters.
The mixed sample was dried at 110 ° C. overnight and then calcined in air at 550 ° C. for 1 hour to obtain a copper-containing CHA-type zeolite of this example. The evaluation results are shown in Table 2.
 実施例8
 実施例5のCHA型ゼオライトを使用したこと以外は、実施例7と同様な方法で本比較例の銅含有CHA型ゼオライトを得た。評価結果を表2に示す。
Example 8
A copper-containing CHA-type zeolite of this comparative example was obtained in the same manner as in Example 7 except that the CHA-type zeolite of Example 5 was used. The evaluation results are shown in Table 2.
 実施例9
 実施例6のCHA型ゼオライトを使用したこと以外は、実施例7と同様な方法で本比較例の銅含有CHA型ゼオライトを得た。評価結果を表2に示す。
Example 9
A copper-containing CHA-type zeolite of this comparative example was obtained in the same manner as in Example 7 except that the CHA-type zeolite of Example 6 was used. The evaluation results are shown in Table 2.
 比較例4
 比較例1のCHA型ゼオライトを使用したこと以外は、実施例7と同様な方法で本比較例の銅含有CHA型ゼオライトを得た。評価結果を表2に示す。
Comparative Example 4
A copper-containing CHA-type zeolite of this comparative example was obtained in the same manner as in Example 7 except that the CHA-type zeolite of Comparative Example 1 was used. The evaluation results are shown in Table 2.
 比較例5
 純水、水酸化ナトリウム、及びFAU型ゼオライト(Y型、カチオンタイプ:プロトン型、SiO/Al比=23)を40%TEPOH水溶液に添加し、これを混合して以下の組成を有する原料組成物を得た。
   SiO/Al比    =23
   Na/SiO比      =0.1
   TEP/SiO比     =0.2
   N-SDA/SDA比    =0
   OH/SiO比      =0.3
   HO/SiO比      =5
 得られた原料組成物を密閉容器内に充填し、この容器を静置した状態で150℃、7日間の条件で原料組成物を結晶化させた。結晶化後の原料組成物を固液分離し、純水で洗浄した後、70℃で乾燥して本実施例のゼオライトを得た。当該ゼオライトは、AEI構造の単一相からなるAEI型ゼオライトであった。
 得られたAEI型ゼオライトをプレス成形後、凝集径12メッシュ~20メッシュの凝集粒子とした。得られた凝集粒子3gを常圧固定床流通式反応管に充填し、水素5容量%、窒素95容量%のガスを500mL/分流通下、750℃で1時間熱処理してリン量を調整した。熱処理後、空気雰囲気、600℃で2時間焼成してSDAを除去した。焼成後のAEI型ゼオライトを20%塩化アンモニウムで処理した後、大気中110℃で1晩乾燥した。これにより、NH型のAEI型ゼオライトとした。
 得られたNH型AEI型ゼオライト2gに硝酸銅水溶液を添加し、これを乳鉢で混合した。なお、硝酸銅水溶液は硝酸銅3水和物139mgを純水0.5gに溶解して硝酸銅水溶液を調製したものを使用した。
 混合後の試料を110℃で一晩乾燥した後、空気中、550℃で1時間焼成し、これを本比較例のAEI型ゼオライトとした。評価結果を表2に示す。
Comparative Example 5
Pure water, sodium hydroxide, and FAU type zeolite (Y type, cation type: proton type, SiO 2 / Al 2 O 3 ratio = 23) are added to a 40% TEPOH aqueous solution and mixed to obtain the following composition. A raw material composition was obtained.
SiO 2 / Al 2 O 3 ratio = 23
Na / SiO 2 ratio = 0.1
TEP / SiO 2 ratio = 0.2
N-SDA / SDA ratio = 0
OH / SiO 2 ratio = 0.3
H 2 O / SiO 2 ratio = 5
The obtained raw material composition was filled in an airtight container, and the raw material composition was crystallized under conditions of 150 ° C. and 7 days with the container left still. The raw material composition after crystallization was separated into solid and liquid, washed with pure water, and dried at 70 ° C. to obtain the zeolite of this example. The zeolite was an AEI type zeolite composed of a single phase having an AEI structure.
The obtained AEI zeolite was press-molded and then agglomerated particles having an agglomerated diameter of 12 to 20 mesh. The obtained agglomerated particles (3 g) were filled into a normal pressure fixed bed flow type reaction tube, and the amount of phosphorus was adjusted by heat treatment at 750 ° C. for 1 hour under a flow of 5% by volume of hydrogen and 95% by volume of nitrogen at 500 mL / min. . After the heat treatment, SDA was removed by baking at 600 ° C. for 2 hours in an air atmosphere. After the calcined AEI zeolite was treated with 20% ammonium chloride, it was dried in the atmosphere at 110 ° C. overnight. This made NH 4 type AEI zeolite.
An aqueous copper nitrate solution was added to 2 g of the NH 4 type AEI zeolite obtained and mixed in a mortar. In addition, the copper nitrate aqueous solution used what melt | dissolved 139 mg of copper nitrate trihydrate in 0.5 g of pure water, and prepared the copper nitrate aqueous solution.
The mixed sample was dried at 110 ° C. overnight and then calcined in air at 550 ° C. for 1 hour to obtain an AEI zeolite of this comparative example. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 測定例2
 実施例8乃至9及び比較例4の銅含有CHA型ゼオライトを、それぞれ8時間の水熱耐久処理を施した。水熱耐久処理前後の窒素酸化物還元特性の評価結果を表3に示す。
Measurement example 2
The copper-containing CHA-type zeolites of Examples 8 to 9 and Comparative Example 4 were each subjected to a hydrothermal durability treatment for 8 hours. Table 3 shows the evaluation results of the nitrogen oxide reduction characteristics before and after the hydrothermal durability treatment.
 ここで、本発明のCHA型ゼオライトに銅を含有させ、選択還元触媒としての窒素酸化物還元特性を評価した際の処理条件及び評価条件は、以下のとおりである(測定例3も同様)。
 (水熱耐久処理)
 試料をプレス成形後、凝集径12メッシュ~20メッシュの凝集粒子とした。得られた凝集粒子3mLを常圧固定床流通式反応管に充填し、これに10体積%のHOを含む空気を300mL/分で流通させて水熱耐久処理を行った。水熱耐久処理は、900℃で行った。
Here, the treatment conditions and the evaluation conditions when copper is contained in the CHA-type zeolite of the present invention and the nitrogen oxide reduction characteristics as the selective reduction catalyst are evaluated are as follows (the same applies to Measurement Example 3).
(Hydrothermal durability treatment)
The sample was press-molded to obtain aggregated particles having an aggregate diameter of 12 to 20 mesh. The obtained agglomerated particles (3 mL) were filled in a normal pressure fixed bed flow type reaction tube, and air containing 10% by volume of H 2 O was circulated at 300 mL / min for hydrothermal durability treatment. The hydrothermal durability treatment was performed at 900 ° C.
 (窒素酸化物還元率の測定)
 試料の窒素酸化物還元率は、以下に示すアンモニアSCR方法により測定した。
 すなわち、試料をプレス成形した後、凝集径12~20メッシュの凝集粒子とした。得られた凝集粒子体を1.5mL量りとり、これを反応管に充填した。その後、150℃、200℃、300℃、400℃及び500℃のいずれかの温度で、窒素酸化物を含む以下の組成からなる処理ガスを当該反応管に流通させた。処理ガスの流量は1.5L/分、及び空間速度(SV)は60,000h-1として測定を行った。
 <処理ガス組成>
   NO  :200ppm
   NH :200ppm
   O  :10容量%
   HO :3容量%
   残部  :N
 反応管に流通させた処理ガス中の窒素酸化物濃度(200ppm)に対する、触媒流通後の処理ガス中の窒素酸化物濃度(ppm)を求め、以下の式に従って、窒素酸化物還元率を求めた。
 窒素酸化物還元率(%)={1-(接触後の処理ガス中の窒素酸化物濃度/接触前の処理ガス中の窒素酸化物濃度)}×100
(Measurement of nitrogen oxide reduction rate)
The nitrogen oxide reduction rate of the sample was measured by the ammonia SCR method shown below.
That is, after the sample was press-molded, aggregated particles having an aggregate diameter of 12 to 20 mesh were obtained. The obtained agglomerated particles were weighed in 1.5 mL and filled into a reaction tube. Then, the process gas which consists of the following compositions containing nitrogen oxide was distribute | circulated through the said reaction tube at the temperature in any one of 150 degreeC, 200 degreeC, 300 degreeC, 400 degreeC, and 500 degreeC. The measurement was performed at a processing gas flow rate of 1.5 L / min and a space velocity (SV) of 60,000 h −1 .
<Processing gas composition>
NO: 200 ppm
NH 3 : 200 ppm
O 2 : 10% by volume
H 2 O: 3% by volume
The rest: N 2
The nitrogen oxide concentration (ppm) in the treated gas after the catalyst flow was determined relative to the nitrogen oxide concentration (200 ppm) in the treated gas passed through the reaction tube, and the nitrogen oxide reduction rate was determined according to the following equation. .
Nitrogen oxide reduction rate (%) = {1− (nitrogen oxide concentration in treated gas after contact / nitrogen oxide concentration in treated gas before contact)} × 100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、水熱耐久処理前の200℃以上の窒素酸化物還元率は比較例が実施例と同等であった。これより、本実施例のCHA型ゼオライトは、従来のCHA型ゼオライトと同程度の初期活性を有することが確認できた。しかしながら、実施例のCHA型ゼオライトは、比較例のCHA型ゼオライトよりもSiO/Al比が低いにもかかわらず、いずれの温度における水熱耐久処理後の窒素酸化物還元率も、比較例よりも高くなり、低温、特に150℃以下における窒素酸化物還元率が顕著に高くなった。これより、本発明のCHA型ゼオライトは、耐熱性が高く、高温高湿下に晒された後でも高い窒素酸化物還元特性を示す触媒となることが確認できた。 From Table 3, the comparative example was equivalent to an Example about the nitrogen oxide reduction rate of 200 degreeC or more before a hydrothermal durability process. From this, it was confirmed that the CHA-type zeolite of this example had the same initial activity as that of the conventional CHA-type zeolite. However, although the CHA-type zeolite of the example has a lower SiO 2 / Al 2 O 3 ratio than the CHA-type zeolite of the comparative example, the nitrogen oxide reduction rate after hydrothermal durability treatment at any temperature is It became higher than the comparative example, and the nitrogen oxide reduction rate at a low temperature, particularly at 150 ° C. or lower, was significantly higher. From this, it was confirmed that the CHA-type zeolite of the present invention has high heat resistance and becomes a catalyst exhibiting high nitrogen oxide reduction characteristics even after being exposed to high temperature and high humidity.
 測定例3
 実施例7乃至9の銅含有CHA型ゼオライトを、それぞれ4時間の水熱耐久処理を施した。水熱耐久処理後の窒素酸化物還元特性の評価結果を表4に示す。
 
Measurement example 3
Each of the copper-containing CHA-type zeolites of Examples 7 to 9 was subjected to a hydrothermal durability treatment for 4 hours. Table 4 shows the evaluation results of the nitrogen oxide reduction characteristics after the hydrothermal durability treatment.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 触媒活性を示す銅の含有量は、実施例7及び9と比べ、実施例8が少ない。しかしながら、表4より、実施例8の窒素酸化物還元率はいずれの温度でも高くなり、より低温において窒素酸化物還元率が高くなることが確認できた。 The content of copper exhibiting catalytic activity is less in Example 8 than in Examples 7 and 9. However, from Table 4, it was confirmed that the nitrogen oxide reduction rate of Example 8 was high at any temperature, and the nitrogen oxide reduction rate was high at lower temperatures.
 測定例4
 実施例8及び比較例5の銅含有ゼオライトを使用したこと、処理温度を150℃としたこと、並びに、処理時間を1、4及び8時間のいずれかとしたこと以外は、測定例2と同様な方法で水熱耐久処理を施した。水熱耐久処理前後の窒素酸化物還元特性の評価結果を表5に示す。
Measurement example 4
Similar to Measurement Example 2 except that the copper-containing zeolite of Example 8 and Comparative Example 5 was used, the treatment temperature was 150 ° C., and the treatment time was any one of 1, 4 and 8 hours. The hydrothermal durability treatment was applied by the method. Table 5 shows the evaluation results of the nitrogen oxide reduction characteristics before and after the hydrothermal durability treatment.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例8のCHA型ゼオライトは、比較例5のAEI型ゼオライトと同程度のP/T比を有し、なおかつ、触媒活性種である銅含有量が少ない。それにも関わらず、実施例8のCHA型ゼオライトは、比較例5のAEI型ゼオライトと同等以上の窒素酸化物還元特性を示し、特に初期から水熱耐久処理4時間後の窒素酸化物還元率が比較例5のAEI型ゼオライトよりも高かった。従来のCHA型ゼオライトは、AEI型ゼオライトよりも窒素酸化物還元特性、特に150℃以下における窒素酸化物還元特性が低いことが知られている。これより、本願発明のCHA型ゼオライトは従来CHA型ゼオライトよりも高い窒素酸化物特性を有していることのみならず、AEI型ゼオライトと同等以上の窒素酸化物還元特性を有することが確認できた。 The CHA-type zeolite of Example 8 has a P / T ratio comparable to that of the AEI-type zeolite of Comparative Example 5, and has a low copper content as a catalytically active species. Nevertheless, the CHA-type zeolite of Example 8 shows a nitrogen oxide reduction characteristic equal to or higher than that of the AEI-type zeolite of Comparative Example 5, and particularly the nitrogen oxide reduction rate after 4 hours from the initial stage of hydrothermal durability treatment. It was higher than the AEI zeolite of Comparative Example 5. Conventional CHA-type zeolites are known to have lower nitrogen oxide reduction characteristics, particularly nitrogen oxide reduction characteristics at 150 ° C. or lower, than AEI zeolites. From this, it was confirmed that the CHA-type zeolite of the present invention not only has higher nitrogen oxide characteristics than the conventional CHA-type zeolite, but also has nitrogen oxide reduction characteristics equal to or higher than that of AEI zeolite. .
 本発明のCHA型ゼオライトは、例えば、アルコールやケトンからの低級オレフィン製造用触媒、クラッキング触媒、脱ろう触媒、異性化触媒、及び排気ガスからの窒素酸化物還元触媒及びこれらの触媒の基材として使用することできる。さらに、窒素酸化物還元触媒として使用することができる。
 
The CHA-type zeolite of the present invention is, for example, a catalyst for producing lower olefins from alcohols and ketones, cracking catalyst, dewaxing catalyst, isomerization catalyst, and nitrogen oxide reduction catalyst from exhaust gas, and as a base material for these catalysts. Can be used. Furthermore, it can be used as a nitrogen oxide reduction catalyst.

Claims (13)

  1.  リンを含み、SiO/Al比が16以上50以下であることを特徴とするCHA型ゼオライト。 A CHA-type zeolite containing phosphorus and having a SiO 2 / Al 2 O 3 ratio of 16 or more and 50 or less.
  2.  リンを細孔内に含む請求項1に記載のCHA型ゼオライト。 The CHA-type zeolite according to claim 1, wherein phosphorus is contained in the pores.
  3.  骨格金属に対するリンのモル比が0.001以上、0.05以下である請求項1又は2に記載のCHA型ゼオライト。 The CHA-type zeolite according to claim 1 or 2, wherein the molar ratio of phosphorus to skeleton metal is 0.001 or more and 0.05 or less.
  4.  アルミナに対するシリカのモル比が20以上、35以下である請求項1乃至3のいずれかに記載のCHA型ゼオライト。 The CHA-type zeolite according to any one of claims 1 to 3, wherein a molar ratio of silica to alumina is 20 or more and 35 or less.
  5.  結晶粒径が4μm以下である請求項1乃至4のいずれかに記載のCHA型ゼオライト。 The CHA-type zeolite according to any one of claims 1 to 4, wherein the crystal grain size is 4 µm or less.
  6.  銅又は鉄の少なくともいずれかを含む請求項1乃至5のいずれかに記載のCHA型ゼオライト。 The CHA-type zeolite according to any one of claims 1 to 5, comprising at least one of copper and iron.
  7.  シリカ源、アルミナ源、ホスホニウムカチオン源及びアンモニウムカチオン源を含む組成物を結晶化する結晶化工程、を有する、請求項1乃至6のいずれかに記載のCHA型ゼオライトの製造方法。 The method for producing a CHA-type zeolite according to any one of claims 1 to 6, further comprising a crystallization step of crystallizing a composition containing a silica source, an alumina source, a phosphonium cation source and an ammonium cation source.
  8.  上記ホスホニウムカチオン源が、テトラエチルホスホニウム水酸化物、テトラエチルホスホニウムブロミド、テトラエチルホスホニウムクロライド及びテトラエチルホスホニウムヨージドからなる群の少なくとも1種である請求項7に記載の製造方法。 The method according to claim 7, wherein the phosphonium cation source is at least one member of the group consisting of tetraethylphosphonium hydroxide, tetraethylphosphonium bromide, tetraethylphosphonium chloride, and tetraethylphosphonium iodide.
  9.  上記アンモニウムカチオン源が、トリメチル-1-アダマンタンアンモニウム水酸化物、トリメチル-1-アダマンタンアンモニウムブロミド、トリメチル-1-アダマンタンアンモニウムクロライド及びトリメチル-1-アダマンタンアンモニウムヨージドからなる群の少なくとも1種である請求項7又は8に記載の製造方法。 The ammonium cation source is at least one selected from the group consisting of trimethyl-1-adamantanammonium hydroxide, trimethyl-1-adamantanammonium bromide, trimethyl-1-adamantanammonium chloride, and trimethyl-1-adamantanammonium iodide. Item 9. The manufacturing method according to Item 7 or 8.
  10.  上記シリカ源及びアルミナ源が結晶性アルミノシリケートである請求項7乃至9のいずれかに記載の製造方法。 The method according to any one of claims 7 to 9, wherein the silica source and the alumina source are crystalline aluminosilicates.
  11.  上記シリカ源及びアルミナ源がFAU型ゼオライトである請求項7乃至10のいずれかに記載の製造方法。 The method according to any one of claims 7 to 10, wherein the silica source and the alumina source are FAU type zeolite.
  12.  請求項1乃至6のいずれかに記載のCHA型ゼオライトを含む触媒。 A catalyst comprising the CHA-type zeolite according to any one of claims 1 to 6.
  13.  請求項1乃至6のいずれかに記載のCHA型ゼオライトを使用する窒素酸化物の還元方法。
     
     
    A method for reducing nitrogen oxides using the CHA-type zeolite according to any one of claims 1 to 6.

PCT/JP2016/075412 2015-09-03 2016-08-31 Cha zeolite containing phosphorus and method for producing same WO2017038851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-173594 2015-09-03
JP2015173594 2015-09-03

Publications (1)

Publication Number Publication Date
WO2017038851A1 true WO2017038851A1 (en) 2017-03-09

Family

ID=58188847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075412 WO2017038851A1 (en) 2015-09-03 2016-08-31 Cha zeolite containing phosphorus and method for producing same

Country Status (2)

Country Link
JP (1) JP6783098B2 (en)
WO (1) WO2017038851A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085168A1 (en) * 2018-10-23 2020-04-30 エヌ・イーケムキャット株式会社 Method for manufacturing cu-p co-loaded zeolite, catalyst precursor composition and treatment liquid usable in same, and method for manufacturing laminate catalyst
CN112585091A (en) * 2018-10-23 2021-03-30 N.E.化学株式会社 Cu-P co-supported zeolite, and selective reduction catalyst and exhaust gas catalyst each using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798282B2 (en) * 2016-11-29 2020-12-09 国立大学法人東京工業大学 Manufacturing method of AEI type zeolite
JP7007638B2 (en) * 2017-11-06 2022-02-10 国立大学法人広島大学 GME-type zeolite containing phosphorus and its production method
JP7046641B2 (en) * 2018-02-22 2022-04-04 国立大学法人広島大学 Small pore zeolite containing phosphorus and having an intergrowth structure and its production method
US20230211327A1 (en) * 2020-08-28 2023-07-06 Tosoh Corporation Cha-type zeolite and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188463A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Method for producing catalyst for producing propylene and method for producing propylene
JP2014528394A (en) * 2011-07-27 2014-10-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Low linchaba site
JP2015187064A (en) * 2014-03-13 2015-10-29 三菱化学株式会社 Zeolite molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528394A (en) * 2011-07-27 2014-10-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Low linchaba site
JP2014188463A (en) * 2013-03-27 2014-10-06 Mitsubishi Chemicals Corp Method for producing catalyst for producing propylene and method for producing propylene
JP2015187064A (en) * 2014-03-13 2015-10-29 三菱化学株式会社 Zeolite molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085168A1 (en) * 2018-10-23 2020-04-30 エヌ・イーケムキャット株式会社 Method for manufacturing cu-p co-loaded zeolite, catalyst precursor composition and treatment liquid usable in same, and method for manufacturing laminate catalyst
CN112585090A (en) * 2018-10-23 2021-03-30 N.E.化学株式会社 Method for producing Cu-P co-supported zeolite, catalyst precursor composition and treatment solution that can be used for same, and method for producing layered catalyst
CN112585091A (en) * 2018-10-23 2021-03-30 N.E.化学株式会社 Cu-P co-supported zeolite, and selective reduction catalyst and exhaust gas catalyst each using same
JPWO2020085168A1 (en) * 2018-10-23 2021-09-30 エヌ・イーケムキャット株式会社 A method for producing a Cu-P co-supported zeolite, a catalyst precursor composition and a treatment liquid that can be used for the method, and a method for producing a laminated catalyst.
CN112585090B (en) * 2018-10-23 2023-12-15 N.E.化学株式会社 Method for producing Cu-P co-supported zeolite, catalyst precursor composition and treatment liquid usable therefor, and method for producing layered catalyst

Also Published As

Publication number Publication date
JP2017048106A (en) 2017-03-09
JP6783098B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
JP6278561B2 (en) Crystalline aluminosilicate and method for producing the same
WO2017038851A1 (en) Cha zeolite containing phosphorus and method for producing same
JP2020019703A (en) Aei type zeolite and use thereof
JP6494034B2 (en) LEV-type crystalline aluminosilicate containing phosphorus, process for producing the same, and catalyst containing LEV-type crystalline aluminosilicate containing phosphorus
JP7283046B2 (en) Metal-containing CHA-type zeolite and method for producing the same
WO2016125850A1 (en) Novel zeolite
JP7085375B2 (en) Method for synthesizing IZM-2 zeolite in the presence of template 1,6-bis (methylpiperidinium) hexanedihydroxydo
JP7207454B2 (en) Method for producing AEI zeolite
JP6702759B2 (en) AEI-type zeolite containing titanium and method for producing the same
JP6350160B2 (en) Method for producing zeolite
WO2019117183A1 (en) β-ZEOLITE AND PRODUCTION METHOD THEREOF
JP5983290B2 (en) Silicoaluminophosphate and nitrogen oxide reduction catalyst using the same
JP2018140887A (en) Afx-type zeolite comprising phosphorus and method for producing the same
JP6848329B2 (en) Zeolite ZTS-5 and its manufacturing method
JP7007638B2 (en) GME-type zeolite containing phosphorus and its production method
CN112551543A (en) Process for preparing IZM-2 zeolite in the presence of a mixture of nitrogen-containing organic structuring agent in the hydroxide and bromide form
JP7501763B2 (en) Zeolite and its manufacturing method
JP2020193135A (en) Zeolite zts-6 and method for producing the same
CN112020478A (en) SDA-free synthesis of Chabazite (CHA) and uses thereof
JP6792264B2 (en) Crystalline aluminosilicate containing gallium and its manufacturing method
WO2022045158A1 (en) Cha-type zeolite and method for producing same
JP2011148677A (en) Novel metallosilicate
WO2020241668A1 (en) Method for producing aei zeolite
JP2017132683A (en) Small pore zeolite containing tin and manufacturing method therefor
JP6338493B2 (en) Method for producing MEI zeolite and MEI zeolite containing phosphorus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841881

Country of ref document: EP

Kind code of ref document: A1