WO2017038003A1 - 回転機 - Google Patents

回転機 Download PDF

Info

Publication number
WO2017038003A1
WO2017038003A1 PCT/JP2016/003564 JP2016003564W WO2017038003A1 WO 2017038003 A1 WO2017038003 A1 WO 2017038003A1 JP 2016003564 W JP2016003564 W JP 2016003564W WO 2017038003 A1 WO2017038003 A1 WO 2017038003A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase refrigerant
pipe
rotating machine
evaporation
liquid
Prior art date
Application number
PCT/JP2016/003564
Other languages
English (en)
French (fr)
Inventor
陽平 村瀬
悦也 柳瀬
柳本 俊之
充 和泉
基寛 三木
康太 山口
Original Assignee
川崎重工業株式会社
国立大学法人 東京海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社, 国立大学法人 東京海洋大学 filed Critical 川崎重工業株式会社
Priority to EP16841045.4A priority Critical patent/EP3346589B1/en
Priority to US15/757,593 priority patent/US10536067B2/en
Publication of WO2017038003A1 publication Critical patent/WO2017038003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a rotating machine that cools an object to be cooled in a rotor rotating around a rotation axis by a thermosiphon action.
  • HTS high-temperature superconducting
  • the critical temperature of the HTS material is around 90K, it is necessary to cool the winding of the HTS wire from several K to several tens of K using a cooler or the like.
  • a cooling machine such as a GM type refrigerator is used so as to ensure a sufficient cooling capacity.
  • a cooler is directly connected to an HTS magnet to conduct heat conduction. The direct cooling method for cooling cannot be used.
  • thermosiphon cooling system that cools the HTS field pole by natural convection using a refrigerant (for example, neon, nitrogen, etc.) cooled by a cooler such as a GM refrigerator.
  • a refrigerant for example, neon, nitrogen, etc.
  • a superconducting rotating machine using a thermosyphon cooling system a superconducting device shown in Patent Document 1 has been proposed.
  • the present invention has been made in view of the above problems, and its purpose is to stabilize the heat transport capability between the condensing unit and the evaporating unit even when the entire apparatus is inclined or shaken.
  • the object is to provide a rotating machine that can be maintained.
  • a rotating machine is a rotating machine that cools a cooled object in a rotor that rotates around a rotation axis by a thermosyphon effect, and that includes a refrigerant disposed outside the rotor. Between the condensing unit that condenses, the evaporating unit that vaporizes the liquid-phase refrigerant condensed in the condensing unit and exchanges heat with the cooled object, and between the evaporating unit and the condensing unit.
  • connection pipe is provided with a liquid-phase refrigerant channel and a gas-phase refrigerant channel separately. For this reason, it can prevent that the whole rotary machine inclines or shakes, and a liquid phase refrigerant
  • coolant is prevented in the bending part of connection piping.
  • the rotating machine has an effect that the heat transport capability between the condensing unit and the evaporating unit can be stably maintained even when the entire apparatus is inclined or shaken.
  • connection pipe in the above-described configuration, one end of the connection pipe is inserted into the evaporation section, and the evaporation pipe or the refrigerant circulation section extends along the rotation axis.
  • the connecting pipe is also inclined accordingly, and in the section between the evaporation part and the bending part, one end part on the evaporation part side may be higher than the bending part.
  • the liquid phase refrigerant does not flow from the bent portion side toward the evaporation portion side.
  • the connecting pipe has a dimension such that the angle with respect to the rotation axis of the line segment connecting the one end and the other end of the connecting pipe is equal to or larger than the allowable inclination angle ⁇ . .
  • the other end of the connection pipe on the condensing part side can be maintained at a height higher than one end of the connection pipe on the evaporation part side.
  • the liquid-phase refrigerant in the connection pipe When the water is stored up to a height equal to or higher than the one end, the liquid phase refrigerant can be pushed out to the evaporation portion by the head pressure (water head pressure). Therefore, even if the entire rotating machine is tilted or shaken, the liquid-phase refrigerant can be supplied to the evaporating unit, and the cooling capacity for the object to be cooled in the rotor can be maintained.
  • connection pipe has an inner pipe as the gas-phase refrigerant flow path, and the outer pipe surrounding the inner pipe is between the inner pipe and the outer pipe.
  • the one end of the vapor-phase refrigerant flow path on the evaporation section side may protrude from the one end of the liquid-phase refrigerant flow path on the evaporation section side.
  • one end portion on the evaporation portion side of the vapor phase refrigerant flow path in the evaporation portion protrudes from one end portion on the evaporation portion side of the liquid phase refrigerant flow path. For this reason, for example, even if the entire rotating machine is inclined or shaken, it is possible to prevent the liquid-phase refrigerant flowing through the liquid-phase refrigerant flow path and supplied to the evaporation unit side from entering the gas-phase refrigerant flow path. it can.
  • the rotating machine is configured to include an intrusion prevention unit for preventing the liquid phase refrigerant from entering the gas phase refrigerant flow path in the condensing unit in the above-described configuration. Also good.
  • the intrusion prevention unit since the intrusion prevention unit is provided, the liquid phase refrigerant can be prevented from entering the gas phase refrigerant flow path in the condensing unit. For this reason, it is possible to prevent the gas-phase refrigerant flow path from being blocked by the liquid-phase refrigerant.
  • an intrusion prevention part it can implement
  • a shielding member which prevents a liquid phase refrigerant from dripping from upper direction in a condensing part, and permeating into a gaseous-phase refrigerant flow path.
  • it can be realized as a deformed shape portion such as a bent end portion on the condensing portion side of the gas-phase refrigerant flow path so as to prevent infiltration of the liquid-phase refrigerant.
  • connection pipe has the other end fixed at the condensing unit, the one end inserted into the evaporation unit, and the evaporation pipe
  • the portion has an opening for inserting the connection pipe therein, and is provided so as to close a gap between an outer peripheral surface of the connection pipe and a peripheral edge of the opening.
  • the structure provided with the support part supported in the opening part vicinity may be sufficient.
  • connection pipe can be supported at both ends of the condensation portion and the support portion. For this reason, tolerance can be improved with respect to the impact and fatigue which arise when the whole rotary machine inclines or shakes. Moreover, it can prevent that a liquid phase refrigerant
  • the evaporation section has an opening for inserting the connection pipe therein, and the connection pipe is connected to the connection pipe.
  • a configuration may be provided that includes a backflow prevention unit for preventing the liquid-phase refrigerant from flowing back into and entering the gap between the outer peripheral surface and the periphery of the opening.
  • the backflow prevention unit since the backflow prevention unit is provided, when the entire rotating machine is inclined or shaken, the liquid-phase refrigerant that has flowed back from the evaporation unit in the gap formed between the outer peripheral surface of the connection pipe and the peripheral edge of the opening. Can be prevented from entering.
  • the backflow prevention unit can be realized as a shielding member provided on the outer periphery of the connection pipe that prevents the backflow of the liquid-phase refrigerant from the evaporation unit when the entire rotating machine is tilted or shaken, for example.
  • the evaporation section has an opening for inserting the connection pipe therein, and the evaporation section side of the connection pipe is on the evaporation section side.
  • coolant flows back into the clearance gap between the outer peripheral surface and the periphery of the said opening part from the inside of the said evaporation part may be sufficient.
  • the seal portion is provided, when the entire rotating machine is inclined or shaken, the liquid-phase refrigerant that has flowed back from the evaporation portion is formed in the gap formed between the outer peripheral surface of the connection pipe and the periphery of the opening. Can prevent intrusion.
  • the evaporating unit includes a refrigerant storing unit that stores the liquid-phase refrigerant, and an opening for inserting the connection pipe into the refrigerant storing unit.
  • a refrigerant storing unit that stores the liquid-phase refrigerant
  • an opening for inserting the connection pipe into the refrigerant storing unit is inclined among the wall surfaces forming the refrigerant storage portion.
  • at least a part of the inner surface of the wall surface is inclined with respect to the rotation axis.
  • a tapered hood portion having the opening formed at the tip thereof may be provided, and an inclination angle of the tapered hood portion with respect to the rotation axis may be larger than the allowable inclination angle ⁇ .
  • the tapered hood portion is configured such that the inclination angle with respect to the rotation axis is larger than the allowable inclination angle ⁇ . For this reason, for example, even when the rotating machine is inclined to the allowable inclination angle ⁇ and the position of one end portion on the evaporation portion side of the connecting pipe is higher than the bent portion, the taper hood portion stores the refrigerant from the opening. The inclination can be maintained so as to become lower toward the inside. For this reason, the liquid phase refrigerant
  • the present invention is configured as described above, and has an effect that the heat transport ability between the condensing unit and the evaporating unit can be stably maintained even when the entire apparatus is inclined or shaken.
  • thermosiphon cooling system utilized in the rotary machine shown in FIG.
  • thermosiphon cooling system utilized in the rotary machine shown in FIG.
  • thermosiphon cooling system utilized in the rotary machine shown in FIG.
  • thermosyphon effect may also be referred to as a heat pipe effect.
  • the superconducting device disclosed in Patent Document 1 (hereinafter referred to as a conventional rotating machine) has specifically found that the following problems occur.
  • a refrigerant (liquid phase refrigerant) liquefied by a condenser cooled by a cooler is sent to a central cavity (evaporating part) formed inside the rotor of the rotating machine through a connection pipe,
  • the liquid phase refrigerant in the evaporating unit is vaporized to cool a winding (field pole) wound around the winding holder via a winding holder provided around the evaporating unit.
  • the gas phase refrigerant generated by the vaporization of the liquid phase refrigerant in the evaporation section is returned to the condenser through the same connecting pipe.
  • the connecting pipe provided in the rotating machine is condensed in the condensing unit as shown in FIG. 5A, and the liquid-phase refrigerant extends in a substantially vertical direction.
  • the inside of the connecting pipe is dropped and flows toward the evaporation section along the bottom of the connecting pipe extending in a substantially horizontal direction.
  • the gas-phase refrigerant generated in the evaporating part flows in the connection pipe from the evaporating part to the condensing part in reverse to the liquid refrigerant due to the pressure difference or density difference between the evaporating part and the condensing part.
  • the connecting machine has a pipe structure in which a liquid-phase refrigerant channel through which a liquid-phase refrigerant flows and a gas-phase refrigerant channel through which a gas-phase refrigerant flows are provided separately, so that the rotating machine is inclined or shaken. Even in this case, it has been found that a flow path through which the gas-phase refrigerant flows can be secured. Thereby, even if it is a case where the whole rotary machine inclines or shakes, the heat transport capability between a condensation part and an evaporation part can be maintained stably.
  • FIG. 1 is an end view schematically showing an example of the configuration of a rotating machine 100 according to an embodiment of the present invention.
  • a superconducting rotating machine is described as an example of the rotating machine 100, but the present invention is not limited to this, and the object to be cooled in the rotor 1 rotating around the rotation axis A is heated. Any rotating machine that is cooled by siphon action may be used.
  • the superconducting coil 11 is illustrated as a to-be-cooled body, it is not limited to this, For example, a permanent magnet, a normal conducting coil, etc. may be sufficient.
  • the object to be cooled is not limited to the field pole, and may be an armature or the like, for example.
  • the rotating machine 100 includes a stator including a plurality of armatures 2, a rotor 1, a condensing unit 4, and a connecting pipe 5.
  • the rotation shaft 3 of the rotor 1 is supported by a bearing (not shown) so that the rotor 1 can rotate around a rotation axis A extending in the horizontal direction.
  • the bearing may be a mechanical bearing or a magnetic bearing.
  • a plurality of armatures 2 are provided on the outer periphery of the rotor 1.
  • a cooler 60 for cooling the superconducting coil is fixed outside the rotor 1 in order to keep the superconducting coil (field magnetic pole) 11 included in the rotor 1 in a superconducting state.
  • the condenser unit 4 is provided at the end of the cold head 61, and the cooler 60 is thermally connected to the superconducting coil 11 in the rotor 1 through a connecting pipe 5 fixed to the condenser unit 4. ing.
  • the gas-phase refrigerant is cooled to a predetermined temperature by the cold head 61 and condensed to become a liquid-phase refrigerant.
  • the liquid phase refrigerant is dropped downward from the condensing unit 4 via a connecting pipe portion (second connecting pipe portion 5b) extending in a substantially vertical direction.
  • the dropped liquid-phase refrigerant flows through the connecting pipe portion (first connecting pipe portion 5a) extending in the direction of the rotation axis A from the bent portion 50 toward the rotor 1.
  • the rotor 1 has a plurality of superconducting coils 11 and an evaporation unit 12 therein.
  • the evaporating unit 12 evaporates the liquid phase refrigerant supplied from the condensing unit 4 and exchanges heat with the superconducting coil 11, and includes a refrigerant storage unit 20, an opening 21, a refrigerant distribution pipe 13, and a heat transfer bar. 14.
  • the refrigerant storage unit 20 is formed at a substantially central portion in the rotor 1 and is a space for storing the liquid-phase refrigerant supplied from the condensing unit 4 through the connection pipe 5.
  • An opening 21 for inserting the connection pipe 5 into the refrigerant storage section 20 is formed on the wall surface of the refrigerant storage section 20 on the side where the connection pipe 5 is disposed.
  • the refrigerant circulation pipe 13 is a pipe arranged in an annular shape so as to reach the vicinity of the superconducting coil 11 from the refrigerant storage part 20 and return from the vicinity of the superconducting coil 11 to the refrigerant storage part 20. Communicate. And it is comprised so that heat exchange may be performed between the liquid phase refrigerant
  • the heat transfer bar 14 is stretched between the outer periphery of the refrigerant reservoir 20 and the superconducting coil 11, and cools the superconducting coil 11 by heat conduction. Then, heat exchange is performed between the liquid-phase refrigerant and the superconducting coil 11 through the refrigerant circulation pipe 13 and the heat transfer bar 14, and the superconducting coil 11 is cooled to a predetermined temperature. On the other hand, the refrigerant is vaporized (gas phase refrigerant) by this heat exchange, and is returned from the refrigerant reservoir 20 to the condenser 4 through the connection pipe 5.
  • the rotating shaft 3 protruding to the side where the connecting pipe 5 is inserted is hollow, and the connecting pipe 5 is disposed in the hollow rotating shaft 3.
  • One end is inserted into the refrigerant reservoir 20.
  • the rotating shaft 3 protruding to the side where the connecting pipe 5 is inserted the space between the inner peripheral surface of the rotating shaft 3 and the connecting pipe 5 is sealed by a magnetic fluid sealing member 6, thereby providing a refrigerant atmosphere. And the atmosphere.
  • the magnetic fluid sealing member 6 is used for sealing as described above. However, instead of the magnetic fluid sealing member 6, a labyrinth seal is used. May be.
  • the evaporation unit 12 is provided at a substantially central portion in the rotor 1 and includes the refrigerant storage unit 20 that stores the liquid-phase refrigerant.
  • the configuration of the evaporation unit 12 is limited to this. Is not to be done.
  • the evaporation unit 12 does not include the refrigerant storage unit 20, and distributes the liquid-phase refrigerant circulated from the condensing unit 4 through the connection pipe 5 to the refrigerant distribution pipe 13 as it is, and the liquid-phase refrigerant circulated through the refrigerant distribution pipe 13 It may be configured to exchange heat with the superconducting coil 11.
  • the connection pipe 5 is inserted through the opening of the refrigerant circulation pipe 13, and the refrigerant circulation pipe 13 and the connection pipe 5 are directly communicated with each other.
  • the rotor 1 is configured such that the superconducting coil 11 can be cooled by utilizing a thermosiphon action.
  • action utilized in the rotor 1 is demonstrated.
  • FIG. 2 is a diagram schematically illustrating an example of a thermosyphon cooling system used in the rotating machine 100 illustrated in FIG. 1.
  • the thermosyphon cooling system includes a cooler 60, a condensing unit 4, an evaporation unit 12, and a connecting pipe 5, and a refrigerant (for example, neon or Enclose nitrogen, etc.). Then, as shown in FIG. 2, the refrigerant changes phase between the condensing unit 4 and the evaporating unit 12.
  • a refrigerant for example, neon or Enclose nitrogen, etc.
  • gravity is used to recirculate the refrigerant. More specifically, the refrigerant cooled by the cooler 60 in the condensing unit 4 is condensed and becomes a liquid phase refrigerant.
  • the liquid phase refrigerant flows through the liquid phase refrigerant flow path 51 provided in the connection pipe 5 by gravity, is stored in the refrigerant storage unit 20 in the evaporation unit 12, and is exchanged by heat exchange with the superconducting coil 11 that is the object to be cooled. Vaporized.
  • the gas-phase refrigerant is returned through the gas-phase refrigerant channel 52 provided in the connection pipe 5 from the evaporator 12 toward the condenser 4 due to a pressure difference or density difference between the condenser 4 and the evaporator 12.
  • the detailed configuration of the connecting pipe 5 will be described later.
  • the refrigerant undergoes a phase change and circulates between the condensing unit 4 and the evaporation unit 12 by natural convection to cool the superconducting coil 11 to be cooled. be able to.
  • one end of the connecting pipe 5 is inserted into the refrigerant reservoir 20 of the evaporator 12, and extends from the refrigerant reservoir 20 toward the outside of the rotor 1 along the rotation axis A. And bends at the bent portion 50.
  • the connecting pipe 5 bent at the bent portion 50 extends toward the condensing portion 4 provided at least at a position higher than the rotational axis A.
  • the other end of the connecting pipe 5 is fixed to the condenser 4.
  • the end of the connection pipe 5 on the evaporation section 12 side is distinguished as one end
  • the end of the connection pipe 5 on the condensation section 4 side is distinguished as the other end.
  • the connecting pipe 5 includes a liquid-phase refrigerant channel 51 through which the liquid-phase refrigerant condensed in the condensing unit 4 flows, and a gas-phase refrigerant channel 52 through which the gas-phase refrigerant vaporized in the evaporation unit 12 flows. And have a piping structure provided separately.
  • the connecting pipe 5 has a double pipe structure including an inner pipe and an outer pipe surrounding the outer periphery of the inner pipe.
  • the inner pipe is the gas-phase refrigerant flow path 52
  • the space formed between the inner pipe and the outer pipe is the liquid-phase refrigerant flow path 51, but is not limited thereto.
  • the connecting pipe 5 has a configuration in which the inner pipe is the liquid-phase refrigerant flow path 51 and the space formed between the inner pipe and the outer pipe is the gas-phase refrigerant flow path 52.
  • the connecting pipe 5 shown in FIG. 2 can be formed by combining two pipes extending on the same axis and having different diameters.
  • the pipe structure of the connecting pipe 5 is not limited to the double pipe structure constituted by the inner pipe and the outer pipe in this way.
  • a partition wall is provided along the extending direction of the connecting pipe 5 so as to divide the inside of one pipe into two, and one of the two divided passages is used as the liquid-phase refrigerant passage 51, and the other passage is sealed.
  • a parallel piping structure for the phase refrigerant flow path 52 may be used.
  • connection pipe 5 is provided with the liquid-phase refrigerant channel 51 and the gas-phase refrigerant channel 52 separately. For this reason, it can prevent that the rotary machine 100 whole inclines or shakes, and a liquid phase refrigerant is clogged in the bending part 50 of the connection piping 5, and the distribution
  • coolant is prevented. Therefore, the rotating machine 100 can stably maintain the heat transport capability between the condensing unit 4 and the evaporation unit 12 even when the entire apparatus is inclined or shaken.
  • the gas-phase refrigerant flow path 52 is at one end of the connecting pipe 5 inserted into the refrigerant storage section 20 of the evaporation section 12.
  • the liquid-phase refrigerant channel 51 protrudes toward the center of the rotor 1.
  • the connecting pipe 5 has the double pipe structure shown in FIG. 2 and the inner pipe side is the gas-phase refrigerant flow path 52, or when the connecting pipe 5 has the parallel pipe structure, the gas-phase refrigerant is used.
  • the liquid storage section is circulated through the liquid phase refrigerant flow path 51. It is possible to prevent the liquid-phase refrigerant supplied to 20 from entering the gas-phase refrigerant channel 52.
  • an intrusion prevention unit 41 for preventing liquid phase refrigerant from entering the gas-phase refrigerant flow path 52 in the condensing unit 4 is provided.
  • a cold head 61 of the cooler 60 is provided on the upper surface of the condensing unit 4, and the liquid-phase refrigerant cooled and condensed by the cold head 61 is directed downward from above the condensing unit 4.
  • the liquid-phase refrigerant can be prevented from dripping from above in the condensing unit 4 and entering the gas-phase refrigerant channel 52.
  • the intrusion prevention unit 41 is provided at a position in the condensing unit 4 that does not hinder the discharge of the gas phase refrigerant from the gas phase refrigerant channel 52 and prevents the liquid phase refrigerant from entering the gas phase refrigerant channel 52.
  • the shape of the intrusion prevention unit 41 is not limited to the umbrella shape as shown in FIG. 2, and is a shape that can prevent the intrusion of the liquid phase refrigerant into the gas-phase refrigerant flow path 52, such as a plate shape. I just need it.
  • the intrusion prevention unit 41 may be configured to be supported in the condensing unit 4 by a support material (not shown) provided in the gas-phase refrigerant flow path 52 of the connection pipe 5, or provided in the condensing unit 4. Further, a structure in which the condenser 4 is supported by a support member (not shown) may be used.
  • the intrusion prevention unit 41 is provided as a separate member from the connection pipe 5.
  • the intrusion prevention unit 41 may be a portion in which the other end portion of the connection pipe 5 is deformed so that the liquid-phase refrigerant does not enter the gas-phase refrigerant flow path 52.
  • the intrusion prevention unit 41 can be a deformed shape part such as a bend at the other end of the gas-phase refrigerant channel 52 so as to prevent the liquid-phase refrigerant from entering.
  • the intrusion prevention unit 41 since the intrusion prevention unit 41 is provided, it is possible to prevent the liquid phase refrigerant that has entered the gas-phase refrigerant flow path 52 from blocking the vicinity of the bent portion 50 of the gas-phase refrigerant flow path 52.
  • connection pipe 5 In the rotating machine 100, one end of the connection pipe 5 is inserted into the refrigerant storage unit 20 through the opening 21, and the other end is fixed to the condensing unit 4. For this reason, a gap is formed between the outer peripheral surface of the connecting pipe 5 and the periphery of the opening 21.
  • the connecting pipe In the rotating machine 100 according to the present embodiment, the connecting pipe is connected to the opening 21 and / or the opening 21 so as to close a gap formed between the outer peripheral surface of the connecting pipe 5 and the periphery of the opening 21.
  • a support portion 31 is provided to support in the vicinity.
  • the support part 31 As the support part 31, it becomes relatively rotatable between the opening part 21 of the evaporation part 12 provided on the rotating part side and the connecting pipe 5 provided on the fixed part side, and the connecting pipe 5 is connected to the opening part 21. It is possible to use a bearing that can be supported at the periphery.
  • the connection pipe 5 can be supported at both ends of the condensation portion 4 and the support portion 31. For this reason, tolerance can be raised with respect to the impact and fatigue which arise when the rotary machine 100 whole inclines or shakes.
  • the support portion 31 can prevent the liquid phase refrigerant from entering the gap between the peripheral edge of the opening 21 and the connecting pipe 5. As described above, since the liquid-phase refrigerant can be prevented from entering the gap between the peripheral edge of the opening 21 and the connecting pipe 5, the magnetic fluid sealing member 6 is prevented from being exposed to the liquid-phase refrigerant that has entered. can do.
  • a configuration including a seal portion instead of the support portion 31 described above may be used.
  • the seal part for example, it is relatively rotatable between the opening part of the evaporation part 12 provided on the rotating part side and the connecting pipe 5 provided on the fixed part side, for example, a mechanical seal, a lip seal, Mention may be made of labyrinth seals.
  • it is good also as a structure which combined the support part 31 and the seal
  • FIG. 3 is a diagram schematically illustrating an example of a thermosyphon cooling system used in the rotating machine 100 illustrated in FIG. 1.
  • the backflow prevention unit 32 causes the liquid phase refrigerant to flow back from the refrigerant storage unit 20 of the evaporation unit 12 toward the connection pipe 5, and the liquid phase refrigerant opens the opening 21.
  • It can be realized as a shielding member provided on the outer periphery of the connecting pipe 5 so that it can be prevented from entering the gap between the connecting pipe 5 and the connecting pipe 5.
  • the shielding member is configured such that the outer peripheral wall of the connecting pipe 5 is folded at one end of the connecting pipe 5 so that the liquid refrigerant does not enter the gap between the connecting pipe 5 and the opening 21. It can be illustrated as a folded structure portion.
  • the outer shape of the connecting pipe 5 is such that the first connecting pipe portion 5a and the second connecting pipe portion 5b are substantially L-shaped.
  • the length component of the first connection pipe part 5a and the length component of the second connection pipe part 5b are in the relationship shown in FIG. 4 shows a connecting pipe part (first connecting pipe part 5a) from the evaporation part 12 side to the bent part 50 of the connecting pipe 5 included in the rotating machine 100 shown in FIG. 1 and from the condenser part 4 side to the bent part 50. It is a figure which shows the relationship of each length component with no connection piping part (2nd connection piping part 5b).
  • an angle formed by the line connecting the one end of the connecting pipe 5 on the evaporation unit 12 side and the other end of the connecting pipe 5 on the condensing unit 4 side and the rotation axis A is set in the rotating machine 100.
  • the ratio of the length components of the first connecting pipe part 5a and the second connecting pipe part 5b is set so as to be equal to or larger than the allowable inclination angle ⁇ .
  • the connecting pipe 5 is also inclined accordingly, and in the section between the evaporation part 12 and the bending part 50, one end on the evaporation part 12 side is higher than the bending part 50.
  • the liquid phase refrigerant does not flow from the bent portion 50 toward the evaporation portion 12.
  • the angle formed by the line connecting the one end portion and the other end portion of the connecting pipe 5 and the rotation axis A is equal to or larger than the allowable inclination angle ⁇ .
  • tilt angle (theta) the other end part of the connection piping 5 in the condensation part 4 side can be maintained at the height more than the one end part of the connection piping 5 in the evaporation part 12 side. Therefore, for example, even if the entire rotating machine 100 is inclined or shaken and the liquid phase refrigerant is temporarily not supplied to the evaporation unit 12 via the connection pipe 5, the liquid phase is not generated in the second connection pipe part 5 b.
  • the allowable tilt angle ⁇ is an angle at which the rotating machine 100 is allowed to tilt at the installation location, and can be set, for example, in the range of 15 degrees to 30 degrees.
  • the liquid-phase refrigerant can be supplied to the evaporation unit 12, and the cooling capacity for the superconducting coil 11 in the rotor 1 can be maintained.
  • At least a part of the inner surface of the wall surface on the side where the connecting pipe 5 is inserted among the wall surfaces of the refrigerant storage unit 20 of the evaporation unit 12 is in relation to the rotation axis A.
  • a tapered hood portion 22 formed so as to be inclined is provided. More specifically, the tapered hood portion 22 has a so-called frustum shape that increases in diameter from the opening 21 toward the center of the rotor 1 as shown in FIGS.
  • the pipe length of the connection pipe 5 is reduced by providing the tapered hood part 22 on the evaporation part 12 side and having the connection pipe 5 come from the evaporation part 12 side. It can be shortened compared with the case where the structure which does not provide the taper hood part 22 is provided.
  • the pipe diameter of the connecting pipe 5 can be prevented from being increased, and the diameter of the rotating shaft 3 and the bearing supporting the rotating shaft 3 can be increased, resulting in an increase in material and assembly costs and a deterioration in bearing maintenance intervals. Can be prevented.
  • the inclination angle of the tapered hood portion 22 with respect to the rotation axis A is set to be larger than the allowable inclination angle ⁇ .
  • the tapered hood portion 22 The inclination can be maintained so as to decrease from the opening 21 toward the inside of the refrigerant reservoir 20. For this reason, the liquid-phase refrigerant which has circulated through the connection pipe 5 can be caused to flow into the refrigerant storage unit 20 of the evaporation unit 12. Furthermore, it is possible to prevent the liquid phase refrigerant stored in the refrigerant storage unit 20 from flowing backward toward the connection pipe 5 and the liquid phase refrigerant from entering the gap between the peripheral edge of the opening 21 and the connection pipe 5. .
  • the configuration in which the tapered hood portion 22 is provided in the refrigerant storage portion 20 is not necessarily limited to the configuration in which the object to be cooled is cooled using the thermosiphon action.
  • the connecting pipe 5 is not limited to the above-described double pipe structure or parallel pipe structure. That is, in the configuration in which the liquid phase refrigerant is stored in the refrigerant storage unit 20 in order to cool the object to be cooled, the back flow of the stored liquid phase refrigerant can be prevented when the entire apparatus is inclined or shaken. When providing an apparatus, it can be set as the structure which provided the taper hood part 22. FIG.
  • the connecting pipe 5 may have a structure that causes a heat pipe action (wick).
  • the present invention is useful, for example, in a rotating machine that cools an object to be cooled using a thermosyphon effect, which is used in an environment where the ship is inclined or shaken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

回転機は、回転軸線の周りを回転する回転子内の被冷却体を熱サイフォン作用により冷却させる回転機であって、回転子の外部に配置された、冷媒を凝縮する凝縮部と、回転子内において、凝縮部で凝縮した液相冷媒を気化させて被冷却体との熱交換を行う蒸発部と、蒸発部と凝縮部との間で冷媒を行き来させる、屈曲部を有した連結配管と、を備え、連結配管は、凝縮部において凝縮した液相冷媒が流通する液相冷媒流路と、蒸発部において気化した気相冷媒が流通する気相冷媒流路とがそれぞれ別々に設けられた配管構造を有する。これにより、回転機は、装置全体が傾斜または動揺した場合であっても、凝縮部と蒸発部との間における熱輸送能力を安定して維持できる。

Description

回転機
 本発明は、回転軸線の周りを回転する回転子内の被冷却体を熱サイフォン作用により冷却させる回転機に関する。
 近年、高温超電導(HTS)線材を巻線したHTS磁石の応用範囲が広まっており、例えば、このHTS磁石を用いた超電導回転機等の回転機が開発されている。
 ところで、HTS材料の臨界温度は90K前後であるため、冷却機等を利用して数Kから数十K程度までHTS線材の巻線を冷却する必要がある。特に、船舶用超電導回転機においては、大きな熱負荷が発生するため、十分な冷却能力を確保できるように、例えば、GM型冷凍機等の冷却機が利用されている。また、HTS材料を用いた船舶用超電導回転機において、HTS界磁極を搭載した界磁子が回転する回転界磁型を採用している場合、冷却機を直接HTS磁石に接続し伝導伝熱により冷却する直接冷却方式が利用できない。そこで、冷却機と回転子との間を、冷媒還流を用いて熱的に接続する方法が用いられている。このような方法としては、例えば、GM型冷凍機等の冷却機により冷却した冷媒(例えば、ネオン、窒素等)を用いて、自然対流によりHTS界磁極の冷却を行う熱サイフォン式冷却システム等が挙げられる。例えば、熱サイフォン式冷却システムを用いた超電導回転機としては、特許文献1に示す超電導装置が提案されている。
特許第3799016号公報
 しかしながら、上述した特許文献1に示す従来の超電導装置を、船舶等に用いると、装置全体が傾斜または動揺することがある。このように装置全体が傾斜または動揺した場合、従来の超電導装置は、冷却機側に設けられる凝縮部と回転子内の蒸発部との間における熱輸送能力が低下するという問題がある。
 より具体的には、特許文献1に係る超電導装置の構成の場合、装置全体が傾斜または動揺すると、凝縮部(凝縮器ユニット)と回転子内の蒸発部との間に設けられたヒートパイプの屈曲部に液相冷媒が詰まり、気相冷媒の流通が妨げられる。このため、特許文献1に係る超電導装置では、装置全体が傾斜または動揺すると、冷媒(ガス,液体)の連続的、安定的な供給が阻害され、熱輸送能力が低下する場合がある。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、装置全体が傾斜または動揺した場合であっても、凝縮部と蒸発部との間における熱輸送能力を安定して維持できる回転機を提供することにある。
 本発明のある形態に係る回転機は、回転軸線の周りを回転する回転子内の被冷却体を熱サイフォン作用により冷却させる回転機であって、前記回転子の外部に配置された、冷媒を凝縮する凝縮部と、前記回転子内において、前記凝縮部で凝縮した液相冷媒を気化させて前記被冷却体との熱交換を行う蒸発部と、前記蒸発部と前記凝縮部との間で前記冷媒を行き来させる、屈曲部を有した連結配管と、を備え、前記連結配管は、前記凝縮部において凝縮した液相冷媒が流通する液相冷媒流路と、前記蒸発部において気化した気相冷媒が流通する気相冷媒流路とがそれぞれ別々に設けられた配管構造を有する。
 上記構成によると、連結配管は、液相冷媒流路と気相冷媒流路とがそれぞれ別々に設けられている。このため、回転機全体が傾斜または動揺し、連結配管の屈曲部において液相冷媒がつまり、気相冷媒の流通を妨げることを防ぐことができる。
 従って、本発明のある形態に係る回転機は、装置全体が傾斜または動揺した場合であっても、凝縮部と蒸発部との間における熱輸送能力を安定して維持できるという効果を奏する。
 また、本発明のある形態に係る回転機は、上記した構成において、前記連結配管は、一端部が前記蒸発部内に挿入され、前記回転軸線に沿って、該蒸発部または該冷媒流通部から前記回転子の外側に向かって延伸し、前記屈曲部にて屈曲して他端部が該凝縮部に固定されており、前記一端部と前記他端部とを結ぶ線分の前記回転軸線に対する角度が、当該回転機の傾斜が許容される角度を示す許容傾斜角度θ以上となるような寸法を有していてもよい。
 例えば、回転機全体が傾斜すると、それに伴って、連結配管も傾斜し、蒸発部と屈曲部との間の区間において、蒸発部側にある一端部が屈曲部よりも高くなる場合がある。このような場合、連結配管では屈曲部側から蒸発部側に向かって液相冷媒が流通しなくなる。
 しかしながら、上記構成によると、本発明に係る回転機では、連結配管は、自身の一端部と他端部とを結ぶ線分の回転軸線に対する角度が許容傾斜角度θ以上となるような寸法を有する。このため、回転機全体が許容傾斜角度θまで傾斜したとしても、凝縮部側にある連結配管の他端部を、蒸発部側にある連結配管の一端部以上の高さに維持することができる。
 それ故、例えば、回転機全体が傾斜または動揺し、液相冷媒が連結配管を介して蒸発部に一時的に供給されない状態となったとしても、連結配管内において液相冷媒が蒸発部側の一端部以上の高さまで貯留されると、そのヘッド圧(水頭圧)により液相冷媒を蒸発部に押しだすことができる。よって、回転機全体が傾斜または動揺したとしても液相冷媒を蒸発部に供給することができ、回転子内の被冷却体に対する冷却能力を維持することができる。
 また、本発明のある形態に係る回転機は、上記した構成において、前記連結配管は、内管を前記気相冷媒流路とし、この内管の外周を囲む外管と該内管との間に形成される空間を前記液相冷媒流路とする二重配管構造、あるいは、液相冷媒流路と気相冷媒流路とを並列に配置した並列配管構造を有しており、前記蒸発部内において、前記気相冷媒流路の前記蒸発部側の一端部の方が、前記液相冷媒流路の前記蒸発部側の一端部よりも突出した構成であってもよい。
 上記構成によると、蒸発部内において気相冷媒流路の蒸発部側の一端部の方が、液相冷媒流路の蒸発部側の一端部よりも突出した構成となっている。このため、例えば、回転機全体が傾斜または動揺したとしても、液相冷媒流路を流通して蒸発部側に供給される液相冷媒が気相冷媒流路内に浸入することを防ぐことができる。
 また、本発明のある形態に係る回転機は、上記した構成において、前記凝縮部内において、前記液相冷媒の前記気相冷媒流路への浸入を防ぐための浸入防止部を備える構成であってもよい。
 上記構成によると、浸入防止部を備えるため、凝縮部内において気相冷媒流路内に液相冷媒が浸入することを防ぐことができる。このため、液相冷媒によって気相冷媒流路が塞がれることを防止することができる。
 なお、浸入防止部としては、例えば、凝縮部において液相冷媒が上方から滴下し気相冷媒流路内に浸入することを防ぐ遮蔽部材として実現できる。あるいは、液相冷媒の浸入を防ぐように、気相冷媒流路の凝縮部側の端部を屈曲させるなど変形させた形状部分として実現することもできる。
 また、本発明のある形態に係る回転機は、上記した構成において、前記連結配管は、前記他端部が前記凝縮部において固定され、前記一端部は前記蒸発部内に挿入されており、前記蒸発部は、前記連結配管を内部に挿入するための開口部を有しており、前記連結配管の外周面と前記開口部の周縁との間の隙間を塞ぐように設けられ、該連結配管を該開口部近傍において支持する支持部を備える構成であってもよい。
 上記構成によると支持部を備えるため、連結配管を凝縮部と該支持部との両端で支持することができる。このため、回転機全体が傾斜または動揺した際に生じる衝撃や疲労に対して耐性を高めることができる。また、支持部により開口部の周縁と連結配管との隙間に液相冷媒が浸入することを防ぐことができる。
 また、本発明のある形態に係る回転機は、上記した構成において、前記蒸発部は、前記連結配管を内部に挿入するための開口部を有しており、前記連結配管が、該連結配管の外周面と前記開口部の周縁との隙間に液相冷媒が前記蒸発部内から逆流して浸入することを防ぐための逆流防止部を備える構成であってもよい。
 上記構成によると逆流防止部を備えるため、回転機全体が傾斜または動揺した際に、連結配管の外周面と開口部の周縁との間に形成される隙間に、蒸発部内から逆流した液相冷媒が浸入することを防ぐことができる。
 なお、逆流防止部は、例えば、回転機全体が傾斜または動揺した際に、蒸発部内からの液相冷媒の逆流を妨げる、連結配管外周に設けられた遮蔽部材として実現することができる。
 また、本発明のある形態に係る回転機は、上記した構成において、前記蒸発部は、前記連結配管を内部に挿入するための開口部を有しており、前記連結配管の前記蒸発部側の外周面と前記開口部の周縁との隙間に液相冷媒が前記蒸発部内から逆流して浸入することを防ぐためのシール部を備える構成であってもよい。
 上記構成によるとシール部を備えるため、回転機全体が傾斜または動揺した際に、連結配管の外周面と開口部の周縁との間に形成される隙間に、蒸発部内から逆流した液相冷媒が、浸入することを防ぐことができる。
 また、本発明のある形態に係る回転機は、上記した構成において、前記蒸発部は、前記液相冷媒を貯留する冷媒貯留部と、前記連結配管を該冷媒貯留部内に挿入するための開口部と、を有しており、前記冷媒貯留部を形成する壁面のうち、前記連結配管が挿入される側の壁面には、該壁面の内面の少なくとも一部が、前記回転軸線に対して傾き、かつその先端部に前記開口部が形成されたテーパーフード部が設けられており、前記回転軸線に対する前記テーパーフード部の傾斜角度は前記許容傾斜角度θより大きくなる構成であってもよい。
 上記した構成によると、前記テーパーフード部は、回転軸線に対する傾斜角度が許容傾斜角度θより大きくなるように構成されている。このため、例えば、回転機が許容傾斜角度θまで傾斜し、連結配管の蒸発部側の一端部位置が屈曲部よりも高くなるような場合であっても、テーパーフード部では開口部から冷媒貯留部内に向かって低くなるように傾斜を維持することができる。このため、連結配管を流通した液相冷媒を蒸発部の冷媒貯留部内に流入させることができる。さらに、冷媒貯留部内に貯留する液相冷媒が連結配管の方に向かって逆流することを防ぐことができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明は以上に説明したように構成され、装置全体が傾斜または動揺した場合であっても、凝縮部と蒸発部との間における熱輸送能力を安定して維持できるという効果を奏する。
本発明の実施の形態に係る回転機の構成の一例を模式的に示した端面図である。 図1に示す回転機において利用する熱サイフォン冷却システムの一例を模式的に示す図である。 図1に示す回転機において利用する熱サイフォン冷却システムの一例を模式的に示す図である。 図1に示す回転機が備える連結配管の、蒸発部側から屈曲部までの連結配管部分(第1連結配管部)と、凝縮部側から屈曲部までの連結配管部分(第2連結配管部)とのそれぞれの長さ成分の関係を示す図である。 連結配管内における冷媒の流通状態を示す図であり、従来の回転機が水平な床面に載置されている場合の連結配管内の状態を模式的に示す。 連結配管内における冷媒の流通状態を示す図であり、従来の回転機が傾斜または揺動した場合の連結配管内の状態を模式的に示す。
 (本発明の概要)
 本発明者は、回転子内の例えば、界磁極またはその他の電機子など被冷却体を熱サイフォン作用により冷却する回転機の構成について鋭意研究した。特に、船内など傾斜または動揺するなど水平状態が保たれない場所にこの回転機が設置された場合に関して検討した。なお、熱サイフォン作用は、ヒートパイプ作用とも称される場合がある。そして、特許文献1に開示された超電導装置(これ以降、従来の回転機と称する)では、具体的には以下の問題が生じることを見出した。
 まず、従来の回転機は、冷却機で冷やされた凝縮器によって液化された冷媒(液相冷媒)が連結配管を通じて回転機の回転子内部に形成された中央空洞(蒸発部)に送られ、蒸発部の液相冷媒が気化することにより蒸発部の周囲に設けられた巻線ホルダを介して巻線ホルダに巻回された巻線(界磁極)を冷却するように構成されている。従来の回転機では、蒸発部で液相冷媒が気化することによって生じた気相冷媒は、同じ連結配管を通じて凝縮器に戻される。
 ここで、従来の回転機が水平な床面に載置されている場合、この回転機が備える連結配管は、図5Aに示すように凝縮部で凝縮され、液相冷媒が略垂直方向に延びる連結配管内を滴下し、略水平方向に延びる連結配管の底部に沿って蒸発部の方に流通する。蒸発部で生じた気相冷媒は、蒸発部と凝縮部との圧力差または密度差によって、連結配管内を蒸発部から凝縮部に向かって液相冷媒とは逆に流通する。
 ここで、従来の回転機が傾斜または動揺した場合、例えば、図5Bに示すように略垂直方向に延びる連結配管部と略水平方向に延びる連結配管部との連結部分である屈曲部およびその近傍に液相冷媒が貯留する可能性がある。連結配管の屈曲部およびその近傍に液相冷媒が貯留すると、この貯留した液相冷媒により連結配管内が塞がれてしまい、気相冷媒の流通が妨げられることとなる。
 このように気相冷媒の流通が妨げられると、凝縮部と蒸発部との間において冷媒の連続的、安定的な供給が阻害され、熱輸送能力が低下する。そして熱輸送能力が低下すると回転子を安定して回転させることができなくなる。そこで本発明者はこの問題点に関し、検討を重ねた結果、以下の知見を得た。
 すなわち、連結配管を、液相冷媒が流通する液相冷媒流路と気相冷媒が流通する気相冷媒流路とをそれぞれ別々に設けた配管構造とすることで、回転機が傾斜または動揺した場合であっても気相冷媒が流通する流路を確保できることを見出した。これにより、回転機全体が傾斜または動揺した場合であっても、凝縮部と蒸発部との間における熱輸送能力を安定して維持できる。
 以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下ではすべての図を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (回転機の構成)
 以下において本実施の形態に係る回転機100の構成を、図1を参照して説明する。図1は本発明の実施の形態に係る回転機100の構成の一例を模式的に示した端面図である。なお、本実施の形態では、回転機100として超電導回転機を例に挙げ説明するが、これに限定されるものではなく、回転軸線Aの周りを回転する回転子1内の被冷却体を熱サイフォン作用により冷却させる回転機であればよい。また、本実施の形態では、被冷却体として超電導コイル11を例示するが、これに限定されるものではなく他の例えば、永久磁石、常電導コイル等であってもよい。また、該被冷却体は界磁極に限定されるもではなく、例えば電機子等であってもよい。
 回転機100は、図1に示すように、複数の電機子2からなる固定子と、回転子1と、凝縮部4と、連結配管5とを備えている。回転子1の回転軸3は、水平方向に延伸した回転軸線Aの周りに回転子1が回転可能となるように不図示の軸受で支持されている。軸受は、機械軸受であってもよいし磁気軸受であってもよい。回転子1の外周には複数の電機子2が設けられている。また、回転子1の外部には、該回転子1が備える超電導コイル(界磁極)11を超電導状態に保持するために、該超電導コイルを冷却するための冷却機60が固定されている。コールドヘッド61の端部に、凝縮部4が備えられており、冷却機60は、この凝縮部4に固定された連結配管5を介して回転子1にある超電導コイル11と熱的に接続されている。
 凝縮部4では、コールドヘッド61により気相冷媒が所定温度まで冷却され、凝縮して液相冷媒となる。液相冷媒は、略垂直方向に延伸する連結配管部分(第2連結配管部5b)を介して凝縮部4から下方に向って滴下される。滴下された液相冷媒は、屈曲部50から回転子1に向かって回転軸線A方向に延伸する連結配管部分(第1連結配管部5a)を流通する。
 図1に示すように回転子1は、その内部に複数の超電導コイル11と、蒸発部12とを有している。蒸発部12は、凝縮部4から供給された液相冷媒を気化させて超電導コイル11と熱交換するものであり、冷媒貯留部20と、開口部21と、冷媒流通配管13と、伝熱バー14とを備えてなる構成である。
 冷媒貯留部20は、回転子1内の略中央部分に形成されており、凝縮部4から連結配管5を通じて供給された液相冷媒を貯留するための空間である。連結配管5が配置される側の冷媒貯留部20の壁面には、該連結配管5をこの冷媒貯留部20内に挿入するための開口部21が形成されている。
 冷媒流通配管13は、冷媒貯留部20から超電導コイル11の近傍へ至り、該超電導コイル11の近傍から冷媒貯留部20に戻るように環状に配設された配管であり、冷媒貯留部20内と連通している。そして、冷媒流通配管13を流通した液相冷媒と、超電導コイル11との間で熱交換を行うように構成されている。
 伝熱バー14は、冷媒貯留部20の外周と超電導コイル11との間に架け渡されており熱伝導により超電導コイル11を冷却する。そして、上記した冷媒流通配管13および伝熱バー14を介して液相冷媒と超電導コイル11との間で熱交換をし、該超電導コイル11を所定温度まで冷却させる。一方、この熱交換により冷媒は気化し(気相冷媒)、冷媒貯留部20から連結配管5を通じて凝縮部4へと戻される。
 また、図1に示すように、連結配管5が挿入される側に突出した回転軸3は中空となっており、この中空の回転軸3内に連結配管5が配置され、該連結配管5の一端部が冷媒貯留部20内に挿入されるようになっている。連結配管5が挿入される側に突出した回転軸3内において、該回転軸3の内周面と該連結配管5との間は磁性流体封止部材6によりシールされており、これにより冷媒雰囲気と大気間とをシールする。本実施の形態に係る回転機100では、上記したように密封するために磁性流体封止部材6を用いる構成であるが、この磁性流体封止部材6の代わりに、ラビリンスシールを用いる構成であってもよい。
 なお、図1では、蒸発部12は、回転子1内の略中央部分に設けられ、液相冷媒を貯留する冷媒貯留部20を有した構成であったが蒸発部12の構成はこれに限定されるものではない。例えば、蒸発部12は、冷媒貯留部20を備えず、連結配管5を通じて凝縮部4から流通した液相冷媒をそのまま冷媒流通配管13に流通させ、該冷媒流通配管13を流通した液相冷媒と超電導コイル11との間で熱交換させる構成であってもよい。このような構成の場合、連結配管5は冷媒流通配管13の開口部に挿通されており、冷媒流通配管13と連結配管5とが直接、連通することとなる。
 ところで、本実施に形態に係る回転子1では、超電導コイル11を、熱サイフォン作用を利用することにより冷却することができるように構成されている。以下において、回転子1において利用する熱サイフォン作用を実現する構成の詳細について説明する。
 (熱サイフォン作用)
 以下、図1,2を参照して本実施の形態に係る回転機100において、熱サイフォン作用を実現する構成(熱サイフォン冷却システム)について説明する。図2は、図1に示す回転機100において利用する熱サイフォン冷却システムの一例を模式的に示す図である。
 熱サイフォン冷却システムは、冷却機60と凝縮部4と蒸発部12と連結配管5とから構成され、凝縮部4、蒸発部12、および連結配管5からなる密閉空間内に冷媒(たとえば、ネオンまたは窒素など)を封入する。そして、図2に示すように凝縮部4と蒸発部12との間で冷媒が相変化する。なお、熱サイフォン冷却システムでは冷媒の還流に重力を利用している。より具体的には、凝縮部4において冷却機60により冷却された冷媒は凝縮し、液相冷媒となる。液相冷媒は、重力により連結配管5内に設けられた液相冷媒流路51を流れ、蒸発部12における冷媒貯留部20内に貯留され、被冷却体である超電導コイル11との熱交換により気化される。気相冷媒は、凝縮部4と蒸発部12との間の圧力差または密度差により蒸発部12から凝縮部4に向かって連結配管5内に設けられた気相冷媒流路52を通じて戻される。なお、連結配管5の詳細な構成については後述する。
 以上のように本実施の形態に係る回転機100では、冷媒が相変化し、自然対流によって凝縮部4と蒸発部12との間を循環することで被冷却対象である超電導コイル11を冷却することができる。
 (連結配管の構造)
 ここで連結配管5の構造について上記した図1,2を参照してより詳細に説明する。
 図1,2に示すように連結配管5は、一端部が蒸発部12の冷媒貯留部20内に挿入されており、回転軸線Aに沿って、冷媒貯留部20から回転子1の外側に向かって延伸し、屈曲部50で屈曲する。屈曲部50で屈曲した連結配管5は、少なくとも回転軸線Aよりも高い位置に設けられている凝縮部4に向かって延伸する。そして、連結配管5の他端部は凝縮部4に固定される。なお、本明細書では、蒸発部12側にある連結配管5の端部を一端部、凝縮部4側にある連結配管5の端部を他端部として区別するものとする。
 図2に示すように、連結配管5は、凝縮部4において凝縮した液相冷媒が流通する液相冷媒流路51と、蒸発部12において気化した気相冷媒が流通する気相冷媒流路52とがそれぞれ別々に設けられた配管構造を有している。本実施の形態に係る回転機100では、図2に示すように、連結配管5は、内管と、この内管の外周を囲む外管とから構成された二重配管構造となっている。連結配管5では、内管が気相冷媒流路52となっており、内管と外管との間に形成される空間が液相冷媒流路51となっているが、これに限定されるものではない。例えば、連結配管5は、内管が液相冷媒流路51となっており、内管と外管との間に形成される空間が気相冷媒流路52となっている構成であってもよい。図2に示す連結配管5は、同軸上に延伸する、径が異なる2つの配管を組み合わせて形成することができる。また、連結配管5の配管構造は、このように内管と外管とから構成される二重配管構造に限定されない。例えば、一本の配管内を2分割するように連結配管5の延伸方向に沿って仕切り壁を設け、2分割された一方の流路を液相冷媒流路51とし、他方の流路を気相冷媒流路52とする並列配管構造であってもよい。
 以上のように、連結配管5は、液相冷媒流路51と気相冷媒流路52とがそれぞれ別々に設けられている。このため、回転機100全体が傾斜または動揺し、連結配管5の屈曲部50において液相冷媒が詰り、気相冷媒の流通を妨げることを防ぐことができる。従って、回転機100は、装置全体が傾斜または動揺した場合であっても、凝縮部4と蒸発部12との間における熱輸送能力を安定して維持できる。
 また、本実施の形態に係る回転機100では、図2に示すように、蒸発部12の冷媒貯留部20内に挿通される連結配管5の一端部において、気相冷媒流路52の方が、液相冷媒流路51よりも回転子1の中心に向かって突出した構成となっている。例えば、連結配管5が図2に示す二重配管構造を有し、内管側が気相冷媒流路52となっている場合、あるいは、連結配管5が並列配管構造を有する場合において、気相冷媒流路52の一端部の方が液相冷媒流路の一端部よりも突出した構成とすることで、回転機100全体が傾斜したとしても、液相冷媒流路51を流通して冷媒貯留部20に供給される液相冷媒が気相冷媒流路52内へと浸入することを防ぐことができる。
 また、本実施の形態に係る回転機100では、図2に示すように、凝縮部4内において、液相冷媒が気相冷媒流路52へと浸入することを防ぐための浸入防止部41が設けられている。ここで、図1に示すように凝縮部4の上面には冷却機60のコールドヘッド61が設けられており、コールドヘッド61により冷却され凝縮した液相冷媒が凝縮部4の上方から下方に向って滴下するように構成されている。そこで、本実施の形態に係る回転機100では、図2に示すように、凝縮部4内において液相冷媒が上方から滴下し、気相冷媒流路52内に浸入することを防ぐことができる傘形状の遮蔽部材を浸入防止部41として備えている。この浸入防止部41は、凝縮部4内において気相冷媒流路52からの気相冷媒の排出を妨げず、かつ気相冷媒流路52への液相冷媒の浸入を防ぐ位置に設けられる。
 なお、浸入防止部41の形状は図2に示すような傘形状に限定されるものではなく、例えば板形状など、気相冷媒流路52への液相冷媒の浸入を防ぐことができる形状であればよい。浸入防止部41は、連結配管5の気相冷媒流路52に設けられた支持材(不図示)によって凝縮部4内に支持された構成であってもよいし、凝縮部4内に設けられた支持材(不図示)によって該凝縮部4内に支持された構成であってもよい。
 また、図2に示す回転機100では、浸入防止部41は連結配管5とは別部材として設けられる構成であった。しかしながら、浸入防止部41は、連結配管5の他端部を液相冷媒が気相冷媒流路52内に浸入しないように変形させた部分としてもよい。具体的には、液相冷媒の浸入を防ぐように、気相冷媒流路52の他端部を屈曲させるなど変形させた形状部分を浸入防止部41とすることができる。
 このように、浸入防止部41を備えるため、気相冷媒流路52に浸入した液相冷媒によって、気相冷媒流路52の屈曲部50近傍を塞いでしまうことを防止することができる。
 また、回転機100では、連結配管5は、一端部が開口部21を介して冷媒貯留部20内に挿入され、他端部が凝縮部4に固定されている。このため、連結配管5の外周面と開口部21の周縁との間には隙間が形成されることとなる。本実施の形態に係る回転機100では、この連結配管5の外周面と開口部21の周縁との間に形成された隙間を塞ぐように、連結配管を開口部21および/または開口部21の近傍において支持する支持部31が設けられている。支持部31としては、回転部側に備えられた蒸発部12の開口部21と固定部側に備えられた連結配管5との間で相対的に回転可能となり、かつ連結配管5を開口部21の周縁で支持することができるベアリングなどを利用することができる。
 本実施の形態に係る回転機100では、上述のように支持部31を備えるため、連結配管5を凝縮部4と支持部31との両端で支持することができる。このため、回転機100全体が傾斜または動揺した際に生じる衝撃や疲労に対して耐性を高めることができる。また、支持部31により開口部21の周縁と連結配管5との隙間に液相冷媒が浸入することを防ぐことができる。このように、開口部21の周縁と連結配管5との隙間への液相冷媒の浸入を防ぐことができるため、磁性流体封止部材6が浸入してきた液相冷媒に曝されることを防止することができる。
 また、開口部21と連結配管5との隙間に液相冷媒が浸入することを防ぐために、上記した支持部31の代わりにシール部を備える構成であってもよい。シール部としては、例えば、回転部側に備えられた蒸発部12の開口部と固定部側に備えられた連結配管5との間で相対的に回転可能とする、例えばメカニカルシール、リップシール、ラビリンスシールを挙げることができる。また、支持部31とシール部とを組み合わせた構成としてもよい。両者を組み合わせることで連結配管5の衝撃や疲労に対する耐性を高めつつ、磁性流体封止部材6が液相冷媒に曝されるリスクを大幅に低減させることができる。
 また、開口部21と連結配管5との隙間に液相冷媒が浸入することを防ぐために、図3に示すように、連結配管5が、該連結配管5の外周面と開口部21の周縁との隙間に液相冷媒が蒸発部12内から逆流して浸入することを防ぐための逆流防止部32を備える構成としてもよい。図3は、図1に示す回転機100において利用する熱サイフォン冷却システムの一例を模式的に示す図である。
 逆流防止部32は、例えば、回転機100全体が傾斜または動揺した際に、蒸発部12の冷媒貯留部20内から液相冷媒が連結配管5に向かって逆流し、液相冷媒が開口部21と連結配管5との隙間に浸入することを防ぐことができるように、連結配管5の外周に設けられた遮蔽部材として実現することができる。この遮蔽部材は、例えば、図3に示すように連結配管5の一端部において、連結配管5と開口部21との隙間に液相冷媒が浸入しないように、連結配管5の外周壁が折り返された折り返し構造部分として例示できる。
 また、図1から3に示すように、連結配管5の外形は、第1連結配管部5aと第2連結配管部5bとが略L字形状となっている。本実施の形態に係る連結配管5では、第1連結配管部5aの長さ成分と、第2連結配管部5bの長さ成分とは図4に示す関係にある。図4は、図1に示す回転機100が備える連結配管5の、蒸発部12側から屈曲部50までの連結配管部分(第1連結配管部5a)と、凝縮部4側から屈曲部50までの連結配管部分(第2連結配管部5b)とのそれぞれの長さ成分の関係を示す図である。
 すなわち、蒸発部12側にある連結配管5の一端部と凝縮部4側にある連結配管5の他端部とを結ぶ線と、回転軸線Aとによってなす角度が、回転機100において設定されている許容傾斜角度θ以上となるように第1連結配管部5aと第2連結配管部5bとの長さ成分の比率が設定されている。
 例えば、回転機100全体が傾斜すると、それに伴って、連結配管5も傾斜し、蒸発部12と屈曲部50との間の区間において、蒸発部12側にある一端部が屈曲部50よりも高くなる場合がある。このような場合、連結配管5では屈曲部50から蒸発部12に向かって液相冷媒が流通しなくなる。
 しかしながら、上記したように、回転機100では、連結配管5の一端部と他端部とを結ぶ線と回転軸線Aとによってなす角度が許容傾斜角度θ以上であるため、回転機100全体が許容傾斜角度θまで傾斜したとしても、凝縮部4側にある連結配管5の他端部を、蒸発部12側にある連結配管5の一端部以上の高さに維持することができる。それ故、例えば、回転機100全体が傾斜または動揺し、液相冷媒が連結配管5を介して蒸発部12に一時的に供給されない状態となったとしても、第2連結配管部5bにおいて液相冷媒が蒸発部12側の一端部以上の高さまで貯留されると、そのヘッド圧(水頭圧)により液相冷媒を冷媒貯留部20内に押し出すことができる。なお、許容傾斜角度θは、設置場所において該回転機100の傾斜が許容される角度であり、例えば、15度~30度の範囲で設定することができる。
 よって、回転機100全体が傾斜または動揺したとしても液相冷媒を蒸発部12に供給することができ、回転子1内の超電導コイル11に対する冷却能力を維持することができる。
 また、本実施の形態に係る回転機100では、蒸発部12の冷媒貯留部20の壁面のうち、連結配管5が挿入される側の壁面の内面の少なくとも一部が、回転軸線Aに対して傾くように形成されたテーパーフード部22が設けられている。より具体的には、テーパーフード部22は、図1,図2に示すように開口部21から回転子1の中心に向かって拡径する、いわゆる錐台形状をしている。
 ここで、超電導コイル11を冷却するのに十分な流量の冷媒を流通させるためには、連結配管5の配管長が長くなればなるほど、配管径を大きくする必要があり、結果的に回転軸3や該回転軸3を支持する軸受が拡径することになるため、材料・組立費が増加したり、軸受のメンテナンス間隔が悪化たりする。しかしながら、本実施の形態に係る回転機100では、蒸発部12側にテーパーフード部22を設け、連結配管5を蒸発部12側から迎えにいく構造とすることで連結配管5の配管長を、テーパーフード部22を設けない構造の場合と比較して短くすることができる。これにより連結配管5の配管径が大きくなることを防ぐことができ、回転軸3や該回転軸3を支持する軸受の拡径化により、材料・組立費の増加や軸受のメンテナンス間隔の悪化を防ぐことが出来る。また、本実施の形態に係る回転機100では、テーパーフード部22の回転軸線Aに対する傾斜角度が、許容傾斜角度θより大きくなるように設定されている。
 このため、例えば、回転機100が許容傾斜角度θまで傾斜し、連結配管5の蒸発部12側の一端部位置が屈曲部50よりも高くなるような場合であっても、テーパーフード部22では開口部21から冷媒貯留部20内に向かって低くなるように傾斜を維持することができる。このため、連結配管5を流通した液相冷媒を蒸発部12の冷媒貯留部20内に流入させることができる。さらに、冷媒貯留部20内に貯留する液相冷媒が連結配管5に向かって逆流することや、開口部21の周縁と連結配管5との隙間に液相冷媒が浸入することを防ぐことができる。
 なお、本実施の形態に係る回転機100では、蒸発部12の冷媒貯留部20に上記したテーパーフード部22を備える構成であったが、必ずしもテーパーフード部22を設ける必要はない。例えば、連結配管5の配管径が所望の寸法に収まる場合であって、冷媒貯留部20に貯留された液相冷媒が逆流することがない場合は、テーパーフード部22を備えない構成とすることができる。このようにテーパーフード部22を備えない構成の場合、冷媒貯留部20の連結配管5が挿入される側の壁面は、回転軸線Aに対して傾斜した構成とはならない。
 また、冷媒貯留部20においてテーパーフード部22を設ける構成は、必ずしも熱サイフォン作用を用いて被冷却体を冷却する構成に限定されるものではない。また、連結配管5が上述した二重配管構造または並列配管構造を有する構成に限定されるものでもない。すなわち、被冷却体を冷却するために冷媒貯留部20内に液相冷媒が貯留される構成において、装置全体が傾斜または動揺した際に、貯留された液相冷媒の逆流を防止することができる装置を提供する場合に、テーパーフード部22を設けた構成とすることができる。さらにまた、連結配管5の配管長が長くなり所望の配管径の寸法より大きくなる構造を改善することができる装置を提供する場合にも、上記したテーパーフード部22を設けた構成とすることができる。
 なお、連結配管5は、ヒートパイプ作用(ウィック)を生じさせる構造を有するものであってもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明は、例えば、船舶など傾斜または動揺する環境下で用いられる、熱サイフォン作用を用いて被冷却体の冷却を行う回転機において有用である。
  1 回転子
  3 回転軸
  4 凝縮部
  5 連結配管
 11 超電導コイル
 12 蒸発部
 13 冷媒流通配管
 20 冷媒貯留部
 21 開口部
 22 テーパーフード部
 31 支持部
 32 逆流防止部
 41 浸入防止部
 50 屈曲部
 51 液相冷媒流路
 52 気相冷媒流路
 60 冷却機
100 回転機
  A 回転軸線
  θ 許容傾斜角度

Claims (8)

  1.  回転軸線の周りを回転する回転子内の被冷却体を熱サイフォン作用により冷却させる回転機であって、
     前記回転子の外部に配置された、冷媒を凝縮する凝縮部と、
     前記回転子内において、前記凝縮部で凝縮した液相冷媒を気化させて前記被冷却体との熱交換を行う蒸発部と、
     前記蒸発部と前記凝縮部との間で前記冷媒を行き来させる、屈曲部を有した連結配管と、を備え、
     前記連結配管は、前記凝縮部において凝縮した液相冷媒が流通する液相冷媒流路と、前記蒸発部において気化した気相冷媒が流通する気相冷媒流路とがそれぞれ別々に設けられた配管構造を有する回転機。
  2.  前記連結配管は、一端部が前記蒸発部内に挿入され、前記回転軸線に沿って、該蒸発部または該冷媒流通部から前記回転子の外側に向かって延伸し、前記屈曲部にて屈曲して他端部が該凝縮部に固定されており、
     前記一端部と前記他端部とを結ぶ線分の前記回転軸線に対する角度が、当該回転機の傾斜が許容される角度を示す許容傾斜角度θ以上となるような寸法を有している請求項1に記載の回転機。
  3.  前記連結配管は、内管を前記気相冷媒流路とし、この内管の外周を囲む外管と該内管との間に形成される空間を前記液相冷媒流路とする二重配管構造、あるいは、液相冷媒流路と気相冷媒流路とを並列に配置した並列配管構造を有しており、
     前記蒸発部内において、前記気相冷媒流路の前記蒸発部側の一端部の方が、前記液相冷媒流路の前記蒸発部側の一端部よりも突出している請求項1または2に記載の回転機。
  4.  前記凝縮部内において、前記液相冷媒の前記気相冷媒流路への浸入を防ぐための浸入防止部を備える請求項3に記載の回転機。
  5.  前記連結配管は、前記他端部が前記凝縮部において固定され、前記一端部は前記蒸発部内に挿入されており、
     前記蒸発部は、前記連結配管を内部に挿入するための開口部を有しており、
     前記連結配管の外周面と前記開口部の周縁との間の隙間を塞ぐように設けられ、該連結配管を該開口部近傍において支持する支持部を備える請求項1から4のいずれか1項に記載の回転機。
  6.  前記蒸発部は、前記連結配管を内部に挿入するための開口部を有しており、
     前記連結配管が、該連結配管の外周面と前記開口部の周縁との隙間に液相冷媒が前記蒸発部内から逆流して浸入することを防ぐための逆流防止部を備える、請求項1から4のいずれか1項に記載の回転機。
  7.  前記蒸発部は、前記連結配管を内部に挿入するための開口部を有しており、
     前記連結配管の前記蒸発部側の外周面と前記開口部の周縁との隙間に液相冷媒が前記蒸発部内から逆流して浸入することを防ぐためのシール部を備える、請求項1から4のいずれか1項に記載の回転機。
  8.  前記蒸発部は、前記液相冷媒を貯留する冷媒貯留部と、前記連結配管を該冷媒貯留部内に挿入するための開口部と、を有しており、
     前記冷媒貯留部を形成する壁面のうち、前記連結配管が挿入される側の壁面には、該壁面の内面の少なくとも一部が、前記回転軸線に対して傾き、かつその先端部に前記開口部が形成されたテーパーフード部が設けられており、
     前記回転軸線に対する前記テーパーフード部の傾斜角度は前記許容傾斜角度θより大きくなる請求項2に記載の回転機。
PCT/JP2016/003564 2015-09-02 2016-08-02 回転機 WO2017038003A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16841045.4A EP3346589B1 (en) 2015-09-02 2016-08-02 Rotating machine
US15/757,593 US10536067B2 (en) 2015-09-02 2016-08-02 Rotary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015172527A JP6814397B2 (ja) 2015-09-02 2015-09-02 回転機
JP2015-172527 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017038003A1 true WO2017038003A1 (ja) 2017-03-09

Family

ID=58186846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003564 WO2017038003A1 (ja) 2015-09-02 2016-08-02 回転機

Country Status (4)

Country Link
US (1) US10536067B2 (ja)
EP (1) EP3346589B1 (ja)
JP (1) JP6814397B2 (ja)
WO (1) WO2017038003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180164839A1 (en) * 2016-12-09 2018-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Drainage for Temperature Humidity Controlling System

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236948B2 (en) * 2016-08-24 2022-02-01 Delta Electronics, Inc. Heat dissipation assembly
CN112531962B (zh) * 2020-12-07 2022-06-28 中国科学院工程热物理研究所 一种飞轮储能转子散热系统
CN115333329B (zh) * 2022-06-23 2023-04-07 北京航天试验技术研究所 双蒸发冷凝循环的氢能飞机高温超导电机冷却装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565890A (en) * 1978-11-14 1980-05-17 Junichi Sato Heat transferring tube
JP3799016B2 (ja) * 2000-11-21 2006-07-19 シーメンス アクチエンゲゼルシヤフト 超伝導装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3613039A1 (de) * 1986-03-06 1987-09-10 Kraftwerk Union Ag Laeufer einer dynamoelektrischen maschine, insbesondere turbogenerator-laeufer mit supraleitender erregerwicklung, und verfahren zu seiner herstellung
DE10231434A1 (de) * 2002-05-15 2003-12-04 Siemens Ag Einrichtung der Supraleitungstechnik mit thermisch an eine rotierende supraleitende Wicklung angekoppeltem Kaltkopf einer Kälteeinheit
DE10250200A1 (de) * 2002-10-28 2004-05-13 Siemens Ag Ladegenerator für Gleichstrom-Bordnetze von Wasser-, Land- und Luftfahrzeugen, insbesondere von Unterwasserschiffen
DE10321463A1 (de) * 2003-05-13 2004-12-16 Siemens Ag Supraleitende Maschineneinrichtung mit einer supraleitenden Wicklung und einer Thermosyphon-Kühlung
JP5447070B2 (ja) * 2010-03-25 2014-03-19 富士通株式会社 ループ型ヒートパイプおよび電子機器
DE102010041194A1 (de) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Kühlung einer supraleitenden Maschine
DE102011004952B4 (de) * 2011-03-02 2013-09-05 Siemens Aktiengesellschaft Kühleinrichtung zur Kühlung eines Supraleiters, Magnetresonanzeinrichtung, supraleitende Maschine und Verfahren zum Fördern und/oder Umwälzen von Kühlmedium zur Kühlung eines Supraleiters
KR101507307B1 (ko) * 2013-05-14 2015-04-07 두산중공업 주식회사 초전도 회전기기 및 그것의 냉각 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565890A (en) * 1978-11-14 1980-05-17 Junichi Sato Heat transferring tube
JP3799016B2 (ja) * 2000-11-21 2006-07-19 シーメンス アクチエンゲゼルシヤフト 超伝導装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346589A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180164839A1 (en) * 2016-12-09 2018-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Drainage for Temperature Humidity Controlling System
US11035619B2 (en) * 2016-12-09 2021-06-15 Taiwan Semiconductor Manufacturing Co., Ltd. Drainage for temperature and humidity controlling system

Also Published As

Publication number Publication date
EP3346589A4 (en) 2019-04-24
JP6814397B2 (ja) 2021-01-20
US20180248464A1 (en) 2018-08-30
EP3346589A1 (en) 2018-07-11
JP2017050978A (ja) 2017-03-09
US10536067B2 (en) 2020-01-14
EP3346589B1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2017038003A1 (ja) 回転機
US7443062B2 (en) Motor rotor cooling with rotation heat pipes
CN101111985B (zh) 具有对其超导转子绕组的温差环流冷却的电机装置
KR101908147B1 (ko) 초전도 기기의 냉각을 위한 장치 및 방법
US20170284725A1 (en) Cryostat with a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
JP2013184060A (ja) マルチ配向性クライオスタット
JP2007024490A (ja) 低温冷凍機を備えたクライオスタット構造
JP6927229B2 (ja) 相変化冷却装置および相変化冷却方法
US20170214295A1 (en) Pod propulsion device and a method for cooling such
JP2008025858A (ja) サブクール低温装置
US10041711B2 (en) Superconducting rotating machine and cooling method thereof
JP6954551B2 (ja) 回転機
WO2016158610A1 (ja) 冷熱回収用ガス気化器及び冷熱回収機能付きガス気化装置
JP6647918B2 (ja) 超電導電磁石装置および磁気共鳴イメージング装置
JPH0127669B2 (ja)
JP2006014522A (ja) 電動機の冷却構造
JP2009516381A (ja) 超伝導磁石システム
JP7282254B2 (ja) 超電導電磁石装置
US10920829B2 (en) Thrust bearing cooling device
JP2008091802A (ja) 極低温容器
KR101482570B1 (ko) 윅구조를 포함하는 초전도 회전기기
JP6024539B2 (ja) 超伝導回転機
KR101555303B1 (ko) 재응축장치, 그 재응축장치용 재응축핀의 온도조절방법, 그 재응축장치를 가지는 냉각장치, 그 냉각장치를 이용한 냉각방법
WO2019172001A1 (ja) 冷凍装置
JP2010178486A (ja) 超伝導回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15757593

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016841045

Country of ref document: EP