WO2017038648A1 - 被断熱体の製造方法 - Google Patents

被断熱体の製造方法 Download PDF

Info

Publication number
WO2017038648A1
WO2017038648A1 PCT/JP2016/074884 JP2016074884W WO2017038648A1 WO 2017038648 A1 WO2017038648 A1 WO 2017038648A1 JP 2016074884 W JP2016074884 W JP 2016074884W WO 2017038648 A1 WO2017038648 A1 WO 2017038648A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
layer
group
sol
mass
Prior art date
Application number
PCT/JP2016/074884
Other languages
English (en)
French (fr)
Inventor
寛之 泉
竜也 牧野
雄太 赤須
智彦 小竹
正人 宮武
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017537815A priority Critical patent/JP6288383B2/ja
Publication of WO2017038648A1 publication Critical patent/WO2017038648A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials

Definitions

  • This invention relates to the manufacturing method of a to-be-insulated body.
  • the conventional heat insulating structure includes, for example, a foaming heat insulating material such as urethane foam or phenol foam as a constituent material.
  • a foaming heat insulating material such as urethane foam or phenol foam as a constituent material.
  • these materials use air insulation. Therefore, in order to further improve the heat insulation, a material that has better heat insulation than air must be developed.
  • a heat insulating material having a heat insulating property superior to air there is a heat insulating material in which voids forming a foam are filled with a low thermal conductive gas by using a freon or a freon alternative foaming agent.
  • a heat insulating material has a possibility of leakage of low heat conduction gas due to deterioration over time, and there is a concern about a decrease in heat insulating performance (for example, Patent Document 1 below).
  • a vacuum heat insulating material having a core material using inorganic fibers and a phenol resin binder is known (for example, Patent Document 2 below).
  • Patent Document 2 a vacuum heat insulating material having a core material using inorganic fibers and a phenol resin binder.
  • the heat insulating property is remarkably lowered due to problems such as deterioration over time or scratches on the packaging bag, and further, since the vacuum packing is performed, there is a problem that the heat insulating material is not flexible and cannot be applied to a curved surface. .
  • Patent Document 3 describes silica aerogel.
  • Airgel is considered to be the material with the lowest thermal conductivity at normal pressure.
  • the airgel has a microporous structure, so that the heat conduction is reduced by suppressing the movement of gas including air.
  • it is required to form an airgel layer with less unevenness with respect to various heat insulating objects.
  • This invention is made
  • the present inventor has found a method for forming an airgel layer using a mist-like sol, and has completed the present invention.
  • the present invention is a method for manufacturing an object to be insulated in which an airgel layer as a heat insulating layer is integrally formed on an object to be insulated, and includes a step of forming an airgel layer from a mist-like sol.
  • a manufacturing method is provided.
  • a heat insulating body According to the method for manufacturing a heat insulating body according to the present invention, it is possible to manufacture a heat insulating body in which unevenness of the airgel layer is suppressed. Moreover, according to the manufacturing method of the to-be-insulated body which concerns on this invention, a thick-film airgel layer can be formed, without depending on the shape of a heat insulation target object.
  • the production cost may be high and the production efficiency may not be sufficient due to batch production.
  • the object to be insulated can be obtained without using supercritical drying.
  • the to-be-insulated body manufactured by the method for manufacturing an to-be-insulated body according to the present invention has excellent heat insulating properties and suppresses the airgel from falling off.
  • the sol is selected from the group consisting of a hydrolyzable functional group or a silicon compound having a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. It may contain at least one kind.
  • the problem of workability can be easily solved, and the heat insulation can be achieved to a higher degree.
  • the flexibility is further improved, so that the airgel is further prevented from falling off, and the insulator to be provided with such an airgel layer is provided on the body portion. It becomes easy to bend according to the flexibility.
  • the sol may further contain silica particles. Thereby, heat insulation and a softness
  • the average primary particle diameter of the silica particles may be 1 to 500 nm. Thereby, heat insulation and a softness
  • the diameter of the sol droplet may be 0.1 to 1000 ⁇ m. According to such a sol, a thick airgel layer can be formed more easily, and cracks in the airgel layer are further suppressed.
  • the sol may contain a solvent having a boiling point of less than 200 ° C. According to such a sol, a thick airgel layer can be formed more easily, and cracks in the airgel layer are further suppressed.
  • the heat insulation object includes a main body part and a coating layer that covers at least a part of the surface of the main body part, and at least on the coating layer so that the coating layer becomes an intermediate layer.
  • An airgel layer may be formed on the surface.
  • the coating layer may contain a filler. Thereby, peeling and dropping of the airgel layer at the time of high temperature use are further suppressed.
  • the filler may be an inorganic filler. This improves the heat resistance of the coating layer (intermediate layer) and further suppresses peeling and dropping off under high temperature conditions.
  • the content of the filler may be 0.1 to 70% by volume with respect to the total volume of the coating layer.
  • the method for manufacturing a heat insulating body according to the present invention it is possible to manufacture a heat insulating body in which unevenness of the airgel layer is suppressed. Moreover, according to the manufacturing method of the to-be-insulated body which concerns on this invention, a thick-film airgel layer can be formed, without depending on the shape of a main-body part. Furthermore, the to-be-insulated body manufactured by the method for manufacturing an to-be-insulated body according to the present invention has excellent heat insulating properties and suppresses the airgel from falling off.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • “A or B” only needs to include either A or B, and may include both.
  • the materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. means.
  • FIG. 1 is a cross-sectional view schematically showing a heat insulating body obtained by the method for manufacturing a heat insulating body according to the present embodiment.
  • an object to be insulated (aerogel composite, airgel composite structure) 100 has a structure in which an airgel layer 5 as a heat insulating layer is integrally formed on a heat insulating object 10. That is, the to-be-insulated body 100 may include the heat insulating object 10 and the airgel layer 5 integrally joined to the heat insulating object 10.
  • the airgel layer 5 is an airgel layer formed from a mist-like (mist-like) sol.
  • the heat insulation object 10 is a support part which supports the airgel layer 5, for example.
  • the heat-insulated body 100 according to the present embodiment is excellent in heat insulating properties and suppressed from dropping off the airgel.
  • the heat insulating body 100 is a structure including an airgel layer 5 disposed on at least a part (a part or the whole) of the surface 10a of the heat insulating object 10, for example.
  • the heat insulating object 10 and the airgel layer 5 are integrally fixed, it is possible to express excellent heat insulation and to prevent the airgel from falling off.
  • the surface 10a on which the airgel layer 5 is disposed may be a flat surface, a composite plane (combination of inclined surfaces), or a curved surface.
  • the heat insulation object 10 may include a main body 3 and a covering layer 4 that covers at least a part of the surface of the main body 3.
  • the airgel layer 5 is formed on at least the coating layer 4 so that the coating layer 4 becomes an intermediate layer.
  • FIG. 2 is a cross-sectional view schematically showing a heat insulating body obtained by the method for manufacturing a heat insulating body according to the present embodiment.
  • the object to be insulated (aerogel composite, airgel composite structure) 200 includes a body part 3 and a coating layer 4 that covers at least a part of the surface of the body part 3. It has a structure in which an airgel layer 5 is formed on at least the coating layer 4 so as to be an intermediate layer. That is, the heat-insulated body 200 may include the main body 3 and the airgel layer 5 integrally joined to the main body 3 via the coating layer 4 serving as an intermediate layer. In the heat-insulated body 200, the airgel layer 5 may be integrally joined to the main body portion 3 via the coating layer 4 serving as an intermediate layer.
  • the main body 3, the coating layer 4, and the airgel layer 5 are integrated.
  • the main body 3 is, for example, a support that supports the airgel layer 5.
  • the heat-insulated body 200 according to the present embodiment is excellent in adhesion and adhesion between the main body 3 and the airgel layer 5, and can further suppress the peeling and dropping of the airgel layer 5.
  • the heat insulating body 200 is also excellent in the protection performance of the main body 3.
  • the heat insulating body 200 includes, for example, a covering layer (also referred to as “intermediate layer”) 4 disposed on at least a part (a part or the whole) of the surface 3 a of the main body 3, and a covering layer 4. It is a structure including an airgel layer 5 disposed on at least a part (a part or the whole) of the surface 4a opposite to the main body part 3.
  • the main body 3 and the airgel layer 5 are integrally fixed via a coating layer 4 serving as an intermediate layer.
  • the surface 3a on which the coating layer 4 is disposed may be a flat surface, a composite plane (a combination of inclined surfaces), or a curved surface.
  • a coating layer is not necessarily essential and a heat insulation target object may be a main-body part.
  • the object to be heat-insulated is, for example, a structure including an airgel layer disposed on at least a part (a part or the whole) of the surface of the main body, and the main body and the airgel layer Have a direct contact structure.
  • the surface of the main body portion on which the airgel layer is disposed may be a flat surface, a composite plane (combination of inclined surfaces), or a curved surface.
  • the airgel layer 5 includes a hydrolyzable functional group or a silicon compound having a condensable functional group (silicon compound) and a hydrolysis product (hydrolyzable functional group) of the silicon compound having the hydrolyzable functional group.
  • a silicon compound (silicon) having a hydrolyzable functional group or a condensable functional group which may be formed from a sol containing at least one selected from the group consisting of hydrolyzed silicon compounds) Compound), and condensation of sol containing at least one selected from the group consisting of hydrolysis products of silicon compounds having hydrolyzable functional groups (silicon compounds in which hydrolyzable functional groups are hydrolyzed) It may be a layer composed of a dried product of a wet gel (a wet gel derived from the sol).
  • the sol comprises at least one selected from the group consisting of a hydrolyzable functional group or a silicon compound having a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. You may contain.
  • the airgel layer is such, heat insulation and flexibility can be further enhanced at the same time, and the airgel can be prevented from dropping off.
  • the heat insulating object may include a main body part and a coating layer that covers at least a part of the surface of the main body part, or may be a main body part.
  • the material constituting the main body examples include metal, ceramic, glass, resin, and composite materials thereof.
  • the main body may include at least one selected from the group consisting of metal, ceramic, glass, and resin.
  • a block shape, a sheet shape, a spherical shape, a fiber shape, or the like can be adopted depending on the purpose or material to be used.
  • the metal is not particularly limited, and examples include a single metal, a metal alloy, and a metal on which an oxide film is formed.
  • the metal include iron, copper, nickel, aluminum, zinc, titanium, chromium, cobalt, tin, gold, and silver.
  • simple metals such as titanium, gold and silver; iron and aluminum on which an oxide film is formed can be used as the metal.
  • the ceramic examples include oxides such as alumina, titania, zirconia, and magnesia; nitrides such as silicon nitride and aluminum nitride; carbides such as silicon carbide and boron carbide; and mixtures thereof.
  • Examples of the glass include quartz glass, soda glass, and borosilicate glass.
  • the resin examples include polyvinyl chloride, polyvinyl alcohol, polystyrene, polyethylene, polypropylene, polyacetal, polymethyl methacrylate, polycarbonate, polyamide, and polyurethane.
  • the main body there is no particular limitation on the shape of the main body, and it may have either a flat surface or a curved surface.
  • Examples of the shape of the main body include a plate shape, a cylindrical shape, a spherical shape, and a rod shape.
  • Examples of the cylindrical main body include piping.
  • the surface roughness of the main body may be 100 nm or more, or 500 nm or more from the viewpoint of obtaining a good anchor effect and further improving the adhesion of the airgel layer.
  • the heat insulation target object may be provided with the coating layer.
  • the material constituting the coating layer include organic materials, inorganic materials, and organic-inorganic hybrid materials.
  • the organic material examples include urethane resin, polyester resin, acrylic resin, phenol resin, epoxy resin, polyimide, polyamideimide, polybenzimidazole, polyetheretherketone, silicone, and composite materials thereof.
  • the organic material includes, for example, at least one selected from the group consisting of urethane resin, polyester resin, acrylic resin, phenol resin, epoxy resin, polyimide, polyamideimide, polybenzimidazole, polyetheretherketone, and silicone. It may be.
  • the inorganic material examples include glass, a single metal, a metal alloy, a metal on which an oxide film is formed, ceramic, silicon carbide, silicon nitride, and sodium silicate.
  • the inorganic material includes, for example, at least one selected from the group consisting of glass, simple metal, metal alloy, metal with an oxide film, ceramic, silicon carbide, silicon nitride, and sodium silicate. There may be.
  • Examples of the metal include titanium, chromium, aluminum, copper, and platinum.
  • Examples of the ceramic include alumina and zirconia.
  • the inorganic material may further contain a binder.
  • the binder include metal alkoxide and water glass.
  • organic-inorganic hybrid material examples include a composite material of the organic material and the inorganic material, an epoxy-silica hybrid material, and an acrylic-silica hybrid material.
  • the material constituting the coating layer may be an inorganic material or an organic-inorganic hybrid material from the viewpoint of further improving the heat resistance, and the difference in thermal expansion between the main body and the coating layer when used in a high temperature environment.
  • an organic-inorganic hybrid material may be used.
  • a material having a low elastic modulus can also be used as a material constituting the coating layer.
  • the coating layer may be, for example, a layer composed of ceramic (ceramic layer) and / or a layer composed of metal (metal layer).
  • the coating layer may contain a filler from the viewpoint of further improving the heat resistance, further suppressing cracks, and further suppressing separation and dropping of the airgel layer during high temperature use.
  • a filler from the viewpoint of further improving the heat resistance, further suppressing cracks, and further suppressing separation and dropping of the airgel layer during high temperature use.
  • the reason why the airgel layer is further prevented from peeling and falling off by containing the filler is, for example, that the thermal expansion coefficient of the coating layer is adjusted by containing the filler, and the main body, the coating layer, and the airgel at high temperatures. It is assumed that this is because the difference in thermal expansion coefficient generated between the layers is reduced.
  • the filler examples include inorganic fillers and organic fillers.
  • the filler may be an inorganic filler from the viewpoint of improving the heat resistance of the coating layer and further suppressing peeling and dropping under high temperature conditions, and a thermal cycle when repeatedly used in a high temperature environment. From the viewpoint of improving reliability, an organic filler may be used.
  • an inorganic filler from the viewpoint of improving the heat resistance of the coating layer and further suppressing peeling and dropping under high temperature conditions, and a thermal cycle when repeatedly used in a high temperature environment.
  • an organic filler may be used.
  • limiting in particular in the shape of a filler For example, a short fiber form, fine powder form, and a hollow form may be sufficient.
  • the material constituting the inorganic filler examples include silica, mica, talc, glass, calcium carbonate, quartz, metal hydrate, metal hydroxide, and composite materials thereof.
  • the inorganic filler may include at least one selected from the group consisting of silica, mica, talc, glass, calcium carbonate, quartz, metal hydrate, and metal hydroxide.
  • Examples of the metal hydrate include potassium aluminum sulfate 12 hydrate, magnesium nitrate hexahydrate, and magnesium sulfate heptahydrate.
  • Examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide.
  • the aluminum hydroxide may be boehmite type aluminum hydroxide.
  • the inorganic filler may contain silica, glass, or metal hydroxide, and the glass may be glass short fiber or hollow glass.
  • the metal hydroxide may be magnesium hydroxide or boehmite type aluminum hydroxide.
  • the material constituting the organic filler examples include phosphate ester, polyester, polystyrene, pulp, elastomer, and composite materials thereof.
  • the organic filler may include at least one selected from the group consisting of phosphate ester, polyester, polystyrene, pulp, and elastomer.
  • the pulp may be in the form of pulp floc.
  • the organic filler may contain an elastomer because the thermal expansion difference between the main body and the coating layer is relieved of stress and cracks are easily suppressed.
  • the elastomer examples include styrene elastomers, olefin elastomers, urethane elastomers, polybutadiene elastomers, fluorine elastomers, and silicone elastomers.
  • styrene elastomers examples include styrene elastomers, olefin elastomers, urethane elastomers, polybutadiene elastomers, fluorine elastomers, and silicone elastomers.
  • a fluorine-based elastomer or a silicone-based elastomer can be used as the elastomer.
  • the content of the filler contained in the coating layer may be 0.1% by volume or more based on the total volume of the coating layer from the viewpoint of further improving the heat resistance.
  • the content of the filler contained in the coating layer is based on the total volume of the coating layer from the viewpoint of improving workability when forming the coating layer and improving the adhesion between the main body and the airgel layer. 70 volume% or less, 50 volume% or less, 40 volume% or less, or 30 volume% or less. From these viewpoints, the content of the filler contained in the coating layer may be 0.1 to 70% by volume or 0.1 to 50% by volume with respect to the total volume of the coating layer. 0.1 to 40% by volume, or 0.1 to 30% by volume.
  • the coating layer may contain, for example, an adhesion improver, a flame retardant, and an antioxidant.
  • adhesion improver examples include urea compounds such as urea silane; and silane coupling agents.
  • Examples of the flame retardant include melamine cyanurate and bis (pentabromophenyl) ethane.
  • antioxidants examples include an antioxidant made of ceramic powder such as alumina and zirconia and an inorganic binder.
  • the thermal decomposition temperature of the coating layer may be 300 ° C. or higher from the viewpoint of further improving the heat resistance.
  • the thermal decomposition temperature of 300 ° C. or higher means that the material is heated at a rate of 10 ° C./temperature in a nitrogen atmosphere using a high-temperature differential thermothermal gravimetric measuring device TG / DTA7300 manufactured by SII Nanotechnology. When measured under the condition of minutes, it means that the temperature when the weight decreases by 5% is 300 ° C. or more.
  • the thickness of the coating layer is 0.01 ⁇ m or more from the viewpoint of reducing damage due to impact and the like, and improving the protection performance of the main body, and further improving the adhesion between the main body and the airgel layer. It may be 0.1 ⁇ m or more, or 1 ⁇ m or more. From the viewpoint of suppressing cracks during formation of the coating layer, the thickness of the coating layer may be 1000 ⁇ m or less, may be less than 1000 ⁇ m, or may be 500 ⁇ m or less. The thickness of the coating layer may be 100 ⁇ m or less from the viewpoint of suppressing cracks due to a difference in thermal expansion between the main body portion and the coating layer and improving the thermal cycle stability. From these viewpoints, the thickness of the coating layer may be 0.01 to 1000 ⁇ m, 0.01 to 500 ⁇ m, or 0.01 to 100 ⁇ m.
  • the coating layer having a low water absorption rate By using a coating layer having a low water absorption rate, it is possible to further reduce the chemical influence of water-soluble acidic or basic substances and inorganic salts on the main body. Specifically, for example, the chemical change (corrosion, modification, etc.) of the main body due to the influence of a sol coating solution described later can be further reduced. That is, it is difficult to be affected by the conditions for forming the airgel layer and the composition of the sol coating liquid, and the manufacture of the heat insulating body is facilitated. From these viewpoints, the water absorption rate of the coating layer may be less than 5%, less than 4%, or less than 3%.
  • the water absorption rate of the coating layer is a change in mass when a test piece obtained by molding the constituent material of the coating layer into a size of 20 mm ⁇ 20 mm ⁇ 0.5 mm is left in a constant temperature and humidity chamber at 60 ° C. and 90% RH for 6 hours. Means rate.
  • the surface roughness (Ra) of the coating layer may be 200 nm or more, or 300 nm or more from the viewpoint of obtaining a good anchor effect between the coating layer and the airgel layer and further improving the adhesion of the airgel layer. It may be 500 nm or more.
  • the surface roughness of the coating layer can be adjusted by, for example, forming a coating layer on the main body and then subjecting the coating layer to polishing (polishing) or roughening (roughening).
  • the polishing process or the roughening process may be a mechanical process or a chemical process. Examples of processing methods include mechanical processing with abrasive grains such as slurry or abrasive; wet etching with acid or base, oxidizing agent or reducing agent; and dry etching with sulfur hexafluoride or carbon tetrafluoride. It is done.
  • the coating layer may be a single layer or a plurality of layers.
  • the airgel layer according to the present embodiment is made of airgel and is formed from a mist-like sol.
  • dry gel obtained by using supercritical drying method for wet gel is aerogel
  • dry gel obtained by drying under atmospheric pressure is xerogel
  • dry gel obtained by freeze-drying is cryogel and
  • the obtained low-density dried gel is referred to as “aerogel” regardless of the drying method of the wet gel.
  • “aerogel” is a gel in a broad sense, “Gel composed of a microporous solid in which the dispersed phase is a gas” (a gel composed of a microporous solid in which the dispersed phase is a gas).
  • the inside of the airgel has a network-like fine structure, and has a cluster structure in which airgel particles of about 2 to 20 nm (particles constituting the airgel) are combined. There are pores less than 100 nm between the skeletons formed by these clusters. Thereby, the airgel has a three-dimensionally fine porous structure.
  • the airgel in this embodiment is a silica airgel which has a silica as a main component, for example.
  • the silica airgel include so-called organic-inorganic hybrid silica airgel into which an organic group (such as a methyl group) or an organic chain is introduced.
  • the airgel layer may be a layer containing an airgel having a structure derived from polysiloxane.
  • the airgel according to the present embodiment includes a silicon compound having a hydrolyzable functional group or a condensable functional group (in the molecule) and a hydrolysis product of the silicon compound having the hydrolyzable functional group. It may be a dried product of a wet gel that is a condensate of a sol containing at least one selected from the group. That is, the airgel according to the present embodiment includes a hydrolyzable functional group or a silicon compound having a condensable functional group (in the molecule) and a hydrolysis product of the silicon compound having the hydrolyzable functional group.
  • the condensate may be obtained by a condensation reaction of a hydrolysis product obtained by hydrolysis of a silicon compound having a hydrolyzable functional group, and is not a functional group obtained by hydrolysis. It may be obtained by a condensation reaction of a silicon compound having a group.
  • the silicon compound may have at least one of a hydrolyzable functional group and a condensable functional group, and may have both a hydrolyzable functional group and a condensable functional group.
  • each airgel mentioned later is a group which consists of a hydrolysis product of the silicon compound which has a hydrolyzable functional group or a condensable functional group, and the said hydrolyzable functional group in this way. It may be a dried product of a wet gel that is a condensate of a sol containing at least one selected from the above (obtained by drying a wet gel produced from the sol).
  • the airgel layer contains at least one selected from the group consisting of a hydrolyzable functional group or a silicon compound having a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. It may be a layer composed of a dried product of a wet gel that is a condensate of the sol. That is, the airgel layer is at least one selected from the group consisting of a hydrolyzable functional group or a silicon compound having a condensable functional group, and a hydrolysis product of the silicon compound having the hydrolyzable functional group. It may be composed of a layer formed by drying a wet gel produced from a sol containing.
  • the airgel according to the present embodiment can contain polysiloxane having a main chain including a siloxane bond (Si—O—Si).
  • the airgel can have the following M unit, D unit, T unit or Q unit as a structural unit.
  • R represents an atom (hydrogen atom or the like) or an atomic group (alkyl group or the like) bonded to a silicon atom.
  • the M unit is a unit composed of a monovalent group in which a silicon atom is bonded to one oxygen atom.
  • the D unit is a unit composed of a divalent group in which a silicon atom is bonded to two oxygen atoms.
  • the T unit is a unit composed of a trivalent group in which a silicon atom is bonded to three oxygen atoms.
  • the Q unit is a unit composed of a tetravalent group in which a silicon atom is bonded to four oxygen atoms. Information on the content of these units can be obtained by Si-NMR.
  • the airgel according to the present embodiment may contain silsesquioxane.
  • Silsesquioxane is a polysiloxane having the above T unit as a structural unit, and has a composition formula: (RSiO 1.5 ) n .
  • Silsesquioxane can have various skeletal structures such as a cage type, a ladder type, and a random type.
  • Examples of the hydrolyzable functional group include an alkoxy group.
  • Examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • Each of the hydrolyzable functional group and the condensable functional group may be used alone or in admixture of two or more.
  • the silicon compound can include a silicon compound having an alkoxy group as a hydrolyzable functional group, and can also include a silicon compound having a hydroxyalkyl group as a condensable functional group.
  • the silicon compound can have at least one selected from the group consisting of an alkoxy group, a silanol group, a hydroxyalkyl group and a polyether group from the viewpoint of further improving the flexibility of the airgel.
  • the silicon compound can have at least one selected from the group consisting of an alkoxy group and a hydroxyalkyl group from the viewpoint of improving the compatibility of the sol.
  • the number of carbon atoms of the alkoxy group and the hydroxyalkyl group can be 1 to 6, and the viewpoint of further improving the flexibility of the airgel 2 to 4.
  • the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • the hydroxyalkyl group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • Examples of the airgel according to the present embodiment include the following modes. By adopting these aspects, it becomes easy to obtain an airgel excellent in heat insulation and flexibility. By employ
  • the airgel according to the present embodiment includes a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in the molecule), and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group.
  • a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in the molecule) and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group.
  • Wet which is a condensate of sol containing at least one compound selected from the group consisting of (the hydrolyzable functional group hydrolyzed polysiloxane compound) (hereinafter sometimes referred to as “polysiloxane compound group”) It may be a dried gel.
  • the airgel according to the present embodiment includes a hydrolyzable functional group or a polysiloxane compound having a condensable functional group (in the molecule) and hydrolysis of the polysiloxane compound having the hydrolyzable functional group. It may be obtained by drying a wet gel produced from a sol containing at least one selected from the group consisting of products. That is, the airgel layer is composed of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group (in the molecule) and a hydrolysis product of the polysiloxane compound having the hydrolyzable functional group. It may be formed from a sol containing at least one selected from the group.
  • each airgel mentioned later is also from the hydrolysis product of the polysiloxane compound which has a hydrolyzable functional group or a condensable functional group, and the polysiloxane compound which has the said hydrolyzable functional group in this way.
  • It may be a wet gel dried product (obtained by drying a wet gel generated from the sol), which is a condensate of a sol containing at least one selected from the group.
  • the airgel layer is at least one selected from the group consisting of a hydrolyzable functional group or a polysiloxane compound having a condensable functional group, and a hydrolysis product of the polysiloxane compound having a hydrolyzable functional group. It may be a layer composed of a dried product of a wet gel that is a condensate of sol containing That is, the airgel layer is selected from the group consisting of a hydrolyzable functional group or a polysiloxane compound having a condensable functional group, and a hydrolysis product of the polysiloxane compound having a hydrolyzable functional group. You may be comprised by the layer formed by drying the wet gel produced
  • a polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group different from the hydrolyzable functional group and the condensable functional group (hydrolyzable functional group and condensable functional group). May further have a functional group that does not fall under.
  • the reactive group is not particularly limited, and examples thereof include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group.
  • the epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group. You may use the polysiloxane compound which has the said reactive group individually or in mixture of 2 or more types.
  • Examples of the polysiloxane compound having a hydroxyalkyl group include compounds having a structure represented by the following general formula (A).
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represents an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1a s may be the same or different, and similarly, two R 2a s may be the same or different.
  • two or more R 3a s may be the same or different, and similarly, two or more R 4a s may be the same or different.
  • examples of R 1a include a hydroxyalkyl group having 1 to 6 carbon atoms, and specific examples include a hydroxyethyl group and a hydroxypropyl group.
  • examples of R 2a include an alkylene group having 1 to 6 carbon atoms, and specific examples include an ethylene group and a propylene group.
  • R 3a and R 4a may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • the alkyl group may be a methyl group.
  • n may be 2 to 30, or 5 to 20.
  • polysiloxane compound having the structure represented by the general formula (A) commercially available products can be used.
  • compounds such as X-22-160AS, KF-6001, KF-6002, KF-6003 and the like All of which are manufactured by Shin-Etsu Chemical Co., Ltd.
  • compounds such as XF42-B0970, Fluid OFOH 702-4% all manufactured by Momentive.
  • Examples of the polysiloxane compound having an alkoxy group include compounds having a structure represented by the following general formula (B).
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • M represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1b s may be the same or different
  • two R 2b s may be the same or different.
  • R 3b may be the same or different.
  • when m is an integer of 2 or more, two or more R 4b may be the same or different, and similarly, two or more R 5b may be the same. May be different.
  • examples of R 1b include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms. Specifically, a methyl group, a methoxy group, and an ethoxy group can be exemplified. Can be mentioned.
  • R 2b and R 3b may each independently be an alkoxy group having 1 to 6 carbon atoms.
  • alkoxy group examples include a methoxy group and an ethoxy group.
  • R 4b and R 5b may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • the alkyl group may be a methyl group.
  • m may be 2 to 30, or 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in, for example, JP-A Nos. 2000-26609 and 2012-233110. Can do.
  • the polysiloxane compound having an alkoxy group may exist as a hydrolysis product in the sol.
  • the polysiloxane compound having an alkoxy group and the hydrolysis product are It may be mixed.
  • all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • Each of the hydrolyzable functional group or the polysiloxane compound having a condensable functional group and the hydrolysis product of the polysiloxane compound having the hydrolyzable functional group may be used alone or in combination of two or more. May be used.
  • the total content of the decomposition products may be 1 part by mass or 3 parts by mass or more with respect to 100 parts by mass of the total amount of sol, from the viewpoint of further easily obtaining good reactivity. Alternatively, it may be 4 parts by mass or more, 5 parts by mass or more, 7 parts by mass or more, or 10 parts by mass or more.
  • the content of the polysiloxane compound group may be 50 parts by mass or less, or 30 parts by mass or less with respect to 100 parts by mass of the total amount of sol, from the viewpoint of further easily obtaining good compatibility. 15 parts by mass or less. From these viewpoints, the content of the polysiloxane compound group may be 1 to 50 parts by mass, 3 to 50 parts by mass, or 4 to 50 parts by mass based on 100 parts by mass of the sol. Part, 5 to 50 parts by weight, 7 to 30 parts by weight, 10 to 30 parts by weight, or 10 to 15 parts by weight. .
  • the silicon compound having a hydrolyzable functional group or a condensable functional group a silicon compound (silicon compound) other than the polysiloxane compound may be used. That is, the airgel according to the present embodiment has (in the molecule) a hydrolyzable functional group or a silicon compound having a condensable functional group (excluding a polysiloxane compound) and the hydrolyzable functional group. It may be a wet gel dried product which is a condensate of sol containing at least one compound selected from the group consisting of hydrolysis products of silicon compounds (hereinafter sometimes referred to as “silicon compound group”). The number of silicon atoms in the molecule of the silicon compound may be 1 or 2.
  • the silicon compound having a hydrolyzable functional group is not particularly limited, and examples thereof include alkyl silicon alkoxides.
  • the number of hydrolyzable functional groups may be 3 or less, or 2 to 3.
  • the alkyl silicon alkoxide include monoalkyltrialkoxysilane, monoalkyldialkoxysilane, dialkyldialkoxysilane, monoalkylmonoalkoxysilane, dialkylmonoalkoxysilane and trialkylmonoalkoxysilane.
  • Examples of the alkyl silicon alkoxide include methyltrimethoxysilane, methyldimethoxysilane, dimethyldimethoxysilane, and ethyltrimethoxysilane.
  • the silicon compound having a condensable functional group is not particularly limited.
  • silane tetraol, methyl silane triol, dimethyl silane diol, phenyl silane triol, phenyl methyl silane diol, diphenyl silane diol, n-propyl silane triol examples include hexyl silane triol, octyl silane triol, decyl silane triol, and trifluoropropyl silane triol.
  • the number of hydrolyzable functional groups is 3 or less, and silicon compounds having reactive groups include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and the like can also be used.
  • vinylsilane triol 3-glycidoxypropylsilanetriol, 3-glycidoxypropylmethylsilanediol, 3-methacryloxypropylsilanetriol, 3-methacryloxypropylmethylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl ) -3-Aminopropylmethylsilanediol and the like can also be used.
  • bistrimethoxysilylmethane bistrimethoxysilylethane
  • bistrimethoxysilylhexane bistrimethoxysilylhexane
  • Each of the hydrolyzable functional group or the silicon compound having a condensable functional group (excluding the polysiloxane compound) and the hydrolyzate of the silicon compound having the hydrolyzable functional group either alone or 2 You may mix and use a kind or more.
  • Content of silicon compounds contained in the sol (contents of silicon compounds having hydrolyzable functional groups or condensable functional groups (excluding polysiloxane compounds) contained in the sol because it becomes easier to obtain good reactivity.
  • the total content of hydrolysis products of the silicon compound having a hydrolyzable functional group may be 5 parts by mass or more with respect to 100 parts by mass of the sol, or 10 parts by mass or more. It may be 12 mass parts or more, 15 mass parts or more, or 18 mass parts or more. Since it becomes easier to obtain good compatibility, the content of the silicon compound group may be 50 parts by mass or less, or 30 parts by mass or less, based on 100 parts by mass of the sol. It may be 25 parts by mass or less, or 20 parts by mass or less. That is, the content of the silicon compound group may be 5 to 50 parts by mass, 10 to 30 parts by mass, or 12 to 30 parts by mass with respect to 100 parts by mass of the sol. It may be 15 to 25 parts by mass, or 18 to 20 parts by mass.
  • the sum of the content of the polysiloxane compound group and the content of the silicon compound group may be 5 parts by mass or more with respect to 100 parts by mass of the sol from the viewpoint of further easily obtaining good reactivity. It may be 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 22 parts by mass or more.
  • the sum of the content of the polysiloxane compound group and the content of the silicon compound group may be 50 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, from the viewpoint of easily obtaining good compatibility. 30 parts by mass or less, or 25 parts by mass or less.
  • the sum of the content of the polysiloxane compound group and the content of the silicon compound group may be 5 to 50 parts by mass with respect to 100 parts by mass of the sol, or 10 to 30 parts by mass. It may be 15 to 30 parts by mass, 20 to 30 parts by mass, or 22 to 25 parts by mass.
  • the ratio of the content of the polysiloxane compound group and the content of the silicon compound group (polysiloxane compound group: silicon compound group) is 1: 0.5 or more from the viewpoint of further easily obtaining good compatibility. Or 1: 1 or more, 1: 2 or more, or 1: 3 or more.
  • the ratio of the content of the polysiloxane compound group to the content of the silicon compound group (polysiloxane compound group: silicon compound group) is 1: 4 or less from the viewpoint of further easily suppressing gel shrinkage. It may be 1: 2 or less.
  • the ratio of the content of the polysiloxane compound group to the content of the silicon compound group may be 1: 0.5 to 1: 4.
  • it may be 1: 1 to 1: 2
  • the airgel according to the present embodiment can have a structure represented by the following general formula (1).
  • the airgel which concerns on this embodiment can have a structure represented by the following general formula (1a) as a structure containing the structure represented by Formula (1).
  • the structures represented by the formulas (1) and (1a) can be introduced into the skeleton of the airgel.
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • p represents an integer of 1 to 50.
  • two or more R 1 s may be the same or different, and similarly, two or more R 2 s may be the same or different.
  • two R 3 s may be the same or different, and similarly, two R 4 s may be the same or different.
  • R 1 and R 2 may each independently be an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • the alkyl group may be a methyl group.
  • R 3 and R 4 may each independently be an alkylene group having 1 to 6 carbon atoms.
  • the alkylene group may be an ethylene group or a propylene group.
  • p can be 2 to 30, and can be 5 to 20.
  • the airgel which concerns on this embodiment is an airgel which has a ladder type structure provided with a support
  • a ladder structure By introducing such a ladder structure into the airgel skeleton, heat resistance and mechanical strength can be easily improved.
  • the polysiloxane compound having the structure represented by the general formula (B) a ladder structure including a bridge portion having the structure represented by the general formula (2) is introduced into the skeleton of the airgel. be able to.
  • the “ladder structure” is a structure having two struts and bridges connecting the struts (a structure having a so-called “ladder” form). ).
  • the airgel skeleton may have a ladder structure, but the airgel may partially have a ladder structure.
  • R 5 and R 6 each independently represents an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different, and similarly, two or more R 6 s are the same. Or different.
  • the airgel has a structure derived from a conventional ladder-type silsesquioxane (that is, has a structure represented by the following general formula (X)). It becomes the airgel which has the outstanding softness
  • the structure of the bridge portion is —O—.
  • the structure of the hanging portion is a structure (polysiloxane structure) represented by the general formula (2).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the structure of the column part and its chain length, and the interval of the structure of the bridge part are not particularly limited, but from the viewpoint of further improving the heat resistance and mechanical strength, the ladder structure has the following general formula: You may have the ladder type structure represented by (3).
  • R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group or an aryl group
  • a and c each independently represents an integer of 1 to 3000
  • b is 1 to 50 Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 s may be the same or different
  • similarly, two or more R 6 s may be the same. May be different.
  • formula (3) when a is an integer of 2 or more, two or more R 7 s may be the same or different.
  • when c is an integer of 2 or more, two or more R 8 s may be the same or different.
  • R 5 , R 6 , R 7 and R 8 are: Each may be independently an alkyl group having 1 to 6 carbon atoms or a phenyl group. The alkyl group may be a methyl group.
  • a and c may each independently be 6 to 2000, or 10 to 1000.
  • b may be 2 to 30, or 5 to 20.
  • the airgel according to the present embodiment may contain silica particles from the viewpoint of further toughening the heat insulating layer and further achieving excellent heat insulating properties and flexibility.
  • the sol that gives the airgel may further contain silica particles. That is, the airgel according to the present embodiment may be a dried product of a wet gel that is a condensate of a sol containing silica particles (obtained by drying a wet gel generated from the sol).
  • the airgel layer may be a layer composed of a dried product of a wet gel that is a condensate of a sol containing silica particles.
  • the airgel layer may be composed of a layer obtained by drying a wet gel generated from a sol containing silica particles. That is, the airgel layer may be formed from a sol containing silica particles.
  • the airgel described so far is also a dried product of a wet gel that is a condensate of a sol containing silica particles (obtained by drying a wet gel generated from the sol). May be.
  • the silica particles can be used without particular limitation, and examples thereof include amorphous silica particles.
  • examples of the amorphous silica particles include fused silica particles, fumed silica particles, and colloidal silica particles.
  • colloidal silica particles have high monodispersity and are easy to suppress aggregation in the sol.
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a cage shape, and an association type. Among these, by using spherical particles as silica particles, it becomes easy to suppress aggregation in the sol.
  • the average primary particle diameter of the silica particles may be 1 nm or more, or 5 nm or more, from the viewpoint that it is easy to impart an appropriate strength and flexibility to the airgel, and an airgel excellent in shrinkage resistance during drying is easily obtained. It may be 10 nm or more, or 20 nm or more.
  • the average primary particle diameter of the silica particles may be 500 nm or less, may be 300 nm or less, may be 300 nm or less, and may be 250 nm from the viewpoint that it is easy to suppress the solid heat conduction of the silica particles and easily obtain an airgel excellent in heat insulation. Or 100 nm or less. From these viewpoints, the average primary particle diameter of the silica particles may be 1 to 500 nm, 5 to 300 nm, 10 to 250 nm, or 20 to 100 nm.
  • the average particle size of the particles is obtained by directly observing the cross section of the airgel layer using a scanning electron microscope (hereinafter abbreviated as “SEM”).
  • SEM scanning electron microscope
  • the particle size of each airgel particle or silica particle can be obtained from the mesh-like microstructure inside the airgel based on the diameter of the particles exposed in the cross section of the airgel layer.
  • the “diameter” here means a diameter when the cross section of the particle exposed in the cross section of the airgel layer is regarded as a circle.
  • the “diameter when the cross section is regarded as a circle” is the diameter of the true circle when the area of the cross section is replaced with a true circle having the same area.
  • the diameter of a circle is obtained for 100 particles, and the average is taken.
  • the average particle diameter of the silica particles can be measured from the raw material.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, when colloidal silica particles having a solid content concentration of 5 to 40% by mass, which are usually dispersed in water, are taken as an example, a chip obtained by cutting a wafer with a patterned wiring into 2 cm squares is dispersed in a dispersion of colloidal silica particles. After soaking for 30 seconds, the chip is rinsed with pure water for about 30 seconds and blown with nitrogen.
  • the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, the silica particles are observed at a magnification of 100,000, and an image is taken.
  • 20 silica particles are arbitrarily selected from the obtained image, and the average of the particle diameters of these particles is defined as the average particle diameter.
  • a rectangle (circumscribed rectangle L) circumscribing the silica particles P and arranged so that the long side is the longest is led.
  • the long side of the circumscribed rectangle L is X
  • the short side is Y
  • the biaxial average primary particle diameter is calculated as (X + Y) / 2, and is defined as the particle diameter of the particle.
  • the number of silanol groups per gram of silica particles may be 10 ⁇ 10 18 pieces / g or more, or 50 ⁇ 10 18 pieces / g or more from the viewpoint of easily obtaining an airgel having excellent shrinkage resistance. 100 ⁇ 10 18 pieces / g or more.
  • the number of silanol groups per gram of silica particles may be 1000 ⁇ 10 18 pieces / g or less, may be 800 ⁇ 10 18 pieces / g or less, and 700 ⁇ It may be 10 18 pieces / g or less.
  • the number of silanol groups per gram of silica particles may be 10 ⁇ 10 18 to 1000 ⁇ 10 18 pcs / g, or may be 50 ⁇ 10 18 to 800 ⁇ 10 18 pcs / g. 100 ⁇ 10 18 to 700 ⁇ 10 18 pieces / g.
  • the content of the silica particles contained in the sol is 1 mass with respect to 100 mass parts of the total amount of the sol from the viewpoint of easily imparting an appropriate strength to the airgel and easily obtaining an airgel excellent in shrinkage resistance during drying. Or 4 parts by mass or more.
  • the content of the silica particles contained in the sol is 20 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, from the viewpoint of easily suppressing the solid heat conduction of the silica particles and easily obtaining an airgel excellent in heat insulation. It may be 15 parts by mass or less, 12 parts by mass or less, 10 parts by mass or less, or 8 parts by mass or less.
  • the content of the silica particles contained in the sol may be 1 to 20 parts by mass, 4 to 15 parts by mass, or 4 to 4 parts by mass with respect to 100 parts by mass of the total amount of the sol. It may be 12 parts by mass, 4 to 10 parts by mass, or 4 to 8 parts by mass.
  • the airgel according to the present embodiment can have a structure represented by the following general formula (4).
  • the airgel which concerns on this embodiment can have a structure represented by following General formula (4) while containing a silica particle.
  • R 9 represents an alkyl group.
  • alkyl group examples include alkyl groups having 1 to 6 carbon atoms, and specific examples include a methyl group.
  • the airgel according to the present embodiment can have a structure represented by the following general formula (5).
  • the airgel which concerns on this embodiment can have a structure represented by following General formula (5) while containing a silica particle.
  • R 10 and R 11 each independently represent an alkyl group.
  • alkyl group examples include alkyl groups having 1 to 6 carbon atoms, and specific examples include a methyl group.
  • the airgel according to the present embodiment can have a structure represented by the following general formula (6).
  • the airgel which concerns on this embodiment can have a structure represented by following General formula (6) while containing a silica particle.
  • R 12 represents an alkylene group.
  • the alkylene group include an alkylene group having 1 to 10 carbon atoms, and specific examples include an ethylene group and a hexylene group.
  • the airgel according to this embodiment may have a structure derived from polysiloxane.
  • Examples of the structure derived from polysiloxane include structures represented by the above general formula (1), (2), (3), (4), (5), or (6).
  • the airgel which concerns on this embodiment may have at least 1 type among the structures represented by the said General formula (4), (5) and (6), without containing a silica particle.
  • the thickness of the airgel layer can be 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, or 10 ⁇ m or more because it is easy to ensure the reliability of the airgel layer. 30 ⁇ m or more.
  • the thickness of the airgel layer may be 5000 ⁇ m or less, 4000 ⁇ m or less, 3000 ⁇ m or less, or 1000 ⁇ m or less from the viewpoint of shortening the later-described washing and solvent replacement step. 500 ⁇ m or less, or 250 ⁇ m or less. From these viewpoints, the thickness of the airgel layer may be 1 to 5000 ⁇ m, 2 to 4000 ⁇ m, 3 to 3000 ⁇ m, 10 to 1000 ⁇ m, 10 to 500 ⁇ m. It may be 30 to 250 ⁇ m.
  • the method for manufacturing a body to be heat-insulated is a method for manufacturing a body to be heat-insulated in which an airgel layer as a heat-insulating layer is integrally formed on an object to be heat-insulated, and the airgel layer is formed from a mist-like sol. It is a method provided with the process to perform (henceforth an "aerogel layer formation process").
  • the mist sol may be, for example, a mist form of the sol described above. According to this manufacturing method, the to-be-insulated body in which unevenness of the airgel layer is suppressed can be manufactured.
  • a thick airgel layer can be formed without depending on the shape of the main body, and the thickness of the airgel layer can be easily controlled.
  • the airgel when the airgel is thickened, cracks tend to easily occur.
  • cracks are reduced.
  • the airgel layer forming step may be, for example, a step of forming the airgel layer from the sol layer after forming the sol layer from the mist in the form of mist.
  • a sol in the form of mist (“sol coating liquid”) is also formed on the heat insulation object 10.
  • the sol layer 5a is formed (FIG. 4B)
  • the airgel layer 5 is formed from the sol layer 5a (FIG. 4C).
  • the sol may be directly applied to the main body.
  • the heat insulation object includes a main body part and a covering layer that covers at least a part of the surface of the main body part, and the covering layer serves as an intermediate layer.
  • an airgel layer may be formed on at least the coating layer. That is, when a heat insulation target object is provided with a main-body part and a coating layer, for example, as shown in FIG. 5, after preparing the heat insulation target object 10 provided with the main-body part 3 and the coating layer 4 (FIG. 5 ( a)) After forming the sol layer 5a from the mist in the form of mist on the coating layer 4 so that the coating layer 4 becomes an intermediate layer (FIG.
  • the airgel layer 5 is formed from the sol layer 5a. It forms (FIG.5 (c)). Thereby, the adhesiveness of the airgel layer is further improved, and peeling and dropping of the airgel layer are further suppressed.
  • the aspect regarding a main-body part and a coating layer is as having mentioned above.
  • the manufacturing method of a to-be-insulated body is not limited to the following method.
  • the object to be heat-insulated includes, for example, a preparation step for preparing an object to be insulated, a sol generation step for producing a sol for forming an airgel, and a sol obtained in the sol generation step in a mist form.
  • the mist sol may be contacted with the object to be insulated and then dried as necessary.
  • the specific example of the process of forming an airgel layer from mist-like sol includes the said contact process, for example.
  • the “sol” is a state before the gelation reaction occurs, and in the present embodiment, for example, a silicon compound (and if necessary, further silica particles) is dissolved or dispersed in a solvent. Means state.
  • a main body part or a main body part on which a coating layer is formed is prepared.
  • the coating layer can be formed by, for example, a coating layer forming step of forming a coating layer on the main body portion.
  • a coating layer formation process is a process of making the composition for coating layer formation contact the base material used as a main-body part, for example, and forming a coating layer on a main-body part. Specifically, for example, the composition for forming a coating layer is brought into contact with the substrate, and if necessary, the coating layer is formed on the surface of the substrate by heating and drying.
  • the composition for forming a coating layer may be a liquid composition such as a primer solution or a sheet-like composition such as an adhesive sheet.
  • the contact method is appropriately selected depending on the type of the coating layer forming composition, the thickness of the coating layer, or the shape of the substrate.
  • the composition for forming a coating layer is a sheet-like composition
  • a method of laminating on a substrate can be used
  • the composition for forming a coating layer is a liquid composition, for example, dip coating Spray coating, spin coating, roll coating, etc. can be used.
  • the contact method is selected from the viewpoint of film formability or manufacturing cost. For example, if it is a sheet-like or fibrous base material, dip coating or roll coating can be used. If it is a block-like or spherical base material, dip coating or spray coating can be used.
  • heat treatment may be performed from the viewpoint of drying and fixing the composition for forming the coating layer, and washing and / or drying from the viewpoint of removing impurities and improving the adhesion of the coating layer. May be performed. Further, for the purpose of adjusting the surface roughness of the coating layer, the surface of the coating layer may be subjected to polishing treatment and / or roughening treatment.
  • a silicon compound (if necessary, further silica particles) and a solvent are mixed and a hydrolysis reaction is performed, and then a sol-gel reaction is performed to obtain a semi-gelled sol coating liquid.
  • an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction.
  • a surfactant, a thermohydrolyzable compound, or the like can be added to the solvent.
  • a base catalyst may be added to promote the gelation reaction.
  • the boiling point of the solvent may be less than 200 ° C., 170 ° C. or less, or 150 ° C. or less from the viewpoint of obtaining good coatability in the contact step. That is, the sol may contain a solvent having a boiling point of less than 200 ° C., may contain a solvent having a boiling point of 170 ° C. or less, and may contain a solvent having a boiling point of 150 ° C. or less. According to the sol containing such a solvent, a thick airgel layer can be formed more easily, and cracks in the airgel layer are further suppressed.
  • the solvent may have a high surface tension from the viewpoint of improving the coating film formability and easy control of the film thickness.
  • the solvent may have a low volatility from the viewpoint of suppressing changes in the sol viscosity and resin content and improving storage stability.
  • Examples of the solvent that satisfies these characteristics include water or a mixed solution of water and alcohol.
  • Examples of the alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol and t-butanol. Among these, water may be used because it has a high surface tension and low volatility.
  • the acid catalyst examples include hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, and other inorganic acids; Acid phosphates such as aluminum phosphate, acid magnesium phosphate, acid zinc phosphate; organics such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, azelaic acid Carboxylic acid is mentioned.
  • an organic carboxylic acid can be used from the viewpoint of further improving the water resistance of the heat insulating body to be obtained, and specifically, acetic acid, formic acid, propionic acid, oxalic acid and malonic acid. And may be acetic acid. You may use an acid catalyst individually or in mixture of 2 or more types.
  • the addition amount of the acid catalyst may be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant, or the like can be used. You may use surfactant individually or in mixture of 2 or more types.
  • nonionic surfactant for example, those containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, and those containing a hydrophilic part such as polyoxypropylene can be used.
  • examples of those containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, and polyoxyethylene alkyl ether.
  • examples of those containing a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ethers, block copolymers of polyoxyethylene and polyoxypropylene, and the like.
  • a cationic surfactant As the ionic surfactant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant or the like can be used, and a cationic surfactant or an anionic surfactant may be used.
  • the cationic surfactant include cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride.
  • CTAB cetyltrimethylammonium bromide
  • anionic surfactant examples include sodium dodecyl sulfonate.
  • amphoteric surfactants include amino acid surfactants, betaine surfactants, and amine oxide surfactants.
  • amino acid surfactants include acyl glutamic acid.
  • betaine surfactants include lauryldimethylaminoacetic acid betaine and stearyldimethylaminoacetic acid betaine.
  • the amine oxide surfactant include lauryl dimethylamine oxide.
  • surfactants are thought to have the effect of reducing phase separation by reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer in the contacting step. .
  • the addition amount of the surfactant depends on the type of the surfactant or the type and amount of the silicon compound.
  • the amount of the surfactant may be 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound. It may be 5 to 60 parts by mass.
  • thermohydrolyzable compound generates a base catalyst by thermal hydrolysis to make the reaction solution basic and promote the sol-gel reaction.
  • the thermohydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after hydrolysis.
  • urea include acid amides such as methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine.
  • urea is particularly easy to obtain the above-mentioned promoting effect.
  • the amount of the thermally hydrolyzable compound added is not particularly limited as long as it is an amount that can sufficiently promote the sol-gel reaction.
  • the amount of the thermally hydrolyzable compound (urea or the like) added may be 1 to 200 parts by mass or 2 to 150 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound.
  • the addition amount of the thermohydrolyzable compound (urea or the like) is 1 part by mass or more, good reactivity can be further easily obtained, and when it is 200 parts by mass or less, the precipitation of crystals and the gel density are reduced. It becomes easy to suppress the decrease.
  • the hydrolysis in the sol production step depends on the types and amounts of silicon compound, silica particles, acid catalyst, surfactant, etc. in the mixed solution, but for example, 10 minutes to 20-60 ° C. in a temperature environment.
  • the reaction may be performed for 24 hours, or in a temperature environment of 50 to 60 ° C. for 5 minutes to 8 hours.
  • the hydrolyzable functional group in a silicon compound is fully hydrolyzed, and the hydrolysis product of a silicon compound can be obtained more reliably.
  • the temperature environment of the sol generation step may be adjusted to a temperature that suppresses hydrolysis of the thermohydrolyzable compound and suppresses gelation of the sol.
  • the temperature at this time may be any temperature as long as the hydrolysis of the thermally hydrolyzable compound can be suppressed.
  • the temperature environment in the sol production step (for example, the temperature environment when urea is used as the thermohydrolyzable compound) may be 0 to 40 ° C. or 10 to 30 ° C.
  • Base catalysts include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; sodium metaphosphate Basic sodium phosphates such as sodium pyrophosphate and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3- (diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine aliphatic amines such as sec-butylamine, propylamine, 3- (methyl
  • ammonium hydroxide (ammonia water) can be used from the viewpoint of high volatility and hardly remaining in the airgel layer after drying, and from the viewpoint of not impairing water resistance and economical efficiency.
  • the dehydration condensation reaction and / or dealcoholization condensation reaction of the silicon compound (polysiloxane compound group and silicon compound group) and silica particles in the sol can be promoted, and the gelation of the sol Furthermore, it can be performed in a short time.
  • ammonia is highly volatile and hardly remains on the insulator. Therefore, by using ammonia as the base catalyst, an insulator to be further improved in water resistance can be obtained.
  • the addition amount of the base catalyst may be 0.5 to 5 parts by mass or 1 to 4 parts by mass with respect to 100 parts by mass of the total amount of silicon compounds (polysiloxane compound group and silicon compound group). .
  • the addition amount of the base catalyst is 0.5 parts by mass or more, gelation can be performed in a shorter time, and when it is 5 parts by mass or less, a decrease in water resistance can be further suppressed.
  • the sol-gel reaction in the sol production step can obtain a sol in a semi-gelled state for the purpose of obtaining good coating properties in the contact step.
  • This reaction can be performed in an airtight container so that a solvent and a base catalyst may not volatilize.
  • the gelation temperature depends on the type and amount of the silicon compound, silica particles, acid catalyst, surfactant, base catalyst and the like in the sol, but may be 30 to 90 ° C. or 40 to 80 ° C. There may be. When the gelation temperature is 30 ° C. or higher, gelation can be performed in a shorter time. When the gelation temperature is 90 ° C. or less, rapid gelation can be suppressed.
  • the sol-gel reaction time varies depending on the gelation temperature
  • the gelation time may be shortened as compared with a sol applied to a conventional aerogel. it can.
  • the reason for this is presumed that the hydrolyzable functional group or the condensable functional group of the silicon compound in the sol forms hydrogen bonds and / or chemical bonds with the silanol groups of the silica particles.
  • the gelation time may be 10 to 360 minutes or 20 to 180 minutes. When the gelation time is 10 minutes or longer, the viscosity of the sol is improved, and good coating properties are easily obtained in the contact process. It becomes easy to obtain adhesiveness with a part or a coating layer.
  • the sol coating liquid (semi-gelled sol coating liquid or the like) obtained in the sol generation step is brought into contact with the main body or the coating layer in the form of a mist to produce a thermal insulator ( Coating process, etc.).
  • the sol coating liquid is brought into contact with the main body part or the coating layer in the form of a mist, and the sol coating liquid is gelled by heating and drying as necessary to form the airgel layer of the main body part or the coating layer. Form on the surface.
  • the airgel layer is desirably in a state in which an adhesive force with the main body portion or the coating layer is ensured.
  • the contact method is not particularly limited as long as the sol can be contacted (applied) to the main body or the layer in a mist form, and examples thereof include spray coating. According to this method, since the mist generated by spraying only needs to reach the surface to be coated, for example, an airgel layer can be formed also on the inner surface of a cylindrical main body such as a pipe. .
  • sprays used for spray coating include air spray that mists are applied by applying compressed gas, and airless sprays that apply mist by applying pressure to the sol and spray mist from the spray gun.
  • a liquid electrostatic spray that efficiently attaches a mist to an adherend by applying a static voltage can be used.
  • the coating method is not limited, and a suitable method can be selected according to physical properties such as the size, shape, and elastic modulus of the main body or the coating layer.
  • the pressure of the gas used can be adjusted according to the specifications of the air gun and air brush used, for example.
  • the pressure is not particularly limited, but may be, for example, less than 0.5 MPa.
  • the thickness of the airgel layer formed in the contacting step can be adjusted by, for example, the pressure of the gas used for spraying, the coating amount of the sol, the viscosity of the sol, the distance between the spray and the main body, and the coating time.
  • the thickness of the airgel layer may be adjusted by the coating time from the viewpoint of workability. In this case, for example, a calibration curve indicating the relationship between the coating time and the thickness of the semi-cured gel or the thickness of the airgel layer may be created, and thereby the thickness may be controlled.
  • the diameter of the mist droplets of the sol may be 0.1 ⁇ m or more, from the viewpoint of easily forming a thick airgel layer and further suppressing cracking of the airgel layer, and may be 0.3 ⁇ m or more. It may be 0.5 ⁇ m or more. From the same viewpoint, the diameter of the sol droplet may be 1000 ⁇ m or less, 800 ⁇ m or less, or 500 ⁇ m or less. From these viewpoints, the diameter of the sol droplet may be 0.1 to 1000 ⁇ m, 0.3 to 800 ⁇ m, or 0.5 to 500 ⁇ m. When the diameter of the droplet is in such a range, it is easy to form a thick airgel layer and the crack of the airgel layer can be further suppressed. For example, a droplet having such a size has a sufficient surface area. Since it is large, it is assumed that the solvent in the sol evaporates in a short time after adhering to the main body or the coating layer, and the sol contracts accordingly.
  • the non-coating part is masked with a tape or the like, and then the sol is applied to the coating part. May be contacted.
  • the mask When masking is applied, from the viewpoint of reducing airgel loss and peeling at the boundary between the coated and non-coated areas, for example, after spray coating, the mask is removed at a semi-cured gel-like timing. May be.
  • these conditions are such that the moisture content of the airgel layer after heating and drying is, for example, 10% by mass from the viewpoint of easily obtaining adhesion between the airgel layer and the main body portion or the coating layer.
  • the conditions may be as described above, or the conditions may be 50% by mass or more.
  • the heating and drying temperature varies depending on conditions such as the amount of water in the sol coating liquid, the amount of the organic solvent, the boiling point of the organic solvent, etc., from the viewpoint of shortening the gelation time, for example, may be 50 ° C. or more, It may be 60 ° C. or higher.
  • the heating and drying temperature may be, for example, 150 ° C. or less or 120 ° C. or less from the viewpoint of easily obtaining adhesion between the airgel layer and the main body portion or the coating layer. From these viewpoints, the heating and drying temperature may be, for example, 50 to 150 ° C. or 60 to 120 ° C.
  • the heating and drying time varies depending on the heating and drying temperature, but may be, for example, 0.2 minutes or more, or 0.5 minutes or more from the viewpoint of ease of forming the airgel layer.
  • the heating and drying time may be, for example, 10 minutes or less or 8 minutes or less from the viewpoint of easily obtaining the adhesion between the airgel layer and the main body portion or the coating layer. From these viewpoints, the heating and drying time may be, for example, 0.2 to 10 minutes or 0.5 to 8 minutes.
  • suitable conditions can be appropriately set by conducting a simple experiment in advance.
  • the aging step is a step of aging the heat insulating body obtained by the contact step by heating.
  • the moisture content of the airgel layer after aging may be 10% by mass or more, or 50% by mass or more from the viewpoint of suppressing a decrease in adhesiveness between the airgel layer and the main body portion or the coating layer. May be.
  • the aging method is not particularly limited, and examples thereof include a method of aging the insulator to be sealed in a sealed atmosphere and a method of aging using a thermo-hygrostat capable of suppressing a decrease in moisture content due to heating.
  • the aging temperature may be, for example, 40 to 90 ° C. or 50 to 80 ° C.
  • the aging temperature is 40 ° C. or higher, the aging time can be shortened, and when it is 90 ° C. or lower, a decrease in water content can be suppressed.
  • the aging time may be, for example, 1 to 48 hours, or 3 to 24 hours.
  • the aging time is 1 hour or more, excellent heat insulation can be easily obtained, and when it is 48 hours or less, high adhesion between the airgel layer and the main body portion or the coating layer can be obtained.
  • the washing and solvent replacement step is a step having a step (washing step) of washing the heat-insulated body obtained by the aging step and a step (solvent substitution step) of substituting with a solvent suitable for the drying step.
  • the cleaning and solvent replacement method is not particularly limited, and for example, continuous processing can be performed using a plurality of cleaning tanks and / or solvent replacement tanks by conveyor conveyance.
  • the cleaning and solvent replacement step can be carried out in a form in which only the solvent replacement step is performed without performing the step of cleaning the object to be insulated, but it reduces impurities such as unreacted substances and by-products in the airgel layer,
  • the airgel layer can be washed from the viewpoint of making it possible to produce a heat-insulated body with higher purity.
  • the heat insulation body obtained in the aging step can be repeatedly washed with water or an organic solvent.
  • Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride , N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, formic acid, and other various organic solvents can be used. You may use an organic solvent individually or in mixture of 2 or more types.
  • a low surface tension solvent may be used to suppress shrinkage of the airgel layer due to drying.
  • low surface tension solvents generally have very low mutual solubility with water. Therefore, when a low surface tension solvent is used in the solvent replacement step, a hydrophilic organic solvent having high mutual solubility in both water and a low surface tension solvent is used as the organic solvent used in the washing step. it can. Note that the hydrophilic organic solvent used in the washing step can serve as a preliminary replacement for the solvent replacement step.
  • methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone can be used from the viewpoint of being a hydrophilic organic solvent among the above organic solvents, and methanol, ethanol can be used from the viewpoint of excellent economy.
  • methyl ethyl ketone can be used.
  • the amount of water or organic solvent used in the washing step can be an amount that can sufficiently wash the solvent in the airgel layer and can be washed, and is 3 to 10 times the volume of the airgel layer. These solvents can be used.
  • the washing can be repeated until the water content in the airgel layer after washing becomes 10% by mass or less.
  • a temperature below the boiling point of the solvent used for washing can be used.
  • a temperature of about 30 to 60 ° C. can be used.
  • the solvent in the washed airgel layer can be replaced with a predetermined replacement solvent in order to suppress the shrinkage of the airgel layer in the drying step.
  • the replacement efficiency can be improved by heating.
  • a solvent having a low surface tension which will be described later, can be used in the drying step when drying under atmospheric pressure at a temperature lower than the critical point of the solvent used for drying.
  • a solvent such as ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, or the like can be used alone, or a solvent in which two or more of these are mixed can be used.
  • the low surface tension solvent may be a solvent having a surface tension at 20 ° C. of 30 mN / m or less, a solvent of 25 mN / m or less, or a solvent of 20 mN / m or less.
  • Examples of the low surface tension solvent include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1) and other halogenated hydrocarbons; ethyl ether (17.1), propyl ether (20.5) ), Isop Ethers such as pyrether (17.7), butyl ethy
  • aliphatic hydrocarbons may be used, and hexane or heptane may be used.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, 1,2-dimethoxyethane, it can be used as the organic solvent in the washing step.
  • a solvent having a boiling point of 100 ° C. or less at normal pressure may be used from the viewpoint of easy drying in the drying step.
  • Low surface tension solvents may be used alone or in combination of two or more.
  • an amount capable of sufficiently replacing the solvent in the airgel layer after washing can be used, and the amount of the solvent is 3 to 10 times the volume of the airgel layer. Can be used.
  • a temperature below the boiling point of the solvent used for the replacement can be used.
  • a temperature of about 30 to 60 ° C. can be used.
  • the solvent replacement step is not necessarily essential.
  • the inferred mechanism is as follows.
  • the silica particles function as a three-dimensional network airgel skeleton support, whereby the skeleton is supported and gel shrinkage in the drying process is suppressed. Therefore, it is considered that the gel can be directly transferred to the drying step without replacing the solvent used for washing.
  • the drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying, or freeze drying can be used.
  • atmospheric drying or supercritical drying can be used from the viewpoint of easy production of a low-density airgel layer. From the viewpoint of being able to produce at low cost, atmospheric drying can be used.
  • “normal pressure” means 0.1 MPa (atmospheric pressure).
  • the heat-insulated body according to the present embodiment is obtained, for example, by drying a heat-insulated body that has been washed and solvent-substituted (if necessary) at a temperature below the critical point of the solvent used for drying under atmospheric pressure. be able to.
  • the drying temperature varies depending on the type of the substituted solvent (the solvent used for washing when solvent substitution is not performed) or the heat resistance of the main body, but may be 60 to 500 ° C., or 90 to 150 ° C. There may be.
  • the drying time varies depending on the capacity of the airgel layer and the drying temperature, but may be 2 to 48 hours. In the present embodiment, drying can be accelerated by applying pressure within a range that does not impair productivity.
  • the heat insulating body according to this embodiment may be pre-dried before the drying step from the viewpoint of improving the drying efficiency in atmospheric drying.
  • the predrying temperature may be 60 to 180 ° C, or 90 to 150 ° C.
  • the pre-drying time varies depending on the volume of the airgel layer and the drying temperature, but may be 1 to 30 minutes.
  • supercritical drying can also be used as a drying method.
  • Supercritical drying can be performed by a known method.
  • the supercritical drying method include a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the airgel layer.
  • the airgel layer is immersed in liquefied carbon dioxide under conditions of, for example, about 20 to 25 ° C. and about 5 to 20 MPa, so that all or part of the solvent contained in the airgel layer is used. And carbon dioxide having a lower critical point than that of the solvent, and then removing carbon dioxide alone or a mixture of carbon dioxide and the solvent.
  • the manufacturing method of an to-be-insulated body is not limited to this embodiment.
  • the airgel layer which concerns on this embodiment is applicable to heat insulation uses, such as a cryogenic container, a high temperature container, a space field, an architectural field, a motor vehicle field, a household appliance field, a semiconductor field, industrial equipment, etc., for example.
  • the airgel layer can also be used for water repellent applications, sound absorption applications, static vibration applications, catalyst support applications, and the like in addition to applications as a heat insulating material.
  • the following aluminum alloy plate, aluminum plate, and SUS piping were prepared as the main body.
  • Aluminum alloy plate A6061P (manufactured by Takeuchi Metal Foil Powder Co., Ltd., product name, dimensions: 300 mm x 300 mm x 0.5 mm, anodized)
  • Aluminum plate A1035P (manufactured by Takeuchi Metal Foil Powder Co., Ltd., product name, dimensions: 300 mm x 300 mm x 0.5 mm)
  • SUS piping SUS316TPD (manufactured by Mori Kogyo Co., Ltd., product name, outer diameter 115 mm ⁇ thickness 2 mm ⁇ length 50 mm)
  • Intermediate layer ⁇ Examples 1 to 12> (Formation of coating layer (hereinafter also referred to as “intermediate layer”)) Intermediate layers 1 to 4 were formed on the prepared various main body portions in the combinations shown in Table 1 as follows.
  • Intermediate layer 2 A mixture of Aron Ceramic E (product name, manufactured by Toagosei Co., Ltd.) and fused silica (manufactured by Admatex, SO-25R) as an inorganic primer solution was applied to the main body using an air brush or a bar coater. Thereafter, the film was cured by heating at 90 ° C. for 1 hour and further at 150 ° C. for 2 hours to form a 100 ⁇ m thick layer (intermediate layer 2) on the main body. The content of fused silica (filler) contained in the obtained intermediate layer 2 was 0.5% by volume with respect to the total volume of the intermediate layer.
  • Aron Ceramic E product name, manufactured by Toagosei Co., Ltd.
  • fused silica manufactured by Admatex, SO-25R
  • Intermediate layer 4 A mixture of TB3732 (trade name, manufactured by Three Bond Co., Ltd., trade name) magnesium hydroxide (manufactured by Wako Pure Chemicals, reagent) as an inorganic primer solution was applied to the main body using an air brush, and then 30 ° C. at 30 ° C. And further cured by heating at 100 ° C. for 1 hour to form a 10 ⁇ m thick layer (intermediate layer 4) on the main body. The content of magnesium hydroxide (filler) contained in the obtained intermediate layer 4 was 20% by volume with respect to the total volume of the intermediate layer.
  • TB3732 trade name, manufactured by Three Bond Co., Ltd., trade name
  • magnesium hydroxide manufactured by Wako Pure Chemicals, reagent
  • Sol coating liquid As a silica particle-containing raw material, PL-2L (manufactured by Fuso Chemical Industry Co., Ltd., product name, average primary particle diameter: 20 nm, solid content: 20% by mass) is 100.0 parts by mass, water is 120.0 parts by mass, and methanol. 80.0 parts by mass and 0.10 parts by mass of acetic acid as an acid catalyst were mixed to obtain a mixed solution.
  • methyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., product name: LS-530, hereinafter abbreviated as “MTMS”
  • MTMS methyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • Solid coating liquid 2 As a silica particle-containing raw material, ST-OZL-35 (manufactured by Nissan Chemical Industries, Ltd., product name, average primary particle size: 100 nm, solid content: 35% by mass) is 100.0 parts by mass, water is 100.0 parts by mass, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea as a thermohydrolyzable compound were mixed to obtain a mixed solution.
  • ST-OZL-35 manufactured by Nissan Chemical Industries, Ltd., product name, average primary particle size: 100 nm, solid content: 35% by mass
  • 120.0 parts by mass of urea was mixed to obtain a mixed solution.
  • the “polysiloxane compound A” was synthesized as follows. First, 100.0 mass of dimethylpolysiloxane (product name: XC96-723, manufactured by Momentive) having silanol groups at both ends in a 1 L three-necked flask equipped with a stirrer, a thermometer, and a Dimroth condenser. Parts, 181.3 parts by mass of methyltrimethoxysilane and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours. Thereafter, this reaction solution was heated at 140 ° C. for 2 hours under reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a bifunctional alkoxy-modified polysiloxane compound (polysiloxane compound A) at both ends.
  • dimethylpolysiloxane product name: XC96-723, manufactured by Momentive
  • Solid coating solution 4 100.0 parts by mass of PL-2L as a raw material containing silica particles, 200.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition
  • 120.0 parts by mass of urea was mixed to obtain a mixed solution.
  • the “polysiloxane compound B” was synthesized as follows. First, 100.0 parts by mass of XC96-723, 202.6 parts by mass of tetramethoxysilane and 0.50 of t-butylamine in a 1 L three-necked flask equipped with a stirrer, a thermometer and a Dimroth condenser. Mass parts were mixed and reacted at 30 ° C. for 5 hours. Thereafter, this reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a trifunctional alkoxy-modified polysiloxane compound (polysiloxane compound B) at both ends.
  • Solid coating solution 5 100.0 parts by mass of PL-2L as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition
  • 120.0 parts by mass of urea was mixed to obtain a mixed solution.
  • 60.0 parts by mass of MTMS and 40.0 parts by mass of DMDMS were added as silicon compounds and reacted at 25 ° C. for 2 hours. Thereafter, a sol-gel reaction was performed at 60 ° C. for 1.0 hour to obtain a sol coating solution 5.
  • Solid coating liquid 6 100.0 parts by mass of PL-2L as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition
  • 120.0 parts by mass of urea was mixed to obtain a mixed solution.
  • 60.0 parts by mass of MTMS as a silicon compound, 20.0 parts by mass of DMDMS, and 20.0 parts by mass of X-22-160AS as a polysiloxane compound were added and reacted at 25 ° C. for 2 hours. . Thereafter, a sol-gel reaction was performed at 60 ° C. for 1.0 hour to obtain a sol coating liquid 6.
  • Solid coating liquid 7 100.0 parts by mass of PL-2L as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition
  • 120.0 parts by mass of urea was mixed to obtain a mixed solution.
  • 60.0 parts by mass of MTMS as a silicon compound and 20.0 parts by mass of DMDMS and 20.0 parts by mass of polysiloxane compound A as a polysiloxane compound were added and reacted at 25 ° C. for 2 hours. Thereafter, a sol-gel reaction was performed at 60 ° C. for 1.0 hour to obtain a sol coating liquid 7.
  • airgel composite structure preparation of insulation body (hereinafter also referred to as “airgel composite structure”)
  • the airgel layers 1 to 7 are formed on the main body or the intermediate layer in the combinations shown in Table 1 as follows, and the airgel layer is integrally joined to the main body directly or via the intermediate layer.
  • An airgel composite structure comprising:
  • Airgel layer 1 Using an air brush (manufactured by Anest Iwata Co., Ltd., product name: HP-CP), the sol coating liquid 1 is formed in a mist form on the main body or intermediate layer so that the thickness after gelation is 200 ⁇ m. This was coated and gelled at 60 ° C. for 30 minutes to obtain a structure. Thereafter, the obtained structure was transferred to a sealed container and aged at 60 ° C. for 12 hours.
  • the aged structure was immersed in 2000 mL of water and washed for 30 minutes. Next, it was immersed in 2000 mL of methanol and washed at 60 ° C. for 30 minutes. Washing with methanol was performed twice more while exchanging with fresh methanol. Next, it was immersed in 2000 mL of methyl ethyl ketone, and solvent substitution was performed at 60 ° C. for 30 minutes. Washing with methyl ethyl ketone was performed twice more while exchanging with new methyl ethyl ketone.
  • the sol coating liquid 2 is applied on the main body or intermediate layer in a mist form using an air brush so that the thickness after gelation is 100 ⁇ m, and gelled at 60 ° C. for 30 minutes to form a structure. Obtained. Thereafter, the obtained structure was transferred to a sealed container and aged at 60 ° C. for 12 hours.
  • the washing and solvent replacement step and the drying step are performed in the same manner as the method described in “Aerogel layer 1”, and the airgel having the structure represented by the above general formulas (1), (1a) and (4) is obtained.
  • the airgel composite structure provided with the airgel layer 2 (the airgel layer integrally joined to the main body part directly or via an intermediate layer) was obtained.
  • the sol coating liquid 3 is applied in a mist form on the main body or intermediate layer using an air brush so that the thickness after gelation is 200 ⁇ m, and gelled at 60 ° C. for 30 minutes to form a structure. Obtained. Thereafter, the obtained structure was transferred to a sealed container and aged at 60 ° C. for 12 hours.
  • Airgel layer 5 An airgel having a structure represented by the above general formulas (4) and (5) in the same manner as the method described in “Aerogel layer 1” except that the sol coating liquid 5 is used instead of the sol coating liquid 1.
  • the airgel composite structure provided with the airgel layer 5 (the airgel layer joined integrally to the main body part directly or via the intermediate layer) containing the above was obtained.
  • Airgel layer 7 Except that the sol coating liquid 7 was used instead of the sol coating liquid 1 and the thickness after gelation was 500 ⁇ m, the above general formula ( 2), an airgel provided with an airgel layer 7 (an airgel layer integrally joined to the main body part directly or via an intermediate layer) containing an airgel having a structure represented by (3), (4) and (5) A composite structure was obtained.
  • Foamed urethane foam manufactured by Henkel Japan Co., Ltd., product name: Sista M5230 was applied to the aluminum alloy plate as the main body so as to have a thickness of 100 ⁇ m to obtain a foamed urethane foam structure.
  • the airgel composite structure obtained in each example and the structure obtained in each comparative example were placed on a hot plate having a surface temperature of 200 ° C. so that the airgel layer or the foamed urethane foam layer was on the lower surface, and 200 ° C. For 5 minutes. After heating, visual observation was performed and appearance such as deformation, discoloration, and peeling was evaluated. Those having no change by visual observation were determined to have good heat resistance, and those having deformation, discoloration, peeling, etc. were determined to have poor heat resistance.
  • the airgel composite structures of the examples are excellent in appearance evaluation results, and the airgel layer unevenness is suppressed. Moreover, the airgel composite structure of an Example has favorable heat insulation and heat resistance. Therefore, even when used in a high temperature environment, it can be made thinner than conventional materials.
  • Comparative Examples 1 to 3 are inferior in appearance, and the same effects as in the examples cannot be obtained. Moreover, the structure of the comparative example 1 is inferior also in the heat insulation and heat-resistant characteristic.
  • SYMBOLS 3 Main-body part, 3a ... The surface of a main-body part, 5 ... Airgel layer, 5a ... Sol layer, 10 ... Heat insulation target object, 10a ... Surface of heat insulation target object, 4 ... Coating layer, 4a ... Main part of coating layer Opposite surface, 100, 200 ... insulator, L ... circumscribed rectangle, P ... silica particles.

Abstract

本発明は、断熱対象物に、断熱層としてのエアロゲル層が一体的に形成された被断熱体の製造方法であって、ミスト状のゾルからエアロゲル層を形成する工程を備える、被断熱体の製造方法に関する。

Description

被断熱体の製造方法
 本発明は、被断熱体の製造方法に関する。
 近年、居住空間の快適性及び省エネルギーの要求が高まる中、断熱対象物の形状が複雑となり、また、断熱材の設置空間が狭小となる傾向にある。したがって、これらに用いられる断熱材に対しては、更なる断熱性の向上及び薄型化が求められている。
 従来の断熱構造体は、例えば、ウレタンフォーム、フェノールフォーム等の発泡性の断熱材を構成材料として含んでいる。しかし、これらの材料は、空気の断熱性を用いている。そのため、更なる断熱性の向上のためには、空気よりも断熱性に優れる材料を開発しなければならない。
 空気より優れた断熱性を有する断熱材として、フォームを形成する空隙に、フロン又はフロン代替発泡剤等の使用により低熱伝導ガスを充填させた断熱材がある。しかし、このような断熱材は、経時劣化による低熱伝導ガスの漏出の可能性があり、断熱性能の低下が懸念される(例えば下記特許文献1)。
 また、無機繊維とフェノール樹脂バインダーとを用いた芯材を有する真空断熱材が知られている(例えば下記特許文献2)。しかし、真空断熱材では、経時劣化又は梱包袋の傷といった問題により断熱性が著しく低下し、さらに、真空梱包することから、断熱材の柔軟性がなく、曲面への施工ができないといった課題がある。
 ところで、低熱伝導の材料としてエアロゲルが知られている。例えば、特許文献3には、シリカエアロゲルが記載されている。
特許第4084516号公報 特許第4898157号公報 米国特許第4402927号明細書
 エアロゲルは、常圧で最も低熱伝導の材料であると考えられる。エアロゲルは、微細多孔質の構造を有することで、空気をはじめとする気体の移動が抑制されることで熱伝導が小さくなる。ところで、エアロゲルを用いる断熱方法に対しては、多種多様な断熱対象物に対して、ムラの少ないエアロゲル層を形成することが求められる。
 本発明は、上記の事情に鑑みてなされたものであり、エアロゲル層のムラを抑制することができる被断熱体の製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、ミスト状のゾルを用いてエアロゲル層を形成する方法を見出し、本発明の完成に至った。
 本発明は、断熱対象物に、断熱層としてのエアロゲル層が一体的に形成された被断熱体の製造方法であって、ミスト状のゾルからエアロゲル層を形成する工程を備える、被断熱体の製造方法を提供する。
 本発明に係る被断熱体の製造方法によれば、エアロゲル層のムラが抑制された被断熱体を製造することができる。また、本発明に係る被断熱体の製造方法によれば、断熱対象物の形状に依存することなく、厚膜のエアロゲル層を形成できる。
 また、エアロゲルを製造する上で超臨界乾燥を行う場合には、製造コストが高くなること及びバッチ式の生産によるため製造効率が充分でないことがある。これに対し、本発明に係る被断熱体の製造方法の一態様では、超臨界乾燥を用いることなく被断熱体を得ることもできる。さらに、本発明に係る被断熱体の製造方法により製造された被断熱体は、優れた断熱性を有すると共にエアロゲルの脱落が抑制されたものとなる。
 ところで、エアロゲルは、非常に脆い傾向がある。例えば、塊状のエアロゲルは、手で触って持ち上げようとするだけで破損してしまう場合がある。これに対し、従来、エアロゲルと補強材とを用いたエアロゲルシートが考案されている。しかし、エアロゲル自体が脆いため、衝撃又は折り曲げ作業によりシートが破れること、シートからエアロゲル粉末が脱落すること等の施工性の課題がある。一方、本発明において上記ゾルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有していてもよい。このようなゾルから形成されるエアロゲル層によれば、施工性の前記課題を容易に解決できると共に、断熱性を更に高度に達成できる。また、このようなゾルから形成されるエアロゲル層によれば、柔軟性が更に向上されるため、エアロゲルの脱落が更に抑制されると共に、このようなエアロゲル層を備える被断熱体は、本体部の柔軟性に応じて折り曲げ易いものとなる。
 上記ゾルは、シリカ粒子を更に含有していてもよい。これにより、断熱性及び柔軟性が更に向上する。
 上記シリカ粒子の平均一次粒子径は、1~500nmであってもよい。これにより、断熱性及び柔軟性が更に向上し易くなる。
 上記ゾルの液滴の直径は、0.1~1000μmであってもよい。このようなゾルによれば、厚膜のエアロゲル層をより容易に形成できるうえ、エアロゲル層のクラックが更に抑制される。
 上記ゾルは、沸点200℃未満の溶媒を含有していてもよい。このようなゾルによれば、厚膜のエアロゲル層を更に容易に形成できるうえ、エアロゲル層のクラックが更に抑制される。
 上記製造方法においては、前記断熱対象物が、本体部と、前記本体部の表面の少なくとも一部を被覆する被覆層とを備え、前記被覆層が中間層となるように、少なくとも前記被覆層上にエアロゲル層が形成されてもよい。これにより、エアロゲル層の密着性が更に向上すると共に、エアロゲル層の剥離及び脱落が更に抑制される。
 上記被覆層は、充填材を含有していてもよい。これにより、高温使用時におけるエアロゲル層の剥離及び脱落が更に抑制される。
 上記充填材は、無機充填材であってもよい。これにより、被覆層(中間層)の耐熱性が向上すると共に、高温条件における剥離及び脱落が更に抑制される。
 上記充填材の含有量は、被覆層の全体積に対して、0.1~70体積%であってもよい。これにより、耐熱性及び本体部とエアロゲル層との密着性が更に向上する。
 本発明に係る被断熱体の製造方法によれば、エアロゲル層のムラが抑制された被断熱体を製造することができる。また、本発明に係る被断熱体の製造方法によれば、本体部の形状に依存することなく、厚膜のエアロゲル層を形成できる。さらに、本発明に係る被断熱体の製造方法により製造された被断熱体は、優れた断熱性を有すると共にエアロゲルの脱落が抑制されたものとなる。
本発明の一実施形態に係る被断熱体の製造方法により得られる被断熱体を模式的に示す断面図である。 本発明の一実施形態に係る被断熱体の製造方法により得られる被断熱体を模式的に示す断面図である。 粒子の二軸平均一次粒子径の算出方法を示す図である。 本発明の一実施形態に係る被断熱体の製造方法を説明する図である。 本発明の一実施形態に係る被断熱体の製造方法を説明する図である。
 以下、場合により図面を参照しつつ本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 まず、本実施形態に係る被断熱体の製造方法により得られる被断熱体について説明する。
<被断熱体>
 図1は、本実施形態に係る被断熱体の製造方法により得られる被断熱体を模式的に示す断面図である。被断熱体(エアロゲル複合体、エアロゲル複合構造体)100は、図1に示すように、断熱対象物10に、断熱層としてのエアロゲル層5が一体的に形成された構造を有する。すなわち、被断熱体100は、断熱対象物10と、当該断熱対象物10に一体的に接合されたエアロゲル層5と、を備えるものであってもよい。エアロゲル層5は、ミスト状(霧状)のゾルから形成されたエアロゲル層である。断熱対象物10は、例えば、エアロゲル層5を支持する支持部である。本実施形態に係る被断熱体100は、断熱性に優れていると共にエアロゲルの脱落が抑制されたものである。
 本実施形態に係る被断熱体100は、例えば、断熱対象物10の表面10aの少なくとも一部(一部又は全体)に配置されたエアロゲル層5を備える構造体である。本実施形態に係る被断熱体100では、断熱対象物10とエアロゲル層5とが一体化して固定されているため、優れた断熱性を発現することができると共にエアロゲルの脱落が抑制されたものとなる。エアロゲル層5が配置される表面10aは、平坦面であってもよく、複合平面(傾斜面の組合せ)であってもよく、曲面であってもよい。
 断熱対象物10は、図2に示すように、本体部3と、本体部3の表面の少なくとも一部を被覆する被覆層4とを備えるものであってもよい。この場合、被覆層4が中間層となるように、少なくとも被覆層4上にエアロゲル層5が形成される。
 図2は、本実施形態に係る被断熱体の製造方法により得られる被断熱体を模式的に示す断面図である。被断熱体(エアロゲル複合体、エアロゲル複合構造体)200は、断熱対象物10が、本体部3と、本体部3の表面の少なくとも一部を被覆する被覆層4とを備え、被覆層4が中間層となるように、少なくとも被覆層4上にエアロゲル層5が形成された構造を有する。すなわち、被断熱体200は、本体部3と、本体部3に中間層となる被覆層4を介して一体的に接合されたエアロゲル層5と、を備えるものであってもよい。被断熱体200においては、エアロゲル層5が、本体部3に、中間層となる被覆層4を介して一体的に接合されていてもよい。また、被断熱体200においては、本体部3と被覆層4とエアロゲル層5とが一体化されている。本体部3は、例えば、エアロゲル層5を支持する支持部である。本実施形態に係る被断熱体200は、本体部3とエアロゲル層5との接着性及び密着性に優れると共に、エアロゲル層5の剥離及び脱落を更に高度に抑制できる。被断熱体200は、本体部3の保護性能にも優れる。
 本実施形態に係る被断熱体200は、例えば、本体部3の表面3aの少なくとも一部(一部又は全体)に配置された被覆層(「中間層」ともいう)4と、被覆層4の本体部3とは反対側の表面4aの少なくとも一部(一部又は全体)に配置されたエアロゲル層5を備える構造体である。本実施形態に係る被断熱体200では、本体部3とエアロゲル層5とが、中間層となる被覆層4を介して一体化して固定されている。被覆層4が配置される表面3aは、平坦面であってもよく、複合平面(傾斜面の組合せ)であってもよく、曲面であってもよい。
 図2においては、断熱対象物が被覆層を備える態様について説明したが、被覆層は必ずしも必須ではなく、断熱対象物は、本体部であってもよい。
 断熱対象物が本体部である場合、被断熱体は、例えば、本体部の表面の少なくとも一部(一部又は全体)に配置されたエアロゲル層を備える構造体であり、本体部とエアロゲル層とが直接接触した構造を有する。本態様においても、エアロゲル層が配置される本体部の表面は、平坦面であってもよく、複合平面(傾斜面の組合せ)であってもよく、曲面であってもよい。
 エアロゲル層5は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(シリコン化合物)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物(加水分解性の官能基が加水分解したケイ素化合物)からなる群より選択される少なくとも一種を含有するゾルから形成されたものであってもよく、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(シリコン化合物)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物(加水分解性の官能基が加水分解したケイ素化合物)からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲル(前記ゾルに由来する湿潤ゲル)の乾燥物から構成される層であってもよい。すなわち、前記ゾルは加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有していてもよい。エアロゲル層がこのようなものであることにより、断熱性及び柔軟性を更に高度に両立できると共に、エアロゲルの脱落が更に抑制されたものとなる。
{断熱対象物}
 上述のとおり、断熱対象物は、本体部と、本体部の表面の少なくとも一部を被覆する被覆層とを備えるものであってもよく、本体部であってもよい。
(本体部)
 本体部を構成する材料としては、例えば、金属、セラミック、ガラス、樹脂及びこれらの複合材料が挙げられる。本体部は、例えば、金属、セラミック、ガラス及び樹脂からなる群より選択される少なくとも一種を含む態様であってもよい。本体部の形態としては、使用する目的又は材料に応じて、ブロック状、シート状、球状、繊維状等が採用できる。
 前記金属としては、特に限定されず、金属の単体;金属の合金;酸化被膜が形成された金属等が挙げられる。前記金属としては、鉄、銅、ニッケル、アルミニウム、亜鉛、チタン、クロム、コバルト、スズ、金、銀等が挙げられる。後述のゾル生成工程で使用する材料によっては、金属表面の耐食性に優れる観点から、前記金属として、チタン、金、銀等の単体;酸化被膜が形成された鉄及びアルミニウムを用いることができる。
 前記セラミックとしては、アルミナ、チタニア、ジルコニア、マグネシア等の酸化物;窒化ケイ素、窒化アルミニウム等の窒化物;炭化ケイ素、炭化ホウ素等の炭化物;これらの混合物などが挙げられる。
 前記ガラスとしては、石英ガラス、ソーダガラス、ホウケイ酸ガラス等が挙げられる。
 前記樹脂としては、ポリ塩化ビニル、ポリビニルアルコール、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアセタール、ポリメチルメタクリレート、ポリカーボネート、ポリアミド、ポリウレタン等が挙げられる。
 本体部の形状に特に制限は無く、平面及び曲面のいずれの表面形状を有するものであってもよい。本体部の形状としては、例えば、板状、筒状、球状、棒状が挙げられる。筒状の本体部としては、例えば、配管等が挙げられる。
 本体部の表面粗さは、良好なアンカー効果が得られ、エアロゲル層の密着性が更に向上する観点から、100nm以上であってもよく、500nm以上であってもよい。
(被覆層(中間層))
 上述のとおり、断熱対象物は、被覆層を備えていてもよい。被覆層を構成する材料としては、例えば、有機系材料、無機系材料及び有機無機ハイブリッド材料が挙げられる。
 上記有機系材料としては、例えば、ウレタン樹脂、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、シリコーン及びこれらの複合材料が挙げられる。上記有機系材料は、例えば、ウレタン樹脂、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン及びシリコーンからなる群より選択される少なくとも一種を含む態様であってもよい。
 上記無機系材料としては、例えば、ガラス、金属の単体、金属の合金、酸化被膜が形成された金属、セラミック、炭化ケイ素、窒化ケイ素及びケイ酸ナトリウムが挙げられる。上記無機系材料は、例えば、ガラス、金属の単体、金属の合金、酸化被膜が形成された金属、セラミック、炭化ケイ素、窒化ケイ素及びケイ酸ナトリウムからなる群より選択される少なくとも一種を含む態様であってもよい。
 上記金属としては、例えば、チタン、クロム、アルミニウム、銅及び白金が挙げられる。
 上記セラミックとしては、例えば、アルミナ及びジルコニアが挙げられる。
 上記無機系材料は、バインダを更に含有してもよい。バインダとしては、例えば、金属アルコキシド、水ガラスが挙げられる。
 上記有機無機ハイブリッド材料としては、例えば、上記有機系材料及び上記無機系材料の複合材料、エポキシ-シリカハイブリッド材料、アクリル-シリカハイブリッド材料が挙げられる。
 被覆層を構成する材料は、耐熱性が更に向上する観点から、無機系材料又は有機無機ハイブリッド材料であってもよく、高温環境下で使用する場合の本体部と被覆層との熱膨張差を低減し、クラックを抑制する観点から、有機無機ハイブリッド材料であってもよい。クラックを抑制する観点から、被覆層を構成する材料として、弾性率の低い材料を用いることもできる。
 被覆層は、耐熱性が更に向上する観点から、例えば、セラミックから構成された層(セラミック層)及び/又は金属から構成された層(金属層)であってもよい。
 上記被覆層は、耐熱性が更に向上する観点、クラックを更に抑制する観点、及び、高温使用時におけるエアロゲル層の剥離及び脱落を更に抑制する観点から、充填材を含有してもよい。充填材を含有することにより、エアロゲル層の剥離及び脱落が更に抑制される理由は、例えば、充填材を含有することにより被覆層の熱膨張率が調整され、高温時に本体部、被覆層及びエアロゲル層の間に生じる熱膨張率差が低減されるためであると推察する。
 上記充填材としては、例えば、無機充填材及び有機充填材が挙げられる。上記充填材は、被覆層の耐熱性を向上する観点、及び、高温条件における剥離及び脱落を更に抑制する観点から、無機充填材であってもよく、高温環境で繰り返し使用した場合の、熱サイクル信頼性が向上する観点から、有機充填材であってもよい。充填材の形状に特に制限はなく、例えば、短繊維状、微粉末状及び中空状であってもよい。
 無機充填材を構成する材料としては、例えば、シリカ、マイカ、タルク、ガラス、炭酸カルシウム、石英、金属水和物、金属水酸化物及びこれらの複合材料が挙げられる。無機充填材は、例えば、シリカ、マイカ、タルク、ガラス、炭酸カルシウム、石英、金属水和物及び金属水酸化物からなる群より選択される少なくとも一種を含む態様であってもよい。
 金属水和物としては、例えば、硫酸カリウムアルミニウム12水和物、硝酸マグネシウム6水和物、硫酸マグネシウム7水和物が挙げられる。金属水酸化物としては、例えば、水酸化アルミニウム及び水酸化マグネシウムが挙げられる。水酸化アルミニウムは、ベーマイト型水酸化アルミニウムであってもよい。
 耐熱性及び難燃性が更に向上する観点から、無機充填材は、シリカ、ガラス又は金属水酸化物を含有するものであってもよく、ガラスは、ガラス短繊維又は中空ガラスであってもよく、金属水酸化物は、水酸化マグネシウム又はベーマイト型水酸化アルミニウムであってもよい。
 有機充填材を構成する材料としては、例えば、リン酸エステル、ポリエステル、ポリスチレン、パルプ、エラストマー及びこれらの複合材料が挙げられる。有機充填材は、例えば、リン酸エステル、ポリエステル、ポリスチレン、パルプ及びエラストマーからなる群より選択される少なくとも一種を含む態様であってもよい。上記パルプは、パルプフロックの形態であってもよい。有機充填材は、本体部と被覆層との熱膨張差が応力緩和され、クラックが抑制され易くなることから、エラストマーを含有するものであってもよい。
 エラストマーとしては、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリブタジエン系エラストマー、フッ素系エラストマー及びシリコーン系エラストマーが挙げられる。これらの中でも、耐熱性が更に向上する観点から、エラストマーとして、フッ素系エラストマー又はシリコーン系エラストマーを用いることができる。
 被覆層に含まれる充填材の含有量は、耐熱性が更に向上する観点から、被覆層の全体積に対し、0.1体積%以上であってもよい。被覆層に含まれる充填材の含有量は、被覆層を形成するときの作業性が向上する観点、及び、本体部とエアロゲル層との密着性が向上する観点から、被覆層の全体積に対し、70体積%以下であってもよく、50体積%以下であってもよく、40体積%以下であってもよく、30体積%以下であってもよい。これらの観点から、被覆層に含まれる充填材の含有量は、被覆層の全体積に対し、0.1~70体積%であってもよく、0.1~50体積%であってもよく、0.1~40体積%であってもよく、0.1~30体積%であってもよい。
 上記被覆層は、例えば、密着性向上剤、難燃剤及び酸化防止剤を含有してもよい。
 密着性向上剤としては、例えば、尿素シラン等の尿素化合物;及びシランカップリング剤が挙げられる。
 難燃剤としては、例えば、メラミンシアヌレート及びビス(ペンタブロモフェニル)エタンが挙げられる。
 酸化防止剤としては、例えば、アルミナ、ジルコニア等のセラミックパウダー及び無機バインダからなる酸化防止剤が挙げられる。
 被覆層の熱分解温度は、耐熱性が更に向上する観点から、300℃以上であってもよい。ここで、熱分解温度が300℃以上であるとは、材料をSII・ナノテクノロジー社製の高温型示差熱熱重量同時測定装置TG/DTA7300を用いて、窒素雰囲気下、昇温速度10℃/分の条件で測定した場合に、5%重量減少する時の温度が300℃以上であることを意味する。
 被覆層の厚みは、衝撃等による損傷が低減され、本体部の保護性能が向上する観点、及び、本体部とエアロゲル層との接着性が更に向上する観点から、0.01μm以上であってもよく、0.1μm以上であってもよく、1μm以上であってもよい。被覆層の厚みは、被覆層の形成時のクラックを抑制する観点から、1000μm以下であってもよく、1000μm未満であってもよく、500μm以下であってもよい。被覆層の厚みは、本体部と被覆層との熱膨張差によるクラックを抑制する観点、及び、熱サイクル安定性が向上する観点から、100μm以下であってもよい。これらの観点から、被覆層の厚みは、0.01~1000μmであってもよく、0.01~500μmであってもよく、0.01~100μmであってもよい。
 吸水率の低い被覆層を用いることにより、本体部に対する水溶性の酸性物質又は塩基性物質及び無機塩類等の化学的影響を更に低減できる。具体的には、例えば、後述のゾル塗液等の影響による、本体部の化学的変化(腐食、変性等)を更に低減できる。すなわち、エアロゲル層を形成する際の条件及びゾル塗液の組成による影響を受け難く、被断熱体の製造が容易となる。これらの観点から、被覆層の吸水率は5%未満であってもよく、4%未満であってもよく、3%未満であってもよい。
 被覆層の吸水率とは、被覆層の構成材料を20mm×20mm×0.5mmサイズに成型した試験片を、60℃、90%RHの恒温恒湿槽内に6時間放置した際の質量変化率を意味する。
 表面粗さが大きい被覆層を用いることにより被覆層とエアロゲル層との密着性を更に向上させることができ、エアロゲル層の剥離及び脱落を更に抑制することができる。被覆層の表面粗さ(Ra)は、被覆層とエアロゲル層との間に良好なアンカー効果が得られ、エアロゲル層の密着性が更に向上する観点から、200nm以上であってもよく、300nm以上であってもよく、500nm以上であってもよい。
 被覆層の表面粗さは、例えば、本体部に被覆層を形成した後、当該被覆層に研磨加工(研磨処理)又は粗化加工(粗化処理)を施すことにより調整できる。研磨加工又は粗化加工は、機械的加工であっても、化学的加工であってもよい。加工方法としては、例えば、スラリー又は研磨剤のような砥粒による機械的加工;酸若しくは塩基、酸化剤又は還元剤によるウェットエッチング;及び、六フッ化硫黄又は四フッ化炭素によるドライエッチングが挙げられる。
 上記被覆層は、単層であってもよく、複数の層であってもよい。
{エアロゲル層(断熱層)}
 本実施形態に係るエアロゲル層は、エアロゲルにより構成されるものであり、ミスト状のゾルから形成されたものである。狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態において、「エアロゲル」とは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味する。一般的に、エアロゲルの内部は、網目状の微細構造を有しており、2~20nm程度のエアロゲル粒子(エアロゲルを構成する粒子)が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔がある。これにより、エアロゲルは、三次元的に微細な多孔性の構造を有している。なお、本実施形態におけるエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。エアロゲル層は、ポリシロキサン由来の構造を有するエアロゲルを含有する層であってもよい。
 本実施形態に係るエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。すなわち、本実施形態に係るエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥して得られるものであってもよい。これらの態様を採用することにより、断熱性と柔軟性とが更に向上する。前記縮合物は、加水分解性の官能基を有するケイ素化合物の加水分解により得られた加水分解生成物の縮合反応により得られてもよく、加水分解により得られた官能基ではない縮合性の官能基を有するケイ素化合物の縮合反応により得られてもよい。前記ケイ素化合物は、加水分解性の官能基及び縮合性の官能基の少なくとも一方を有していればよく、加水分解性の官能基及び縮合性の官能基の双方を有していてもよい。なお、後述する各エアロゲルは、このように、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥することで得られるもの)であってもよい。
 エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物から構成される層であってもよい。すなわち、エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥してなる層で構成されていてもよい。
 本実施形態に係るエアロゲルは、シロキサン結合(Si-O-Si)を含む主鎖を有するポリシロキサンを含有することができる。エアロゲルは、構造単位として、下記M単位、D単位、T単位又はQ単位を有することができる。
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは、ケイ素原子に結合している原子(水素原子等)又は原子団(アルキル基等)を示す。M単位は、ケイ素原子が1個の酸素原子と結合した一価の基からなる単位である。D単位は、ケイ素原子が2個の酸素原子と結合した二価の基からなる単位である。T単位は、ケイ素原子が3個の酸素原子と結合した三価の基からなる単位である。Q単位は、ケイ素原子が4個の酸素原子と結合した四価の基からなる単位である。これらの単位の含有量に関する情報は、Si-NMRにより得ることができる。
 本実施形態に係るエアロゲルは、シルセスキオキサンを含有していてもよい。シルセスキオキサンは、構造単位として上記T単位を有するポリシロキサンであり、組成式:(RSiO1.5を有する。シルセスキオキサンは、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。
 加水分解性の官能基としては、例えば、アルコキシ基が挙げられる。縮合性の官能基(加水分解性の官能基に該当する官能基を除く)としては、例えば、水酸基、シラノール基、カルボキシル基及びフェノール性水酸基が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。加水分解性の官能基及び縮合性の官能基のそれぞれは、単独で又は2種類以上を混合して用いてもよい。
 ケイ素化合物は、加水分解性の官能基としてアルコキシ基を有するケイ素化合物を含むことが可能であり、また、縮合性の官能基としてヒドロキシアルキル基を有するケイ素化合物を含むことができる。ケイ素化合物は、エアロゲルの柔軟性が更に向上する観点から、アルコキシ基、シラノール基、ヒドロキシアルキル基及びポリエーテル基からなる群より選ばれる少なくとも1種を有することができる。ケイ素化合物は、ゾルの相溶性が向上する観点から、アルコキシ基及びヒドロキシアルキル基からなる群より選ばれる少なくとも1種を有することができる。
 ケイ素化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基のそれぞれの炭素数は、1~6とすることができ、エアロゲルの柔軟性が更に向上する観点から2~4であってもよい。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。ヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。
 本実施形態に係るエアロゲルとしては、以下の態様が挙げられる。これらの態様を採用することにより、断熱性と柔軟性とに優れるエアロゲルを得ることが容易となる。各々の態様を採用することで、各々の態様に応じた断熱性と柔軟性とを有するエアロゲルを得ることができる。
(第一の態様)
 本実施形態に係るエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物(前記加水分解性の官能基が加水分解したポリシロキサン化合物)からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。例えば、本実施形態に係るエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥して得られるものであってもよい。すなわち、エアロゲル層は、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから形成されるものであってもよい。なお、後述する各エアロゲルも、このように、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥することで得られるもの)であってもよい。
 エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物から構成される層であってもよい。すなわち、エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥してなる層で構成されていてもよい。
 加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。反応性基としては、特に限定されないが、例えば、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基及びアミノ基が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。前記反応性基を有するポリシロキサン化合物は、単独で又は2種類以上を混合して用いてもよい。
 ヒドロキシアルキル基を有するポリシロキサン化合物としては、例えば、下記一般式(A)で表される構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に、2個のR2aは各々同一であっても異なっていてもよい。式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に、2個以上のR4aは各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である湿潤ゲル(前記ゾルから生成された湿潤ゲル)を用いることにより、低熱伝導率かつ柔軟なエアロゲルを更に得易くなる。同様の観点から、以下に示す特徴を満たしてもよい。式(A)中、R1aとしては、例えば、炭素数が1~6のヒドロキシアルキル基が挙げられ、具体的には、ヒドロキシエチル基及びヒドロキシプロピル基が挙げられる。式(A)中、R2aとしては、例えば、炭素数が1~6のアルキレン基が挙げられ、具体的には、エチレン基及びプロピレン基が挙げられる。式(A)中、R3a及びR4aはそれぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。当該アルキル基は、メチル基であってもよい。式(A)中、nは2~30であってもよく、5~20であってもよい。
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、例えば、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、及び、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)が挙げられる。
 アルコキシ基を有するポリシロキサン化合物としては、例えば、下記一般式(B)で表される構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に、2個のR3bは各々同一であっても異なっていてもよい。式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に、2個以上のR5bは各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である湿潤ゲル(前記ゾルから生成された湿潤ゲル)を用いることにより、低熱伝導率かつ柔軟なエアロゲルを更に得易くなる。同様の観点から、以下に示す特徴を満たしてもよい。式(B)中、R1bとしては、例えば、炭素数が1~6のアルキル基及び炭素数が1~6のアルコキシ基が挙げられ、具体的には、メチル基、メトキシ基及びエトキシ基が挙げられる。式(B)中、R2b及びR3bは、それぞれ独立に炭素数が1~6のアルコキシ基であってもよい。当該アルコキシ基としては、例えばメトキシ基及びエトキシ基が挙げられる。式(B)中、R4b及びR5bは、それぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。当該アルキル基は、メチル基であってもよい。式(B)中、mは2~30であってもよく、5~20であってもよい。
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、例えば、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物と、その加水分解生成物とは混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
 加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物のそれぞれは、単独で又は2種類以上を混合して用いてもよい。
 上記ゾルに含まれるポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、良好な反応性を更に得易くなる観点から、ゾルの総量100質量部に対し、1質量部以上であってもよく、3質量部以上であってもよく、4質量部以上であってもよく、5質量部以上であってもよく、7質量部以上であってもよく、10質量部以上であってもよい。ポリシロキサン化合物群の前記含有量は、良好な相溶性を更に得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよく、15質量部以下であってもよい。これらの観点から、ポリシロキサン化合物群の前記含有量は、ゾルの総量100質量部に対し、1~50質量部であってもよく、3~50質量部であってもよく、4~50質量部であってもよく、5~50質量部であってもよく、7~30質量部であってもよく、10~30質量部であってもよく、10~15質量部であってもよい。
[第二の態様]
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、ポリシロキサン化合物以外のケイ素化合物(シリコン化合物)を用いてもよい。すなわち、本実施形態に係るエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ケイ素化合物群」という)を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。前記ケイ素化合物における分子内のケイ素数は、1又は2であってもよい。
 加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドにおいて、耐水性が向上する観点から、加水分解性の官能基の数は、3個以下であってもよく、2~3個であってもよい。アルキルケイ素アルコキシドとしては、例えば、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン及びトリアルキルモノアルコキシシランが挙げられる。アルキルケイ素アルコキシドとしては、例えば、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジメトキシシラン及びエチルトリメトキシシランが挙げられる。
 縮合性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール及びトリフルオロプロピルシラントリオールが挙げられる。
 加水分解性の官能基の数が3個以下であり、反応性基を有するケイ素化合物として、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。
 縮合性の官能基を有し、前述の反応性基を有するケイ素化合物として、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。
 アルキルケイ素アルコキシドとしては、分子末端の加水分解性の官能基の数が3個を超えるケイ素化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン等を用いることもできる。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物のそれぞれは、単独で又は2種類以上を混合して用いてもよい。
 良好な反応性を更に得易くなることから、上記ゾルに含まれるケイ素化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)の含有量、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物の含有量の総和)は、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよく、12質量部以上であってもよく、15質量部以上であってもよく、18質量部以上であってもよい。良好な相溶性を更に得易くなることから、ケイ素化合物群の前記含有量は、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよい。すなわち、ケイ素化合物群の前記含有量は、ゾルの総量100質量部に対し、5~50質量部であってもよく、10~30質量部であってもよく、12~30質量部であってもよく、15~25質量部であってもよく、18~20質量部であってもよい。
 前記ポリシロキサン化合物群の含有量及び前記ケイ素化合物群の含有量の総和は、良好な反応性を更に得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよく、22質量部以上であってもよい。前記ポリシロキサン化合物群の含有量及び前記ケイ素化合物群の含有量の総和は、良好な相溶性を更に得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよく、25質量部以下であってもよい。これらの観点から、前記ポリシロキサン化合物群の含有量及び前記ケイ素化合物群の含有量の総和は、ゾルの総量100質量部に対し、5~50質量部であってもよく、10~30質量部であってもよく、15~30質量部であってもよく、20~30質量部であってもよく、22~25質量部であってもよい。
 前記ポリシロキサン化合物群の含有量と、前記ケイ素化合物群の含有量との比(ポリシロキサン化合物群:ケイ素化合物群)は、良好な相溶性を更に得易くなる観点から、1:0.5以上であってもよく、1:1以上であってもよく、1:2以上であってもよく、1:3以上であってもよい。前記ポリシロキサン化合物群の含有量と、前記ケイ素化合物群の含有量との比(ポリシロキサン化合物群:ケイ素化合物群)は、ゲルの収縮を更に抑制し易くなる観点から、1:4以下であってもよく、1:2以下であってもよい。これらの観点から、前記ポリシロキサン化合物群の含有量と、前記ケイ素化合物群の含有量との比(ポリシロキサン化合物群:ケイ素化合物群)は、1:0.5~1:4であってもよく、1:1~1:2であってもよく、1:2~1:4であってもよく、1:3~1:4であってもよい。
[第三の態様]
 本実施形態に係るエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲルは、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。上記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、式(1)及び式(1a)で表される構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
 上記式(1)又は式(1a)で表される構造をエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルを容易に得ることができる。同様の観点から、以下に示す特徴を満たしてもよい。式(1)及び式(1a)中、R及びRは、それぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。当該アルキル基は、メチル基であってもよい。式(1)及び式(1a)中、R及びRは、それぞれ独立に炭素数が1~6のアルキレン基であってもよい。当該アルキレン基は、エチレン基又はプロピレン基であってもよい。式(1a)中、pは2~30とすることができ、5~20であってもよい。
[第四の態様]
 本実施形態に係るエアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有するエアロゲルであり、かつ、橋かけ部が、下記一般式(2)で表される構造を有するエアロゲルであってもよい。エアロゲルの骨格中にこのようなラダー型構造を導入することにより、耐熱性及び機械的強度を容易に向上させることができる。上記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)で表される構造を有する橋かけ部を含むラダー型構造をエアロゲルの骨格中に導入することができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と、支柱部同士を連結する橋かけ部(bridges)とを有する構造(いわゆる「梯子」の形態を有する構造)である。本態様において、エアロゲル骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。
 上記の構造をエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲルとなる。なお、下記一般式(X)に示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-であるが、本態様のエアロゲルでは、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。
Figure JPOXMLDOC01-appb-C000007
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
 支柱部となる構造及びその鎖長、並びに、橋かけ部となる構造の間隔は、特に限定されないが、耐熱性と機械的強度とを更に向上させる観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000008
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。式(3)中、cが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 更に優れた柔軟性を得る観点から、式(2)及び式(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)は、それぞれ独立に炭素数が1~6のアルキル基又はフェニル基であってもよい。当該アルキル基は、メチル基であってもよい。式(3)中、a及びcは、それぞれ独立に6~2000であってもよく、10~1000であってもよい。式(2)及び式(3)中、bは、2~30であってもよく、5~20であってもよい。
[第五の態様]
 本実施形態に係るエアロゲルは、断熱層を更に強靱化する観点並びに更に優れた断熱性及び柔軟性を達成する観点から、シリカ粒子を含有していてもよい。エアロゲルを与えるゾルは、シリカ粒子を更に含有していてもよい。すなわち、本実施形態に係るエアロゲルは、シリカ粒子を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥して得られるもの)であってもよい。エアロゲル層は、シリカ粒子を含有するゾルの縮合物である湿潤ゲルの乾燥物から構成される層であってもよい。例えば、エアロゲル層は、シリカ粒子を含有するゾルから生成された湿潤ゲルを乾燥してなる層で構成されていてもよい。すなわち、エアロゲル層は、シリカ粒子を含有するゾルから形成されるものであってもよい。なお、これまで述べてきたエアロゲルも、このように、シリカ粒子を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥することで得られるもの)であってもよい。
 シリカ粒子としては、特に制限なく用いることができ、例えば、非晶質シリカ粒子が挙げられる。非晶質シリカ粒子としては、例えば、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子が挙げられる。これらのうち、コロイダルシリカ粒子は、単分散性が高く、ゾル中での凝集を抑制し易い。
 シリカ粒子の形状としては、特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な強度及び柔軟性をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなる観点から、1nm以上であってもよく、5nm以上であってもよく、10nm以上であってもよく、20nm以上であってもよい。シリカ粒子の平均一次粒子径は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、500nm以下であってもよく、300nm以下であってもよく、250nm以下であってもよく、100nm以下であってもよい。これらの観点から、シリカ粒子の平均一次粒子径は、1~500nmであってもよく、5~300nmであってもよく、10~250nmであってもよく、20~100nmであってもよい。
 本実施形態において、粒子の平均粒子径(シリカ粒子の平均一次粒子径等)は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲル層の断面を直接観察することにより得ることができる。例えば、エアロゲルの内部における網目状の微細構造からは、エアロゲル層の断面に露出した粒子の直径に基づきエアロゲル粒子又はシリカ粒子個々の粒子径を得ることができる。ここでいう「直径」とは、エアロゲル層の断面に露出した粒子の断面を円とみなした場合の直径を意味する。また、「断面を円とみなした場合の直径」とは、断面の面積を同じ面積の真円に置き換えたときの当該真円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
 なお、シリカ粒子の平均粒子径は、原料から測定することができる。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常水に分散している固形分濃度5~40質量%のコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液に、パターン配線付きウエハを2cm角に切って得られたチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。この際、選択したシリカ粒子が図3に示すような形状であった場合、シリカ粒子Pに外接し、その長辺が最も長くなるように配置した長方形(外接長方形L)を導く。そして、その外接長方形Lの長辺をX、短辺をYとして、(X+Y)/2として二軸平均一次粒子径を算出し、その粒子の粒子径とする。
 シリカ粒子の1g当たりのシラノール基数は、耐収縮性に優れるエアロゲルを得易くなる観点から、10×1018個/g以上であってもよく、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。シリカ粒子の1g当たりのシラノール基数は、均質なエアロゲルが得易くなる観点から、1000×1018個/g以下であってもよく、800×1018個/g以下であってもよく、700×1018個/g以下であってもよい。これらの観点から、シリカ粒子の1g当たりのシラノール基数は、10×1018~1000×1018個/gであってもよく、50×1018~800×1018個/gであってもよく、100×1018~700×1018個/gであってもよい。
 上記ゾルに含まれるシリカ粒子の含有量は、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、1質量部以上であってもよく、4質量部以上であってもよい。上記ゾルに含まれるシリカ粒子の含有量は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、20質量部以下であってもよく、15質量部以下であってもよく、12質量部以下であってもよく、10質量部以下であってもよく、8質量部以下であってもよい。これらの観点から、上記ゾルに含まれるシリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部であってもよく、4~15質量部であってもよく、4~12質量部であってもよく、4~10質量部であってもよく、4~8質量部であってもよい。
[その他の態様]
 本実施形態に係るエアロゲルは、下記一般式(4)で表される構造を有することができる。本実施形態に係るエアロゲルは、シリカ粒子を含有すると共に、下記一般式(4)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000009
 式(4)中、Rはアルキル基を示す。アルキル基としては、例えば、炭素数が1~6のアルキル基が挙げられ、具体的には、メチル基が挙げられる。
 本実施形態に係るエアロゲルは、下記一般式(5)で表される構造を有することができる。本実施形態に係るエアロゲルは、シリカ粒子を含有すると共に、下記一般式(5)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000010
 式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。アルキル基としては、例えば、炭素数が1~6のアルキル基が挙げられ、具体的には、メチル基が挙げられる。
 本実施形態に係るエアロゲルは、下記一般式(6)で表される構造を有することができる。本実施形態に係るエアロゲルは、シリカ粒子を含有すると共に、下記一般式(6)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000011
 式(6)中、R12はアルキレン基を示す。アルキレン基としては、例えば、炭素数が1~10のアルキレン基が挙げられ、具体的には、エチレン基及びヘキシレン基が挙げられる。
 本実施形態に係るエアロゲルは、ポリシロキサン由来の構造を有していてもよい。ポリシロキサン由来の構造としては、例えば、上記一般式(1)、(2)、(3)、(4)、(5)又は(6)で表される構造が挙げられる。本実施形態に係るエアロゲルは、シリカ粒子を含有せずに、上記一般式(4)、(5)及び(6)で表される構造のうち、少なくとも一種を有するものであってもよい。
 エアロゲル層の厚みは、エアロゲル層の信頼性を確保し易くなることから、1μm以上であってもよく、2μm以上であってもよく、3μm以上であってもよく、10μm以上であってもよく、30μm以上であってもよい。エアロゲル層の厚みは、後述の洗浄及び溶媒置換工程を短縮できる観点から、5000μm以下であってもよく、4000μm以下であってもよく、3000μm以下であってもよく、1000μm以下であってもよく、500μm以下であってもよく、250μm以下であってもよい。これらの観点から、エアロゲル層の厚みは、1~5000μmであってもよく、2~4000μmであってもよく、3~3000μmであってもよく、10~1000μmであってもよく、10~500μmであってもよく、30~250μmであってもよい。
<被断熱体の製造方法>
 次に、被断熱体の製造方法について説明する。
 本実施形態に係る被断熱体の製造方法は、断熱対象物に、断熱層としてのエアロゲル層が一体的に形成された被断熱体の製造方法であって、ミスト状のゾルからエアロゲル層を形成する工程(以下、「エアロゲル層形成工程」ともいう)を備える方法である。ミスト状のゾルは、例えば、上述したゾルをミストの形態にしたものであってよい。かかる製造方法によれば、エアロゲル層のムラが抑制された被断熱体を製造することができる。また、かかる製造方法によれば、本体部の形状に依存することなく、厚膜のエアロゲル層を形成できると共に、エアロゲル層の膜厚を容易に制御することができる。また、通常、エアロゲルを厚膜化すると、クラックが生じ易くなる傾向にあるが、かかる製造方法によれば、クラックが低減される。
 エアロゲル層形成工程は、例えば、ミストの形態のゾルからゾル層を形成した後、上記ゾル層からエアロゲル層を形成する工程であってもよい。
 具体的には、例えば、図4に示すように、断熱対象物10を準備した後(図4(a))、当該断熱対象物10上に、ミストの形態のゾル(「ゾル塗液」ともいう)からゾル層5aを形成した後(図4(b))、ゾル層5aからエアロゲル層5を形成する(図4(c))。断熱対象物が本体部のみである場合には、本体部を準備した後、本体部に直接ゾルを付与すればよい。
 本実施形態に係る被断熱体の製造方法においては、前記断熱対象物が、本体部と、前記本体部の表面の少なくとも一部を被覆する被覆層とを備え、前記被覆層が中間層となるように、少なくとも前記被覆層上にエアロゲル層が形成されてもよい。すなわち、断熱対象物が、本体部と被覆層とを備える場合には、例えば、図5に示すように、本体部3と被覆層4とを備える断熱対象物10を準備した後(図5(a))、被覆層4が中間層となるように、被覆層4上に、ミストの形態のゾルからゾル層5aを形成した後(図5(b))、ゾル層5aからエアロゲル層5を形成する(図5(c))。これにより、エアロゲル層の密着性が更に向上すると共に、エアロゲル層の剥離及び脱落が更に抑制される。なお、本体部及び被覆層に関する態様は、上述したとおりである。
 図4及び図5には、ゾル層を形成した後に、エアロゲル層を形成する形態を示したが、エアロゲル層は、ゾルの付与と同時に形成されてもよい。
 以下、本実施形態に係る被断熱体の製造方法の具体例について、更に詳細に説明する。ただし、被断熱体の製造方法は、以下の方法に限定されるものではない。
 本実施形態に係る被断熱体は、例えば、断熱対象物を準備する準備工程と、エアロゲルを形成するためのゾルを作製するゾル生成工程と、ゾル生成工程で得られたゾルを、ミスト状の形態で断熱対象物に接触させることで、断熱対象物に一体的に接合されたエアロゲル層を形成することにより被断熱体を得る接触工程と、接触工程で得られた被断熱体を熟成させる熟成工程と、熟成した被断熱体を洗浄及び/又は溶媒置換する工程と、洗浄及び/又は溶媒置換した被断熱体を乾燥する乾燥工程と、を主に備える製造方法により製造することができる。接触工程では、ミスト状のゾルを断熱対象物に接触させた後に、必要に応じて乾燥してもよい。ここで、ミスト状のゾルからエアロゲル層を形成する工程の具体例は、例えば、上記接触工程を含む。また、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては、例えば、ケイ素化合物(必要に応じて、更にシリカ粒子)が溶媒中に溶解若しくは分散している状態を意味する。
 以下、各工程について説明する。
{準備工程}
 準備工程においては、例えば、本体部又は被覆層が形成された本体部を準備する。被覆層は、例えば、本体部上に被覆層を形成する被覆層形成工程により形成できる。
(被覆層形成工程)
 被覆層形成工程は、例えば、被覆層形成用組成物を、本体部となる基材に接触させ、本体部上に被覆層を形成する工程である。具体的には、例えば、被覆層形成用組成物を、基材に接触させ、必要に応じ、加熱及び乾燥することにより被覆層を基材の表面に形成する。被覆層形成用組成物は、プライマ液等の液状組成物であってもよく、粘着シート等のシート状組成物であってもよい。
 接触方法は、被覆層形成用組成物の種類、被覆層の厚み、又は基材の形状によって適宜選ばれる。例えば、被覆層形成用組成物がシート状組成物である場合には、基材に積層する方法等が利用でき、被覆層形成用組成物が液状組成物である場合には、例えば、ディップコート、スプレーコート、スピンコート、ロールコート等が利用できる。
 接触方法は、成膜性又は製造コストの観点から選ばれる。例えば、シート状又は繊維状の基材であれば、ディップコート又はロールコートを用いることができる。ブロック状、球状の基材であれば、ディップコート又はスプレーコートを用いることができる。
 被覆層形成工程では、被覆層形成用組成物を乾燥及び定着させる観点から、加熱処理を施してもよく、不純物を除去する観点及び被覆層の密着性を向上させる観点から、洗浄及び/又は乾燥を行ってもよい。また、被覆層の表面粗さを調整する目的で、被覆層表面に研磨処理及び/又は粗化処理を施してもよい。
{ゾル生成工程}
 ゾル生成工程は、例えば、ケイ素化合物(必要に応じて、更にシリカ粒子)と、溶媒とを混合して加水分解反応を行った後、ゾルゲル反応を行い、半ゲル化のゾル塗液を得る工程である。ゾル生成工程においては、加水分解反応を促進させるため、溶媒中に酸触媒を更に添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、ゲル化反応を促進させるため、塩基触媒を添加してもよい。なお、ゾル生成工程、接触工程、及び、熟成工程における工程時間を短縮し、加熱温度及び乾燥温度を低温化する観点から、ゾル中にシリカ粒子を含有してもよい。
 溶媒の沸点は、接触工程において良好な塗工性を得る観点から、200℃未満であってもよく、170℃以下であってもよく、150℃以下であってもよい。すなわち、上記ゾルは、沸点200℃未満の溶媒を含有していてもよく、沸点170℃以下の溶媒を含有していてもよく、沸点150℃以下の溶媒を含有していてもよい。このような溶媒を含有するゾルによれば、厚膜のエアロゲル層をより容易に形成できるうえ、エアロゲル層のクラックが更に抑制される。この理由は、溶媒がこのようなものであると、ミスト状のゾルが本体部又は被覆層に接触した後、ゾルから短時間で容易に溶媒が蒸発して湿潤ゲルになり易く、湿潤ゲルの膜厚が増大し易いためであると推察する。
 溶媒は、塗膜形成性を良好にする観点及び膜厚制御がし易い観点から、表面張力が高いものであってもよい。溶媒は、ゾルの粘度及び樹脂分の変化を抑制し、保存安定性を良好にする観点から、揮発性が低いものであってもよい。これらの特性を満たす溶媒としては、例えば、水、又は、水及びアルコールの混合液が挙げられる。アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール及びt-ブタノールが挙げられる。これらの中でも、表面張力が高く、揮発性が低い点から、水を用いてもよい。
 酸触媒としては、例えば、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩;ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸が挙げられる。これらの中でも、酸触媒としては、得られる被断熱体の耐水性が更に向上する観点から、有機カルボン酸を用いることができ、具体的には、酢酸、ギ酸、プロピオン酸、シュウ酸及びマロン酸が挙げられ、酢酸であってもよい。酸触媒は、単独で又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、ケイ素化合物の総量100質量部に対し、0.001~0.1質量部であってもよい。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。界面活性剤は、単独で又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と、主にアルキル基からなる疎水部とを含むもの、ポリオキシプロピレン等の親水部を含むものなどを使用できる。ポリオキシエチレン等の親水部と、主にアルキル基からなる疎水部とを含むものとしては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含むものとしては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンとのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等を用いることができ、カチオン性界面活性剤又はアニオン性界面活性剤を用いてもよい。カチオン性界面活性剤としては、例えば、臭化セチルトリメチルアンモニウム(CTAB)及び塩化セチルトリメチルアンモニウムが挙げられる。アニオン性界面活性剤としては、例えば、ドデシルスルホン酸ナトリウムが挙げられる。両イオン性界面活性剤としては、例えば、アミノ酸系界面活性剤、ベタイン系界面活性剤及びアミンオキシド系界面活性剤が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン及びステアリルジメチルアミノ酢酸ベタインが挙げられる。アミンオキシド系界面活性剤としては、例えば、ラウリルジメチルアミンオキシドが挙げられる。
 これらの界面活性剤は、接触工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用を有すると考えられる。
 界面活性剤の添加量は、界面活性剤の種類、又は、ケイ素化合物の種類並びに量にも左右されるが、例えば、ケイ素化合物の総量100質量部に対し、1~100質量部であってもよく、5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、ゾルゲル反応を促進すると考えられる。熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、例えば、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物を挙げることができる。これらの中でも、特に尿素は上記促進効果が得られ易い。
 熱加水分解性化合物の添加量は、ゾルゲル反応を充分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物(尿素等)の添加量は、ケイ素化合物の総量100質量部に対して、1~200質量部であってもよく、2~150質量部であってもよい。熱加水分解性化合物(尿素等)の添加量が1質量部以上であることにより、良好な反応性を更に得易くなり、また、200質量部以下であることにより、結晶の析出及びゲル密度の低下を抑制し易くなる。
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば、20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が充分に加水分解され、ケイ素化合物の加水分解生成物を更に確実に得ることができる。
 溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、ゾル生成工程の温度環境(例えば、熱加水分解性化合物として尿素を用いた場合の温度環境)は、0~40℃であってもよく、10~30℃であってもよい。
 塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタリン酸ナトリウム、ピロリン酸ナトリウム、ポリリン酸ナトリウム等の塩基性リン酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、揮発性が高く、乾燥後のエアロゲル層に残存し難いため耐水性を損なわない観点、及び、経済性の観点から、水酸化アンモニウム(アンモニア水)を用いることができる。塩基触媒は、単独で又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のケイ素化合物(ポリシロキサン化合物群及びケイ素化合物群)、及び、シリカ粒子の脱水縮合反応及び/又は脱アルコール縮合反応を促進することができ、ゾルのゲル化を更に短時間で行うことができる。特に、アンモニアは、揮発性が高く、被断熱体に残留し難い。そのため、塩基触媒としてアンモニアを用いることで、耐水性の更に優れた被断熱体を得ることができる。
 塩基触媒の添加量は、ケイ素化合物(ポリシロキサン化合物群及びケイ素化合物群)の総量100質量部に対し、0.5~5質量部であってもよく、1~4質量部であってもよい。塩基触媒の添加量が0.5質量部以上であることにより、ゲル化を更に短時間で行うことができ、5質量部以下であることにより、耐水性の低下を更に抑制することができる。
 ゾル生成工程におけるゾルゲル反応は、接触工程において良好な塗膜性を得る目的から、半ゲル化状態のゾルを得ることができる。この反応は、溶媒及び塩基触媒が揮発しないように密閉容器内で行うことができる。ゲル化温度は、ゾル中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤、塩基触媒などの種類及び量にも左右されるが、30~90℃であってもよく、40~80℃であってもよい。ゲル化温度が30℃以上であることにより、ゲル化を更に短時間に行うことができる。ゲル化温度が90℃以下であることにより、急なゲル化を抑制することができる。
 ゾルゲル反応の時間は、ゲル化温度により異なるが、本実施形態においてはゾル中にシリカ粒子を含有する場合は、従来のエアロゲルに適用されるゾルと比較して、ゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物が有する加水分解性の官能基又は縮合性の官能基が、シリカ粒子のシラノール基と水素結合及び/又は化学結合を形成するためであると推察する。なお、ゲル化時間は、10~360分であってもよく、20~180分であってもよい。ゲル化時間が10分以上であることにより、ゾルの粘度が向上し、接触工程において良好な塗工性を得易くなり、360分以下であることにより、ゾルの完全ゲル化を抑制し、本体部又は被覆層との接着性を得易くなる。
{接触工程}
 接触工程は、上記ゾル生成工程で得られたゾル塗液(半ゲル化状態のゾル塗液等)を、ミスト状の形態で本体部又は被覆層に接触させ、被断熱体を作製する工程(塗工工程等)である。具体的には、上記ゾル塗液をミスト状の形態で本体部又は被覆層に接触させ、必要に応じ加熱及び乾燥することによりゾル塗液をゲル化させてエアロゲル層を本体部又は被覆層の表面に形成する。ただし、このエアロゲル層は、本体部又は被覆層との接着力が確保される状態であることが望ましい。
 接触方法(塗工方法等)は、上記ゾルを、ミスト状の形態で本体部又は層に接触(塗布)させることができれば、特に制限はないが、例えば、スプレー塗布が挙げられる。当該方法によれば、スプレーにより発生したミストが、塗工対象面に到達すればよいため、例えば、配管のような筒状の本体部の内面に対しても、エアロゲル層を形成することができる。
 スプレー塗布に用いられるスプレーとしては、例えば、圧縮ガスによりゾルをミスト化して塗工するエアスプレー、ゾルに圧力をかけてスプレーガンの噴出口からミスト化したゾルを塗出するエアレススプレー、ゾルに静電圧をかけてミストを効率良く被着体に付着させる液体静電スプレーが挙げられる。
 塗工方式は制限されず、本体部又は被覆層の大きさ、形状、弾性率等の物理的性状により、好適な手法を選択できる。
 スプレーにガスを使用する場合、使用するガスの圧力は、例えば、用いるエアーガン及びエアブラシの仕様に従って調整することができる。当該圧力は、特に制限されないが、例えば、0.5MPa未満であってもよい。
 接触工程において形成されるエアロゲル層の厚みは、例えば、スプレーに用いるガスの圧力、ゾルの塗出量、ゾルの粘度、スプレーと本体部との距離及び塗工時間により調整できる。中でも、エアロゲル層の厚みは、作業性の観点から、塗工時間によって調整してもよい。この場合、例えば、塗工時間と、半硬化ゲルの厚み又はエアロゲル層の厚みとの関係性を示す検量線を作成し、これにより厚みを制御してもよい。
 ミスト状のゾルの液滴の直径は、厚膜のエアロゲル層を形成し易い観点及びエアロゲル層のクラックを更に抑制する観点から、0.1μm以上であってもよく、0.3μm以上であってもよく、0.5μm以上であってもよい。同様の観点から、ゾルの液滴の直径は、1000μm以下であってもよく、800μm以下であってもよく、500μm以下であってもよい。これらの観点から、ゾルの液滴の直径は、0.1~1000μmであってもよく、0.3~800μmであってもよく、0.5~500μmであってもよい。液滴の直径がこのような範囲である場合に、厚膜のエアロゲル層を形成し易く、エアロゲル層のクラックを更に抑制できる理由は、例えば、このようなサイズの液滴は、表面積が充分に大きいため、本体部又は被覆層上に付着した後、ゾル中の溶媒が短時間で蒸発し、これに伴いゾルが収縮するためであると推察する。
 エアロゲル層を形成する部分(塗工部分)と、形成しない部分(非塗工部分)と、が隣接する場合には、例えば、テープ等により非塗工部分をマスキングした後に、塗工部分にゾルを接触させてもよい。
 マスキングを施した場合には、塗工部分と非塗工部分との境界部分におけるエアロゲルの欠落及び剥離を低減する観点から、例えば、スプレー塗工した後、半硬化ゲル状のタイミングでマスクを除去してもよい。
 接触工程において、加熱及び乾燥を施す場合、これらの条件は、エアロゲル層と本体部又は被覆層との接着性が得易い観点から、例えば、加熱及び乾燥後のエアロゲル層の含水率が10質量%以上となるような条件であってもよく、50質量%以上となるような条件であってもよい。
 加熱及び乾燥温度は、ゾル塗液中の水分量、有機溶媒量、有機溶媒の沸点等の条件によっても異なるが、ゲル化時間を短縮する観点から、例えば、50℃以上であってもよく、60℃以上であってもよい。加熱及び乾燥温度は、エアロゲル層と本体部又は被覆層との接着性を得易い観点から、例えば、150℃以下であってもよく、120℃以下であってもよい。これらの観点から、加熱及び乾燥温度は、例えば、50~150℃であってもよく、60~120℃であってもよい。
 加熱及び乾燥時間は、加熱及び乾燥温度によって異なるが、エアロゲル層の形成の容易性の観点から、例えば、0.2分以上であってもよく、0.5分以上であってもよい。加熱及び乾燥時間は、エアロゲル層と本体部又は被覆層との接着性を得易い観点から、例えば、10分以下であってもよく、8分以下であってもよい。これらの観点から、加熱及び乾燥時間は、例えば、0.2~10分であってもよく、0.5~8分であってもよい。加熱及び乾燥条件は、例えば、予め簡単な実験をすることにより、好適な条件を適宜設定することができる。
{熟成工程}
 熟成工程は、上記接触工程により得られた被断熱体を、加熱にて熟成させる工程である。熟成工程において、熟成後のエアロゲル層の含水率は、エアロゲル層と本体部又は被覆層との接着性の低下を抑制する観点から、10質量%以上であってもよく、50質量%以上であってもよい。熟成方法は、特に制限されないが、例えば、被断熱体を密閉雰囲気で熟成する方法、及び、加熱による含水率の低下を抑制できる恒湿恒温槽等を用いて熟成する方法が挙げられる。
 熟成温度は、例えば、40~90℃であってもよく、50~80℃であってもよい。熟成温度が40℃以上であることにより、熟成時間を短縮でき、90℃以下であることにより、含水量の低下を抑制できる。
 熟成時間は、例えば、1~48時間であってもよく、3~24時間であってもよい。熟成時間を1時間以上であることにより、優れた断熱性を容易に得ることができ、48時間以下であることにより、エアロゲル層と本体部又は被覆層との高い接着性を得ることができる。
{洗浄及び溶媒置換工程}
 洗浄及び溶媒置換工程は、上記熟成工程により得られた被断熱体を洗浄する工程(洗浄工程)と、乾燥工程に適した溶媒に置換する工程(溶媒置換工程)とを有する工程である。洗浄及び溶媒置換手法は、特に制限はされず、例えば、コンベア搬送にて洗浄槽及び/又は溶媒置換槽等を複数個用いて連続処理することができる。洗浄及び溶媒置換工程は、被断熱体を洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、エアロゲル層中の未反応物、副生成物等の不純物を低減し、より純度の高い被断熱体の製造を可能にする観点から、エアロゲル層を洗浄することができる。
 洗浄工程では、上記熟成工程で得られた被断熱体に対し、水又は有機溶媒を用いて繰り返し洗浄することができる。
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。有機溶媒は、単独で又は2種類以上を混合して用いてもよい。
 溶媒置換工程では、乾燥によるエアロゲル層の収縮を抑制するため、低表面張力の溶媒が用いられることがある。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒を用いることができる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。このことから、上記の有機溶媒の中で、親水性有機溶媒である観点から、メタノール、エタノール、2-プロパノール、アセトン又はメチルエチルケトンを用いることが可能であり、経済性に優れる観点から、メタノール、エタノール又はメチルエチルケトンを用いることができる。
 洗浄工程に使用される水又は有機溶媒の量としては、エアロゲル層中の溶媒を充分に置換し、洗浄できる量を用いることが可能であり、エアロゲル層の容量に対して3~10倍の量の溶媒を用いることができる。洗浄は、洗浄後のエアロゲル層中の含水率が10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境としては、洗浄に用いる溶媒の沸点以下の温度を用いることができる。例えば、メタノールを用いる場合、30~60℃程度の温度を用いることができる。
 溶媒置換工程では、乾燥工程におけるエアロゲル層の収縮を抑制するため、洗浄したエアロゲル層の溶媒を所定の置換用溶媒に置き換えることができる。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて大気圧下で乾燥する場合は、後述の低表面張力の溶媒を用いることができる。超臨界乾燥を行う場合、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等の溶媒を単独で用いるか、又は、これらを2種以上混合した溶媒を用いることができる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下の溶媒であってもよく、25mN/m以下の溶媒であってもよく、20mN/m以下の溶媒であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;及び酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類が挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、低表面張力及び優れた作業環境性を達成する観点から、脂肪族炭化水素類であってもよく、ヘキサン又はヘプタンであってもよい。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、乾燥工程における乾燥が容易な観点から、常圧での沸点が100℃以下の溶媒を用いてもよい。低表面張力の溶媒は、単独で又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後のエアロゲル層中の溶媒を充分に置換できる量を用いることが可能であり、エアロゲル層の容量に対して3~10倍の量の溶媒を用いることができる。
 溶媒置換工程における温度環境としては、置換に用いる溶媒の沸点以下の温度を用いることができる。例えば、ヘプタンを用いる場合、30~60℃程度の温度を用いることができる。
 なお、本実施形態においては、ゾルがシリカ粒子を含有している場合は、溶媒置換工程は必ずしも必須ではない。推察されるメカニズムとしては次のとおりである。本実施形態においては、シリカ粒子が三次元網目状のエアロゲル骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に移すことができると考えられる。このように、本実施形態においては、洗浄及び溶媒置換工程~乾燥工程の簡略化が可能である。
{乾燥工程}
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した被断熱体を乾燥させる。これにより、最終的な被断熱体を得ることができる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲル層を製造し易い観点から、常圧乾燥又は超臨界乾燥を用いることができる。低コストで生産可能な観点から、常圧乾燥を用いることができる。なお、本実施形態において、「常圧」とは0.1MPa(大気圧)を意味する。
 本実施形態に係る被断熱体は、例えば、洗浄及び(必要に応じ)溶媒置換した被断熱体を、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類又は本体部の耐熱性により異なるが、60~500℃であってもよく、90~150℃であってもよい。乾燥時間は、エアロゲル層の容量及び乾燥温度により異なるが、2~48時間であってもよい。なお、本実施形態において、生産性を阻害しない範囲内において圧力をかけて乾燥を速めることもできる。
 本実施形態に係る被断熱体は、常圧乾燥における乾燥効率を向上させる観点から、乾燥工程の前にプレ乾燥を行ってもよい。プレ乾燥温度は、60~180℃であってもよく、90~150℃であってもよい。プレ乾燥時間は、エアロゲル層の容量及び乾燥温度により異なるが、1~30分であってもよい。
 上述のとおり、乾燥の手法として、超臨界乾燥を用いることもできる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、エアロゲル層に含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、エアロゲル層を、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、エアロゲル層に含まれる溶媒の全部又は一部を該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は、二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 以上、本実施形態に係る被断熱体の製造方法の一実施形態について説明したが、被断熱体の製造方法は、本実施形態に限定されるものではない。また、本実施形態に係るエアロゲル層は、例えば、極低温容器、高温容器、宇宙分野、建築分野、自動車分野、家電分野、半導体分野、産業用設備等の断熱用途に適用できる。また、上記エアロゲル層は、断熱材としての用途の他にも、撥水用途、吸音用途、静振用途、触媒担持用途等に利用することもできる。
 以下、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
(本体部)
 本体部として、以下のアルミニウム合金板、アルミニウム板及びSUS配管を準備した。
アルミニウム合金板:A6061P(竹内金属箔粉工業株式会社製、製品名、寸法:300mm×300mm×0.5mm、アルマイト処理)
アルミニウム板:A1035P(竹内金属箔粉工業株式会社製、製品名、寸法:300mm×300mm×0.5mm)
SUS配管:SUS316TPD(モリ工業株式会社製、製品名、外径115mm×厚さ2mm×長さ50mm)
 なお、本体部としてSUS配管を用いる場合、後述のエアロゲル層(必要に応じ被覆層)の形成は、配管の外面に対して施した。
<実施例1~12>
(被覆層(以下、「中間層」ともいう)の形成)
 準備した各種本体部上に、表1に示す組み合わせで、以下のとおり中間層1~4を形成した。
[中間層1]
 本体部に、シリコーン系プライマ液としてのシリコンタイネツ プライマー(中国塗料株式会社製、製品名)を、エアーブラシ(アネスト岩田株式会社製、製品名:HP-CP)を用いて塗工した後、40℃で1時間、更に200℃で2時間加熱して硬化させ、本体部上に、厚み30μmの層(中間層1)を形成した。
[中間層2]
 本体部に、無機系のプライマ液としてのアロンセラミックE(東亞合成株式会社製、製品名)及び溶融シリカ(アドマテックス製、SO-25R)の混合物を、エアーブラシ又はバーコータを用いて塗工した後、90℃で1時間、更に150℃で2時間加熱して硬化させ、本体部上に、厚み100μmの層(中間層2)を形成した。得られた中間層2に含まれる溶融シリカ(充填材)の含有量は、中間層の全体積に対し、0.5体積%であった。
[中間層3]
 本体部に、無機系のプライマ液としてのケイ酸ナトリウム溶液(約38質量%)(和光純薬工業株式会社製、試薬)を、エアーブラシ又はバーコータを用いて塗工した後、300℃で2時間加熱して硬化させ、本体部上に、厚み50μmの層(中間層3)を形成した。
[中間層4]
 本体部に、無機系のプライマ液としてのTB3732(株式会社スリーボンド製、商品名)水酸化マグネシウム(和光純薬製、試薬)の混合物を、エアーブラシを用いて塗工した後、50℃で30分、更に100℃で1時間加熱して硬化させ、本体部上に、厚み10μmの層(中間層4)を形成した。得られた中間層4に含まれる水酸化マグネシウム(充填材)の含有量は、中間層の全体積に対し、20体積%であった。
(ゾル塗液)
[ゾル塗液1]
 シリカ粒子含有原料としてPL-2L(扶桑化学工業(株)製、製品名、平均一次粒子径:20nm、固形分:20質量%)を100.0質量部、水を120.0質量部及びメタノールを80.0質量部及び酸触媒として酢酸を0.10質量部混合して混合液を得た。この混合液に、ケイ素化合物としてメチルトリメトキシシラン(信越化学工業株式会社製、製品名:LS-530、以下「MTMS」と略記)を60.0質量部及びジメチルジメトキシシラン(信越化学工業株式会社製、製品名:LS-520、以下「DMDMS」と略記)を40.0質量部加え、25℃で2時間反応させた。これに、塩基触媒として5%濃度のアンモニア水を40.0質量部加えてゾル塗液1を得た。
[ゾル塗液2]
 シリカ粒子含有原料としてST-OZL-35(日産化学工業株式会社製、製品名、平均一次粒子径:100nm、固形分:35質量%)を100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合して混合液を得た。この混合液に、ケイ素化合物としてMTMSを60.0質量部及び上記一般式(A)で表される構造を有するポリシロキサン化合物としてX-22-160AS(信越化学工業株式会社製、製品名)を20.0質量部加え、25℃で2時間反応させた。その後、60℃で5時間ゾルゲル反応させてゾル塗液2を得た。
[ゾル塗液3]
 シリカ粒子含有原料としてPL-2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合して混合液を得た。この混合液に、ケイ素化合物としてMTMSを80.0質量部及びポリシロキサン化合物として上記一般式(B)で表される構造を有する両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物A」という)を20.0質量部加え、25℃で2時間反応させた。その後、60℃で2時間ゾルゲル反応させてゾル塗液3を得た。
 なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1Lの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサン(モメンティブ社製、製品名:XC96-723)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
[ゾル塗液4]
 シリカ粒子含有原料としてPL-2Lを100.0質量部、水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合して混合液を得た。この混合液に、ケイ素化合物としてMTMSを60.0質量部及びポリシロキサン化合物として上記一般式(B)で表される構造を有する両末端3官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物B」という)を40.0質量部加え、25℃で2時間反応させた。その後、60℃で2時間ゾルゲル反応させてゾル塗液4を得た。
 なお、上記「ポリシロキサン化合物B」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1Lの3つ口フラスコにて、XC96-723を100.0質量部、テトラメトキシシランを202.6質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端3官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物B)を得た。
[ゾル塗液5]
 シリカ粒子含有原料としてPL-2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合して混合液を得た。この混合液に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させた。その後、60℃で1.0時間ゾルゲル反応させてゾル塗液5を得た。
[ゾル塗液6]
 シリカ粒子含有原料としてPL-2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合して混合液を得た。この混合液に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、及びポリシロキサン化合物としてX-22-160ASを20.0質量部加え、25℃で2時間反応させた。その後、60℃で1.0時間ゾルゲル反応させてゾル塗液6を得た。
[ゾル塗液7]
 シリカ粒子含有原料としてPL-2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合して混合液を得た。この混合液に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、及びポリシロキサン化合物としてポリシロキサン化合物Aを20.0質量部加え、25℃で2時間反応させた。その後、60℃で1.0時間ゾルゲル反応させてゾル塗液7を得た。
(被断熱体(以下、「エアロゲル複合構造体」ともいう)の作製)
 本体部又は中間層上に、表1に示す組み合わせで、以下のとおりエアロゲル層1~7を形成し、本体部と、当該本体部に直接又は中間層を介して一体的に接合されたエアロゲル層とを備えるエアロゲル複合構造体を作製した。
[エアロゲル層1]
 ゾル塗液1を、本体部又は中間層上に、ゲル化後の厚みが200μmとなるようにエアーブラシ(アネスト岩田株式会社製、製品名:HP-CP)を用いて、ミスト状の形態で塗布し、60℃で30分ゲル化して構造体を得た。その後、得られた構造体を密閉容器に移し、60℃で12時間熟成した。
 その後、熟成した構造体を水2000mLに浸漬し、30分かけて洗浄を行った。次に、メタノール2000mLに浸漬し、60℃で30分かけて洗浄を行った。メタノールによる洗浄を、新しいメタノールに交換しながら更に2回行った。次に、メチルエチルケトン2000mLに浸漬し、60℃で30分かけて溶媒置換を行った。メチルエチルケトンによる洗浄を新しいメチルエチルケトンに交換しながら更に2回行った。洗浄及び溶媒置換された構造体を、常圧下にて、120℃で6時間乾燥することで、エアロゲル層1(本体部に直接又は中間層を介して一体的に接合したエアロゲル層)を備えるエアロゲル複合構造体を得た。
[エアロゲル層2]
 ゾル塗液2を、本体部又は中間層上に、ゲル化後の厚みが100μmとなるようにエアーブラシを用いて、ミスト状の形態で塗布し、60℃で30分ゲル化して構造体を得た。その後、得られた構造体を密閉容器に移し、60℃で12時間熟成した。
 その後、洗浄及び溶媒置換工程並びに乾燥工程を、「エアロゲル層1」に記載した方法と同様にして行い、上記一般式(1)、(1a)及び(4)で表される構造を有するエアロゲルを含むエアロゲル層2(本体部に直接又は中間層を介して一体的に接合したエアロゲル層)を備えるエアロゲル複合構造体を得た。
[エアロゲル層3]
 ゾル塗液3を、本体部又は中間層上に、ゲル化後の厚みが200μmとなるようにエアーブラシを用いて、ミスト状の形態で塗布し、60℃で30分ゲル化して構造体を得た。その後、得られた構造体を密閉容器に移し、60℃で12時間熟成した。
 その後、洗浄及び溶媒置換工程並びに乾燥工程を、「エアロゲル層1」に記載した方法と同様にして行い、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲル層3(本体部に直接又は中間層を介して一体的に接合したエアロゲル層)を備えるエアロゲル複合構造体を得た。
[エアロゲル層4]
 ゾル塗液1に代えてゾル塗液4を用いたこと及びゲル化後の厚みが50μmとなるようにしたこと以外は、「エアロゲル層1」に記載した方法と同様にして、上記一般式(2)及び(4)で表される構造を有するエアロゲルを含有するエアロゲル層4(本体部に直接又は中間層を介して一体的に接合したエアロゲル層)を備えるエアロゲル複合構造体を得た。
[エアロゲル層5]
 ゾル塗液1に代えてゾル塗液5を用いたこと以外は、「エアロゲル層1」に記載した方法と同様にして、上記一般式(4)及び(5)で表される構造を有するエアロゲルを含有するエアロゲル層5(本体部に直接又は中間層を介して一体的に接合したエアロゲル層)を備えるエアロゲル複合構造体を得た。
[エアロゲル層6]
 ゾル塗液1に代えてゾル塗液6を用いたこと以外は、「エアロゲル層1」に記載した方法と同様にして、上記一般式(1)、(1a)、(4)及び(5)で表される構造を有するエアロゲルを含有するエアロゲル層6(本体部に直接又は中間層を介して一体的に接合したエアロゲル層)を備えるエアロゲル複合構造体を得た。
[エアロゲル層7]
 ゾル塗液1に代えてゾル塗液7を用いたこと及びゲル化後の厚みが500μmとなるようにしたこと以外は、「エアロゲル層1」に記載した方法と同様にして、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲルを含有するエアロゲル層7(本体部に直接又は中間層を介して一体的に接合したエアロゲル層)を備えるエアロゲル複合構造体を得た。
Figure JPOXMLDOC01-appb-T000012
<比較例1>
 本体部としてのアルミニウム合金板に、厚みが100μmになるように発泡ウレタンフォーム(ヘンケルジャパン株式会社製、製品名:シスタ M5230)を塗布し、発泡ウレタンフォーム構造体を得た。
 (比較例2)
 ゾル液1をバットに入れ、本体部としてのアルミニウム合金板をゾル液1に浸した後に取り出し、60℃で30分ゲル化して、ゲル層の厚みが200μmの構造体を得た。その後、得られた構造体を密閉容器に移し、60℃で12時間熟成した。
 その後、洗浄及び溶媒置換工程並びに乾燥工程を、「エアロゲル層1」に記載した方法と同様にして行い、エアロゲル層X1を備えるエアロゲル複合構造体を得た。
 (比較例3)
 ゾル液1を、刷毛で、本体部としてのSUS配管に塗工し、60℃で30分ゲル化して、ゲル層の厚みが200μmの構造体を得た。その後、得られた構造体を密閉容器に移し、60℃で12時間熟成した。
 その後、洗浄及び溶媒置換工程並びに乾燥工程を、「エアロゲル層1」に記載した方法と同様にして行い、エアロゲル層Y1を備えるエアロゲル複合構造体を得た。
<各種評価>
(断熱性評価)
 各実施例で得られたエアロゲル複合構造体、及び、各比較例で得られた構造体について、エアロゲル層又は発泡ウレタンフォーム層が下面となるように、表面温度70℃のホットプレートに配置して加熱し、10分後に構造体表面温度をサーモグラフィ(アピステ社製赤外線サーモビュアFSV-1200-L16)で測定した。測定結果を表2に示す。なお、加熱前のサンプル温度及び室温は23℃であった。
(外観評価)
 各実施例で得られたエアロゲル複合構造体及び各比較例で得られた構造体のエアロゲル層、発泡ウレタンフォーム層に対して目視評価を行った。塗工面内で最大面積である色あいが、塗工面の95%以上かつφ2mm以上大きさの色ムラがないものを「A」、50%以上95%未満かつφ2mm以上の大きさの色ムラがないものを「B」、50%未満かつφ2mm以上の大きさの色ムラがあるものを「C」とした。
(耐熱性評価)
 各実施例で得られたエアロゲル複合構造体及び各比較例で得られた構造体についてエアロゲル層又は発泡ウレタンフォーム層が下面となるように、表面温度200℃のホットプレートに配置して、200℃で5分間加熱した。加熱後、目視観察し、変形、変色、剥離等の外観を評価した。目視観察で変化が無いものを耐熱性良好と判定し、変形、変色、剥離等が生じたものを耐熱性不良と判定した。
Figure JPOXMLDOC01-appb-T000013
 表2から、実施例のエアロゲル複合構造体は、外観評価の結果に優れ、エアロゲル層のムラが抑制されたものであることがわかる。また、実施例のエアロゲル複合構造体は、断熱性及び耐熱性も良好である。そのため、高温環境で使用する場合においても従来材料よりも薄型化が可能である。
 一方、比較例1~3の構造体は、外観が劣っており、実施例と同等の効果は得られない。また、比較例1の構造体は、断熱性及び耐熱性の特性も劣っている。
 3…本体部、3a…本体部の表面、5…エアロゲル層、5a…ゾル層、10…断熱対象物、10a…断熱対象物の表面、4…被覆層、4a…被覆層の本体部とは反対側の表面、100,200…被断熱体、L…外接長方形、P…シリカ粒子。

Claims (10)

  1.  断熱対象物に、断熱層としてのエアロゲル層が一体的に形成された被断熱体の製造方法であって、
     ミスト状のゾルからエアロゲル層を形成する工程を備える、被断熱体の製造方法。
  2.  前記ゾルが、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有する、請求項1に記載の被断熱体の製造方法。
  3.  前記ゾルがシリカ粒子を更に含有する、請求項2に記載の被断熱体の製造方法。
  4.  前記シリカ粒子の平均一次粒子径が1~500nmである、請求項3に記載の被断熱体の製造方法。
  5.  前記ゾルの液滴の直径が0.1~1000μmである、請求項1~4のいずれか一項に記載の被断熱体の製造方法。
  6.  前記ゾルが、沸点200℃未満の溶媒を含有する、請求項1~5のいずれか一項に記載の被断熱体の製造方法。
  7.  前記断熱対象物が、本体部と、前記本体部の表面の少なくとも一部を被覆する被覆層とを備え、前記被覆層が中間層となるように、少なくとも前記被覆層上にエアロゲル層が形成される、請求項1~6のいずれか一項に記載の被断熱体の製造方法。
  8.  前記被覆層が充填材を含有する、請求項7に記載の被断熱体の製造方法。
  9.  前記充填材が無機充填材である、請求項8に記載の被断熱体の製造方法。
  10.  前記充填材の含有量が、前記被覆層の全体積に対して、0.1~70体積%である、請求項8又は9に記載の被断熱体の製造方法。
PCT/JP2016/074884 2015-08-28 2016-08-25 被断熱体の製造方法 WO2017038648A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537815A JP6288383B2 (ja) 2015-08-28 2016-08-25 被断熱体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169096 2015-08-28
JP2015-169096 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038648A1 true WO2017038648A1 (ja) 2017-03-09

Family

ID=58187430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074884 WO2017038648A1 (ja) 2015-08-28 2016-08-25 被断熱体の製造方法

Country Status (3)

Country Link
JP (1) JP6288383B2 (ja)
TW (1) TW201723051A (ja)
WO (1) WO2017038648A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142530A1 (ja) * 2017-02-02 2018-08-09 日立化成株式会社 構造体の製造方法
WO2019163131A1 (ja) * 2018-02-26 2019-08-29 日立化成株式会社 構造体、接着用材料、構造体の製造方法、及び被覆方法
CN114466820A (zh) * 2019-04-11 2022-05-10 天穆法可特利股份有限公司 气凝胶及气凝胶的制造方法
CN115052940A (zh) * 2020-01-31 2022-09-13 昭和电工材料株式会社 绝热材料的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912455B1 (ko) * 2018-04-10 2018-10-26 (주)아이피아이테크 폴리이미드 표면처리된 에어로젤 단열재 및 그 제조 방법
KR101966406B1 (ko) * 2018-05-14 2019-04-05 (주)아이피아이테크 장기 내구성이 우수한 에어로젤 단열재 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513431A (ja) * 1995-10-11 1999-11-16 ヘキスト、リサーチ、アンド、テクノロジー、ドイッチェラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディート、ゲゼルシャフト エーロゲル被覆フィルム
JP2011190551A (ja) * 2010-03-12 2011-09-29 Asahi Kagaku Kk エアロゲルシート製造装置
EP2574693A1 (en) * 2011-09-27 2013-04-03 Rockwool International A/S Method of producing an insulating element made of mineral fibres and insulating element made of mineral fibres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513431A (ja) * 1995-10-11 1999-11-16 ヘキスト、リサーチ、アンド、テクノロジー、ドイッチェラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディート、ゲゼルシャフト エーロゲル被覆フィルム
JP2011190551A (ja) * 2010-03-12 2011-09-29 Asahi Kagaku Kk エアロゲルシート製造装置
EP2574693A1 (en) * 2011-09-27 2013-04-03 Rockwool International A/S Method of producing an insulating element made of mineral fibres and insulating element made of mineral fibres

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142530A1 (ja) * 2017-02-02 2018-08-09 日立化成株式会社 構造体の製造方法
JPWO2018142530A1 (ja) * 2017-02-02 2019-11-21 日立化成株式会社 構造体の製造方法
WO2019163131A1 (ja) * 2018-02-26 2019-08-29 日立化成株式会社 構造体、接着用材料、構造体の製造方法、及び被覆方法
CN114466820A (zh) * 2019-04-11 2022-05-10 天穆法可特利股份有限公司 气凝胶及气凝胶的制造方法
CN114466820B (zh) * 2019-04-11 2023-12-26 天穆法可特利股份有限公司 气凝胶及气凝胶的制造方法
CN115052940A (zh) * 2020-01-31 2022-09-13 昭和电工材料株式会社 绝热材料的制造方法

Also Published As

Publication number Publication date
JP6288383B2 (ja) 2018-03-07
TW201723051A (zh) 2017-07-01
JPWO2017038648A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6288383B2 (ja) 被断熱体の製造方法
JP6299936B2 (ja) 被断熱体の製造方法
US11780735B2 (en) Aerogel composite, and supporting member and heat insulation material provided with aerogel composite
WO2016121757A1 (ja) エアロゲル積層体及び断熱材
WO2017168847A1 (ja) エアロゲル層付き部材
WO2017164184A1 (ja) ゾル組成物、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP6269903B2 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2017170498A1 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2017038769A1 (ja) エアロゲル積層体及び断熱材
WO2019070035A1 (ja) エアロゲル複合体パウダー及び撥水材
WO2017168845A1 (ja) エアロゲル層付き部材
WO2018142530A1 (ja) 構造体の製造方法
JPWO2017038781A1 (ja) エアロゲル複合体
JP2017178644A (ja) エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP2017178643A (ja) エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2019163131A1 (ja) 構造体、接着用材料、構造体の製造方法、及び被覆方法
TW201918529A (zh) 塗液、塗膜的製造方法及塗膜
TW201841729A (zh) 結構體的製造方法
JP2017178650A (ja) エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JPWO2018143361A1 (ja) 撥水パウダー
JPWO2020031300A1 (ja) 着雪氷防止剤、着雪氷防止構造体、着雪氷防止構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841680

Country of ref document: EP

Kind code of ref document: A1