WO2017038670A1 - 表示パネルの製造方法及び表示パネル - Google Patents

表示パネルの製造方法及び表示パネル Download PDF

Info

Publication number
WO2017038670A1
WO2017038670A1 PCT/JP2016/074945 JP2016074945W WO2017038670A1 WO 2017038670 A1 WO2017038670 A1 WO 2017038670A1 JP 2016074945 W JP2016074945 W JP 2016074945W WO 2017038670 A1 WO2017038670 A1 WO 2017038670A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
substrate
base material
liquid crystal
seal portion
Prior art date
Application number
PCT/JP2016/074945
Other languages
English (en)
French (fr)
Inventor
章剛 西脇
近藤 正彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/755,554 priority Critical patent/US20180275437A1/en
Publication of WO2017038670A1 publication Critical patent/WO2017038670A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process

Definitions

  • the present invention relates to a display panel manufacturing method and a display panel.
  • Patent Document 1 a method described in Patent Document 1 below is known as a method of manufacturing a liquid crystal panel constituting a liquid crystal display device.
  • a concave portion is formed over the entire outer peripheral portion of the alignment film forming region on the substrate.
  • a first coating liquid is applied on the concave portion to form a frame-shaped bank portion.
  • an alignment film is formed by discharging the second coating liquid into the alignment film formation region using an inkjet method.
  • a sealant is provided on one of the pair of substrates including the substrate on which the alignment film is formed, the pair of substrates is bonded to each other using the sealant, and the liquid crystal layer is sandwiched between the pair of substrates.
  • the outer edge of the sealant is located closer to the outer edge of the substrate than the bank portion.
  • Patent Document 1 has the following two problems.
  • the first problem will be described.
  • both substrates are bonded together after an uncured sealant is applied, and then the sealant is cured.
  • the liquid crystal material is expanded between the two substrates, so that the sealing agent receives a force that is pushed by the liquid crystal material. If the width of the sealing agent is reduced due to the narrowing of the frame of the liquid crystal panel, the sealing agent may not be able to resist the force and a part of the liquid crystal material may enter the sealing agent. Further, when the frame of the liquid crystal panel becomes narrower and the width of the seal portion becomes narrower, external moisture and the like tend to diffuse through the uncured portion of the sealant and diffuse into the liquid crystal layer.
  • Patent Document 1 since the sealing agent is in a positional relationship overlapping with the peripheral light shielding portion, when the sealing agent is cured and fixed to the counter substrate, the array substrate side is used. Irradiation with ultraviolet rays for curing. However, in recent years, there are cases where many wirings are arranged in the frame portion of the array substrate and the wirings are in a positional relationship overlapping with the sealing agent. In this case, the ultraviolet rays pass through the gaps between the wirings and the sealing agent. Will be irradiated. When the frame of the liquid crystal panel becomes narrower, the wiring arrangement space is reduced, so that the wiring arrangement density is increased and the gap between the wirings tends to be narrowed. For this reason, when the sealing agent is cured, there is a problem that the ultraviolet rays are easily blocked by the wiring, and the sealing agent is difficult to cure or the time required to cure the sealing agent is increased. It was.
  • the present invention has been completed based on the above circumstances, and an object of the present invention is to provide a liquid crystal panel manufacturing method and a liquid crystal panel suitable for narrowing the frame.
  • the display panel manufacturing method of the present invention includes a seal forming step of forming a seal portion by curing a seal material disposed on the first substrate so as not to leave an uncured portion, and a second method for the first substrate.
  • the seal formation step when the seal material is disposed on the first substrate, the seal material is cured so as not to leave an uncured portion, thereby forming a seal portion.
  • the second substrate is bonded to the first substrate with a medium layer interposed therebetween.
  • the seal fixing process performed thereafter the medium layer is sealed by fixing the seal portion to the second substrate.
  • the medium layer is expanded between the two substrates along with the bonding of the two substrates, so that the seal portion receives a force that is pushed by the medium layer. If the width of the seal portion becomes narrower as the process proceeds, the seal portion cannot resist the force and a part of the medium layer may enter the seal portion.
  • the seal material is cured so as not to leave an uncured portion, so that the seal portion is formed. It is difficult for a part of the medium layer to enter the seal portion.
  • the seal material is cured so as not to leave an uncured portion, so that the seal portion is formed. It becomes difficult to permeate, so that moisture or the like hardly diffuses into the medium layer. As described above, this is suitable for narrowing the frame of the display panel.
  • a base material seal curing step of forming a base material seal portion by curing so as not to leave a portion If it does in this way, in either one of the 1st base material board manufactured through the 1st base material board manufacture process and the 2nd base material board manufacture process, and the 2nd base material board, a base material seal arrangement process A base material sealing material in a state where an uncured portion is left is disposed so as to surround one of the plurality of first substrates and the plurality of second substrates. When bonded in the subsequent substrate bonding step, the base material sealing material with the uncured portion remaining is brought into close contact with the other side of the first base material substrate and the second base material substrate. It becomes possible to maintain a negative pressure between the base material substrates. This makes it difficult for the two base material substrates to be displaced or peeled off. In the base material seal curing step performed thereafter, the base material seal portion is formed by curing the base material seal material without leaving an uncured portion.
  • the base material seal material is placed on the second base material substrate.
  • the base material seal placement step of placing the base material seal material on the second base material substrate that is not the first base material substrate on which the seal formation step is performed is performed, for example, the seal formation step and It is possible to perform the base material seal arrangement step in parallel. Accordingly, as compared with the case where the seal forming step and the base material seal arranging step are performed on the same first base material substrate, the time required for manufacturing the display panel can be shortened.
  • the medium layer is a liquid crystal layer
  • a thermosetting resin material is placed as the base material seal material, and the base material seal hardening step Then, the heat treatment is performed at least until the curing temperature of the thermosetting resin material is reached. In this way, when the heat treatment is performed until at least the curing temperature of the thermosetting resin material that is the base material sealing material in the base material seal curing step, the thermosetting resin material is cured and the base material seal is obtained. A part is formed, and realignment of liquid crystal molecules constituting the liquid crystal layer as a medium layer is promoted. Thereby, the alignment state of the liquid crystal molecules constituting the liquid crystal layer is improved.
  • the seal material is arranged in a shape that follows the region where the seal portion is to be formed by discharging the seal material with a dispenser. In this way, compared to the case where the sealing material is laminated and disposed over the entire area of the plate surface of the first substrate and the sealing material is selectively cured, the amount of the sealing material used can be reduced. This is suitable for reducing the manufacturing cost.
  • the seal formation step includes a seal arrangement step of disposing the powdery seal material on the first substrate, and irradiating the seal material with a laser beam to irradiate the irradiated portion with an uncured portion. And a seal curing step of selectively curing so as not to leave.
  • the seal placement step the powdery seal material is placed on the first substrate, and in the subsequent seal curing step, the laser light is applied to the seal material placed on the first substrate. Is irradiated, and the irradiated portion is selectively cured so as not to leave an uncured portion. Thereby, a seal part is formed.
  • the seal material which is a thermoplastic resin material
  • the seal material is applied to the first substrate while being heated and melted, and is cured so as not to leave an uncured portion. If it does in this way, when the sealing material used as a thermoplastic resin material will be heated and fuse
  • the display panel of the present invention includes a plurality of pixels arranged in a matrix in a display area where an image is displayed, an array substrate having at least a plurality of wirings arranged in a non-display area outside the display area, and at least A counter substrate having a light-shielding portion having a portion arranged to partition the plurality of pixels and arranged to face the array substrate, and sandwiched between the array substrate and the counter substrate A medium layer and a seal portion that surrounds the medium layer and is disposed so as to overlap the plurality of wirings in the non-display region, and is interposed between the array substrate and the counter substrate, and has a light shielding property And a seal portion that is made of a material and arranged in a non-overlapping manner with the light shielding portion.
  • a plurality of pixels arranged in a matrix in the display area are partitioned by the light shielding portion, thereby preventing color mixing and the like.
  • the medium layer sandwiched between the array substrate and the counter substrate is sealed by being surrounded by a seal portion disposed in the non-display area and interposed between the array substrate and the counter substrate.
  • the seal portion is arranged so as to overlap with a plurality of wirings of the array substrate in the non-display area, if it is intended to promote adhesion to the counter substrate by the light irradiated from the array substrate side The light is blocked by the wiring, and particularly when the wiring arrangement density increases with the progress of the narrowing of the frame, the fixing to the counter substrate becomes insufficient or required for the fixing Time may be longer.
  • the seal portion since the seal portion is positioned so as not to overlap the light shielding portion of the counter substrate, light should be irradiated from the counter substrate side when the seal portion is fixed to the array substrate. In this case, light is prevented from being blocked by the light blocking portion, and it is possible to favorably promote the fixing of the seal portion to the array substrate.
  • the fixing of the seal portion to the array substrate is favorably promoted regardless of the wiring arrangement density.
  • the seal portion has a light shielding property, it is possible to avoid light leakage in the non-display area even if the seal portion is arranged so as not to overlap the light shielding portion. As described above, this is suitable for narrowing the frame.
  • the counter substrate is provided with a planarization layer that is stacked on the medium layer side at least with respect to the light shielding portion and is disposed in a range that does not overlap with the seal portion. If it does in this way, a seal part will adhere to the counter substrate in the form which touches directly. That is, since the planarization layer is not interposed between the seal portion and the counter substrate, the seal portion is more firmly fixed to the counter substrate. In addition, since only the interface between the seal portion and the counter substrate is exposed to the outside, the interface exposed to the outside is compared with the case where a planarization layer is interposed between the seal portion and the counter substrate. As a result, moisture existing in the outside permeates the interface and hardly enters the medium layer.
  • the outer surface opposite to the medium layer side is at least flush with the end surface of the counter substrate. In this way, it is possible to further reduce the frame as compared with a case where the outer surface of the seal portion is arranged to be retracted from the end surface of the counter substrate.
  • the seal portion is formed by blending a synthetic resin material with a light shielding agent.
  • the light shielding agent can be easily dispersed when blending the light shielding agent into the synthetic resin material, so that the light shielding property of the seal portion is easily uniformized.
  • the temperature required for fixing the seal portion to the counter substrate can be reduced.
  • a seal restricting portion is provided that is disposed so as to sandwich the seal portion from the medium layer side and the opposite side. If it does in this way, when forming a seal part, the width can be controlled. Thereby, the frame width in the display panel can be obtained with high accuracy, and is thus more suitable for narrowing the frame.
  • the said seal control part is extended in the form parallel to the said seal part, and has an opening in the middle. If it does in this way, when forming a seal part, it will become possible to let an uncured material escape from the opening of a seal regulation part. Thereby, the height of the seal portion is made uniform.
  • the seal portion contains spacer particles. In this way, it is suitable for keeping the height of the seal portion constant.
  • the seal portion is arranged in a form that partitions the plurality of pixels together with the light shielding portion. In this case, it is more suitable for narrowing the frame than in the case where the light shielding portion has a frame portion that follows the seal portion and a plurality of pixels are partitioned only by the light shielding portion.
  • the manufacturing method and liquid crystal panel suitable for aiming at narrowing a frame can be provided.
  • FIG. 1 is a schematic plan view showing a connection configuration of a liquid crystal panel, a flexible substrate, and a control circuit board on which a driver according to Embodiment 1 of the present invention is mounted.
  • Schematic cross-sectional view showing a cross-sectional configuration along the short side direction of the liquid crystal display device Schematic cross-sectional view showing the cross-sectional configuration of the entire liquid crystal panel
  • Schematic cross-sectional view showing the cross-sectional configuration in the display area of the liquid crystal panel A plan view schematically showing a wiring configuration of an array substrate constituting a liquid crystal panel
  • Sectional drawing which shows the cross-sectional structure in the outer peripheral side part of a liquid crystal panel Plan view of the CF base material substrate manufactured through the CF base material substrate manufacturing process
  • Plan view of array matrix substrate manufactured through array matrix substrate manufacturing process Side view showing outline of seal forming apparatus used in seal forming process
  • Sectional drawing which shows the state which bonded both base material board
  • Sectional drawing which shows the state which irradiated the laser beam to the seal part in the seal adhering process
  • the top view which shows both base material board
  • Sectional drawing which shows the cross-sectional structure in the outer peripheral side part of the liquid crystal panel which concerns on Embodiment 2 of this invention
  • the side view showing the outline of the seal formation apparatus used at the seal formation process which concerns on Embodiment 3 of this invention.
  • Sectional drawing which shows the cross-sectional structure in the outer peripheral side part of the liquid crystal panel which concerns on Embodiment 4 of this invention.
  • the top view which shows the state which has arrange
  • the top view which shows the state which rolled the sealing material with the 1st roller part in the seal formation process
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • FIGS. 2 to 4 are used as a reference, and the upper side of the figure is the front side and the lower side of the figure is the back side.
  • the liquid crystal display device 10 is capable of displaying an image and a display area AA arranged on the center side, and a non-display area NAA arranged on the outer peripheral side so as to surround the display area AA.
  • a flexible substrate (external connection component) 13 that electrically connects the liquid crystal panel 11 and the external control circuit board 12, and a backlight device (illumination device) 14 that is an external light source that supplies light to the liquid crystal panel 11. .
  • the liquid crystal display device 10 also includes a pair of front and back exterior members 15 and 16 for housing and holding the liquid crystal panel 11 and the backlight device 14 assembled to each other.
  • an opening 15a for allowing an image displayed in the display area AA of the liquid crystal panel 11 to be visually recognized from the outside is formed.
  • the liquid crystal display device 10 according to the present embodiment includes a mobile phone (including a smart phone), a notebook computer (including a tablet laptop computer), a wearable terminal (including a smart watch), a portable information terminal (electronic book or (Including PDAs), portable game machines, digital photo frames, and other various electronic devices (not shown).
  • the screen size of the liquid crystal panel 11 constituting the liquid crystal display device 10 is set to about several inches to several tens of inches, and is generally classified into a small size and a small size.
  • the backlight device 14 includes a chassis 14a having a substantially box shape that opens toward the front side (the liquid crystal panel 11 side), and a light source (not shown) disposed in the chassis 14a (for example, a cold cathode tube, LED, organic EL, etc.) and an optical member (not shown) arranged to cover the opening of the chassis 14a.
  • the optical member has a function of converting light emitted from the light source into a planar shape.
  • the liquid crystal panel 11 has a vertically long rectangular shape (rectangular shape) as a whole, and is displayed at a position offset toward one end side (the upper side shown in FIG. 1) in the long side direction.
  • An area (active area) AA is arranged, and a driver 17 and a flexible substrate 13 are respectively attached to positions offset toward the other end side (the lower side shown in FIG. 1) in the long side direction.
  • An area outside the display area AA in the liquid crystal panel 11 is a non-display area (non-active area) NAA in which an image is not displayed.
  • the non-display area NAA is a substantially frame-shaped area (CF described later) surrounding the display area AA.
  • the mounting area (attachment area) of the driver 17 and the flexible substrate 13 is included in the area secured on the other end side in the long side direction.
  • the linear distance (frame width) from the outer end of the GS to the outer end of the display area AA is, for example, 0.5 mm or less, and an ultra-narrow frame structure with an extremely narrow frame is adopted.
  • the short side direction in the liquid crystal panel 11 coincides with the X-axis direction of each drawing, and the long side direction coincides with the Y-axis direction of each drawing.
  • a frame-shaped one-dot chain line that is slightly smaller than the CF substrate 11a represents the outer shape of the display area AA, and an area outside the one-dot chain line is a non-display area NAA. It has become.
  • the control circuit board 12 is attached to the back surface of the chassis 14a (the outer surface opposite to the liquid crystal panel 11 side) of the backlight device 14 with screws or the like.
  • the control circuit board 12 is mounted with a paper phenol or glass epoxy resin board on which electronic components for supplying various input signals to the driver 17 are mounted, and wiring (conductive paths) of a predetermined pattern (not shown) is provided. Routed formation.
  • One end (one end side) of the flexible substrate 13 is electrically and mechanically connected to the control circuit board 12 via an ACF (Anisotropic Conductive Film) (not shown).
  • the flexible substrate 13 includes a base material made of a synthetic resin material (eg, polyimide resin) having insulating properties and flexibility, and a large number of wiring patterns (not shown) are formed on the base material. And one end in the length direction is connected to the control circuit board 12 arranged on the back side of the chassis 14a as described above, whereas the other end (the other end) Side) is connected to the array substrate 11b in the liquid crystal panel 11, and is bent in a folded shape in the liquid crystal display device 10 so that the cross-sectional shape is substantially U-shaped.
  • the wiring pattern is exposed to the outside to form terminal portions (not shown), and these terminal portions are respectively connected to the control circuit board 12 and the liquid crystal panel 11. Are electrically connected to each other. Thereby, an input signal supplied from the control circuit board 12 side can be transmitted to the liquid crystal panel 11 side.
  • the driver 17 is composed of an LSI chip having a drive circuit therein, and operates based on a signal supplied from a control circuit board 12 that is a signal supply source. An input signal supplied from the control circuit board 12 is processed to generate an output signal, and the output signal is output toward the display area AA of the liquid crystal panel 11.
  • the driver 17 has a horizontally long rectangular shape when viewed in a plan view (longitudinal shape along the short side of the liquid crystal panel 11), and with respect to the non-display area NAA of the liquid crystal panel 11 (array substrate 11b described later). It is mounted directly, that is, COG (Chip On Glass).
  • the long side direction of the driver 17 coincides with the X-axis direction (the short side direction of the liquid crystal panel 11), and the short side direction coincides with the Y-axis direction (the long side direction of the liquid crystal panel 11).
  • the liquid crystal panel 11 includes a pair of substrates 11a and 11b, and a liquid crystal layer containing liquid crystal molecules that are sandwiched between the substrates 11a and 11b and change in optical characteristics when an electric field is applied ( Medium layer) 11c, and a seal portion 11q for sealing the liquid crystal layer 11c while maintaining a cell gap corresponding to the thickness of the liquid crystal layer 11c by being interposed between the substrates 11a and 11b so as to surround the liquid crystal layer 11c.
  • the cell gap of the liquid crystal panel 11 according to the present embodiment is, for example, about 3 to 4 ⁇ m, but the specific numerical value can be changed as appropriate.
  • the front side is a CF substrate (first substrate, counter substrate) 11a
  • the back side is an array substrate (second substrate, active matrix substrate) 11b.
  • Each of the CF substrate 11a and the array substrate 11b is formed by laminating various films on the inner surface side of a glass substrate GS made of glass.
  • the seal portion 11q is arranged in the non-display area NAA of the liquid crystal panel 11 and has a vertically long substantially frame shape following the non-display area NAA when viewed in plan (viewed from the normal direction to the plate surface of the array substrate 11b). ( Figure 2).
  • the seal portion 11q has a width dimension of, for example, about 400 ⁇ m.
  • the portion disposed on the remaining three side ends (non-mounting side end portions) excluding the mounting area of the driver 17 and the flexible substrate 13 in the liquid crystal panel 11 is the outermost area in the non-display area NAA. It is arranged at the end position (FIG. 2). Note that polarizing plates 11d and 11e are attached to the outer surface sides of both the substrates 11a and 11b, respectively.
  • the display area AA on the inner surface side of the array substrate 11b is a TFT (Thin Film Transistor: display element) as a switching element.
  • TFT Thin Film Transistor: display element
  • a plurality of pixel electrodes 11g are provided side by side in a matrix (matrix), and a gate wiring (scanning line) 11i and a source wiring (data line) that form a grid around the TFT 11f and the pixel electrode 11g.
  • Signal line is disposed so as to surround it.
  • the gate wiring 11i and the source wiring 11j are connected to the gate electrode 11f1 and the source electrode 11f2 of the TFT 11f, respectively, and the pixel electrode 11g is connected to the drain electrode 11f3 of the TFT 11f.
  • the TFT 11f is driven based on various signals respectively supplied to the gate wiring 11i and the source wiring 11j, and the supply of the potential to the pixel electrode 11g is controlled in accordance with the driving.
  • the TFT 11f has a channel portion 11f4 that connects the drain electrode 11f3 and the source electrode 11f2, and an oxide semiconductor material is used as a semiconductor film constituting the channel portion 11f4.
  • the oxide semiconductor material that constitutes the channel portion 11f4 has an electron mobility that is, for example, about 20 to 50 times higher than that of an amorphous silicon material. Therefore, the TFT 11f can be easily miniaturized to reduce the size of the pixel electrode 11g.
  • the amount of transmitted light (the aperture ratio of the pixel PX) can be maximized, which is suitable for achieving high definition and low power consumption.
  • the pixel electrode 11g is arranged in a rectangular region surrounded by the gate wiring 11i and the source wiring 11j, and is a transparent electrode film (upper layer) such as ITO (Indium Tin Oxide) or ZnO (Zinc Oxide). Side transparent electrode film).
  • the pixel electrode 11g is provided so as to be stacked on the upper layer side with respect to the insulating film 11p. Similar to the pixel electrode 11g, a common electrode 11h made of a transparent electrode film (lower layer side transparent electrode film) is provided on the lower layer side of the insulating film 11p. The common electrode 11h is formed as a substantially solid pattern. As described above, the pixel electrode 11g and the common electrode 11h are formed on the array substrate 11b. When a potential difference is generated between the electrodes 11g and 11h, the liquid crystal layer 11c extends along the plate surface of the array substrate 11b.
  • a fringe electric field (an oblique electric field) including a component in the normal direction with respect to the plate surface of the array substrate 11b is applied. That is, the operation mode of the liquid crystal panel 11 is an FFS (Fringe Field Switching) mode in which the IPS (In-Plane Switching) mode is further improved.
  • FFS Frringe Field Switching
  • IPS In-Plane Switching
  • a color filter 11k is provided at a position facing each pixel electrode 11g on the array substrate 11b side.
  • the color filter 11k is formed by repeatedly arranging three colored portions of R (red), G (green), and B (blue) in a matrix.
  • the colored portions (each pixel PX) of the color filter 11k arranged in a matrix are partitioned by a light shielding portion (black matrix) 11l.
  • the light shielding portion 11l prevents color mixing in which light of each color transmitted through each colored portion is mixed.
  • the light-shielding portion 11l has a lattice shape when viewed in a plane and partitions the colored portions, and a frame shape (frame shape) when viewed from the plane, and the lattice-shaped portion 11l1 from the outer periphery side.
  • the surrounding frame-shaped part 1112 is comprised.
  • the grid-like portion 11l1 is arranged so as to overlap with the above-described gate wiring 11i and source wiring 11j in a plan view.
  • the frame-shaped part 11l2 extends following the seal part 11q, and has a vertically long rectangular frame shape when seen in a plan view.
  • a flattening layer (overcoat layer) 11m is provided on the surfaces of the color filter 11k and the light shielding portion 11l.
  • the planarization layer 11m is stacked on the inner side, that is, on the liquid crystal layer 11c side with respect to the color filter 11k and the light shielding portion 11l.
  • a photo spacer (not shown) is provided on the surface of the planarizing layer 11m.
  • alignment layers 11n and 11o for aligning liquid crystal molecules contained in the liquid crystal layer 11c are formed as the innermost layers of both the substrates 11a and 11b and in contact with the liquid crystal layer 11c.
  • one pixel PX is configured by a set of a colored portion in the color filter 11k and a pixel electrode 11g opposed to the colored portion.
  • the pixel PX includes a red pixel having an R colored portion of the color filter 11k, a green pixel having a G colored portion of the color filter 11k, and a blue pixel having a B colored portion of the color filter 11k, and It is included.
  • These three-color pixels PX are arranged repeatedly along the row direction (X-axis direction) on the plate surface of the liquid crystal panel 11 to form a pixel group, and this pixel group is arranged in the column direction (Y-axis). Many are arranged along the direction. Thus, a large number of pixels PX are arranged in a matrix within the display area AA of the liquid crystal panel 11.
  • a column control circuit unit 18 is provided at a position adjacent to the short side in the display area AA, as shown in FIG.
  • a row control circuit unit 19 is provided at a position adjacent to the long side portion.
  • the column control circuit unit 18 and the row control circuit unit 19 can perform control for supplying an output signal from the driver 17 to the TFT 11f.
  • the column control circuit section 18 and the row control circuit section 19 are monolithically formed on the array substrate 11b based on the same oxide semiconductor film as the channel section 11f4 of the TFT 11f, thereby controlling the supply of output signals to the TFT 11f.
  • the control circuit included in the column control circuit unit 18 and the row control circuit unit 19 includes at least a plurality of control TFTs and a plurality of wirings 20 connected to the plurality of control TFTs.
  • the column control circuit unit 18 and the row control circuit unit 19 are arranged near the outer end of the non-display area NAA of the CF substrate 11a, and are viewed in plan view with the seal unit 11q. It is arranged to overlap. Therefore, as shown in FIG. 7, the seal portion 11q is arranged so as to overlap with the wiring 20 constituting the control circuit of the column control circuit portion 18 and the row control circuit portion 19 in a plan view.
  • the seal portion 11q is shown by a two-dot chain line, and the outer peripheral end of the seal portion 11q substantially coincides with the outer peripheral end of the CF substrate 11a, whereas the inner peripheral end of the seal portion 11q. Is arranged closer to the inner side (closer to the display area AA) than the inner peripheral ends of the control circuit portions 18 and 19.
  • the control circuits of the column control circuit section 18 and the row control circuit section 19 are simultaneously patterned on the array substrate 11b by a known photolithography method when patterning the TFTs 11f and the like in the manufacturing process of the array substrate 11b.
  • the column control circuit unit 18 is located between the display area AA and the driver 17 in a position adjacent to the lower short side portion shown in FIG. 5 in the display area AA, in other words, in the Y-axis direction. It is arranged at an intermediate position, and is formed in a horizontally long, substantially rectangular range extending along the X-axis direction.
  • the column control circuit unit 18 is superimposed on one short side portion extending along the X-axis direction in the seal portion 11q in a plan view.
  • the column control circuit unit 18 is connected to each source line 11j arranged in the display area AA, and switches a circuit (RGB switch circuit) that distributes an image signal included in an output signal from the driver 17 to each source line 11j.
  • the source wiring 11j is arranged in a line along the X-axis direction in the display area AA of the array substrate 11b, and each color of R (red), G (green), and B (blue).
  • the column control circuit unit 18 is connected to each TFT 11f connected to each pixel electrode 11g constituting the pixel PX, the image signal from the driver 17 is sent to each of R, G, B by the switch circuit.
  • the source wiring 11j is distributed and supplied.
  • the column control circuit unit 18 can include an attached circuit such as a level shifter circuit or an ESD protection circuit.
  • the row control circuit unit 19 is arranged at a position adjacent to the left long side portion shown in FIG. 5 in the display area AA, and extends along the Y-axis direction. It is formed in a vertically long and substantially rectangular shape.
  • the row control circuit unit 19 is superimposed on one long side portion extending along the Y-axis direction in the seal portion 11q in a plan view.
  • the row control circuit unit 19 is connected to each gate line 11i arranged in the display area AA and supplies a scanning signal included in an output signal from the driver 17 to each gate line 11i at a predetermined timing.
  • a scanning circuit for sequentially scanning the gate wiring 11i is provided.
  • a large number of gate wirings 11i are arranged in parallel along the Y-axis direction in the display area AA of the array substrate 11b, whereas the row control circuit unit 19 is connected from the driver 17 by the scanning circuit.
  • the control signal (scanning signal) is sequentially supplied from the gate line 11i at the upper end position to the gate line 11i at the lower end position shown in FIG. 5 in the display area AA, thereby scanning the gate line 11i.
  • the row control circuit unit 19 has a buffer circuit for amplifying the scanning signal. Further, the row control circuit unit 19 can be provided with attached circuits such as a level shifter circuit and an ESD protection circuit.
  • the column control circuit unit 18 and the row control circuit unit 19 are connected to the driver 17 by connection wiring (not shown) formed on the array substrate 11b.
  • the seal portion 11q is formed on the CF substrate 11a side by being cured by irradiation with laser light in the manufacturing process, and then the seal is formed when the substrates 11a and 11b are bonded together.
  • the part 11q is fixed to the array substrate 11b by laser light irradiation.
  • the seal portion 11q is made of a light-shielding material and overlaps with the plurality of wirings 20 in the control circuit portions 18 and 19 in the non-display area NAA as shown in FIG. Are arranged in a non-overlapping form.
  • the seal portion 11q is arranged to overlap with the plurality of wirings 20 included in the array substrate 11b in the non-display area NAA. For this reason, if the laser light irradiated from the array substrate 11b side tries to promote the fixation of the seal portion 11q to the CF substrate 11a, the laser light is blocked by the wiring 20, and the progress of narrowing the frame in particular. Accordingly, when the arrangement density of the wirings 20 is increased and the gap between the wirings 20 is narrowed, the sealing part 11q is not sufficiently fixed to the CF substrate 11a, or is required for fixing the sealing part 11q. Time may be longer.
  • the seal portion 11q is positioned so as not to overlap with the light shielding portion 11l of the CF substrate 11a. Therefore, when the seal portion 11q is fixed to the array substrate 11b, a laser beam is emitted from the CF substrate 11a side. If light is irradiated, it is possible to avoid the light from being blocked by the light blocking portion 11l, and it is possible to favorably promote the fixation of the seal portion 11q to the array substrate 11b. Thereby, even when the arrangement density of the wirings 20 increases with the narrowing of the frame, the fixing of the seal portion 11q to the array substrate 11b is favorably promoted regardless of the arrangement density of the wirings 20. In addition, since the seal portion 11q has a light shielding property, it is possible to avoid light leakage in the non-display area NAA even if the seal portion 11q is arranged so as not to overlap the light shielding portion 11l.
  • the seal part 11q is a powdered synthetic resin material (for example, nylon powder made of nylon (polyamide)) dispersed in a powdery light-shielding agent (for example, carbon powder (carbon black)).
  • the sealing material S is formed by sintering and hardening with a laser beam. More specifically, when the seal portion 11q is formed, when the powdered seal material S disposed on the CF substrate 11a is irradiated with laser light, the laser light irradiated portion in the seal material S is selectively sintered. It is designed to be cured. That is, by controlling the irradiation range of the laser beam to the sealing material S, the formation range (width, etc.) of the seal portion 11q becomes high accuracy.
  • the light shielding agent is fixed in a dispersed state so as to be uniform, and thus the light shielding performance equivalent to that of the light shielding part 11l.
  • the light shielding property is uniform.
  • the seal portion 11q is arranged such that its inner peripheral surface (the surface on the liquid crystal layer 11c side) is in contact with the outer peripheral surface of the frame-shaped portion 11l2 of the light-shielding portion 11l. It is possible to prevent light leakage from the non-display area NAA in cooperation with 1112.
  • the sealing material S constituting the seal portion 11q contains spacer particles.
  • the spacer particles contained in the sealing material S are, for example, silica beads, and the particle diameter thereof is approximately equal to the cell gap of the liquid crystal panel 11 (the thickness of the liquid crystal layer 11c). With the spacer particles, the height of the seal portion 11q can be kept constant with a value substantially equal to the cell gap over the entire circumference.
  • inorganic fillers, auxiliaries, additives, and the like can be appropriately added to the sealing material S constituting the seal portion 11q.
  • the seal portion 11q is arranged so as not to overlap the planarizing layer 11m formed on the CF substrate 11a.
  • the planarization layer 11m is laminated on the liquid crystal layer 11c side with respect to the color filter 11k and the light shielding portion 11l on the inner surface of the CF substrate 11a and has a solid shape in the surface of the CF substrate 11a, but overlaps with the seal portion 11q.
  • the possible outer peripheral part is removed. That is, the planarization layer 11m is selectively formed in a range where it does not overlap with the seal portion 11q on the inner surface of the CF substrate 11a.
  • the outer peripheral surface of the planarizing layer 11m is arranged in contact with the inner peripheral surface of the seal portion 11q, and is substantially flush with the outer peripheral surface of the frame-shaped portion 11l2 of the light shielding portion 11l.
  • the seal portion 11q is fixed in such a manner as to be in direct contact with the glass substrate GS constituting the CF substrate 11a. That is, since the planarization layer 11m and the light shielding portion 11l are not interposed between the seal portion 11q and the CF substrate 11a, the seal portion 11q is more firmly fixed to the CF substrate 11a.
  • the liquid crystal panel 11 of the present embodiment has the above-described structure, and the manufacturing method thereof will be described next.
  • the manufacturing method of the liquid crystal panel 11 according to the present embodiment is a CF base material substrate manufacturing step (first step) for manufacturing a CF base material substrate (first base material substrate) 11aM formed by arranging a plurality of CF substrates 11a in the plate surface.
  • a base material seal disposing step of disposing a base material seal material MS with an uncured portion left so as to surround any one of the plurality of CF substrates 11a and the plurality of array substrates 11b, and the CF substrate For 11a A substrate bonding step of bonding the lay substrate 11b with the liquid crystal layer 11c interposed therebetween, a seal fixing step of fixing the seal portion 11q to the array substrate 11b, and the base material sealing material MS are uncured.
  • It includes a base material seal curing step in which the base material seal portion 21 is formed by curing so as not to leave a portion, and a dividing step in which both the base material substrates 11aM and 11bM are divided and the respective liquid crystal panels 11 are taken out.
  • the description of “curing the sealing material S so as not to leave an uncured portion” in the above-described seal forming step is not intended to limit that the curing rate of the sealing material S is 100%, but is cured. The case where the rate is less than 100% can also be included.
  • each CF substrate 11a and each array substrate 11b arranged in the plate surface of each glass base material substrate GSM are shown by two-dot chain lines.
  • Each CF substrate 11a and each array substrate 11b are arranged in a matrix within the plate surface of each glass base material substrate GSM, specifically, four in the X-axis direction and four in the Y-axis direction. A line of five items along the line is shown. Note that the specific numbers of the CF substrates 11a and the array substrates 11b arranged in the plate surface of the glass base material substrates GSM can be appropriately changed in addition to the above.
  • the CF base material substrate 11aM and the array base material substrate 11bM have a short side dimension of, for example, about 660 to 1500 mm and a long side dimension of, for example, about 880 to 1800 mm. Can be changed.
  • the seal portion 11q is formed on each CF substrate 11a of the CF base material substrate 11aM by using a powder sintering type seal forming apparatus 30 shown below.
  • the seal forming apparatus 30 includes a stage 31 on which the CF base material substrate 11aM is placed, a head unit 32 arranged to face the CF base material substrate 11aM on the stage 31, and a head unit.
  • a light source unit 33 that emits a laser beam that is connected to the CF base material substrate 11aM and a control unit 34 that is connected to the head unit 32 and the light source unit 33 to control them.
  • the stage 31 can move the CF base material substrate 11aM with respect to the head portion 32 along the X-axis direction, the Y-axis direction, and the ⁇ direction (rotation direction) parallel to the plate surface.
  • the head portion 32 includes a dispenser 32a that supplies the sealing material S onto the CF base material substrate 11aM, a first roller portion 32b that is arranged adjacent to the dispenser 32a and presses the sealing material S, and a CF base material substrate 11aM.
  • the light source unit 33 includes, for example, a carbon dioxide laser device that oscillates carbon dioxide laser (CO 2 laser) light, and is connected to the head unit 32 by an optical fiber, thereby emitting laser light provided in the head unit 32. Carbon dioxide laser light is supplied to the part 32c.
  • the control unit 34 controls the oscillation of the carbon dioxide laser beam by the light source unit 33 and controls the portions 32 a to 32 e provided in the head unit 32.
  • the dispenser 32a discharges the powdery sealing material S constituting the seal portion 11q, and the powdery sealing material S is arranged in a row in a range narrower than the width of the seal portion 11q on the CF base material substrate 11aM. It is possible to arrange.
  • the discharge amount of the sealing material S by the dispenser 32a is controlled by the drive unit 32e.
  • Nylon powder which is a synthetic resin material constituting the sealing material S discharged from the dispenser 32a, has an average particle size of about 50 ⁇ m, and spacer particles contained in the sealing material S have an average particle size of 3 to 4 ⁇ m. It is said to be about.
  • liquidity of the sealing material S at the time of the rolling pressure by the 1st roller part 32b is improved by adding an inorganic filler, an adjuvant, an additive, etc. to the sealing material S suitably.
  • the first roller portion 32b can be moved up and down by the drive portion 32e so as to approach or separate from the CF base material substrate 11aM. Specifically, the first roller portion 32b is disposed at a position separated from the CF base material substrate 11aM while the seal material S is not discharged from the dispenser 32a, whereas the seal material S is discharged from the dispenser 32a.
  • the gap is arranged at a position close to the CF base material substrate 11aM.
  • the first roller portion 32b pulverizes the nylon powder constituting the sealing material S with the CF base material substrate 11aM, and expands the particle size in the width direction of the sealing portion 11q while keeping the particle size to be equal to or less than the cell gap. It is supposed to be.
  • the laser beam emitting part 32c is arranged farther from the dispenser 32a on the opposite side of the first roller part 32b than the dispenser 32a.
  • the laser beam emitting unit 32c irradiates the laser beam supplied from the light source unit 33 toward the sealing material S on the CF base material substrate 11aM.
  • the carbon dioxide laser beam emitted from the laser beam emitting part 32c preferably has a wavelength of, for example, about 9.2 to 10.8 ⁇ m and an irradiation intensity of, for example, about 25 kW.
  • nylon powder that is a main component constituting the sealing material S is sintered.
  • the second roller portion 32d can be raised and lowered by the drive portion 32e so as to approach or separate from the CF base material substrate 11aM. Specifically, the second roller portion 32d is disposed at a position separated from the CF base material substrate 11aM while the laser beam is not irradiated from the laser beam emitting unit 32c, whereas the laser beam is emitted from the laser beam emitting unit 32c. Is irradiated at a position close to the CF base material substrate 11aM.
  • the second roller portion 32d is provided with a heating means (not shown) so that the second roller portion 32d is heated to, for example, about 160 ° C., thereby softening the sealing material S immediately after being irradiated with the laser beam. It is possible to perform rolling while pressing.
  • the seal formation step is a seal placement step of placing the powdery seal material S on the CF substrate 11a, and a laser beam is applied to the seal material S so that the irradiated portion is selected so as not to leave an uncured portion.
  • a seal curing step for curing the substrate.
  • the CF base material substrate 11aM is placed on the stage 31 of the seal forming apparatus 30.
  • the dispenser 32a is moved while moving the stage 31 along the X axis direction, the Y axis direction, and the ⁇ direction parallel to the plate surface of the CF base material substrate 11aM with respect to the head portion 32.
  • the sealing material S By discharging the sealing material S from the sealing material S, the sealing material S is arranged in a row on the CF base material substrate 11aM following the planned formation region of the sealing portion 11q, as shown in FIG. As described above, the seal material S is selectively disposed in the region where the seal portion 11q is to be formed. Therefore, the seal material S is temporarily stacked and disposed over the entire area of the plate surface of the CF substrate 11a. Compared to the case of selective curing, the amount of the seal material S used is small, which is suitable for reducing the manufacturing cost.
  • the sealing material S disposed on the CF base material substrate 11aM is pulverized by being pressed by the first roller portion 32b disposed at a position close to the CF base material substrate 11aM.
  • the seal material S pulverized by the first roller portion 32b is expanded in the width direction of the seal portion 11q while its particle size is set to be equal to or less than the cell gap (first rolling portion). Pressure process).
  • the seal hardening step included in the seal forming step as shown in FIG. 13, the laser light emitted from the laser light emitting portion 32c is applied to the seal material S rolled by the first roller portion 32b. Then, the nylon powder present at the irradiated portion is sintered by being instantaneously heated. At this time, the portion of the sealing material S that is not irradiated with the laser light (non-irradiated portion) is not cured because the nylon powder is not sintered. As shown in FIG.
  • the sealing material S irradiated with the laser light is subsequently rolled by the second roller portion 32d disposed at a position approaching the CF base material substrate 11aM (second rolling step).
  • the second roller portion 32d is heated by the heating means, so that the sealing material S can be softened to promote the rolling pressure while ensuring the fluidity.
  • the seal material S is pushed and expanded to a thickness of about the cell gap by the second roller portion 32d, and is cured (completely cured) so as not to leave an uncured portion, whereby the seal portion 11q is formed.
  • the base material seal material MS in a state where an uncured portion is left is arranged on the array base material substrate 11bM so as to surround the plurality of array substrates 11b in a lump.
  • the base material sealing material MS is disposed on the outer peripheral end portion of the array base material substrate 11bM, and has a rectangular frame shape that is vertically long when seen in a plan view.
  • the base material sealing material MS is made of a thermosetting resin material, and is cured to become the base material seal portion 21 when heated until reaching a predetermined curing temperature.
  • the base material seal material MS is heated for a short time to perform a temporary curing process for curing the surface.
  • the base material sealing material MS is mostly in an uncured state with respect to the inner portion thereof although the surface is cured.
  • the seal formation step and the base material seal placement step are performed in parallel. Can be performed. Therefore, the time required for manufacturing the liquid crystal panel 11 can be shortened as compared with the case where the seal forming step and the base material seal arrangement step are performed on the same CF base material substrate 11aM.
  • the liquid crystal material LC is dropped in the region surrounded by the seal portions 11q of each CF substrate 11a in the CF base material substrate 11aM, and the CF base material substrate 11aM.
  • the array base material substrate 11bM is bonded to the substrate.
  • This substrate bonding step is performed in a vacuum environment.
  • the liquid crystal material LC constituting the liquid crystal layer 11c is spread between the two base material substrates 11aM and 11bM, thereby causing the seal portion 11q to The enclosed space is filled with the liquid crystal material LC.
  • the seal portion 11q since the seal portion 11q receives a force that is pushed by the liquid crystal layer 11c, the seal portion 11q cannot resist the force when the frame width is narrowed and the width of the seal portion 11q is reduced. Therefore, a part of the liquid crystal layer 11c may enter the seal portion 11q. In that respect, in the seal formation process performed prior to the substrate bonding process, the seal material 11 is cured (completely cured) so as not to leave an uncured portion, and the seal portion 11q is formed. However, it is difficult for a part of the liquid crystal layer 11c to enter the seal portion 11q.
  • the adhesive strength of the seal portion 11q to both the substrates 11a and 11b can be prevented from being lowered, and bubbles can be prevented from being generated in the seal portion 11q.
  • the situation where both the boards 11a and 11b are peeled off is preferably suppressed.
  • the width of the seal portion 11q becomes narrower as the frame becomes narrower, external moisture and the like tend to diffuse through the uncured portion of the seal portion 11q into the liquid crystal layer 11c.
  • the seal material is cured (completely cured) so as not to leave an uncured portion, and the seal portion 11q is formed.
  • the liquid crystal layer 11c can be sealed by fixing the seal portions 11q to the array substrates 11b of the array matrix substrate 11bM among the bonded matrix substrates 11aM and 11bM. It has become.
  • the laser beam is irradiated from the CF substrate 11a side to the seal portion 11q, and the portion of the seal portion 11q that is in contact with the CF substrate 11a. Is melted locally, and immediately after that, the melted portion of the seal portion 11q is cured, so that the seal portion 11q is fixed to the CF substrate 11a.
  • the laser light applied to the seal portion 11q is prevented from being blocked by the light shielding portion 11l because the seal portion 11q is disposed so as not to overlap the light shielding portion 11l of the CF substrate 11a. It is avoided that it is blocked by each wiring 20 of the substrate 11b (see FIG. 7). Therefore, even if the narrowing of the frame of the liquid crystal panel 11 progresses and the arrangement density of the wirings 20 on the array substrate 11b is increased and the gaps between the wirings 20 are narrowed, regardless of this, the seal portion 11q for the CF substrate 11a. Can be favorably promoted.
  • the laser light irradiated to each seal portion 11 q in the seal fixing process is illustrated by a one-dot chain line. Although it is possible to individually and sequentially irradiate each seal portion 11q with a laser beam, it is also possible to irradiate each seal portion 11q with a laser beam all at once.
  • the base material seal curing step heat treatment is performed until reaching the curing temperature of the thermosetting resin material that is the base material seal material MS.
  • the base material seal material MS is cured (completely cured) so as not to leave an uncured portion, whereby the base material seal portion 21 is formed as shown in FIG.
  • This base material seal curing step can be performed prior to the seal fixing step.
  • the liquid crystal panels 11 are taken out by dividing the two base material substrates 11aM and 11bM along a predetermined scribe line.
  • the sealing material S disposed on the CF substrate (first substrate) 11a is cured so as not to leave an uncured portion, and the sealing portion.
  • a seal forming step for forming 11q, a substrate bonding step for bonding the array substrate (second substrate) 11b to the CF substrate 11a with a liquid crystal layer (medium layer) 11c interposed therebetween, and a seal portion A seal fixing step for fixing 11q to the array substrate 11b.
  • the seal formation step when the seal material S is disposed on the CF substrate 11a, the seal material 11 is cured so as not to leave an uncured portion, thereby forming the seal portion 11q.
  • the array substrate 11b is bonded to the CF substrate 11a with the liquid crystal layer 11c interposed therebetween.
  • the seal portion 11q is fixed to the array substrate 11b, whereby the liquid crystal layer 11c is sealed.
  • the liquid crystal layer 11c is expanded between the substrates 11a and 11b as the substrates 11a and 11b are bonded, so that the seal portion 11q is pushed by the liquid crystal layer 11c.
  • the seal portion 11q When the width of the seal portion 11q is reduced due to a reduction in the width of the frame, the seal portion 11q cannot resist the force and a part of the liquid crystal layer 11c may enter the seal portion 11q. .
  • the seal material S is cured so as not to leave an uncured portion and the seal portion 11q is formed.
  • the width of the seal portion 11q becomes narrower as the frame becomes narrower, external moisture or the like tends to diffuse through the uncured portion of the seal portion 11q and diffuse into the liquid crystal layer 11c.
  • the seal material S is cured so as not to leave an uncured portion, and the seal portion 11q is formed. Or the like becomes difficult to permeate through the seal portion 11q, so that moisture or the like hardly diffuses into the liquid crystal layer 11c. As described above, this is suitable for narrowing the frame of the liquid crystal panel 11.
  • the manufacturing method of the liquid crystal panel 11 includes a CF base material substrate manufacturing step (first base material) for manufacturing a CF base material substrate (first base material substrate) 11aM in which a plurality of CF substrates 11a are arranged in the plate surface.
  • Substrate manufacturing process an array base material substrate manufacturing process (second base material substrate manufacturing process) for manufacturing an array base material substrate (second base material substrate) 11bM formed by arranging a plurality of array substrates 11b in the plate surface, and The base material in which an uncured portion is left in one of the CF base material substrate 11aM and the array base material substrate 11bM so as to surround one of the plurality of CF substrates 11a and the plurality of array substrates 11b.
  • a base material seal placement step for placing the seal material MS and a base material seal portion 11q formed by curing the base material seal material MS so as not to leave an uncured portion at least after the substrate bonding step.
  • Material seal hardening Includes a degree, the.
  • either the CF base material substrate 11aM or the array base material substrate 11bM manufactured through the CF base material substrate manufacturing step and the array base material substrate manufacturing step is subjected to the base material seal arranging step.
  • a base material sealing material MS in which an uncured portion is left is disposed so as to surround one of the plurality of CF substrates 11a and the plurality of array substrates 11b.
  • the base material sealing material MS with the uncured portion remaining is brought into close contact with the other side of the CF base material substrate 11aM and the array base material substrate 11bM. It becomes possible to maintain a negative pressure between the two base material substrates 11aM and 11bM. As a result, it is difficult for the base material substrates 11aM and 11bM to be displaced or peeled off.
  • the base material seal portion 11q is formed by curing the base material seal material MS so as not to leave an uncured portion.
  • the base material seal material MS is placed on the array base material substrate 11bM in the base material seal placement step.
  • the base material seal placement step of placing the base material seal material MS on the array base material substrate 11bM that is not the CF base material substrate 11aM on which the seal formation step is performed is performed.
  • the base material seal arrangement step can be performed in parallel. Therefore, the time required for manufacturing the liquid crystal panel 11 can be shortened as compared with the case where the seal forming step and the base material seal arrangement step are performed on the same CF base material substrate 11aM.
  • the medium layer is the liquid crystal layer 11c in the substrate bonding step
  • the thermosetting resin material is arranged as the base material sealing material MS in the base material sealing arrangement step.
  • the base material seal curing step heat treatment is performed until at least the curing temperature of the thermosetting resin material is reached.
  • the thermosetting resin material is cured and the base material is cured.
  • a seal portion 11q is formed, and realignment of liquid crystal molecules constituting the liquid crystal layer 11c, which is a medium layer, is promoted. Thereby, the alignment state of the liquid crystal molecules constituting the liquid crystal layer 11c is improved.
  • the seal material S is disposed in a shape that follows the planned formation region of the seal portion 11q by discharging the seal material S by the dispenser 32a.
  • the amount of the sealing material S used is smaller than that in the case where the sealing material S is laminated and disposed over the entire area of the plate surface of the CF substrate 11a and the sealing material S is selectively cured. This is suitable for reducing the manufacturing cost.
  • the seal forming step includes a seal placement step in which the powdery seal material S is placed on the CF substrate 11a, and a laser beam is applied to the seal material S to irradiate the portion. And a seal curing step of selectively curing so as not to leave an uncured portion. If it does in this way, in seal arrangement
  • the liquid crystal panel 11 of the present embodiment includes a plurality of pixels PX arranged in a matrix in the display area AA on which an image is displayed, and a plurality of wirings arranged in the non-display area NAA outside the display area AA.
  • CF substrate (opposite substrate) 11a having an array substrate 11b having at least 20 and a light-shielding portion 11l having a portion arranged so as to partition at least a plurality of pixels PX and arranged to face the array substrate 11b
  • a seal portion 11q interposed between the substrate 11a and a seal portion 11q made of a light-shielding material and arranged in a non-overlapping manner with the light-shielding portion 11l. That.
  • the seal portion 11q is arranged so as to overlap with the plurality of wirings 20 included in the array substrate 11b in the non-display area NAA, the seal portion 11q is temporarily fixed to the CF substrate 11a by the light irradiated from the array substrate 11b side.
  • the light is blocked by the wiring 20, and particularly when the arrangement density of the wiring 20 is increased as the frame is narrowed, the fixing to the CF substrate 11a is insufficient. There is a possibility that the time required for fixing or fixing becomes longer.
  • the seal portion 11q since the seal portion 11q has a non-overlapping positional relationship with the light shielding portion 11l of the CF substrate 11a, when the seal portion 11q is fixed to the array substrate 11b, light is transmitted from the CF substrate 11a side. If the light is irradiated, it is possible to avoid the light from being blocked by the light blocking portion 11l, and it is possible to favorably promote the fixing of the seal portion 11q to the array substrate 11b. As a result, even when the arrangement density of the wirings 20 increases with the narrowing of the frame, the sticking of the seal portion 11q to the array substrate 11b is favorably promoted regardless of the arrangement density of the wirings 20.
  • the seal portion 11q has a light shielding property, it is possible to avoid light leakage in the non-display area NAA even if the seal portion 11q is arranged so as not to overlap the light shielding portion 11l. As described above, this is suitable for narrowing the frame.
  • the CF substrate 11a is provided with a planarizing layer 11m that is laminated on the liquid crystal layer 11c side at least with respect to the light shielding part 11l and is disposed in a range that does not overlap with the seal part 11q. Yes. If it does in this way, the seal part 11q will adhere to the CF board
  • the seal portion 11q has the outer surface opposite to the liquid crystal layer 11c side at least flush with the end surface of the CF substrate 11a. In this way, the frame can be further narrowed compared to the case where the outer surface of the seal portion 11q is retracted from the end surface of the CF substrate 11a.
  • the seal portion 11q is formed by blending a light shielding agent in a synthetic resin material.
  • the light shielding agent can be easily dispersed when blending the light shielding agent into the synthetic resin material, so that the light shielding property of the seal portion 11q is easily uniformized.
  • the temperature required for fixing the seal part 11q to the CF substrate 11a can be reduced.
  • the liquid crystal panel 11 includes spacer particles in the seal portion 11q. This is suitable for keeping the height of the seal portion 11q constant.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. 21 or FIG. In this Embodiment 2, what removed the frame-shaped part of the light-shielding part is shown. In addition, the overlapping description about the same structure, an effect
  • a seal portion 111q is arranged over almost the entire width of the non-display area NAA, and a frame-like portion of a light shielding portion (not shown) is removed. . Accordingly, the seal portion 111q is arranged in a form that partitions the plurality of pixels PX together with the lattice portion of the light shielding portion. That is, among the plurality of pixels PX arranged in a matrix in the display area AA, each pixel PX arranged at the outermost peripheral position collectively surrounds the outermost peripheral portion in the grid portion of the light shielding portion. It is divided by the seal part 111q. According to such a configuration, the frame of the liquid crystal panel 111 can be further narrowed by the amount that the frame-shaped portion of the light shielding portion does not exist.
  • the seal portion 111q is arranged in such a manner as to partition the plurality of pixels PX together with the light shielding portion.
  • Embodiment 3 A third embodiment of the present invention will be described with reference to FIG. In this Embodiment 3, what changed the seal formation apparatus 40 used in a seal formation process from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, an effect
  • a heat melting type seal forming apparatus 40 is used.
  • the seal forming apparatus 40 is connected to the stage 41 on which the CF base material substrate 211aM is placed, the head portion 42 disposed to face the CF base material substrate 211aM on the stage 41, and the head portion 42. And at least a control unit 43 for controlling this.
  • the heat melting type seal forming apparatus 40 does not include the light source unit 33 and the laser beam emitting unit 32c. Only the equipment costs are cheap. Since the seal forming apparatus 40 is mainly different from the seal forming apparatus 30 described in the first embodiment in the head portion 42, the head portion 42 will be described in detail below and the same as in the first embodiment. I will omit the explanation of the structure of
  • the head portion 42 of the seal forming apparatus 40 includes a dispenser 42a that discharges onto the CF base material substrate 211aM while thermally melting (thermally melting) a thermoplastic resin material as the seal material S, and a seal material discharged from the dispenser 42a.
  • the roller part 42b which rolls and the drive part 42c which drives the dispenser 42a and the roller part 42b are provided at least.
  • the dispenser 42a includes a syringe filled with, for example, an ABS resin material, a nylon resin material, or the like as the thermoplastic resin material that is the sealing material S, and a heating unit that heats the syringe to thermally melt the thermoplastic resin material. .
  • the thermoplastic resin material filled in the syringe preferably contains about 1 to several percent of silica beads having a particle size of about the cell gap as spacer particles.
  • the discharge amount of the sealing material S by the dispenser 42a is controlled by the drive unit 42c.
  • the roller part 42b can be moved up and down by the drive part 42c so as to approach or separate from the CF base material substrate 211aM.
  • the roller portion 42b is disposed at a position separated from the CF base material substrate 211aM while the seal material S is not discharged from the dispenser 42a, whereas the roller portion 42b is disposed while the seal material S is discharged from the dispenser 42a. It is arranged at a position close to the CF base material substrate 211aM.
  • the roller portion 42b pushes and expands the sealing material S in a molten state on the CF base material substrate 211aM to a thickness of about the cell gap.
  • the seal material S expanded by the roller portion 42b is cured (completely cured) without leaving an uncured portion as the temperature decreases (cools), thereby forming a seal portion.
  • the seal portion formed in this way is fixed to an array base material substrate (not shown) by heating both base material substrates 211aM while pressing both base material substrates 211aM in the seal fixing step performed after the substrate bonding step.
  • the roller portion 42b or the stage 41 is maintained. It is preferable to provide a heating mechanism.
  • the sealing material S which is a thermoplastic resin material
  • the sealing material S is heated and melted while being heated on the CF base material substrate 211aM (CF substrate). And cured so as not to leave uncured parts.
  • the sealing material S which is a thermoplastic resin material
  • the melted sealing material S is applied onto the CF base material substrate 211aM.
  • the sealing material S applied on the CF base material substrate 211aM is cured so as not to leave an uncured portion as the temperature decreases. Thereby, a seal part is formed.
  • Embodiment 4 differs from Embodiment 1 described above in that a seal restricting portion 22 for restricting the width of the seal portion 311q is provided.
  • the liquid crystal panel 311 is arranged so that the seal portion 311q is sandwiched between the inner side (the liquid crystal layer 311c side) and the outer side (the side opposite to the liquid crystal layer 311c side).
  • a seal restricting portion 22 is provided.
  • the seal restricting portion 22 extends following the seal portion 311q (in a parallel manner) to form a rectangular frame shape as viewed as a whole as a whole, and is disposed adjacent to the inside of the seal portion 311q. And those arranged adjacent to the outside with respect to the seal portion 311q.
  • the seal restricting portion 22 can restrict the width of the seal portion 311q to a constant value.
  • the seal restricting portion 22 has a width of about 20 to 50 ⁇ m, for example, and is smaller than the width of the seal portion 311q.
  • the seal restricting portion 22 is formed of the same material as the photo spacer when the CF substrate 311a is manufactured, that is, when the photo spacer is formed on the surface of the planarizing layer 311m in the CF base material substrate manufacturing process.
  • those arranged adjacent to the inner side with respect to the seal portion 311 q are arranged so as to overlap with the frame-like portion 311 l 2 of the light shielding portion 311 l and the planarizing layer 311 m in a plan view. Preferably it is done.
  • the seal regulating unit 22 performs its function mainly in a seal forming process performed after the CF base material substrate manufacturing process.
  • the seal material S is discharged onto the CF substrate 311a from the dispenser (see FIGS. 10 and 11) of the seal formation device, the seal material S is shown in FIG.
  • the seal restricting portion 22 has an opening 22a in the middle in the extending direction.
  • the opening 22a is configured to penetrate the seal restricting portion 22 in the width direction, and the opening width is smaller than the particle size (for example, 50 ⁇ m) of the nylon powder constituting the seal material S.
  • the seal material S disposed in the range sandwiched between the pair of seal restricting portions 22 cannot pass through the opening 22a of the seal restricting portion 22, and is sandwiched between the pair of seal restricting portions 22.
  • the range is limited.
  • the sealing material S arranged in this manner is crushed and expanded by being pressed by the first roller portion (see FIGS. 10 and 12) of the seal forming device.
  • the range in which the seal material S is expanded tends to depend on the distribution density of the nylon powder arranged in the seal arrangement process. If a place where the distribution density of the nylon powder is locally high occurs, There is a possibility that the range in which the sealing material S is expanded is increased locally.
  • the width of the seal portion 311q formed later through the seal hardening step is almost the entire length. It will be constant.
  • the location where the distribution density of nylon powder is locally high arises, when the sealing material S is rolled, the surplus which arises in the location concerned is escaped outside from the opening 22a of the seal control part 22.
  • the height of the seal portion 311q is not uniform due to the surplus of the seal material S.
  • the seal restricting portion 22 is provided so as to sandwich the seal portion 311q from the liquid crystal layer 311c side and the opposite side. If it does in this way, when forming seal part 311q, the width can be controlled. Thereby, the frame width in the liquid crystal panel 311 can be obtained with high accuracy, and is thus more suitable for narrowing the frame.
  • the seal restricting portion 22 extends in parallel with the seal portion 311 q and has an opening 22 a in the middle thereof. In this way, when the seal portion 311q is formed, the uncured material can be released from the opening 22a of the seal restricting portion 22. Thereby, the height of the seal part 311q is made uniform.
  • a seal fixing step of fixing the seal portion to the array substrate is described, for example, The manufacturing method of the liquid crystal panel is changed, and after performing the seal temporary curing process for temporarily curing the seal material as in the past, the substrate bonding process is performed, and then the seal main curing process for performing the main curing of the seal material is performed. It doesn't matter. On the contrary, the structure of the liquid crystal panel may be changed so that the seal portion does not have a light shielding property as in the conventional case and is arranged so as to overlap the light shielding portion.
  • nylon powder made of nylon is exemplified as the main component of the seal material, but materials other than nylon may be used.
  • polyamide resin hot melt adhesive adhesive mainly composed of polyamide (nylon) resin], polypropylene (PP), polylactic acid, polyethylene (PE), polyethylene terephthalate (PET), Polystyrene (PS), acrylonitrile / butadiene / styrene copolymer (ABS), ethylene / vinyl acetate copolymer (EVA), styrene / acrylonitrile copolymer (SAN), polycaprolactone, and the like can be used.
  • the sealing material is a synthetic resin material.
  • the sealing material can be a metal material, and for example, titanium particles made of titanium are used as the metal material. be able to.
  • gas laser light other gas laser light
  • gas laser light other than carbon dioxide laser light include excimer laser light (using ArF, KrF, XeCl, XeF, etc. as a medium), ion laser light (using argon ions or krypton ions as a medium alone or in combination), Nitrogen laser light using nitrogen as a medium, mixed gas laser light (a mixed gas such as He—Ne or TEA—CO 2 is used as a medium), metal vapor laser light (a medium such as Cu or He—Cd is used), Chemical laser light (using HF or the like as a medium) can be used.
  • excimer laser light using ArF, KrF, XeCl, XeF, etc.
  • ion laser light using argon ions or krypton ions as a medium alone or in combination
  • Nitrogen laser light using nitrogen as a medium mixed gas laser light (a mixed gas such as He—Ne or TEA—CO 2 is used as a medium), metal
  • excimer laser light when using ArF as the medium, it is preferable to use excimer laser light with a wavelength of 193 nm and an irradiation intensity of 500 mJ.
  • the wavelength is 248 nm.
  • Excimer laser light with an irradiation intensity of 1 J is preferably used.
  • a solid laser beam or a liquid laser beam in order to cure the sealing material.
  • solid laser light YAG laser light (using Nd 3+ : Y 3 Al 3 O 12 as a medium), Q-switched YAG laser light, ruby laser light (using Cr 3+ : Al 2 O 3 as a medium), glass Laser light, titanium sapphire laser light (using Ti 4+ : Al 2 O 3 as a medium), alexandrite laser light (using Cr 3+ : BeAl 2 O 4 as a medium), YLF laser light (using Er 3+ : YLiF as a medium) ), Semiconductor laser light (using a GaAlAs or GaAlAs array as a medium), and the like.
  • semiconductor laser light having a wavelength of 750 to 905 nm and an irradiation intensity of 1 W
  • the sealing material is sintered and cured by laser light (powder sintering type), or is cooled and cured after melting by heating using a thermoplastic resin material as the sealing material (although a heat melting type) is shown, an ultraviolet curable resin material may be used as a sealing material, and it may be cured by ultraviolet rays. In that case, an ultraviolet curable resin material as a sealing material can be applied to the target substrate by, for example, ink jetting.
  • a powder adhesive type for example, a powder such as gypsum is used as a sealing material, and the powder is disposed on a target substrate, and then a binder such as an adhesive is applied by inkjet. You may make it harden a powder by spraying on powder.
  • a seal portion is formed on the CF substrate (CF base material substrate) side in the seal forming step, and the seal portion is attached to the array substrate (array base material substrate) in the seal fixing step.
  • a seal portion is formed on the array substrate (array base material substrate) side, and the seal portion is attached to the CF substrate (CF base material substrate) in the seal fixing step. You may make it adhere.
  • the base material seal portion is formed in each of the above-described embodiments.
  • the base material seal portion may be removed. Is possible. For example, a plurality of dotted UV curable resin materials are placed at intervals on the outer peripheral side of either one of the two base material substrates so as to follow the seal portion, and the two base material substrates are attached. Then, the base material substrates may be fixed by curing the dot-like ultraviolet curable resin material by irradiation with ultraviolet rays.
  • liquid crystal panel including the row control circuit unit and the column control circuit unit (monolithic circuit unit) and the method for manufacturing the liquid crystal panel are described.
  • row control circuit unit or the column control circuit unit is described.
  • present invention can also be applied to a liquid crystal panel that does not include both and a manufacturing method thereof.
  • liquid crystal panel having a rectangular planar shape and the manufacturing method thereof have been described.
  • present invention is also applied to a liquid crystal panel having a planar shape of square, circular, elliptical, and the manufacturing method thereof. The invention is applicable.
  • the semiconductor film constituting the channel portion of the TFT is made of an oxide semiconductor material
  • polysilicon polycrystallized silicon (polycrystal It is also possible to use CG silicon (ContinuousconGrain Silicon), which is a kind of silicon), or amorphous silicon as a material for the semiconductor film.
  • CG silicon ContinuousconGrain Silicon
  • the FFS mode liquid crystal panel and the manufacturing method thereof have been described.
  • the present invention also applies to a VA mode liquid crystal panel, an IPS mode liquid crystal panel, a TN mode liquid crystal panel, and a manufacturing method thereof. Is applicable.
  • the color filter of the liquid crystal panel is exemplified as a three-color configuration of red, green, and blue.
  • a yellow colored portion is added to each colored portion of red, green, and blue.
  • the present invention can also be applied to a color filter having a four-color configuration.
  • the liquid crystal panel classified as small or medium-sized is exemplified.
  • the liquid crystal panel is classified into medium-sized or large-sized (super-large) with a screen size of, for example, 20 inches to 100 inches.
  • the present invention is also applicable.
  • the liquid crystal panel can be used for an electronic device such as a television receiver, an electronic signboard (digital signage), or an electronic blackboard.
  • the liquid crystal panel having a configuration in which a liquid crystal layer is sandwiched between a pair of substrates has been exemplified.
  • the present invention is also applicable to.
  • the liquid crystal panel and the manufacturing method thereof are exemplified, but the present invention can also be applied to an organic EL panel and a manufacturing method thereof.
  • a dehumidifying agent or air is present as a medium layer inside the seal portion.
  • the dehumidifying agent or air is pushed into the seal portion due to the pressure when the two substrates are bonded together, the dehumidifying agent enters the seal portion.
  • the agent and air may enter, the problem of the dehumidifying agent and air entering the seal portion can be avoided by applying the present invention.
  • a TFT is used as a switching element of a liquid crystal panel.
  • the present invention can also be applied to a liquid crystal panel using a switching element other than a TFT (for example, a thin film diode (TFD)), and performs color display.
  • a switching element other than a TFT for example, a thin film diode (TFD)
  • TFT thin film diode
  • the present invention can also be applied to a liquid crystal panel that displays black and white.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

液晶パネル(表示パネル)11の製造方法は、CF基板(第1基板)11aに配したシール材料Sを、未硬化部分を残さないように硬化させてシール部11qを形成するシール形成工程と、CF基板11aに対してアレイ基板(第2基板)11bを、間に液晶層(媒質層)11cを介在させた形で貼り合わせる基板貼り合わせ工程と、シール部11qをアレイ基板11bに対して固着させるシール固着工程と、を備える。

Description

表示パネルの製造方法及び表示パネル
 本発明は、表示パネルの製造方法及び表示パネルに関する。
 従来、液晶表示装置を構成する液晶パネルの製造方法として下記の特許文献1に記載されたものが知られている。特許文献1に記載された液晶パネルの製造方法は、まず、基板上の配向膜形成領域の外周部の全域に亘って凹部を形成する。続いて、凹部上に第1塗布液を塗布し、枠状の土手部を形成する。次いで、配向膜形成領域内にインクジェット工法を用いて第2塗布液を吐出し、配向膜を形成する。その後、配向膜が形成された基板を含む一対の基板の何れか一方にシール剤を設け、一対の基板同士をシール剤を用いて貼り合わせ、一対の基板間に液晶層を挟持させる。シール剤の外縁は土手部よりも基板の外縁側に位置する。
特開2014-174432号公報
(発明が解決しようとする課題)
 上記した特許文献1には、以下に示す2つの課題が存在する。第1の課題に関して説明すると、まず、特許文献1では未硬化状態のシール剤を塗布した後に両基板の貼り合わせを行い、その後にシール剤を硬化させるようにしている。ここで、両基板の貼り合わせに際しては、液晶材料が両基板間にて押し拡げられることで、シール剤が液晶材料によって押し込まれるような力を受けることになる。液晶パネルの狭額縁化が進行してシール剤の幅が狭くなると、シール剤がその力に抗しきれなくなって液晶材料の一部がシール剤内に入り込むおそれがある。また、液晶パネルの狭額縁化が進行してシール部の幅が狭くなると、外部の水分などがシール剤の未硬化部分を透過して液晶層中に拡散し易くなる傾向にあった。
 続いて、第2の課題に関して説明すると、特許文献1では、シール剤が周辺遮光部と重畳する位置関係にあることから、シール剤を硬化させて対向基板に対して固着させるに際してアレイ基板側から硬化のための紫外線を照射するようにしている。ところが、近年ではアレイ基板の額縁部分に多くの配線が配置され、その配線がシール剤と重畳する位置関係になる場合があり、その場合には上記紫外線は、配線間の隙間を通ってシール剤に照射されることになる。そして、液晶パネルの狭額縁化が進行すると、上記配線の配置スペースが縮小するため、配線の配置密度が高くなって配線間の隙間が狭くなる傾向にある。このため、シール剤を硬化させる際には、紫外線が配線によって遮られ易くなってしまい、シール剤が硬化し難くなったり、シール剤を硬化させるのに要する時間が長くなったりする問題が生じていた。
 本発明は上記のような事情に基づいて完成されたものであって、狭額縁化を図るのに好適な液晶パネルの製造方法及び液晶パネルを提供することを目的とする。
(課題を解決するための手段)
 本発明の表示パネルの製造方法は、第1基板に配したシール材料を、未硬化部分を残さないように硬化させてシール部を形成するシール形成工程と、前記第1基板に対して第2基板を、間に媒質層を介在させた形で貼り合わせる基板貼り合わせ工程と、前記シール部を前記第2基板に対して固着させるシール固着工程と、を備える。
 このように、シール形成工程では、シール材料が第1基板に配されると、そのシール材料が未硬化部分を残さないよう硬化されることでシール部が形成される。その後に行われる基板貼り合わせ工程では、第1基板に対して第2基板を、間に媒質層を介在させた形で貼り合わされる。その後に行われるシール固着工程では、シール部が第2基板に対して固着されることで、媒質層のシールが図られる。そして、基板貼り合わせ工程においては、両基板の貼り合わせに伴って媒質層が両基板間にて押し拡げられることで、シール部が媒質層によって押し込まれるような力を受けることになり、狭額縁化が進行してシール部の幅が狭くなるとシール部がその力に抗しきれなくなって媒質層の一部がシール部内に入り込むおそれがある。これに対し、基板貼り合わせ工程に先立って行われるシール形成工程では、シール材料を、未硬化部分を残さないように硬化させてシール部が形成されているから、狭額縁化が進行しても媒質層の一部がシール部内に入り込む事態が生じ難いものとなっている。また、狭額縁化の進行に伴ってシール部の幅が狭くなると、外部の水分などがシール部の未硬化部分を透過して媒質層中に拡散し易くなる傾向にあるものの、基板貼り合わせ工程に先立って行われるシール形成工程では、シール材料を、未硬化部分を残さないように硬化させてシール部が形成されているから、狭額縁化が進行しても外部の水分などがシール部を透過し難くなり、もって水分などが媒質層中に拡散し難いものとなる。以上のように、表示パネルの狭額縁化を図る上で好適となる。
 本発明の表示パネルの製造方法の実施態様として、次の構成が好ましい。
(1)板面内に前記第1基板を複数配してなる第1母材基板を製造する第1母材基板製造工程と、板面内に前記第2基板を複数配してなる第2母材基板を製造する第2母材基板製造工程と、前記第1母材基板と前記第2母材基板とのいずれか一方に、複数の前記第1基板と複数の前記第2基板とのいずれか一方を取り囲む形で未硬化部分が残された状態の母材シール材料を配置する母材シール配置工程と、少なくとも前記基板貼り合わせ工程の後に行われて前記母材シール材料を、未硬化部分を残さないように硬化させて母材シール部を形成する母材シール硬化工程と、を備える。このようにすれば、第1母材基板製造工程及び第2母材基板製造工程を経て製造された第1母材基板と第2母材基板とのいずれか一方には、母材シール配置工程にて複数の第1基板と複数の第2基板とのいずれか一方を取り囲む形で未硬化部分が残された状態の母材シール材料が配置される。その後に行われる基板貼り合わせ工程にて貼り合わせられると、未硬化部分が残された母材シール材料が第1母材基板と第2母材基板との他方側に密着されることで、両母材基板間を負圧に維持することが可能となる。これにより、両母材基板が位置ずれしたり剥がれたりする事態が生じ難いものとなる。その後に行われる母材シール硬化工程では、母材シール材料を、未硬化部分を残さないように硬化させることで母材シール部が形成される。
(2)前記母材シール配置工程では、前記第2母材基板に前記母材シール材料を配置している。このようにすれば、シール形成工程が行われる第1母材基板ではない第2母材基板に母材シール材料を配置する母材シール配置工程を行うようにしているから、例えばシール形成工程と母材シール配置工程とを並行して行うことが可能となる。従って、仮にシール形成工程と母材シール配置工程とを同じ第1母材基板に行うようにした場合に比べると、表示パネルの製造に係る時間が短く済む。
(3)前記基板貼り合わせ工程では、前記媒質層を液晶層としており、前記母材シール配置工程では、前記母材シール材料として熱硬化性樹脂材料を配置しており、前記母材シール硬化工程では、少なくとも前記熱硬化性樹脂材料の硬化温度に至るまで加熱処理を行う。このようにすれば、母材シール硬化工程にて少なくとも母材シール材料である熱硬化性樹脂材料の硬化温度に至るまで加熱処理がなされると、熱硬化性樹脂材料が硬化されて母材シール部が形成されるとともに、媒質層である液晶層を構成する液晶分子の再配向が促される。これにより、液晶層を構成する液晶分子の配列状態が良好なものとなる。
(4)前記シール形成工程では、ディスペンサにより前記シール材料を吐出することで、前記シール部の形成予定領域に倣う形で前記シール材料を配置している。このようにすれば、仮に第1基板の板面内の全域にシール材料を積層配置してそのシール材料を選択的に硬化させるようにした場合に比べると、シール材料の使用量が少なく済み、製造コストの低廉化を図る上で好適となる。
(5)前記シール形成工程は、粉末状とされる前記シール材料を前記第1基板上に配置するシール配置工程と、前記シール材料にレーザ光を照射してその照射箇所を、未硬化部分を残さないように選択的に硬化させるシール硬化工程と、を含む。このようにすれば、シール配置工程では、粉末状とされるシール材料を第1基板上に配置し、それに続いて行われるシール硬化工程では、第1基板上に配置されたシール材料にレーザ光が照射され、その照射箇所が、未硬化部分を残さないように選択的に硬化される。これにより、シール部が形成される。
(6)前記シール形成工程では、熱可塑性樹脂材料とされる前記シール材料を加熱して溶融させつつ前記第1基板上に塗布して未硬化部分を残さないように硬化させる。このようにすれば、シール形成工程では、熱可塑性樹脂材料とされるシール材料が加熱されて溶融されると、その溶融されたシール材料が第1基板上に塗布される。第1基板上に塗布されたシール材料は、温度低下に伴って未硬化部分を残さないよう硬化される。これにより、シール部が形成される。
 本発明の表示パネルは、画像が表示される表示領域にてマトリクス状に配列される複数の画素と、前記表示領域外の非表示領域に配される複数の配線を少なくとも有するアレイ基板と、少なくとも前記複数の画素を仕切る形で配される部分を有する遮光部を有していて前記アレイ基板と対向する形で配される対向基板と、前記アレイ基板と前記対向基板との間に挟持される媒質層と、前記媒質層を取り囲む形で前記非表示領域にて前記複数の配線と重畳するよう配されて前記アレイ基板と前記対向基板との間に介在するシール部であって、遮光性を有する材料からなり前記遮光部とは非重畳となる形で配されるシール部と、を備える。
 このようにすれば、表示領域にてマトリクス状に配列される複数の画素の間が遮光部によって仕切られることで混色などの発生が避けられる。アレイ基板と対向基板との間に挟持される媒質層は、非表示領域に配されてアレイ基板と対向基板との間に介在するシール部によって取り囲まれることでシールがとられている。
 ここで、シール部は、非表示領域にてアレイ基板が有する複数の配線と重畳するよう配されるため、仮にアレイ基板側から照射される光によって対向基板に対する固着などを促そうとした場合には、光が配線によって遮られてしまい、特に狭額縁化の進行に伴って配線の配置密度が高くなった場合には、対向基板に対する固着などが不十分なものとなったり、固着などに要する時間が長くなるおそれがある。その点、シール部は、対向基板が有する遮光部とは非重畳となる位置関係とされているので、シール部をアレイ基板に対して固着などするに際して対向基板側から光を照射するようにすれば、遮光部によって光が遮られることが避けられ、アレイ基板に対するシール部の固着などを良好に促進することが可能となる。これにより、狭額縁化に伴って配線の配置密度が高くなった場合でも、アレイ基板に対するシール部の固着などが配線の配置密度とは無関係に良好に促進される。しかも、シール部は、遮光性を有しているので、遮光部とは非重畳の配置となっていても非表示領域において光漏れが生じるのを避けることができる。以上のように狭額縁化を図る上で好適となる。
 本発明の表示パネルの実施態様として、次の構成が好ましい。
(1)前記対向基板には、少なくとも前記遮光部に対して前記媒質層側に積層され前記シール部とは非重畳となる範囲に配される平坦化層が設けられている。このようにすれば、対向基板に対してシール部が直接接する形で固着されることになる。つまり、シール部と対向基板との間に平坦化層が介在することがないものとされるから、対向基板に対してシール部がより強固に固着される。その上、シール部と対向基板との間の界面のみが外部に露出することになるから、仮にシール部と対向基板との間に平坦化層が介在する場合に比べると、外部に露出する界面が少なくなり、外部に存在する水分などが上記界面を透過して媒質層内に浸入し難いものとなる。
(2)前記シール部は、前記媒質層側とは反対側の外面が少なくとも前記対向基板の端面と面一状をなす。このようにすれば、仮にシール部の外面が対向基板の端面より引っ込む配置とした場合に比べると、一層の狭額縁化を図ることができる。
(3)前記シール部は、合成樹脂材料に遮光剤を配合してなる。このようにすれば、遮光剤を合成樹脂材料に配合する際に容易に遮光剤を分散させることができるので、シール部の遮光性が容易に均一化される。また、仮にシール部を金属材料からなる構成とした場合に比べると、対向基板に対してシール部を固着などさせる際に要する温度が低く済む。
(4)前記シール部を前記媒質層側とその反対側とから挟み込む形で配されるシール規制部を備える。このようにすれば、シール部を形成する際にその幅を規制することができる。これにより、当該表示パネルにおける額縁幅が高い精度で得られ、もって狭額縁化を図る上でより好適となる。
(5)前記シール規制部は、前記シール部に並行する形で延在しその途中に開口を有している。このようにすれば、シール部を形成するに際して未硬化状態の材料をシール規制部の開口から逃がすことが可能となる。これにより、シール部の高さが均一化される。
(6)前記シール部には、スペーサ粒子が含有されている。このようにすれば、シール部の高さを一定に保つ上で好適とされる。
(7)前記シール部は、前記遮光部と共に前記複数の画素を仕切る形で配されている。このようにすれば、仮に遮光部がシール部に倣う額縁部分を有していて遮光部のみで複数の画素を仕切る構成とした場合に比べると、狭額縁化を図る上でより好適となる。
(発明の効果)
 本発明によれば、狭額縁化を図るのに好適な液晶パネルの製造方法及び液晶パネルを提供することができる。
本発明の実施形態1に係るドライバを実装した液晶パネルとフレキシブル基板と制御回路基板との接続構成を示す概略平面図 液晶表示装置の短辺方向に沿った断面構成を示す概略断面図 液晶パネル全体の断面構成を示す概略断面図 液晶パネルの表示領域における断面構成を示す概略断面図 液晶パネルを構成するアレイ基板の配線構成を概略的に示す平面図 液晶パネルの外周側部分におけるTFTの配線構成とシール部と表示領域との配置関係を示す平面図 液晶パネルの外周側部分における断面構成を示す断面図 CF母材基板製造工程を経て製造されたCF母材基板の平面図 アレイ母材基板製造工程を経て製造されたアレイ母材基板の平面図 シール形成工程にて用いられるシール形成装置の概略を表す側面図 シール形成工程に含まれるシール配置工程においてディスペンサからシール材料を吐出した状態を示す側面図 シール形成工程にて第1ローラ部によりシール材料を転圧する動作を示す側面図 シール形成工程に含まれるシール硬化工程においてレーザ光出射部からレーザ光を照射した状態を示す側面図 シール形成工程にて第2ローラ部によりシール材料を転圧する動作を示す側面図 シール形成工程を経てシール部が形成された状態のアレイ母材基板の平面図 母材シール配置工程を経て母材シール材料が配置された状態のCF母材基板の平面図 基板貼り合わせ工程において液晶材料が滴下されたCF母材基板に対してアレイ母材基板を貼り合わせる前の状態を示す断面図 基板貼り合わせ工程において両母材基板を貼り合わせた状態を示す断面図 シール固着工程においてシール部にレーザ光を照射した状態を示す断面図 母材シール硬化工程を経て母材シール部が形成された状態の両母材基板を示す平面図 本発明の実施形態2に係る液晶パネルの外周側部分における断面構成を示す断面図 液晶パネルの外周側部分におけるTFTの配線構成とシール部と表示領域との配置関係を示す平面図 本発明の実施形態3に係るシール形成工程にて用いられるシール形成装置の概略を表す側面図 本発明の実施形態4に係る液晶パネルの外周側部分における断面構成を示す断面図 シール形成工程においてシール規制部の間にシール材料を配置した状態を示す平面図 シール形成工程において第1ローラ部によりシール材料を転圧した状態を示す平面図
 <実施形態1>
 本発明の実施形態1を図1から図20によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、上下方向については、図2から図4などを基準とし、且つ同図上側を表側とするとともに同図下側を裏側とする。
 液晶表示装置10は、図1及び図2に示すように、画像を表示可能で且つ中央側に配される表示領域AA、及び表示領域AAを取り囲む形で外周側に配される非表示領域NAAを有する液晶パネル(表示パネル)11と、液晶パネル11を駆動するドライバ(パネル駆動部)17と、ドライバ17に対して各種入力信号を外部から供給する制御回路基板(外部の信号供給源)12と、液晶パネル11と外部の制御回路基板12とを電気的に接続するフレキシブル基板(外部接続部品)13と、液晶パネル11に光を供給する外部光源であるバックライト装置(照明装置)14と、を備える。また、液晶表示装置10は、相互に組み付けた液晶パネル11及びバックライト装置14を収容・保持するための表裏一対の外装部材15,16をも備えており、このうち表側の外装部材15には、液晶パネル11の表示領域AAに表示された画像を外部から視認させるための開口部15aが形成されている。本実施形態に係る液晶表示装置10は、携帯電話(スマートフォンなどを含む)、ノートパソコン(タブレット型ノートパソコンなどを含む)、ウェアラブル端末(スマートウォッチなどを含む)、携帯型情報端末(電子ブックやPDAなどを含む)、携帯型ゲーム機、デジタルフォトフレームなどの各種電子機器(図示せず)に用いられるものである。このため、液晶表示装置10を構成する液晶パネル11の画面サイズは、数インチ~10数インチ程度とされ、一般的には小型または中小型に分類される大きさとされている。
 先に、バックライト装置14について簡単に説明する。バックライト装置14は、図2に示すように、表側(液晶パネル11側)に向けて開口した略箱形をなすシャーシ14aと、シャーシ14a内に配された図示しない光源(例えば冷陰極管、LED、有機ELなど)と、シャーシ14aの開口部を覆う形で配される図示しない光学部材とを備える。光学部材は、光源から発せられる光を面状に変換するなどの機能を有するものである。
 続いて、液晶パネル11について説明する。液晶パネル11は、図1に示すように、全体として縦長な方形状(矩形状)をなしており、その長辺方向における一方の端部側(図1に示す上側)に片寄った位置に表示領域(アクティブエリア)AAが配されるとともに、長辺方向における他方の端部側(図1に示す下側)に片寄った位置にドライバ17及びフレキシブル基板13がそれぞれ取り付けられている。この液晶パネル11において表示領域AA外の領域が、画像が表示されない非表示領域(ノンアクティブエリア)NAAとされ、この非表示領域NAAは、表示領域AAを取り囲む略枠状の領域(後述するCF基板11aにおける額縁部分)と、長辺方向の他方の端部側に確保された領域(後述するアレイ基板11bのうちCF基板11aとは重畳せずに露出する部分)と、からなり、このうちの長辺方向の他方の端部側に確保された領域にドライバ17及びフレキシブル基板13の実装領域(取付領域)が含まれている。液晶パネル11において略枠状をなす非表示領域NAAのうち、ドライバ17及びフレキシブル基板13の実装領域を除いた残りの3辺の端部(非実装側端部)における幅寸法、詳しくはガラス基板GSの外端から表示領域AAの外端までの直線距離(額縁幅)は、例えば0.5mm以下とされており、極めて額縁が狭い超狭額縁構造とされている。液晶パネル11における短辺方向が各図面のX軸方向と一致し、長辺方向が各図面のY軸方向と一致している。なお、図1,図5及び図6では、CF基板11aよりも一回り小さな枠状の一点鎖線が表示領域AAの外形を表しており、当該一点鎖線よりも外側の領域が非表示領域NAAとなっている。
 続いて、液晶パネル11に接続される部材について説明する。制御回路基板12は、図1及び図2に示すように、バックライト装置14におけるシャーシ14aの裏面(液晶パネル11側とは反対側の外面)にネジなどにより取り付けられている。この制御回路基板12は、紙フェノールないしはガラスエポキシ樹脂製の基板上に、ドライバ17に各種入力信号を供給するための電子部品が実装されるとともに、図示しない所定のパターンの配線(導電路)が配索形成されている。この制御回路基板12には、フレキシブル基板13の一方の端部(一端側)が図示しないACF(Anisotropic Conductive Film)を介して電気的に且つ機械的に接続されている。
 フレキシブル基板13は、図2に示すように、絶縁性及び可撓性を有する合成樹脂材料(例えばポリイミド系樹脂等)からなる基材を備え、その基材上に多数本の配線パターン(図示せず)を有しており、長さ方向についての一方の端部が既述した通りシャーシ14aの裏面側に配された制御回路基板12に接続されるのに対し、他方の端部(他端側)が液晶パネル11におけるアレイ基板11bに接続されているため、液晶表示装置10内では断面形状が略U型となるよう折り返し状に屈曲されている。フレキシブル基板13における長さ方向についての両端部においては、配線パターンが外部に露出して端子部(図示せず)を構成しており、これらの端子部がそれぞれ制御回路基板12及び液晶パネル11に対して電気的に接続されている。これにより、制御回路基板12側から供給される入力信号を液晶パネル11側に伝送することが可能とされている。
 ドライバ17は、図1に示すように、内部に駆動回路を有するLSIチップからなるものとされ、信号供給源である制御回路基板12から供給される信号に基づいて作動することで、信号供給源である制御回路基板12から供給される入力信号を処理して出力信号を生成し、その出力信号を液晶パネル11の表示領域AAへ向けて出力するものとされる。このドライバ17は、平面に視て横長の方形状をなす(液晶パネル11の短辺に沿って長手状をなす)とともに、液晶パネル11(後述するアレイ基板11b)の非表示領域NAAに対して直接実装され、つまりCOG(Chip On Glass)実装されている。なお、ドライバ17の長辺方向がX軸方向(液晶パネル11の短辺方向)と一致し、同短辺方向がY軸方向(液晶パネル11の長辺方向)と一致している。
 改めて、液晶パネル11について説明する。液晶パネル11は、図3に示すように、一対の基板11a,11bと、両基板11a,11b間に挟持されて電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層(媒質層)11cと、液晶層11cを取り囲む形で両基板11a,11b間に介在することで液晶層11cの厚さ分のセルギャップを維持した状態で液晶層11cをシールするシール部11qと、を少なくとも有している。本実施形態に係る液晶パネル11のセルギャップは、例えば3~4μm程度とされるが、その具体的数値は適宜に変更可能である。一対の基板11a,11bのうち表側(正面側)がCF基板(第1基板、対向基板)11aとされ、裏側(背面側)がアレイ基板(第2基板、アクティブマトリクス基板)11bとされる。CF基板11a及びアレイ基板11bは、いずれもガラス製のガラス基板GSの内面側に各種の膜が積層形成されてなるものとされる。シール部11qは、液晶パネル11のうち非表示領域NAAに配されるとともに平面に視て(アレイ基板11bの板面に対する法線方向から視て)非表示領域NAAに倣う縦長の略枠状をなしている(図2)。シール部11qは、液晶パネル11の額縁幅が0.5mm以下とされる超狭額縁設計においては、幅寸法が例えば400μm程度とされている。シール部11qのうち、液晶パネル11におけるドライバ17及びフレキシブル基板13の実装領域を除いた残りの3辺の端部(非実装側端部)に配された部分は、非表示領域NAAにおける最外端位置に配されている(図2)。なお、両基板11a,11bの外面側には、それぞれ偏光板11d,11eが貼り付けられている。
 アレイ基板11bの内面側(液晶層11c側、CF基板11aとの対向面側)における表示領域AAには、図4及び図6に示すように、スイッチング素子であるTFT(Thin Film Transistor:表示素子)11f及び画素電極11gが多数個マトリクス状(行列状)に並んで設けられるとともに、これらTFT11f及び画素電極11gの周りには、格子状をなすゲート配線(走査線)11i及びソース配線(データ線、信号線)11jが取り囲むようにして配設されている。ゲート配線11iとソース配線11jとがそれぞれTFT11fのゲート電極11f1とソース電極11f2とに接続され、画素電極11gがTFT11fのドレイン電極11f3に接続されている。そして、TFT11fは、ゲート配線11i及びソース配線11jにそれぞれ供給される各種信号に基づいて駆動され、その駆動に伴って画素電極11gへの電位の供給が制御されるようになっている。このTFT11fは、ドレイン電極11f3とソース電極11f2とを繋ぐチャネル部11f4を有しているが、このチャネル部11f4を構成する半導体膜として、酸化物半導体材料が用いられている。チャネル部11f4を構成する酸化物半導体材料は、その電子移動度がアモルファスシリコン材料などに比べると、例えば20倍~50倍程度と高くなっているので、TFT11fを容易に小型化して画素電極11gの透過光量(画素PXの開口率)を極大化することができ、もって高精細化及び低消費電力化などを図る上で好適とされる。画素電極11gは、ゲート配線11i及びソース配線11jにより囲まれた方形の領域に配されており、ITO(Indium Tin Oxide:酸化インジウム錫)或いはZnO(Zinc Oxide:酸化亜鉛)といった透明電極膜(上層側透明電極膜)からなる。画素電極11gは、絶縁膜11pに対して上層側に積層する形で設けられている。絶縁膜11pの下層側には、画素電極11gと同様に透明電極膜(下層側透明電極膜)からなる共通電極11hが積層する形で設けられている。共通電極11hは、概ねベタ状のパターンとして形成されている。このようにアレイ基板11bには、画素電極11gと共通電極11hとが共に形成されており、両電極11g,11h間に電位差が生じると、液晶層11cには、アレイ基板11bの板面に沿う成分に加えて、アレイ基板11bの板面に対する法線方向の成分を含むフリンジ電界(斜め電界)が印加されるようになっている。つまり、この液晶パネル11は、動作モードがIPS(In-Plane Switching)モードをさらに改良したFFS(Fringe Field Switching)モードとされている。なお、本実施形態では、各図面においてゲート配線11iの延在方向がX軸方向と、ソース配線11jの延在方向がY軸方向と、それぞれ一致するものとされている。
 一方、CF基板11aのうちの表示領域AAの内面側には、図4に示すように、アレイ基板11b側の各画素電極11gと対向状をなす位置にカラーフィルタ11kが設けられている。カラーフィルタ11kは、R(赤色),G(緑色),B(青色)の三色の着色部がマトリクス状に繰り返し並んで配列されてなる。マトリクス状に配列されるカラーフィルタ11kの各着色部(各画素PX)の間は、遮光部(ブラックマトリクス)11lによって仕切られている。この遮光部11lによって各着色部を透過する各色の光同士が混ざり合う混色が防がれるようになっている。遮光部11lは、平面に視て格子状をなしていて各着色部の間を仕切る格子状部11l1と、平面に視て枠状(額縁状)をなしていて格子状部11l1を外周側から取り囲む枠状部11l2と、から構成されている。このうち、格子状部11l1は、上記したゲート配線11i及びソース配線11jと平面に視て重畳する配置とされる。枠状部11l2は、シール部11qに倣って延在しており、平面に視て縦長の方形の枠状をなしている。カラーフィルタ11k及び遮光部11lの表面には、平坦化層(オーバーコート層)11mが設けられている。平坦化層11mは、カラーフィルタ11k及び遮光部11lに対して内側、つまり液晶層11c側に積層されている。また、平坦化層11mの表面には、図示しないフォトスペーサが設けられている。また、両基板11a,11bのうち最も内側にあって液晶層11cに接する層としては、液晶層11cに含まれる液晶分子を配向させるための配向膜11n,11oがそれぞれ形成されている。なお、当該液晶パネル11においては、カラーフィルタ11kにおける着色部と、それと対向する画素電極11gと、の組によって1つの画素PXが構成されている。画素PXには、カラーフィルタ11kのうちRの着色部を有する赤色画素と、カラーフィルタ11kのうちGの着色部を有する緑色画素と、カラーフィルタ11kのうちBの着色部を有する青色画素と、が含まれている。これら3色の画素PXは、液晶パネル11の板面において行方向(X軸方向)に沿って繰り返し並べて配されることで、画素群を構成しており、この画素群が列方向(Y軸方向)に沿って多数並んで配されている。このように画素PXは、液晶パネル11の表示領域AA内においてマトリクス状に多数が配列されている。
 次に、アレイ基板11bにおける非表示領域NAA内に存在する構成について詳しく説明する。アレイ基板11bの非表示領域NAAのうち、表示領域AAにおける短辺部に隣り合う位置には、図5に示すように、列制御回路部18が設けられているのに対し、表示領域AAにおける長辺部に隣り合う位置には、行制御回路部19が設けられている。列制御回路部18及び行制御回路部19は、ドライバ17からの出力信号をTFT11fに供給するための制御を行うことが可能とされている。列制御回路部18及び行制御回路部19は、TFT11fのチャネル部11f4と同じ酸化物半導体膜をベースとしてアレイ基板11b上にモノリシックに形成されており、それによりTFT11fへの出力信号の供給を制御するための制御回路を有している。列制御回路部18及び行制御回路部19が有する制御回路には、複数の制御用TFTと、複数の制御用TFTに接続される複数の配線20と、が少なくとも含まれている。これら列制御回路部18及び行制御回路部19は、図5及び図6に示すように、CF基板11aの非表示領域NAAにおける外端付近に配されており、シール部11qと平面に視て重畳する配置とされている。従って、シール部11qは、図7に示すように、列制御回路部18及び行制御回路部19の制御回路を構成する配線20に対して平面に視て重畳する配置とされている。なお、図5及び図6では、シール部11qを二点鎖線により図示しており、シール部11qの外周端がCF基板11aの外周端とほぼ一致するのに対し、シール部11qの内周端が各制御回路部18,19の内周端よりも内寄り(表示領域AA寄り)に配されている。また、列制御回路部18及び行制御回路部19の制御回路は、アレイ基板11bの製造工程においてTFT11fなどをパターニングする際に既知のフォトリソグラフィ法により同時にアレイ基板11b上にパターニングされている。
 このうち、列制御回路部18は、図5に示すように、表示領域AAにおける図5に示す下側の短辺部に隣り合う位置、言い換えるとY軸方向について表示領域AAとドライバ17との間となる位置に配されており、X軸方向に沿って延在する横長な略方形状の範囲に形成されている。列制御回路部18は、シール部11qのうちX軸方向に沿って延在する一短辺部に対して平面に視て重畳している。この列制御回路部18は、表示領域AAに配された各ソース配線11jに接続されるとともに、ドライバ17からの出力信号に含まれる画像信号を、各ソース配線11jに振り分けるスイッチ回路(RGBスイッチ回路)を有している。具体的には、ソース配線11jは、アレイ基板11bの表示領域AAにおいてX軸方向に沿って多数本が並んで配置されるとともに、R(赤色),G(緑色),B(青色)の各色の画素PXをなす各画素電極11gに接続された各TFT11fにそれぞれ接続されているのに対して、列制御回路部18は、スイッチ回路によってドライバ17からの画像信号をR,G,Bの各ソース配線11jに振り分けて供給している。また、列制御回路部18は、レベルシフタ回路やESD保護回路などの付属回路を備えることも可能である。
 これに対し、行制御回路部19は、図5に示すように、表示領域AAにおける図5に示す左側の長辺部に隣り合う位置に配されており、Y軸方向に沿って延在する縦長な略方形状の範囲に形成されている。行制御回路部19は、シール部11qのうちY軸方向に沿って延在する一長辺部に対して平面に視て重畳している。行制御回路部19は、表示領域AAに配された各ゲート配線11iに接続されるとともに、ドライバ17からの出力信号に含まれる走査信号を、各ゲート配線11iに所定のタイミングで供給して各ゲート配線11iを順次に走査する走査回路を有している。具体的には、ゲート配線11iは、アレイ基板11bの表示領域AAにおいてY軸方向に沿って多数本が並列配置されているのに対して、行制御回路部19は、走査回路によってドライバ17からの制御信号(走査信号)を、表示領域AAにおいて図5に示す上端位置のゲート配線11iから下端位置のゲート配線11iに至るまで順次に供給することで、ゲート配線11iの走査を行っている。行制御回路部19は、走査信号を増幅させるためのバッファ回路を有している。また、行制御回路部19には、レベルシフタ回路やESD保護回路などの付属回路を備えることも可能である。なお、列制御回路部18及び行制御回路部19は、アレイ基板11b上に形成された図示しない接続配線によってドライバ17に接続されている。
 さて、本実施形態に係る液晶パネル11では、その製造過程においてシール部11qをレーザ光の照射により硬化させることでCF基板11a側に形成し、その後に両基板11a,11bを貼り合わせる際にシール部11qをアレイ基板11bに対してレーザ光の照射により固着させるようにしている。その上で、シール部11qは、遮光性を有する材料からなり、図7に示すように、非表示領域NAAにて各制御回路部18,19における複数の配線20と重畳するものの、遮光部11lとは非重畳となる形で配されている。本実施形態では、液晶パネル11が狭額縁設計であるため、シール部11qが非表示領域NAAにてアレイ基板11bが有する複数の配線20と重畳する配置となっている。このため、仮にアレイ基板11b側から照射されるレーザ光によってCF基板11aに対するシール部11qの固着を促そうとした場合には、レーザ光が配線20によって遮られてしまい、特に狭額縁化の進行に伴って配線20の配置密度が高くなって配線20間の隙間が狭くなった場合には、CF基板11aに対するシール部11qの固着が不十分なものとなったり、シール部11qの固着に要する時間が長くなるおそれがある。その点、シール部11qは、CF基板11aが有する遮光部11lとは非重畳となる位置関係とされているので、シール部11qをアレイ基板11bに対して固着する際にCF基板11a側からレーザ光を照射するようにすれば、遮光部11lによって光が遮られることが避けられ、アレイ基板11bに対するシール部11qの固着を良好に促進することが可能となる。これにより、狭額縁化に伴って配線20の配置密度が高くなった場合でも、アレイ基板11bに対するシール部11qの固着が配線20の配置密度とは無関係に良好に促進される。しかも、シール部11qは、遮光性を有しているので、遮光部11lとは非重畳の配置となっていても非表示領域NAAにおいて光漏れが生じるのを避けることができる。
 詳しくは、シール部11qは、粉末状とされる合成樹脂材料(例えばナイロン(ポリアミド)からなるナイロンパウダー)に粉末状で黒色を呈する遮光剤(例えばカーボンパウダー(カーボンブラック))を分散配合したものをシール材料Sとし、このシール材料Sがレーザ光によって焼結・硬化されることで形成されている。より具体的には、シール部11qの形成に際しては、CF基板11a上に配置された粉末状のシール材料Sにレーザ光を照射すると、シール材料Sにおけるレーザ光の照射箇所が選択的に焼結されることで硬化されるようになっている。つまり、シール材料Sに対するレーザ光の照射範囲を制御することで、シール部11qの形成範囲(幅など)が高い精度となる。シール材料Sが硬化されることで形成されたシール部11qを構成する合成樹脂材料中には、遮光剤が均一になるよう分散した状態で固定されることで、遮光部11lと同等の遮光性能を発揮するとともにその遮光性が均一なものとなっている。シール部11qは、図7に示すように、その内周面(液晶層11c側の面)が遮光部11lの枠状部11l2の外周面に接する形で配されており、それにより枠状部11l2と協働して非表示領域NAAからの光漏れを防ぐことが可能とされる。しかも、シール部11qは、液晶層11c側(遮光部11l側)とは反対側の外周面がCF基板11aの外周端面と面一状をなしているので、一層の狭額縁化を図る上で好適とされる。さらには、シール部11qを構成するシール材料Sには、スペーサ粒子が含有されている。シール材料Sに含有されるスペーサ粒子は、例えばシリカビーズなどであり、その粒径が液晶パネル11のセルギャップ(液晶層11cの厚み)とほぼ等しいものとされる。このスペーサ粒子によりシール部11qの高さを全周にわたってセルギャップとほぼ等しい値でもって一定に保つことができる。また、シール部11qを構成するシール材料Sには、上記したスペーサ粒子以外にも、無機フィラー、助剤、添加剤などを適宜に加えることも可能である。
 シール部11qは、図7に示すように、CF基板11aに形成される平坦化層11mに対して非重畳となる配置とされる。平坦化層11mは、CF基板11aの内面においてカラーフィルタ11k及び遮光部11lに対して液晶層11c側に積層されてCF基板11aの面内においてベタ状をなしているものの、シール部11qと重畳し得る外周側部分が除去されている。つまり、平坦化層11mは、CF基板11aの内面においてシール部11qとは非重畳となる範囲に選択的に形成されている。平坦化層11mの外周面は、シール部11qの内周面に接する形で配されており、遮光部11lの枠状部11l2の外周面とほぼ面一状をなしている。このような構成により、シール部11qは、CF基板11aを構成するガラス基板GSに対して直接接する形で固着されることになる。つまり、シール部11qとCF基板11aとの間に平坦化層11mや遮光部11lが介在することがないものとされるから、CF基板11aに対してシール部11qがより強固に固着される。その上、シール部11qとCF基板11aとの間の界面のみが外部に露出することになるから、仮にシール部11qとCF基板11aとの間に平坦化層11mが介在する場合に比べると、外部に露出する界面が少なくなり、外部に存在する水分などが上記界面を透過して液晶層11c内に浸入し難いものとなる。
 本実施形態の液晶パネル11は以上のような構造であり、続いてその製造方法を説明する。本実施形態に係る液晶パネル11の製造方法は、板面内にCF基板11aを複数配してなるCF母材基板(第1母材基板)11aMを製造するCF母材基板製造工程(第1母材基板製造工程)と、板面内にアレイ基板11bを複数配してなるアレイ母材基板(第2母材基板)11bMを製造するアレイ母材基板製造工程(第2母材基板製造工程)と、CF基板11aに配したシール材料Sを、未硬化部分を残さないように硬化させてシール部11qを形成するシール形成工程と、CF母材基板11aMとアレイ母材基板11bMとのいずれか一方に、複数のCF基板11aと複数のアレイ基板11bとのいずれか一方を取り囲む形で未硬化部分が残された状態の母材シール材料MSを配置する母材シール配置工程と、CF基板11aに対してアレイ基板11bを、間に液晶層11cを介在させた形で貼り合わせる基板貼り合わせ工程と、シール部11qをアレイ基板11bに対して固着させるシール固着工程と、母材シール材料MSを、未硬化部分を残さないように硬化させて母材シール部21を形成する母材シール硬化工程と、両母材基板11aM,11bMを分断して各液晶パネル11を取り出す分断工程と、を備える。なお、上記したシール形成工程における「シール材料Sを、未硬化部分を残さないように硬化させる」との記載は、シール材料Sの硬化率が100%であることを限定した意図ではなく、硬化率が100%に満たないような場合も包含し得るものである。
 CF母材基板製造工程では、図8に示すように、大型のガラス母材基板GSMの板面上に既知のフォトリソグラフィ法により各種の膜が成膜されるとともにそれらの膜がパターニングされることで、各CF基板11aを構成する構造物が順次に積層形成され、もってCF母材基板11aMが製造される。アレイ母材基板製造工程では、図9に示すように、大型のガラス母材基板GSMの板面上に既知のフォトリソグラフィ法により各種の膜が成膜されるとともにそれらの膜がパターニングされることで、各アレイ基板11bを構成する構造物が順次に積層形成され、もってアレイ母材基板11bMが製造される。図8及び図9には、各ガラス母材基板GSMの板面内に配される各CF基板11a及び各アレイ基板11bをそれぞれ二点鎖線により図示している。各CF基板11a及び各アレイ基板11bは、各ガラス母材基板GSMの板面内においてマトリクス状に並んで配されており、具体的にはX軸方向に沿って4つずつ、Y軸方向に沿って5つずつ並ぶものが図示されている。なお、各ガラス母材基板GSMの板面内に並ぶ各CF基板11a及び各アレイ基板11bの具体的な数については、上記以外にも適宜に変更可能である。なお、CF母材基板11aM及びアレイ母材基板11bMの大きさは、短辺寸法が例えば660~1500mm程度とされ、長辺寸法が例えば880~1800mm程度とされるが、具体的な数値は適宜に変更可能である。
 シール形成工程では、以下に示す粉末焼結式のシール形成装置30を用いることで、CF母材基板11aMの各CF基板11aにシール部11qを形成している。シール形成装置30は、図10に示すように、CF母材基板11aMが載せられるステージ31と、ステージ31上のCF母材基板11aMに対して対向状に配されるヘッド部32と、ヘッド部32に接続されてCF母材基板11aMに向けて照射するレーザ光を発する光源部33と、ヘッド部32及び光源部33に接続されてこれらを制御する制御部34と、を少なくとも備える。ステージ31は、ヘッド部32に対してCF母材基板11aMをその板面に並行するX軸方向、Y軸方向及びθ方向(回転方向)に沿って移動させることが可能とされる。ヘッド部32には、シール材料SをCF母材基板11aM上に供給するディスペンサ32aと、ディスペンサ32aに隣接して配されてシール材料Sを転圧する第1ローラ部32bと、CF母材基板11aMにレーザ光を照射するレーザ光出射部32cと、レーザ光出射部32cに隣接して配されてレーザ光が照射された状態のシール材料Sを転圧する第2ローラ部32dと、ディスペンサ32a、第1ローラ部32b、レーザ光出射部32c及び第2ローラ部32dを駆動するための駆動部32eと、が少なくとも備えられている。光源部33は、例えば、炭酸ガスレーザ(COレーザ)光を発振する炭酸ガスレーザ装置を備えており、ヘッド部32に対して光ファイバによって接続されることで、ヘッド部32に備えられるレーザ光出射部32cに炭酸ガスレーザ光を供給している。制御部34は、光源部33による炭酸ガスレーザ光の発振を制御するとともに、ヘッド部32に備えられる各部位32a~32eを制御する。
 ヘッド部32の構成について詳しく説明する。ディスペンサ32aは、シール部11qを構成する粉末状のシール材料Sを吐出するものとされ、CF母材基板11aM上において粉末状のシール材料Sをシール部11qの幅よりも狭い範囲に列状に配置することが可能とされる。ディスペンサ32aによるシール材料Sの吐出量などは駆動部32eによって制御される。ディスペンサ32aから吐出されるシール材料Sを構成する合成樹脂材料であるナイロンパウダーは、その平均粒径が50μm程度とされ、シール材料Sに含有されるスペーサ粒子は、その平均粒径が3~4μm程度とされる。なお、シール材料Sに無機フィラー、助剤、添加剤などを適宜に加えることで、第1ローラ部32bによる転圧時におけるシール材料Sの流動性が高められる。第1ローラ部32bは、駆動部32eによってCF母材基板11aMに対して接近または離間するよう昇降可能とされる。具体的には、第1ローラ部32bは、ディスペンサ32aからシール材料Sが吐出されない間はCF母材基板11aMから離間した位置に配されるのに対し、ディスペンサ32aからシール材料Sが吐出される間はCF母材基板11aMに近接する位置に配されるようになっている。第1ローラ部32bは、シール材料Sを構成するナイロンパウダーをCF母材基板11aMとの間で粉砕し、その粒径をセルギャップと同じ程度またはそれ以下としつつシール部11qの幅方向に拡げるものとされる。
 レーザ光出射部32cは、第1ローラ部32bに対してディスペンサ32aとは反対側にディスペンサ32aよりも離れて配されている。レーザ光出射部32cは、光源部33から供給されるレーザ光をCF母材基板11aM上のシール材料Sに向けて照射するものとされる。レーザ光出射部32cから出射される炭酸ガスレーザ光は、その波長が例えば9.2~10.8μm程度で、照射強度が例えば25kW程度とされるのが好ましい。このようなレーザ光がシール材料Sに照射されると、シール材料Sを構成する主成分であるナイロンパウダーが焼結される。第2ローラ部32dは、駆動部32eによってCF母材基板11aMに対して接近または離間するよう昇降可能とされる。具体的には、第2ローラ部32dは、レーザ光出射部32cからレーザ光が照射されない間はCF母材基板11aMから離間した位置に配されるのに対し、レーザ光出射部32cからレーザ光が照射される間はCF母材基板11aMに近接する位置に配されるようになっている。第2ローラ部32dには、図示しない加熱手段が備えられることで、例えば160℃程度に達するまで加熱されるようになっており、それによりレーザ光が照射された直後のシール材料Sを軟化させつつ転圧することが可能とされる。
 改めてシール形成工程について詳しく説明する。シール形成工程は、粉末状とされるシール材料SをCF基板11a上に配置するシール配置工程と、シール材料Sにレーザ光を照射してその照射箇所を、未硬化部分を残さないように選択的に硬化させるシール硬化工程と、を含んでいる。シール形成工程では、まずシール形成装置30のステージ31上にCF母材基板11aMを載置する。シール形成工程に含まれるシール配置工程では、ステージ31をヘッド部32に対してCF母材基板11aMの板面に並行するX軸方向、Y軸方向及びθ方向に沿って移動させつつ、ディスペンサ32aからシール材料Sを吐出することで、図11に示すように、CF母材基板11aM上においてシール材料Sをシール部11qの形成予定領域に倣って列状に配置している。このようにシール材料Sをシール部11qの形成予定領域に選択的に配置するようにしているので、仮にCF基板11aの板面内の全域にシール材料Sを積層配置してそのシール材料Sを選択的に硬化させるようにした場合に比べると、シール材料Sの使用量が少なく済み、製造コストの低廉化を図る上で好適となる。CF母材基板11aM上に配置されたシール材料Sは、CF母材基板11aMに近接する位置に配された第1ローラ部32bによって転圧されることで粉砕される。第1ローラ部32bにより粉砕されたシール材料Sは、図12に示すように、その粒径がセルギャップと同じ程度またはそれ以下とされつつシール部11qの幅方向に押し拡げられる(第1転圧工程)。シール形成工程に含まれるシール硬化工程では、図13に示すように、第1ローラ部32bにより転圧されたシール材料Sに対してレーザ光出射部32cから出射されるレーザ光が照射される。すると、照射箇所に存在するナイロンパウダーが瞬間的に加熱されることで焼結される。このとき、シール材料Sのうちレーザ光が照射されない箇所(非照射箇所)に関しては、ナイロンパウダーが焼結されないので硬化されることがないものとされる。レーザ光が照射されたシール材料Sは、図14に示すように、続いてCF母材基板11aMに接近する位置に配された第2ローラ部32dによって転圧される(第2転圧工程)。このとき、第2ローラ部32dが加熱手段により加熱されることでシール材料Sの軟化を図ってその流動性を担保しつつ転圧を促進することができる。第2ローラ部32dによってシール材料Sがセルギャップ程度の厚みにまで押し拡げられるとともに、未硬化部分を残さないよう硬化(完全硬化)されることで、シール部11qが形成される。上記のようなシール形成工程をCF母材基板11aMの板面内に配される各CF基板11a毎にそれぞれ行うことで、各CF基板11aには、図15に示すように、それぞれシール部11qが形成される。
 母材シール配置工程では、図16に示すように、アレイ母材基板11bMに、複数のアレイ基板11bを一括して取り囲む形で未硬化部分が残された状態の母材シール材料MSを配置する。このとき、母材シール材料MSは、アレイ母材基板11bMの外周端部に配されており、平面に視て縦長な方形の枠状をなしている。母材シール材料MSは、熱硬化性樹脂材料からなり、所定の硬化温度に達するまで加熱されると、硬化されて母材シール部21となるものである。母材シール配置工程では、母材シール材料MSを短時間加熱することで、表面を硬化させる仮硬化処理を行っている。仮硬化処理がなされた状態では、母材シール材料MSは、表面が硬化されているもののその内側部分については大部分が未硬化状態とされる。このように母材シール配置工程は、シール形成工程が行われるCF母材基板11aMではないアレイ母材基板11bMに対して行われているから、例えばシール形成工程と母材シール配置工程とを並行して行うことが可能となる。従って、仮にシール形成工程と母材シール配置工程とを同じCF母材基板11aMに行うようにした場合に比べると、液晶パネル11の製造に係る時間が短く済む。
 基板貼り合わせ工程では、図17に示すように、CF母材基板11aMにおける各CF基板11aの各シール部11qにより囲まれた領域にそれぞれ液晶材料LCを滴下しておき、そのCF母材基板11aMに対してアレイ母材基板11bMを貼り合わせるようにする。この基板貼り合わせ工程は、真空環境下で行われる。両母材基板11aM,11bMが貼り合わせられると、図18に示すように、液晶層11cを構成する液晶材料LCが両母材基板11aM,11bM間にて押し拡げられることで、シール部11qにより囲まれた空間中が液晶材料LCにより満たされる。このとき、シール部11qは、液晶層11cによって押し込まれるような力を受けることになるので、狭額縁化が進行してシール部11qの幅が狭くなるとシール部11qがその力に抗しきれなくなって液晶層11cの一部がシール部11q内に入り込むおそれがある。その点、基板貼り合わせ工程に先立って行われるシール形成工程では、シール材料Sを、未硬化部分を残さないように硬化(完全硬化)させてシール部11qが形成されているから、狭額縁化が進行しても液晶層11cの一部がシール部11q内に入り込む事態が生じ難いものとなっている。シール部11qに対する液晶層11cの入り込みが防がれることで、両基板11a,11bに対するシール部11qの接着強度が低下することが避けられるとともにシール部11q内に気泡が生じることが避けられるので、両基板11a,11bが剥がれるなどの事態が好適に抑制される。それ以外にも、狭額縁化の進行に伴ってシール部11qの幅が狭くなると、外部の水分などがシール部11qの未硬化部分を透過して液晶層11c中に拡散し易くなる傾向にあるものの、基板貼り合わせ工程に先立って行われるシール形成工程では、シール材料を、未硬化部分を残さないように硬化(完全硬化)させてシール部11qが形成されているから、狭額縁化が進行しても外部の水分などがシール部11qを透過し難くなり、もって水分などが液晶層11c中に拡散し難いものとなっている。また、基板貼り合わせ工程が行われると、未硬化部分が残された母材シール材料MSがCF母材基板11aMに密着されることで、両母材基板11aM,11bM間が負圧に維持される。これにより、真空環境で行われる基板貼り合わせ工程を終えた後に両母材基板11aM,11bMが大気圧環境におかれたときでも、両母材基板11aM,11bMが位置ずれしたり剥がれたりする事態が生じ難いものとなる。
 シール固着工程では、貼り合わされた両母材基板11aM,11bMのうち、アレイ母材基板11bMの各アレイ基板11bに対して各シール部11qを固着することで、液晶層11cのシールが図られるようになっている。アレイ基板11bに対してシール部11qを固着させるには、図19に示すように、シール部11qに対してCF基板11a側からレーザ光を照射し、シール部11qのうちCF基板11aに接する部分を局所的に溶融させ、その後直ぐにシール部11qの溶融箇所が硬化することでCF基板11aに対するシール部11qの固着がなされる。このとき、シール部11qに照射されるレーザ光は、シール部11qがCF基板11aの遮光部11lとは非重畳の配置とされることで、遮光部11lによって遮られることが避けられるとともに、アレイ基板11bの各配線20によっても遮られることが避けられている(図7を参照)。従って、液晶パネル11の狭額縁化が進行してアレイ基板11bにおける各配線20の配置密度が高まって各配線20間の隙間が狭くなったとしても、それとは無関係にCF基板11aに対するシール部11qの固着を良好に促進することができる。なお、図19では、シール固着工程にて各シール部11qに照射されるレーザ光を一点鎖線の矢線で図示している。各シール部11qに対してレーザ光を個別に且つ順次に照射することも可能であるが、各シール部11qに対してレーザ光を一括して照射することも可能である。
 母材シール硬化工程では、母材シール材料MSである熱硬化性樹脂材料の硬化温度に至るまで加熱処理を行う。この加熱処理により母材シール材料MSが未硬化部分を残さないように硬化(完全硬化)されることで、図20に示すように、母材シール部21が形成される。この加熱処理に伴って液晶層11cを構成する液晶分子の再配向が促されるので、液晶層11cを構成する液晶分子の配列状態が良好なものとなる。なお、この母材シール硬化工程をシール固着工程に先立って行うことも可能である。分断工程では、両母材基板11aM,11bMを所定のスクライブラインに沿って分断することで、各液晶パネル11を取り出すようにしている。
 以上説明したように本実施形態の液晶パネル(表示パネル)11の製造方法は、CF基板(第1基板)11aに配したシール材料Sを、未硬化部分を残さないように硬化させてシール部11qを形成するシール形成工程と、CF基板11aに対してアレイ基板(第2基板)11bを、間に液晶層(媒質層)11cを介在させた形で貼り合わせる基板貼り合わせ工程と、シール部11qをアレイ基板11bに対して固着させるシール固着工程と、を備える。
 このように、シール形成工程では、シール材料SがCF基板11aに配されると、そのシール材料Sが未硬化部分を残さないよう硬化されることでシール部11qが形成される。その後に行われる基板貼り合わせ工程では、CF基板11aに対してアレイ基板11bを、間に液晶層11cを介在させた形で貼り合わされる。その後に行われるシール固着工程では、シール部11qがアレイ基板11bに対して固着されることで、液晶層11cのシールが図られる。そして、基板貼り合わせ工程においては、両基板11a,11bの貼り合わせに伴って液晶層11cが両基板11a,11b間にて押し拡げられることで、シール部11qが液晶層11cによって押し込まれるような力を受けることになり、狭額縁化が進行してシール部11qの幅が狭くなるとシール部11qがその力に抗しきれなくなって液晶層11cの一部がシール部11q内に入り込むおそれがある。これに対し、基板貼り合わせ工程に先立って行われるシール形成工程では、シール材料Sを、未硬化部分を残さないように硬化させてシール部11qが形成されているから、狭額縁化が進行しても液晶層11cの一部がシール部11q内に入り込む事態が生じ難いものとなっている。また、狭額縁化の進行に伴ってシール部11qの幅が狭くなると、外部の水分などがシール部11qの未硬化部分を透過して液晶層11c中に拡散し易くなる傾向にあるものの、基板貼り合わせ工程に先立って行われるシール形成工程では、シール材料Sを、未硬化部分を残さないように硬化させてシール部11qが形成されているから、狭額縁化が進行しても外部の水分などがシール部11qを透過し難くなり、もって水分などが液晶層11c中に拡散し難いものとなる。以上のように、液晶パネル11の狭額縁化を図る上で好適となる。
 また、上記液晶パネル11の製造方法は、板面内にCF基板11aを複数配してなるCF母材基板(第1母材基板)11aMを製造するCF母材基板製造工程(第1母材基板製造工程)と、板面内にアレイ基板11bを複数配してなるアレイ母材基板(第2母材基板)11bMを製造するアレイ母材基板製造工程(第2母材基板製造工程)と、CF母材基板11aMとアレイ母材基板11bMとのいずれか一方に、複数のCF基板11aと複数のアレイ基板11bとのいずれか一方を取り囲む形で未硬化部分が残された状態の母材シール材料MSを配置する母材シール配置工程と、少なくとも基板貼り合わせ工程の後に行われて母材シール材料MSを、未硬化部分を残さないように硬化させて母材シール部11qを形成する母材シール硬化工程と、を備える。このようにすれば、CF母材基板製造工程及びアレイ母材基板製造工程を経て製造されたCF母材基板11aMとアレイ母材基板11bMとのいずれか一方には、母材シール配置工程にて複数のCF基板11aと複数のアレイ基板11bとのいずれか一方を取り囲む形で未硬化部分が残された状態の母材シール材料MSが配置される。その後に行われる基板貼り合わせ工程にて貼り合わせられると、未硬化部分が残された母材シール材料MSがCF母材基板11aMとアレイ母材基板11bMとの他方側に密着されることで、両母材基板11aM,11bM間を負圧に維持することが可能となる。これにより、両母材基板11aM,11bMが位置ずれしたり剥がれたりする事態が生じ難いものとなる。その後に行われる母材シール硬化工程では、母材シール材料MSを、未硬化部分を残さないように硬化させることで母材シール部11qが形成される。
 また、上記液晶パネル11の製造方法は、母材シール配置工程では、アレイ母材基板11bMに母材シール材料MSを配置している。このようにすれば、シール形成工程が行われるCF母材基板11aMではないアレイ母材基板11bMに母材シール材料MSを配置する母材シール配置工程を行うようにしているから、例えばシール形成工程と母材シール配置工程とを並行して行うことが可能となる。従って、仮にシール形成工程と母材シール配置工程とを同じCF母材基板11aMに行うようにした場合に比べると、液晶パネル11の製造に係る時間が短く済む。
 また、上記液晶パネル11の製造方法は、基板貼り合わせ工程では、媒質層を液晶層11cとしており、母材シール配置工程では、母材シール材料MSとして熱硬化性樹脂材料を配置しており、母材シール硬化工程では、少なくとも熱硬化性樹脂材料の硬化温度に至るまで加熱処理を行う。このようにすれば、母材シール硬化工程にて少なくとも母材シール材料MSである熱硬化性樹脂材料の硬化温度に至るまで加熱処理がなされると、熱硬化性樹脂材料が硬化されて母材シール部11qが形成されるとともに、媒質層である液晶層11cを構成する液晶分子の再配向が促される。これにより、液晶層11cを構成する液晶分子の配列状態が良好なものとなる。
 また、上記液晶パネル11の製造方法は、シール形成工程では、ディスペンサ32aによりシール材料Sを吐出することで、シール部11qの形成予定領域に倣う形でシール材料Sを配置している。このようにすれば、仮にCF基板11aの板面内の全域にシール材料Sを積層配置してそのシール材料Sを選択的に硬化させるようにした場合に比べると、シール材料Sの使用量が少なく済み、製造コストの低廉化を図る上で好適となる。
 また、上記液晶パネル11の製造方法は、シール形成工程は、粉末状とされるシール材料SをCF基板11a上に配置するシール配置工程と、シール材料Sにレーザ光を照射してその照射箇所を、未硬化部分を残さないように選択的に硬化させるシール硬化工程と、を含む。このようにすれば、シール配置工程では、粉末状とされるシール材料SをCF基板11a上に配置し、それに続いて行われるシール硬化工程では、CF基板11a上に配置されたシール材料Sにレーザ光が照射され、その照射箇所が、未硬化部分を残さないように選択的に硬化される。これにより、シール部11qが形成される。
 さらには、本実施形態の液晶パネル11は、画像が表示される表示領域AAにてマトリクス状に配列される複数の画素PXと、表示領域AA外の非表示領域NAAに配される複数の配線20を少なくとも有するアレイ基板11bと、少なくとも複数の画素PXを仕切る形で配される部分を有する遮光部11lを有していてアレイ基板11bと対向する形で配されるCF基板(対向基板)11aと、アレイ基板11bとCF基板11aとの間に挟持される液晶層11cと、液晶層11cを取り囲む形で非表示領域NAAにて複数の配線20と重畳するよう配されてアレイ基板11bとCF基板11aとの間に介在するシール部11qであって、遮光性を有する材料からなり遮光部11lとは非重畳となる形で配されるシール部11qと、を備える。
 このようにすれば、表示領域AAにてマトリクス状に配列される複数の画素PXの間が遮光部11lによって仕切られることで混色などの発生が避けられる。アレイ基板11bとCF基板11aとの間に挟持される液晶層11cは、非表示領域NAAに配されてアレイ基板11bとCF基板11aとの間に介在するシール部11qによって取り囲まれることでシールがとられている。
 ここで、シール部11qは、非表示領域NAAにてアレイ基板11bが有する複数の配線20と重畳するよう配されるため、仮にアレイ基板11b側から照射される光によってCF基板11aに対する固着などを促そうとした場合には、光が配線20によって遮られてしまい、特に狭額縁化の進行に伴って配線20の配置密度が高くなった場合には、CF基板11aに対する固着などが不十分なものとなったり、固着などに要する時間が長くなるおそれがある。その点、シール部11qは、CF基板11aが有する遮光部11lとは非重畳となる位置関係とされているので、シール部11qをアレイ基板11bに対して固着などするに際してCF基板11a側から光を照射するようにすれば、遮光部11lによって光が遮られることが避けられ、アレイ基板11bに対するシール部11qの固着などを良好に促進することが可能となる。これにより、狭額縁化に伴って配線20の配置密度が高くなった場合でも、アレイ基板11bに対するシール部11qの固着などが配線20の配置密度とは無関係に良好に促進される。しかも、シール部11qは、遮光性を有しているので、遮光部11lとは非重畳の配置となっていても非表示領域NAAにおいて光漏れが生じるのを避けることができる。以上のように狭額縁化を図る上で好適となる。
 また、上記液晶パネル11は、CF基板11aには、少なくとも遮光部11lに対して液晶層11c側に積層されシール部11qとは非重畳となる範囲に配される平坦化層11mが設けられている。このようにすれば、CF基板11aに対してシール部11qが直接接する形で固着されることになる。つまり、シール部11qとCF基板11aとの間に平坦化層11mが介在することがないものとされるから、CF基板11aに対してシール部11qがより強固に固着される。その上、シール部11qとCF基板11aとの間の界面のみが外部に露出することになるから、仮にシール部11qとCF基板11aとの間に平坦化層11mが介在する場合に比べると、外部に露出する界面が少なくなり、外部に存在する水分などが上記界面を透過して液晶層11c内に浸入し難いものとなる。
 また、上記液晶パネル11は、シール部11qは、液晶層11c側とは反対側の外面が少なくともCF基板11aの端面と面一状をなす。このようにすれば、仮にシール部11qの外面がCF基板11aの端面より引っ込む配置とした場合に比べると、一層の狭額縁化を図ることができる。
 また、上記液晶パネル11は、シール部11qは、合成樹脂材料に遮光剤を配合してなる。このようにすれば、遮光剤を合成樹脂材料に配合する際に容易に遮光剤を分散させることができるので、シール部11qの遮光性が容易に均一化される。また、仮にシール部11qを金属材料からなる構成とした場合に比べると、CF基板11aに対してシール部11qを固着などさせる際に要する温度が低く済む。
 また、上記液晶パネル11は、シール部11qには、スペーサ粒子が含有されている。このようにすれば、シール部11qの高さを一定に保つ上で好適とされる。
 <実施形態2>
 本発明の実施形態2を図21または図22によって説明する。この実施形態2では、遮光部の枠状部を除去したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る液晶パネル111は、図21及び図22に示すように、非表示領域NAAのほぼ全幅にわたってシール部111qが配されており、図示しない遮光部の枠状部が除去されている。従って、シール部111qは、遮光部の格子状部と共に複数の画素PXを仕切る形で配されている。つまり、表示領域AA内においてマトリクス状に配列された複数の画素PXのうち、最外周位置に配された各画素PXは、遮光部の格子状部における最外周部分と、それを一括して取り囲むシール部111qと、によって区画されている。このような構成によれば、遮光部の枠状部が存在しない分だけ、液晶パネル111のさらなる狭額縁化が図られる。
 以上説明したように本実施形態の液晶パネル111によれば、シール部111qは、遮光部と共に複数の画素PXを仕切る形で配されている。このようにすれば、仮に遮光部がシール部111qに倣う額縁部分を有していて遮光部のみで複数の画素PXを仕切る構成とした場合に比べると、狭額縁化を図る上でより好適となる。
 <実施形態3>
 本発明の実施形態3を図23によって説明する。この実施形態3では、上記した実施形態1からシール形成工程にて用いられるシール形成装置40を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るシール形成工程では、図23に示すように、熱溶解式のシール形成装置40が用いられている。このシール形成装置40は、CF母材基板211aMが載置されるステージ41と、ステージ41上のCF母材基板211aMに対して対向状に配されるヘッド部42と、ヘッド部42に接続されてこれを制御する制御部43と、を少なくとも備えている。この熱溶解式のシール形成装置40は、実施形態1に記載した粉末焼結式のシール形成装置30(図10を参照)に比べると、光源部33やレーザ光出射部32cなどを備えない分だけ、設備コストが安価なものとなっている。このシール形成装置40は、実施形態1に記載したシール形成装置30との相違点が主にヘッド部42とされているので、以下ではヘッド部42に関して詳しく説明し、その他の実施形態1と同様の構成などに関しては説明を割愛する。
 シール形成装置40のヘッド部42には、シール材料Sとして熱可塑性樹脂材料を熱溶解(熱溶融)させつつCF母材基板211aM上に吐出するディスペンサ42aと、ディスペンサ42aから吐出されたシール材料を転圧するローラ部42bと、ディスペンサ42a及びローラ部42bを駆動させる駆動部42cと、が少なくとも備えられる。ディスペンサ42aは、シール材料Sである熱可塑性樹脂材料として、例えばABS樹脂材料やナイロン樹脂材料などが充填されるシリンジと、シリンジを加熱して熱可塑性樹脂材料を熱溶解させる加熱手段と、を備える。シリンジに充填される熱可塑性樹脂材料には、スペーサ粒子としてセルギャップ程度の粒径とされるシリカビーズなどを1~数%程度含有させておくのが好ましい。ディスペンサ42aによるシール材料Sの吐出量などは駆動部42cによって制御される。
 ローラ部42bは、駆動部42cによってCF母材基板211aMに対して接近または離間するよう昇降可能とされる。具体的には、ローラ部42bは、ディスペンサ42aからシール材料Sが吐出されない間はCF母材基板211aMから離間した位置に配されるのに対し、ディスペンサ42aからシール材料Sが吐出される間はCF母材基板211aMに近接する位置に配されるようになっている。ローラ部42bは、CF母材基板211aM上にて溶融状態とされたシール材料Sをセルギャップ程度の厚みにまで押し拡げるものとされる。ローラ部42bにより押し拡げられたシール材料Sは、温度低下(冷却)が進行するのに伴って未硬化部分を残すことなく硬化(完全硬化)されることで、シール部が形成される。このようにして形成されたシール部は、基板貼り合わせ工程を経た後に行われるシール固着工程において、両母材基板211aMを加圧しつつ加熱することで、図示しないアレイ母材基板に対して固着される。なお、ディスペンサ42aからCF母材基板211aM上に吐出されたシール材料Sが次述するローラ部42bにより転圧されるまでの間、シール材料Sの流動性を保つため、ローラ部42bまたはステージ41に加熱機構を設けるのが好ましい。
 以上説明したように本実施形態の液晶パネルの製造方法によれば、シール形成工程では、熱可塑性樹脂材料とされるシール材料Sを加熱して溶融させつつCF母材基板211aM(CF基板)上に塗布して未硬化部分を残さないように硬化させる。このようにすれば、シール形成工程では、熱可塑性樹脂材料とされるシール材料Sが加熱されて溶融されると、その溶融されたシール材料SがCF母材基板211aM上に塗布される。CF母材基板211aM上に塗布されたシール材料Sは、温度低下に伴って未硬化部分を残さないよう硬化される。これにより、シール部が形成される。
 <実施形態4>
 本発明の実施形態4を図24から図26によって説明する。この実施形態4は、上記した実施形態1とは、シール部311qの幅を規制するためのシール規制部22を設けるようにした点で異なる。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る液晶パネル311には、図24に示すように、シール部311qを内側(液晶層311c側)と、外側(液晶層311c側とは反対側)と、から挟み込む形で配されるシール規制部22が設けられている。シール規制部22は、シール部311qに倣って(並行する形で)延在することで全体として平面に視て方形の枠状をなしており、シール部311qに対して内側に隣接して配されるものと、シール部311qに対して外側に隣接して配されるものと、からなる。このシール規制部22によりシール部311qの幅が一定の値となるよう規制することが可能とされる。シール規制部22は、その幅が例えば20~50μm程度とされており、シール部311qの幅よりは小さなものとされる。シール規制部22は、CF基板311aを製造する際、つまりCF母材基板製造工程において、平坦化層311mの表面にフォトスペーサを形成する際に、フォトスペーサと同一材料でもって形成されている。なお、シール規制部22のうち、シール部311qに対して内側に隣接して配されるものは、遮光部311lの枠状部311l2及び平坦化層311mに対して平面に視て重畳する配置とされるのが好ましい。
 シール規制部22がその機能を発揮するのは、主にCF母材基板製造工程の後に行われるシール形成工程においてである。シール形成工程に含まれるシール配置工程において、シール形成装置のディスペンサ(図10及び図11を参照)からCF基板311a上にシール材料Sが吐出されると、そのシール材料Sは、図25に示すように、対をなすシール規制部22の間に挟まれた範囲に列状に配される。ここで、シール規制部22は、その延在方向についての途中に開口22aを有している。開口22aは、シール規制部22をその幅方向に貫通する形態とされており、その開口幅がシール材料Sを構成するナイロンパウダーの粒径(例えば50μm)よりも小さなものとされる。従って、対をなすシール規制部22の間に挟まれた範囲に配されたシール材料Sは、シール規制部22の開口22aを通り抜けることができず、対をなすシール規制部22の間に挟まれた範囲に留められるようになっている。このようにして配置されたシール材料Sは、シール形成装置の第1ローラ部(図10及び図12を参照)によって転圧されることで粉砕されて押し拡げられる。このとき、シール材料Sが押し拡げられる範囲は、シール配置工程において配置されたナイロンパウダーの分布密度に依存する傾向にあり、仮にナイロンパウダーの分布密度が局所的に高い箇所が生じると、当該箇所においてシール材料Sが押し拡げられる範囲が局所的に広くなるおそれがある。その場合でも、シール材料Sを挟み込む配置とされたシール規制部22によってシール材料Sが押し拡げられる範囲が規制されるので、後にシール硬化工程を経て形成されるシール部311qの幅が全長にわたってほぼ一定になるものとされる。なお、ナイロンパウダーの分布密度が局所的に高い箇所が生じた場合、シール材料Sが転圧される際に当該箇所に生じる余剰分は、シール規制部22の開口22aから外側に逃がされるようになっており、それによりシール材料Sの余剰分によりシール部311qの高さが不均一になることが避けられている。
 以上説明したように本実施形態の液晶パネル311によれば、シール部311qを液晶層311c側とその反対側とから挟み込む形で配されるシール規制部22を備える。このようにすれば、シール部311qを形成する際にその幅を規制することができる。これにより、当該液晶パネル311における額縁幅が高い精度で得られ、もって狭額縁化を図る上でより好適となる。
 また、上記液晶パネル311は、シール規制部22は、シール部311qに並行する形で延在しその途中に開口22aを有している。このようにすれば、シール部311qを形成するに際して未硬化状態の材料をシール規制部22の開口22aから逃がすことが可能となる。これにより、シール部311qの高さが均一化される。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態には、遮光部とは非重畳となる形で配されるシール部が遮光性を有する構成とされる液晶パネルの製造方法として、シール材料を、未硬化部分を残さないよう硬化させてシール部を形成するシール形成工程を行った後に基板貼り合わせ工程を行い、その後にシール部をアレイ基板に固着させるシール固着工程を行うようにしたものを記載したが、例えば液晶パネルの製造方法を変更し、従来と同様にシール材料を仮硬化するシール仮硬化工程を行った後に基板貼り合わせ工程を行い、その後にシール材料を本硬化させるシール本硬化工程を行うようにしても構わない。これとは逆に、液晶パネルの構造を変更し、従来と同様にシール部が遮光性を有さない構成とされて遮光部と重畳する配置とされるようにしても構わない。
 (2)上記した各実施形態では、シール材料の主成分としてナイロン(ポリアミド)からなるナイロンパウダーを例示したが、ナイロン以外の材料を用いることも可能である。例えば、シール材料の主成分としては、ポリアミド樹脂ホットメルト接着剤〔ポリアミド(ナイロン)樹脂を主成分とする接着剤〕、ポリプロピレン(PP)、ポリ乳酸、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、アクリルニトリル・ブタジエン・スチレンコポリマー(ABS)、エチレン・酢酸ビニルコポリマー(EVA)、スチレン・アクリロニトリルコポリマー(SAN)、及びポリカプロラクトンなどを用いることが可能である。
 (3)上記した各実施形態では、シール材料を合成樹脂材料とした場合を示したが、シール材料を金属材料とすることも可能であり、金属材料としては例えばチタンからなるチタン粒子などを用いることができる。
 (4)上記した実施形態1では、シール材料を硬化させるために炭酸ガスレーザ光を用いた場合を示したが、それ以外の気体レーザ光(ガスレーザ光)を用いることも可能である。炭酸ガスレーザ光以外の気体レーザ光としては、例えばエキシマレーザ光(媒質としてArF,KrF,XeCl,XeFなどを用いる)、イオンレーザ光(媒質としてアルゴンイオンやクリプトンイオンを単独または混合して用いる)、媒質として窒素を用いた窒素レーザ光、混合気体レーザ光(媒質としてHe-NeやTEA-COなどの混合気体を用いる)、金属蒸気レーザ光(媒質としてCuやHe-Cdなどを用いる)、化学レーザ光(媒質としてHFなどを用いる)などが挙げられる。このうち、エキシマレーザ光に関しては、媒質としてArFを用いる場合は、波長が193nmで照射強度が500mJとされるエキシマレーザ光を用いるのが好ましく、また媒質としてKrFを用いる場合は、波長が248nmで照射強度が1Jとされるエキシマレーザ光を用いるのが好ましい。
 (5)上記(4)に記載した気体レーザ光以外にも、シール材料を硬化させるために固体レーザ光や液体レーザ光を用いることも可能である。固体レーザ光としては、YAGレーザ光(媒質としてNd3+:YAl12を用いる)、Q-スイッチYAGレーザ光、ルビーレーザ光(媒質としてCr3+:Alを用いる)、ガラスレーザ光、チタンサファイアレーザ光(媒質としてTi4+:Alを用いる)、アレキサンドライトレーザ光(媒質としてCr3+:BeAlを用いる)、YLFレーザ光(媒質としてEr3+:YLiFを用いる)、半導体レーザ光(媒質としてGaAlAsまたはGaAlAsアレイを用いる)などが挙げられる。このうち、半導体レーザ光に関しては、媒質としてGaAlAsを用いる場合は、波長が750~905nmで照射強度が1Wとされる半導体レーザ光を用いるのが好ましい。
 (6)上記した各実施形態では、シール材料をレーザ光によって焼結・硬化させる場合(粉末焼結式)や、シール材料として熱可塑性樹脂材料を用いて加熱による溶融後に冷却・硬化させる場合(熱溶解式)を示したが、シール材料として紫外線硬化性樹脂材料を用いてそれを紫外線により硬化させるようにしても構わない。その場合、シール材料である紫外線硬化性樹脂材料を例えばインクジェットでもって対象基板に塗布することが可能である。
 (7)上記した(6)以外にも、粉末接着式を採用し、例えばシール材料として石膏などの粉末を用い、その粉末を対象基板に配置した後に、インクジェットでもって接着剤などの結合剤を粉末に吹き付けることで、粉末を硬化させるようにしても構わない。
 (8)上記した各実施形態では、シール形成工程にてCF基板(CF母材基板)側にシール部を形成し、そのシール部をシール固着工程にてアレイ基板(アレイ母材基板)に対して固着する場合を示したが、シール形成工程にてアレイ基板(アレイ母材基板)側にシール部を形成し、そのシール部をシール固着工程にてCF基板(CF母材基板)に対して固着するようにしても構わない。
 (9)上記した各実施形態では、母材シール配置工程にてアレイ基板(アレイ母材基板)側に母材シール部を配置する場合を示したが、母材シール配置工程にてCF基板(CF母材基板)側に母材シール部を配置することも可能である。
 (10)上記した各実施形態では、母材シール部を形成する場合を示したが、他の方法によって両母材基板を固定することができるのであれば、母材シール部を除去することも可能である。例えば、両母材基板のいずれか一方の母材基板における外周側部分に対してシール部に倣う形で点状の紫外線硬化性樹脂材料を間隔を空けて複数設置し、両母材基板を貼り合わせてから紫外線の照射によって点状の紫外線硬化性樹脂材料を硬化させることで、両母材基板の固定を図るようにすればよい。
 (11)上記した各実施形態では、シール部が行制御回路部や列制御回路部に対して全域にわたって重畳する配置を示したが、シール部が行制御回路部や列制御回路部に対して部分的に重畳する配置であっても構わない。
 (12)上記した各実施形態では、シール部が行制御回路部や列制御回路部に対して重畳する場合を示したが、行制御回路部や列制御回路部以外の配線に対してシール部が重畳する配置とされるものであっても構わない。
 (13)上記した各実施形態では、行制御回路部及び列制御回路部(モノリシック回路部)を備える液晶パネル及びその製造方法を示したが、行制御回路部及び列制御回路部のいずれか一方または両方を備えない液晶パネル及びその製造方法にも本発明は適用可能である。
 (14)上記した各実施形態では、平面形状が長方形とされる液晶パネル及びその製造方法について示したが、平面形状が正方形、円形、楕円形などとされる液晶パネル及びその製造方法にも本発明は適用可能である。
 (15)上記した各実施形態では、ドライバが液晶パネルのアレイ基板に対してCOG実装される場合を示したが、ドライバが液晶パネル用フレキシブル基板に対してCOF(Chip On Film)実装される構成であってもよい。
 (16)上記した各実施形態では、TFTのチャネル部を構成する半導体膜が酸化物半導体材料からなる場合を例示したが、それ以外にも、例えばポリシリコン(多結晶化されたシリコン(多結晶シリコン)の一種であるCGシリコン(Continuous Grain Silicon))やアモルファスシリコンを半導体膜の材料として用いることも可能である。
 (17)上記した各実施形態では、FFSモードの液晶パネル及びその製造方法を示したが、VAモードの液晶パネル、IPSモードの液晶パネル、TNモードの液晶パネルやそれらの製造方法にも本発明は適用可能である。
 (18)上記した各実施形態では、液晶パネルのカラーフィルタが赤色、緑色及び青色の3色構成とされたものを例示したが、赤色、緑色及び青色の各着色部に、黄色の着色部を加えて4色構成としたカラーフィルタを備えたものにも本発明は適用可能である。
 (19)上記した各実施形態では、小型または中小型に分類される液晶パネルを例示したが、画面サイズが例えば20インチ~100インチで、中型または大型(超大型)に分類される液晶パネルにも本発明は適用可能である。その場合、液晶パネルをテレビ受信装置、電子看板(デジタルサイネージ)、電子黒板などの電子機器に用いることが可能とされる。
 (20)上記した各実施形態では、一対の基板間に液晶層が挟持された構成とされる液晶パネルについて例示したが、一対の基板間に液晶材料以外の機能性有機分子を挟持した表示パネルについても本発明は適用可能である。
 (21)上記した各実施形態では、液晶パネル及びその製造方法を例示したが、有機ELパネル及びその製造方法にも本発明は適用可能である。有機ELパネルにおいては、シール部の内側に媒質層として除湿剤や空気が存在しており、両基板を貼り合わせる際の圧力によって除湿剤や空気がシール部側に押し込まれると、シール部内に除湿剤や空気が入り込むおそれがあるものの、本発明を適用することでシール部内に除湿剤や空気が入り込む問題を回避することができる。
 (22)上記した各実施形態では、液晶パネルのスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶パネルにも適用可能であり、カラー表示する液晶パネル以外にも、白黒表示する液晶パネルにも適用可能である。
 11,111,311...液晶パネル(表示パネル)、11a,311a...CF基板(第1基板、対向基板)、11aM,211aM...CF母材基板(第1母材基板)、11b...アレイ基板(第2基板)、11bM...アレイ母材基板(第2母材基板)、11c,311c...液晶層(媒質層)、11l,311l...遮光部、11m,311m...平坦化層、11q,111q,311q...シール部、20...配線、21...母材シール部、22...シール規制部、22a...開口、32a...ディスペンサ、42a...ディスペンサ、AA...表示領域、MS...母材シール材料、NAA...非表示領域、PX...画素、S...シール材料

Claims (15)

  1.  第1基板に配したシール材料を、未硬化部分を残さないように硬化させてシール部を形成するシール形成工程と、
     前記第1基板に対して第2基板を、間に媒質層を介在させた形で貼り合わせる基板貼り合わせ工程と、
     前記シール部を前記第2基板に対して固着させるシール固着工程と、を備える表示パネルの製造方法。
  2.  板面内に前記第1基板を複数配してなる第1母材基板を製造する第1母材基板製造工程と、
     板面内に前記第2基板を複数配してなる第2母材基板を製造する第2母材基板製造工程と、
     前記第1母材基板と前記第2母材基板とのいずれか一方に、複数の前記第1基板と複数の前記第2基板とのいずれか一方を取り囲む形で未硬化部分が残された状態の母材シール材料を配置する母材シール配置工程と、
     少なくとも前記基板貼り合わせ工程の後に行われて前記母材シール材料を、未硬化部分を残さないように硬化させて母材シール部を形成する母材シール硬化工程と、を備える請求項1記載の表示パネルの製造方法。
  3.  前記母材シール配置工程では、前記第2母材基板に前記母材シール材料を配置している請求項2記載の表示パネルの製造方法。
  4.  前記基板貼り合わせ工程では、前記媒質層を液晶層としており、
     前記母材シール配置工程では、前記母材シール材料として熱硬化性樹脂材料を配置しており、
     前記母材シール硬化工程では、少なくとも前記熱硬化性樹脂材料の硬化温度に至るまで加熱処理を行う請求項2または請求項3記載の表示パネルの製造方法。
  5.  前記シール形成工程では、ディスペンサにより前記シール材料を吐出することで、前記シール部の形成予定領域に倣う形で前記シール材料を配置している請求項1から請求項4のいずれか1項に記載の表示パネルの製造方法。
  6.  前記シール形成工程は、粉末状とされる前記シール材料を前記第1基板上に配置するシール配置工程と、前記シール材料にレーザ光を照射してその照射箇所を、未硬化部分を残さないように選択的に硬化させるシール硬化工程と、を含む請求項1から請求項5のいずれか1項に記載の表示パネルの製造方法。
  7.  前記シール形成工程では、熱可塑性樹脂材料とされる前記シール材料を加熱して溶融させつつ前記第1基板上に塗布して未硬化部分を残さないように硬化させる請求項1から請求項5のいずれか1項に記載の表示パネルの製造方法。
  8.  画像が表示される表示領域にてマトリクス状に配列される複数の画素と、
     前記表示領域外の非表示領域に配される複数の配線を少なくとも有するアレイ基板と、
     少なくとも前記複数の画素を仕切る形で配される部分を有する遮光部を有していて前記アレイ基板と対向する形で配される対向基板と、
     前記アレイ基板と前記対向基板との間に挟持される媒質層と、
     前記媒質層を取り囲む形で前記非表示領域にて前記複数の配線と重畳するよう配されて前記アレイ基板と前記対向基板との間に介在するシール部であって、遮光性を有する材料からなり前記遮光部とは非重畳となる形で配されるシール部と、を備える表示パネル。
  9.  前記対向基板には、少なくとも前記遮光部に対して前記媒質層側に積層され前記シール部とは非重畳となる範囲に配される平坦化層が設けられている請求項8記載の表示パネル。
  10.  前記シール部は、前記媒質層側とは反対側の外面が少なくとも前記対向基板の端面と面一状をなす請求項9記載の表示パネル。
  11.  前記シール部は、合成樹脂材料に遮光剤を配合してなる請求項8から請求項10のいずれか1項に記載の表示パネル。
  12.  前記シール部を前記媒質層側とその反対側とから挟み込む形で配されるシール規制部を備える請求項8から請求項11のいずれか1項に記載の表示パネル。
  13.  前記シール規制部は、前記シール部に並行する形で延在しその途中に開口を有している請求項12記載の表示パネル。
  14.  前記シール部には、スペーサ粒子が含有されている請求項8から請求項13のいずれか1項に記載の表示パネル。
  15.  前記シール部は、前記遮光部と共に前記複数の画素を仕切る形で配されている請求項8から請求項14のいずれか1項に記載の表示パネル。
PCT/JP2016/074945 2015-08-31 2016-08-26 表示パネルの製造方法及び表示パネル WO2017038670A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/755,554 US20180275437A1 (en) 2015-08-31 2016-08-26 Display panel and method of producing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170391 2015-08-31
JP2015170391 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038670A1 true WO2017038670A1 (ja) 2017-03-09

Family

ID=58187357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074945 WO2017038670A1 (ja) 2015-08-31 2016-08-26 表示パネルの製造方法及び表示パネル

Country Status (2)

Country Link
US (1) US20180275437A1 (ja)
WO (1) WO2017038670A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7564871B2 (ja) 2019-12-19 2024-10-09 グーグル エルエルシー ディスプレイパネルにおけるセンサのための電力線デザイン

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378923B2 (ja) * 2018-10-31 2023-11-14 キヤノン株式会社 半導体装置、モジュール、カメラおよび機器
CN111158197A (zh) * 2020-01-02 2020-05-15 Tcl华星光电技术有限公司 液晶显示面板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139555A (ja) * 2006-12-01 2008-06-19 Sharp Corp 液晶表示装置及びその製造方法
WO2012141140A1 (ja) * 2011-04-13 2012-10-18 シャープ株式会社 液晶表示パネルおよびその製造方法
JP2015129822A (ja) * 2014-01-07 2015-07-16 株式会社ジャパンディスプレイ 表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050102124A (ko) * 2003-02-21 2005-10-25 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 셀 제조 방법 및 이러한 방법에 의해 제조되는 셀과, 화상표시 장치
KR101313125B1 (ko) * 2005-11-24 2013-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정표시장치의 제조방법
US8049851B2 (en) * 2007-06-26 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a liquid crystal display device having a second orientation film surrounding a first orientation film
US8194211B2 (en) * 2008-03-18 2012-06-05 Nlt Technologies, Ltd. Transflective liquid crystal display unit
JP2010139953A (ja) * 2008-12-15 2010-06-24 Hitachi Displays Ltd 液晶表示装置
JP5376446B2 (ja) * 2009-07-24 2013-12-25 株式会社ジャパンディスプレイ 静電容量型入力装置および入力機能付き表示装置
US9625764B2 (en) * 2012-08-28 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
TWI499831B (zh) * 2012-09-05 2015-09-11 Innocom Tech Shenzhen Co Ltd 液晶顯示面板
KR102154813B1 (ko) * 2013-01-17 2020-09-11 삼성디스플레이 주식회사 터치 스크린 패널 일체형 표시장치
CN103645589B (zh) * 2013-12-10 2015-12-30 京东方科技集团股份有限公司 显示装置、阵列基板及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139555A (ja) * 2006-12-01 2008-06-19 Sharp Corp 液晶表示装置及びその製造方法
WO2012141140A1 (ja) * 2011-04-13 2012-10-18 シャープ株式会社 液晶表示パネルおよびその製造方法
JP2015129822A (ja) * 2014-01-07 2015-07-16 株式会社ジャパンディスプレイ 表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7564871B2 (ja) 2019-12-19 2024-10-09 グーグル エルエルシー ディスプレイパネルにおけるセンサのための電力線デザイン

Also Published As

Publication number Publication date
US20180275437A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
TWI303341B (en) Liquid crystal display panel and manufacturing method therof
JP6654278B2 (ja) 機器及びその製造方法
US9239495B2 (en) Display device, electronic device including display device, and method for manufacturing display device
US7598103B2 (en) Liquid crystal display panel with different substrate materials and method of making the liquid crystal display panel
US8368863B2 (en) Liquid crystal display panel
JPH10153785A (ja) 液晶表示装置
JP4987422B2 (ja) 表示装置、及びその製造方法
JP6220592B2 (ja) 液晶表示素子及びその製造方法
US20180173033A1 (en) Method of producing display device, and display device
JP2007304273A (ja) 液晶表示素子
KR101818449B1 (ko) 액정패널의 절단방법 및 액정표시장치 제조방법
WO2007119409A1 (ja) 大型基板及びそれを用いた液晶装置並びにその製造方法
JP2010186068A (ja) 電気光学装置、電気光学装置の製造方法および電子機器
US9360728B2 (en) Liquid crystal display panel and method of manufacturing the same
JP2009300475A (ja) 基板装置、表示素子および基板装置の製造方法
WO2017038670A1 (ja) 表示パネルの製造方法及び表示パネル
JP2008139555A (ja) 液晶表示装置及びその製造方法
JP2009230039A (ja) 電気光学装置の製造方法
KR20030079429A (ko) 액정표시소자 및 그 제조방법
WO2011080968A1 (ja) 液晶パネルの製造方法
JP2009092766A (ja) 表示装置及びその製造方法
JP2007264102A (ja) 液晶表示パネルおよびその製造方法
JP2007248696A (ja) 電気光学装置の製造方法
KR20130045733A (ko) 표시 패널 및 이의 제조 방법
JP2015025959A (ja) 液晶表示素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841702

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP