JP6848329B2 - Zeolite ZTS-5 and its manufacturing method - Google Patents

Zeolite ZTS-5 and its manufacturing method Download PDF

Info

Publication number
JP6848329B2
JP6848329B2 JP2016205757A JP2016205757A JP6848329B2 JP 6848329 B2 JP6848329 B2 JP 6848329B2 JP 2016205757 A JP2016205757 A JP 2016205757A JP 2016205757 A JP2016205757 A JP 2016205757A JP 6848329 B2 JP6848329 B2 JP 6848329B2
Authority
JP
Japan
Prior art keywords
ratio
cation
sio
zeolite
zts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016205757A
Other languages
Japanese (ja)
Other versions
JP2018065723A (en
Inventor
泰之 高光
泰之 高光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016205757A priority Critical patent/JP6848329B2/en
Publication of JP2018065723A publication Critical patent/JP2018065723A/en
Application granted granted Critical
Publication of JP6848329B2 publication Critical patent/JP6848329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Description

本発明は新規の構造を有するゼオライト及びその製造方法に関する。 The present invention relates to a zeolite having a novel structure and a method for producing the same.

ゼオライトは炭化水素合成触媒、窒素酸化物還元触媒や石油精製触媒などの各種触媒用途や、二酸化炭素吸着剤や炭化水素吸着剤などの各種吸着剤用途を中心に、幅広い用途で使用されている。近年、発電施設から排出される廃ガスや、自動車排ガス中の窒素酸化物を除去するための選択還元触媒(以下、「SCR触媒」ともいう。)用途をはじめとする、窒素酸化物還元触媒への適用を目的として種々のゼオライトが特に検討されている。 Zeolites are used in a wide range of applications, mainly for various catalyst applications such as hydrocarbon synthesis catalysts, nitrogen oxide reduction catalysts and petroleum purification catalysts, and various adsorbent applications such as carbon dioxide adsorbents and hydrocarbon adsorbents. In recent years, to nitrogen oxide reduction catalysts such as selective reduction catalysts (hereinafter, also referred to as "SCR catalysts") for removing waste gas discharged from power generation facilities and nitrogen oxides in automobile exhaust gas. Various zeolites have been particularly studied for the purpose of application.

例えば、特許文献1では、構造中に酸素8員環を有するいわゆる小細孔ゼオライトであって、銅が含むものがSCR触媒に適しているとされ、具体的にCHA構造を有するゼオライト(SAPO−34,SSZ−13)、LEV構造を有するゼオライト(Nu−3)、及び、DDR構造を有するゼオライト(Sigma−1)などがSCR触媒として使用できることが開示されている。 For example, in Patent Document 1, a so-called small pore zeolite having an oxygen 8-membered ring in its structure, which contains copper, is considered to be suitable for an SCR catalyst, and specifically, a zeolite having a CHA structure (SAPO-). 34, SSZ-13), zeolite having a LEV structure (Nu-3), zeolite having a DDR structure (Sigma-1) and the like can be used as an SCR catalyst.

さらに、小細孔ゼオライトの骨格構造を複数含む、いわゆる連晶構造のゼオライトであり、OFF構造とERI構造の連晶構造を有するゼオライト(ZSM−34)も同様にSCR触媒として使用できることが開示されている(特許文献1及び2)。 Further, it is disclosed that a zeolite having a so-called intergrowth structure containing a plurality of small pore zeolite skeleton structures, and a zeolite having an OFF structure and an ERI structure intergrowth structure (ZSM-34) can also be used as an SCR catalyst. (Patent Documents 1 and 2).

また、別の小細孔ゼオライトであるAEI構造を有するゼオライトもSCR還元触媒として使用できることが報告されている(特許文献3及び4)。 It has also been reported that another small-pore zeolite, a zeolite having an AEI structure, can also be used as an SCR reduction catalyst (Patent Documents 3 and 4).

国際公開WO2008/132452号International release WO2008 / 132452 国際公開WO2012/007914号International release WO2012 / 007914 国際公開WO2015/005369号International release WO2015 / 005369 国際公開WO2016/080547号International release WO2016 / 080547

SCR触媒として使用できる小細孔ゼオライトを得るためには高価な有機構造指向剤を必要とするため、工業的に適用するためには、より安価な製造方法の開発が求められる。 Since an expensive organic structure-directing agent is required to obtain a small pore zeolite that can be used as an SCR catalyst, development of a cheaper production method is required for industrial application.

これらの課題に鑑み、本発明は、新規の構造を有するゼオライトであり、なおかつ、金属を含有させることでSCR触媒として使用した際に窒素酸化物還元能を示すゼオライトを提供することを目的とする。さらに、この様なゼオライトの製造方法であって、工業的に適用が可能な製造方法を提供することを別の目的とする。 In view of these problems, it is an object of the present invention to provide a zeolite having a novel structure and exhibiting nitrogen oxide reducing ability when used as an SCR catalyst by containing a metal. .. Another object of the present invention is to provide such a method for producing zeolite, which is industrially applicable.

本発明者は、SCR触媒として実用的な窒素酸化物還元特性を有するゼオライトについて検討した。従来とは異なる構造を有するゼオライトを見出し、これが高い窒素酸化物還元特性を有することを見出し、本発明を完成するに至った。 The present inventor has studied zeolites having nitrogen oxide reducing properties that are practical as SCR catalysts. We have found a zeolite having a structure different from the conventional one, and found that it has high nitrogen oxide reducing properties, and have completed the present invention.

すなわち、本発明の要旨は以下のとおりである。
[1] 以下の表で示す粉末X線回折ピークを有することを特徴とするゼオライト。
That is, the gist of the present invention is as follows.
[1] A zeolite characterized by having a powder X-ray diffraction peak shown in the table below.

Figure 0006848329
Figure 0006848329

[2] 前記ゼオライトが結晶性アルミノシリケート、結晶性シリコアルミノホスフェート及び結晶性アルミノフォスフェートからなる群のいずれかである上記[1]に記載のゼオライト。
[3] 前記ゼオライトが結晶性アルミノシリケートである上記[1]又は[2]に記載のゼオライト。
[4] アルミナに対するシリカのモル比が5以上50以下である上記[1]乃至[3]のいずれかに記載のゼオライト。
[5] 銅又は鉄の少なくともいずれかを含有する上記[1]乃至[4]のいずれかに記載のゼオライト。
[6] 構造指向剤としてR(但し、R、R、R及びRはメチル基、エチル基及びプロピル基からなる群のいずれかである。)で表される四級アンモニウムカチオンを少なくとも2種、アルカリ源として少なくとも2種のアルカリ金属、シリカ源及びアルミナ源を含む組成物を結晶化する結晶化工程、を有する上記[1]乃至[5]のいずれかに記載のゼオライトの製造方法。
[7] 前記組成物が、R(但し、R、R、R及びRはメチル基又はエチル基からなる群のいずれかである。)で表される四級アンモニウムカチオンを含む上記[6]に記載の製造方法。
[8] 前記構造指向剤が、少なくとも2種のR(但し、R、R、R及びRはメチル基又はエチル基からなる群のいずれかである。)で表される四級アンモニウムカチオンである上記[6]又は[7]に記載の製造方法。
[9] 前記構造指向剤が、TEA、ETMA、DEDMA及びTEMAからなる群の少なくとも1種を含む上記[6]乃至[8]のいずれかに記載の製造方法。
[10] アルミナ源及びシリカ源が結晶性アルミノシリケート又は非晶質アルミノシリケートの少なくともいずれかである上記[6]乃至[9]のいずれかに記載の製造方法。
[11] 上記アルカリ源に含まれるアルカリ金属がリチウム、カリウム、ルビジウム及びセシウムからなる群の少なくとも1種とナトリウムである上記[6]乃至[10]のいずれかに記載の製造方法。
[12] 上記[1]乃至[5]のいずれかに記載のゼオライトを含む触媒。
[13] 上記[1]乃至[5]のいずれかに記載のゼオライトを使用することを特徴とする窒素酸化物の還元方法。
[2] The zeolite according to the above [1], wherein the zeolite is one of the group consisting of crystalline aluminosilicate, crystalline silicoaluminophosphate and crystalline aluminophosphate.
[3] The zeolite according to the above [1] or [2], wherein the zeolite is a crystalline aluminosilicate.
[4] The zeolite according to any one of [1] to [3] above, wherein the molar ratio of silica to alumina is 5 or more and 50 or less.
[5] The zeolite according to any one of the above [1] to [4], which contains at least one of copper and iron.
[6] As a structure-directing agent, R 1 R 2 R 3 R 4 N + (However, R 1 , R 2 , R 3 and R 4 are any of the group consisting of a methyl group, an ethyl group and a propyl group). [1] to [5] above, which comprises a crystallization step of crystallizing a composition containing at least two quaternary ammonium cations represented by the above, and at least two alkali metals, a silica source and an alumina source as an alkali source. The method for producing a zeolite according to any one of.
[7] The composition is represented by R 1 R 2 R 3 R 4 N + (where R 1 , R 2 , R 3 and R 4 are either in the group consisting of a methyl group or an ethyl group). The production method according to the above [6], which comprises a quaternary ammonium cation.
[8] The structure-directing agent is at least two types of R 1 R 2 R 3 R 4 N + (where R 1 , R 2 , R 3 and R 4 are either in the group consisting of a methyl group or an ethyl group. The production method according to the above [6] or [7], which is a quaternary ammonium cation represented by (there is).
[9] The production method according to any one of [6] to [8] above, wherein the structure-directing agent comprises at least one of the group consisting of TEA + , ETMA + , DEDMA + and TEMA +.
[10] The production method according to any one of [6] to [9] above, wherein the alumina source and the silica source are at least one of crystalline aluminosilicate and amorphous aluminosilicate.
[11] The production method according to any one of the above [6] to [10], wherein the alkali metal contained in the alkali source is at least one of the group consisting of lithium, potassium, rubidium and cesium and sodium.
[12] The catalyst containing the zeolite according to any one of the above [1] to [5].
[13] A method for reducing nitrogen oxides, which comprises using the zeolite according to any one of the above [1] to [5].

本発明により、新規の構造を有するゼオライトであり、なおかつ、金属を含有させることでSCR触媒として使用した際に窒素酸化物還元能を示すゼオライトを提供することができる。さらに、この様なゼオライトの製造方法であって、工業的に適用が可能な製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a zeolite having a novel structure and exhibiting a nitrogen oxide reducing ability when used as an SCR catalyst by containing a metal. Further, it is possible to provide such a method for producing zeolite, which is industrially applicable.

実施例1のZTS−5のXRDパターンである。It is an XRD pattern of ZTS-5 of Example 1. 実施例1のZTS−5の走査型電子顕微鏡写真である。It is a scanning electron micrograph of ZTS-5 of Example 1. FIG. 実施例2のZTS−5のXRDパターンである。It is an XRD pattern of ZTS-5 of Example 2. 実施例3のZTS−5のXRDパターンである。It is an XRD pattern of ZTS-5 of Example 3. 実施例5のZTS−5のXRDパターンである。It is an XRD pattern of ZTS-5 of Example 5.

以下、本発明のゼオライトについて説明する。 Hereinafter, the zeolite of the present invention will be described.

本発明のゼオライトは、以下の表で示す粉末X線回折(以下、「XRD」とする。)ピークを有するゼオライト(以下、「ZTS−5」とする。)である。 The zeolite of the present invention is a zeolite having a powder X-ray diffraction (hereinafter referred to as “XRD”) peak shown in the table below (hereinafter referred to as “ZTS-5”).

Figure 0006848329
Figure 0006848329

ZTS−5は2θ=0〜45°の範囲において上記のXRDピークを有するが、特に特徴的なピークとしてFWHM(半値幅)が1.0〜2.0、更には1.2〜2.0である2θ=21.9±0.5°のXRDピークを含む。このような比較的ブロードな結晶性ピークを有するため、ZTS−5は連晶構造を有するゼオライトであると考えられる。さらに、ERI型に類似のXRDピークを含むため、ZTS−5は小細孔ゼオライトであり、更には6員環構造を基本とした連晶構造を有する小細孔ゼオライトであると考えられる。 ZTS-5 has the above-mentioned XRD peak in the range of 2θ = 0 to 45 °, and FWHM (full width at half maximum) is 1.0 to 2.0, and further 1.2 to 2.0 as a particularly characteristic peak. Includes an XRD peak of 2θ = 21.9 ± 0.5 °. Since it has such a relatively broad crystalline peak, ZTS-5 is considered to be a zeolite having an intergrowth structure. Further, since it contains an XRD peak similar to the ERI type, ZTS-5 is considered to be a small pore zeolite, and further, a small pore zeolite having an intergrowth structure based on a 6-membered ring structure.

なお、上記の表における2θは線源にCuKα線(λ=1.5405Å)を用いて測定されるXRDピークの値であり、格子面間隔(以下、「d値」ともいう。)(Å)として以下の表に記載の値に相当する。 In the above table, 2θ is the value of the XRD peak measured by using CuKα ray (λ = 1.5405Å) as the radiation source, and is the lattice plane spacing (hereinafter, also referred to as “d value”) (Å). Corresponds to the values listed in the table below.

Figure 0006848329
Figure 0006848329

ZTS−5は、これらのXRDピークに加え、2θ=23.6±0.2°のXRDピーク(以下、「基準ピーク」ともいう。)の強度に対する相対強度が20%未満のピークや、更には、下表に示すいずれか1以上のXRDピークを有していてもよい。これらのピークは、結晶の配向性などの微細な結晶構造の変化により基準ピークに対する相対強度が20%以上となる場合がある。 In addition to these XRD peaks, ZTS-5 has a peak in which the relative intensity of the XRD peak of 2θ = 23.6 ± 0.2 ° (hereinafter, also referred to as “reference peak”) is less than 20%, and further. May have any one or more XRD peaks shown in the table below. These peaks may have a relative strength of 20% or more with respect to the reference peak due to fine changes in the crystal structure such as crystal orientation.

Figure 0006848329
Figure 0006848329

ZTS−5は上記のXRDパターンを示す構造を有することで、これに金属を含ませた場合に、実用的な窒素酸化物還元特性を示す。そのため、ZTS−5の組成は任意である。ZTS−5は結晶性アルミノシリケート、結晶性シリコアルミノホスフェート及び結晶性アルミノフォスフェートからなる群のいずれかであることが挙げられ、結晶性アルミノシリケートであることが好ましい。結晶性アルミノシリケートは、ケイ素(Si)とアルミニウム(Al)とが酸素(O)を介したネットワークを有する。 Since ZTS-5 has a structure showing the above-mentioned XRD pattern, it exhibits practical nitrogen oxide reduction characteristics when a metal is contained therein. Therefore, the composition of ZTS-5 is arbitrary. ZTS-5 may be any one of the group consisting of crystalline aluminosilicate, crystalline aluminosilicate and crystalline aluminophosphate, and is preferably crystalline aluminosilicate. The crystalline aluminosilicate has a network of silicon (Si) and aluminum (Al) via oxygen (O).

ZTS−5がアルミノシリケートである場合、その構造にケイ素(Si)とアルミニウム(Al)とが酸素(O)を介したネットワークを有していればよく、ケイ素及びアルミニウムが他の元素に置換されていてもよい。ケイ素及びアルミニウムに置換する元素として、ベリリウム、ホウ素、鉄、ガリウム、ゲルマニウム、チタン、バナジウム、ヒ素、クロム、マンガン、亜鉛、ジルコニウム、ランタン、セリウム及びスズからなる群の少なくとも1種を例示することができる。 When ZTS-5 is aluminosilicate, it is sufficient that the structure has a network of silicon (Si) and aluminum (Al) via oxygen (O), and silicon and aluminum are replaced with other elements. May be. Examples of elements that replace silicon and aluminum include at least one of the group consisting of beryllium, boron, iron, gallium, germanium, titanium, vanadium, arsenic, chromium, manganese, zinc, zirconium, lantern, cerium and tin. it can.

ZTS−5が結晶性アルミノシリケートである場合、アルミナに対するシリカのモル比(以下、「SiO/Al比」ともいう。)は5以上、更には10以上であることが好ましい。SiO/Al比が5以上であれば高温下での使用において高い耐熱性を有する。SiO/Al比は50以下、更には20以下であれば、触媒として十分な量の酸点を有する。 When ZTS-5 is crystalline aluminosilicate, the molar ratio of silica to alumina (hereinafter, also referred to as “SiO 2 / Al 2 O 3 ratio”) is preferably 5 or more, more preferably 10 or more. When the SiO 2 / Al 2 O 3 ratio is 5 or more, it has high heat resistance when used at high temperatures. If the SiO 2 / Al 2 O 3 ratio is 50 or less, and further 20 or less, the acid point is sufficient as a catalyst.

好ましいSiO/Al比の範囲として5以上50以下、更には10以上20以下を挙げることができる。 Preferred SiO 2 / Al 2 O 3 ratio ranges include 5 or more and 50 or less, and further 10 or more and 20 or less.

ZTS−5の比表面積は400m/g以上1000m/g以下、更には500m/g以上1000m/g以下、また更には500m/g以上800m/g以下であることが挙げられる。比表面積がこの範囲であるため、ZTS−5は窒素酸化物還元触媒のみならず、各種の触媒、更には吸着剤としても十分な性能を示すことができる。 The specific surface area of ZTS-5 is 400 m 2 / g or more and 1000 m 2 / g or less, further 500 m 2 / g or more and 1000 m 2 / g or less, and further 500 m 2 / g or more and 800 m 2 / g or less. .. Since the specific surface area is in this range, ZTS-5 can exhibit sufficient performance not only as a nitrogen oxide reduction catalyst but also as various catalysts and further as an adsorbent.

ZTS−5は金属を含有していることが好ましい。ZTS−5は、これが金属を含有することで窒素酸化物還元触媒として使用した場合に、実用的な窒素酸化物還元特性を示すことができる。ZTS−5が含有する金属は銅又は鉄の少なくともいずれ、更には銅であることが好ましい。 ZTS-5 preferably contains a metal. ZTS-5 can exhibit practical nitrogen oxide reduction characteristics when it is used as a nitrogen oxide reduction catalyst because it contains a metal. The metal contained in ZTS-5 is preferably at least copper or iron, and more preferably copper.

ZTS−5が銅又は鉄の少なくともいずれか(以下、「銅等」ともいう。)を含有する場合、ZTS−5の重量に対する銅等の重量割合として0.1重量%以上10重量%以下、更には1重量%以上5重量%以下であることが挙げられる。 When ZTS-5 contains at least either copper or iron (hereinafter, also referred to as "copper or the like"), the weight ratio of copper or the like to the weight of ZTS-5 is 0.1% by weight or more and 10% by weight or less. Further, it may be 1% by weight or more and 5% by weight or less.

次に、ZTS−5の製造方法について説明する。 Next, a method for manufacturing ZTS-5 will be described.

ZTS−5は、構造指向剤としてR(但し、R、R、R及びRはメチル基、エチル基及びプロピル基からなる群のいずれかである。)で表される四級アンモニウムカチオンを少なくとも2種、アルカリ源として少なくとも2種のアルカリ金属、シリカ源及びアルミナ源を含む組成物(以下、「原料組成物」ともいう。)を結晶化する結晶化工程、を有する製造方法により得ることができる。 ZTS-5 is a structure-directing agent R 1 R 2 R 3 R 4 N + (where R 1 , R 2 , R 3 and R 4 are any of the group consisting of a methyl group, an ethyl group and a propyl group. A composition containing at least two quaternary ammonium cations represented by () and at least two alkali metals, a silica source and an alumina source as an alkali source (hereinafter, also referred to as “raw material composition”) is crystallized. It can be obtained by a production method having a crystallization step.

原料組成物は構造指向剤(以下、「SDA」ともいう。)としてR(但し、R、R、R及びRはメチル基、エチル基及びプロピル基からなる群のいずれかである。)で表される四級アンモニウムカチオンを少なくとも2種含有する。異なる種類の四級アンモニウムカチオンを含む原料組成物を結晶化することよりZTS−5が得られる。 The raw material composition is R 1 R 2 R 3 R 4 N + as a structure-directing agent (hereinafter, also referred to as “SDA”) (however, R 1 , R 2 , R 3 and R 4 are methyl group, ethyl group and propyl group. It contains at least two quaternary ammonium cations represented by (), which is one of the group consisting of groups. ZTS-5 can be obtained by crystallizing a raw material composition containing different types of quaternary ammonium cations.

原料組成物に含まれる具体的な四級アンモニウムカチオンは、テトラプロピルアンモニウムカチオン(以下、「TPA」ともいう。)、エチルトリプロピルアンモニウムカチオン(以下、「ETPA」ともいう。)、ジエチルジプロピルアンモニウムカチオン(以下、「DEDPA」ともいう。)、トリエチルプロピルアンモニウムカチオン(以下、「TEPA」ともいう。)、エチルメチルジプロピルアンモニウムカチオン(以下、「EMDPA」ともいう。)、エチルジメチルプロピルアンモニウムカチオン(以下、「EDMPA」ともいう。)、ジエチルメチルプロピルアンモニウムカチオン(以下、「DEMPA」ともいう。)、トリメチルプロピルアンモニウムカチオン(以下、「TMPA」ともいう。)、ジメチルジプロピルアンモニウムカチオン(以下、「DMDPA」ともいう。)、メチルトリプロピルアンモニウムカチオン(以下、「MTPA」ともいう。)、テトラエチルアンモニウムカチオン(以下、「TEA」ともいう。)、トリエチルメチルアンモニウムカチオン(以下、「TEMA」ともいう。)、ジエチルジメチルアンモニウムカチオン(以下、「DEDMA」ともいう。)、エチルトリメチルアンモニウムカチオン(以下、「ETMA」ともいう。)及びテトラメチルアンモニウムカチオン(以下、「TMA」ともいう。)からなる群の少なくとも2種を挙げることができる。 Specific quaternary ammonium cations contained in the raw material composition are tetrapropylammonium cation (hereinafter, also referred to as “TPA + ”), ethyltripropylammonium cation (hereinafter, also referred to as “ETPA + ”), and diethyldi. Propropylammonium cation (hereinafter, also referred to as "DEDPA + "), triethylpropylammonium cation (hereinafter, also referred to as "TEPA + "), ethylmethyldipropylammonium cation (hereinafter, also referred to as "EMDPA + "), ethyl. Dimethylpropylammonary cation (hereinafter, also referred to as "EDMPA + "), diethylmethylpropylammonium cation (hereinafter, also referred to as "DEMPA + "), trimethylpropylammonary cation (hereinafter, also referred to as "TMPA +"), dimethyl Dipropylammonary cation (hereinafter, also referred to as "DMDPA + "), methyltripropylammonium cation (hereinafter, also referred to as "MTPA + "), tetraethylammonium cation (hereinafter, also referred to as "TEA +"), triethylmethyl Ammonium cation (hereinafter, also referred to as "TEMA + "), diethyldimethylammonium cation (hereinafter, also referred to as "DEDMA + "), ethyltrimethylammonium cation (hereinafter, also referred to as "ETMA + ") and tetramethylammonium cation. (Hereinafter, also referred to as “TMA + ”), at least two species in the group consisting of (hereinafter, also referred to as “TMA +”) can be mentioned.

原料組成物は、R(但し、R、R、R及びRはメチル基又はエチル基からなる群のいずれかである。)で表される四級アンモニウムカチオンを含むことが好ましく、TEA、ETMA、DEDMA及びTEMAからなる群の少なくとも1種、更には、TEA又はDEDMAのいずれかを含むことが好ましい。 The raw material composition is represented by R 1 R 2 R 3 R 4 N + (where R 1 , R 2 , R 3 and R 4 are either a group consisting of a methyl group or an ethyl group). It preferably contains a quaternary ammonium cation, preferably at least one of the group consisting of TEA + , ETMA + , DEDMA + and TEMA +, and more preferably any of TEA + or DEDMA +.

原料組成物に含まれる特に好ましいSDAは、少なくとも2種のR(但し、R、R、R及びRはメチル基又はエチル基からなる群のいずれかである。)で表される四級アンモニウムカチオン、更にはTEA、ETMA、DEDMA及びTEMAからなる群の少なくとも2種、また更にはTEA及びDEDMAを挙げることができる。 Particularly preferred SDAs contained in the raw material composition are at least two R 1 R 2 R 3 R 4 N + (where R 1 , R 2 , R 3 and R 4 are in the group consisting of a methyl group or an ethyl group. Quaternary ammonium cations represented by), and at least two species in the group consisting of TEA + , ETMA + , DEDMA + and TEMA +, and further TEA + and DEDMA + can be mentioned.

シリカ源はケイ素を含む化合物であり、シリカゾル、ヒュームドシリカ、コロイダルシリカ、沈降法シリカ、無定形ケイ酸、結晶性アルミノシリケート及び非晶質アルミノシリケートからなる群の少なくとも1種であることが好ましく、結晶性アルミノシリケート又は非晶質アルミノシリケートの少なくともいずれか、更には結晶性アルミノシリケートであることが好ましい。 The silica source is a silicon-containing compound, preferably at least one of the group consisting of silica sol, fumed silica, colloidal silica, precipitated silica, amorphous silicic acid, crystalline aluminosilicates and amorphous aluminosilicates. , At least one of crystalline aluminosilicate and amorphous aluminosilicate, and more preferably crystalline aluminosilicate.

アルミナ源はアルミニウムを含む化合物であり、水酸化アルミニウム、酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、結晶性アルミノシリケート、非晶質アルミノシリケート、金属アルミニウム及びアルミニウムアルコキシドからなる群の少なくとも1種であることが好ましく、結晶性アルミノシリケート又は非晶質アルミノシリケートの少なくともいずれかであることが好ましく、結晶性アルミノシリケートであることが更に好ましい。 The alumina source is a compound containing aluminum and is at least one of the group consisting of aluminum hydroxide, aluminum oxide, aluminum sulfate, aluminum chloride, aluminum nitrate, crystalline aluminosilicate, amorphous aluminosilicate, metallic aluminum and aluminum alkoxide. It is preferably at least one of crystalline aluminosilicate and amorphous aluminosilicate, and more preferably crystalline aluminosilicate.

シリカ源及びアルミナ源は、結晶性アルミノシリケート又は非晶質アルミノシリケートの少なくともいずれかであることが好ましく、結晶性アルミノシリケートであることが更に好ましく、FAU型ゼオライトであることがより好ましい。 The silica source and the alumina source are preferably at least one of crystalline aluminosilicate and amorphous aluminosilicate, more preferably crystalline aluminosilicate, and even more preferably FAU-type zeolite.

SDAは、上記の四級アンモニウムの塩として含まれていてもよい。原料組成物に含まれるSDAの塩として、ハロゲン化物又は水酸化物の少なくともいずれか、更にはフッ化物、塩化物、臭化物及び水酸化物からなる群の少なくとも1種を挙げることができ、水酸化物であることが好ましい。SDAがTEAである場合を例に挙げると、テトラエチルアンモニウム塩化物(以下、「TEACl」ともいう。)、テトラエチルアンモニウム臭化物(以下、「TEABr」ともいう。)及びテトラエチルアンモニウム水酸化物(以下、「TEAOH」ともいう。)からなる群の少なくとも1種、更にはTEAOHであることが挙げられる。同様に、SDAがDEDMAである場合、ジエチルジメチルアンモニウム塩化物(以下、「DEDMCl」ともいう。)、ジエチルジメチルアンモニウム臭化物(以下、「DEDMBr」ともいう。)及びジエチルジメチルアンモニウム水酸化物(以下、「DEDMOH」ともいう。)からなる群の少なくとも1種、更にはDEDMAOHであることが挙げられる。 SDA may be included as a salt of the above quaternary ammonium. Examples of the SDA salt contained in the raw material composition include at least one of a halide and a hydroxide, and at least one of the group consisting of fluoride, chloride, bromide and hydroxide, and hydroxylation. It is preferably a thing. Taking the case where SDA is TEA + as an example, tetraethylammonium chloride (hereinafter, also referred to as "TEACl"), tetraethylammonium bromide (hereinafter, also referred to as "TEABr") and tetraethylammonium hydroxide (hereinafter, also referred to as "TEABr"). At least one of the group consisting of "TEAOH"), and further, TEAOH. Similarly, when SDA is DEDMA + , diethyldimethylammonium chloride (hereinafter, also referred to as “DEDMCl”), diethyldimethylammonium bromide (hereinafter, also referred to as “DEDMBr”) and diethyldimethylammonium hydroxide (hereinafter, also referred to as “DEDMBr”). , At least one of the group consisting of "DEDMOH"), and further mentioned as DEDMAOH.

原料組成物はアルカリ源として少なくとも2種のアルカリ金属を含む。原料組成物が含むアルカリ金属としてリチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群の少なくとも2種であればよい。 The raw material composition contains at least two alkali metals as an alkali source. The alkali metal contained in the raw material composition may be at least two of the group consisting of lithium, sodium, potassium, rubidium, and cesium.

原料組成物は2種以上のアルカリ金属を含んでおり、アルカリ源として含まれるアルカリ金属はリチウム、カリウム、ルビジウム及びセシウムからなる群の少なくとも1種とナトリウム、更にはカリウム又はセシウムの少なくともいずれかとナトリウムであることが好ましい。 The raw material composition contains two or more kinds of alkali metals, and the alkali metals contained as an alkali source are at least one of the group consisting of lithium, potassium, rubidium and cesium and sodium, and at least one of potassium or cesium and sodium. Is preferable.

アルカリ源におけるアルカリ金属のカウンターアニオンとしてフッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン及び水酸化物イオンからなる群の少なくとも1種、更には水酸化物イオンを含んでいてもよい。シリカ源及びアルミナ源等他の原料がアルカリ金属を含む場合、当該アルカリ金属もアルカリ源とすることができる。 As the counter anion of the alkali metal in the alkali source, at least one of the group consisting of fluorine ion, chlorine ion, bromine ion, iodine ion and hydroxide ion, and further hydroxide ion may be contained. When other raw materials such as a silica source and an alumina source contain an alkali metal, the alkali metal can also be an alkali source.

原料組成物に含まれる水としては、例えば、純水を使用することができる。なお、原料組成物の各原料(水を除く)は、水溶液として使用することもできる。 As the water contained in the raw material composition, for example, pure water can be used. Each raw material (excluding water) of the raw material composition can also be used as an aqueous solution.

原料組成物のSiO/Al比は10以上、更には20以上であればよい。一方、原料組成物のSiO/Al比は50以下、更には30以下であればよい。好ましいSiO/Al比として10以上50以下、更には20以上30以下を挙げることができる。 The SiO 2 / Al 2 O 3 ratio of the raw material composition may be 10 or more, more preferably 20 or more. On the other hand, the SiO 2 / Al 2 O 3 ratio of the raw material composition may be 50 or less, more preferably 30 or less. Preferred SiO 2 / Al 2 O 3 ratios include 10 or more and 50 or less, and further 20 or more and 30 or less.

原料組成物に含まれる、それぞれの四級アンモニウムカチオンのシリカに対するモル比(以下、「SDA/SiO比」ともいう。)は0.05以上、更には0.1以上であることが好ましい。一方、SDA/SiO比は1.0以下、更には0.5以下、また更には0.3以下であればよい。 The molar ratio of each quaternary ammonium cation to silica (hereinafter, also referred to as “SDA / SiO 2 ratio”) contained in the raw material composition is preferably 0.05 or more, more preferably 0.1 or more. On the other hand, the SDA / SiO 2 ratio may be 1.0 or less, further 0.5 or less, and further 0.3 or less.

原料組成物は少なくとも2種以上のSDAを含むが、最もSDA/SiO比の高い四級アンモニウムカチオン(以下、「SDA1」ともいう。)に対する、SDA1の次にSDA/SiO比の高い四級アンモニウムカチオン(以下、「SDA2」ともいう。)のモル比(以下、「SDA2/SAD1比」ともいう。)は3.0以下、更には2.0以下、また更には1.2以下であることが好ましく、SDA2/SAD1比は0.3以上、更には0.5以上であることが好ましい。SDA1とSDA2、それぞれのSDA/SiO比が等しい場合、両者のうち分子量が大きい四級アンモニウムカチオンをSDA1とし、分子量が小さい四級アンモニウムカチオンをSDA2とすればよい。 The raw material composition contains at least two or more types of SDA, but has the second highest SDA / SiO 2 ratio to the quaternary ammonium cation (hereinafter, also referred to as “SDA1”) having the highest SDA / SiO 2 ratio. The molar ratio of the quaternary ammonium cation (hereinafter, also referred to as “SDA2”) (hereinafter, also referred to as “SDA2 / SAD1 ratio”) is 3.0 or less, further 2.0 or less, and further 1.2 or less. The SDA2 / SAD1 ratio is preferably 0.3 or more, and more preferably 0.5 or more. When the SDA / SiO 2 ratios of SDA1 and SDA2 are equal, the quaternary ammonium cation having a large molecular weight may be SDA1 and the quaternary ammonium cation having a small molecular weight may be SDA2.

原料組成物に含まれるシリカに対するそれぞれのアルカリ金属のモル比(以下、「M/SiO比」ともいう。)は0.001以上、更には0.005以上であればよい。M/SiOは1.0以下、更には0.5以下、また更には0.3以下であることが好ましい。 The molar ratio of each alkali metal to silica contained in the raw material composition (hereinafter, also referred to as “M / SiO 2 ratio”) may be 0.001 or more, and further 0.005 or more. The M / SiO 2 is preferably 1.0 or less, more preferably 0.5 or less, and further preferably 0.3 or less.

原料組成物に含まれるアルカリ金属のうち最もM/SiO比の高いアルカリ金属(以下、「M1」ともいう。)のシリカに対するモル比(以下、「M1/SiO比」ともいう。)は0.05以上、更には0.1以上であることが好ましく、なおかつ、1.0以下、更には0.5以下、また更には0.3以下であることが好ましい。一方、M1の次にM/SiO比の高いアルカリ金属(以下、「M2」ともいう。)のシリカに対するモル比(以下、「M2/SiO比」ともいう。)は0.001以上、更には0.005以上であることが好ましく、なおかつ、0.1以下、更には0.05以下であることが好ましい。 The molar ratio (hereinafter, also referred to as “M1 / SiO 2 ratio”) of the alkali metal having the highest M / SiO 2 ratio (hereinafter, also referred to as “M1”) to silica among the alkali metals contained in the raw material composition is. It is preferably 0.05 or more, more preferably 0.1 or more, and more preferably 1.0 or less, further 0.5 or less, and further preferably 0.3 or less. On the other hand, the molar ratio of alkali metal (hereinafter, also referred to as “M2”) having the second highest M / SiO 2 ratio to silica (hereinafter, also referred to as “M2 / SiO 2 ratio”) is 0.001 or more. Further, it is preferably 0.005 or more, and more preferably 0.1 or less, further preferably 0.05 or less.

原料組成物のM2に対するM1のモル比(以下、「M1/M2比」ともいう。)は1000以下、更には100以下であることが好ましく、なおかつ、2以上、更には10以上であることが好ましい。 The molar ratio of M1 to M2 of the raw material composition (hereinafter, also referred to as “M1 / M2 ratio”) is preferably 1000 or less, more preferably 100 or less, and more than 2 or even 10 or more. preferable.

原料組成物のシリカに対する水酸化物イオンのモル比(以下、「OH/SiO比」ともいう。)は1.0以下であることが好ましい。OH/SiO比が1.0以下であることで、ZTS−5の収率が高くなりやすい。一方、OH/SiO比が0.2以上、更には0.4以上であればよい。 The molar ratio of hydroxide ions to silica in the raw material composition (hereinafter, also referred to as “OH / SiO 2 ratio”) is preferably 1.0 or less. When the OH / SiO 2 ratio is 1.0 or less, the yield of ZTS-5 tends to be high. On the other hand, the OH / SiO 2 ratio may be 0.2 or more, and further 0.4 or more.

原料組成物のシリカに対する水(HO)のモル比(以下、「HO/SiO比」ともいう。)は100以下、更には50以下であれば、より効率良くZTS−5が結晶化する。適度な流動性を有する原料組成物とするため、HO/SiO比は3.0以上、更には5.0以上であることが好ましい。 If the molar ratio of water (H 2 O) to silica in the raw material composition (hereinafter, also referred to as “H 2 O / SiO 2 ratio”) is 100 or less, and further 50 or less, ZTS-5 can be more efficiently produced. Crystallize. In order to obtain a raw material composition having appropriate fluidity, the H 2 O / SiO 2 ratio is preferably 3.0 or more, more preferably 5.0 or more.

結晶化工程において、原料組成物に種晶を混合してもよい。種晶を混合することで、ZTS−5の核発生が促進され、より短い時間で結晶化することができる。 In the crystallization step, seed crystals may be mixed with the raw material composition. By mixing the seed crystals, the nucleation of ZTS-5 is promoted, and it can be crystallized in a shorter time.

種晶は、AEI型ゼオライト、CHA型ゼオライト、KFI型ゼオライト、LEV型ゼオライト及びAFX型ゼオライトからなる群の少なくともいずれか、更にはCHA型ゼオライトを挙げることができる。 The seed crystal includes at least one of the group consisting of AEI-type zeolite, CHA-type zeolite, KFI-type zeolite, LEV-type zeolite, and AFX-type zeolite, and further includes CHA-type zeolite.

結晶化工程における種晶は、以下の式から求められる含有量として、0重量%以上30重量%以下、更には0重量%以上10重量%以下であることが好ましく、種晶を含有する場合の種晶含有量は0重量%を超え30重量%以下、更には0重量%を超え10重量%以下であることが好ましい。
種晶含有量(重量%)=(WAl(seed)+WSi(seed))×100/(WAl+WSi
The content of the seed crystal in the crystallization step is preferably 0% by weight or more and 30% by weight or less, more preferably 0% by weight or more and 10% by weight or less as the content obtained from the following formula, and when the seed crystal is contained. The seed crystal content is preferably more than 0% by weight and 30% by weight or less, and more preferably more than 0% by weight and 10% by weight or less.
Seed crystal content (% by weight) = (W Al (seed) + W Si (seed) ) x 100 / (W Al + W Si )

上記式において、WAlは原料組成物のAlをAlに換算した重量、WSiは原料組成物中のSiをSiOに換算した重量、WAl(seed)は種晶中のAlをAlに換算した重量、及び、WSi(seed)は種晶中のSiをSiOに換算した重量である。 In the above formula, W Al is the weight of Al in the raw material composition converted to Al 2 O 3 , W Si is the weight of Si in the raw material composition converted to SiO 2 , and W Al (seeded) is Al in the seed crystal. Is converted to Al 2 O 3 , and W Si (seed) is the weight obtained by converting Si in the seed crystal to SiO 2.

原料組成物の組成のモル比として好ましい範囲を以下に挙げることができる。
20≦SiO/Al比≦30
0.1≦SDA1/SiO比≦0.5
0.1≦SDA2/SiO比≦0.5
0.5≦SDA1/SDA2比≦2
0.05≦M1/SiO比≦1
0.001≦M2/SiO比≦0.1
2≦M1/M2比≦1000
0.4≦OH/SiO比≦1
5≦HO/SiO比≦50
The preferred range as the molar ratio of the composition of the raw material composition can be listed below.
20 ≤ SiO 2 / Al 2 O 3 ratio ≤ 30
0.1 ≤ SDA1 / SiO 2 ratio ≤ 0.5
0.1 ≤ SDA2 / SiO 2 ratio ≤ 0.5
0.5 ≤ SDA1 / SDA2 ratio ≤ 2
0.05 ≤ M1 / SiO 2 ratio ≤ 1
0.001 ≤ M2 / SiO 2 ratio ≤ 0.1
2 ≤ M1 / M2 ratio ≤ 1000
0.4 ≤ OH / SiO 2 ratio ≤ 1
5 ≤ H 2 O / SiO 2 ratio ≤ 50

結晶化工程では、上記の各原料を含む原料組成物を水熱合成することにより、これを結晶化する。結晶化は、原料組成物を密閉容器に充填し、これを加熱すればよい。 In the crystallization step, a raw material composition containing each of the above raw materials is hydrothermally synthesized to crystallize the raw material composition. For crystallization, the raw material composition may be filled in a closed container and heated.

結晶化を促進する観点から、結晶化温度は80℃以上とすればよい。結晶化温度が高いほど結晶化が促進されるため、結晶化温度は100℃以上が好ましい。一方、原料組成物が結晶化すれば必要以上に結晶化温度を高くする必要はない。そのため、結晶化温度は200℃以下、更には170℃以下であればよい。また、結晶化は原料組成物を攪拌した状態又は静置した状態のいずれの状態で行うことができる。 From the viewpoint of promoting crystallization, the crystallization temperature may be 80 ° C. or higher. Since crystallization is promoted as the crystallization temperature is higher, the crystallization temperature is preferably 100 ° C. or higher. On the other hand, if the raw material composition crystallizes, it is not necessary to raise the crystallization temperature more than necessary. Therefore, the crystallization temperature may be 200 ° C. or lower, further 170 ° C. or lower. Further, crystallization can be carried out in either a state in which the raw material composition is agitated or a state in which the raw material composition is allowed to stand.

本発明の製造方法では結晶化工程を経ることでZTS−5が得られる。ZTS−5を触媒や吸着剤とする場合、本発明の製造方法は洗浄工程、乾燥工程、焼成工程や金属担持工程などを含んでいてもよい。 In the production method of the present invention, ZTS-5 can be obtained through a crystallization step. When ZTS-5 is used as a catalyst or an adsorbent, the production method of the present invention may include a cleaning step, a drying step, a firing step, a metal supporting step, and the like.

洗浄工程では、結晶化後のZTS−5と液相とを固液分離する。固液分離は、公知の方法を使用することができる。固液分離後、固相として得られるZTS−5を純水で洗浄することができる。 In the washing step, the crystallized ZTS-5 and the liquid phase are solid-liquid separated. A known method can be used for solid-liquid separation. After solid-liquid separation, ZTS-5 obtained as a solid phase can be washed with pure water.

乾燥工程はZTS−5の吸着水等の水分を除去する。乾燥工程の処理条件は任意であるが、ZTS−5を、大気中、50℃以上150℃以下で2時間以上で処理することが例示できる。 The drying step removes water such as adsorbed water of ZTS-5. The treatment conditions of the drying step are arbitrary, but it can be exemplified that ZTS-5 is treated in the air at 50 ° C. or higher and 150 ° C. or lower for 2 hours or longer.

焼成工程は、ZTS−5に含まれる有機物を燃焼除去する。焼成工程の処理条件は任意であるが、具体的な処理としては、ZTS−5を、大気中、500℃以上900℃以下で処理することが例示できる。 The firing step burns and removes organic substances contained in ZTS-5. The treatment conditions of the firing step are arbitrary, but as a specific treatment, it can be exemplified that ZTS-5 is treated in the air at 500 ° C. or higher and 900 ° C. or lower.

イオン交換工程では、金属イオンをアンモニウムイオン(NH )や、プロトン(H)等の非金属カチオンにイオン交換する。アンモニウムイオンへのイオン交換の具体的な処理としては、ZTS−5を塩化アンモニウム水溶液に混合して、攪拌することが挙げられる。また、プロトンへのイオン交換の具体的な処理としては、結晶性アルミノシリケートをアンモニアでイオン交換した後、これを焼成することが挙げられる。 In the ion exchange step, metal ion ammonium ion (NH 4 +) or ion-exchange non-metallic cations such as protons (H +). Specific treatments for ion exchange to ammonium ions include mixing ZTS-5 with an aqueous ammonium chloride solution and stirring. Further, as a specific treatment of ion exchange to protons, it is mentioned that crystalline aluminosilicate is ion-exchanged with ammonia and then calcined.

ZTS−5に銅(Cu)又は鉄(Fe)を含有させる場合、銅又は鉄の少なくともいずれかを含む化合物(以下、「銅化合物等」ともいう。)とZTS−5とを接触させる金属含有工程、を有する製造方法により得ることができる。 When ZTS-5 contains copper (Cu) or iron (Fe), it contains a metal that brings ZTS-5 into contact with a compound containing at least one of copper or iron (hereinafter, also referred to as "copper compound or the like"). It can be obtained by a production method having a step.

金属含有工程は、ZTS−5のイオン交換サイト又は細孔の少なくともいずれかに銅又は鉄の少なくともいずれかが含有される方法であればよい。具体的な方法として、イオン交換法、蒸発乾固法及び含浸担持法からなる群の少なくとも1種を挙げることができ、含浸担持法、更には遷移金属化合物を含む水溶液とZTS−5とを混合する方法であることが好ましい。 The metal-containing step may be a method in which at least one of copper and iron is contained in at least one of the ion exchange sites or pores of ZTS-5. As a specific method, at least one of the group consisting of an ion exchange method, an evaporative drying method and an impregnation-supporting method can be mentioned. The impregnation-supporting method, and further, an aqueous solution containing a transition metal compound and ZTS-5 are mixed. It is preferable that the method is used.

銅化合物等は、銅又は鉄の少なくともいずれかを含む無機酸塩、更には銅又は鉄の少なくともいずれかを含む硫酸塩、硝酸塩、酢酸塩及び塩化物からなる群の少なくとも1種を挙げることができる。 Examples of the copper compound and the like include at least one of the group consisting of an inorganic acid salt containing at least one of copper and iron, and further a sulfate, a nitrate, an acetate and a chloride containing at least one of copper or iron. it can.

金属含有工程の後、洗浄工程、乾燥工程、又は活性化工程の少なくともいずれか1以上の工程を含んでいてもよい。 After the metal-containing step, at least one or more steps of a washing step, a drying step, and an activation step may be included.

洗浄工程は、不純物等が除去されれば、任意の洗浄方法を用いることができる。例えば、金属含有工程後のZTS−5を十分量の純水で洗浄することが挙げられる。 In the cleaning step, any cleaning method can be used as long as impurities and the like are removed. For example, washing ZTS-5 after the metal-containing step with a sufficient amount of pure water can be mentioned.

乾燥工程は水分を除去すればよく、大気中で、100℃以上、200℃以下で処理することが例示できる。 Moisture may be removed in the drying step, and treatment at 100 ° C. or higher and 200 ° C. or lower in the air can be exemplified.

活性化工程は有機物を除去する。金属含有ZTS−5を、大気中、200℃を超え、600℃以下で処理することが例示できる。 The activation step removes organic matter. It can be exemplified that the metal-containing ZTS-5 is treated in the air at a temperature of more than 200 ° C. and 600 ° C. or lower.

銅又は鉄の少なくともいずれか、更には銅を含有するZTS−5は、例えば、アルコールやケトンからの低級オレフィン製造用触媒、クラッキング触媒、脱ろう触媒、異性化触媒、及び排気ガスからの窒素酸化物還元触媒として使用することできる。特に、窒素酸化物還元触媒として使用することが好ましい。 ZTS-5, which contains at least one of copper or iron, and even copper, contains, for example, catalysts for producing lower olefins from alcohols and ketones, cracking catalysts, dewax catalysts, isomerization catalysts, and nitrogen oxidation from exhaust gas. It can be used as a material reduction catalyst. In particular, it is preferably used as a nitrogen oxide reduction catalyst.

以下、実施例を挙げて本発明を説明する。しかしながら、本発明はこれら実施例に限定されるものではない。なお、「比」は特に断らない限り、「モル比」である。 Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to these examples. The "ratio" is a "molar ratio" unless otherwise specified.

(結晶構造の同定)
一般的なX線回折装置(装置名:UltimaIV、リガク社製)を使用し、以下の条件で試料のXRD測定をした。
線源 :CuKα線(λ=1.5405Å)
測定範囲:2θ=3°〜43°
(Identification of crystal structure)
A general X-ray diffractometer (device name: UltimaIV, manufactured by Rigaku Co., Ltd.) was used, and the XRD measurement of the sample was performed under the following conditions.
Radioactive source: CuKα ray (λ = 1.5405Å)
Measurement range: 2θ = 3 ° to 43 °

得られた回折プロファイルをPseudo voigt関数でピーク分離し、それぞれのピークの角度、d値、基準ピークに対するピーク高さ、及びFWHMを求めた。 The obtained diffraction profile was peak-separated by the Pseudo voice function, and the angle, d value, peak height with respect to the reference peak, and FWHM of each peak were obtained.

(組成分析)
フッ酸と硝酸の混合水溶液に試料を溶解して試料溶液を調製した。一般的なICP装置(装置名:OPTIMA5300DV、PerkinElmer社製)を使用して、当該試料溶液を誘導結合プラズマ発光分光分析(ICP−AES)で測定した。得られたSi、Alの測定値から、試料のSiO/Al比を求めた。
(Composition analysis)
A sample solution was prepared by dissolving the sample in a mixed aqueous solution of hydrofluoric acid and nitric acid. The sample solution was measured by inductively coupled plasma emission spectroscopy (ICP-AES) using a general ICP device (device name: OPTIMA5300DV, manufactured by PerkinElmer). From the obtained measured values of Si and Al, the SiO 2 / Al 2 O 3 ratio of the sample was determined.

(比表面積の測定)
試料の比表面積は、窒素吸着測定により算出した。窒素吸着測定には一般的な窒素吸着装置(装置名:BelsorpMax、マイクロトラックベル株式会社製)を用いた。試料を真空下350℃で2時間前処理し、液体窒素温度で窒素ガスを吸着させた。値の算出にはBET法を用いた。
(Measurement of specific surface area)
The specific surface area of the sample was calculated by nitrogen adsorption measurement. A general nitrogen adsorption device (device name: BelsorbMax, manufactured by Microtrac Bell Co., Ltd.) was used for the nitrogen adsorption measurement. The sample was pretreated under vacuum at 350 ° C. for 2 hours and nitrogen gas was adsorbed at liquid nitrogen temperature. The BET method was used to calculate the value.

実施例1
純水、水酸化ナトリウム、FAU型ゼオライト(SiO/Al比=23)、カリウムを0.33重量%含むTEAOH水溶液及びDEDMAOH水溶液を混合して、以下の組成を有する原料組成物を得た。
Example 1
Pure water, sodium hydroxide, FAU type zeolite (SiO 2 / Al 2 O 3 ratio = 23), were mixed TEAOH aqueous solution and DEDMAOH solution containing potassium 0.33 wt%, the raw material composition having the following composition Obtained.

SiO/Al比=23
TEA/SiO比=0.2
DEDMA/SiO比=0.2
DEDMA/TEA比=1.0
K/SiO比=0.008
Na/SiO比=0.2
Na/K比=25
OH/SiO比=0.6
O/SiO比=8
得られた原料組成物に種晶としてCHA型ゼオライト10重量%を混合した後に密閉容器内に充填し、この容器を静置した状態で150℃、4日間の条件で原料組成物を結晶化させた。結晶化後の原料組成物を固液分離し、純水で洗浄した後、110℃で乾燥して下表のXRDパターンを有する本実施例のZTS−5を得た。なお、下表においては、2θ=23.4°のピークを基準ピークとし、基準ピークに対する相対強度が20%以上のピークのみを示した。
SiO 2 / Al 2 O 3 ratio = 23
TEA + / SiO 2 ratio = 0.2
DEDMA + / SiO 2 ratio = 0.2
DEDMA + / TEA + ratio = 1.0
K / SiO 2 ratio = 0.008
Na / SiO 2 ratio = 0.2
Na / K ratio = 25
OH / SiO 2 ratio = 0.6
H 2 O / SiO 2 ratio = 8
After mixing 10% by weight of CHA-type zeolite as a seed crystal with the obtained raw material composition, the raw material composition was filled in a closed container, and the raw material composition was crystallized at 150 ° C. for 4 days while the container was allowed to stand. It was. The raw material composition after crystallization was solid-liquid separated, washed with pure water, and then dried at 110 ° C. to obtain ZTS-5 of this example having the XRD pattern shown in the table below. In the table below, the peak of 2θ = 23.4 ° was used as the reference peak, and only the peak having a relative intensity of 20% or more with respect to the reference peak was shown.

Figure 0006848329
Figure 0006848329

本実施例のZTS−5は、SiO/Al比が15、及び、空気雰囲気下、600℃で2時間焼成した後の比表面積が596m/gであった。 The ZTS-5 of this example had a SiO 2 / Al 2 O 3 ratio of 15 and a specific surface area of 596 m 2 / g after firing at 600 ° C. for 2 hours in an air atmosphere.

本実施例の結果を表9に示し、本実施例のZTS−5のXRDパターンを図1にSEM写真を図2に示した。 The results of this example are shown in Table 9, the XRD pattern of ZTS-5 of this example is shown in FIG. 1, and the SEM photograph is shown in FIG.

実施例2
結晶化温度を130℃としたこと以外は、実施例1と同様の方法で下表のXRDパターンを有する本実施例のZTS−5を得た。なお、下表においては、2θ=23.4°のピークを基準ピークとし、基準ピークに対する相対強度が20%以上のピークのみを示した。
Example 2
A ZTS-5 of this example having the XRD pattern shown in the table below was obtained in the same manner as in Example 1 except that the crystallization temperature was set to 130 ° C. In the table below, the peak of 2θ = 23.4 ° was used as the reference peak, and only the peak having a relative intensity of 20% or more with respect to the reference peak was shown.

Figure 0006848329
Figure 0006848329

本実施例のZTS−5は、SiO/Al比が14であった。 The ZTS-5 of this example had a SiO 2 / Al 2 O 3 ratio of 14.

本実施例の結果を表9に示した。また、本実施例のZTS−5のXRDパターンを図3に示した。 The results of this example are shown in Table 9. Moreover, the XRD pattern of ZTS-5 of this Example is shown in FIG.

実施例3
FAU型ゼオライト(SiO/Al比=23)の代わりにFAU型ゼオライト(SiO/Al比=27)を用いたこと以外は、実施例1と同様の方法で下表のXRDパターンを有する本実施例のZTS−5を得た。なお、下表においては、2θ=23.4°のピークを基準ピークとし、基準ピークに対する相対強度が20%以上のピークのみを示した。
Example 3
The table below shows the same method as in Example 1 except that FAU-type zeolite (SiO 2 / Al 2 O 3 ratio = 27) was used instead of FAU-type zeolite (SiO 2 / Al 2 O 3 ratio = 23). ZTS-5 of this example having the XRD pattern of the above was obtained. In the table below, the peak of 2θ = 23.4 ° was used as the reference peak, and only the peak having a relative intensity of 20% or more with respect to the reference peak was shown.

Figure 0006848329
Figure 0006848329

本実施例のZTS−5は、SiO/Al比が15であった。 The ZTS-5 of this example had a SiO 2 / Al 2 O 3 ratio of 15.

本実施例の結果を表9に示した。また、本実施例のZTS−5のXRDパターンを図4に示した。 The results of this example are shown in Table 9. Moreover, the XRD pattern of ZTS-5 of this Example is shown in FIG.

実施例4
原料組成物に種晶を混合しなかったこと以外は、実施例1と同様の方法でSiO/Al比が16.4である本実施例のZTS−5を得た。本実施例の結果を表9に示した。
Example 4
The ZTS-5 of this example having a SiO 2 / Al 2 O 3 ratio of 16.4 was obtained in the same manner as in Example 1 except that the seed crystal was not mixed with the raw material composition. The results of this example are shown in Table 9.

実施例5
実施例1と同様な方法でZTS−5を得、これを550℃の空気中で2時間焼成し、下表のXRDパターンを有するZTS−5を得た。本実施例のZTS−5のXRDパターンを図5に示した。なお、下表においては、2θ=23.7°のピークを基準ピークとし、基準ピークに対する相対強度が20%以上のピークのみを示した。
Example 5
ZTS-5 was obtained in the same manner as in Example 1 and fired in air at 550 ° C. for 2 hours to obtain ZTS-5 having the XRD pattern shown in the table below. The XRD pattern of ZTS-5 of this example is shown in FIG. In the table below, the peak of 2θ = 23.7 ° was used as the reference peak, and only the peak having a relative intensity of 20% or more with respect to the reference peak was shown.

Figure 0006848329
Figure 0006848329

比較例1
カリウムを含有しないTEAOH水溶液を用いたこと以外は、実施例1と同様の方法で本比較例のゼオライトを得た。
Comparative Example 1
Zeolites of this Comparative Example were obtained in the same manner as in Example 1 except that a potassium-free TEAOH aqueous solution was used.

本比較例のゼオライトはCHA型ゼオライト、LEV型ゼオライト及び*BEA型ゼオライトの混合物であり、ZTS−5とは異なるゼオライトであった。原料組成物の主な組成を表7に示した。 The zeolite of this comparative example was a mixture of CHA-type zeolite, LEV-type zeolite, and * BEA-type zeolite, and was a zeolite different from ZTS-5. The main compositions of the raw material compositions are shown in Table 7.

比較例2
カリウムを含むTEAOH水溶液を使用しなかったこと、及び、原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で本比較例のゼオライトを得た。
Comparative Example 2
Zeolites of this Comparative Example were obtained in the same manner as in Example 1 except that an aqueous TEAOH solution containing potassium was not used and the raw material composition had the following composition.

SiO/Al比=23
(TEA/SiO比=0)
DEDMA/SiO比=0.4
(DEDMA/TEA比=∞)
(K/SiO比=0)
Na/SiO比=0.2
(Na/K比=∞)
OH/SiO比=0.6
O/SiO比=8
原料組成物の主な組成を表9に示した。
SiO 2 / Al 2 O 3 ratio = 23
(TEA + / SiO 2 ratio = 0)
DEDMA + / SiO 2 ratio = 0.4
(DEDMA + / TEA + ratio = ∞)
(K / SiO 2 ratio = 0)
Na / SiO 2 ratio = 0.2
(Na / K ratio = ∞)
OH / SiO 2 ratio = 0.6
H 2 O / SiO 2 ratio = 8
The main compositions of the raw material compositions are shown in Table 9.

本比較例のゼオライトはLEV型ゼオライトを主相とし、その他微量の未同定結晶化物との混合物であり、ZTS−5とは異なるゼオライトであった。 The zeolite of this comparative example had a LEV-type zeolite as the main phase and was a mixture with other trace amounts of unidentified crystalline substances, and was a zeolite different from ZTS-5.

比較例3
DEDMAOH水溶液を使用しなかったこと、及び、原料組成物を以下の組成としたこと以外は、実施例1と同様の方法で実験を行った。
Comparative Example 3
The experiment was carried out in the same manner as in Example 1 except that the DEDMAOH aqueous solution was not used and the raw material composition had the following composition.

SiO/Al比=23
TEA/SiO比=0.4
(DEDMA/SiO比=0)
DEDMA/TEA比=0
K/SiO比=0.016
Na/SiO比=0.2
Na/K比=12.5
OH/SiO比=0.6
O/SiO比=8
原料組成物の主な組成を表9に示した。
SiO 2 / Al 2 O 3 ratio = 23
TEA + / SiO 2 ratio = 0.4
(DEDMA + / SiO 2 ratio = 0)
DEDMA + / TEA + ratio = 0
K / SiO 2 ratio = 0.016
Na / SiO 2 ratio = 0.2
Na / K ratio = 12.5
OH / SiO 2 ratio = 0.6
H 2 O / SiO 2 ratio = 8
The main compositions of the raw material compositions are shown in Table 9.

本比較例のゼオライトはCHA型ゼオライト及び*BEA型ゼオライトの混合物であり、ZTS−5とは異なるゼオライトであった。原料組成物の主な組成を表9に示した。 The zeolite of this comparative example was a mixture of CHA-type zeolite and * BEA-type zeolite, and was a zeolite different from ZTS-5. The main compositions of the raw material compositions are shown in Table 9.

Figure 0006848329
Figure 0006848329

表9から、SDA及びアルカリ金属をそれぞれ少なくとも2種含有することでZTS−5が結晶化できることが確認できた。 From Table 9, it was confirmed that ZTS-5 can be crystallized by containing at least two kinds of SDA and alkali metal.

実施例6
ZTS−5に金属を含有させ、窒素酸化物還元特性を評価した。すなわち、実施例1と同様な方法で得られたZTS−5を空気中、600℃で焼成した後、これを20重量%のNHCl水溶液に懸濁させ、固液分離及び温水洗浄することでカチオンタイプがNH型のZTS−5とにした。
Example 6
A metal was contained in ZTS-5, and the nitrogen oxide reduction characteristics were evaluated. That is, in air ZTS-5 obtained in the same manner as in Example 1, after firing at 600 ° C., which was suspended in aqueous NH 4 Cl 20% by weight, to solid-liquid separation and hot washing in the cation type has on the ZTS-5 of NH 4 form.

得られたNH型のZTS−5を1.2g秤量し、これに硝酸銅水溶液を添加して乳鉢で混合した。硝酸銅水溶液には硝酸銅3水和物61mgを純水0.5gに溶解して硝酸銅水溶液を調製したものを使用した。 The ZTS-5 of NH 4 form obtained was 1.2g weighed and mixed in a mortar was added thereto aqueous copper nitrate solution. As the copper nitrate aqueous solution, 61 mg of copper nitrate trihydrate was dissolved in 0.5 g of pure water to prepare a copper nitrate aqueous solution.

混合後の試料を110℃で一晩乾燥した後、空気中、550℃で1時間焼成し、2.5重量%の銅を含有する銅含有ZTS−5を得た。 The mixed sample was dried at 110 ° C. overnight and then calcined in air at 550 ° C. for 1 hour to obtain a copper-containing ZTS-5 containing 2.5% by weight of copper.

得られた銅含有ZTS−5を窒素酸化物還元触媒とし、以下に示すアンモニアSCR方法により、窒素酸化物還元特性を評価した。 Using the obtained copper-containing ZTS-5 as a nitrogen oxide reduction catalyst, the nitrogen oxide reduction characteristics were evaluated by the ammonia SCR method shown below.

また、比較対象として銅を1.7重量%含有し、SiO/Al比=25である銅担持CHA型ゼオライトについて、同様に窒素酸化物特性を評価した。結果を合わせて表10に示した。 Further, as a comparison target, the nitrogen oxide characteristics of the copper-supported CHA-type zeolite containing 1.7% by weight of copper and having a SiO 2 / Al 2 O 3 ratio = 25 were similarly evaluated. The results are also shown in Table 10.

(試料の前処理)
試料をプレス成形した後、凝集径12〜20メッシュの凝集粒子とした。得られた凝集粒子体を1.5mL量りとり、これを反応管に充填した。
(Sample pretreatment)
After press molding the sample, agglomerated particles having an agglutinating diameter of 12 to 20 mesh were obtained. The obtained aggregated particles were weighed in 1.5 mL and filled in a reaction tube.

(窒素酸化物還元特性の評価)
200℃、300℃、400℃及び500℃のいずれかの温度で、窒素酸化物を含む以下の組成からなる処理ガスを当該反応管に流通させた。処理ガスの流量は1.5L/分、及び空間速度(SV)は60,000h−1として測定を行った。
(Evaluation of nitrogen oxide reduction characteristics)
At any of the temperatures of 200 ° C., 300 ° C., 400 ° C. and 500 ° C., a processing gas having the following composition containing nitrogen oxides was circulated through the reaction tube. The flow rate of the processing gas was 1.5 L / min, and the space velocity (SV) was 60,000 h- 1 .

<処理ガス組成>
NO :200ppm
NH :200ppm
:10容量%
O :3容量%
残部 :N
反応管に流通させた処理ガス中の窒素酸化物濃度(200ppm)に対する、触媒流通後の処理ガス中の窒素酸化物濃度(ppm)を求め、以下の式に従って、窒素酸化物還元率を求めた。
<Treatment gas composition>
NO: 200ppm
NH 3 : 200ppm
O 2 : 10% by volume
H 2 O: 3 volumes%
Remaining: N 2
The nitrogen oxide concentration (ppm) in the processing gas after the catalyst flow was determined with respect to the nitrogen oxide concentration (200 ppm) in the processing gas distributed in the reaction tube, and the nitrogen oxide reduction rate was determined according to the following formula. ..

窒素酸化物還元率(%)={1−(接触後の処理ガス中の窒素酸化物濃度/接触前の処理ガス中の窒素酸化物濃度)}×100 Nitrogen oxide reduction rate (%) = {1- (Nitrogen oxide concentration in the treated gas after contact / Nitrogen oxide concentration in the treated gas before contact)} x 100

Figure 0006848329
Figure 0006848329

表10より、銅を含有するZTS−5は、SCR触媒として実用されているCHA型ゼオライトと同等の窒素酸化物還元特性を有することが確認できた。さらに、ZTS−5は安価な有機構造指向剤を原料として製造できるため、CHA型ゼオライトよりも工業的に製造しやすいゼオライトとして供することができる。 From Table 10, it was confirmed that ZTS-5 containing copper has nitrogen oxide reducing characteristics equivalent to those of CHA-type zeolite practically used as an SCR catalyst. Further, since ZTS-5 can be produced using an inexpensive organic structure-directing agent as a raw material, it can be provided as a zeolite that is easier to industrially produce than CHA-type zeolite.

新規ゼオライトZTS−5は、安価な構造指向剤から合成できるにも関わらず、窒素酸化物還元触媒として優れた性能を示す。更には、各種触媒の担体や吸着剤としても使用することができる。 Although the novel zeolite ZTS-5 can be synthesized from an inexpensive structure-directing agent, it exhibits excellent performance as a nitrogen oxide reduction catalyst. Furthermore, it can also be used as a carrier or an adsorbent for various catalysts.

Claims (12)

以下の表で示す粉末X線回折ピークを有し、結晶性アルミノシリケート、結晶性シリコアルミノホスフェート及び結晶性アルミノフォスフェートからなる群のいずれかであることを特徴とするゼオライト。
Figure 0006848329
Have a powder X-ray diffraction peaks shown in the following table, crystalline aluminosilicate, crystalline silico aluminophosphates and zeolites, characterized in that any one of the group consisting of crystalline aluminophosphate.
Figure 0006848329
前記ゼオライトが結晶性アルミノシリケートである請求項に記載のゼオライト。 The zeolite according to claim 1 , wherein the zeolite is a crystalline aluminosilicate. アルミナに対するシリカのモル比が5以上50以下である請求項1又は2に記載のゼオライト。 The zeolite according to claim 1 or 2 , wherein the molar ratio of silica to alumina is 5 or more and 50 or less. 比表面積が400m Specific surface area is 400m 2 /g以上1000m/ G or more 1000m 2 /g以下である請求項1乃至3のいずれか一項に記載のゼオライト。The zeolite according to any one of claims 1 to 3, which is / g or less. 銅又は鉄の少なくともいずれかを含有する請求項1乃至4のいずれか一項に記載のゼオライト。 The zeolite according to any one of claims 1 to 4, which contains at least one of copper and iron. 構造指向剤としてテトラプロピルアンモニウムカチオン、エチルトリプロピルアンモニウムカチオン、ジエチルジプロピルアンモニウムカチオン、トリエチルプロピルアンモニウムカチオン、エチルメチルジプロピルアンモニウムカチオン、エチルジメチルプロピルアンモニウムカチオン、ジエチルメチルプロピルアンモニウムカチオン、トリメチルプロピルアンモニウムカチオン、ジメチルジプロピルアンモニウムカチオン、メチルトリプロピルアンモニウムカチオン、テトラエチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン及びテトラメチルアンモニウムカチオンからなる群の四級アンモニウムカチオンを少なくとも2種、アルカリ源としてリチウム、カリウム、ルビジウム及びセシウムからなる群の少なくとも1種とナトリウムのアルカリ金属、シリカ源及びアルミナ源を含む組成物を結晶化する結晶化工程、を有する請求項1乃至5のいずれか一項に記載のゼオライトの製造方法。 Tetrapropylammonium cation, ethyltripropylammonium cation, diethyldipropylammonium cation, triethylpropylammonium cation, ethylmethyldipropylammonium cation, ethyldimethylpropylammonium cation, diethylmethylpropylammonium cation, trimethylpropylammonium cation, as structure-directing agents At least two quaternary ammonium cations in the group consisting of dimethyldipropylammonium cation, methyltripropylammonium cation, tetraethylammonium cation, triethylmethylammonium cation, diethyldimethylammonium cation, ethyltrimethylammonium cation and tetramethylammonium cation Any one of claims 1 to 5, wherein the composition comprises at least one of the group consisting of lithium, potassium, rubidium and cesium and a composition containing an alkali metal of sodium, a silica source and an alumina source. The method for producing zeolite according to. 前記構造指向剤が、TEA、ETMA、DEDMA及びTEMAからなる群の少なくとも1種を含む請求項6乃至8のいずれか一項に記載の製造方法。 The production method according to any one of claims 6 to 8, wherein the structure-directing agent comprises at least one of the group consisting of TEA + , ETMA + , DEDMA + and TEMA +. アルミナ源及びシリカ源が結晶性アルミノシリケート又は非晶質アルミノシリケートの少なくともいずれかである請求項6乃至9のいずれか一項に記載の製造方法。 The production method according to any one of claims 6 to 9, wherein the alumina source and the silica source are at least one of crystalline aluminosilicate and amorphous aluminosilicate. 上記アルカリ源に含まれるアルカリ金属カリウム又はセシウの少なくともいずれかとナトリウムである請求項6乃至10のいずれか一項に記載の製造方法。 The process according to any one of claims 6 to 10 alkali metal is sodium and at least one potassium or cesium contained in the source of alkalinity. 上記組成物の組成のモル比が以下である請求項6乃至9のいずれか一項に記載の製造方法。但し、SDA1は、最もSDA/SiO The production method according to any one of claims 6 to 9, wherein the molar ratio of the composition of the composition is as follows. However, SDA1 is the most SDA / SiO 2 比の高い四級アンモニウムカチオン、SDA2はSDA1の次にSDA/SiOSDA2, a quaternary ammonium cation with a high ratio, is SDA / SiO next to SDA1. 2 比の高い四級アンモニウムカチオン、M1は最もM/SiOQuaternary ammonium cation with high ratio, M1 is the most M / SiO 2 比の高いアルカリ金属、及び、M2はM1の次にM/SiOAlkali metal with high ratio and M2 are M / SiO next to M1 2 比の高いアルカリ金属である。It is an alkali metal with a high ratio.
20≦SiO 20 ≤ SiO 2 /Al/ Al 2 O 3 比≦30Ratio ≤ 30
0.1≦SDA1/SiO 0.1 ≤ SDA1 / SiO 2 比≦0.5Ratio ≤ 0.5
0.1≦SDA2/SiO 0.1 ≤ SDA2 / SiO 2 比≦0.5Ratio ≤ 0.5
0.5≦SDA1/SDA2比≦2 0.5 ≤ SDA1 / SDA2 ratio ≤ 2
0.05≦M1/SiO 0.05 ≤ M1 / SiO 2 比≦1Ratio ≤ 1
0.001≦M2/SiO 0.001 ≤ M2 / SiO 2 比≦0.1Ratio ≤ 0.1
2≦M1/M2比≦1000 2 ≤ M1 / M2 ratio ≤ 1000
0.4≦OH/SiO 0.4 ≤ OH / SiO 2 比≦1Ratio ≤ 1
5≦H 5 ≤ H 2 O/SiOO / SiO 2 比≦50Ratio ≤ 50
請求項1乃至5のいずれか一項に記載のゼオライトを含む触媒。 The catalyst containing the zeolite according to any one of claims 1 to 5. 請求項1乃至5のいずれか一項に記載のゼオライトを使用することを特徴とする窒素酸化物の還元方法。 A method for reducing nitrogen oxides, which comprises using the zeolite according to any one of claims 1 to 5.
JP2016205757A 2016-10-20 2016-10-20 Zeolite ZTS-5 and its manufacturing method Active JP6848329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016205757A JP6848329B2 (en) 2016-10-20 2016-10-20 Zeolite ZTS-5 and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205757A JP6848329B2 (en) 2016-10-20 2016-10-20 Zeolite ZTS-5 and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018065723A JP2018065723A (en) 2018-04-26
JP6848329B2 true JP6848329B2 (en) 2021-03-24

Family

ID=62085713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205757A Active JP6848329B2 (en) 2016-10-20 2016-10-20 Zeolite ZTS-5 and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6848329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6916140B2 (en) 2018-03-29 2021-08-11 株式会社シマノ Control device for human-powered vehicles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344694B2 (en) * 2004-10-06 2008-03-18 Uop Llc UZM-12 and UZM-12HS: crystalline aluminosilicate zeolitic compositions and processes for preparing and using the compositions
KR102232608B1 (en) * 2013-02-28 2021-03-29 셰브런 유.에스.에이.인크. Zeolite ssz-57 having enhanced large pore selectivity
JP6494034B2 (en) * 2014-09-18 2019-04-03 国立大学法人広島大学 LEV-type crystalline aluminosilicate containing phosphorus, process for producing the same, and catalyst containing LEV-type crystalline aluminosilicate containing phosphorus

Also Published As

Publication number Publication date
JP2018065723A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6572751B2 (en) AEI type zeolite and its production method and use
WO2015005369A1 (en) Aei zeolite containing phosphorus, and method for producing same
JP7283046B2 (en) Metal-containing CHA-type zeolite and method for producing the same
JP6783098B2 (en) CHA-type zeolite containing phosphorus and its production method
JP6494034B2 (en) LEV-type crystalline aluminosilicate containing phosphorus, process for producing the same, and catalyst containing LEV-type crystalline aluminosilicate containing phosphorus
US9968917B2 (en) LEV-type zeolite and production method therefor
JP6759833B2 (en) Manufacturing method of AEI type zeolite
JP7207454B2 (en) Method for producing AEI zeolite
JP6350160B2 (en) Method for producing zeolite
JP6702759B2 (en) AEI-type zeolite containing titanium and method for producing the same
JP6878821B2 (en) KFI type zeolite and its manufacturing method
JP6848329B2 (en) Zeolite ZTS-5 and its manufacturing method
JP2010090025A (en) Method for preparation of zeolite with mtw-type structure
CN112551543B (en) Method for preparing IZM-2 zeolite in the presence of mixture of nitrogen-containing organic structuring agent in hydroxide and bromide form
JP2018140887A (en) Afx-type zeolite comprising phosphorus and method for producing the same
JP2017206417A (en) Method for producing AEI type zeolite
JP6946631B2 (en) Zeolite ZTS-3 and its manufacturing method
JP7501763B2 (en) Zeolite and its manufacturing method
JP7404765B2 (en) Aluminosilicate for zeolite production
JP6856895B2 (en) LEV type zeolite
JP6779498B2 (en) Zeolites containing tin and methods for producing them
JP6792264B2 (en) Crystalline aluminosilicate containing gallium and its manufacturing method
JP2023064657A (en) Cha-type zeolite and production method thereof
WO2020241668A1 (en) Method for producing aei zeolite
JP2022098472A (en) Cha type zeolite and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6848329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151