WO2017038476A1 - 原子線源 - Google Patents

原子線源 Download PDF

Info

Publication number
WO2017038476A1
WO2017038476A1 PCT/JP2016/074059 JP2016074059W WO2017038476A1 WO 2017038476 A1 WO2017038476 A1 WO 2017038476A1 JP 2016074059 W JP2016074059 W JP 2016074059W WO 2017038476 A1 WO2017038476 A1 WO 2017038476A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
atomic beam
beam source
emission
Prior art date
Application number
PCT/JP2016/074059
Other languages
English (en)
French (fr)
Inventor
裕之 辻
知典 高橋
好正 近藤
和正 北村
赤尾 隆嘉
智毅 長江
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112016000096.0T priority Critical patent/DE112016000096B4/de
Priority to KR1020177004046A priority patent/KR101886587B1/ko
Priority to JP2017507886A priority patent/JP6178538B2/ja
Priority to CN201680002242.1A priority patent/CN106664790B/zh
Priority to US15/429,408 priority patent/US9947428B2/en
Publication of WO2017038476A1 publication Critical patent/WO2017038476A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/02Molecular or atomic beam generation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means

Definitions

  • the present invention relates to an atomic beam source.
  • Patent Document 1 Conventionally, as this type of atomic beam source, there has been proposed one that controls the electron density in the discharge space by displacing the anode disposed inside the cylindrical body that is the cathode (see Patent Document 1). According to the atomic beam source of Patent Document 1, it is possible to obtain a desired atomic density distribution per unit time in a short time at a low cost, and the surface modification apparatus is capable of satisfactory surface treatment.
  • the cathode and the anode are sputtered and dropped by ions generated in the discharge space, and the dropped particles may be emitted from the atomic beam source.
  • a housing that serves as a cathode and an electrode body that is provided in the housing and serves as an anode that generates an electric field and at least part of the housing and the electrode body are made of a material that is difficult to be sputtered by ions generated by the electric field.
  • the present invention has been made to solve such problems, and has as its main object to provide an atomic beam source that can further suppress the release of unnecessary particles.
  • the atomic beam source of the present invention employs the following means in order to achieve the main object described above.
  • the atomic beam source of the present invention comprises: A cylindrical cathode having an emission part provided with an emission port capable of emitting an atomic beam; A rod-shaped first anode provided inside the cathode; A rod-shaped second anode provided inside the cathode and spaced apart from the first anode; At least one selected from the group consisting of the shape of the cathode, the shape of the first anode, the shape of the second anode, and the positional relationship between the cathode, the first anode, and the second anode With a predetermined configuration, a cation generated by plasma between the first anode and the second anode collides with at least one of the cathode, the first anode, and the second anode. This suppresses the emission of sputtered particles.
  • FIG. 2 is an AA end view of FIG. 1.
  • FIG. 3 is an explanatory diagram showing a usage state of the atomic beam source 10.
  • Sectional drawing corresponded in FIG. 2 in the atomic beam source 110 which is an example of 2nd Embodiment.
  • Sectional drawing equivalent to FIG. 2 in the atomic beam source 210 which is an example of 2nd Embodiment.
  • Sectional drawing equivalent to FIG. 2 in the atomic beam source 310 which is an example of 3rd Embodiment.
  • Sectional drawing equivalent to FIG. 2 in the atomic beam source 410 which is an example of 4th Embodiment.
  • FIG. 1 The schematic diagram which shows the internal state after use of a general atomic beam source.
  • FIG. 1 is a perspective view showing an outline of a configuration of an atomic beam source 10 which is an example of the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an explanatory diagram showing a usage state of the atomic beam source 10.
  • the atomic beam source 10 includes a cylindrical cathode 20 closed at both ends, a rod-shaped first anode 40 provided inside the cathode 20, and a first anode inside the cathode 20. 40 and a rod-shaped second anode 50 provided apart from 40.
  • the cathode 20 has an emission part 30 provided with a plurality of emission ports 32 capable of emitting atomic beams in a part of the cylindrical surface, and a part corresponding to the emission part 30 is opened.
  • the cathode 20 has a supply unit 36 for supplying a source gas (for example, Ar gas) on the surface opposite to the emission unit 30.
  • a source gas for example, Ar gas
  • Both ends of the first anode 40 and the second anode 50 are fixed to one end and the other end of the cathode 20 via an insulating member 62.
  • the boundary line between the housing 60 and the cathode 20 is indicated by a two-dot chain line, and the inner surface of the cathode 20 is indicated by shading.
  • the atomic beam source 10 is disposed in a reduced pressure atmosphere of, for example, 10 ⁇ 2 Pa or less, preferably 10 ⁇ 3 Pa or less, and as shown in FIG.
  • a positive electrode of a DC power source is connected to each of the anode 40 and the second anode 50, and a high voltage of, for example, about 0.1 kV to 10 kV is applied.
  • the raw material gas supplied from the supply unit 36 is ionized by the electric field generated in this way, and plasma is generated between the first anode 40 and the second anode 50.
  • Cations for example, Ar +
  • atomic beams for example, Ar beam
  • the first anode 40 and the second anode 50 are arranged in parallel to each other so that the central axes C ⁇ b> 1 and C ⁇ b> 2 are located on a predetermined arrangement surface P parallel to the emitting portion 30. Further, in the first anode 40 and the second anode 50, when the distance between the central axes C1 and C2 is L and the distance between the arrangement surface P and the emitting portion 30 is H, (H + L) ⁇ H 2 / It is arranged so that the value of L falls within the range of 750 to 1670.
  • the value of (H + L) ⁇ H 2 / L is preferably 750 or more, more preferably 800 or more, and further preferably 850 or more.
  • the value of (H + L) ⁇ H 2 / L is preferably 1670 or less, more preferably 1050 or less, and further preferably 1000 or less.
  • the distance L between the central axes C1 and C2 is preferably, for example, 10 mm or more and 50 mm or less, more preferably 12 mm or more and 40 mm or less, and further preferably 12 mm or more and 35 mm or less.
  • the distance H between the arrangement surface P and the discharge portion 30 is, for example, preferably 10 mm or more and 50 mm or less, more preferably 15 mm or more and 45 mm or less, and further preferably 20 mm or more and 30 mm or less.
  • the first anode 40 and the second anode 50 are preferably disposed so that the central axes C1 and C2 are parallel to the axial direction of the cathode 20. Further, it is preferable that the intermediate position between the central axes C1 and C2 is arranged so as to coincide with the center position in the width direction of the cathode 20, and the difference is more preferably within ⁇ 5 mm.
  • the shape of the cathode 20 may be a circle, an ellipse, a polygon such as a triangle, a quadrangle, a pentagon, a hexagon, or other shapes when the cross section perpendicular to the axial direction of the cathode 20 is viewed. But you can.
  • the cathode 20 may have the same or different cross-sectional shapes on the inside and outside.
  • the dimensions of the cathode may be, for example, 20 mm or more and 100 mm or less in the height direction, 20 mm or more and 100 mm or less in the width direction, and 50 mm or more and 300 mm or less in the length direction.
  • the height direction is a direction perpendicular to the surface on which the emission part 30 is formed
  • the width direction is perpendicular to the longitudinal direction and perpendicular to the axial direction
  • the length direction is parallel to the axial direction of the cathode 20.
  • the thickness of the cathode 20 may be 0.5 mm or more and 10 mm or less.
  • the material of the cathode 20 can be a carbon material such as graphite or glassy carbon.
  • a carbon material is preferable because it has good electron-emitting properties, is inexpensive, and has good workability.
  • the material of the cathode 20 may be, for example, tungsten, molybdenum, titanium, nickel, alloys thereof, compounds thereof, or the like.
  • the discharge part 30 may be formed in a region extending in the length direction with a predetermined width. For example, when the cross section inside the cathode 20 is polygonal, it may be formed on one surface thereof.
  • the dimensions of the discharge part 30 may be 5 mm to 90 mm in width, 5 mm to 90 mm in length, and the like.
  • the discharge part 30 may be divided into a plurality of parts.
  • the shape of the discharge port 32 may be a circle or an ellipse, a polygon such as a triangle, a quadrangle, a pentagon, or a hexagon, or other shapes.
  • the dimensions of the discharge port 32 may be 0.05 mm or more and 5 mm or less, respectively, in the width direction and the length direction (diameter in the case of a circle). Further, the discharge port 32 may have a slit shape with a width of 0.05 mm or more and 5 mm or less.
  • the thickness of the emission part 30 may be 0.5 mm or more and 10 mm or less, and may be the same as or different from the thickness of the other part of the cathode 20.
  • the material of the emission part 30 may be the one exemplified for the cathode 20, and may be the same as or different from the emission part 30.
  • a supply device Supplied to the supply unit 36 is a supply device (not shown) for supplying a raw material gas.
  • the position, size, shape, and the like of the supply unit 36 are not particularly limited, and may be set as appropriate so that the plasma is stabilized.
  • the housing 60 only needs to cover the cathode 20 other than the emission unit 30, but preferably covers all parts of the cathode 20 other than the emission unit 30 and the supply unit 36.
  • the material of the housing 60 can be an aluminum alloy, a copper alloy, stainless steel, or the like.
  • the shape of the first anode 40 and the second anode 50 may be a circle or an ellipse when viewed in a cross section perpendicular to the axial direction of the cathode 20, or may be a polygon such as a triangle, a quadrangle, a pentagon, or a hexagon. It may be other shapes.
  • the dimension of the 1st anode 40 and the 2nd anode 50 is not specifically limited, For example, it is 1 mm or more and 20 mm or less in a height direction and the width direction (in the case of a circle), respectively, and it is 50 mm or more and 400 mm or less in a length direction. Good.
  • the shapes and dimensions of the first anode 40 and the second anode 50 may be the same or different.
  • the material of the first anode 40 and the second anode 50 can be a carbon material such as graphite or glassy carbon.
  • a carbon material is preferable because it has good electron-emitting properties, is inexpensive, and has good workability.
  • the material of the first anode 40 and the second anode 50 may be, for example, tungsten, molybdenum, titanium, nickel, alloys thereof, compounds thereof, or the like.
  • a target material in a processing chamber in a reduced-pressure atmosphere, a target material can be subjected to desired processing by irradiating the processing material disposed in the processing chamber with an atomic beam.
  • the processing chamber is preferably set to 10 ⁇ 2 Pa or less, and more preferably 10 ⁇ 3 Pa or less.
  • the material to be treated include compounds such as Si, LiTaO 3 , LiNbO 3 , SiC, SiO 2 , Al 2 O 3 , GaN, GaAs, and GaP, metals, and the like.
  • the atomic beam source 10 can remove oxides and adsorbed molecules on the surface of the material to be processed or activate the surface of the material to be processed by atomic beam irradiation.
  • the surfaces of two materials to be treated are activated by removing oxides and adsorbed molecules by atomic beam irradiation, and the atomic beam irradiation surfaces are opposed to each other, and are pressed as necessary.
  • Two workpieces can be directly joined.
  • the atomic beam source 10 can be used as a so-called fast atomic beam (FAB) source.
  • FAB fast atomic beam
  • the positional relationship among the cathode 20, the first anode 40, and the second anode 50 has a predetermined configuration.
  • the value of (H + L) ⁇ H 2 / L is 750 or more. 1670 or less.
  • the extraction efficiency of the atomic beam is improved. Therefore, the output of the DC power source necessary to obtain the desired extraction efficiency of the atomic beam is obtained. Can be small.
  • FIG. 4 is a cross-sectional view corresponding to FIG. 2 in the atomic beam source 110 as an example of the second embodiment.
  • symbol is attached
  • the configuration that does not appear in FIG. 4 is the same as the configuration of the atomic beam source 10, and therefore, a perspective view is omitted, and the method for using the atomic beam source and the processing method for the material to be processed using the atomic beam source are 10 is the same as in FIG.
  • the atomic beam source 110 includes a cylindrical cathode 120 closed at both ends, a rod-shaped first anode 140 provided inside the cathode 120, and a first anode 140 inside the cathode 120. And a rod-shaped second anode 150 provided at a distance.
  • the cathode 120 has an emission part 30 provided with a plurality of emission ports 32 capable of emitting atomic beams in a part of the cylindrical surface, and a part corresponding to the emission part 30 is opened. Arranged inside the housing 60. Further, the cathode 120 has a supply unit 36 on the surface opposite to the emission unit 30.
  • Both ends of the first anode 140 and the second anode 150 are fixed to one end and the other end of the cathode 120 via an insulating member 62.
  • the value of (H + L) ⁇ H 2 / L may be the same as or different from that of the atomic beam source 10. For example, you may set suitably in the range of 500 or more and 4000 or less.
  • the inside is a rectangle, and each corner of the rectangle is a chamfered shape, specifically, an R plane.
  • This quadrangle is preferably a square or a rectangle.
  • the radius of the R surface is preferably 1 mm or more, more preferably 5 mm or more, and even more preferably 10 mm or more.
  • the radius of the R surface may be 50 mm or less, 30 mm or less, or 20 mm or less.
  • the minimum value Xmin of the distance from the center O to the inside and the maximum value Xmax of the distance from the center O to the inside are 0.5 ⁇ Xmin / It is preferable to satisfy Xmax ⁇ 1. With such a thing, discharge
  • the center O can be the position of the center of gravity of the inner square when the cross section perpendicular to the axial direction of the cathode 120 is viewed.
  • the value of Xmin / Xmax is preferably 0.68 or more, and more preferably 0.7 or more.
  • the dimensions of the cathode 120 may be, for example, 20 mm or more and 100 mm or less in the height direction, 20 mm or more and 100 mm or less in the width direction, and 50 mm or more and 300 mm or less in the length direction.
  • the cathode 120 may have a circular or elliptical shape when viewed in a cross section perpendicular to the axial direction of the cathode 120, a polygon such as a triangle, a quadrangle, a pentagon, a hexagon, or other shapes. Good.
  • the cathode 120 may have the same or different cross-sectional shapes on the inner side and the outer side.
  • the thickness of the cathode 20 may be 0.5 mm or more and 10 mm or less. As the material of the cathode 120, those exemplified for the cathode 20 can be used.
  • the first anode 140 and the second anode 150 may be arranged in parallel to each other so that the respective central axes are located on a predetermined arrangement surface parallel to the emission part 30. Further, at least one of the central axes may be disposed to be inclined in the vertical direction with respect to the arrangement surface P, for example, or at least one of the central axes may be inclined in the width direction with respect to a surface perpendicular to the width direction, for example. Or both of them may be provided.
  • the inclination of the central axis with respect to the arrangement surface P may be, for example, 0 ° or more and 10 ° or less.
  • the inclination of the central axis with respect to the plane perpendicular to the width direction may be, for example, 0 ° or more and 10 ° or less.
  • the shapes, dimensions, and materials of the first anode 140 and the second anode 150 can be the same as those of the first anode 40 and the second anode 50.
  • the shape of the cathode 120 has a predetermined configuration, and specifically, the cathode 120 has chamfered corners.
  • the corners tend to deposit sputtered particles easily.
  • the concentration of deposition on the corners of the sputtered particles can be suppressed. For this reason, the thickness of the deposition layer of the sputtered particles deposited in the cathode 120 becomes more uniform, the generation of cracks due to distortion is suppressed, and the falling and scattering of the deposit can be suppressed.
  • the portion close to the plasma (for example, the portion other than the corner of the cathode) tends to be worn by the collision of the cation, but the corner of the chamfered shape of the cathode 120 becomes closer to the plasma than the case of the non-chamfered shape. Since the distance between the cathode 120 and the plasma is made uniform, the wear amount becomes more uniform. Thus, in the atomic beam source 110, the deposition amount of the deposit on the cathode 120 and the wear amount of the cathode 120 due to the collision of the cation become more uniform, and the growth itself of the deposit that may be dropped or scattered is reduced. Can be suppressed. As a result, unnecessary particle release can be suppressed.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 2 in the atomic beam source 210 as an example of the second embodiment.
  • the same components as those of the atomic beam source 110 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the chamfer surface preferably has a height h and a width w that are each greater than 10 mm, and more preferably 15 mm or more.
  • the height h and width w of the chamfer surface may be 50 mm or less, 30 mm or less, or 20 mm or less.
  • the quadrangle is preferably a square or a rectangle.
  • the cathode 220 has a minimum value Xmin of the distance from the center O to the inside and a maximum value Xmax of the distance from the center O to the inside when the cross section perpendicular to the axial direction of the cathode 220 is 0.5 ⁇ It is preferable to satisfy Xmin / Xmax ⁇ 1.
  • the value of Xmin / Xmax may be 0.68 or more, or 0.7 or more, but is preferably greater than 0.75, preferably 0.77 or more, and more preferably 0.79 or more.
  • the inside when the cathode is viewed in a cross section perpendicular to the axial direction of the cathode, the inside is a rectangle and each corner of the rectangle is a chamfered shape.
  • the inside when the cross section perpendicular to the axial direction of the cathode is viewed, the inside may be circular or elliptical. Even in this case, the same effects as those of the atomic beam source 110 and the atomic beam source 210 can be obtained.
  • the minimum value Xmin of the distance from the center O to the inside and the maximum value Xmax of the distance from the center O to the inside are 0.5 ⁇ Xmin / Xmax. It is preferable to satisfy ⁇ 1.
  • the value of Xmin / Xmax may be 0.68 or more, or 0.7 or more.
  • the position of the center O can be the position of the center of the inner circle or ellipse when the cross section perpendicular to the axial direction of the cathode is viewed.
  • FIG. 6 is a cross-sectional view corresponding to FIG. 2 in the atomic beam source 310 which is an example of the third embodiment.
  • symbol is attached
  • the atomic beam source 310 includes a cylindrical cathode 320 closed at both ends, a rod-shaped first anode 140 provided inside the cathode 320, and a first anode 140 inside the cathode 320. And a rod-shaped second anode 150 provided at a distance.
  • the cathode 320 has an emission part 330 provided with a plurality of emission ports 332 capable of emitting atomic beams in a part of the cylindrical surface, and a part corresponding to the emission part 330 is opened.
  • the cathode 320 has a supply unit 36 on the surface opposite to the emission unit 330. Both ends of the first anode 140 and the second anode 150 are fixed to one end and the other end of the cathode 320 via an insulating member 62.
  • the emission port 332 provided in the emission part 330 of the cathode 320 is formed so that the opening area tends to decrease from the outer surface to the inner surface of the cathode 320.
  • the discharge port may have an inclination S with respect to the direction perpendicular to the discharge part 330 of the straight line connecting the outer surface and the inner surface is larger than 0 °, but is preferably 4 ° or more, and more preferably 6 ° or more.
  • the opening area on the inner surface side can be made smaller and the opening area on the outer surface side can be made larger than when the inclination S is 0 °, for example.
  • the slope S is preferably 20 ° or less, more preferably 15 ° or less, and more preferably 10 ° or less. If the slope S is 20 ° or less, the opening on the inner surface side does not become too small, and it is possible to prevent penetration with adjacent holes.
  • the tendency for the opening area to decrease from the outer surface to the inner surface of the cathode 320 may be, for example, linearly decreasing from the outer surface to the inner surface at a constant angle, or decreasing in a curved shape while changing the angle. It is good also as what becomes small in steps.
  • the slope S may be constant over the entire circumference of the discharge port 332 or may not be constant.
  • the shape of the discharge port 332 may be a circle or an ellipse, a polygon such as a triangle, a quadrangle, a pentagon, or a hexagon, or any other shape.
  • the dimensions of the emission port 332 may be 0.05 mm or more and 5 mm or less, respectively, in the width direction and the length direction (diameter in the case of a circle) on the inner surface of the cathode 320.
  • the discharge port 32 may have a slit shape. In the case of a slit shape, a slit having a width of 0.05 mm or more and 5 mm or less is preferable on the inner surface of the cathode 320.
  • the direction in which the slit extends is not particularly limited.
  • the shape, dimensions, material, and formation site of the discharge part 330 can be the same as those of the discharge part 30 except for the discharge port 332. Further, the shape, dimensions, material, and the like of the cathode 320 can be the same as those of the cathode 20 except for the emission portion 330 and the emission port 332.
  • the shape of the cathode 320 has a predetermined configuration.
  • the emission port 332 provided in the emission part 330 of the cathode 320 has an opening area from the outer surface to the inner surface of the cathode 320. It tends to be smaller.
  • the opening area on the inner surface side is small, emission of sputtered particles can be suppressed on the inner surface side, and the opening on the outer surface side is larger than the opening on the inner surface side, and cations and atoms are released. Since it does not easily collide with the outlet 332, a decrease in the extraction efficiency of the atomic beam can be suppressed. As a result, unnecessary particle release can be suppressed.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 2 in the atomic beam source 410 as an example of the fourth embodiment.
  • symbol is attached
  • the atomic beam source 410 includes a cylindrical cathode 420 closed at both ends, a rod-shaped first anode 140 provided inside the cathode 420, and a first anode 140 inside the cathode 420. And a rod-shaped second anode 150 provided at a distance.
  • the cathode 420 has an emission part 30 provided with a plurality of emission ports 32 capable of emitting atomic beams in a part of a cylindrical surface, and a part corresponding to the emission part 30 is opened.
  • the cathode 420 has a supply unit 36 on the surface opposite to the emission unit 30. Both ends of the first anode 140 and the second anode 150 are fixed to one end and the other end of the cathode 420 via an insulating member 62.
  • the cathode 420 includes a collection unit 422 that collects sputter particles, and a discharge unit 424 that is connected to the collection unit 422 and discharges the sputter particles to the outside.
  • a discharge pipe or the like is connected to the discharge unit 424, and the sputtered particles are discharged to an appropriate place, for example, outside the processing chamber.
  • a suction device or the like may be connected to the discharge unit 424 directly or via a discharge pipe or the like.
  • the suction device or the like Even if there is no, the sputter particles can be discharged from the discharge portion 424 to the outside.
  • the collection part 422 is provided at the corner when the sputter particles are likely to be deposited, for example, when the inside has a corner (polygonal shape) when the cross section perpendicular to the axial direction of the cathode 420 is viewed. It is preferable that In the collection unit 422, it is preferable that the entrance into which the sputtered particles enter from the inside of the cathode 420 is narrower than the inside of the collection unit 422. By so doing, it is possible to further prevent the sputtered particles collected by the collection unit 422 from dropping into the cathode 420 and scattering.
  • the shape of the collection part 422 may be a circle or an ellipse that is partially open when a cross section perpendicular to the axial direction of the cathode 420 is viewed, or may be a polygon such as a triangle, a rectangle, a pentagon, or a hexagon. However, other shapes may be used. In the opening, it is preferable that an angle ⁇ formed by two straight lines connecting the center of each shape of the cross section (not opened) and the opening is 90 ° or more and 180 ° or less.
  • the size of the collection part 422 is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 15 mm or more in the height direction and the width direction (diameter in the case of a circle).
  • this dimension is good also as 70 mm or less, 35 mm or less is preferable, 30 mm or less is more preferable, and 25 mm or less is more preferable.
  • the diameter D of the circle is preferably 10 mm or more and 70 mm or less, and the radius r of the circle is preferably 5 mm or more and 35 mm or less.
  • the collecting part 422 may be formed continuously in the length direction with a constant cross-sectional shape or changing the cross-sectional shape, may be formed intermittently, or may be formed in part. May be.
  • the cathode 420 may be the same as the cathode 20 except that the cathode 420 includes a collection unit 422 and a discharge unit 424.
  • the shape of the cathode 420 has a predetermined configuration, and specifically includes a collection unit 422 and a discharge unit 424. For this reason, by collecting the sputter particles in the collection unit 422 and appropriately discharging the sputter particles from the discharge unit 424, it is possible to suppress the deposition of the sputter particles and the falling and scattering of the deposited sputter particles. As a result, unnecessary particle release can be suppressed.
  • FIG. 8 is a cross-sectional view corresponding to FIG. 2 in an atomic beam source 510 which is an example of the fifth embodiment.
  • symbol is attached
  • the atomic beam source 510 includes a cylindrical cathode 20 closed at both ends, a rod-shaped first anode 540 provided inside the cathode 20, and a first anode 540 inside the cathode 20. And a rod-shaped second anode 550 provided to be spaced apart.
  • the cathode 20 has an emission part 30 provided with a plurality of emission ports 32 capable of emitting atomic beams in a part of the cylindrical surface, and a part corresponding to the emission part 30 is opened.
  • the cathode 20 has a supply unit 36 on the surface opposite to the emission unit 30. Both ends of the first anode 540 and the second anode 550 are fixed to one end and the other end of the cathode 20 via an insulating member 62.
  • the first anode 540 and the second anode 550 are provided with protrusions 544 and 554 on the opposite sides of the main bodies 542 and 552, which face each other.
  • the shapes, dimensions, materials, and arrangement of the main bodies 542 and 552 can be the same as those of the first anode 40 and the second anode 50.
  • the shape of the protrusions 544 and 554 may be a shape with a sharp tip, a shape with a rounded tip, or a shape with a flat tip. Further, the protrusions 544 and 554 may be formed continuously in the length direction with a constant cross-sectional shape or changing the cross-sectional shape, or may be formed intermittently.
  • the protrusions 544 and 554 may be formed over the entire length direction, or may be formed in part.
  • the protrusions 544 and 554 are preferably formed such that the distance P between the tip thereof and the cathode 20 is 0.5 mm or more and 5 mm or less, more preferably 0.5 mm or more and 3 mm or less, and 0.5 mm or more and 2 mm or less. Is more preferable.
  • the height of the protrusions 544 and 554 is preferably 0.5 mm or greater and 3 mm or less, more preferably 1 mm or greater and 3 mm or less, and even more preferably 2 mm or greater and 3 mm or less.
  • the first anode 540 and the second anode 550 may be arranged in parallel to each other so that the central axes of the main bodies 542 and 552 are located on a predetermined arrangement surface parallel to the emitting portion 30. Further, at least one of the central axes may be disposed to be inclined in the vertical direction with respect to the arrangement surface P, for example, or at least one of the central axes may be inclined in the width direction with respect to a surface perpendicular to the width direction, for example. Or both of them may be provided.
  • the inclination of the central axis with respect to the arrangement surface P may be, for example, 0 ° or more and 10 ° or less. Further, the inclination of the central axis with respect to the plane perpendicular to the width direction may be, for example, 0 ° or more and 10 ° or less.
  • the shapes of the first anode 540 and the second anode 550 have a predetermined configuration. Specifically, the first anode 540 and the second anode 550 are opposite to the sides facing each other. Protrusions 544 and 554 are provided. In such an atomic beam source 510, plasma is generated and an atomic beam can be emitted at a lower voltage than the case where there are no projections 544 and 554 due to electric field concentration. When the voltage is low, the movement speed of the cations becomes slow.
  • FIG. 9 is a cross-sectional view corresponding to FIG. 2 in an atomic beam source 610 which is an example of the sixth embodiment.
  • FIG. 10 is a perspective view of the emission port 632 of the atomic beam source 610.
  • a two-dot chain line is a virtual boundary line with the main part of the discharge part 630.
  • symbol is attached
  • the atomic beam source 610 includes a cylindrical cathode 620 closed at both ends, a rod-shaped first anode 140 provided inside the cathode 620, and a first anode 140 inside the cathode 620. And a rod-shaped second anode 150 provided at a distance.
  • the cathode 620 has an emission part 630 in which a plurality of emission ports 632 capable of emitting atomic beams are provided in a part of the cylindrical surface, and a part corresponding to the emission part 630 is opened.
  • the cathode 620 has a supply unit 36 on the surface opposite to the emission unit 630. Both ends of the first anode 140 and the second anode 150 are fixed to one end and the other end of the cathode 620 via an insulating member 62.
  • the emission port 632 provided in the emission part 630 of the cathode 620 is formed so that the opening area tends to decrease from the outer surface to the inner surface of the cathode 620.
  • the emission port 632 is provided with a filter portion on the inner surface side of the cathode 620 so that the opening area tends to decrease from the outer surface to the inner surface of the cathode 620.
  • a filter unit 634 is provided on the inner surface side of the cathode 620 in the emission port 632 provided in the emission unit 630 of the cathode 620, as shown in FIG.
  • the filter unit 634 has two or more openings 636 having an opening area smaller than that of the discharge port 632.
  • the shape of the opening 636 of the filter unit 634 may be a circle or an ellipse, a polygon such as a triangle, a quadrangle, a pentagon, a hexagon, or other shapes.
  • the dimension of the opening 636 of the filter portion 634 is preferably 0.01 mm or more and 0.1 mm or less, more preferably 0.01 mm or more and 0.08 mm or less in the width direction and the length direction (diameter in the case of a circle). 0.03 mm to 0.06 mm is more preferable.
  • the opening 636 of the filter unit 634 may have a slit shape.
  • a slit having a width of 0.01 mm or more and 0.1 mm or less is preferable.
  • the direction in which the slit extends is not particularly limited.
  • the thickness of the filter part 634 should just be less than the thickness of the discharge
  • the material of the filter unit 634 may be the one exemplified for the cathode 20, and may be the same as or different from the emission unit 630.
  • the filter part 634 is preferably formed integrally with the discharge part 630.
  • the shape of the discharge port 632 other than the filter part 634 can be the same as that of the discharge port 32.
  • the shape, size, and formation site of the discharge part 630 can be the same as those of the discharge part 30 except for the discharge port 632.
  • the shape, dimensions, material, and the like of the cathode 620 can be the same as those of the cathode 20 except for the emission portion 630 and the emission port 632.
  • the shape of the cathode 620 has a predetermined configuration.
  • the emission port 632 provided in the emission unit 630 of the cathode 620 includes the filter unit 634 on the inner surface side of the cathode 620. I have.
  • the first to sixth embodiments have been described separately, but two or more of the first to sixth embodiments may be combined.
  • the atomic beam sources 10 to 610 have the casing 60, but the casing 60 may be omitted.
  • the cathodes 20 to 620 have a cylindrical shape with both ends closed.
  • the cathodes 20 to 620 may have a cylindrical shape with one end closed and one end opened, or a cylindrical shape with both ends open. In this case, the housing 60 closes the openings of the cathodes 20 to 620.
  • both the first anode 40 to 540 and the second anode 50 to 550 are fixed to each other at one end and the other end of the cathodes 20 to 620 through the insulating member 62.
  • At least one of the first anodes 40 to 540 and the second anodes 50 to 550 may be fixed to only one end of the cathodes 20 to 620 via the insulating member 62, or may be fixed by other methods.
  • Ar gas is exemplified as the source gas.
  • He, Ne, Kr, Xe, O 2 , H 2 , and N 2 may be used.
  • the source gas is supplied from the supply unit 36, but it may be present in advance in the cathodes 20 to 620. In this case, the supply unit 36 can be omitted.
  • Experimental Examples 1-2, 1-5, 1-8, 1-11, 1-12, 2-2 to 2-7, 3-2 to 3-5, 4-2, 4-3, 5- 1 and 5-2 correspond to examples of the present invention, and experimental examples 1-1, 1-3, 1-4, 1-6, 1-7, 1-9, 1-10, 2-1, 3 -1,4-1,5-3,5-4 correspond to comparative examples.
  • Table 1 shows the distance L between the centers of the first anode 40 and the second anode 50, the distance H between the arrangement surface P and the emitting portion 30, and the value of (H + L) ⁇ H 2 / L.
  • This atomic beam source 10 was disposed in a processing chamber maintained at a vacuum of 10 ⁇ 6 Pa, and the Si substrate to be processed was irradiated with an atomic beam.
  • a high voltage DC power source connected to the cathode 20 and the first anode 40 and the second anode 50 was applied with a voltage of 1000 V at a current of 100 mA.
  • Ar gas as source gas was supplied from the supply part 36 at 30 cc / min.
  • Table 1 shows the evaluation results of unnecessary particles (carbon particles, hereinafter also referred to as particles) and the evaluation results of beam (atomic beam) irradiation when the substrate surface is confirmed.
  • the evaluation of the particles was performed by confirming the substrate surface with a particle counter and comparing the amount of particles with the current product (for example, Experimental Example 1-1). "A” for particles that are much less than the current product, "B” for particles that are less than the current product, "C” for particles that are equivalent to the current product, and those with more particles than the current product Rated as “D”.
  • the beam irradiation was evaluated by measuring the etching rate with a film thickness meter and comparing the etching rate with the current product.
  • the value of (H + L) ⁇ H 2 / L is preferably 750 or more, more preferably 800 or more, and further preferably 850 or more, and the value of (H + L) ⁇ H 2 / L is 1670 or less. Preferably 1050 or less Still more preferably, it was found that even more preferably 1000 or less.
  • Experimental example 2-1 was the same as experimental example 1-1.
  • the atomic beam source 110 shown in FIG. 4 was used.
  • the atomic beam source 210 shown in FIG. 5 was used.
  • the cathodes 120 and 220 the corners of the cathode 20 of Experimental Example 2-1 were formed in the shapes shown in Table 2. The experiment was conducted under the same conditions as in Experimental Example 2-1.
  • R5 indicates an R surface having a radius of 5 mm
  • C5 indicates a chamfer surface having a height and a width of 5 mm.
  • Table 2 shows the evaluation results of the particles when the substrate surface was confirmed. As shown in Table 2, when the corner portion has a chamfered shape, the evaluation result of the particles was good, and it was found that unnecessary particles can be released. Therefore, in the aspect of 2nd Embodiment, it turned out that discharge
  • FIG. 11 shows a schematic diagram of the internal state after use of a general atomic beam source.
  • FIG. 12 shows a schematic diagram of the state of deposits (sputtered particles) at the corners of a general atomic beam source.
  • FIG. 13 shows a schematic diagram of the state of deposits at the corners when the R plane is provided.
  • a portion surrounded by a one-dot chain line indicates a portion where a lot of carbon particles are deposited, and a portion surrounded by a broken line indicates a portion where the cathode 20 is worn a lot.
  • the corners tend to deposit sputtered particles, but in Experimental Examples 2-2 to 2-7, each corner has a chamfered shape, and therefore, as shown in FIG.
  • the concentration of sputtered particles at the corners could be suppressed.
  • the portion close to the plasma (for example, the portion other than the corner portion of the cathode) tends to be worn by the collision of the cation, but in Experimental Examples 2-2 to 2-7, Since the corners are chamfered and the distance to the plasma of the cathode 120 is made uniform, the wear amount is assumed to be more uniform. From this point of view, that is, from the viewpoint of suppressing the concentration of the sputtered particles at the corners and making the distance from the cathode plasma uniform, the cathode has an inner side when viewed from a cross section perpendicular to the axial direction of the cathode. It was inferred that it could be circular or elliptical.
  • the distance from the center of the cathode considered to be close to the center of the plasma to the inside of the cathode is as uniform as possible.
  • the value of Xmin / Xmax described above is 0.5. It was found that it was preferable to satisfy ⁇ Xmin / Xmax ⁇ 1. It was found that the value of Xmin / Xmax is preferably 0.68 or more, and more preferably 0.7 or more. It was found that when the chamfered shape is a chamfer surface, the value of Xmin / Xmax is preferably greater than 0.75, more preferably 0.77 or more, and even more preferably 0.79 or more.
  • Table 3 shows the particle evaluation results and the beam irradiation evaluation results when the substrate surface was confirmed.
  • Table 3 shows the particle evaluation results and the beam irradiation evaluation results when the substrate surface was confirmed.
  • the angle S is 4 ° or more
  • the evaluation result of the beam irradiation was the same as that of the current product, and the evaluation result of the particles was very good.
  • Experimental Example 3-2 in which the angle S is 3 °, the evaluation result of the beam irradiation was lower than that of the current product, but the evaluation result of the particle was very good. It was speculated that even if the irradiation was good, the particle evaluation results would be good. Therefore, it has been found that in the aspect of the third embodiment, it is possible to suitably suppress the release of unnecessary particles.
  • the angle S is 4 degrees or more and 20 degrees or less.
  • the emission port 632 provided in the emission part 630 of the cathode 620 tends to decrease in opening area from the outer surface to the inner surface of the cathode 620. Since it was formed, it was speculated that the same effect as the atomic beam source 310 could be obtained.
  • Table 4 shows the particle evaluation results when the substrate surface was confirmed. As shown in Table 4, in each of Experimental Examples 4-2 and 4-3 including the collection unit 422 and the discharge unit 423, since the evaluation results of the particles were good, unnecessary particles were released. It turned out that it can suppress. Therefore, in the aspect of 4th Embodiment, it turned out that discharge
  • Table 5 shows the particle evaluation results and the beam irradiation evaluation results when the substrate surface was confirmed.
  • Table 5 shows the particle evaluation results and the beam irradiation evaluation results when the substrate surface was confirmed.
  • both the particle evaluation result and the beam irradiation evaluation result were good. Therefore, in the aspect of 5th Embodiment, it turned out that discharge
  • Experimental Examples 5-3 and 5-4 in which only the distance P was changed without providing the protrusions the evaluation results of the beam irradiation and the evaluation results of the particles were the same as the current product. 5-2, it was inferred that the beam irradiation evaluation results and particle evaluation results were good due to the presence of protrusions.
  • the present invention can be used in the technical field using atomic beams.
  • 10 atomic beam source 20 cathode, 30 emission part, 32 emission port, 36 supply part, 40 first anode, 50 second anode, 60 housing, 62 insulation member, 110 atomic beam source, 120 cathode, 140 first anode , 150 second anode, 210 atom beam source, 220 cathode, 310 atom beam source, 320 cathode, 330 emission part, 332 emission port, 410 atom beam source, 420 cathode, 422 collection part, 424 discharge part, 510 atom beam Source, 540, first anode, 542 body, 544 protrusion, 550, second anode, 552 body, 554 protrusion, 610 atomic beam source, 620 cathode, 630 emission part, 632 emission port, 634 filter part, 636 opening.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

原子線源10は、原子線を放出可能な放出口32が設けられた放出部30を有する筒状の陰極20と、陰極20の内部に設けられた棒状の第1陽極40と、陰極20の内部に第1陽極40と離間して設けられた棒状の第2陽極50と、を備え、陰極20の形状、第1陽極40の形状、第2陽極50の形状、及び、陰極20と第1陽極40と前記第2陽極50との位置関係、からなる群より選ばれる少なくとも1以上を所定の構成とすることで、第1陽極40と第2陽極50との間でのプラズマにより生じた陽イオンが陰極20、第1陽極40、及び、第2陽極50の少なくとも1つと衝突して発生する、スパッタ粒子の放出を抑制するものである。

Description

原子線源
 本発明は、原子線源に関する。
 従来、この種の原子線源としては、陰極である筒状体の内部に配置される陽極を変位させ、放電空間内の電子密度を制御するものが提案されている(特許文献1参照)。特許文献1の原子線源では、安価に短時間で所望の単位時間あたりの放出原子密度分布を得ることができ、表面改質装置においては、良好な表面処理が可能になるとしている。
 ところで、特許文献1の原子線源では、放電空間内で生成したイオンなどによって陰極や陽極がスパッタされて脱落し、脱落した粒子が原子線源から出射してしまうことがあった。そこで、陰極となる筐体と、筐体内に設けられ電界を発生させる陽極となる電極体と、を備え、筐体や電極体の少なくとも一部に、電界で生成するイオンによりスパッタされ難い材料を適用したものが提案されている(特許文献2参照)。特許文献2の原子線源では、不要な粒子の出射を抑制できるとしている。
特開2007-317650号公報 特開2014-86400号公報
 しかしながら、特許文献2の原子線源では、スパッタされ難い材料を適用することで、不要な粒子の放出を抑制できるものの、まだ不要な粒子が放出することがあり、不要な粒子の放出をより抑制することが望まれていた。
 本発明はこのような課題を解決するためになされたものであり、不要な粒子の放出をより抑制できる原子線源を提供することを主目的とする。
 本発明の原子線源は、上述の主目的を達成するために以下の手段を採った。
 本発明の原子線源は、
 原子線を放出可能な放出口が設けられた放出部を有する筒状の陰極と、
 前記陰極の内部に設けられた棒状の第1陽極と、
 前記陰極の内部に前記第1陽極と離間して設けられた棒状の第2陽極と、
 を備え、前記陰極の形状、前記第1陽極の形状、前記第2陽極の形状、及び、前記陰極と前記第1陽極と前記第2陽極との位置関係、からなる群より選ばれる少なくとも1以上を所定の構成とすることで、前記第1陽極と前記第2陽極との間でのプラズマにより生じた陽イオンが前記陰極、前記第1陽極、及び、前記第2陽極の少なくとも1つと衝突して発生する、スパッタ粒子の放出を抑制するものである。
 本発明の原子線源では、不要な粒子の放出をより抑制できる。こうした効果が得られる理由は、以下のように推察される。すなわち、陰極の形状や各陽極の形状、陰極と第1陽極と第2陽極との位置関係などを所定のものとすることで、スパッタ粒子の発生そのものを抑制したり、スパッタ粒子の堆積を抑制したり、発生したスパッタ粒子の陰極や陽極からの脱落や飛散を抑制したり、脱落や飛散したスパッタ粒子の放出を抑制したりできるためと推察される。
第1実施形態の一例である原子線源10の構成の概略を示す斜視図。 図1のA-A端面図。 原子線源10の使用状態を示す説明図。 第2実施形態の一例である原子線源110における図2に相当する断面図。 第2実施形態の一例である原子線源210における図2に相当する断面図。 第3実施形態の一例である原子線源310における図2に相当する断面図。 第4実施形態の一例である原子線源410における図2に相当する断面図。 第5実施形態の一例である原子線源510における図2に相当する断面図。 第6実施形態の一例である原子線源610における図2に相当する断面図。 原子線源610の放出口632の斜視図。 一般的な原子線源の使用後の内部状態を示す模式図。 一般的な原子線源の角部での堆積物の様子を示す模式図。 R面を設けた原子線源の角部での堆積物の様子を示す模式図。
[第1実施形態]
 図1は、第1実施形態の一例である原子線源10の構成の概略を示す斜視図である。図2は、図1のA-A断面図である。図3は、原子線源10の使用状態を示す説明図である。
 原子線源10は、図1,2に示すように、両端が閉じた筒状の陰極20と、陰極20の内部に設けられた棒状の第1陽極40と、陰極20の内部に第1陽極40と離間して設けられた棒状の第2陽極50と、を備えている。陰極20は、筒状の面のうちの一部に、原子線を放出可能な複数の放出口32が設けられた放出部30を有しており、この放出部30に対応する部分が開口した筐体60の内部に配設されている。また、陰極20は、放出部30とは反対側の面に、原料ガス(例えばArガス)を供給する供給部36を有している。第1陽極40及び第2陽極50は、いずれもその両端が陰極20の一端及び他端に、絶縁部材62を介して固定されている。なお、図1において、筐体60と陰極20との境界線を2点鎖線で示し、陰極20の内面を網掛けで示した。
 原子線源10は、使用時には、例えば10-2Pa以下、好ましくは10-3Pa以下の減圧雰囲気下に配設され、図3に示すように、陰極20に直流電源の負極が、第1陽極40及び第2陽極50にそれぞれ直流電源の正極が接続され、例えば0.1kV~10kV程度の高電圧が印加される。こうして生じた電界により、供給部36から供給される原料ガスが電離して第1陽極40と第2陽極50との間にプラズマが生成する。プラズマにより生じた陽イオン(例えばAr+)は、放出部30に引き寄せられて放出口32を通過し、陰極20から電子を受け取って原子線(例えばArビーム)として外部に放出される。こうして原子線源として機能する。
 原子線源10では、第1陽極40及び第2陽極50は、放出部30に平行な所定の配設面P上に中心軸C1,C2が位置するように互いに平行に配設されている。また、第1陽極40及び第2陽極50は、中心軸C1,C2間の距離をLとし、配設面Pと放出部30との距離をHとしたときに、(H+L)×H2/Lの値が750以上1670以下の範囲内となるように配設されている。(H+L)×H2/Lの値は、750以上が好ましく、800以上がより好ましく、850以上がさらに好ましい。また、(H+L)×H2/Lの値は、1670以下が好ましく、1050以下がより好ましく、1000以下がさらに好ましい。中心軸C1,C2間の距離Lは、例えば、10mm以上50mm以下が好ましく、12mm以上40mm以下がより好ましく、12mm以上35mm以下がさらに好ましい。また、配設面Pと放出部30との距離Hは、例えば、10mm以上50mm以下が好ましく、15mm以上45mm以下がより好ましく、20mm以上30mm以下がさらに好ましい。なお、第1陽極40及び第2陽極50は、中心軸C1とC2が陰極20の軸方向に平行になるように配設されていることが好ましい。また、中心軸C1とC2の中間の位置が陰極20の幅方向の中心の位置と一致するように配置されていることが好ましく、その差は±5mm以内であることがより好ましい。
 陰極20の形状は、陰極20の軸方向に垂直な断面を見たときに、断面が、円や楕円でもよいし、三角形、四角形、五角形、六角形などの多角形でもよいし、その他の形状でもよい。陰極20は、内側と外側の断面形状が同じでも異なっていてもよい。陰極の寸法は、例えば、その内側の寸法が、高さ方向で20mm以上100mm以下、幅方向で20mm以上100mm以下、長さ方向で50mm以上300mm以下などとしてもよい。なお、高さ方向は放出部30が形成された面に垂直な方向、幅方向は縦方向に垂直でかつ軸方向に垂直な方向、長さ方向は陰極20の軸方向に平行な方向、とする(以下同じ)。陰極20の厚みは、0.5mm以上10mm以下などとしてもよい。
 陰極20の材質は、黒鉛、ガラス状カーボンなどの炭素材料とすることができる。炭素材料は、電子放出性が良く、安価で加工性も良好であるため好適である。陰極20の材質は、この他に、例えば、タングステン、モリブデン、チタン、ニッケルや、それらの合金、それらの化合物などとしてもよい。
 放出部30は、所定の幅で長さ方向に伸びる領域に形成されていてもよい。例えば、陰極20の内側の断面が多角形の場合にはその一面に形成されていてもよい。放出部30の寸法は、幅が5mm以上90mm以下、長さが5mm以上90mm以下などとしてもよい。この放出部30は、複数に分割されていてもよい。放出口32の形状は、円や楕円でもよいし、三角形、四角形、五角形、六角形などの多角形でもよいし、その他の形状でもよい。放出口32の寸法は、幅方向及び長さ方向(円の場合には直径)で、それぞれ、0.05mm以上5mm以下などとしてもよい。また、放出口32は、幅0.05mm以上5mm以下のスリット形状でもよい。放出部30の厚みは、0.5mm以上10mm以下などとしてもよく、陰極20の他の部分の厚みと同じでも異なってもよい。放出部30の材質は、陰極20で例示したものなどとすることができ、放出部30と同じものとしても異なるものとしてもよい。
 供給部36には、原料ガスを供給する図示しない供給装置が接続される。供給部36の位置や寸法、形状などは、特に限定されるものではなく、プラズマが安定するように適宜設定すればよい。
 筐体60は、陰極20のうち放出部30以外を覆うものであればよいが、陰極20のうち放出部30や供給部36以外の全ての部分を覆うものであることが好ましい。筐体60の材質は、アルミ合金、銅合金、ステンレスなどとすることができる。
 第1陽極40及び第2陽極50の形状は、陰極20の軸方向に垂直な断面を見たときに、断面が円や楕円でもよいし、三角形、四角形、五角形、六角形などの多角形でもよいし、その他の形状でもよい。第1陽極40及び第2陽極50の寸法は、特に限定されないが、例えば、高さ方向及び幅方向(円の場合は直径)でそれぞれ1mm以上20mm以下、長さ方向で50mm以上400mm以下としてもよい。なお、第1陽極40及び第2陽極50の形状や寸法は同じでも異なっていてもよい。
 第1陽極40及び第2陽極50の材質は、黒鉛、ガラス状カーボンなどの炭素材料とすることができる。炭素材料は、電子放出性が良く、安価で加工性も良好であるため好適である。第1陽極40及び第2陽極50の材質は、この他に、例えば、タングステン、モリブデン、チタン、ニッケルや、それらの合金、それらの化合物などとしてもよい。
 この原子線源10では、減圧雰囲気の処理室内において、この処理室内に配置された被処理材に原子線を照射して、被処理材に所望の処理を施すことができる。処理室は、10-2Pa以下に設定されていることが好ましく、10-3Pa以下がより好ましい。被処理材としては、例えば、Siや、LiTaO3、LiNbO3、SiC、SiO2、Al23、GaN、GaAs、GaPなどの化合物や金属などが挙げられる。原子線源10では、原子線照射により、被処理材表面の酸化物や吸着分子を除去したり、被処理材表面を活性化したりすることができる。例えば、2つの被処理材の表面を、原子線照射により酸化物や吸着分子を除去して活性化させ、原子線照射面同士を対向させて重ね合わせ、必要に応じて加圧することで、2つの被処理材を直接接合することができる。原子線源10は、いわゆる高速原子線(FAB)源として用いることができる。
 以上説明した原子線源10では、陰極20と第1陽極40と第2陽極50との位置関係が所定の構成であり、具体的には、(H+L)×H2/Lの値が750以上1670以下である。このように、(H+L)×H2/Lの値が750以上1670以下とすると、原子線の取り出し効率が向上するため、所望の原子線の取り出し効率を得るのに必要な直流電源の出力を小さくできる。それにより、陰極20の放出部30以外の部分に衝突する陽イオンの割合が少なくなるし、直流電源の出力を小さくすれば衝突する陽イオンの数も少なくなるため、原子線源10では原子線の取り出し効率を維持したまま、スパッタ粒子の発生を抑制できる。結果として、不要な粒子の放出をより抑制できる。
[第2実施形態]
 図4は、第2実施形態の一例である原子線源110における図2に相当する断面図である。なお、原子線源10の構成と同一の構成については、同一の符号を付し、詳細な説明を省略する。また、図4に現れない構成は、原子線源10の構成と同様であるため、斜視図を省略し、原子線源の使用方法やそれを用いた被処理材の処理方法は、原子線源10と同様であるため、説明を省略する(以下各実施形態において同じ)。
 原子線源110は、図4に示すように、両端が閉じた筒状の陰極120と、陰極120の内部に設けられた棒状の第1陽極140と、陰極120の内部に第1陽極140と離間して設けられた棒状の第2陽極150と、を備えている。陰極120は、筒状の面のうちの一部に、原子線を放出可能な複数の放出口32が設けられた放出部30を有しており、この放出部30に対応する部分が開口した筐体60の内部に配設されている。また、陰極120は、放出部30とは反対側の面に、供給部36を有している。第1陽極140及び第2陽極150は、いずれもその両端が陰極120の一端及び他端に絶縁部材62を介して固定されている。原子線源110では、(H+L)×H2/Lの値は、原子線源10と同じでもよいし、異なってもよい。例えば、500以上4000以下などの範囲で適宜設定してもよい。
 原子線源110では、陰極120が、陰極120の軸方向に垂直な断面を見たときに内側が四角形で、四角形の各角が面取り形状、具体的にはR面である。この四角形は正方形又は長方形であることが好ましい。R面は、半径が、1mm以上であることが好ましく、5mm以上がより好ましく、10mm以上がさらに好ましい。また、R面は、半径が50mm以下としてもよいし、30mm以下としてもよいし、20mm以下としてもよい。陰極120は、陰極120の軸方向に垂直な断面を見たときに、中心Oから内側までの距離の最小値Xminと中心Oから内側までの距離の最大値Xmaxとが0.5≦Xmin/Xmax≦1を満たすことが好ましい。こうしたものでは、不要な粒子の放出をより抑制できる。中心Oは、陰極120の軸方向に垂直な断面を見たときの内側の四角形の重心の位置とすることができる。Xmin/Xmaxの値は、0.68以上が好ましく、0.7以上がより好ましい。陰極120の寸法は、例えば、その内側の寸法が、高さ方向で20mm以上100mm以下、幅方向で20mm以上100mm以下、長さ方向で50mm以上300mm以下などとしてもよい。
 陰極120は、陰極120の軸方向に垂直な断面を見たときに外側の形状が、円や楕円でもよいし、三角形、四角形、五角形、六角形などの多角形でもよいし、その他の形状でもよい。陰極120は、内側と外側の断面形状が同じでも異なっていてもよい。陰極20の厚みは、0.5mm以上10mm以下などとしてもよい。陰極120の材質は、陰極20で例示したものを用いることができる。
 第1陽極140及び第2陽極150は、放出部30に平行な所定の配設面上に各中心軸が位置するように互いに平行に配設されていてもよい。また、中心軸の少なくとも一方が例えば配設面Pに対して縦方向に傾いて配設されていてもよいし、中心軸の少なくとも一方が例えば幅方向に垂直な面に対して幅方向に傾いて配設されていてもよいし、これらの両方としてもよい。配設面Pに対する中心軸の傾きは、例えば0°以上10°以下としてもよい。また、幅方向に垂直な面に対する中心軸の傾きは、例えば0°以上10°以下としてもよい。第1陽極140及び第2陽極150の形状や寸法、材質は、第1陽極40及び第2陽極50と同様とすることができる。
 以上説明した原子線源110では、陰極120の形状が所定の構成であり、具体的には、陰極120が面取り形状の角部を有する。角部は、スパッタ粒子が堆積しやすい傾向にあるが、陰極120では、面取り形状の角部を有するため、スパッタ粒子の角部への堆積の集中を抑制できる。このため、陰極120内に堆積するスパッタ粒子の堆積層の厚みがより均一になり、歪みによる亀裂の発生が抑制され、堆積物の落下や飛散を抑制できる。また、プラズマに近い部分(例えば陰極の角部以外の部分)は、陽イオンの衝突によって摩耗しやすい傾向にあるが、陰極120の面取り形状の角部は面取り形状でない場合よりもプラズマに近くなり、陰極120のプラズマとの距離が均一化されるため、摩耗量がより均一になる。このように、原子線源110では、陰極120への堆積物の堆積量や、陽イオンの衝突による陰極120の摩耗量がより均一になり、落下や飛散のおそれのある堆積物の成長そのものを抑制できる。結果として、不要な粒子の放出を抑制できる。
 なお、原子線源110は、陰極120が、陰極120の軸方向に垂直な断面を見たときに内側が四角形で、四角形の各角がR面であるものとしたが、各角の形状はチャンファー(chamfer)面でもよい。こうしても、原子線源110と同様の効果が得られる。図5は、第2実施形態の一例である原子線源210における図2に相当する断面図である。原子線源110の構成と同一の構成については、同一の符号を付し、詳細な説明を省略する。原子線源210において、チャンファー面は、高さhと幅wがそれぞれ10mmより大きいことが好ましく、15mm以上がより好ましい。チャンファー面の高さhと幅wはそれぞれ50mm以下としてもよく、30mm以下としてもよく、20mm以下としてもよい。原子線源210においても、四角形は正方形又は長方形であることが好ましい。また、陰極220は、陰極220の軸方向に垂直な断面を見たときに、中心Oから内側までの距離の最小値Xminと中心Oから内側までの距離の最大値Xmaxとが0.5≦Xmin/Xmax≦1を満たすことが好ましい。Xmin/Xmaxの値は、0.68以上としてもよいし、0.7以上としてもよいが、0.75より大きいことが好ましく、0.77以上が好ましく、0.79以上がより好ましい。
 また、原子線源110や原子線源210は、陰極が、陰極の軸方向に垂直な断面を見たときに内側が四角形で、四角形の各角が面取り形状であるものとしたが、陰極は、例えば、陰極の軸方向に垂直な断面を見たときに内側が円形又は楕円形であるものとしてもよい。こうしても、原子線源110や原子線源210と同様の効果が得られる。この場合も、陰極の軸方向に垂直な断面を見たときに、中心Oから内側までの距離の最小値Xminと中心Oから内側までの距離の最大値Xmaxとが0.5≦Xmin/Xmax≦1を満たすことが好ましい。Xmin/Xmaxの値は、0.68以上としてもよいし、0.7以上としてもよい。なお、この場合、中心Oの位置は、陰極の軸方向に垂直な断面を見たときの内側の円又は楕円の中心の位置とすることができる。
[第3実施形態]
 図6は、第3実施形態の一例である原子線源310における図2に相当する断面図である。なお、原子線源10や原子線源110の構成と同一の構成については、同一の符号を付し、詳細な説明を省略する。
 原子線源310は、図6に示すように、両端が閉じた筒状の陰極320と、陰極320の内部に設けられた棒状の第1陽極140と、陰極320の内部に第1陽極140と離間して設けられた棒状の第2陽極150と、を備えている。陰極320は、筒状の面のうちの一部に、原子線を放出可能な複数の放出口332が設けられた放出部330を有しており、この放出部330に対応する部分が開口した筐体60の内部に配設されている。また、陰極320は、放出部330とは反対側の面に、供給部36を有している。第1陽極140及び第2陽極150は、いずれもその両端が陰極320の一端及び他端に絶縁部材62を介して固定されている。
 原子線源310では、陰極320の放出部330に設けられた放出口332が、陰極320の外面から内面に向けて開口面積が小さくなる傾向に形成されている。放出口は、外面と内面とを結ぶ直線の放出部330に垂直な方向に対する傾きSが0°より大きければよいが、4°以上が好ましく、6°以上がより好ましい。このように、傾きSが0°より大きければ、傾きSが例えば0°の場合よりも内面側の開口面積を小さく、外面側の開口面積を大きくできる。これにより、原子線源310では、内面側でスパッタ粒子の放出を抑制することができるし、外面側の開口が内面側の開口より大きく陽イオンや原子が放出口332に衝突しにくいため、原子線の取り出し効率の低下を抑制できる。また、傾きSは20°以下が好ましく、15°以下がさらに好ましく、10°以下がより好ましい。傾きSが20°以下であれば、内面側の開口が小さくなりすぎず、隣り合う穴と貫通することを防ぐことができる。陰極320の外面から内面に向けて開口面積が小さくなる傾向は、例えば、外面から内面に向けて直線状に一定の角度で小さくなるものとしてもよいし、角度を変えながら曲線状に小さくなるものとしてもよいし、階段状に小さくなるものとしてもよい。傾きSは、放出口332の全周にわたって一定でもよいし、一定でなくてもよい。
 放出口332の形状は、円や楕円でもよいし、三角形、四角形、五角形、六角形などの多角形でもよいし、その他の形状でもよい。放出口332の寸法は、陰極320の内面において、幅方向及び長さ方向(円の場合には直径)で、それぞれ、0.05mm以上5mm以下などとしてもよい。また、放出口32は、スリット形状でもよい。スリット形状の場合、陰極320の内面において、幅0.05mm以上5mm以下のスリットであることが好ましい。スリットの伸びる方向は特に限定されない。
 放出部330の形状や寸法、材質、形成部位は、放出口332以外については、放出部30と同様とすることができる。また、陰極320の形状や寸法、材質などは、放出部330及び放出口332以外については、陰極20と同様とすることができる。
 以上説明した原子線源310では、陰極320の形状が所定の構成であり、具体的には陰極320の放出部330に設けられた放出口332が、陰極320の外面から内面に向けて開口面積が小さくなる傾向に形成されている。このように、原子線源310では、内面側の開口面積が小さいため内面側でスパッタ粒子の放出を抑制することができるし、外面側の開口が内面側の開口より大きく陽イオンや原子が放出口332に衝突しにくいため、原子線の取り出し効率の低下を抑制できる。結果として、不要な粒子の放出を抑制できる。
[第4実施形態]
 図7は、第4実施形態の一例である原子線源410における図2に相当する断面図である。なお、原子線源10や原子線源110の構成と同一の構成については、同一の符号を付し、詳細な説明を省略する。
 原子線源410は、図7に示すように、両端が閉じた筒状の陰極420と、陰極420の内部に設けられた棒状の第1陽極140と、陰極420の内部に第1陽極140と離間して設けられた棒状の第2陽極150と、を備えている。陰極420は、筒状の面のうちの一部に、原子線を放出可能な複数の放出口32が設けられた放出部30を有しており、この放出部30に対応する部分が開口した筐体60の内部に配設されている。また、陰極420は、放出部30とは反対側の面に、供給部36を有している。第1陽極140及び第2陽極150は、いずれもその両端が陰極420の一端及び他端に絶縁部材62を介して固定されている。
 原子線源410では、陰極420が、スパッタ粒子を捕集する捕集部422と、捕集部422に接続されスパッタ粒子を外部に排出する排出部424とを備えている。原子線源410の使用時には、排出部424には、排出管などが接続されて、例えば処理室外などの適切な場所にスパッタ粒子が排出される。排出部424には、直接又は排出管などを介して吸引装置などを接続してもよいが、陰極420の内部の気圧が排出部424を介した外部の気圧より高い場合には、吸引装置などが無くても、排出部424からスパッタ粒子を外部に排出できる。
 捕集部422は、スパッタ粒子が堆積しやすい部分、例えば、陰極420の軸方向に垂直な断面を見たときに内側が角部を有する形状(多角形など)の場合に、角部に設けられていることが好ましい。捕集部422は、陰極420の内部からスパッタ粒子が入る入口が、捕集部422の内部よりも狭くなっていることが好ましい。こうすれば、捕集部422に捕集されたスパッタ粒子の陰極420の内部への脱落や飛散をより抑制できる。
 捕集部422の形状は、陰極420の軸方向に垂直な断面を見たときに、一部が開口した、円や楕円でもよいし、三角形、四角形、五角形、六角形などの多角形でもよいし、その他の形状でもよい。開口は、上記断面の各形状(開口していないもの)の中心と開口部とを結ぶ2本の直線のなす角θが90°以上180°以下であることが好ましい。捕集部422の寸法は、高さ方向及び幅方向(円の場合には直径)で、それぞれ、5mm以上が好ましく、10mm以上がより好ましく、15mm以上がさらに好ましい。また、この寸法は、70mm以下としてもよく、35mm以下が好ましく、30mm以下がさらに好ましく、25mm以下がさらに好ましい。例えば、捕集部422の断面が、一部が開口した円の場合、この円の直径Dは、10mm以上70mm以下が好ましく、この円の半径rは、5mm以上35mm以下が好ましい。捕集部422は、長さ方向に、断面形状一定で又は断面形状が変化しながら連続的に形成されていてもよいし、断続的に形成されていてもよいし、一部に形成されていてもよい。
 陰極420は、捕集部422及び排出部424を備えている点以外は、陰極20と同様とすることができる。
 以上説明した原子線源410では、陰極420の形状が所定の構成であり、具体的には、捕集部422と排出部424とを備えている。このため、スパッタ粒子を捕集部422に集めて排出部424から適切に排出することで、スパッタ粒子の堆積や、堆積したスパッタ粒子の落下や飛散を抑制できる。結果として、不要な粒子の放出を抑制できる。
[第5実施形態]
 図8は、第5実施形態の一例である原子線源510における図2に相当する断面図である。なお、原子線源10と同一の構成については、同一の符号を付し、詳細な説明を省略する。
 原子線源510は、図8に示すように、両端が閉じた筒状の陰極20と、陰極20の内部に設けられた棒状の第1陽極540と、陰極20の内部に第1陽極540と離間して設けられた棒状の第2陽極550と、を備えている。陰極20は、筒状の面のうちの一部に、原子線を放出可能な複数の放出口32が設けられた放出部30を有しており、この放出部30に対応する部分が開口した筐体60の内部に配設されている。また、陰極20は、放出部30とは反対側の面に、供給部36を有している。第1陽極540及び第2陽極550は、いずれもその両端が陰極20の一端及び他端に絶縁部材62を介して固定されている。
 原子線源510では、第1陽極540及び第2陽極550が、本体542,552の互いが対向する側の反対側に突起544,554を備えている。本体542,552の形状や寸法、材質、配置は、第1陽極40及び第2陽極50と同様とすることができる。突起544,554の形状は、先端が尖った形状でもよいし、先端が丸まった形状でもよいし、先端が平面となるような形状でもよい。また、突起544,554は、長さ方向に、断面形状一定で又は断面形状が変化しながら連続的に形成されていてもよいし、断続的に形成されていてもよい。また、突起544,554は、長さ方向全体にわたって形成されていてもよいし、一部に形成されていてもよい。突起544,554は、その先端と陰極20との距離Pが0.5mm以上5mm以下となるように形成されていることが好ましく、0.5mm以上3mm以下がより好ましく、0.5mm以上2mm以下がさらに好ましい。突起544,554の高さは、0.5mm以上3mm以下が好ましく、1mm以上3mm以下がより好ましく、2mm以上3mm以下がさらに好ましい。
 第1陽極540及び第2陽極550は、放出部30に平行な所定の配設面上に本体542及び552の各中心軸が位置するように互いに平行に配設されていてもよい。また、中心軸の少なくとも一方が例えば配設面Pに対して縦方向に傾いて配設されていてもよいし、中心軸の少なくとも一方が例えば幅方向に垂直な面に対して幅方向に傾いて配設されていてもよいし、これらの両方としてもよい。配設面Pに対する中心軸の傾きは、例えば0°以上10°以下としてもよい。また、幅方向に垂直な面に対する中心軸の傾きは、例えば0°以上10°以下としてもよい。
 以上説明した原子線源510では、第1陽極540及び第2陽極550の形状が所定の構成であり、具体的には、第1陽極540及び第2陽極550が互いに対向する側の反対側に突起544,554を備えている。こうした、原子線源510では、電界集中によって、突起544,554がない場合に比して低い電圧で、プラズマが発生し原子線を放出することができる。電圧が低いと、陽イオンの移動速度が遅くなるため、陽イオンが陰極20や第1陽極540,第2陽極550に衝突してもスパッタ粒子が生じにくく、スパッタ粒子の発生そのものを抑制できる。結果として、不要な粒子の放出を抑制できる。
[第6実施形態]
 図9は、第6実施形態の一例である原子線源610における図2に相当する断面図である。また、図10は、原子線源610の放出口632の斜視図である。図10において、2点鎖線は、放出部630本体部分との仮想境界線である。なお、原子線源10,110と同一の構成については、同一の符号を付し、詳細な説明を省略する。
 原子線源610は、図9に示すように、両端が閉じた筒状の陰極620と、陰極620の内部に設けられた棒状の第1陽極140と、陰極620の内部に第1陽極140と離間して設けられた棒状の第2陽極150と、を備えている。陰極620は、筒状の面のうちの一部に、原子線を放出可能な複数の放出口632が設けられた放出部630を有しており、この放出部630に対応する部分が開口した筐体60の内部に配設されている。また、陰極620は、放出部630とは反対側の面に、供給部36を有している。第1陽極140及び第2陽極150は、いずれもその両端が陰極620の一端及び他端に絶縁部材62を介して固定されている。
 原子線源610では、第3実施形態の原子線源310と同様、陰極620の放出部630に設けられた放出口632が、陰極620の外面から内面に向けて開口面積が小さくなる傾向に形成されている。ただし、放出口632は、陰極620の内面側にフィルタ部が設けられることによって、陰極620の外面から内面に向けて開口面積が小さくなる傾向に形成されている点で、原子線源310とは異なる。原子線源610では、陰極620の放出部630に設けられた放出口632のうち陰極620の内面側に、図10に示すようにフィルタ部634が設けられている。このフィルタ部634は、放出口632よりも開口面積の小さな開口636を2つ以上有している。フィルタ部634の開口636の形状は、円や楕円でもよいし、三角形、四角形、五角形、六角形などの多角形でもよいし、その他の形状でもよい。フィルタ部634の開口636の寸法は、幅方向及び長さ方向(円の場合には直径)で、それぞれ、0.01mm以上0.1mm以下が好ましく、0.01mm以上0.08mm以下がより好ましく、0.03mm以上0.06mm以下がさらに好ましい。フィルタ部634の開口636は、スリット形状でもよい。スリット形状の場合、幅0.01mm以上0.1mm以下のスリットであることが好ましい。スリットの伸びる方向は特に限定されない。フィルタ部634の厚みは、放出部630の厚み未満であればよいが、0.1mm以上3mm以下が好ましく、0.3mm以上2mm以下がより好ましく、0.5mm以上1mm以下がさらに好ましい。フィルタ部634の材質は、陰極20で例示したものなどとすることができ、放出部630と同じものとしても異なるものとしてもよい。フィルタ部634は、放出部630と一体形成されていることが好ましい。
 放出口632のフィルタ部634以外の形状は、放出口32と同様とすることができる。放出部630の形状や寸法、形成部位は、放出口632以外については、放出部30と同様とすることができる。また、陰極620の形状や寸法、材質などは、放出部630及び放出口632以外については、陰極20と同様とすることができる。
 以上説明した原子線源610では、陰極620の形状が所定の構成であり、具体的には、陰極620の放出部630に設けられた放出口632が、陰極620の内面側にフィルタ部634を備えている。これにより、原子線源610では、内面側でフィルタ部634によってスパッタ粒子の放出を抑制することができるし、外面側にはフィルタ部634がなく陽イオンや原子が放出口632に衝突しにくいため、原子線の取り出し効率の低下を抑制できる。結果として、不要な粒子の放出を抑制できる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、第1~第6実施形態を別々に説明したが、第1~第6実施形態のうちの2つ以上を組み合わせてもよい。上述した実施形態では、原子線源10~610は、筐体60を有するものとしたが、筐体60を省略してもよい。上述した実施形態では、陰極20~620は、両端が閉じた筒状であるものとしたが、一端が閉じて一端が開口した筒状でもよいし、両端が開口した筒状でもよい。この場合には、筐体60によって陰極20~620の開口が塞がれる。上述した実施形態では、第1陽極40~540及び第2陽極50~550は、いずれもその両端が陰極20~620の一端及び他端に絶縁部材62を解して固定されている、としたが、こうしたものに限定されない。第1陽極40~540及び第2陽極50~550の少なくとも一方は、陰極20~620の一端のみに絶縁部材62を介して固定されていてもよいし、その他の方法で固定されていてもよい。上述した実施形態では、原料ガスとして、Arガスを例示したが、例えば、He、Ne、Kr、Xe、O2、H2、N2などとしてもよい。また、原料ガスは、供給部36から供給されるものとしたが、予め陰極20~620の内部に存在するものとしてもよい。この場合、供給部36を省略できる。
 以下には、本発明の原子線源を用いて原子線を発生させた場合について、実験例として説明する。なお、実験例1-2,1-5,1-8,1-11,1-12,2-2~2-7,3-2~3-5,4-2,4-3,5-1,5-2が本発明の実施例に相当し、実験例1-1,1-3,1-4,1-6,1-7,1-9,1-10,2-1,3-1,4-1,5-3,5-4が比較例に相当する。
[実験例1-1~1-12]
 実験例1-1~1-12では、図1~3に示す原子線源10を用いた。陰極20には、陰極20の軸方向に垂直な断面を見たときに、断面が四角形で、内側の寸法が高さ60mm、幅50mm、長さ100mmで、厚み5mmの、両端が閉じた筒状の炭素陰極を用いた。放出部30には、直径2mmの放出口32を幅方向に10個、長さ方向に15個設けた。第1陽極40及び第2陽極50には、直径10mmで長さ120mmの棒状の炭素電極を用いた。第1陽極40と第2陽極50との中心間の距離L、配設面Pと放出部30との距離H及び(H+L)×H2/Lの値は、表1に示すものとした。この原子線源10を、10-6Paの真空に保たれた処理室内に配設し、処理対象となるSi基板に原子線を照射した。照射時には、陰極20と第1陽極40及び第2陽極50とに接続された高圧直流電源を、電流100mAで電圧1000Vの電圧を印加した。また、供給部36から原料ガスとしてのArガスを30cc/minで供給した。
Figure JPOXMLDOC01-appb-T000001
 表1に、基板表面を確認したときの不要な粒子(カーボン粒子、以下パーティクルとも称する)の評価結果と、ビーム(原子線)照射の評価結果を示した。なお、パーティクルの評価は、基板表面をパーティクルカウンターで確認し、現行品(例えば実験例1-1)とパーティクル量を比較することにより行った。パーティクルが現行品よりも非常に少ないものを「A」、パーティクルが現行品よりも少ないものを「B」、パーティクルが現行品と同等のものを「C」、パーティクルが現行品よりも多いものを「D」として評価した。また、ビーム照射の評価は、エッチングレートを膜厚計により測定し、現行品とエッチングレートを比較することにより行った。表では、エッチングレートが現行品よりも非常に高いものを「A」、エッチングレートが現行品よりも高いものを「B]、エッチングレートが現行品と同等のものを「C」、エッチングレートが現行品よりも低いものを「D]と評価した。表1に示すように、(H+L)×H2/Lが750以上1670以下の実験例1-2,1-5,1-8,1-11,1-12では、ビーム照射及びパーティクルの評価結果が現行品より良好であった。このことから、第1実施形態の態様では、不要な粒子の放出を抑制できることがわかった。また、(H+L)×H2/Lの値は、750以上が好ましく、800以上がより好ましく、850以上がさらに好ましいことがわかった。また、(H+L)×H2/Lの値は、1670以下が好ましく、1050以下がより好ましく、1000以下がさらに好ましいことがわかった。
[実験例2-1~2-7]
 実験例2-1は、実験例1-1と同様とした。実験例2-2~2-4では、図4に示す原子線源110を用いた。実験例2-5~2-7では、図5に示す原子線源210を用いた。陰極120及び220では、実験例2-1の陰極20の角部を、表2に示す形状にした。それ以外の条件は、実験例2-1と同様として、実験を行った。なお、表2のR5は半径5mmのR面であることを示し、C5は高さと幅が5mmのチャンファー面であることを示す。
Figure JPOXMLDOC01-appb-T000002
 表2に、基板表面を確認したときのパーティクルの評価結果を示した。表2に示すように、角部が面取り形状である場合には、パーティクルの評価結果が良好であったことから、不要な粒子の放出を抑制できることがわかった。よって、第2実施形態の態様では、不要な粒子の放出を抑制できることがわかった。また、R面は半径5mm以上であることが好ましく、チャンファー面は高さ及び幅がそれぞれ15mm以上であることが好ましいことがわかった。なお、実験例2-5,2-6では、パーティクルの評価結果はCであったが、パーティクルが実験例2-1より僅かに少なく、一定の効果が得られることがわかった。
 図11に、一般的な原子線源の使用後の内部状態の模式図を示す。図12に、一般的な原子線源の角部での堆積物(スパッタ粒子)の様子の模式図を示す。また、図13に、R面を設けた時の角部での堆積物の様子の模式図を示す。図11において、一点鎖線で囲んだ部分はカーボン粒子が多く堆積する部分を示し、破線で囲んだ部分は陰極20が多く摩耗する部分を示す。図11や図12に示すように、角部は、スパッタ粒子が堆積しやすい傾向にあるが、実験例2-2~2-7では、各角が面取り形状であるため、図13に示すようにスパッタ粒子の角部への堆積の集中を抑制できたと推察された。また、図11に示すように、プラズマに近い部分(例えば陰極の角部以外の部分)は、陽イオンの衝突によって摩耗しやすい傾向にあるが、実験例2-2~2-7では、各角が面取り形状であり陰極120のプラズマとの距離が均一化されるため、摩耗量がより均一になったと推察された。こうした観点、すなわちスパッタ粒子の角部への堆積の集中を抑制したり陰極のプラズマとの距離を均一化したりする観点から、陰極は、陰極の軸方向に垂直な断面を見たときに内側が円形又は楕円形でもよいと推察された。
 また、陰極は、プラズマの中心に近い位置であると考えられる陰極の中心から、陰極の内側までの距離ができるだけ均一であることが好ましく、例えば、上述したXmin/Xmaxの値が、0.5≦Xmin/Xmax≦1を満たすことが好ましいことがわかった。Xmin/Xmaxの値は、0.68以上が好ましく、0.7以上がより好ましいことがわかった。面取り形状がチャンファー面である場合には、Xmin/Xmaxの値が0.75より大きいことが好ましく、0.77以上がより好ましく、0.79以上がさらに好ましいことがわかった。
[実験例3-1~3-5]
 実験例3-1~3-5では、図6に示す原子線源310を用いた。陰極320では、放出口332の角度Sを表3に示す値とし、内面側の開口の直径を0.05mmとした。それ以外の条件は、実験例1-1と同様として、実験を行った。
Figure JPOXMLDOC01-appb-T000003
 表3に、基板表面を確認したときのパーティクルの評価結果と、ビーム照射の評価結果を示した。表3に示すように、角度Sが4°以上の実験例3-3~3-5では、ビーム照射の評価結果が現行品と同等でパーティクルの評価結果が非常に良好であった。角度Sが3°の実験例3-2では、ビーム照射の評価結果が現行品よりも低かったものの、パーティクルの評価結果は非常に良好であったため、放出口径や出力を調整するなどしてビーム照射を良好にしても、パーティクルの評価結果は良好になると推察された。よって、第3実施形態の態様では、好適に不要な粒子の放出を抑制できることがわかった。また、角度Sは4°以上20°以下であることが好ましいことがわかった。また、図9に示す原子線源610でも、原子線源310と同様、陰極620の放出部630に設けられた放出口632が、陰極620の外面から内面に向けて開口面積が小さくなる傾向に形成されていることから、原子線源310と同様の効果が得られると推察された。
[実験例4-1~4-3]
 実験例4-1~4-3では、図7に示す原子線源410を用いた。陰極420では、捕集部422を、表1に示す半径rの円形で、一部が欠けた形状とした。角度θは90°とした。それ以外の条件は、実験例1-1と同様として、実験を行った。
Figure JPOXMLDOC01-appb-T000004
 表4に、基板表面を確認したときのパーティクルの評価結果を示した。表4に示すように、捕集部422及び排出部423を備えた実験例4-2,4-3では、いずれも、パーティクルの評価結果が良好であったことから、不要な粒子の放出を抑制できることがわかった。よって、第4実施形態の態様では、不要な粒子の放出を抑制できることがわかった。
[実験例5-1~5-4]
 実験例5-1~5-4では、図8に示す原子線源510を用いた。陽極540,550としては、直径10mmの棒状の本体から、突起先端と陰極との間の距離が表5に示す距離Pとなるように表5に示す高さの突起を陽極の長さ方向全体にわたって連続的に設けた炭素電極を用いた。また、印加電圧を800Vとした。それ以外の条件は、実験例1-1と同様として、実験を行った。
Figure JPOXMLDOC01-appb-T000005
 表5に、基板表面を確認したときのパーティクルの評価結果と、ビーム照射の評価結果を示した。表5に示すように、突起を設けた実験例5-1~5-2では、いずれも、パーティクルの評価結果及びビーム照射の評価結果の両方が良好であった。よって、第5実施形態の態様では、不要な粒子の放出を抑制できることがわかった。また、突起を設けず距離Pだけを変化させた実験例5-3,5-4では、ビーム照射の評価結果及びパーティクルの評価結果が現行品と同等であったことから、実験例5-1,5-2でビーム照射の評価結果やパーティクルの評価結果が良好となったのは、突起の存在による効果であると推察された。
 なお、本発明は上述した実験例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 本出願は、2015年8月28日に出願された日本国特許出願第2015-168429号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、原子線を利用する技術分野に利用可能である。
 10 原子線源、20 陰極、30 放出部、32 放出口、36 供給部、40 第1陽極、50 第2陽極、60 筐体、62 絶縁部材、110 原子線源、120 陰極、140 第1陽極、150 第2陽極、210 原子線源、220 陰極、310 原子線源、320 陰極、330 放出部、332 放出口、410 原子線源、420 陰極、422 捕集部、424 排出部、510 原子線源、540 第1陽極、542 本体、544 突起、550 第2陽極、552 本体、554 突起、610 原子線源、620 陰極、630 放出部、632 放出口、634 フィルタ部、636 開口。

Claims (10)

  1.  原子線を放出可能な放出口が設けられた放出部を有する筒状の陰極と、
     前記陰極の内部に設けられた棒状の第1陽極と、
     前記陰極の内部に前記第1陽極と離間して設けられた棒状の第2陽極と、
     を備え、前記陰極の形状、前記第1陽極の形状、前記第2陽極の形状、及び、前記陰極と前記第1陽極と前記第2陽極との位置関係、からなる群より選ばれる少なくとも1以上を所定の構成とすることで、前記第1陽極と前記第2陽極との間でのプラズマにより生じた陽イオンが前記陰極、前記第1陽極、及び、前記第2陽極の少なくとも1つと衝突して発生する、スパッタ粒子の放出を抑制する、
     原子線源。
  2.  前記第1陽極及び前記第2陽極は、前記放出部に平行な配設面上に中心軸が位置するように互いに平行に配設され、前記第1陽極と前記第2陽極との中心軸間の距離をLとし、前記配設面と前記放出部との距離をHとしたときに、(H+L)×H2/Lの値が750以上1670以下の範囲内である、請求項1に記載の原子線源。
  3.  前記陰極は、該陰極の軸方向に垂直な断面を見たときに内側が四角形で、該四角形の1以上の角が面取り形状であるか、前記断面を見たときに内側が円形又は楕円形である、請求項1又は2に記載の原子線源。
  4.  前記面取り形状は、半径5mm以上のR面及び高さと幅がそれぞれ15mm以上のチャンファー面のいずれかである、請求項3に記載の原子線源。
  5.  前記陰極は、前記断面を見たときに、中心から前記内側までの距離の最小値Xminと中心から前記内側までの距離の最大値Xmaxとが0.5≦Xmin/Xmax≦1を満たす、請求項3又は4に記載の原子線源。
  6.  前記放出口は、前記陰極の外面から内面に向けて開口面積が小さくなる傾向に形成されている、請求項1~5のいずれか1項に記載の原子線源。
  7.  前記放出口は、前記外面と前記内面とを結ぶ直線の前記放出部に垂直な方向に対する傾きが4°以上20°以下である、請求項6に記載の原子線源。
  8.  前記放出口は、前記陰極の内面側にフィルタ部が設けられることによって、前記陰極の外面から内面に向けて開口面積が小さくなる傾向に形成されている、請求項6又は7に記載の原子線源。
  9.  前記陰極は、前記スパッタ成分を捕集する捕集部と、前記捕集部に接続され前記スパッタ成分を外部に排出する排出部とを備えている、請求項1~8のいずれか1項に記載の原子線源。
  10.  前記第1陽極及び前記第2陽極は、互いが対向する側の反対側に突起を備えている、請求項1~9のいずれか1項に記載の原子線源。
PCT/JP2016/074059 2015-08-28 2016-08-18 原子線源 WO2017038476A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016000096.0T DE112016000096B4 (de) 2015-08-28 2016-08-18 Atomstrahlquelle
KR1020177004046A KR101886587B1 (ko) 2015-08-28 2016-08-18 원자선원
JP2017507886A JP6178538B2 (ja) 2015-08-28 2016-08-18 原子線源
CN201680002242.1A CN106664790B (zh) 2015-08-28 2016-08-18 原子束源
US15/429,408 US9947428B2 (en) 2015-08-28 2017-02-10 Atomic beam source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-168429 2015-08-28
JP2015168429 2015-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/429,408 Continuation US9947428B2 (en) 2015-08-28 2017-02-10 Atomic beam source

Publications (1)

Publication Number Publication Date
WO2017038476A1 true WO2017038476A1 (ja) 2017-03-09

Family

ID=58188826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074059 WO2017038476A1 (ja) 2015-08-28 2016-08-18 原子線源

Country Status (7)

Country Link
US (1) US9947428B2 (ja)
JP (1) JP6178538B2 (ja)
KR (1) KR101886587B1 (ja)
CN (1) CN106664790B (ja)
DE (1) DE112016000096B4 (ja)
TW (1) TWI624196B (ja)
WO (1) WO2017038476A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207958A1 (ja) * 2018-04-26 2019-10-31 国立大学法人名古屋大学 原子線発生装置、接合装置、表面改質方法及び接合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143799A (ja) * 1986-12-05 1988-06-16 日本電信電話株式会社 高速原子線源
JPH05315099A (ja) * 1992-05-01 1993-11-26 Nissin Electric Co Ltd ラジカルビームの発生方法
JPH08190995A (ja) * 1994-11-07 1996-07-23 Ebara Corp 高速原子線源
JPH08250295A (ja) * 1995-03-15 1996-09-27 Matsushita Electric Ind Co Ltd 励起原子線源
JP2008281346A (ja) * 2007-05-08 2008-11-20 Matsushita Electric Ind Co Ltd 原子線源および表面改質装置
JP2014086400A (ja) * 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd 高速原子ビーム源およびそれを用いた常温接合装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006706A (en) * 1989-05-31 1991-04-09 Clemson University Analytical method and apparatus
RU2094896C1 (ru) * 1996-03-25 1997-10-27 Научно-производственное предприятие "Новатех" Источник быстрых нейтральных молекул
JP3363040B2 (ja) * 1996-09-30 2003-01-07 株式会社荏原製作所 高速原子線源
JP4237870B2 (ja) * 1999-05-25 2009-03-11 日本航空電子工業株式会社 高速原子線源装置およびこれを具備する加工装置
US6972420B2 (en) * 2004-04-28 2005-12-06 Intel Corporation Atomic beam to protect a reticle
GB2437820B (en) 2006-04-27 2011-06-22 Matsushita Electric Ind Co Ltd Fast atom bombardment source, fast atom beam emission method, and surface modification apparatus
JP4818977B2 (ja) * 2006-04-27 2011-11-16 パナソニック株式会社 高速原子線源および高速原子線放出方法ならびに表面改質装置
CN201039578Y (zh) * 2006-12-14 2008-03-19 复旦大学 一种直流放电原子束源
JP6103919B2 (ja) * 2012-12-18 2017-03-29 三菱重工工作機械株式会社 高速原子ビーム源、常温接合装置および常温接合方法
CN112020900B (zh) 2018-04-26 2023-11-21 国立大学法人东海国立大学机构 原子束产生装置、接合装置、表面改性方法及接合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143799A (ja) * 1986-12-05 1988-06-16 日本電信電話株式会社 高速原子線源
JPH05315099A (ja) * 1992-05-01 1993-11-26 Nissin Electric Co Ltd ラジカルビームの発生方法
JPH08190995A (ja) * 1994-11-07 1996-07-23 Ebara Corp 高速原子線源
JPH08250295A (ja) * 1995-03-15 1996-09-27 Matsushita Electric Ind Co Ltd 励起原子線源
JP2008281346A (ja) * 2007-05-08 2008-11-20 Matsushita Electric Ind Co Ltd 原子線源および表面改質装置
JP2014086400A (ja) * 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd 高速原子ビーム源およびそれを用いた常温接合装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207958A1 (ja) * 2018-04-26 2019-10-31 国立大学法人名古屋大学 原子線発生装置、接合装置、表面改質方法及び接合方法
JPWO2019207958A1 (ja) * 2018-04-26 2021-04-30 国立大学法人東海国立大学機構 原子線発生装置、接合装置、表面改質方法及び接合方法
US11412607B2 (en) 2018-04-26 2022-08-09 National University Corporation Tokai National Higher Education And Research System Atomic beam generator, bonding apparatus, surface modification method, and bonding method
JP7165335B2 (ja) 2018-04-26 2022-11-04 国立大学法人東海国立大学機構 原子線発生装置、接合装置、表面改質方法及び接合方法
TWI806983B (zh) * 2018-04-26 2023-07-01 國立大學法人名古屋大學 原子線產生裝置、接合裝置、表面改質方法及接合方法

Also Published As

Publication number Publication date
TWI624196B (zh) 2018-05-11
US9947428B2 (en) 2018-04-17
KR20170098789A (ko) 2017-08-30
TW201724921A (zh) 2017-07-01
DE112016000096T5 (de) 2017-06-14
KR101886587B1 (ko) 2018-08-07
DE112016000096B4 (de) 2024-03-14
JPWO2017038476A1 (ja) 2017-09-21
CN106664790A (zh) 2017-05-10
CN106664790B (zh) 2019-02-15
JP6178538B2 (ja) 2017-08-09
US20170154697A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5373905B2 (ja) 成膜装置及び成膜方法
EP1944790A2 (en) Improvements relating to ion implanters
JP6100619B2 (ja) イオン源およびイオンミリング装置
JP5921048B2 (ja) スパッタリング方法
EP0628986A1 (en) Self cleaning collimator
Duarte et al. Influence of electronegative gas on the efficiency of conventional and hollow cathode magnetron sputtering systems
JP6178538B2 (ja) 原子線源
EP2516693A1 (en) Pvd method and apparatus
WO2013099044A1 (ja) イオンビーム処理装置および中和器
JP2012156077A (ja) イオンミリング装置
WO2010124836A1 (de) Verfahren zur erzeugung eines plasmastrahls sowie plasmaquelle
JP6539649B2 (ja) 電気絶縁層の反応スパッタ堆積用のターゲット
JP4063136B2 (ja) イオンビーム装置
US20100181505A1 (en) Particle beam device with reduced emission of undesired material
JP2009179835A (ja) 同軸型真空アーク蒸着源及び真空蒸着装置
JP2002540563A (ja) ダイオードスパッタイオンポンプ用のマフィン型状電極素子
JP2000323052A (ja) イオン源装置用炭素電極およびイオン源装置
JP3409881B2 (ja) Rf放電型イオン源
RU153424U1 (ru) Катод-мишень с внешним магнитным блоком
DE102014106942B4 (de) Vorrichtung zum Erzeugen eines Ionenstrahls und eine Prozessieranordnung
JP2014181353A (ja) アークプラズマ成膜装置
EP2211367A1 (en) Particle beam device with reduced emission of undesired material
JP2003123659A (ja) 液体金属イオン源
JP2002541618A (ja) イオンポンプ用の波型陽極素子
Paperny et al. Unbalance magnetron plasma source for ion mass-separator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017507886

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177004046

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000096

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841508

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16841508

Country of ref document: EP

Kind code of ref document: A1