US20180275437A1 - Display panel and method of producing display panel - Google Patents

Display panel and method of producing display panel Download PDF

Info

Publication number
US20180275437A1
US20180275437A1 US15/755,554 US201615755554A US2018275437A1 US 20180275437 A1 US20180275437 A1 US 20180275437A1 US 201615755554 A US201615755554 A US 201615755554A US 2018275437 A1 US2018275437 A1 US 2018275437A1
Authority
US
United States
Prior art keywords
board
sealing member
sealing material
base
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/755,554
Inventor
Shogo Nishiwaki
Masahiko Kondoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Assigned to SHARP KABUSHIKI KAISHA reassignment SHARP KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NISHIWAKI, SHOGO, KONDOH, MASAHIKO
Publication of US20180275437A1 publication Critical patent/US20180275437A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • G02F2001/133357

Definitions

  • the present invention relates to a display panel and a method of producing a display panel.
  • a method of producing a liquid crystal panel of a liquid crystal display device disclosed in Patent Document 1 has been known as an example of a method of producing a liquid crystal panel.
  • a recess is formed for an entire peripheral area of an alignment film forming area on a substrate.
  • a first application liquid is applied on the recess to form a bank portion in a frame shape.
  • a second application liquid is discharged to the alignment film forming area through an inkjet method to form an alignment film.
  • a sealing member is disposed on one of the substrates including the substrate on which the alignment film is formed. The substrates are bonded together with the sealing member.
  • a liquid crystal layer is sandwiched between the substrates. An outer edge of the sealing member is located closer to an outer edge of the substrate relative to the bank portion.
  • Patent Document 1 Unexamined Japanese Patent Application Publication No. 2014-174432
  • Patent Document 1 includes two problems described below. A first problem will be described. In Patent Document 1, bonding of boards is performed after a sealant that has not been cured is applied and then the sealant is cured. During the bonding of the boards, a liquid crystal material is pressed and spread between the boards. The sealant receives a force that is applied to the sealant by the liquid crystal material to push the sealant. If the frame size of the liquid crystal panel is further reduced and a width of the sealant is reduced, the sealant may not be able to withstand the force and the liquid crystal material may partially enter the sealant. Furthermore, if the frame size of the liquid crystal panel is further reduced and a width of a seal member is reduced, external moisture may passes through an uncured section of the sealant and tend to diffused in a liquid crystal layer.
  • the sealant is disposed to overlap a peripheral light blocking portion.
  • ultraviolet rays are applied from the array board side to cure the sealant.
  • a number of traces are disposed in a frame area of the array board. The traces may overlap the sealant.
  • the ultraviolet rays are applied to the sealant through spaces between the traces. If the frame size of the liquid crystal panel is further reduced, an arrangement area of the traces is reduced. Therefore, arrangement density of the traces increases and the spaces between the traces decreases.
  • the ultraviolet rays may be blocked by the traces and thus curing of the sealant may become difficult or a longer period of time may be required for curing the sealant.
  • the present invention was made in view of the above circumstances.
  • An object is to provide a liquid crystal panel and a method of producing the liquid crystal panel preferable for a reduction in frame size.
  • a method of producing a display panel according to the present invention includes a sealing member forming process of forming a sealing member, a board bonding process of bonding a second board to a first board with a medium layer between the first board and the second board, and a sealing member fixing process of fixing the sealing member to the second board.
  • the sealing member forming process includes disposing a sealing material on the first board and curing the sealing material without any uncured section.
  • the sealing material is disposed on the first board and the sealing material is cured without any uncured section. Through the process, the sealing member is formed.
  • the second board is bonded to the first board with the medium layer between the first board and the second board.
  • the sealing member fixing process that is subsequently performed, the sealing member is fixed to the second board.
  • the medium layer is sealed.
  • the board bonding process the medium layer is pressed and spread between the boards in accordance with the bonding of the boards. The sealing member receives a force that may be applied by the medium layer to push the sealing member.
  • the sealing member may not be able to withstand the force and the medium layer may partially enter into the sealing member.
  • the sealing material is cured without any uncured section to form the sealing member. Therefore, even if the frame size is further reduced, the medium layer is less likely to partially enter into the sealing member.
  • the width of the sealing member is reduced in accordance with the further reduction in the frame size, external moisture may pass through the uncured section of the sealing member and diffuse in the medium layer.
  • the sealing material is cured without any uncured section to form the sealing member. Therefore, even if the frame size is further reduced, the external moisture is less likely to pass through the sealing member and thus the moisture is less likely to diffuse in the medium layer. As described above, this method is preferable for reducing the frame size of the display panel.
  • Preferable embodiments of the method of producing the display panel according to the present invention may include the following features.
  • the method may further include a first base board producing process, a second base board producing process, a base sealing material disposing process, and a base sealing material curing process.
  • the first base board producing process includes producing a first base board including first boards within a plate surface of the first base board.
  • the second base board producing process includes producing a second base board including second boards within a plate surface of the second base board.
  • the base sealing material disposing process includes disposing a base sealing material on any one of the first base board and the second base board to surround either the first boards or the second boards and to include an uncured section.
  • the base sealing material curing process includes curing the base sealing material without any uncured section to form a base sealing member.
  • the base sealing material curing process is performed after at least the board bonding process.
  • the base sealing material that includes the uncured section is disposed on any one of the first base board that is produced through the first base board producing process and the second base board that is produced through the second base board producing process to surround either the first board or the second boards.
  • the boards are bonded together.
  • the base sealing material that includes the uncured section closely contacts the other one of the first base board and the second base board.
  • the boards are maintained under negative pressure. Therefore, the boards are less likely to be displaced or removed.
  • the base sealing material curing process that is subsequently performed the base sealing material is cured without any uncured section. Through the process, the base sealing member is formed.
  • the base sealing material disposing process may include disposing the base sealing material on the second base board.
  • the base sealing material disposing process is performed to dispose the base sealing material on the second base board that is not the first base board on which the sealing member forming process is performed. Therefore, the sealing member forming process and the base sealing material disposing process can be performed in parallel. In comparison to the method in which the sealing member forming process and the base sealing material disposing process are performed on the first base board, time that is required for the production of the display panel can be reduced.
  • the medium layer in the board bonding process may be a liquid crystal layer.
  • the base sealing material disposing process may include disposing a thermosetting resin material as the base sealing material.
  • the base sealing curing process may include heating processing that is performed until a temperature reaches at least a curing temperature of the thermosetting resin material. When the heating processing is performed until the temperature reaches at least the curing temperature of the thermosetting resin material in the base sealing material curing process, the thermosetting resin material is cured and the base sealing member is formed. Furthermore, reorientation of liquid crystal molecules included in the liquid crystal layer that is the medium layer is accelerated. Therefore, the liquid crystal molecules included in the liquid crystal layer are properly orientated.
  • the sealing member forming process may include discharging the sealing material by a dispenser and disposing the sealing material along an area to form the sealing member.
  • an amount of the sealing material can be reduced. This method is preferable for reducing the production cost.
  • the sealing member forming process may include a sealing material disposing process and a sealing material curing process.
  • the sealing material disposing process may include disposing the sealing material that is in a powdered form on the first board.
  • the sealing material curing process may include applying a laser beam to a section of the sealing material and selectively curing the section of the sealing material without any cured area.
  • the sealing material that is in the powder form is disposed on the first board.
  • the laser beam is applied to the sealing material that is disposed on the first board and the section to which the laser beam is applied is selectively cured without any uncured area.
  • the sealing member forming process may include heating and fusing the sealing material that is the thermosetting resin material, applying the sealing material to the first board, and curing the sealing material without any uncured section.
  • the sealing member forming process after the sealing material is heated and fused, the fused sealing material is applied to the first board.
  • the sealing material that is applied to the first board is cured without any uncured section as the temperature decreases. Through the process, the sealing member is formed.
  • a display panel includes pixels, an array board, a common board, a medium layer, and a sealing member.
  • the pixels are arranged in a matrix in a display area in which an image is displayed.
  • the array board includes at least traces that are disposed in a non-display area outside the display area.
  • the common board is disposed opposite the array board.
  • the common board includes a light blocking portion.
  • the light blocking portion includes sections that are disposed to separate at least the pixels from one another.
  • the medium layer is sandwiched between the array board and the common board.
  • the sealing member is disposed between the array board and the common board to overlap the traces in the non-display area to surround the medium layer.
  • the sealing member is made of a material having a light blocking property and disposed not to overlap the light blocking portion.
  • the medium layer that is sandwiched between the array board and the common board is sealed with the sealing member that is disposed between the array board and the common board in the non-display area to surround the medium layer.
  • the sealing member is disposed to overlap the traces that are included in the array board in the non-display area. To accelerate the fixation of the sealing member to the common board with light applied from the array board side, the light may be blocked by the traces. If the arrangement density of the traces is increased in accordance with the reduction in the frame size, the fixation of the sealing member to the common board may become insufficient or timer that is required for the fixation may become longer.
  • the sealing member is disposed not to overlap the light blocking portion that is included in the common board. By applying the light to the sealing member from the common board side to fix the sealing member to the array board, the light is less likely to be blocked by the light blocking portion. Therefore, the fixation of the sealing member to the array board can be properly accelerated.
  • the sealing member has the light blocking property. Although the sealing member is disposed not to overlap the light blocking portion, leakage of light is less likely to occur in the non-display area. This configuration is preferable for reducing the frame size.
  • Preferable embodiments of the display panel according to the present invention may include the following configurations.
  • the common board may include a planarization layer that is layered on a medium layer side relative to the light blocking portion.
  • the planarization layer may be disposed in an area not to overlap the sealing member.
  • the sealing member is fixed to the common board with direct contact. Because the planarization layer is not disposed between the sealing member and the common board, the sealing member is more strongly fixed to the common board. Furthermore, only an interface between the sealing member and the common board is exposed to the outside. In comparison to a configuration in which the planarization layer is disposed between the sealing member and the common board, an area of the interface exposed to the outside is reduced. Therefore, external moisture is less likely to pass through the interface and enter into the medium layer.
  • the sealing member may include an outer surface on an opposite side from the medium layer side.
  • the outer surface maybe flush with at least an end surface of the common board. In comparison to a configuration in which the outer surface of the sealing member is located inner than the end surface of the common board, the frame size can be further reduced.
  • the sealing member may be made of synthetic resin material with a light blocking compound contained in the synthetic resin material. According to the configuration, the light blocking compounds can be easily disposed in the synthetic resin material when mixing the light blocking compounds into the synthetic resin material. Therefore, the sealing member that delivers even light blocking performance can be easily provided. In comparison to a configuration in which the sealing member is made of metal material, the sealing member can be fixed to the common board at a lower temperature.
  • the display panel may include sealing member control portions that are disposed to sandwich the sealing member from the medium layer side and an opposite side from the medium layer side. According to the configuration, the width of the sealing member can be controlled during the formation of the sealing member. Therefore, the width of frame of the display panel can be set with high accuracy. This configuration is further preferable for reducing the frame size.
  • the sealing member control portions may extend parallel to the sealing member and include holes in the middle. According to the configuration, a material in an uncured state can be released through the holes of the sealing member control portions during the formation of the sealing member. Therefore, the sealing member has a constant height.
  • the sealing member may contain spacer particles. This configuration is preferable for maintain the height of the sealing member constant.
  • the sealing member maybe disposed to separate the pixels from one another together with the light blocking portion.
  • this configuration is further preferable for reducing the frame size.
  • the liquid crystal panel and the method of producing the liquid crystal panel preferable for reducing the frame size.
  • FIG. 1 is a schematic plan view illustrating connection among a liquid crystal panel that includes a drive according to a first embodiment of the present invention, a flexible circuit board, and a control circuit board.
  • FIG. 2 is a schematic cross-sectional view illustrating a cross-sectional configuration along a short direction of a liquid crystal display device.
  • FIG. 3 is a schematic cross-sectional view illustrating an overall cross-sectional configuration of the liquid crystal panel.
  • FIG. 4 is a schematic cross-sectional view illustrating a cross sectional configuration of a section of the liquid crystal panel in a display area.
  • FIG. 5 is a plan view schematically illustrating a wiring configuration of an array board included in the liquid crystal panel.
  • FIG. 6 is a plan view illustrating a wiring configuration of TFTs in a peripheral section of the liquid crystal panel and positional relation between a sealing member and the display area.
  • FIG. 7 is a cross-sectional view illustrating a cross-sectional configuration of the peripheral section of the liquid crystal panel.
  • FIG. 8 is a plan view of a CF base board that is produced through a CF base board producing process.
  • FIG. 9 is a plan view of an array base board that is produced through an array base board producing process.
  • FIG. 10 is a side view illustrating a schematic configuration of a sealing member forming device used in a sealing member forming process.
  • FIG. 11 is a side view illustrating a side view illustrating a sealing material discharged by a dispenser in a sealing material disposing process included in the sealing member forming process.
  • FIG. 12 is a side view illustrating rolling and compressing of the sealing material by a first roller in the sealing member forming process.
  • FIG. 13 is a side view illustrating output of laser beams by a laser beam output port in a sealing material curing process included in the sealing member forming process.
  • FIG. 14 is a side view illustrating rolling and compressing of the sealing material by a second roller in the sealing member forming process.
  • FIG. 15 is a plan view of an array base board on which a sealing member is formed through the sealing member forming process.
  • FIG. 16 is a plan view of a CF base board on which a base sealing material is disposed through a base sealing material disposing process.
  • FIG. 17 is a cross-sectional view illustrating the CF base board on which a liquid crystal material is dropped and the array base board before the array base board is bonded to the CF board in a board bonding process.
  • FIG. 18 is a cross-sectional view illustrating the base boards that are bonded together in the board bonding process.
  • FIG. 19 is a cross-sectional view illustrating application of laser beams onto the sealing member in the sealing member fixing process.
  • FIG. 20 is a plan view illustrating the base boards with a base sealing member formed through a base sealing material curing process.
  • FIG. 21 is a cross-sectional view illustrating a cross-sectional configuration of an outer edge section of a liquid crystal panel according to a second embodiment of the present invention.
  • FIG. 22 is a plan view illustrating a wiring configuration of TFTs and a positional relation between a sealing member and a display area in the outer edge section of the liquid crystal panel.
  • FIG. 23 is a side view illustrating a schematic configuration of a sealing member forming device used in a sealing member forming process according to a third embodiment of the present invention.
  • FIG. 24 is a cross-sectional view illustrating a cross-sectional configuration of an outer edge section of a liquid crystal panel according to a fourth embodiment of the present invention.
  • FIG. 25 is a plan view illustrating a sealing material disposed between sealing member control portions in a sealing member forming process.
  • FIG. 26 is a plan view illustrating rolling and compressing of the sealing material by a first roller in the sealing member forming process.
  • FIGS. 1 to 20 A first embodiment of the present invention will be described with reference to FIGS. 1 to 20 .
  • a liquid crystal display device 10 will be described.
  • X-axes, Y-axes, and Z-axes may be present in drawings.
  • the axes in each drawing correspond to the respective axes in other drawings to indicate the respective directions.
  • a vertical direction of the liquid crystal display device 10 is defined based on FIGS. 2 to 4 .
  • Upper sides and lower sides in in FIGS. 2 to 4 correspond to a front side and a rear side of the liquid crystal display device 10 , respectively.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 (a display panel), a driver 17 (a panel driver), a control circuit board 12 (an external signal source), a flexible circuit board 13 (an external connecting component), and a backlight unit 14 (a lighting device).
  • the liquid crystal panel 11 is configured to display images.
  • the liquid crystal panel 11 includes a display area AA and a non-display area NAA.
  • the display area AA is an inner area configured to display images.
  • the non-display area NAA is an outer area to surround the display area AA.
  • the driver 17 is configured to drive the liquid crystal panel 11 .
  • the control circuit board 12 is configured to supply various kinds of signals from outside to the driver 17 .
  • the flexible circuit board 13 electrically connects the liquid crystal panel 11 to the control circuit board 12 that is provided outside.
  • the backlight unit 14 is an external light source for supplying light to the liquid crystal panel 11 .
  • the liquid crystal display device 10 includes a front exterior component 15 and a rear exterior component 16 provided as a pair to hold the liquid crystal panel 11 and the backlight unit 14 that are assemble together.
  • the front exterior component 15 includes an opening 15 a through which images displayed in the display area AA of the liquid crystal panel 11 can be viewed from the outside.
  • the liquid crystal display device 10 according to this embodiment may be used in, but not limited to, an electronic device (not illustrated).
  • a screen size of the liquid crystal panel 11 included in the liquid crystal display device 10 may be from several inches to a ten and several inches, which is usually classified as a small or a small-to-medium screen size.
  • the backlight unit 14 will be briefly described. As illustrated in FIG. 2 , the backlight unit 14 includes a chassis 14 a, alight source (e.g. cold cathode fluorescent tubes, LEDs, organic ELs), which are not illustrated, and an optical member, which is not illustrated.
  • the chassis 14 a has a box-like shape.
  • the light sources are disposed inside the chassis 14 a.
  • the optical member is disposed to cover an opening of the chassis 14 a.
  • the optical member is configured to convert light emitted by the light sources into planar light.
  • the liquid crystal panel 11 has a vertically-long rectangular overall shape.
  • the display area AA an active area
  • the driver 17 and the flexible circuit board 13 are mounted at positions closer to a second end of the liquid crystal panel 11 with respect to the long direction of the liquid crystal panel 11 (the lower side in FIG. 1 ).
  • the area outside the display area AA is the non-display area NAA (a non-active area) in which images are not displayed.
  • the non-display area NAA includes a frame-shaped region that surrounds the display area AA (a frame-shaped section of a CF board 11 a, which will be described later) and a region that is provided at the second end with respect to the long direction (a section of an array board 11 b which is exposed without overlapping the CF board 11 a, which will be described later).
  • the region provided at the second end with respect to the long direction includes a mounting region (an attachment region) in which the driver 17 and the flexible circuit board 13 are mounted.
  • the liquid crystal panel 11 has a significantly narrow frame configuration in which the frame size is significantly small.
  • the short direction of the liquid crystal panel 11 corresponds with the X-axis direction in the drawings and the long direction of the liquid crystal panel 11 corresponds with the Y-axis direction in the drawings.
  • a chain line slightly smaller than the CF board 11 a in a frame shape indicates an outline of the display area AA and an area outside the chain line is the non-display area NAA.
  • the control circuit board 12 is mounted to a back surface of the chassis 14 a of the backlight unit 14 (an outer surface on an opposite side from the liquid crystal panel 11 side) with screws.
  • the control circuit board 12 includes a substrate made of paper phenol or glass epoxy resin.
  • Electronic components for supplying various signals to the driver 17 are mounted on the substrate and traces (conductive lines), which are not illustrated, are formed and routed.
  • One of ends (a first end) of the flexible circuit board 13 is electrically and mechanically connected to the control circuit board 12 via an anisotropic conductive film (ACF), which is not illustrated.
  • ACF anisotropic conductive film
  • the flexible circuit board 13 includes a base member made of synthetic resin material (e.g., polyimide-based resin) having an insulating property and flexibility. A number of traces, which are not illustrated, are formed on the base member.
  • the first end of the flexible circuit board 13 with respect to the long direction is connected to the control circuit board 12 disposed on the back surface of the chassis 14 a.
  • the flexible circuit board 13 is folded to turn back and to have a U-shaped cross section in the liquid crystal display device 10 .
  • the driver 17 is an LSI chip that includes a drive circuit therein.
  • the driver 17 is configured to operate based on the signals supplied by the control circuit board 12 , which is a signal source.
  • the driver 17 is configured to process the signals supplied by the control circuit board 12 , which is a signal source, to generate output signals, and output the output signals to the display area AA of the liquid crystal panel 11 .
  • the driver 17 has a horizontally-long rectangular shape (an elongated shape along a short edge of the liquid crystal panel 11 ) in a plan view.
  • the driver 17 is directly mounted in the non-display area NAA of the liquid crystal panel 11 (on the array board 11 b, which will be described later).
  • the driver 17 is mounted with the chip-on-glass (COG) technology.
  • the long direction of the driver 17 corresponds with the X-axis direction (the short direction of the liquid crystal panel 11 ) and the short direction of the driver 17 corresponds with the Y-axis direction (the long direction of the liquid crystal panel 11 ).
  • the liquid crystal panel 11 includes at least a pair of the boards 11 a and 11 b, a liquid crystal layer 11 c (a medium layer), and a sealing member 11 q.
  • the liquid crystal layer 11 c is sandwiched between the boards 11 a and 11 b.
  • the liquid crystal layer 11 c includes liquid crystal molecules that are substances having optical characteristics that vary according to application of an electric field.
  • the sealing member 11 q is disposed between the boards 11 a and 11 b to surround the liquid crystal layer 11 c.
  • the sealing member 11 q seals the liquid crystal layer 11 c while maintaining a cell gap in a size that corresponds with a thickness of the liquid crystal layer 11 c.
  • the cell gap in the liquid crystal panel 11 in this embodiment is set to about 3 to 4 ⁇ m, the size of the cell gap can be altered where appropriate.
  • One of the boards 11 a and 11 b on the front side is the CF board a (a second board, a common board).
  • the other one of the boards 11 a and 11 b on the rear side (the back side) is the array board 11 b (a first board, an active matrix board).
  • the CF board 11 a and the array board 11 b include glass substrates GS that are made of glass and various films that are formed in layers on inner surfaces of the glass substrates GS.
  • the sealing member 11 q is disposed in the non-display area NAA of the liquid crystal panel 11 .
  • the sealing member 11 q has a vertically-long frame shape along the non-display area NAA in the plan view (the view in a normal direction to a plate surface of the array board 11 b ) ( FIG. 2 ).
  • the sealing member 11 q has a width of about 400 ⁇ m in the significantly narrow frame configuration in which the frame width of the liquid crystal panel 11 is 0.5 min or less.
  • Sections of the sealing member 11 q disposed in three edge areas (non-mounting edge areas) other than the mounting area in which the driver 17 and the flexible circuit board 13 are located at the outermost in the non-display area NAA ( FIG. 2 ).
  • Polarizing plates 11 d and 11 e are attached to outer surfaces of the boards 11 a and 11 b, respectively.
  • thin film transistors (TFTs, display components) 11 f which are switching components and pixel electrodes 11 g are arranged in rows and columns (in a matrix).
  • Gate lines 11 i scan lines
  • source lines 11 j data lines, signal lines
  • the gate lines 11 i and the source lines 11 j are connected to gate electrodes 11 f 1 and source electrodes 11 f 2 of the TFTs 11 f, respectively.
  • the pixel electrodes 11 g are connected to drain electrodes 11 f 3 of the TFTs 11 f.
  • the TFTs 11 f are driven based on signals supplied to the gate lines 11 i and the source lines 11 j.
  • the TFTs 11 f are driven based on various signals supplied to the gate lines 11 i and the source lines 11 j.
  • Application of voltages to the pixel electrodes 11 g is controlled in accordance with the driving of the TFTs 11 f.
  • the TFTs 11 f include channels 11 f 4 that connect the drain electrodes 11 f 3 to the source electrodes 11 f 2 .
  • An oxide semiconductor film is used to form the channels 11 f 4 .
  • the oxide semiconductor film of the channels 11 f 4 has electron mobility 20 to 50 times higher in comparison to an amorphous silicon thin material. Therefore, the TFTs 11 f can be easily reduced in size to obtain an optimal amount of transmitted light through the pixel electrodes 11 g (an aperture rate of display pixels). This configuration is preferable for increasing the definition and reducing the power consumption.
  • the pixel electrodes 11 g are disposed in quadrilateral areas defined by the gate lines 11 i and the source lines 11 j.
  • the pixel electrodes 11 g are formed from a transparent electrode film (an upper layer-side transparent electrode film) made of indium tin oxide (ITO) or zinc oxide (ZnO).
  • the pixel electrodes 11 g are layered on an insulating film lip on an upper layer side relative to the insulating film 11 p.
  • Common electrodes 11 h are layered under the insulating film 11 p on a lower layer side relative to the insulating film 11 p.
  • the common electrodes 11 h are formed from the transparent electrode film (the lower layer-side transparent electrode film) similarly to the pixel electrodes 11 g.
  • the common electrodes 11 h are formed as a solid pattern.
  • the array board 11 b includes the pixel electrodes 11 g and the common electrodes 11 h.
  • a fringe electric field (an oblique electric field) including a component along the plate surface of the array board 11 b and a component in the normal direction to the plate surface of the array board 11 b.
  • the liquid crystal panel 11 operates in fringe field switching (FFS) mode that is an improved version of in-plane switching (IPS) mode.
  • FFS fringe field switching
  • IPS in-plane switching
  • color filters 11 k are arranged at positions opposed to the pixel electrodes 11 g on the array board 11 b.
  • the color filters 11 k include red (R), green (G), and blue (B) color portions in three colors.
  • the R color portions, the G color portions, and the B color portion are repeatedly arranged to form a matrix.
  • the color portions (the pixels PX) of the color filters ilk arranged in the matrix are separated from one another with a light blocking portion 11 l (a black matrix). With the light blocking portion 11 l, color mixture of different colors of light rays that pass through the color portions is less likely to occur.
  • the light blocking portion 11 l is formed in a grid in the plan view.
  • the light blocking portion 11 l includes dividing sections 1111 and a frame section 1112 .
  • the dividing sections 1111 a grid shape in the plan view and separate the color port ions from one another.
  • the frame portion 1112 has a frame shape (a picture frame shape) in the plan view and surrounds the dividing sections 1111 from the peripheral sides.
  • the dividing sections 1111 are disposed to overlap the gate lines 11 i and the source lines 11 j in the plan view.
  • the frame section 1112 extends along the sealing member 11 q and has a vertically-long rectangular shape in the plan view.
  • a planarization layer 11 m (an overcoat layer) is layered on the color filters 11 k and the light blocking portion 11 l.
  • each color potion of the color filter 11 k and the pixel electrode 11 g that is opposed to the color potion form a single pixel PX.
  • the pixels PX include red pixels, green pixels, and blue pixels.
  • the red pixels include the R color portions of the color filters 11 k.
  • the green pixels include the G color portions of the color filters 11 k.
  • the blue pixels include the B color portions of the color filters 11 k.
  • the pixels PX in three colors are repeatedly arranged along the row direction (the X-axis direction) on the plate surface of the liquid crystal panel 11 to form pixel lines.
  • a number of the pixel lines are arranged along the column direction (the Y-axis direction). Namely, a number of the pixels PX are arranged in a matrix in the display area AA of the liquid crystal panel 11 .
  • a column control circuit 18 is disposed in a section of the array board 11 b adjacent to a short edge of the display area AA and a row control circuit 19 is disposed in a section of the array board 11 b adjacent to a long edge of the display area AA.
  • the column control circuit 18 and the row control circuit 19 are configured to perform control for supplying the signals that are output by the driver 17 to the TFTs 11 f.
  • the column control circuit 18 and the row control circuit 19 are monolithically fabricated on the array board 11 b with the oxide semiconductor film, which are the same semiconductor film of the channels 11 f 4 of the TFTs 11 f, as a base.
  • the column control circuit 18 and the row control circuit 19 include control circuits for controlling the supply of the output signals to the TFTs 11 f.
  • the control circuits in the column control circuit 18 and the row control circuit 19 include at least control TFTs and traces 20 that are connected to the control TFTs. As illustrated in FIGS. 5 and 6 , the column control circuit 18 and the row control circuit 19 are disposed in sections of the CF board 11 a closer to the outer edges of the non-display area.
  • the column control circuit 18 and the row control circuit 19 are disposed to overlap the sealing member 11 q.
  • the sealing member 11 q overlaps the traces 20 that are including in the control circuits of the column control circuit 18 and the row control circuit 19 .
  • the sealing member 11 q is indicated by two-dashed chain lines.
  • the outer edges of the sealing member 11 q substantially correspond with the outer edges of the CF board 11 a.
  • the inner edges of the sealing member 11 q are disposed on inner side (closer to the display area AA) than the inner edges of the control circuits 18 and 19 .
  • the control circuits of the column control circuit 18 and the row control circuit 19 are patterned on the array board 11 b simultaneously with the patterning of the TFTs 11 f by a known photolithography method.
  • the column control circuit 18 is disposed adjacent to the short edge of the display area AA on the lower side in FIG. 5 , that is, between the display area AA and the driver 17 with respect to the Y-axis direction.
  • the column control circuit 18 overlaps one of the short sections of the sealing member 11 q which extends along the X-axis direction in the plan view.
  • the column control circuit 18 is disposed in a horizontally-long rectangular area that extends in the X-axis direction.
  • the column control circuit 18 is connected to the source lines 11 j disposed in the display area AA.
  • the column control circuit 18 includes a switching circuit (an RGB switching circuit) for distributing image signals that are included in the output signals from the driver 17 to the source lines 11 j.
  • the source lines 11 j are disposed on the array board 11 b in the display area AA along the X-axis direction.
  • the source lines 11 j are connected to the respective TFTs 11 f that are connected to the respective pixel electrodes 11 g that form the R (red) pixels PX, the G (green) pixels PX, and the B (blue) pixels PX.
  • the column control circuit 18 is configured to distribute the image signals from the driver 17 to the source lines 11 j of R, G, and B through the switching circuit.
  • the column control circuit 18 may include an auxiliary circuit such as a level shifter circuit and an ESD protection circuit.
  • the row control circuit 19 is disposed adjacent to the long edge of the display area AA on the left side in FIG. 5 .
  • the row control circuit 19 is disposed in a vertically-long rectangular area that extends along the Y-axis direction.
  • the row control circuit 19 overlaps one of the long sections of the sealing member 11 q which extends along the Y-axis direction in the plan view.
  • the row control circuit 19 is connected to the gate lines 11 i that are disposed in the display area AA.
  • the row control circuit 19 includes a scanning circuit that is configured to supply scan singles included in the output signals from the driver 17 to the gate lines 11 i at predefined timing to scan the gate lines in sequence.
  • the row control circuit 19 is configured to scan the gate lines 11 i by supplying the control signals (scan signals) from the driver 17 to the gate lines from the gate line 11 i at the uppermost to the gate line 11 i at the lowermost in FIG. 5 in the display area AA through the scanning circuit.
  • the row control circuit 19 includes a buffer circuit for amplifying the scan signals.
  • the row control circuit 19 may include an auxiliary circuit such as a level shifter circuit and an ESD protection circuit.
  • the column control circuit 18 and the row control circuit 19 are connected to the driver 17 via connecting traces, which are not illustrated, formed on the array board 11 b.
  • the sealing member 11 q is formed on a CF board 11 a side by curing the material through application of laser beams and fixed to the array board 11 b through application of the laser beams during bonding of the boards 11 a and 11 b in the production process of the liquid crystal panel 11 .
  • the sealing member 11 q is made of the material having the light blocking property.
  • the sealing member 11 q is disposed to overlap the traces 20 of the control circuits 18 and 19 in the non-display area NAA but not overlap the light blocking portion 11 l.
  • the liquid crystal panel 11 has the narrow frame design.
  • the sealing member 11 q is disposed to overlap traces 20 that included in the array board 11 b in the non-display area NAA.
  • the fixation of the sealing member 11 q to the CF board 11 a is accelerated by the laser beams that are applied from the array board 11 b side, the laser beams may be blocked by the traces 20 .
  • the fixation of the sealing member 11 q to the CF board 11 a may become insufficient or a longer period of time may be required for the fixation of the sealing member 11 q.
  • the sealing member 11 q is disposed not to overlap the light blocking portion 11 l of the CF board 11 a, the laser beams are less likely to be blocked by the light blocking portion 11 l by applying the laser beams from the CF board 11 a side for the fixation the sealing member 11 q to the array board 11 b.
  • the fixation of the sealing member 11 q to the array board 11 b can be properly accelerated. Even if the arrangement density of the traces 20 is increased in accordance with a reduction in the frame size, the fixation of the sealing member 11 q to the array board 11 b can be properly accelerated regardless of the arrangement density of the traces 20 .
  • the sealing member 11 q has the light blocking property, even if the sealing member 11 q is disposed not to overlap the light blocking portion 11 l, a leakage of light is less likely to occur in the non-display area NAA.
  • a sealing material S of the sealing member 11 q includes synthetic resin material (e.g., nylon powder made of nylon (polyamide)) and black light blocking compounds (e.g., carbon powder (carbon black)) dispersed in the synthetic resin material.
  • the sealing member 11 q is formed by sintering and curing the sealing material S with the laser beams. More specifically, to form the sealing member 11 q, the sealing material S that is in the powdered form is disposed on the CF board 11 a and the laser beams are applied to the sealing material S. A section of the sealing material S to which the laser beams are applied is selectively sintered and cured.
  • a forming area e.g., a width
  • the light blocking compounds are evenly disposed in the synthetic resin material of the sealing member 11 q prepared by curing the sealing material S and fixed. According to the configuration, the sealing member 11 q can deliver light blocking performance at the same level as the light blocking portion 11 l and even light blocking performance. As illustrated in FIG. 7 , the sealing member 11 q is disposed such that an inner peripheral surface of the sealing member 11 q contacts the outer peripheral surface of a frame section 1112 of the light blocking portion 11 l.
  • the sealing member 11 q can block a leakage of light from the non-display area together with the frame section 1112 .
  • the outer peripheral surface of the sealing member 11 q on the opposite side from the liquid crystal layer 11 c side (the light blocking portion 11 l side) is flush with an outer end surface of the CF board 11 a. This configuration is preferable for further reducing the frame size.
  • the sealing material S of the sealing member 11 q contains spacer particles.
  • the spacer particles contained in the sealing material S may be silica beads. A diameter of each particle is about equal to the cell gap of the liquid crystal panel 11 (the thickness of the liquid crystal layer 11 ).
  • the height of the sealing member 11 q can be maintained constant with a value about equal to the cell gap for the entire periphery.
  • inorganic filler, auxiliary agent, and additive agent may be added to the sealing material S where appropriate.
  • the sealing member 11 q is disposed not to overlap the planarization layer 11 m formed on the CF board 11 a.
  • the planarization layer 11 m is layered on the color filters 11 k and the light blocking portion 11 l with in the plane of the CF board 11 a on the liquid crystal layer 11 c side. Within the plane of the CF board 11 a, the planarization layer 11 m is solid. However, an outer peripheral section of the planarization layer 11 m which may overlap the sealing member 11 q is removed. Namely, the planarization layer 11 m is selectively formed in the section of the inner peripheral surface of the CF board 11 a which does not overlap the sealing member 11 q.
  • An outer peripheral surface of the planarization layer 11 m is disposed to contact the inner peripheral surface of the sealing member 11 q and flush with the outer peripheral surface of the frame section 1112 of the light blocking portion 11 l.
  • the sealing member 11 q is fixed to the glass substrate GS of the CF board 11 a with direct contact.
  • the planarization layer 11 m and the light blocking portion 11 l do not exist between the sealing member 11 q and the CF board 11 a. Therefore, the sealing member 11 q is more strongly bonded to the CF board 11 a.
  • the liquid crystal panel 11 in this embodiment has the configuration described above. Next, the method of producing the liquid crystal panel 11 will be described.
  • the method of producing the liquid crystal panel 11 in this embodiment includes a CF base board producing process (a first base board producing process), an array base board producing process (a second base board producing process), a sealing member forming process, a base sealing material disposing process, a board bonding process, a sealing member fixing process, a base sealing material curing process, and a cutting process.
  • the CF base board producing process includes producing a CF base board 11 a M (a first base board) which includes CF boards 11 a within a plate surface thereof.
  • the array base board producing process includes producing an array base board 11 b M (a second base board) which includes array boards 11 b within a plate surface thereof.
  • the sealing member forming process includes forming the sealing member 11 q by curing the sealing material S on the CF board 11 a without any uncured sections.
  • the base sealing material disposing process includes disposing a base sealing material MS that includes uncured sections on any one of the CF base board 11 a M and the array base board 11 b M to surround either the CF boards 11 a or the array boards 11 b.
  • the board bonding process includes bonding the CF board 11 a and the array board 11 b with the liquid crystal layer 11 c between the CF board 11 a and the array board 11 b.
  • the sealing member fixing process includes fixing the sealing member 11 q to the array board 11 b.
  • the base sealing material curing process includes curing the base sealing material MS without any uncured sections to form a base sealing member 21 .
  • the cutting process includes cutting the cutting the base boards 11 a M and 11 b M to obtain the liquid crystal panels 11 .
  • the expression “the sealing material S is cured without any uncured section” does not mean that the extent of curing is 100%. The extent of curing lower than 100% may be included.
  • various films are formed on a plate surface of a large-sized glass base substrate GSM by a known photolithography method and the films are processed through patterning to form components of the CF boards 11 a in layers. Through the process, the CF base board 11 a M is produced.
  • various films are formed on a plate surface of a large-sized glass base substrate GSM by a known photolithography method and the films are processed through patterning to form components of the array boards 11 b in layers. Through the process, the array base board 11 b M is produced.
  • the CF boards 11 a and the array boards 11 b within the respective glass base substrates GSM are indicated by two-dashed chain lines.
  • the CF boards 11 a are arranged in a matrix within the plate surface of the glass base substrate GSM and the array boards 11 b are arranged in a matrix within the plate surface of the glass base substrate GSM. Specifically, four along the X-axis direction by five along the Y-axis direction of those are arranged.
  • the number of the CF boards 11 a or the array boards 11 b arranged within the plate surface of each glass base substrate GSM can be altered from the number described above where appropriate.
  • Short dimensions and long dimensions of the CF base board 11 a M and the array base board 11 b M may be about in a range from 660 to 1500 mm and a range from 880 to 1800 mm, respectively. The dimensions may be altered where appropriate.
  • the sealing member 11 q is formed on each CF board 11 a of the CF base board 11 a M using a sealing member forming device 30 that is a powder sintering type forming device described below.
  • the sealing member forming device 30 includes at least a stage 31 , a head 32 , a light source 33 , and a controller 34 .
  • the CF base board 11 a M is placed on the stage 31 .
  • the head 32 is disposed opposite the CF base board 11 a M on the stage 31 .
  • the light source 33 is connected to the head 32 and configured to emit the laser beam toward the CF base board 11 a M.
  • the controller 34 is connected to the head 32 and the light source 33 and configured to control the head 32 and the light source 33 .
  • the stage 31 can move the CF base board 11 a M along the X-axis direction, the Y-axis direction, and the ⁇ direction (the rotational direction) which are parallel to the plate surface of the CF base board 11 a M.
  • the head 32 includes at least a dispenser 32 a, a first roller 32 b, a laser beam output port 32 c, a second roller 32 d, and a driver 32 e.
  • the dispenser 32 a is configured to supply the sealing material S onto the CF base board 11 a M.
  • the first roller 32 b is disposed adjacent to the dispenser 32 a to roll and compress the sealing material S.
  • the laser beam output port 32 c is configured to apply the laser beam to the CF base board 11 a M.
  • the second roller 32 d is disposed adjacent to the laser beam output port 32 c to roll and compress the sealing material S to which the laser beam has been applied.
  • the driver 32 e is configured to drive the dispenser 32 a, the first roller 32 b, the laser beam output port 32 c, and the second roller 32 d.
  • the light source 33 may include a carbon dioxide laser unit that is configured to emit an oscillating carbon dioxide laser beam (CO 2 laser beam).
  • the light source 33 is connected to the head 32 via optical fibers to supply the carbon dioxide laser beam to the laser beam output port 32 c that is included in the head 32 .
  • the controller 34 is configured to control the oscillation of the carbon dioxide laser beam by the light source 33 .
  • the controller 34 is configured to control the components 32 a to 32 e that are included in the head 32 .
  • the dispenser 32 a is configured to discharge the sealing material S in the powdered form to form the sealing member.
  • the dispenser 32 a is configured to discharge the sealing material S in the powdered form in line in an area of the CF base board 11 a M with a width smaller than the width of the sealing member 11 q.
  • the amount of the sealing material S discharged by the dispenser 32 a is controlled by the driver 32 e.
  • the nylon powder that is the synthetic resin material to form the sealing material S and discharged by the dispenser 32 a has a mean particle diameter of about 50 ⁇ m.
  • a mean particle diameter of the spacer particles that are contained in the sealing material S is about 3 to 4 ⁇ m.
  • the first roller 32 b can be move down to be set closer to the CF baseboard 11 a M and up to be set away from the CF base board 11 a M by the driver 32 e. Specifically, when the sealing material S is not discharged by the dispenser 32 a, the first roller 32 b is set at a position away from the CF base board 11 a M. During the discharge of the sealing material S by the dispenser 32 a, the first roller 32 b is set at a position closer to the CF base board 11 a M.
  • the first roller 32 b is configured to grind the nylon powder to form the sealing material S between the first roller 32 b and the CF baes board 11 a M to reduce the particle diameters about equal to the cell gap or less and to spread them in the width direction of the sealing member 11 q.
  • the laser beam output port 32 c is disposed on an opposite side from the dispenser 32 a relative to the first roller 32 b with a distance larger than a distance between the first roller 32 b and the dispenser 32 a.
  • the laser beam output port 32 c is configured to apply the laser beam that is supplied by the light source to the sealing material S on the CF base board 11 a M. It is preferable that the carbon dioxide laser beam output from the laser beam output port 32 c has a wavelength of about 9.2 to 10.8 ⁇ m and an intensity of about 25 kW.
  • the nylon powder that is a main component of the sealing material S is sintered.
  • the second roller 32 d is configured to move down to be set closer to the CF base board 11 a M and up to be set away from the CF base board 11 a M by the driver 32 e. Specifically, when the laser beam is not output from the laser beam output port 32 c, the second roller 32 d is set at a position away from the CF base board 11 a M. During the output of the laser beam from the laser beam output port 32 c, the second roller 32 d is set at a position closer to the CF base board 11 a M.
  • the second roller 32 d may include a heater, which is not illustrated. The second roller 32 d may be heated to about 160° C. According to the configuration, the sealing material S that is in a condition immediately after the laser beam is applied can be softened during the rolling and compressing of the sealing material S.
  • the sealing member forming process includes the sealing material disposing process and the sealing material curing process.
  • the sealing material disposing process includes disposing the sealing material S that is in the powdered form on the CF board 11 a.
  • the sealing material curing process includes applying the laser beam to the sealing material S and selectively curing the section of the sealing material S to which the laser beam is applied without any uncured areas.
  • the CF base board 11 a M is placed on the stage 31 of the sealing member forming device 30 .
  • the stage 31 is moved in the X-axis direction, the Y-axis direction, and the ⁇ direction that are parallel to the plate surface of the CF base board 11 a M relative to the head 32 .
  • the sealing material S is discharged by the dispenser 32 a.
  • the sealing material S is disposed in line along the area of the CF base board 11 a M to form the sealing member 11 q.
  • the sealing material S is selectively disposed in the area to form the sealing member 11 q.
  • the amount of sealing material S to be used is smaller. This is preferable for reducing the production cost.
  • the sealing material S disposed on the CF base board 11 a M is rolled and compressed by the first roller 32 b that is disposed at the position closer to the CF base board 11 a M. As a result, the sealing material S is ground.
  • the sealing material S that is ground by the first roller 32 b has the particle diameter equal to the cell gap or less as illustrated in FIG. 12 and spread in the width direction of the sealing member 11 q (a first rolling and compressing process). As illustrated in FIG.
  • the laser beam that is output from the laser beam output port 32 c is applied to the sealing material S that has been rolled and compressed by the first roller 32 b.
  • the nylon powder that is exit in the laser applied section is instantaneously heated and sintered.
  • the nylon powder is not sintered and thus not cured.
  • the sealing material S to which the laser beam is applied is rolled and compressed by the second roller 32 d that is disposed at the position closer to the CF base board 11 a M (a second rolling and compressing process).
  • the second roller 32 d is heated by the heater and thus the sealing material S is softened. According to the configuration, the rolling and compressing can be accelerated while the flowability of the sealing material S is ensured.
  • the sealing material S is spread by the second roller 32 d to have a thickness that is about equal to the cell gap and cured without any uncured sections (completely cured). As a result, the sealing member 11 q is formed.
  • the above-described sealing member forming process is performed for every CF board 11 a that is within the plate surface of the CF base board 11 a M. As illustrated in FIG. 15 , the sealing member 11 q is formed on each CF board 11 a.
  • the base sealing material MS that includes an uncured section is disposed on the array base board 11 b M to collectively surround the array boards 11 b.
  • the base sealing material MS is disposed in an outer edge section of the array base board 11 b M in a vertically-long frame shape in a plan view.
  • the base sealing material MS is made of thermosetting resin material.
  • the base sealing material MS is heated to a predefined curing temperature, the base sealing material MS is cured and formed into the base sealing member 21 .
  • an interim curing processing is performed to heat the base sealing material MS for a short period of time to cure a surface thereof.
  • the base sealing material disposing process is performed on the array base board 11 b M but not on the CF base board 11 a M on which the sealing member forming process is performed. Therefore, the sealing member forming process and the base sealing material disposing process can be performed in parallel. In comparison to a method in which the sealing member forming process and the base sealing material disposing process area performed on the CF base board 11 a M, the time required for producing the liquid crystal panel 11 can be reduced.
  • a liquid crystal material LC is dropped into a section of each CF board 11 a surrounded by the sealing member 11 q on the CF base board 11 a M and then the array base board 11 b M is bonded to the CF base board 11 a M.
  • the board bonding process is performed in the vacuum environment.
  • FIG. 18 when the base boards 11 a M and 11 b M are bonded together, the liquid crystal material LC to form the liquid crystal layer 11 c is pressed and spread between the base boards 11 a M and 11 b M and thus a space surrounded by the sealing member 11 q is filled with the liquid crystal material LC.
  • the sealing member 11 q receives a force that is applied by the liquid crystal layer 11 c to squeeze the sealing member 11 q.
  • the sealing member 11 q may not be able to withstand the force and the liquid crystal layer 11 c may partially enter the sealing member 11 q.
  • the sealing material S is cured without any uncured sections (completely cured) and the sealing member 11 q is formed. Even if the frame size is further reduced, the liquid crystal layer 11 c is less likely to partially enter into the sealing member 11 q.
  • the sealing member 11 q is less likely to occur, a decrease in fixing strength of the sealing member 11 q relative to the boards 11 a and 11 b is less likely to occur. Furthermore, the sealing member 11 q is less likely to have bubbles and thus removal of the boards 11 a and 11 b is less likely to occur.
  • the width of the sealing member 11 q is reduced according to the reduction in the frame size, external moisture may pass through the uncured section of the sealing member 11 q and diffuse in the liquid crystal layer 11 c.
  • the sealing material is cured without any uncured section (completely cured) and the sealing member 11 q is formed.
  • the base sealing material MS that includes the uncured sections tightly contact the CF base board 11 a M. Therefore, a space between the base boards 11 a M and 11 b M is maintained under negative pressure.
  • the base boards 11 a M and 11 b M are placed in the atmospheric pressure environment. When the base boards 11 a M and 11 b M are placed in the atmospheric pressure environment, displacement or removal of the base boards 11 a M and 11 b M is less likely to occur.
  • the sealing member 11 q is fixed to each array board 11 b of the array base board 11 b M of the bonded base boards 11 a M and 11 b M to seal the liquid crystal layer 11 c.
  • the laser beam is applied to the sealing member 11 q from the CF board 11 a side to melt a section of the sealing member 11 q which contacts the CF board 11 a.
  • the melted section of the sealing member 11 q is cured and thus the sealing member 11 q is fixed to the CF board 11 a.
  • the laser beam that is applied to the sealing member 11 q is less likely to be blocked by the light blocking portion 11 l because the sealing member 11 q does not overlap the light blocking portion 11 i of the CF board 11 a and by the traces 20 of the array board 11 b (see FIG. 7 ). Even if the frame size of the liquid crystal panel 11 is further reduced and the arrangement density of the traces 20 on the array board 11 b is increased, that is, the intervals of the traces 20 are reduced, the fixation of the sealing member 11 q to the CF board 11 a can be properly improved regardless of the reduction in the intervals of the traces 20 .
  • FIG. 7 the fixation of the sealing member 11 q to the CF board 11 a can be properly improved regardless of the reduction in the intervals of the traces 20 .
  • the laser beams that are applied to the sealing members 11 q in the sealing member fixing process are indicated with chain-line arrows.
  • the laser beams may be separately applied to the sealing members 11 q in sequence or collectively applied to all sealing members 11 q at a time.
  • the thermosetting resin material that is the base sealing material MS is heated to the curing temperature. Through the heating, the base sealing material MS is cured without any uncured sections (completely cured). As illustrated in FIG. 20 , the base sealing member 21 is formed. In association with the heating, reorientation of the liquid crystal molecules that are included in the liquid crystal layer 11 c is accelerated. Therefore, the liquid crystal molecules that are included in the liquid crystal layer 11 c are properly orientated.
  • the base sealing material curing process may be performed prior to the sealing member fixing process. In the cutting process, the base boards 11 a M and 11 b M are cut along a predefined scribe line to obtain the liquid crystal panel 11 .
  • the method of producing the liquid crystal panel 11 in this embodiment includes the sealing member forming process, the board bonding process, and the sealing member fixing process.
  • the sealing member forming process includes forming the sealing member 11 q by curing the sealing material S disposed on the CF board 11 a (the first board) without any uncured section.
  • the board bonding process includes bonding the array board 11 b (the second board) to the CF board 11 a with the liquid crystal layer 11 c (the medium layer) therebetween.
  • the sealing member fixing process includes fixing the sealing member 11 q to the array board 11 b.
  • the sealing material S is disposed on the CF board 11 a and the sealing material S is cured without any uncured sections.
  • the sealing member 11 q is formed.
  • the array board 11 b is bonded to the CF board 11 a with the liquid crystal layer 11 c therebetween.
  • the sealing member fixing process that is subsequently performed, the sealing member 11 q is fixed to the array board 11 b.
  • the liquid crystal layer 11 c is sealed.
  • the liquid crystal layer 11 c is pressed and spread between the boards 11 a and 11 b in association with bonding of the boards 11 a and 11 b.
  • the sealing member 11 q may receive the force that is applied by the liquid crystal layer 11 c to squeeze the sealing member 11 q. If the frame size is further reduced and the width of the sealing member 11 q is reduced, the sealing member 11 q may withstand the force and thus the liquid crystal layer 11 c may partially enter into the sealing member 11 q. In the sealing member forming process that is performed prior to the board bonding process, the sealing material S is cured without any uncured sections and the sealing member 11 q is formed. Even if the frame size is further reduced, the liquid crystal layer 11 c is less likely to partially enter into the sealing member 11 q.
  • the width of the sealing member 11 q is reduced when the frame size is further reduced, external moisture may pass through the uncured section of the sealing member 11 q and diffuse in the liquid crystal layer 11 c.
  • the sealing material S is cured without any uncured sections and the sealing member 11 q is formed. Even if the frame size is further reduced, the external moisture is less likely to pass the sealing member 11 q and thus the moisture is less likely to diffuse in the liquid crystal layer 11 c. This is preferable for reducing the frame size of the liquid crystal panel 11 .
  • the method of producing the liquid crystal panel 11 includes the CF base board producing process (the first base board producing process), the array base board producing process (the second base board producing process), the base sealing material disposing process, and the base sealing material curing process.
  • the CF base board producing process includes producing the CF base board 11 a M (the first base board) which includes the CF boards 11 a within the plate surface.
  • the array base board producing process includes producing the array base board 11 b M (the second base board) which includes the array boards 11 b within the plate surface.
  • the base sealing material disposing process includes disposing the base sealing material MS that includes the uncured section on any one of the CF base board 11 a M and the array base board 11 b M to surround either the CF boards 11 a or the array boards 11 b.
  • the base sealing material curing process is performed at least after the board bonding process for curing the base sealing material MS without any uncured sections to form the base sealing member 11 q.
  • the base sealing material MS that includes the uncured section is disposed on either the CF base board 11 a M that is produced through the CF base board producing process or the array base board 11 b M that is produced through the array base board producing process to surround either the CF boards 11 a or the array boards 11 b.
  • the base sealing material MS that includes the uncured section closely contact the other one of the CF base board 11 a M and the array base board 11 b M.
  • the space between the base boards 11 a M and 11 b M is maintained under the negative pressure. Therefore, the base boards 11 a M and 11 b M are less likely to be displaced or removed.
  • the base sealing material MS is cured without any uncured sections and the base sealing member 11 q is formed.
  • the base sealing material MS is disposed on the array base board 11 b M.
  • the base sealing material disposing process is performed to dispose the base sealing material MS on the array base board 11 b M that is different from the CF base board 11 a M on which the sealing material forming process is performed.
  • the sealing member forming process and the base sealing material disposing process can be performed in parallel. In comparison to a method in which the sealing member forming process and the base sealing material disposing process are performed on the CF base board 11 a M, the time that is required for the production of the liquid crystal panel 11 can be reduced.
  • the medium layer is the liquid crystal layer 11 c.
  • the thermosetting resin material is disposed for the base sealing material MS.
  • the heating is performed until the temperature reaches at least the curing temperature of the thermosetting resin material.
  • the thermosetting resin material is cured and the base sealing member 11 q is formed. The reorientation of the liquid crystal molecules in the liquid crystal layer 11 c that is the medium layer is accelerated. Therefore, the liquid crystal molecules in the liquid crystal layer 11 c are properly orientated.
  • the sealing material S is discharged by the dispenser 32 a to dispose the sealing material S along the area to form the sealing member 11 q.
  • the amount of the sealing material S to be used can be reduced. This method is preferable for reducing the production cost.
  • the sealing member forming process of the method of producing the liquid crystal panel 11 includes the sealing material disposing process and the sealing material curing process.
  • the sealing material disposing process includes disposing the sealing material S that is in the powdered form on the CF board 11 a.
  • the sealing material curing process includes applying the laser beams to the sealing material S and selectively curing the sections to which the laser beams are applied without any uncured sections.
  • the sealing material S that is in the powdered form is disposed on the CF board 11 a.
  • the laser beams are applied to the sealing material S that is disposed on the CF board 11 a and the sections to which the laser beams are applied are selectively cured without any uncured sections.
  • the sealing member 11 q is formed.
  • the liquid crystal panel 11 in this embodiment includes the array board 11 b, the CF board 11 a (the common board), the liquid crystal layer 11 c, and the sealing member 11 q.
  • the array board 11 b includes at least the pixels PX and the traces 20 .
  • the pixels PX are arranged in the matrix in the display area AA in which images are displayed.
  • the traces 20 are disposed in the non-display area NAA outside the display area AA.
  • the CF board 11 a that includes the light blocking portion 11 l is disposed opposite the array board 11 b.
  • the light blocking portion 11 l include at least the sections that are disposed to separate the pixels PX from one another.
  • the liquid crystal layer 11 c is sandwiched between the array board 11 b and the CF board 11 a.
  • the sealing member 11 q is disposed between the array board 11 b and the CF board 11 a to surround the liquid crystal layer 11 c and to overlap the traces 20 in the non-display area NAA.
  • the sealing member 11 q is made of the material that has the light blocking property and disposed not to overlap the light blocking portion 11 l.
  • the pixels PX that are arranged in the matrix in the display area AA are separated from one another by the light blocking portion 11 l. Therefore, color mixture is less likely to occur.
  • the liquid crystal layer 11 c that is sandwiched between the array board 11 b and the CF board 11 a is surrounded and sealed by the sealing member 11 q that is disposed in the non-display area and between the array board 11 b and the CF board 11 a.
  • the sealing member 11 q is disposed in the non-display area to overlap the traces 20 that are included in the array board 11 b. To accelerate the fixation of the sealing member 11 q to the CF board 11 a with light that is applied from the array board 11 b side, the light may be blocked by the traces 20 . If the arrangement density of the traces 20 is increased when the frame size is further reduced, the fixation of the sealing member 11 q to the CF board 11 a may become insufficient or takes a longer period of time.
  • the sealing member 11 q is disposed not to overlap the light blocking portion 11 l that is includes in the CF board 11 a.
  • the sealing member 11 q has the light blocking property. Therefore, although the sealing member 11 q is disposed not to overlap the light blocking portion 11 l, light leakage is less likely to occur in the non-display area NAA. This configuration is preferable for reducing the frame size.
  • the CF board 11 a of the liquid crystal panel 11 includes the planarization layer 11 m that is disposed at least over the light blocking portion 11 l on the liquid crystal layer 11 c side.
  • the planarization layer 11 m is disposed in the area not to overlap the sealing member 11 q.
  • the sealing member 11 q is fixed to the CF board 11 a with direct contact. Namely, because the planarization layer 11 m is not disposed between the sealing member 11 q and the CF board 11 a, the sealing member 11 q is more strongly fixed to the CF board 11 a. Only the interface between the sealing member 11 q and the CF board 11 a is exposed to the outside.
  • the planarization layer 11 m is disposed between the sealing member 11 q and the CF board 11 a, the area of the interface that is exposed to the outside can be reduced. Therefore, the external moisture is less likely to pass through the interface and enter into the liquid crystal layer 11 c.
  • the outer surface of the sealing member 11 q on the opposite side from the liquid crystal layer 11 c is flush with at least the end surface of the CF board 11 a.
  • the frame size can be further reduced.
  • the sealing member 11 q of the liquid crystal panel 11 is made of the synthetic resin material with the light blocking compounds mixed in the synthetic resin material. According to the configuration, the light blocking compounds can be easily dispersed in the synthetic resin material when mixing the light blocking compounds in the synthetic resin material. Therefore, the sealing member 11 q that delivers even light blocking performance can be easily provided. In comparison to a configuration in which the sealing member 11 q is made of metal, the sealing member 11 q can be fixed to the CF board 11 a with a lower temperature.
  • the sealing member 11 q of the liquid crystal panel 11 contains the spacer particles. This configuration is preferable for maintaining the height of the sealing member 11 q constant.
  • a second embodiment of the present invention will be described with reference to FIGS. 21 and 22 .
  • the second embodiment includes a light blocking portion without a frame section. Configurations, functions, and effects similar to those of the first embodiment will not be described.
  • a liquid crystal panel 111 in this embodiment includes a sealing member 111 q that is disposed for about entire width of the non-display area NAA.
  • the light blocking portion which is not illustrated, does not include the frame section.
  • the sealing member 111 q is disposed to separate the pixels PX from one another together with a grid section of the light blocking portion.
  • the pixels PX that are disposed at the outermost among the pixels PX that are arranged in the matrix in the display area AA are separated by the outermost section of the grid section of the light blocking portion and the sealing member 111 q that collectively surrounds them. Because the frame section is not included in the light blocking portion, the frame size of the liquid crystal panel 111 can be further reduced.
  • the sealing member 111 q is disposed to separate the pixels PX from one another together with the light blocking portion.
  • the light blocking portion includes the frame section along the sealing member 111 q and the pixels PX are separated from one another only by the light blocking portion, this configuration is more preferable for reducing the frame size.
  • the third embodiment includes a sealing member forming device 40 used in a sealing member forming process, which is different from the first embodiment. Configurations, functions, and effects similar to those of the first embodiment will not be described.
  • the fusion deposition type sealing member forming device 40 is used.
  • the sealing member forming device 40 includes at least a stage 41 , a head 42 , and a controller 43 .
  • a CF base board 211 a M is placed on the stage 41 .
  • the head 42 is disposed opposite the CF base board 211 a M on the stage 41 .
  • the controller 43 is connected to the head 42 and configured to control the head 42 .
  • the fusion deposition type sealing member forming device 40 is provided with a lower facility cost because it does not include the light source 33 and the laser beam output port 32 c.
  • a major different of the sealing member forming device 90 from the sealing member forming device 30 in the first embodiment is the head 42 . Therefore, the head 42 will be described in detail and other configurations similar to those of the first embodiment will not be described.
  • the head 42 of the sealing member forming device 40 includes at least a dispenser 42 a, a roller 42 b, and a driver 42 c.
  • the dispenser 42 a is configured to fuse the thermosetting resin material of the sealing material S (thermal fusion) and to discharge the sealing material S onto the CF base board 211 a M.
  • the roller 42 b is configured to roll and compress the sealing material that is discharged by the dispenser 42 a.
  • the driver 42 c is configured to drive the dispenser 42 a and the roller 42 b.
  • the dispenser 42 a includes a syringe and a heater. The syringe is filled with the thermosetting resin material of the sealing material S such as an ABS resin material and a nylon resin material.
  • the heater is configured to heat the syringe to fuse the thermosetting resin material. It is preferable to add one to some percent of silica beads that have particle diameters about equal to the cell gap to the thermosetting resin material as spacer particles.
  • the amount of the sealing material S that is discharged by the dispenser 42 a is controlled by the driver 42 c.
  • the roller 42 b can be move down to be closer to the CF base board 211 a M and up to be away from the CF base board 211 a M by the driver 42 c. Specifically, the roller 42 b is set at a position away from the CF base board 211 a M when the sealing material S is not discharged by the dispenser 42 a and at a position closer to the CF base board 211 a M when the sealing material S is discharged by the dispenser 42 a.
  • the roller 42 b is configured to press and spread the sealing material S that is fused on the CF base board 211 a M until the thickness of the sealing material S becomes about equal to the cell gap.
  • the sealing material S that is pressed and spread by the roller 42 b is cured without any uncured sections (completely cured) as the temperature decreases (cool down) and the sealing member is formed.
  • the sealing member that is formed as described above is fixed to an array base board, which is not illustrated, through pressing and heating of the base boards 211 a M in a sealing material fixing process that is performed after a board bonding process.
  • the roller 42 b or the stage 41 includes a heater to maintain flowability of the sealing material S before the rolling and the compression of the sealing material S that is discharged onto the CF base board 211 a M by the dispenser 42 a by the roller 42 b starts.
  • the sealing material S that is the thermosetting resin material is heated and fused, applied to the CF base board 211 a M (the CF board), and cured without any uncured sections in the sealing member forming process.
  • the fused sealing material S is applied to the CF base board 211 a M.
  • the sealing material S that is applied to the CF base board 211 a M is cured without any uncured sections as the temperature decreases. Through the process, the sealing member is formed.
  • a fourth embodiment will be described with reference to FIGS. 24 to 26 .
  • the fourth embodiment includes sealing member control portions 22 to control a width of a sealing member 311 q, which is different from the first embodiment. Configurations, functions, and effects similar to those of the first embodiment will not be described.
  • a liquid crystal panel 311 in this embodiment includes the sealing member control portions 22 .
  • the sealing member control portions 22 are disposed to sandwich the sealing member 311 q from an inner side (a liquid crystal layer 311 c side) and an outer side (an opposite side from the liquid crystal layer 311 c side).
  • the sealing member control portions 22 extend along the sealing member 311 q (parallel to the sealing member 311 q ) to form a frame shape in a plan view.
  • One of the sealing member control portions 22 is disposed adjacent to the sealing member 311 q on the inner side.
  • the other sealing member control portion 22 is disposed adjacent to the sealing member 311 q on the outer side.
  • the width of the sealing member 311 q can be controlled constant.
  • the sealing member control portions 22 have widths in a range from 20 to 50 ⁇ m, which are smaller than the width of the sealing member 311 q.
  • the sealing member control portions 22 are formed during formation of photo spacers on a surface of a planarization layer 311 m.
  • the sealing member control portions 22 are made of the same material as that of the photo spacers.
  • the sealing member control portion 22 adjacent to the sealing member 311 q on the inner side is disposed to overlap a frame section 311 l 2 of a light blocking portion 311 l and the planarization layer 311 m in a plan view.
  • the sealing member control portions 22 fulfills its function in the sealing member forming process that is performed after the CF base board producing process.
  • a sealing material disposing process that is included in the sealing member forming process, when the sealing material S is discharged onto the CF board 311 a by the dispenser (see FIGS. 10 and 11 ) of the sealing member forming device, the sealing material S is disposed in line in an area between the sealing member control portions 22 as illustrated in FIG. 25 .
  • the sealing member control portions 22 include holes 22 a in the middle with respect to the extending direction thereof.
  • the holes 22 a are through holes that extend in the width direction of the sealing member control portions 22 .
  • each hole 22 a is smaller than the particle diameter (e.g., 50 ⁇ m) of the nylon powder in the sealing material S.
  • the sealing material S that is disposed in the area between the sealing member control portions 22 cannot pass through the holes 22 a of the sealing member control portions 22 and thus remain in the area between the sealing member control portions 22 .
  • the sealing material S that is disposed as described above are rolled and compressed by the first roller (see FIGS. 10 and 12 ) of the sealing member forming device. As a result, the sealing material S are ground and pressed to spread. An area in which the sealing material S is pressed to spread tends to depend on distribution density of the nylon powder that is disposed in the sealing material disposing process.
  • the distribution density of the nylon powder is high at a point, the area in which the sealing material S is pressed to spread may become locally large at the high distribution density point. In such a case, the area in which the sealing material S is pressed to spread is controlled by the sealing member control portions 22 that are disposed to sandwich the sealing material S. Therefore, the width of the sealing member 311 q that is formed through the sealing material curing process is substantially constant for the entire length. If the distribution density of the nylon powder is high at a point, an excess of the sealing material S which may be produced during the rolling and the compressing of the sealing material S is released to the outside through the holes 22 a of the sealing member control portions 22 . Therefore, unevenness in height of the sealing member 311 q resulting from the excess of the sealing material S is less likely to occur.
  • the liquid crystal panel 311 in this embodiment includes the sealing member control portions 22 that are disposed to sandwich the sealing member 311 q from the liquid crystal layer 311 c side and from the opposite side from the liquid crystal layer 311 c.
  • the sealing member control portions 22 With the sealing member control portions 22 , the width of the sealing member 311 q can be controlled during the formation of the sealing member 311 q. Therefore, the frame width of the liquid crystal panel 311 can be set with high accuracy. This configuration is preferable for reducing the frame size.
  • the sealing member control portions 22 of the liquid crystal panel 311 extend parallel to the sealing member 311 q and include the holes 22 a in the middle. According to the configuration, an uncured material can be released through the holes 22 a of the sealing member control portions 22 during the formation of the sealing member 311 q. Therefore, the sealing member 311 q has the constant height.
  • the method of producing the liquid crystal panel that includes the sealing member that is disposed not to overlap the light blocking portion and has the light blocking property is described.
  • the board bonding process is performed after the sealing member forming process in which the sealing material is cured without any uncured sections to form the sealing member.
  • the sealing material fixing process is performed to fix the sealing member to the array board.
  • the method of producing the liquid crystal panel may be modified.
  • the board bonding process may be performed after a sealing material temporarily curing process in which the sealing material is temporarily cured similar to the know method.
  • a sealing material permanently curing process may be performed to permanently cure the sealing material.
  • the configuration of the liquid crystal panel may be modified.
  • the sealing member may not have the light blocking property similar to the known configuration and may be disposed to overlap the light blocking portion.
  • the nylon powder that contains nylon is used for the main component of the sealing material.
  • a material other than nylon may be used.
  • the main component of the sealing material include a polyarnide resin hot-melt adhesive (an adhesive that contains a polyamide (nylon) resin as a main component), polypropylene (PP), polylactic acid, polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), acrylonitrile butadiene styrene copolymer (ABS), ethylene vinyl acetate copolymer (EVA), styrene acrylonitrile copolymer (SAN), and polycaprolactone.
  • a polyarnide resin hot-melt adhesive an adhesive that contains a polyamide (nylon) resin as a main component
  • PP polypropylene
  • PE polylactic acid
  • PE polyethylene
  • PET polyethylene terephthalate
  • PS polystyrene
  • ABS acrylonitrile butadiene styren
  • the sealing material is the synthetic resin material.
  • the sealing material may be a metal material.
  • the metal material may be titanium particles made of titanium.
  • the carbon dioxide laser beams are used for curing the sealing material.
  • gas laser beams other than the carbon dioxide laser beams may be used.
  • the gas laser beams include excimer laser beams (ArF, KrF, XeCl, or XeF may be used as a medium), ion laser beams (argon ions, krypton ions, or mixture of those may be used as a medium), nitrogen laser beams that include nitrogen as a medium, mixed gas laser beams (mixed gas such as He—Ne and TEA-CO 2 is used as a medium), metal vapor laser beams (Cu or He—Cd may be used as a medium), and chemical laser beams (HF may be used as a medium).
  • excimer laser beams ArF, KrF, XeCl, or XeF
  • ion laser beams argon ions, krypton ions, or mixture of those may be used as a medium
  • excimer laser beams For the excimer laser beams, if ArF is used as a medium, it is preferable to use excimer laser beams with a wavelength of 193 nm and a radiation intensity of 500 mJ. If KrF is used as a medium, it is preferable to use excimer laser beams with a wavelength of 248 nm and a radiation intensity of 1 J.
  • solid-state laser beams or liquid laser beams may be sued for curing the sealing material.
  • the solid-state laser beams include YAG laser beams (Nd 3+ :Y 3 Al 3 O 12 may be used as a medium), Q-switched YAG laser beams, ruby laser beams (Cr 3+ :Al 2 O 3 may be used as a medium), glass laser beams, titanium sapphire laser beams (Ti 4+ :Al 2 O 3 may be used as a medium), alexandrite laser beams (Cr 3+ :BeAl 2 O 4 may be used as a medium), YLF laser beams (Er 3+ :YLi may be used as a medium), and semiconductor laser beams (GaAlAs or GaAlAs array may be used as a medium).
  • the semiconductor laser beams if GaAlAs is used as a medium, it is preferable to use semiconductor beams with a wavelength
  • the sealing material is sintered and cured by the laser beams (powder sintering) or the thermosetting resin material used for the sealing material is cooled and cured after fusion through heating (thermal dissolution).
  • an ultraviolet curable resin material may be used for the sealing material and cured with ultraviolet rays.
  • the ultraviolet curable resin material may be applied to a target board with an ink-jet technology.
  • powder adhesion may be used.
  • Powder such as gypsum may be used for the sealing material.
  • the powered may be disposed on a target board and a binder such as an adhesive may be sprayed to the powder to cure the powder.
  • the sealing member is formed on the CF board (the CF base board) in the sealing member forming process, and the sealing member is fixed to the array board (the array base board) in the sealing member fixing process.
  • the sealing member may be formed on the array board (the array base board) in the sealing member forming process and the sealing member may be fixed to the CF board (the CF base board) in the sealing member fixing process.
  • the base sealing member is disposed in the array board (the array base board) in the base sealing material disposing process.
  • the base sealing member may be disposed on the CF board (the CF base board) in the base sealing material disposing process.
  • the base sealing member is formed.
  • the base sealing member may be omitted if the base boards are fixed together with other methods.
  • ultraviolet curable resin materials may be disposed in the edge area of either one of the base boards in dots at intervals along the sealing member, the boards may be bonded together, and the ultraviolet resin materials in dots may be fixed through application of ultraviolet rays.
  • the sealing member is disposed to overlap the row control circuit and the column control circuit for the entire areas.
  • the sealing member may partially overlap the row control circuit and the column control circuit.
  • the sealing member overlaps the row control circuit and the column control circuit.
  • the sealing member may be disposed to overlap the traces other than the row control circuit and the column control circuit.
  • liquid crystal panel that includes the row control circuit and the column control circuit (the monolithic circuits) and the method of producing the liquid crystal panel are described.
  • the present invention can be applied to a liquid crystal panel that includes only one of the row control circuit and the column control circuit or do not include the row control circuit and the column control circuit and to a method of producing the liquid crystal panel.
  • liquid crystal panel having the rectangular plan-view shape and the method of producing the liquid crystal panel are described.
  • present invention may be applied to liquid crystal panels having a square plan-view shape, a round plan-view shape, and an oval plan-view shape and methods of producing the liquid crystal panels.
  • the driver is COG-mounted on the array board of the liquid crystal panel.
  • the driver may be chip-on-film (COF) mounted on the liquid crystal panel flexible circuit board.
  • the semiconductor film of the channels of the TFT is made of the oxide semiconductor material.
  • continuous grain (OG) silicon which is one kind of polysilicon or amorphous silicon may be used as a material for the semiconductor film.
  • liquid crystal panel that is configured to operate in FFS mode and the method of producing such a liquid crystal panel are described.
  • the present invention may be applied to liquid crystal panels that are configured to operate in VA mode, IPS mode, and TN mode, respectively, and to methods of producing those liquid crystal panels.
  • the color filters of the liquid crystal panel have the three-color configuration of red, green, and blue.
  • the present invention may be applied to color filters have a four-color configuration including yellow color portions in addition to the red, the green, and the blue color portions.
  • the liquid crystal panel in the size that is classified into small size or small-to-medium size is described.
  • the present invention may be applied to a liquid crystal panel in medium size or large size (or extra-large size) having a screen size of 20 to 100 inches.
  • the liquid crystal panel may be used for an electronic device such as a television device, an electronic signboard (a digital signage), and an electrical blackboard.
  • liquid crystal panel that includes the liquid crystal layer that is sandwiched between the boards is described.
  • present invention may be applied to a display panel that includes functional organic molecules other than the liquid crystals sandwiched between the boards.
  • the liquid crystal panel and the method of producing the liquid crystal panel are described.
  • the present invention can be applied to an organic EL panel and a method of producing the organic EL panel.
  • a dehumidification member or air may be included as a medium layer inside a sealing member.
  • the dehumidification member or the air may enter the sealing member.
  • such a problem that is, the entrance of the dehumidification member or the air into the sealing member can be solved.
  • the TFTs are used as the switching components of the liquid crystal panel.
  • the present invention may be applied to a liquid crystal panel that includes switching components other than TFTs (e.g., thin film diodes (TFD)).
  • TFTs thin film diodes
  • the present invention may be applied to a liquid crystal panel that is configured to display black-and-white images other than the liquid crystal panel that is configured to display color images and a method of producing the liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A method of producing a liquid crystal panel 11 (a display panel) includes: a sealing member forming process of forming a sealing member 11q; a board bonding process of bonding an array board 11b (a second board) to the CF board 11a with a liquid crystal layer 11c (a medium layer) between the array board 11b and the CF board 11a; and a sealing member fixing process of fixing the sealing member 11q to the array board 11b. The sealing member forming process includes disposing a sealing material S on the CF board 11a and curing the sealing member 11q without any uncured section.

Description

    TECHNICAL FIELD
  • The present invention relates to a display panel and a method of producing a display panel.
  • BACKGROUND ART
  • A method of producing a liquid crystal panel of a liquid crystal display device disclosed in Patent Document 1 has been known as an example of a method of producing a liquid crystal panel. According to the method of producing the liquid crystal panel disclosed in Patent Document 1, a recess is formed for an entire peripheral area of an alignment film forming area on a substrate. A first application liquid is applied on the recess to form a bank portion in a frame shape. A second application liquid is discharged to the alignment film forming area through an inkjet method to form an alignment film. A sealing member is disposed on one of the substrates including the substrate on which the alignment film is formed. The substrates are bonded together with the sealing member. A liquid crystal layer is sandwiched between the substrates. An outer edge of the sealing member is located closer to an outer edge of the substrate relative to the bank portion.
  • RELATED ART DOCUMENT Patent Document
  • Patent Document 1: Unexamined Japanese Patent Application Publication No. 2014-174432
  • Problem to be Solved by the Invention
  • Patent Document 1 includes two problems described below. A first problem will be described. In Patent Document 1, bonding of boards is performed after a sealant that has not been cured is applied and then the sealant is cured. During the bonding of the boards, a liquid crystal material is pressed and spread between the boards. The sealant receives a force that is applied to the sealant by the liquid crystal material to push the sealant. If the frame size of the liquid crystal panel is further reduced and a width of the sealant is reduced, the sealant may not be able to withstand the force and the liquid crystal material may partially enter the sealant. Furthermore, if the frame size of the liquid crystal panel is further reduced and a width of a seal member is reduced, external moisture may passes through an uncured section of the sealant and tend to diffused in a liquid crystal layer.
  • Next, a second problem will bP described. In Patent Document 1, the sealant is disposed to overlap a peripheral light blocking portion. To cure and fix the sealant to a common board, ultraviolet rays are applied from the array board side to cure the sealant. In recent years, a number of traces are disposed in a frame area of the array board. The traces may overlap the sealant. In such a case, the ultraviolet rays are applied to the sealant through spaces between the traces. If the frame size of the liquid crystal panel is further reduced, an arrangement area of the traces is reduced. Therefore, arrangement density of the traces increases and the spaces between the traces decreases. During curing of the sealant, the ultraviolet rays may be blocked by the traces and thus curing of the sealant may become difficult or a longer period of time may be required for curing the sealant.
  • DISCLOSURE OF THE PRESENT INVENTION
  • The present invention was made in view of the above circumstances. An object is to provide a liquid crystal panel and a method of producing the liquid crystal panel preferable for a reduction in frame size.
  • Means for Solving the Problem
  • A method of producing a display panel according to the present invention includes a sealing member forming process of forming a sealing member, a board bonding process of bonding a second board to a first board with a medium layer between the first board and the second board, and a sealing member fixing process of fixing the sealing member to the second board. The sealing member forming process includes disposing a sealing material on the first board and curing the sealing material without any uncured section.
  • In the sealing member forming process, the sealing material is disposed on the first board and the sealing material is cured without any uncured section. Through the process, the sealing member is formed. In the board bonding process that is subsequently performed, the second board is bonded to the first board with the medium layer between the first board and the second board. In the sealing member fixing process that is subsequently performed, the sealing member is fixed to the second board. Through the process, the medium layer is sealed. In the board bonding process, the medium layer is pressed and spread between the boards in accordance with the bonding of the boards. The sealing member receives a force that may be applied by the medium layer to push the sealing member. If the frame size is further reduced and the width of the sealing member is reduced, the sealing member may not be able to withstand the force and the medium layer may partially enter into the sealing member. In the sealing member forming process that is preformed prior to the board bonding process, the sealing material is cured without any uncured section to form the sealing member. Therefore, even if the frame size is further reduced, the medium layer is less likely to partially enter into the sealing member. If the width of the sealing member is reduced in accordance with the further reduction in the frame size, external moisture may pass through the uncured section of the sealing member and diffuse in the medium layer. In the sealing member forming process that is preformed prior to the board bonding process, the sealing material is cured without any uncured section to form the sealing member. Therefore, even if the frame size is further reduced, the external moisture is less likely to pass through the sealing member and thus the moisture is less likely to diffuse in the medium layer. As described above, this method is preferable for reducing the frame size of the display panel.
  • Preferable embodiments of the method of producing the display panel according to the present invention may include the following features.
  • (1) The method may further include a first base board producing process, a second base board producing process, a base sealing material disposing process, and a base sealing material curing process. The first base board producing process includes producing a first base board including first boards within a plate surface of the first base board. The second base board producing process includes producing a second base board including second boards within a plate surface of the second base board. The base sealing material disposing process includes disposing a base sealing material on any one of the first base board and the second base board to surround either the first boards or the second boards and to include an uncured section. The base sealing material curing process includes curing the base sealing material without any uncured section to form a base sealing member. The base sealing material curing process is performed after at least the board bonding process. In the base sealing material disposing process, the base sealing material that includes the uncured section is disposed on any one of the first base board that is produced through the first base board producing process and the second base board that is produced through the second base board producing process to surround either the first board or the second boards. In the board bonding process that is subsequently performed, the boards are bonded together. The base sealing material that includes the uncured section closely contacts the other one of the first base board and the second base board. The boards are maintained under negative pressure. Therefore, the boards are less likely to be displaced or removed. In the base sealing material curing process that is subsequently performed, the base sealing material is cured without any uncured section. Through the process, the base sealing member is formed.
  • (2) The base sealing material disposing process may include disposing the base sealing material on the second base board. The base sealing material disposing process is performed to dispose the base sealing material on the second base board that is not the first base board on which the sealing member forming process is performed. Therefore, the sealing member forming process and the base sealing material disposing process can be performed in parallel. In comparison to the method in which the sealing member forming process and the base sealing material disposing process are performed on the first base board, time that is required for the production of the display panel can be reduced.
  • (3) The medium layer in the board bonding process may be a liquid crystal layer. The base sealing material disposing process may include disposing a thermosetting resin material as the base sealing material. The base sealing curing process may include heating processing that is performed until a temperature reaches at least a curing temperature of the thermosetting resin material. When the heating processing is performed until the temperature reaches at least the curing temperature of the thermosetting resin material in the base sealing material curing process, the thermosetting resin material is cured and the base sealing member is formed. Furthermore, reorientation of liquid crystal molecules included in the liquid crystal layer that is the medium layer is accelerated. Therefore, the liquid crystal molecules included in the liquid crystal layer are properly orientated.
  • (4) The sealing member forming process may include discharging the sealing material by a dispenser and disposing the sealing material along an area to form the sealing member. In comparison to a method in which the sealing material is layered in an entire area of the plate surface of the first board and the sealing material is selectively cured, an amount of the sealing material can be reduced. This method is preferable for reducing the production cost.
  • (5) The sealing member forming process may include a sealing material disposing process and a sealing material curing process. The sealing material disposing process may include disposing the sealing material that is in a powdered form on the first board. The sealing material curing process may include applying a laser beam to a section of the sealing material and selectively curing the section of the sealing material without any cured area. In the sealing material disposing process, the sealing material that is in the powder form is disposed on the first board. In the sealing material curing process that is subsequently performed, the laser beam is applied to the sealing material that is disposed on the first board and the section to which the laser beam is applied is selectively cured without any uncured area. Through the processes, the sealing member is formed.
  • (6) The sealing member forming process may include heating and fusing the sealing material that is the thermosetting resin material, applying the sealing material to the first board, and curing the sealing material without any uncured section. In the sealing member forming process, after the sealing material is heated and fused, the fused sealing material is applied to the first board. The sealing material that is applied to the first board is cured without any uncured section as the temperature decreases. Through the process, the sealing member is formed.
  • A display panel according to the present invention includes pixels, an array board, a common board, a medium layer, and a sealing member. The pixels are arranged in a matrix in a display area in which an image is displayed. The array board includes at least traces that are disposed in a non-display area outside the display area. The common board is disposed opposite the array board. The common board includes a light blocking portion. The light blocking portion includes sections that are disposed to separate at least the pixels from one another. The medium layer is sandwiched between the array board and the common board. The sealing member is disposed between the array board and the common board to overlap the traces in the non-display area to surround the medium layer. The sealing member is made of a material having a light blocking property and disposed not to overlap the light blocking portion.
  • Because the pixels that are arranged in the matrix in the display area are separated from one another by the light blocking portion, color mixture is less likely to occur. The medium layer that is sandwiched between the array board and the common board is sealed with the sealing member that is disposed between the array board and the common board in the non-display area to surround the medium layer.
  • The sealing member is disposed to overlap the traces that are included in the array board in the non-display area. To accelerate the fixation of the sealing member to the common board with light applied from the array board side, the light may be blocked by the traces. If the arrangement density of the traces is increased in accordance with the reduction in the frame size, the fixation of the sealing member to the common board may become insufficient or timer that is required for the fixation may become longer. The sealing member is disposed not to overlap the light blocking portion that is included in the common board. By applying the light to the sealing member from the common board side to fix the sealing member to the array board, the light is less likely to be blocked by the light blocking portion. Therefore, the fixation of the sealing member to the array board can be properly accelerated. Even if the arrangement density of the traces is increased in accordance with the reduction in the frame size, the fixation of the sealing member to the array board can be properly accelerated regardless of the arrangement density of the traces. Furthermore, the sealing member has the light blocking property. Although the sealing member is disposed not to overlap the light blocking portion, leakage of light is less likely to occur in the non-display area. This configuration is preferable for reducing the frame size.
  • Preferable embodiments of the display panel according to the present invention may include the following configurations.
  • (1) The common board may include a planarization layer that is layered on a medium layer side relative to the light blocking portion. The planarization layer may be disposed in an area not to overlap the sealing member. According to the configuration, the sealing member is fixed to the common board with direct contact. Because the planarization layer is not disposed between the sealing member and the common board, the sealing member is more strongly fixed to the common board. Furthermore, only an interface between the sealing member and the common board is exposed to the outside. In comparison to a configuration in which the planarization layer is disposed between the sealing member and the common board, an area of the interface exposed to the outside is reduced. Therefore, external moisture is less likely to pass through the interface and enter into the medium layer.
  • (2) The sealing member may include an outer surface on an opposite side from the medium layer side. The outer surface maybe flush with at least an end surface of the common board. In comparison to a configuration in which the outer surface of the sealing member is located inner than the end surface of the common board, the frame size can be further reduced.
  • (3) The sealing member may be made of synthetic resin material with a light blocking compound contained in the synthetic resin material. According to the configuration, the light blocking compounds can be easily disposed in the synthetic resin material when mixing the light blocking compounds into the synthetic resin material. Therefore, the sealing member that delivers even light blocking performance can be easily provided. In comparison to a configuration in which the sealing member is made of metal material, the sealing member can be fixed to the common board at a lower temperature.
  • (4) The display panel may include sealing member control portions that are disposed to sandwich the sealing member from the medium layer side and an opposite side from the medium layer side. According to the configuration, the width of the sealing member can be controlled during the formation of the sealing member. Therefore, the width of frame of the display panel can be set with high accuracy. This configuration is further preferable for reducing the frame size.
  • (5) The sealing member control portions may extend parallel to the sealing member and include holes in the middle. According to the configuration, a material in an uncured state can be released through the holes of the sealing member control portions during the formation of the sealing member. Therefore, the sealing member has a constant height.
  • (6) The sealing member may contain spacer particles. This configuration is preferable for maintain the height of the sealing member constant.
  • (7) The sealing member maybe disposed to separate the pixels from one another together with the light blocking portion. In comparison to a configuration, in which the light blocking portion has a frame section along the sealing member and the pixels are separated from one another only by the light blocking portion, this configuration is further preferable for reducing the frame size.
  • Advantageous Effect of the Invention
  • According to the present invention, the liquid crystal panel and the method of producing the liquid crystal panel preferable for reducing the frame size.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic plan view illustrating connection among a liquid crystal panel that includes a drive according to a first embodiment of the present invention, a flexible circuit board, and a control circuit board.
  • FIG. 2 is a schematic cross-sectional view illustrating a cross-sectional configuration along a short direction of a liquid crystal display device.
  • FIG. 3 is a schematic cross-sectional view illustrating an overall cross-sectional configuration of the liquid crystal panel.
  • FIG. 4 is a schematic cross-sectional view illustrating a cross sectional configuration of a section of the liquid crystal panel in a display area.
  • FIG. 5 is a plan view schematically illustrating a wiring configuration of an array board included in the liquid crystal panel.
  • FIG. 6 is a plan view illustrating a wiring configuration of TFTs in a peripheral section of the liquid crystal panel and positional relation between a sealing member and the display area.
  • FIG. 7 is a cross-sectional view illustrating a cross-sectional configuration of the peripheral section of the liquid crystal panel.
  • FIG. 8 is a plan view of a CF base board that is produced through a CF base board producing process.
  • FIG. 9 is a plan view of an array base board that is produced through an array base board producing process.
  • FIG. 10 is a side view illustrating a schematic configuration of a sealing member forming device used in a sealing member forming process.
  • FIG. 11 is a side view illustrating a side view illustrating a sealing material discharged by a dispenser in a sealing material disposing process included in the sealing member forming process.
  • FIG. 12 is a side view illustrating rolling and compressing of the sealing material by a first roller in the sealing member forming process.
  • FIG. 13 is a side view illustrating output of laser beams by a laser beam output port in a sealing material curing process included in the sealing member forming process.
  • FIG. 14 is a side view illustrating rolling and compressing of the sealing material by a second roller in the sealing member forming process.
  • FIG. 15 is a plan view of an array base board on which a sealing member is formed through the sealing member forming process.
  • FIG. 16 is a plan view of a CF base board on which a base sealing material is disposed through a base sealing material disposing process.
  • FIG. 17 is a cross-sectional view illustrating the CF base board on which a liquid crystal material is dropped and the array base board before the array base board is bonded to the CF board in a board bonding process.
  • FIG. 18 is a cross-sectional view illustrating the base boards that are bonded together in the board bonding process.
  • FIG. 19 is a cross-sectional view illustrating application of laser beams onto the sealing member in the sealing member fixing process.
  • FIG. 20 is a plan view illustrating the base boards with a base sealing member formed through a base sealing material curing process.
  • FIG. 21 is a cross-sectional view illustrating a cross-sectional configuration of an outer edge section of a liquid crystal panel according to a second embodiment of the present invention.
  • FIG. 22 is a plan view illustrating a wiring configuration of TFTs and a positional relation between a sealing member and a display area in the outer edge section of the liquid crystal panel.
  • FIG. 23 is a side view illustrating a schematic configuration of a sealing member forming device used in a sealing member forming process according to a third embodiment of the present invention.
  • FIG. 24 is a cross-sectional view illustrating a cross-sectional configuration of an outer edge section of a liquid crystal panel according to a fourth embodiment of the present invention.
  • FIG. 25 is a plan view illustrating a sealing material disposed between sealing member control portions in a sealing member forming process.
  • FIG. 26 is a plan view illustrating rolling and compressing of the sealing material by a first roller in the sealing member forming process.
  • MODE FOR CARRYING OUT THE INVENTION First Embodiment
  • A first embodiment of the present invention will be described with reference to FIGS. 1 to 20. In this section, a liquid crystal display device 10 will be described. X-axes, Y-axes, and Z-axes may be present in drawings. The axes in each drawing correspond to the respective axes in other drawings to indicate the respective directions. A vertical direction of the liquid crystal display device 10 is defined based on FIGS. 2 to 4. Upper sides and lower sides in in FIGS. 2 to 4 correspond to a front side and a rear side of the liquid crystal display device 10, respectively.
  • As illustrated in FIGS. 1 and 2, the liquid crystal display device 10 includes a liquid crystal panel 11 (a display panel), a driver 17 (a panel driver), a control circuit board 12 (an external signal source), a flexible circuit board 13 (an external connecting component), and a backlight unit 14 (a lighting device). The liquid crystal panel 11 is configured to display images. The liquid crystal panel 11 includes a display area AA and a non-display area NAA. The display area AA is an inner area configured to display images. The non-display area NAA is an outer area to surround the display area AA. The driver 17 is configured to drive the liquid crystal panel 11. The control circuit board 12 is configured to supply various kinds of signals from outside to the driver 17. The flexible circuit board 13 electrically connects the liquid crystal panel 11 to the control circuit board 12 that is provided outside. The backlight unit 14 is an external light source for supplying light to the liquid crystal panel 11. The liquid crystal display device 10 includes a front exterior component 15 and a rear exterior component 16 provided as a pair to hold the liquid crystal panel 11 and the backlight unit 14 that are assemble together. The front exterior component 15 includes an opening 15 a through which images displayed in the display area AA of the liquid crystal panel 11 can be viewed from the outside. The liquid crystal display device 10 according to this embodiment may be used in, but not limited to, an electronic device (not illustrated). Examples of the electronic device include mobile phones (including smart phones), laptop computers (including tablet-type laptop computers), wearable terminals (including smartwatches), mobile information terminals (including electronic books and PDAs), portable video game players, and digital photo frames. Therefore, a screen size of the liquid crystal panel 11 included in the liquid crystal display device 10 may be from several inches to a ten and several inches, which is usually classified as a small or a small-to-medium screen size.
  • The backlight unit 14 will be briefly described. As illustrated in FIG. 2, the backlight unit 14 includes a chassis 14 a, alight source (e.g. cold cathode fluorescent tubes, LEDs, organic ELs), which are not illustrated, and an optical member, which is not illustrated. The chassis 14 a has a box-like shape. The light sources are disposed inside the chassis 14 a. The optical member is disposed to cover an opening of the chassis 14 a. The optical member is configured to convert light emitted by the light sources into planar light.
  • Next, the liquid crystal panel 11 will be described. As illustrated in FIG. 1, the liquid crystal panel 11 has a vertically-long rectangular overall shape. At a position closer to a first end of the liquid crystal panel 11 with respect to a long direction of the liquid crystal panel 11 (the upper side in FIG. 1), the display area AA (an active area) is provided. The driver 17 and the flexible circuit board 13 are mounted at positions closer to a second end of the liquid crystal panel 11 with respect to the long direction of the liquid crystal panel 11 (the lower side in FIG. 1). In the liquid crystal panel 11, the area outside the display area AA is the non-display area NAA (a non-active area) in which images are not displayed. The non-display area NAA includes a frame-shaped region that surrounds the display area AA (a frame-shaped section of a CF board 11 a, which will be described later) and a region that is provided at the second end with respect to the long direction (a section of an array board 11 b which is exposed without overlapping the CF board 11 a, which will be described later). The region provided at the second end with respect to the long direction includes a mounting region (an attachment region) in which the driver 17 and the flexible circuit board 13 are mounted. A width of three sections (non-mounting edge sections) other than the mounting area in which the driver 17 and the flexible circuit board 13 are located, more specifically, a linear distance between an outer edge of an glass substrate GS and an outer edge of the display area AA (a frame width) is 0.5 mm or less. Namely, the liquid crystal panel 11 has a significantly narrow frame configuration in which the frame size is significantly small. The short direction of the liquid crystal panel 11 corresponds with the X-axis direction in the drawings and the long direction of the liquid crystal panel 11 corresponds with the Y-axis direction in the drawings. In FIGS. 1, 5, and 6, a chain line slightly smaller than the CF board 11 a in a frame shape indicates an outline of the display area AA and an area outside the chain line is the non-display area NAA.
  • Next, the components connected to the liquid crystal panel 11 will be described. As illustrated in FIGS. 1 and 2, the control circuit board 12 is mounted to a back surface of the chassis 14 a of the backlight unit 14 (an outer surface on an opposite side from the liquid crystal panel 11 side) with screws. The control circuit board 12 includes a substrate made of paper phenol or glass epoxy resin. Electronic components for supplying various signals to the driver 17 are mounted on the substrate and traces (conductive lines), which are not illustrated, are formed and routed. One of ends (a first end) of the flexible circuit board 13 is electrically and mechanically connected to the control circuit board 12 via an anisotropic conductive film (ACF), which is not illustrated.
  • As illustrated in FIG. 2, the flexible circuit board 13 includes a base member made of synthetic resin material (e.g., polyimide-based resin) having an insulating property and flexibility. A number of traces, which are not illustrated, are formed on the base member. As described earlier, the first end of the flexible circuit board 13 with respect to the long direction is connected to the control circuit board 12 disposed on the back surface of the chassis 14 a. The other one of the ends (a second end) of the flexible circuit board 13 connected to the array board 11 b of the liquid crystal panel 11. The flexible circuit board 13 is folded to turn back and to have a U-shaped cross section in the liquid crystal display device 10. At the ends of the flexible circuit board 13 with respect to the long direction, sections of the traces are exposed and configured as terminals (not illustrated). The terminals are electrically connected to the control circuit board 12 and the liquid crystal panel 11. According to the configuration, the signals supplied by the control circuit board 12 are transmitted to the liquid crystal panel 11.
  • As illustrated in FIG. 1, the driver 17 is an LSI chip that includes a drive circuit therein. The driver 17 is configured to operate based on the signals supplied by the control circuit board 12, which is a signal source. The driver 17 is configured to process the signals supplied by the control circuit board 12, which is a signal source, to generate output signals, and output the output signals to the display area AA of the liquid crystal panel 11. The driver 17 has a horizontally-long rectangular shape (an elongated shape along a short edge of the liquid crystal panel 11) in a plan view. The driver 17 is directly mounted in the non-display area NAA of the liquid crystal panel 11 (on the array board 11 b, which will be described later). Namely, the driver 17 is mounted with the chip-on-glass (COG) technology. The long direction of the driver 17 corresponds with the X-axis direction (the short direction of the liquid crystal panel 11) and the short direction of the driver 17 corresponds with the Y-axis direction (the long direction of the liquid crystal panel 11).
  • The liquid crystal panel 11 will be described. As illustrated in FIG. 3, the liquid crystal panel 11 includes at least a pair of the boards 11 a and 11 b, a liquid crystal layer 11 c (a medium layer), and a sealing member 11 q. The liquid crystal layer 11 c is sandwiched between the boards 11 a and 11 b. The liquid crystal layer 11 c includes liquid crystal molecules that are substances having optical characteristics that vary according to application of an electric field. The sealing member 11 q is disposed between the boards 11 a and 11 b to surround the liquid crystal layer 11 c. The sealing member 11 q seals the liquid crystal layer 11 c while maintaining a cell gap in a size that corresponds with a thickness of the liquid crystal layer 11 c. Although the cell gap in the liquid crystal panel 11 in this embodiment is set to about 3 to 4 μm, the size of the cell gap can be altered where appropriate. One of the boards 11 a and 11 b on the front side is the CF board a (a second board, a common board). The other one of the boards 11 a and 11 b on the rear side (the back side) is the array board 11 b (a first board, an active matrix board). The CF board 11 a and the array board 11 b include glass substrates GS that are made of glass and various films that are formed in layers on inner surfaces of the glass substrates GS. The sealing member 11 q is disposed in the non-display area NAA of the liquid crystal panel 11. The sealing member 11 q has a vertically-long frame shape along the non-display area NAA in the plan view (the view in a normal direction to a plate surface of the array board 11 b) (FIG. 2). The sealing member 11 q has a width of about 400 μm in the significantly narrow frame configuration in which the frame width of the liquid crystal panel 11 is 0.5 min or less. Sections of the sealing member 11 q disposed in three edge areas (non-mounting edge areas) other than the mounting area in which the driver 17 and the flexible circuit board 13 are located at the outermost in the non-display area NAA (FIG. 2). Polarizing plates 11 d and 11 e are attached to outer surfaces of the boards 11 a and 11 b, respectively.
  • On an inner surface of the array board 11 b (on a liquid crystal layer 11 c side, an opposed surface that is opposed to the CF board 11 a), as illustrated in FIGS. 4 and 6, thin film transistors (TFTs, display components) 11 f which are switching components and pixel electrodes 11 g are arranged in rows and columns (in a matrix). Gate lines 11 i (scan lines) and source lines 11 j (data lines, signal lines) are routed in a grid to surround the TFTs 11 f and the pixel electrodes 11 g. The gate lines 11 i and the source lines 11 j are connected to gate electrodes 11 f 1 and source electrodes 11 f 2 of the TFTs 11 f, respectively. The pixel electrodes 11 g are connected to drain electrodes 11 f 3 of the TFTs 11 f. The TFTs 11 f are driven based on signals supplied to the gate lines 11 i and the source lines 11 j. The TFTs 11 f are driven based on various signals supplied to the gate lines 11 i and the source lines 11 j. Application of voltages to the pixel electrodes 11 g is controlled in accordance with the driving of the TFTs 11 f. The TFTs 11 f include channels 11 f 4 that connect the drain electrodes 11 f 3 to the source electrodes 11 f 2. An oxide semiconductor film is used to form the channels 11 f 4. The oxide semiconductor film of the channels 11 f 4 has electron mobility 20 to 50 times higher in comparison to an amorphous silicon thin material. Therefore, the TFTs 11 f can be easily reduced in size to obtain an optimal amount of transmitted light through the pixel electrodes 11 g (an aperture rate of display pixels). This configuration is preferable for increasing the definition and reducing the power consumption. The pixel electrodes 11 g are disposed in quadrilateral areas defined by the gate lines 11 i and the source lines 11 j. The pixel electrodes 11 g are formed from a transparent electrode film (an upper layer-side transparent electrode film) made of indium tin oxide (ITO) or zinc oxide (ZnO). The pixel electrodes 11 g are layered on an insulating film lip on an upper layer side relative to the insulating film 11 p. Common electrodes 11 h are layered under the insulating film 11 p on a lower layer side relative to the insulating film 11 p. The common electrodes 11 h are formed from the transparent electrode film (the lower layer-side transparent electrode film) similarly to the pixel electrodes 11 g. The common electrodes 11 h are formed as a solid pattern. The array board 11 b includes the pixel electrodes 11 g and the common electrodes 11 h. When a potential difference is created between the electrodes 11 g and 11 h, a fringe electric field (an oblique electric field) including a component along the plate surface of the array board 11 b and a component in the normal direction to the plate surface of the array board 11 b. The liquid crystal panel 11 operates in fringe field switching (FFS) mode that is an improved version of in-plane switching (IPS) mode. In this embodiment, an extending direction in which the gate lines 11 i extend and an extending direction in which the source lines 11 j extend correspond with the X-axis direction and Y-axis direction in the drawings, respectively.
  • As illustrated in FIG. 4, on the inner surface of the CF board 11 a in the display area AA, color filters 11 k are arranged at positions opposed to the pixel electrodes 11 g on the array board 11 b. The color filters 11 k include red (R), green (G), and blue (B) color portions in three colors. The R color portions, the G color portions, and the B color portion are repeatedly arranged to form a matrix. The color portions (the pixels PX) of the color filters ilk arranged in the matrix are separated from one another with a light blocking portion 11 l (a black matrix). With the light blocking portion 11 l, color mixture of different colors of light rays that pass through the color portions is less likely to occur. The light blocking portion 11 l is formed in a grid in the plan view. The light blocking portion 11 l includes dividing sections 1111 and a frame section 1112. The dividing sections 1111 a grid shape in the plan view and separate the color port ions from one another. The frame portion 1112 has a frame shape (a picture frame shape) in the plan view and surrounds the dividing sections 1111 from the peripheral sides. The dividing sections 1111 are disposed to overlap the gate lines 11 i and the source lines 11 j in the plan view. The frame section 1112 extends along the sealing member 11 q and has a vertically-long rectangular shape in the plan view. A planarization layer 11 m (an overcoat layer) is layered on the color filters 11 k and the light blocking portion 11 l. In the liquid crystal panel 11, each color potion of the color filter 11 k and the pixel electrode 11 g that is opposed to the color potion form a single pixel PX. The pixels PX include red pixels, green pixels, and blue pixels. The red pixels include the R color portions of the color filters 11 k. The green pixels include the G color portions of the color filters 11 k. The blue pixels include the B color portions of the color filters 11 k. The pixels PX in three colors are repeatedly arranged along the row direction (the X-axis direction) on the plate surface of the liquid crystal panel 11 to form pixel lines. A number of the pixel lines are arranged along the column direction (the Y-axis direction). Namely, a number of the pixels PX are arranged in a matrix in the display area AA of the liquid crystal panel 11.
  • Next, the configuration of the array board 11 b in the non-display area NAA will be described in detail. As illustrated in FIG. 5, in the non-display area NAA, a column control circuit 18 is disposed in a section of the array board 11 b adjacent to a short edge of the display area AA and a row control circuit 19 is disposed in a section of the array board 11 b adjacent to a long edge of the display area AA. The column control circuit 18 and the row control circuit 19 are configured to perform control for supplying the signals that are output by the driver 17 to the TFTs 11 f. The column control circuit 18 and the row control circuit 19 are monolithically fabricated on the array board 11 b with the oxide semiconductor film, which are the same semiconductor film of the channels 11 f 4 of the TFTs 11 f, as a base. The column control circuit 18 and the row control circuit 19 include control circuits for controlling the supply of the output signals to the TFTs 11 f. The control circuits in the column control circuit 18 and the row control circuit 19 include at least control TFTs and traces 20 that are connected to the control TFTs. As illustrated in FIGS. 5 and 6, the column control circuit 18 and the row control circuit 19 are disposed in sections of the CF board 11 a closer to the outer edges of the non-display area. Namely, the column control circuit 18 and the row control circuit 19 are disposed to overlap the sealing member 11 q. As illustrated in FIG. 7, the sealing member 11 q overlaps the traces 20 that are including in the control circuits of the column control circuit 18 and the row control circuit 19. In FIGS. 5 and 6, the sealing member 11 q is indicated by two-dashed chain lines. The outer edges of the sealing member 11 q substantially correspond with the outer edges of the CF board 11 a. The inner edges of the sealing member 11 q are disposed on inner side (closer to the display area AA) than the inner edges of the control circuits 18 and 19. In a production process of the array board 11 b, the control circuits of the column control circuit 18 and the row control circuit 19 are patterned on the array board 11 b simultaneously with the patterning of the TFTs 11 f by a known photolithography method.
  • As illustrated in FIG. 5, the column control circuit 18 is disposed adjacent to the short edge of the display area AA on the lower side in FIG. 5, that is, between the display area AA and the driver 17 with respect to the Y-axis direction. The column control circuit 18 overlaps one of the short sections of the sealing member 11 q which extends along the X-axis direction in the plan view. The column control circuit 18 is disposed in a horizontally-long rectangular area that extends in the X-axis direction. The column control circuit 18 is connected to the source lines 11 j disposed in the display area AA. The column control circuit 18 includes a switching circuit (an RGB switching circuit) for distributing image signals that are included in the output signals from the driver 17 to the source lines 11 j. Specifically, a large number of the source lines 11 j are disposed on the array board 11 b in the display area AA along the X-axis direction. The source lines 11 j are connected to the respective TFTs 11 f that are connected to the respective pixel electrodes 11 g that form the R (red) pixels PX, the G (green) pixels PX, and the B (blue) pixels PX. The column control circuit 18 is configured to distribute the image signals from the driver 17 to the source lines 11 j of R, G, and B through the switching circuit. The column control circuit 18 may include an auxiliary circuit such as a level shifter circuit and an ESD protection circuit.
  • As illustrated in FIG. 5, the row control circuit 19 is disposed adjacent to the long edge of the display area AA on the left side in FIG. 5. The row control circuit 19 is disposed in a vertically-long rectangular area that extends along the Y-axis direction. The row control circuit 19 overlaps one of the long sections of the sealing member 11 q which extends along the Y-axis direction in the plan view. The row control circuit 19 is connected to the gate lines 11 i that are disposed in the display area AA. The row control circuit 19 includes a scanning circuit that is configured to supply scan singles included in the output signals from the driver 17 to the gate lines 11 i at predefined timing to scan the gate lines in sequence. Specifically, a large number of the gate lines 11 i are arranged on the array board 11 b in the display area AA along the Y-axis direction. The row control circuit 19 is configured to scan the gate lines 11 i by supplying the control signals (scan signals) from the driver 17 to the gate lines from the gate line 11 i at the uppermost to the gate line 11 i at the lowermost in FIG. 5 in the display area AA through the scanning circuit. The row control circuit 19 includes a buffer circuit for amplifying the scan signals. The row control circuit 19 may include an auxiliary circuit such as a level shifter circuit and an ESD protection circuit. The column control circuit 18 and the row control circuit 19 are connected to the driver 17 via connecting traces, which are not illustrated, formed on the array board 11 b.
  • In the liquid crystal panel 11 in this embodiment, the sealing member 11 q is formed on a CF board 11 a side by curing the material through application of laser beams and fixed to the array board 11 b through application of the laser beams during bonding of the boards 11 a and 11 b in the production process of the liquid crystal panel 11. The sealing member 11 q is made of the material having the light blocking property. As illustrated in FIG. 7, the sealing member 11 q is disposed to overlap the traces 20 of the control circuits 18 and 19 in the non-display area NAA but not overlap the light blocking portion 11 l. In this embodiment, the liquid crystal panel 11 has the narrow frame design. Therefore, the sealing member 11 q is disposed to overlap traces 20 that included in the array board 11 b in the non-display area NAA. When the fixation of the sealing member 11 q to the CF board 11 a is accelerated by the laser beams that are applied from the array board 11 b side, the laser beams may be blocked by the traces 20. Especially, if arrangement density of the traces 20 is increased and intervals between the traces 20 is reduced in accordance with the reduction in the frame size, the fixation of the sealing member 11 q to the CF board 11 a may become insufficient or a longer period of time may be required for the fixation of the sealing member 11 q. Because the sealing member 11 q is disposed not to overlap the light blocking portion 11 l of the CF board 11 a, the laser beams are less likely to be blocked by the light blocking portion 11 l by applying the laser beams from the CF board 11 a side for the fixation the sealing member 11 q to the array board 11 b. According to the configuration, the fixation of the sealing member 11 q to the array board 11 b can be properly accelerated. Even if the arrangement density of the traces 20 is increased in accordance with a reduction in the frame size, the fixation of the sealing member 11 q to the array board 11 b can be properly accelerated regardless of the arrangement density of the traces 20. Because the sealing member 11 q has the light blocking property, even if the sealing member 11 q is disposed not to overlap the light blocking portion 11 l, a leakage of light is less likely to occur in the non-display area NAA.
  • Specifically, a sealing material S of the sealing member 11 q includes synthetic resin material (e.g., nylon powder made of nylon (polyamide)) and black light blocking compounds (e.g., carbon powder (carbon black)) dispersed in the synthetic resin material. The sealing member 11 q is formed by sintering and curing the sealing material S with the laser beams. More specifically, to form the sealing member 11 q, the sealing material S that is in the powdered form is disposed on the CF board 11 a and the laser beams are applied to the sealing material S. A section of the sealing material S to which the laser beams are applied is selectively sintered and cured. Namely, by adjusting an area of the sealing material S to which the laser beams are applied, a forming area (e.g., a width) to form the sealing member can be set with high accuracy. The light blocking compounds are evenly disposed in the synthetic resin material of the sealing member 11 q prepared by curing the sealing material S and fixed. According to the configuration, the sealing member 11 q can deliver light blocking performance at the same level as the light blocking portion 11 l and even light blocking performance. As illustrated in FIG. 7, the sealing member 11 q is disposed such that an inner peripheral surface of the sealing member 11 q contacts the outer peripheral surface of a frame section 1112 of the light blocking portion 11 l. Therefore, the sealing member 11 q can block a leakage of light from the non-display area together with the frame section 1112. The outer peripheral surface of the sealing member 11 q on the opposite side from the liquid crystal layer 11 c side (the light blocking portion 11 l side) is flush with an outer end surface of the CF board 11 a. This configuration is preferable for further reducing the frame size. Furthermore, the sealing material S of the sealing member 11 q contains spacer particles. The spacer particles contained in the sealing material S may be silica beads. A diameter of each particle is about equal to the cell gap of the liquid crystal panel 11 (the thickness of the liquid crystal layer 11). With the spacer particles, the height of the sealing member 11 q can be maintained constant with a value about equal to the cell gap for the entire periphery. Other than the spacer particles, inorganic filler, auxiliary agent, and additive agent may be added to the sealing material S where appropriate.
  • As illustrated in FIG. 7, the sealing member 11 q is disposed not to overlap the planarization layer 11 m formed on the CF board 11 a. The planarization layer 11 m is layered on the color filters 11 k and the light blocking portion 11 l with in the plane of the CF board 11 a on the liquid crystal layer 11 c side. Within the plane of the CF board 11 a, the planarization layer 11 m is solid. However, an outer peripheral section of the planarization layer 11 m which may overlap the sealing member 11 q is removed. Namely, the planarization layer 11 m is selectively formed in the section of the inner peripheral surface of the CF board 11 a which does not overlap the sealing member 11 q. An outer peripheral surface of the planarization layer 11 m is disposed to contact the inner peripheral surface of the sealing member 11 q and flush with the outer peripheral surface of the frame section 1112 of the light blocking portion 11 l. According to the configuration, the sealing member 11 q is fixed to the glass substrate GS of the CF board 11 a with direct contact. The planarization layer 11 m and the light blocking portion 11 l do not exist between the sealing member 11 q and the CF board 11 a. Therefore, the sealing member 11 q is more strongly bonded to the CF board 11 a. Because only an interface between the sealing member 11 q and the CF board 11 a is exposed to the outside, in comparison to a configuration in which the planarization layer 11 m is disposed between the sealing member 11 q and the CF board 11 a, a size of the interface that is exposed to the outside can be reduced and thus moisture that exists the outside is less likely to enter into the liquid crystal layer 11 c via the interface.
  • The liquid crystal panel 11 in this embodiment has the configuration described above. Next, the method of producing the liquid crystal panel 11 will be described. The method of producing the liquid crystal panel 11 in this embodiment includes a CF base board producing process (a first base board producing process), an array base board producing process (a second base board producing process), a sealing member forming process, a base sealing material disposing process, a board bonding process, a sealing member fixing process, a base sealing material curing process, and a cutting process. The CF base board producing process includes producing a CF base board 11 aM (a first base board) which includes CF boards 11 a within a plate surface thereof. The array base board producing process includes producing an array base board 11 bM (a second base board) which includes array boards 11 b within a plate surface thereof. The sealing member forming process includes forming the sealing member 11 q by curing the sealing material S on the CF board 11 a without any uncured sections. The base sealing material disposing process includes disposing a base sealing material MS that includes uncured sections on any one of the CF base board 11 aM and the array base board 11 bM to surround either the CF boards 11 a or the array boards 11 b. The board bonding process includes bonding the CF board 11 a and the array board 11 b with the liquid crystal layer 11 c between the CF board 11 a and the array board 11 b. The sealing member fixing process includes fixing the sealing member 11 q to the array board 11 b. The base sealing material curing process includes curing the base sealing material MS without any uncured sections to form a base sealing member 21. The cutting process includes cutting the cutting the base boards 11 aM and 11 bM to obtain the liquid crystal panels 11. In the sealing member forming process, the expression “the sealing material S is cured without any uncured section” does not mean that the extent of curing is 100%. The extent of curing lower than 100% may be included.
  • As illustrated in FIG. 8, in the CF base board producing process, various films are formed on a plate surface of a large-sized glass base substrate GSM by a known photolithography method and the films are processed through patterning to form components of the CF boards 11 a in layers. Through the process, the CF base board 11 aM is produced. As illustrated in FIG. 9, in the array base board producing process, various films are formed on a plate surface of a large-sized glass base substrate GSM by a known photolithography method and the films are processed through patterning to form components of the array boards 11 b in layers. Through the process, the array base board 11 bM is produced. In FIGS. 8 and 9, the CF boards 11 a and the array boards 11 b within the respective glass base substrates GSM are indicated by two-dashed chain lines. The CF boards 11 a are arranged in a matrix within the plate surface of the glass base substrate GSM and the array boards 11 b are arranged in a matrix within the plate surface of the glass base substrate GSM. Specifically, four along the X-axis direction by five along the Y-axis direction of those are arranged. The number of the CF boards 11 a or the array boards 11 b arranged within the plate surface of each glass base substrate GSM can be altered from the number described above where appropriate. Short dimensions and long dimensions of the CF base board 11 aM and the array base board 11 bM may be about in a range from 660 to 1500 mm and a range from 880 to 1800 mm, respectively. The dimensions may be altered where appropriate.
  • In the sealing member forming process, the sealing member 11 q is formed on each CF board 11 a of the CF base board 11 aM using a sealing member forming device 30 that is a powder sintering type forming device described below. As illustrated in FIG. 10, the sealing member forming device 30 includes at least a stage 31, a head 32, a light source 33, and a controller 34. The CF base board 11 aM is placed on the stage 31. The head 32 is disposed opposite the CF base board 11 aM on the stage 31. The light source 33 is connected to the head 32 and configured to emit the laser beam toward the CF base board 11 aM. The controller 34 is connected to the head 32 and the light source 33 and configured to control the head 32 and the light source 33. The stage 31 can move the CF base board 11 aM along the X-axis direction, the Y-axis direction, and the θ direction (the rotational direction) which are parallel to the plate surface of the CF base board 11 aM. The head 32 includes at least a dispenser 32 a, a first roller 32 b, a laser beam output port 32 c, a second roller 32 d, and a driver 32 e. The dispenser 32 a is configured to supply the sealing material S onto the CF base board 11 aM. The first roller 32 b is disposed adjacent to the dispenser 32 a to roll and compress the sealing material S. The laser beam output port 32 c is configured to apply the laser beam to the CF base board 11 aM. The second roller 32 d is disposed adjacent to the laser beam output port 32 c to roll and compress the sealing material S to which the laser beam has been applied. The driver 32 e is configured to drive the dispenser 32 a, the first roller 32 b, the laser beam output port 32 c, and the second roller 32 d. The light source 33 may include a carbon dioxide laser unit that is configured to emit an oscillating carbon dioxide laser beam (CO2 laser beam). The light source 33 is connected to the head 32 via optical fibers to supply the carbon dioxide laser beam to the laser beam output port 32 c that is included in the head 32. The controller 34 is configured to control the oscillation of the carbon dioxide laser beam by the light source 33. The controller 34 is configured to control the components 32 a to 32 e that are included in the head 32.
  • The configuration of the head 32 will be described in detail. The dispenser 32 a is configured to discharge the sealing material S in the powdered form to form the sealing member. The dispenser 32 a is configured to discharge the sealing material S in the powdered form in line in an area of the CF base board 11 aM with a width smaller than the width of the sealing member 11 q. The amount of the sealing material S discharged by the dispenser 32 a is controlled by the driver 32 e. The nylon powder that is the synthetic resin material to form the sealing material S and discharged by the dispenser 32 a has a mean particle diameter of about 50 μm. A mean particle diameter of the spacer particles that are contained in the sealing material S is about 3 to 4 μm. By adding the organic filler, auxiliary agent, and additive agent to the sealing material S, flowability of the sealing material S during the rolling and compressing them by the first roller 32 b can be improved. The first roller 32 b can be move down to be set closer to the CF baseboard 11 aM and up to be set away from the CF base board 11 aM by the driver 32 e. Specifically, when the sealing material S is not discharged by the dispenser 32 a, the first roller 32 b is set at a position away from the CF base board 11 aM. During the discharge of the sealing material S by the dispenser 32 a, the first roller 32 b is set at a position closer to the CF base board 11 aM. The first roller 32 b is configured to grind the nylon powder to form the sealing material S between the first roller 32 b and the CF baes board 11 aM to reduce the particle diameters about equal to the cell gap or less and to spread them in the width direction of the sealing member 11 q.
  • The laser beam output port 32 c is disposed on an opposite side from the dispenser 32 a relative to the first roller 32 b with a distance larger than a distance between the first roller 32 b and the dispenser 32 a. The laser beam output port 32 c is configured to apply the laser beam that is supplied by the light source to the sealing material S on the CF base board 11 aM. It is preferable that the carbon dioxide laser beam output from the laser beam output port 32 c has a wavelength of about 9.2 to 10.8 μm and an intensity of about 25 kW. When the laser beam is applied to the sealing material S, the nylon powder that is a main component of the sealing material S is sintered. The second roller 32 d is configured to move down to be set closer to the CF base board 11 aM and up to be set away from the CF base board 11 aM by the driver 32 e. Specifically, when the laser beam is not output from the laser beam output port 32 c, the second roller 32 d is set at a position away from the CF base board 11 aM. During the output of the laser beam from the laser beam output port 32 c, the second roller 32 d is set at a position closer to the CF base board 11 aM. The second roller 32 d may include a heater, which is not illustrated. The second roller 32 d may be heated to about 160° C. According to the configuration, the sealing material S that is in a condition immediately after the laser beam is applied can be softened during the rolling and compressing of the sealing material S.
  • The sealing member forming process will be described in detail. The sealing member forming process includes the sealing material disposing process and the sealing material curing process. The sealing material disposing process includes disposing the sealing material S that is in the powdered form on the CF board 11 a. The sealing material curing process includes applying the laser beam to the sealing material S and selectively curing the section of the sealing material S to which the laser beam is applied without any uncured areas. In the sealing member forming process, the CF base board 11 aM is placed on the stage 31 of the sealing member forming device 30. In the sealing material disposing process that is included in the sealing member forming process, the stage 31 is moved in the X-axis direction, the Y-axis direction, and the θ direction that are parallel to the plate surface of the CF base board 11 aM relative to the head 32. During the movement, the sealing material S is discharged by the dispenser 32 a. As illustrated in FIG. 11, the sealing material S is disposed in line along the area of the CF base board 11 aM to form the sealing member 11 q. The sealing material S is selectively disposed in the area to form the sealing member 11 q. In comparison to a configuration in which the sealing material S is disposed in an entire area within the plate surface of the CF board 11 a and the sealing material S is selectively cured, the amount of sealing material S to be used is smaller. This is preferable for reducing the production cost. The sealing material S disposed on the CF base board 11 aM is rolled and compressed by the first roller 32 b that is disposed at the position closer to the CF base board 11 aM. As a result, the sealing material S is ground. The sealing material S that is ground by the first roller 32 b has the particle diameter equal to the cell gap or less as illustrated in FIG. 12 and spread in the width direction of the sealing member 11 q (a first rolling and compressing process). As illustrated in FIG. 13, in the sealing material curing process that is included in the sealing member forming process, the laser beam that is output from the laser beam output port 32 c is applied to the sealing material S that has been rolled and compressed by the first roller 32 b. The nylon powder that is exit in the laser applied section is instantaneously heated and sintered. In sections of the sealing material to which the laser beam is not applied (non-laser applied sections), the nylon powder is not sintered and thus not cured. As illustrated in FIG. 14, the sealing material S to which the laser beam is applied is rolled and compressed by the second roller 32 d that is disposed at the position closer to the CF base board 11 aM (a second rolling and compressing process). The second roller 32 d is heated by the heater and thus the sealing material S is softened. According to the configuration, the rolling and compressing can be accelerated while the flowability of the sealing material S is ensured. The sealing material S is spread by the second roller 32 d to have a thickness that is about equal to the cell gap and cured without any uncured sections (completely cured). As a result, the sealing member 11 q is formed. The above-described sealing member forming process is performed for every CF board 11 a that is within the plate surface of the CF base board 11 aM. As illustrated in FIG. 15, the sealing member 11 q is formed on each CF board 11 a.
  • As illustrated in FIG. 16, in the base sealing material disposing process, the base sealing material MS that includes an uncured section is disposed on the array base board 11 bM to collectively surround the array boards 11 b. The base sealing material MS is disposed in an outer edge section of the array base board 11 bM in a vertically-long frame shape in a plan view. The base sealing material MS is made of thermosetting resin material. When the base sealing material MS is heated to a predefined curing temperature, the base sealing material MS is cured and formed into the base sealing member 21. In the base sealing material disposing process, an interim curing processing is performed to heat the base sealing material MS for a short period of time to cure a surface thereof. Most of inner section of the base sealing material MS on which the interim curing processing has been performed is uncured although the surface of the base sealing material MS is cured. The base sealing material disposing process is performed on the array base board 11 bM but not on the CF base board 11 aM on which the sealing member forming process is performed. Therefore, the sealing member forming process and the base sealing material disposing process can be performed in parallel. In comparison to a method in which the sealing member forming process and the base sealing material disposing process area performed on the CF base board 11 aM, the time required for producing the liquid crystal panel 11 can be reduced.
  • As illustrated in FIG. 17, in the board bonding process, a liquid crystal material LC is dropped into a section of each CF board 11 a surrounded by the sealing member 11 q on the CF base board 11 aM and then the array base board 11 bM is bonded to the CF base board 11 aM. The board bonding process is performed in the vacuum environment. As illustrated in FIG. 18, when the base boards 11 aM and 11 bM are bonded together, the liquid crystal material LC to form the liquid crystal layer 11 c is pressed and spread between the base boards 11 aM and 11 bM and thus a space surrounded by the sealing member 11 q is filled with the liquid crystal material LC. The sealing member 11 q receives a force that is applied by the liquid crystal layer 11 c to squeeze the sealing member 11 q. When the frame size is further reduced and the width of the sealing member 11 q is reduced, the sealing member 11 q may not be able to withstand the force and the liquid crystal layer 11 c may partially enter the sealing member 11 q. In the sealing member forming process that is performed prior to the board bonding process, the sealing material S is cured without any uncured sections (completely cured) and the sealing member 11 q is formed. Even if the frame size is further reduced, the liquid crystal layer 11 c is less likely to partially enter into the sealing member 11 q. Because the entrance of the liquid crystal layer into the sealing member 11 q is less likely to occur, a decrease in fixing strength of the sealing member 11 q relative to the boards 11 a and 11 b is less likely to occur. Furthermore, the sealing member 11 q is less likely to have bubbles and thus removal of the boards 11 a and 11 b is less likely to occur. Other than the above, when the width of the sealing member 11 q is reduced according to the reduction in the frame size, external moisture may pass through the uncured section of the sealing member 11 q and diffuse in the liquid crystal layer 11 c. In the sealing member forming process that is performed prior to the board bonding process, the sealing material is cured without any uncured section (completely cured) and the sealing member 11 q is formed. Even if the frame size is further reduced, the external moisture is less likely to pass through the sealing member 11 q. Therefore, the moisture is less likely to diffuse in the liquid crystal layer 11 c. When the board bonding process is performed, the base sealing material MS that includes the uncured sections tightly contact the CF base board 11 aM. Therefore, a space between the base boards 11 aM and 11 bM is maintained under negative pressure. After the board bonding process that is performed in the vacuum environment is completed, the base boards 11 aM and 11 bM are placed in the atmospheric pressure environment. When the base boards 11 aM and 11 bM are placed in the atmospheric pressure environment, displacement or removal of the base boards 11 aM and 11 bM is less likely to occur.
  • In the sealing member fixing process, the sealing member 11 q is fixed to each array board 11 b of the array base board 11 bM of the bonded base boards 11 aM and 11 bM to seal the liquid crystal layer 11 c. To fix the sealing member 11 q to the array board 11 b, as illustrated in FIG. 19, the laser beam is applied to the sealing member 11 q from the CF board 11 a side to melt a section of the sealing member 11 q which contacts the CF board 11 a. Immediately after that, the melted section of the sealing member 11 q is cured and thus the sealing member 11 q is fixed to the CF board 11 a. The laser beam that is applied to the sealing member 11 q is less likely to be blocked by the light blocking portion 11 l because the sealing member 11 q does not overlap the light blocking portion 11 i of the CF board 11 a and by the traces 20 of the array board 11 b (see FIG. 7). Even if the frame size of the liquid crystal panel 11 is further reduced and the arrangement density of the traces 20 on the array board 11 b is increased, that is, the intervals of the traces 20 are reduced, the fixation of the sealing member 11 q to the CF board 11 a can be properly improved regardless of the reduction in the intervals of the traces 20. In FIG. 19, the laser beams that are applied to the sealing members 11 q in the sealing member fixing process are indicated with chain-line arrows. The laser beams may be separately applied to the sealing members 11 q in sequence or collectively applied to all sealing members 11 q at a time.
  • In the base sealing material curing process, the thermosetting resin material that is the base sealing material MS is heated to the curing temperature. Through the heating, the base sealing material MS is cured without any uncured sections (completely cured). As illustrated in FIG. 20, the base sealing member 21 is formed. In association with the heating, reorientation of the liquid crystal molecules that are included in the liquid crystal layer 11 c is accelerated. Therefore, the liquid crystal molecules that are included in the liquid crystal layer 11 c are properly orientated. The base sealing material curing process may be performed prior to the sealing member fixing process. In the cutting process, the base boards 11 aM and 11 bM are cut along a predefined scribe line to obtain the liquid crystal panel 11.
  • As described above, the method of producing the liquid crystal panel 11 in this embodiment (the display panel) includes the sealing member forming process, the board bonding process, and the sealing member fixing process. The sealing member forming process includes forming the sealing member 11 q by curing the sealing material S disposed on the CF board 11 a (the first board) without any uncured section. The board bonding process includes bonding the array board 11 b (the second board) to the CF board 11 a with the liquid crystal layer 11 c (the medium layer) therebetween. The sealing member fixing process includes fixing the sealing member 11 q to the array board 11 b.
  • In the sealing member forming process, the sealing material S is disposed on the CF board 11 a and the sealing material S is cured without any uncured sections. Through the process, the sealing member 11 q is formed. In the board bonding process that is subsequently performed, the array board 11 b is bonded to the CF board 11 a with the liquid crystal layer 11 c therebetween. In the sealing member fixing process that is subsequently performed, the sealing member 11 q is fixed to the array board 11 b. Through the process, the liquid crystal layer 11 c is sealed. In the board bonding process, the liquid crystal layer 11 c is pressed and spread between the boards 11 a and 11 b in association with bonding of the boards 11 a and 11 b. The sealing member 11 q may receive the force that is applied by the liquid crystal layer 11 c to squeeze the sealing member 11 q. If the frame size is further reduced and the width of the sealing member 11 q is reduced, the sealing member 11 q may withstand the force and thus the liquid crystal layer 11 c may partially enter into the sealing member 11 q. In the sealing member forming process that is performed prior to the board bonding process, the sealing material S is cured without any uncured sections and the sealing member 11 q is formed. Even if the frame size is further reduced, the liquid crystal layer 11 c is less likely to partially enter into the sealing member 11 q. If the width of the sealing member 11 q is reduced when the frame size is further reduced, external moisture may pass through the uncured section of the sealing member 11 q and diffuse in the liquid crystal layer 11 c. In the sealing member forming process that is performed prior to the board bonding process, the sealing material S is cured without any uncured sections and the sealing member 11 q is formed. Even if the frame size is further reduced, the external moisture is less likely to pass the sealing member 11 q and thus the moisture is less likely to diffuse in the liquid crystal layer 11 c. This is preferable for reducing the frame size of the liquid crystal panel 11.
  • The method of producing the liquid crystal panel 11 includes the CF base board producing process (the first base board producing process), the array base board producing process (the second base board producing process), the base sealing material disposing process, and the base sealing material curing process. The CF base board producing process includes producing the CF base board 11 aM (the first base board) which includes the CF boards 11 a within the plate surface. The array base board producing process includes producing the array base board 11 bM (the second base board) which includes the array boards 11 b within the plate surface. The base sealing material disposing process includes disposing the base sealing material MS that includes the uncured section on any one of the CF base board 11 aM and the array base board 11 bM to surround either the CF boards 11 a or the array boards 11 b. The base sealing material curing process is performed at least after the board bonding process for curing the base sealing material MS without any uncured sections to form the base sealing member 11 q. In the base sealing material disposing process, the base sealing material MS that includes the uncured section is disposed on either the CF base board 11 aM that is produced through the CF base board producing process or the array base board 11 bM that is produced through the array base board producing process to surround either the CF boards 11 a or the array boards 11 b. When the CF base board 11 aM and the array base board 11 bM are bonded together in the board bonding process that is subsequently performed, the base sealing material MS that includes the uncured section closely contact the other one of the CF base board 11 aM and the array base board 11 bM. The space between the base boards 11 aM and 11 bM is maintained under the negative pressure. Therefore, the base boards 11 aM and 11 bM are less likely to be displaced or removed. In the base sealing material curing process that is subsequently performed, the base sealing material MS is cured without any uncured sections and the base sealing member 11 q is formed.
  • In the base sealing material disposing process of the method of producing the liquid crystal panel 11, the base sealing material MS is disposed on the array base board 11 bM. The base sealing material disposing process is performed to dispose the base sealing material MS on the array base board 11 bM that is different from the CF base board 11 aM on which the sealing material forming process is performed. According to the method, the sealing member forming process and the base sealing material disposing process can be performed in parallel. In comparison to a method in which the sealing member forming process and the base sealing material disposing process are performed on the CF base board 11 aM, the time that is required for the production of the liquid crystal panel 11 can be reduced.
  • In the board bonding process of the method of producing the liquid crystal panel 11, the medium layer is the liquid crystal layer 11 c. In the base sealing material disposing process, the thermosetting resin material is disposed for the base sealing material MS. In the base sealing material curing process, the heating is performed until the temperature reaches at least the curing temperature of the thermosetting resin material. When the heating is performed until the temperature reaches at least the curing temperature of the thermosetting resin material of the base sealing material MS in the base sealing material curing process, the thermosetting resin material is cured and the base sealing member 11 q is formed. The reorientation of the liquid crystal molecules in the liquid crystal layer 11 c that is the medium layer is accelerated. Therefore, the liquid crystal molecules in the liquid crystal layer 11 c are properly orientated.
  • In the sealing member forming process of the method of producing the liquid crystal panel 11, the sealing material S is discharged by the dispenser 32 a to dispose the sealing material S along the area to form the sealing member 11 q. In comparison to a method in which the sealing material S is disposed over an entire are of the CF board 11 a within the plate surface thereof and the sealing material S is selectively cured, the amount of the sealing material S to be used can be reduced. This method is preferable for reducing the production cost.
  • The sealing member forming process of the method of producing the liquid crystal panel 11 includes the sealing material disposing process and the sealing material curing process. The sealing material disposing process includes disposing the sealing material S that is in the powdered form on the CF board 11 a. The sealing material curing process includes applying the laser beams to the sealing material S and selectively curing the sections to which the laser beams are applied without any uncured sections. In the sealing material disposing process, the sealing material S that is in the powdered form is disposed on the CF board 11 a. In the sealing material curing process that is subsequently performed, the laser beams are applied to the sealing material S that is disposed on the CF board 11 a and the sections to which the laser beams are applied are selectively cured without any uncured sections. Through the processes, the sealing member 11 q is formed.
  • The liquid crystal panel 11 in this embodiment includes the array board 11 b, the CF board 11 a (the common board), the liquid crystal layer 11 c, and the sealing member 11 q. The array board 11 b includes at least the pixels PX and the traces 20. The pixels PX are arranged in the matrix in the display area AA in which images are displayed. The traces 20 are disposed in the non-display area NAA outside the display area AA. The CF board 11 a that includes the light blocking portion 11 l is disposed opposite the array board 11 b. The light blocking portion 11 l include at least the sections that are disposed to separate the pixels PX from one another. The liquid crystal layer 11 c is sandwiched between the array board 11 b and the CF board 11 a. The sealing member 11 q is disposed between the array board 11 b and the CF board 11 a to surround the liquid crystal layer 11 c and to overlap the traces 20 in the non-display area NAA. The sealing member 11 q is made of the material that has the light blocking property and disposed not to overlap the light blocking portion 11 l.
  • According to the configuration, the pixels PX that are arranged in the matrix in the display area AA are separated from one another by the light blocking portion 11 l. Therefore, color mixture is less likely to occur. The liquid crystal layer 11 c that is sandwiched between the array board 11 b and the CF board 11 a is surrounded and sealed by the sealing member 11 q that is disposed in the non-display area and between the array board 11 b and the CF board 11 a.
  • The sealing member 11 q is disposed in the non-display area to overlap the traces 20 that are included in the array board 11 b. To accelerate the fixation of the sealing member 11 q to the CF board 11 a with light that is applied from the array board 11 b side, the light may be blocked by the traces 20. If the arrangement density of the traces 20 is increased when the frame size is further reduced, the fixation of the sealing member 11 q to the CF board 11 a may become insufficient or takes a longer period of time. The sealing member 11 q is disposed not to overlap the light blocking portion 11 l that is includes in the CF board 11 a. If light is applied to the sealing member 11 q from the CF board 11 a side to fix the sealing member 11 q to the array board 11 b, the light is less likely to be blocked by the light blocking portion 11 l. Therefore, the fixation of the sealing member 11 q can be properly accelerated. Even if the arrangement density of the traces 20 is increased when the frame size is further reduced, the fixation of the sealing member 11 q to the array board 11 b can be properly accelerated regardless of the arrangement density of the traces 20. Furthermore, the sealing member 11 q has the light blocking property. Therefore, although the sealing member 11 q is disposed not to overlap the light blocking portion 11 l, light leakage is less likely to occur in the non-display area NAA. This configuration is preferable for reducing the frame size.
  • The CF board 11 a of the liquid crystal panel 11 includes the planarization layer 11 m that is disposed at least over the light blocking portion 11 l on the liquid crystal layer 11 c side. The planarization layer 11 m is disposed in the area not to overlap the sealing member 11 q. According to the configuration, the sealing member 11 q is fixed to the CF board 11 a with direct contact. Namely, because the planarization layer 11 m is not disposed between the sealing member 11 q and the CF board 11 a, the sealing member 11 q is more strongly fixed to the CF board 11 a. Only the interface between the sealing member 11 q and the CF board 11 a is exposed to the outside. In comparison to a configuration in which the planarization layer 11 m is disposed between the sealing member 11 q and the CF board 11 a, the area of the interface that is exposed to the outside can be reduced. Therefore, the external moisture is less likely to pass through the interface and enter into the liquid crystal layer 11 c.
  • In the liquid crystal panel 11, the outer surface of the sealing member 11 q on the opposite side from the liquid crystal layer 11 c is flush with at least the end surface of the CF board 11 a. In comparison to a configuration in which the outer surface of the sealing member 11 q is located inner than the end surface of the CF board 11 a, the frame size can be further reduced.
  • The sealing member 11 q of the liquid crystal panel 11 is made of the synthetic resin material with the light blocking compounds mixed in the synthetic resin material. According to the configuration, the light blocking compounds can be easily dispersed in the synthetic resin material when mixing the light blocking compounds in the synthetic resin material. Therefore, the sealing member 11 q that delivers even light blocking performance can be easily provided. In comparison to a configuration in which the sealing member 11 q is made of metal, the sealing member 11 q can be fixed to the CF board 11 a with a lower temperature.
  • The sealing member 11 q of the liquid crystal panel 11 contains the spacer particles. This configuration is preferable for maintaining the height of the sealing member 11 q constant.
  • Second Embodiment
  • A second embodiment of the present invention will be described with reference to FIGS. 21 and 22. The second embodiment includes a light blocking portion without a frame section. Configurations, functions, and effects similar to those of the first embodiment will not be described.
  • As illustrated in FIGS. 21 and 22, a liquid crystal panel 111 in this embodiment includes a sealing member 111 q that is disposed for about entire width of the non-display area NAA. The light blocking portion, which is not illustrated, does not include the frame section. The sealing member 111 q is disposed to separate the pixels PX from one another together with a grid section of the light blocking portion. The pixels PX that are disposed at the outermost among the pixels PX that are arranged in the matrix in the display area AA are separated by the outermost section of the grid section of the light blocking portion and the sealing member 111 q that collectively surrounds them. Because the frame section is not included in the light blocking portion, the frame size of the liquid crystal panel 111 can be further reduced.
  • As described above, in the liquid crystal panel 111 in this embodiment, the sealing member 111 q is disposed to separate the pixels PX from one another together with the light blocking portion. In comparison to a configuration in which the light blocking portion includes the frame section along the sealing member 111 q and the pixels PX are separated from one another only by the light blocking portion, this configuration is more preferable for reducing the frame size.
  • Third Embodiment
  • A third embodiment of the present invention will be described with reference to FIG. 23. The third embodiment includes a sealing member forming device 40 used in a sealing member forming process, which is different from the first embodiment. Configurations, functions, and effects similar to those of the first embodiment will not be described.
  • As illustrated in FIG. 23, in the sealing member forming process in this embodiment, the fusion deposition type sealing member forming device 40 is used. The sealing member forming device 40 includes at least a stage 41, a head 42, and a controller 43. A CF base board 211 aM is placed on the stage 41. The head 42 is disposed opposite the CF base board 211 aM on the stage 41. The controller 43 is connected to the head 42 and configured to control the head 42. In comparison to the powder sintering type sealing member forming device 30 in the first embodiment (see FIG. 10), the fusion deposition type sealing member forming device 40 is provided with a lower facility cost because it does not include the light source 33 and the laser beam output port 32 c. A major different of the sealing member forming device 90 from the sealing member forming device 30 in the first embodiment is the head 42. Therefore, the head 42 will be described in detail and other configurations similar to those of the first embodiment will not be described.
  • The head 42 of the sealing member forming device 40 includes at least a dispenser 42 a, a roller 42 b, and a driver 42 c. The dispenser 42 a is configured to fuse the thermosetting resin material of the sealing material S (thermal fusion) and to discharge the sealing material S onto the CF base board 211 aM. The roller 42 b is configured to roll and compress the sealing material that is discharged by the dispenser 42 a. The driver 42 c is configured to drive the dispenser 42 a and the roller 42 b. The dispenser 42 a includes a syringe and a heater. The syringe is filled with the thermosetting resin material of the sealing material S such as an ABS resin material and a nylon resin material. The heater is configured to heat the syringe to fuse the thermosetting resin material. It is preferable to add one to some percent of silica beads that have particle diameters about equal to the cell gap to the thermosetting resin material as spacer particles. The amount of the sealing material S that is discharged by the dispenser 42 a is controlled by the driver 42 c.
  • The roller 42 b can be move down to be closer to the CF base board 211 aM and up to be away from the CF base board 211 aM by the driver 42 c. Specifically, the roller 42 b is set at a position away from the CF base board 211 aM when the sealing material S is not discharged by the dispenser 42 a and at a position closer to the CF base board 211 aM when the sealing material S is discharged by the dispenser 42 a. The roller 42 b is configured to press and spread the sealing material S that is fused on the CF base board 211 aM until the thickness of the sealing material S becomes about equal to the cell gap. The sealing material S that is pressed and spread by the roller 42 b is cured without any uncured sections (completely cured) as the temperature decreases (cool down) and the sealing member is formed. The sealing member that is formed as described above is fixed to an array base board, which is not illustrated, through pressing and heating of the base boards 211 aM in a sealing material fixing process that is performed after a board bonding process. It is preferable that the roller 42 b or the stage 41 includes a heater to maintain flowability of the sealing material S before the rolling and the compression of the sealing material S that is discharged onto the CF base board 211 aM by the dispenser 42 a by the roller 42 b starts.
  • As described above, according to the method of producing the liquid crystal panel in this embodiment, the sealing material S that is the thermosetting resin material is heated and fused, applied to the CF base board 211 aM (the CF board), and cured without any uncured sections in the sealing member forming process. In the sealing member forming process, after the sealing material S that is the thermosetting resin material is heated and fused, the fused sealing material S is applied to the CF base board 211 aM. The sealing material S that is applied to the CF base board 211 aM is cured without any uncured sections as the temperature decreases. Through the process, the sealing member is formed.
  • Fourth Embodiment
  • A fourth embodiment will be described with reference to FIGS. 24 to 26. The fourth embodiment includes sealing member control portions 22 to control a width of a sealing member 311 q, which is different from the first embodiment. Configurations, functions, and effects similar to those of the first embodiment will not be described.
  • As illustrated in FIG. 24, a liquid crystal panel 311 in this embodiment includes the sealing member control portions 22. The sealing member control portions 22 are disposed to sandwich the sealing member 311 q from an inner side (a liquid crystal layer 311 c side) and an outer side (an opposite side from the liquid crystal layer 311 c side). The sealing member control portions 22 extend along the sealing member 311 q (parallel to the sealing member 311 q) to form a frame shape in a plan view. One of the sealing member control portions 22 is disposed adjacent to the sealing member 311 q on the inner side. The other sealing member control portion 22 is disposed adjacent to the sealing member 311 q on the outer side. With the sealing member control portions 22, the width of the sealing member 311 q can be controlled constant. The sealing member control portions 22 have widths in a range from 20 to 50 μm, which are smaller than the width of the sealing member 311 q. When a CF board 311 a is produced, that is, in the CF base board producing process, the sealing member control portions 22 are formed during formation of photo spacers on a surface of a planarization layer 311 m. The sealing member control portions 22 are made of the same material as that of the photo spacers. It is preferable that the sealing member control portion 22 adjacent to the sealing member 311 q on the inner side is disposed to overlap a frame section 311 l 2 of a light blocking portion 311 l and the planarization layer 311 m in a plan view.
  • The sealing member control portions 22 fulfills its function in the sealing member forming process that is performed after the CF base board producing process. In a sealing material disposing process that is included in the sealing member forming process, when the sealing material S is discharged onto the CF board 311 a by the dispenser (see FIGS. 10 and 11) of the sealing member forming device, the sealing material S is disposed in line in an area between the sealing member control portions 22 as illustrated in FIG. 25. The sealing member control portions 22 include holes 22 a in the middle with respect to the extending direction thereof. The holes 22 a are through holes that extend in the width direction of the sealing member control portions 22. An opening width of each hole 22 a is smaller than the particle diameter (e.g., 50 μm) of the nylon powder in the sealing material S. The sealing material S that is disposed in the area between the sealing member control portions 22 cannot pass through the holes 22 a of the sealing member control portions 22 and thus remain in the area between the sealing member control portions 22. The sealing material S that is disposed as described above are rolled and compressed by the first roller (see FIGS. 10 and 12) of the sealing member forming device. As a result, the sealing material S are ground and pressed to spread. An area in which the sealing material S is pressed to spread tends to depend on distribution density of the nylon powder that is disposed in the sealing material disposing process. If the distribution density of the nylon powder is high at a point, the area in which the sealing material S is pressed to spread may become locally large at the high distribution density point. In such a case, the area in which the sealing material S is pressed to spread is controlled by the sealing member control portions 22 that are disposed to sandwich the sealing material S. Therefore, the width of the sealing member 311 q that is formed through the sealing material curing process is substantially constant for the entire length. If the distribution density of the nylon powder is high at a point, an excess of the sealing material S which may be produced during the rolling and the compressing of the sealing material S is released to the outside through the holes 22 a of the sealing member control portions 22. Therefore, unevenness in height of the sealing member 311 q resulting from the excess of the sealing material S is less likely to occur.
  • As described above, the liquid crystal panel 311 in this embodiment includes the sealing member control portions 22 that are disposed to sandwich the sealing member 311 q from the liquid crystal layer 311 c side and from the opposite side from the liquid crystal layer 311 c. With the sealing member control portions 22, the width of the sealing member 311 q can be controlled during the formation of the sealing member 311 q. Therefore, the frame width of the liquid crystal panel 311 can be set with high accuracy. This configuration is preferable for reducing the frame size.
  • The sealing member control portions 22 of the liquid crystal panel 311 extend parallel to the sealing member 311 q and include the holes 22 a in the middle. According to the configuration, an uncured material can be released through the holes 22 a of the sealing member control portions 22 during the formation of the sealing member 311 q. Therefore, the sealing member 311 q has the constant height.
  • Other Embodiments
  • The present invention is not limited to the above embodiments described in the above sections and the drawings. For example, the following embodiments may be included in technical scopes of the present invention.
  • (1) In each of the above embodiment sections, the method of producing the liquid crystal panel that includes the sealing member that is disposed not to overlap the light blocking portion and has the light blocking property is described. According to the method, the board bonding process is performed after the sealing member forming process in which the sealing material is cured without any uncured sections to form the sealing member. Then, the sealing material fixing process is performed to fix the sealing member to the array board. However, the method of producing the liquid crystal panel may be modified. For example, the board bonding process may be performed after a sealing material temporarily curing process in which the sealing material is temporarily cured similar to the know method. Then, a sealing material permanently curing process may be performed to permanently cure the sealing material. Alternatively, the configuration of the liquid crystal panel may be modified. For example, the sealing member may not have the light blocking property similar to the known configuration and may be disposed to overlap the light blocking portion.
  • (2) in each of the above embodiments, the nylon powder that contains nylon (polyamide) is used for the main component of the sealing material. However, a material other than nylon may be used. Examples of the main component of the sealing material include a polyarnide resin hot-melt adhesive (an adhesive that contains a polyamide (nylon) resin as a main component), polypropylene (PP), polylactic acid, polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), acrylonitrile butadiene styrene copolymer (ABS), ethylene vinyl acetate copolymer (EVA), styrene acrylonitrile copolymer (SAN), and polycaprolactone.
  • (3) In each of the above embodiments, the sealing material is the synthetic resin material. However, the sealing material may be a metal material. The metal material may be titanium particles made of titanium.
  • (4) in the first embodiment, the carbon dioxide laser beams are used for curing the sealing material. However, gas laser beams other than the carbon dioxide laser beams may be used. Examples of the gas laser beams include excimer laser beams (ArF, KrF, XeCl, or XeF may be used as a medium), ion laser beams (argon ions, krypton ions, or mixture of those may be used as a medium), nitrogen laser beams that include nitrogen as a medium, mixed gas laser beams (mixed gas such as He—Ne and TEA-CO2 is used as a medium), metal vapor laser beams (Cu or He—Cd may be used as a medium), and chemical laser beams (HF may be used as a medium). For the excimer laser beams, if ArF is used as a medium, it is preferable to use excimer laser beams with a wavelength of 193 nm and a radiation intensity of 500 mJ. If KrF is used as a medium, it is preferable to use excimer laser beams with a wavelength of 248 nm and a radiation intensity of 1 J.
  • (5) Other than the gas laser beams described in the above (4), solid-state laser beams or liquid laser beams may be sued for curing the sealing material. Examples of the solid-state laser beams include YAG laser beams (Nd3+:Y3Al3O12 may be used as a medium), Q-switched YAG laser beams, ruby laser beams (Cr3+:Al2O3 may be used as a medium), glass laser beams, titanium sapphire laser beams (Ti4+:Al2O3 may be used as a medium), alexandrite laser beams (Cr3+:BeAl2O4 may be used as a medium), YLF laser beams (Er3+:YLi may be used as a medium), and semiconductor laser beams (GaAlAs or GaAlAs array may be used as a medium). For the semiconductor laser beams, if GaAlAs is used as a medium, it is preferable to use semiconductor beams with a wavelength of 750 to 905 nm and radiation intensity of 1 W.
  • (6) In each of the above embodiments, the sealing material is sintered and cured by the laser beams (powder sintering) or the thermosetting resin material used for the sealing material is cooled and cured after fusion through heating (thermal dissolution). However, an ultraviolet curable resin material may be used for the sealing material and cured with ultraviolet rays. In this case, the ultraviolet curable resin material may be applied to a target board with an ink-jet technology.
  • (7) Other than the above (6), powder adhesion may be used. Powder such as gypsum may be used for the sealing material. The powered may be disposed on a target board and a binder such as an adhesive may be sprayed to the powder to cure the powder.
  • (8) In each of the above embodiments, the sealing member is formed on the CF board (the CF base board) in the sealing member forming process, and the sealing member is fixed to the array board (the array base board) in the sealing member fixing process. However, the sealing member may be formed on the array board (the array base board) in the sealing member forming process and the sealing member may be fixed to the CF board (the CF base board) in the sealing member fixing process.
  • (9) In each of the above embodiments, the base sealing member is disposed in the array board (the array base board) in the base sealing material disposing process. However, the base sealing member may be disposed on the CF board (the CF base board) in the base sealing material disposing process.
  • (10) In each of the above embodiments, the base sealing member is formed. However, the base sealing member may be omitted if the base boards are fixed together with other methods. For example, ultraviolet curable resin materials may be disposed in the edge area of either one of the base boards in dots at intervals along the sealing member, the boards may be bonded together, and the ultraviolet resin materials in dots may be fixed through application of ultraviolet rays.
  • (11) In each of the above embodiments, the sealing member is disposed to overlap the row control circuit and the column control circuit for the entire areas. However, the sealing member may partially overlap the row control circuit and the column control circuit.
  • (12) In each of the above embodiments, the sealing member overlaps the row control circuit and the column control circuit. However, the sealing member may be disposed to overlap the traces other than the row control circuit and the column control circuit.
  • (13) In each of the above embodiment sections, the liquid crystal panel that includes the row control circuit and the column control circuit (the monolithic circuits) and the method of producing the liquid crystal panel are described. However, the present invention can be applied to a liquid crystal panel that includes only one of the row control circuit and the column control circuit or do not include the row control circuit and the column control circuit and to a method of producing the liquid crystal panel.
  • (14) In each of the above embodiment sections, the liquid crystal panel having the rectangular plan-view shape and the method of producing the liquid crystal panel are described. However, the present invention may be applied to liquid crystal panels having a square plan-view shape, a round plan-view shape, and an oval plan-view shape and methods of producing the liquid crystal panels.
  • (15) In each of the above embodiments, the driver is COG-mounted on the array board of the liquid crystal panel. However, the driver may be chip-on-film (COF) mounted on the liquid crystal panel flexible circuit board.
  • (16) In each of the above embodiments, the semiconductor film of the channels of the TFT is made of the oxide semiconductor material. Other than that, continuous grain (OG) silicon, which is one kind of polysilicon or amorphous silicon may be used as a material for the semiconductor film.
  • (17) in each of the above embodiment sections, the liquid crystal panel that is configured to operate in FFS mode and the method of producing such a liquid crystal panel are described. However, the present invention may be applied to liquid crystal panels that are configured to operate in VA mode, IPS mode, and TN mode, respectively, and to methods of producing those liquid crystal panels.
  • (18) In each of the above embodiments, the color filters of the liquid crystal panel have the three-color configuration of red, green, and blue. However, the present invention may be applied to color filters have a four-color configuration including yellow color portions in addition to the red, the green, and the blue color portions.
  • (19) In each of the above embodiment sections, the liquid crystal panel in the size that is classified into small size or small-to-medium size is described. However, the present invention may be applied to a liquid crystal panel in medium size or large size (or extra-large size) having a screen size of 20 to 100 inches. In such a case, the liquid crystal panel may be used for an electronic device such as a television device, an electronic signboard (a digital signage), and an electrical blackboard.
  • (20) In each of the above embodiment sections, the liquid crystal panel that includes the liquid crystal layer that is sandwiched between the boards is described. However, the present invention may be applied to a display panel that includes functional organic molecules other than the liquid crystals sandwiched between the boards.
  • (21) In each of the above embodiment sections, the liquid crystal panel and the method of producing the liquid crystal panel are described. However, the present invention can be applied to an organic EL panel and a method of producing the organic EL panel. In the organic EL panel, a dehumidification member or air may be included as a medium layer inside a sealing member. When the dehumidification member or the air is pushed into the sealing member because of pressure that may be produced during bonding of the boards, the dehumidification member or the air may enter the sealing member. According to the present invention, such a problem, that is, the entrance of the dehumidification member or the air into the sealing member can be solved.
  • (22) In each of the above embodiments, the TFTs are used as the switching components of the liquid crystal panel. However, the present invention may be applied to a liquid crystal panel that includes switching components other than TFTs (e.g., thin film diodes (TFD)). The present invention may be applied to a liquid crystal panel that is configured to display black-and-white images other than the liquid crystal panel that is configured to display color images and a method of producing the liquid crystal panel.
  • EXPLANATION OF SYMBOLS
  • 11, 111, 311: Liquid crystal panel (Display panel)
  • 11 a, 311 a: CF board (First board, Counter board)
  • 11 aM, 211 aM: CF base board (First base board)
  • 11 b: Array board (Second board)
  • 11 bM: Array base board (Second base board)
  • 11 c, 311 c: Liquid crystal layer (Medium layer)
  • 11 l, 311 l: Light blocking portion
  • 11 m, 311 m: Planarization layer
  • 11 q, 111 q, 311 q: Sealing member
  • 20: Trace
  • 21: Base sealing member
  • 22: Sealing member control portion
  • 22 a: Hole
  • 32 a: Dispenser
  • 42 a: Dispenser
  • AA: Display area
  • MS: Base sealing material
  • NAA: Non-display area
  • PX: Pixel
  • S: Sealing material

Claims (15)

1. A method of producing a display panel, the method comprising:
a sealing member forming process of forming a sealing member, the sealing member forming process including disposing a sealing material on a first board and curing the sealing material without any uncured section;
a board bonding process of bonding a second board to the first board with a medium layer between the first board and the second board; and
a sealing member fixing process of fixing the sealing member to the second board.
2. The method of producing a display panel according to claim 1, further comprising:
a first base board producing process of producing a first base board including a plurality of first boards within a plate surface of the first base board;
a second base board producing process of producing a second base board including a plurality of second boards within a plate surface of the second base board;
a base sealing material disposing process of disposing a base sealing material on any one of the first base board and the second base board to surround either the plurality of first boards or the plurality of second boards and to include an uncured section; and
a base sealing material curing process of curing the base sealing material without any uncured section to form a base sealing member, the base sealing material curing process being performed after at least the board bonding process.
3. The method of producing a display panel according to claim 2, wherein the base sealing material disposing process includes disposing the base sealing material on the second base board.
4. The method of producing a display panel according to claim 2, wherein
the medium layer in the board bonding process is a liquid crystal layer,
the base sealing material disposing process includes disposing a thermosetting resin material as the base sealing material, and
the base sealing curing process includes heating processing performed until a temperature reaches at least a curing temperature of the thermosetting resin material.
5. The method of producing a display panel according to claim 1, wherein the sealing member forming process includes discharging the sealing material by a dispenser and disposing the sealing material along an area to form the sealing member.
6. The method of producing a display panel according to claim 1, wherein
the sealing member forming process includes:
a sealing material disposing process of disposing the sealing material in a powdered form on the first board; and
a sealing material curing process of applying a laser beam to a section of the sealing material and selectively curing the section of the sealing material without any cured area.
7. The method of producing a display panel according to claim 1, wherein the sealing member forming process includes heating and fusing the sealing material that is the thermosetting resin material, applying the sealing material to the first board, and curing the sealing material without any uncured section.
8. A display panel comprising:
a plurality of pixels arranged in a matrix in a display area in which an image is displayed;
an array board including at least a plurality of traces disposed in a non-display area outside the display area;
a common board disposed opposite the array board, the common board including a light blocking portion including sections disposed to separate at least the plurality of pixels from one another;
a medium layer sandwiched between the array board and the common board; and
a sealing member disposed between the array board and the common board to overlap the plurality of traces in the non-display area to surround the medium layer, the sealing member being made of a material having a light blocking property and disposed not to overlap the light blocking portion.
9. The display panel according to claim 8, wherein the common board includes a planarization layer layered on a medium layer side relative to the light blocking portion, the planarization layer being disposed in an area not to overlap the sealing member.
10. The display panel according to claim 9, wherein the sealing member includes an outer surface on an opposite side from the medium layer side, the outer surface being flush with at least an end surface of the common board.
11. The display panel according to claim 8, wherein the sealing member is made of synthetic resin material with light blocking compounds contained in the synthetic resin material.
12. The display panel according to claim 8, further comprising sealing member control portions disposed to sandwich the sealing member from the medium layer side and an opposite side from the medium layer side.
13. The display panel according to claim 12, wherein the sealing member control portions extend parallel to the sealing member and include holes in the middle.
14. The display panel according to claim 8, wherein the sealing member contains spacer particles.
15. The display panel according to claim 8, wherein the sealing member is disposed to separate the plurality of pixels from one another together with the light blocking portion.
US15/755,554 2015-08-31 2016-08-26 Display panel and method of producing display panel Abandoned US20180275437A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-170391 2015-08-31
JP2015170391 2015-08-31
PCT/JP2016/074945 WO2017038670A1 (en) 2015-08-31 2016-08-26 Method for producing display panel, and display panel

Publications (1)

Publication Number Publication Date
US20180275437A1 true US20180275437A1 (en) 2018-09-27

Family

ID=58187357

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/755,554 Abandoned US20180275437A1 (en) 2015-08-31 2016-08-26 Display panel and method of producing display panel

Country Status (2)

Country Link
US (1) US20180275437A1 (en)
WO (1) WO2017038670A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181767B2 (en) * 2018-10-31 2021-11-23 Canon Kabushiki Kaisha Semiconductor apparatus, module, camera, and equipment
US11402705B2 (en) * 2020-01-02 2022-08-02 Tcl China Star Optoelectronics Technology Co., Ltd. Liquid crystal display panel and manufacturing method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116901A1 (en) * 2005-11-24 2007-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
JP2008139555A (en) * 2006-12-01 2008-06-19 Sharp Corp Liquid crystal display device and its manufacturing method
US20090002619A1 (en) * 2007-06-26 2009-01-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
US20090237600A1 (en) * 2008-03-18 2009-09-24 Nec Lcd Technologies, Ltd. Transflective liquid crystal display unit
US20100149477A1 (en) * 2008-12-15 2010-06-17 Hitachi Displays, Ltd. Liquid crystal display device
US20110096269A1 (en) * 2003-02-21 2011-04-28 Tpo Hong Kong Holding Limited Method for manufacturing cell and cell manufactured by such method
WO2012141140A1 (en) * 2011-04-13 2012-10-18 シャープ株式会社 Liquid crystal display panel and method for manufacturing same
US20140001025A1 (en) * 2009-07-24 2014-01-02 Japan Display Inc. Electrostatic capacitance type input apparatus and display apparatus with input function including the same
US20140063432A1 (en) * 2012-08-28 2014-03-06 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US20140063423A1 (en) * 2012-09-05 2014-03-06 Innolux Corporation Liquid crystal display panel
US20140198267A1 (en) * 2013-01-17 2014-07-17 Samsung Display Co., Ltd. Display device integrated with touch screen panel
US20150192811A1 (en) * 2014-01-07 2015-07-09 Japan Display Inc. Display device
US20150338707A1 (en) * 2013-12-10 2015-11-26 Boe Technology Group Co., Ltd. Display device, array substrate and method for manufacturing array substrate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110096269A1 (en) * 2003-02-21 2011-04-28 Tpo Hong Kong Holding Limited Method for manufacturing cell and cell manufactured by such method
US20070116901A1 (en) * 2005-11-24 2007-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
JP2008139555A (en) * 2006-12-01 2008-06-19 Sharp Corp Liquid crystal display device and its manufacturing method
US20090002619A1 (en) * 2007-06-26 2009-01-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
US20090237600A1 (en) * 2008-03-18 2009-09-24 Nec Lcd Technologies, Ltd. Transflective liquid crystal display unit
US20100149477A1 (en) * 2008-12-15 2010-06-17 Hitachi Displays, Ltd. Liquid crystal display device
US20140001025A1 (en) * 2009-07-24 2014-01-02 Japan Display Inc. Electrostatic capacitance type input apparatus and display apparatus with input function including the same
WO2012141140A1 (en) * 2011-04-13 2012-10-18 シャープ株式会社 Liquid crystal display panel and method for manufacturing same
US20140063432A1 (en) * 2012-08-28 2014-03-06 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US20140063423A1 (en) * 2012-09-05 2014-03-06 Innolux Corporation Liquid crystal display panel
US20140198267A1 (en) * 2013-01-17 2014-07-17 Samsung Display Co., Ltd. Display device integrated with touch screen panel
US20150338707A1 (en) * 2013-12-10 2015-11-26 Boe Technology Group Co., Ltd. Display device, array substrate and method for manufacturing array substrate
US20150192811A1 (en) * 2014-01-07 2015-07-09 Japan Display Inc. Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181767B2 (en) * 2018-10-31 2021-11-23 Canon Kabushiki Kaisha Semiconductor apparatus, module, camera, and equipment
US20220043298A1 (en) * 2018-10-31 2022-02-10 Canon Kabushiki Kaisha Semiconductor apparatus, module, camera, and equipment
US11841572B2 (en) * 2018-10-31 2023-12-12 Canon Kabushiki Kaisha Semiconductor apparatus, module, camera, and equipment
US11402705B2 (en) * 2020-01-02 2022-08-02 Tcl China Star Optoelectronics Technology Co., Ltd. Liquid crystal display panel and manufacturing method thereof

Also Published As

Publication number Publication date
WO2017038670A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US7436473B2 (en) Liquid crystal display and manufacturing method thereof
US8054437B2 (en) Large substrate, method of manufacturing liquid crystal device from the same, and liquid crystal device obtained
KR101818449B1 (en) Method of cutting liquid crystal display panel and fabricating liquid crystal display device
JP2004093760A (en) Method of manufacturing liquid crystal display
JP2001305561A (en) Liquid crystal display device
JP2015028541A (en) Liquid crystal display element and method for manufacturing the same
US10866446B2 (en) Method of producing a display panel
JP2015122232A (en) Organic el display device and manufacturing method thereof
US20130050605A1 (en) Display device and method for manufacturing the same
US20050122465A1 (en) Method for manufacturing an apparatus using electro-optical modulating material
US20180275437A1 (en) Display panel and method of producing display panel
CN101613177A (en) Scoring equipment and adopt this scoring equipment to make the method for display panel
JP2007193153A (en) Electrooptical apparatus, method for manufacturing electrooptical apparatus, and electronic apparatus
US20100171919A1 (en) Liquid crystal display
KR20090015437A (en) Liquide crystal display device and method for fabricating the same
US20180007798A1 (en) Mounting substrate manufacturing apparatus and method of manufacturing mounting substrate
KR20180126732A (en) Manufacturing method of multi-panel and display device
KR20040011671A (en) Liquid Crystal Display Device
JP2007248696A (en) Method for manufacturing electrooptical device
JP5357730B2 (en) Liquid crystal display device and manufacturing method thereof
KR102010850B1 (en) Method for fabricating liquid crystal panel
KR102395577B1 (en) Display panel & display device
JP2004029552A (en) Manufacturing method of liquid crystal display element
JP2010002700A (en) Display, and method for producing the same
JP2010197542A (en) Method for manufacturing electro-optical device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHARP KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NISHIWAKI, SHOGO;KONDOH, MASAHIKO;SIGNING DATES FROM 20180217 TO 20180219;REEL/FRAME:045044/0070

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION