WO2017037868A1 - 発電設備および発電制御装置 - Google Patents
発電設備および発電制御装置 Download PDFInfo
- Publication number
- WO2017037868A1 WO2017037868A1 PCT/JP2015/074845 JP2015074845W WO2017037868A1 WO 2017037868 A1 WO2017037868 A1 WO 2017037868A1 JP 2015074845 W JP2015074845 W JP 2015074845W WO 2017037868 A1 WO2017037868 A1 WO 2017037868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power generation
- storage battery
- value
- facility
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/50—Energy storage in industry with an added climate change mitigation effect
Definitions
- the present invention relates to a power generation system including a power generation system, a storage battery system, an internal power line connecting the power generation system, the storage battery system, and the power system, and a power generation control device provided in the power generation facility.
- the power system is constructed by connecting power generation equipment and load equipment with power transmission and distribution equipment.
- power systems There are various types of power systems ranging from large-scale systems that connect multiple large-scale power plants to many factories, commercial facilities, and homes, to small-scale systems built within specific facilities. To do.
- One type of power generation equipment includes a power generation system that uses natural energy such as sunlight and wind power. Power generation systems using natural energy are being widely introduced in response to the recent increase in awareness of energy problems and environmental problems. However, a power generation system using natural energy has a disadvantage in that stable power supply cannot be performed because generated power is easily influenced by natural factors such as season and weather. In order to compensate for this shortcoming, power generation facilities combined with a power generation system and a storage battery system have been considered.
- the storage battery system is used as one means for stabilizing the power supplied from the power generation facility to the power system.
- it was considered difficult to store large amounts of power but the storage of large amounts of power has become possible due to the practical use of large-capacity storage batteries such as lithium-ion batteries and sodium-sulfur batteries. .
- large-capacity storage batteries such as lithium-ion batteries and sodium-sulfur batteries.
- By connecting a storage battery system including such a storage battery to the power generation system when the supply is excessive with respect to the power demand, the storage battery is charged with excess power and when the supply is insufficient with respect to the power demand. Therefore, it is possible to make up for the shortage of power by discharging from the storage battery.
- Combining a storage battery system with a power generation system that uses natural energy makes it possible to level the generated power that fluctuates depending on the season and weather, etc., by charging and discharging the storage battery, and to supply power stably to the power system.
- Patent Document 1 discloses a configuration in which a photovoltaic power generation system and a storage battery system are connected, and fluctuations in power generated by photovoltaic power generation are suppressed by charge / discharge control of the storage battery.
- the power generation facility has a power change rate of power supplied to the power system relative to the rated output of the power generation facility (maximum power that the power generation facility can supply to the power system) ( Hereinafter, it is required to control the rate of change in system power supply within a range of ⁇ n% / min.
- the power supplied from the power generation system to the power line in the facility Even if the power supply increases, the power supply rate of change can be controlled within a range of ⁇ n% / min by charging the storage battery system with the rapidly increased power. Therefore, a rapid change in the power supplied to the power system can be suppressed.
- the present invention has been made to solve the above-described problems.
- a power generation facility having a storage battery system with a rated output lower than that of the power generation system, the power system is stable even if there is a sharp increase in generated power. It is an object of the present invention to provide a power generation facility and a power generation control device that can supply power.
- the power generation facility is connected to the power system, and includes a power generation system, a storage battery system, an electric wire in the facility, and a power generation control device.
- the power generation system has a power generation device whose generated power varies depending on the weather.
- the power generation system is, for example, a solar power generation system or a wind power generation system.
- the storage battery system has a storage battery.
- a storage battery may be comprised by the single storage battery cell, and may be comprised as the aggregate
- As the type of storage battery a large-capacity storage battery such as a lithium ion battery, a sodium sulfur battery, or a nickel metal hydride battery is preferable.
- the electric wire in the facility connects the power generation system, the storage battery system, and the power system. Note that the rated output of the storage battery system is smaller than the rated output of the power generation system.
- the power generation facility charges the storage battery system with a part of the power that the power generation system supplies to the power line in the facility so that the change per control cycle of the power supplied to the power system falls within the specified ratio of the rated output. .
- the control period is set to, for example, several milliseconds to several tens of milliseconds.
- the power generation control device has power generation allowable power value calculation means and output suppression means.
- the power generation allowable power value calculation means calculates the power value according to the specified ratio of the rated output of the power generation facility to a value obtained by subtracting the current value of the power charged by the storage battery system from the current value of the power supplied by the power generation system to the power line in the facility. And a power generation allowable power value obtained by adding the maximum value of the charging power per control cycle of the storage battery system.
- the output suppression means suppresses the power supplied from the power generation system to the power line in the facility to be equal to or lower than the power generation allowable power value when the power supplied from the power generator is larger than the power generation allowable power value in the next control cycle.
- the power generation control device can calculate the optimum power generation allowable power value in the next control cycle for each control cycle. Then, in the next control cycle, when the power supplied from the power generation device is larger than the power generation allowable power value, the power supplied from the power generation system to the in-facility electric wires is suppressed to be equal to or lower than the power generation allowable power value.
- the change per control cycle of the electric power supplied to the electric power system can be kept within the specified ratio of the rated output of the power generation equipment. That is, it is possible to stably supply power to the power system in a power generation facility with low capacity and low cost of the storage battery system.
- Embodiment 1 is a block diagram of a system according to Embodiment 1 of the present invention. It is a figure for demonstrating the fluctuation
- 4 is a flowchart for explaining processing of a charge / discharge command unit 60 and a power generation allowable power value calculation unit 61 of the power generation control device 1.
- 5 is a flowchart for explaining processing of an output suppression unit 62 of the power generation control device 1. It is a figure which shows the hardware constitutions of the electric power generation control apparatus.
- FIG. 1 is a conceptual configuration diagram for explaining a system configuration according to Embodiment 1 of the present invention.
- the power generation facility 10 shown in FIG. 1 is connected to the power transmission facility 20 of the power system.
- the power system includes other power generation facilities (not shown) connected to the power transmission facility 20 and load facilities (not shown) connected to the power transmission facility 20.
- the power generation facility 10 includes a power generation system 30 in which generated power fluctuates depending on the weather, a storage battery system 40 having a storage battery, and an in-facility electric wire 21 that connects the power generation system 30, the storage battery system 40, and the power system.
- the rated output of the storage battery system 40 (maximum power that can be charged and discharged by the storage battery system 40) is smaller than the rated output of the power generation system 30 (maximum power that can be supplied by the power generation system 30).
- the power generation facility 10 includes an overall control device 50.
- the overall control device 50 is connected to the power generation system 30 and the storage battery system 40 via the computer network 22.
- a wattmeter 25 is provided at a connection point between the power generation facility 10 and the power system.
- the wattmeter 25 is connected to the overall control device 50 through a signal line.
- the power generation system 30 shown in FIG. 1 is a photovoltaic power generation (PV) system.
- the power generation system 30 may be a wind power generation system or the like.
- the power generation system 30 includes a solar power generation device 31, a power conditioning system for solar power generation (hereinafter referred to as PV-PCS) 32, and a wattmeter 33.
- the solar power generation device 31 includes a plurality of PV modules 311, a connection box 312 connected to the plurality of PV modules 311, and a current collection box 313 connected to the plurality of connection boxes 312.
- the current collection box 313 is connected to the PV-PCS 32.
- the electric power generated by the plurality of PV modules 311 is supplied to the PV-PCS 32 via the current collection box 313.
- the PV-PCS 32 has a function of converting DC power supplied from the solar power generator 31 into AC power. Further, the PV-PCS 32 includes a current sensor and a voltage sensor, and adjusts electric power with reference to output values of these sensors. The PV-PCS 32 is connected to the electric wire 21 in the facility. The wattmeter 33 is connected to the overall control device 50 through a signal line. The power generation system 30 is connected to the storage battery system 40 and the overall control device 50 via the computer network 22.
- the wattmeter 33 constantly detects the power supplied from the power generation system 30 to the in-facility electric wire 21.
- the constant detection in the present embodiment is a concept including not only an operation of capturing a continuous signal from a sensor but also an operation of capturing a sensor signal at a predetermined short cycle.
- the supplied power value detected by the wattmeter 33 is input to the overall control device 50.
- the storage battery system 40 includes a storage battery device 41 and a storage battery power conditioning system (hereinafter, storage battery PCS) 42.
- storage battery PCS storage battery power conditioning system
- one storage battery device 41 is connected to one storage battery PCS 42, but this is merely an example.
- a plurality of storage battery devices 41 are connected in parallel to one storage battery PCS 42.
- the number of parallel storage battery devices 41 is determined based on the specification of the storage battery PCS 42.
- the storage battery system 40 is connected to the power generation system 30 and the overall control device 50 via the computer network 22.
- the storage battery device 41 includes a storage battery module 411 and a storage battery monitoring device (hereinafter, BMU: Battery Management Unit) 412.
- the storage battery module 411 is a module in which a plurality of cells are connected in series. Each cell is a lithium ion battery (LiB).
- the storage battery module 411 is connected to the storage battery PCS 42 by a power transmission line through a contactor and a fuse. Further, the storage battery module 411 is connected to the BMU 412 by a signal line.
- the BMU 412 is connected to the overall control device 50 via the computer network 22.
- the BMU 412 monitors the state of the storage battery module 411.
- the BMU 412 includes a current sensor, a voltage sensor, and a temperature sensor as means for measuring the state quantity of the storage battery module 411.
- the current flowing through the storage battery module 411 is measured by the current sensor.
- the voltage of each cell is measured by the voltage sensor.
- the temperature of the storage battery module 411 is measured by the temperature sensor.
- Monitoring of the storage battery module 411 by the BMU 412 is always performed.
- the constant monitoring in the present embodiment is a concept including not only an operation of capturing a continuous signal from a sensor but also an operation of capturing a sensor signal at a predetermined short cycle.
- the BMU 412 transmits storage battery information including information obtained by measurement by each sensor to the overall control device 50.
- the storage battery PCS 42 is connected to the in-facility electric wire 21 by a power transmission line via a transformer.
- the storage battery PCS 42 converts the AC power output from the power generation system 30 into DC power and charges the storage battery module 411, and the discharging function converts the DC power of the storage battery module 411 into AC power and discharges it to the power system. With.
- the amount of charge power to the storage battery module 411 and the amount of discharge power from the storage battery module 411 are adjusted by the storage battery PCS 42.
- the adjustment of the charge / discharge power amount by the storage battery PCS 42 is performed in accordance with a charge / discharge command supplied from the overall control device 50.
- the charge / discharge command includes a request regarding active power and reactive power to be charged / discharged by the storage battery PCS 42.
- the storage battery PCS 42 includes a current sensor and a voltage sensor, and the storage battery PCS 42 adjusts the amount of charge / discharge power with reference to the output values of these sensors.
- the overall control device 50 is connected to the power generation system 30 and the storage battery system 40 via the computer network 22.
- the overall control device 50 controls power supply and demand between the power system and the power generation facility 10.
- the overall control device 50 includes a charge / discharge command unit 60 and a power generation allowable power value calculation unit 61 described later.
- the wattmeter 25 constantly detects the combined power supplied from the power generation facility 10 to the power system.
- the combined power is power obtained by adding the power supplied by the power generation system 30 and the charge / discharge power of the storage battery system 40.
- the constant detection in the present embodiment is a concept including not only an operation of capturing a continuous signal from a sensor but also an operation of capturing a sensor signal at a predetermined short cycle.
- the combined power value detected by the wattmeter 25 is input to the overall control device 50.
- FIG. 2 is a block diagram of a system according to Embodiment 1 of the present invention.
- the power generation control device 1 according to the present invention is a concept that may include a part of the overall control device 50 and the power generation system 30.
- the power generation control device 1 has a charge / discharge command function, and the charge / discharge command unit 60 takes charge of the function.
- the power generation control device 1 receives the combined power value from the power meter 25, receives the supply power value from the power meter 33, and receives storage battery information from the storage battery system 40 (BMU 412).
- the charge / discharge command unit 60 determines a charge / discharge command based on the combined power value, the supplied power value, and the storage battery information, and transmits the charge / discharge command to the storage battery system 40.
- FIG. 3 is a diagram for explaining the fluctuation of the generated power for each time by the solar power generation system.
- the output of the solar power generation system varies depending on the amount of solar radiation. A typical case is when a cloud is flowing in fine weather, and the output fluctuates rapidly in a short time as the shadow of the cloud passes over the solar panel. It is necessary to level the steep fluctuations by charging / discharging the storage battery system 40 so as to cancel the output fluctuations of the photovoltaic power generation.
- output fluctuation is reduced as indicated by a solid line 302 by charging and discharging the storage battery system 40 so as to cancel out the output of the photovoltaic power generation system indicated by the broken line 301.
- the charge / discharge command unit 60 determines the charge / discharge command so that the steep output fluctuation of the photovoltaic power generation is leveled by the charge / discharge control of the storage battery system 40.
- the power generation facility 10 is supplied to the power system for the rated output of the power generation facility 10 (the maximum power that the power generation facility 10 can supply to the power system) in order to supply power stably to the power system. It is required to control the rate of change in power (hereinafter referred to as the rate of change in power supplied to the system) within a range of ⁇ n% / min. Therefore, the charge / discharge command unit 60 determines the charge / discharge command for the storage battery system 40 so that the change per control cycle of the power supplied to the power system falls within the specified ratio of the rated output of the power generation facility.
- the charge / discharge command unit 60 charges the storage battery system 40 with a part of the power supplied from the power generation system 30 to the in-facility electric wire 21.
- the charge / discharge command to be performed is determined.
- the control cycle is set to several milliseconds to several tens of milliseconds. As an example, when the control period is 20 milliseconds, the specified ratio is 1/3000 of n%.
- FIG. 4 is a diagram for explaining the output of the power generation system 30 for each control cycle and the calculation of the power generation allowable power value.
- a solid line 71 indicates the output of the power generation system 30 for each control cycle.
- Point 72 is the site output (power supplied from the power generation facility 10 to the power system) in the current control cycle.
- Point 74 is the site output in the next control cycle.
- Point 72 is a site output upper limit allowable value in the current control cycle
- point 73 is a site output lower limit allowable value in the current control cycle.
- the site output upper limit allowable value is a value corresponding to the maximum value (+ n% / min) of the grid supply power change rate.
- the site output lower limit allowable value is a value corresponding to the minimum value ( ⁇ n% / min) of the grid supply power change rate.
- (A) to (E) shown in FIG. 4 are defined as follows.
- (A) is the current value of the electric power supplied from the power generation system 30 to the in-facility electric wire 21 in the current control cycle, and is detected by the wattmeter 33.
- (B) is the current value of the power charged by the storage battery system 40 and is included in the charge / discharge command calculated by the charge / discharge command unit 60.
- (C) is a power value according to a specified ratio of the rated output of the power generation facility 10. The specified ratio is a fixed value set in advance according to the maximum value of the system supply power change rate and the control cycle.
- (D) is the maximum value of the charging power per control cycle of the storage battery system 40, and is a fixed value set in advance as the rated output of the storage battery PCS42.
- (E) is a power generation allowable power value in the next control cycle, and the power generation allowable power value in the next control cycle is expressed by the following equation (1) using the above (A) to (E).
- (E) (A) ⁇ (B) + (C) + (D) (1)
- the power generation control device 1 has a power generation allowable power value calculation function, and the power generation allowable power value calculation unit 61 takes charge of the function.
- the power generation allowable power value calculation unit 61 calculates the power generation allowable power value in the next control cycle using Expression (1).
- the calculated power generation allowable power value is transmitted to the output suppression unit 62.
- the power generation control device 1 has an output suppression function, and the output suppression unit 62 takes charge of the function.
- the output suppression unit 62 determines whether the generated power supplied from the solar power generation device 31 to the PV-PCS 32 is larger than the power generation allowable power value for each control cycle.
- the generated power supplied from the solar power generation device 31 to the PV-PCS 32 is calculated from the output values of the current sensor and the voltage sensor in the PV-PCS 32.
- the power generation allowable power value used for the determination is a value calculated by the power generation allowable power value calculation unit 61 in the control cycle immediately before the process of the output suppression unit 62 is executed.
- the storage battery system 40 When the generated power supplied from the solar power generation device 31 to the PV-PCS 32 is less than or equal to the allowable power generation value, the storage battery system 40 is charged with the suddenly increased power so that the rate of change in system supply power is ⁇ n % / Min can be controlled. On the other hand, when the generated power supplied from the solar power generation device 31 to the PV-PCS 32 is larger than the allowable power generation value, the storage battery system 40 is charged with the rapidly increased power due to insufficient charging capacity of the storage battery system 40. It is not possible to control the power supply change rate within ⁇ n% / min only by making it.
- FIG. 5 is a diagram for explaining the output suppression control in the first embodiment of the present invention.
- the unit 62 performs output suppression control that suppresses the power supplied from the power generation system 30 to the in-facility electric wire 21 to be equal to or lower than the generation allowable power value (arrow 76).
- the output suppression unit 62 performs control for the PV-PCS 32 to suppress the power supplied by the PV-PCS 32 to the in-facility electric wire 21 to be equal to or lower than the power generation allowable power value.
- FIG. 6 is a flowchart for explaining the processing of the charge / discharge command unit 60 and the power generation allowable power value calculation unit 61 of the power generation control device 1.
- the control routine shown in FIG. 6 is executed every control cycle.
- the wattmeter 33 constantly detects the power supplied from the power generation system 30 to the in-facility electric wire 21.
- the overall control device 50 acquires the supply power value detected by the wattmeter 33 for each control cycle (step S101).
- the wattmeter 25 constantly detects the combined power supplied from the power generation facility 10 to the power system.
- the overall control device 50 acquires the combined power value detected by the wattmeter 25 for each control cycle (step S102).
- the storage battery system 40 transmits storage battery information to the overall control device 50 (step S301).
- the storage battery information includes the current flowing through the storage battery module 411, the voltage of each cell, and the temperature of the storage battery module 411.
- the overall control device 50 receives the storage battery information transmitted from the storage battery system 40 for each control cycle (step S103).
- the charge / discharge command unit 60 determines a charge / discharge command (step S104). Specifically, the charge / discharge command unit 60 has a system supply power change rate of ⁇ n based on the supply power acquired in step S101, the combined power acquired in step S102, and the storage battery information acquired in step S103. The charge / discharge command is determined so as to be within the fluctuation range of% / min. For example, in a control cycle in which the power supplied from the power generation system 30 to the in-facility electric wire 21 is increased, a charge / discharge command for charging the storage battery system 40 with a part of the power supplied from the power generation system 30 to the in-facility electric wire 21 is determined.
- the charge / discharge command for charging the storage battery system 40 with a part of the power supplied from the power generation system 30 to the in-facility electric wire 21 is determined.
- the charge / discharge command unit 60 transmits a charge / discharge command to the storage battery system 40 (step S105).
- the storage battery system 40 receives the charge / discharge command transmitted from the overall control device 50 (step S302).
- the storage battery PCS 42 performs a charge / discharge operation in accordance with the received charge / discharge command (step S303).
- the power generation allowable power value calculation unit 61 uses the values obtained in steps S101, S103, and S104 in the current control cycle and the above-described equation (1), and generates power allowable power value in the next control cycle. Is calculated (step S106).
- the overall control device 50 transmits the power generation allowable power value to the power generation system 30 (step S107).
- the power generation system 30 receives the power generation allowable power value transmitted from the overall control device 50 (step S201).
- FIG. 7 is a flowchart for explaining the processing of the output suppression unit 62 of the power generation control device 1.
- the control routine shown in FIG. 7 is executed every control cycle. Here, processing in the control cycle next to the control cycle in which the control routine shown in FIG. 6 is executed will be described.
- the output suppression unit 62 acquires the generated power supplied from the solar power generation device 31 to the PV-PCS 32 (step S210). Moreover, the output suppression part 62 sets the electric power generation allowable power value received in step S201 of FIG. 6 in the output suppression part 62 in the control cycle immediately before the control routine shown in FIG.
- the output suppression unit 62 determines whether the generated power supplied from the solar power generation device 31 to the PV-PCS 32 is larger than the allowable power generation value (step S212).
- the output suppression unit 62 uses the power supplied from the power generation system 30 to the in-facility electric wire 21 as the allowable power generation value. It suppresses below (step S213).
- the output suppression unit 62 does not execute control to suppress the output (step S214).
- the power generation control device 1 can calculate the optimum power generation allowable power value in the next control cycle for each control cycle. And in the next control period, when the electric power supplied from the solar power generation device 31 is larger than the allowable power generation value, the power supplied from the power generation system 30 to the in-facility electric wire 21 is suppressed to be equal to or lower than the allowable power generation value. Since the optimum power generation allowable power value in the next control cycle is calculated for each control cycle, a steep change in generated power (one control cycle) occurs in the power generation facility 10 in which the rated output of the storage battery system 40 is lower than the rated output of the power generation system 30.
- the optimum power generation allowable power value is calculated for each control cycle, output suppression can be minimized in each control cycle. Therefore, compared with the case where an output suppression schedule is determined in advance, unnecessary generation power is suppressed less, and power generation efficiency can be increased.
- each part indicated by reference numerals 60 to 62 represents a function of the power generation control device 1.
- FIG. 8 is a diagram illustrating a hardware configuration of the power generation control device 1.
- the power generation control device 1 includes, as hardware resources, an input / output interface (not shown) for inputting / outputting various types of information, a memory 201 for storing various types of information and various programs, and various types of information and various programs stored in the memory 201.
- a circuit including a processor 200 capable of executing arithmetic processing is provided.
- the power generation control device 1 implements the functions of the units 60 to 62 by executing the program stored in the memory 201 by the processor 200.
- the power generation control device 1 may include a plurality of processors 200.
- the power generation control device 1 may include a plurality of memories 201.
- the power generation control device 1 may include a plurality of input / output interfaces. That is, the functions of the units 60 to 62 may be realized by cooperation of a plurality of processors 200, a plurality of memories 201, and a plurality of input / output interfaces. In addition, some or all of the functions of the units 60 to 62 may be configured by a circuit.
- the power generation control device 1 may be configured by connecting the overall control device 50 and the power generation system 30 via a computer network 22.
- the overall control device 50 and the power generation system 30 each have a processor, a memory, and an input / output interface.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
発電設備10は、発電システム30と蓄電池システム40と設備内電線21とを備える。発電設備10は、電力系統に供給される電力の1制御周期あたりの変化が、発電設備10の定格出力の規定割合以内に収まるように、発電システム30が設備内電線21に供給する電力の一部を蓄電池システム40に充電させる。発電制御装置1は、発電システム30が設備内電線21に供給する電力の現在値から蓄電池システム40が充電する電力の現在値を減じた値に、前記定格出力の前記規定割合に応じた電力値と、蓄電池システム40の1制御周期あたりの充電電力の最大値とを加えた発電許容電力値を算出する。また、発電制御装置1は、次制御周期において、発電装置10から供給される電力が前記発電許容電力値よりも大きい場合に、発電システム30が設備内電線21に供給する電力を前記発電許容電力値以下に抑制する。
Description
この発明は、発電システムと、蓄電池システムと、発電システムと蓄電池システムと電力系統とを接続する設備内電線とを備える発電設備、および発電設備に設けられる発電制御装置に関する。
電力系統は、発電設備と負荷設備とを送配電設備によって接続することで構築されている。電力系統には、複数の大規模発電所と多数の工場や商業施設及び家庭とを接続する大規模なシステムから、特定の施設内で構築される小規模なシステムまで様々な規模のものが存在する。
発電設備の1つとして、太陽光や風力等の自然エネルギーを利用した発電システムを備えるものがある。自然エネルギーを利用した発電システムは、昨今のエネルギー問題或いは環境問題に対する意識の高まりをうけて広く導入されつつある。しかし、自然エネルギーを利用した発電システムには、季節や天候等の自然的要因によって発電電力が左右されやすいために安定した電力供給を行えないという短所がある。この短所を補うために、発電システムと蓄電池システムと組み合わせた発電設備が考えられている。
蓄電池システムは、発電設備が電力系統に供給する電力を安定させるための1つの手段として用いられる。かつては、大量の電力の貯蔵は困難であるとされていたが、リチウムイオン電池やナトリウム硫黄電池のような大容量の蓄電池が実用化されたことによって、大量の電力の貯蔵が可能になった。このような蓄電池を備えた蓄電池システムを発電システムに接続することにより、電力の需要に対して供給が過剰なときには、過剰な電力を蓄電池に充電し、電力の需要に対して供給が不足するときには、蓄電池からの放電により電力の不足を補填する運用が可能である。自然エネルギーを利用した発電システムに蓄電池システムを組み合わせることで、季節や天候等によって変動する発電電力を蓄電池の充放電により平準化させて、電力系統に安定した電力供給を行うことが可能になる。
なお、出願人は、本発明に関連するものとして、以下に記載する文献を認識している。特許文献1には、太陽光発電システムと蓄電池システムとが接続され、太陽光発電の発電電力の変動を蓄電池の充放電制御で抑制する構成が開示されている。
ところで、発電設備には、電力系統に安定した電力供給を行うために、発電設備の定格出力(発電設備が電力系統に供給可能な最大電力)に対する電力系統に供給される電力の電力変化率(以下、系統供給電力変化率という。)を、±n%/分の範囲内に制御することが要求されている。蓄電池システムの定格出力(蓄電池システムが充放電可能な最大電力)が発電システムの定格出力(発電システムが供給可能な最大電力)よりも大きければ、発電システムから設備内電線に供給される電力が急激に増大しても、急激に増大した電力を蓄電池システムに充電させることで、系統供給電力変化率を±n%/分の範囲内に制御することができる。そのため、電力系統に供給される電力の急激な変化を抑制できる。
しかし、そのためには発電システムと同等の定格出力を有する蓄電池システムを用意する必要があり、蓄電池システムの定格出力が発電システムの定格出力よりも低い場合には、蓄電池システムの充電能力が足りずに系統供給電力変化率を守れない場合がある。コスト低減の観点から、発電システムよりも低い定格出力の蓄電池システムを備える発電設備において、系統供給電力変化率を規定の範囲内に制御して、電力系統に安定した電力供給を行えることが望まれる。
本発明は、上述のような課題を解決するためになされたもので、発電システムよりも低い定格出力の蓄電池システムを備える発電設備において、急峻な発電電力の増大があっても、電力系統に安定した電力供給を行うことができる発電設備および発電制御装置を提供することを目的とする。
上記の目的を達成するため、本発明に係る発電設備は以下のように構成される。発電設備は電力系統に接続され、発電システムと、蓄電池システムと、設備内電線と、発電制御装置とを備える。
発電システムは、天候によって発電電力が変動する発電装置を有する。発電システムは、例えば太陽光発電システムや風力発電システムである。蓄電池システムは、蓄電池を有する。蓄電池は単一の蓄電池セルで構成されていてもよいし、複数の蓄電池セルの集合体として構成されていてもよい。蓄電池の種類としては、リチウムイオン電池やナトリウム硫黄電池やニッケル水素電池等の大容量の蓄電池が好ましい。設備内電線は、発電システムと蓄電池システムと電力系統とを接続する。なお、蓄電池システムの定格出力は、発電システムの定格出力よりも小さい。
発電設備は、電力系統に供給される電力の1制御周期あたりの変化が、定格出力の規定割合以内に収まるように、発電システムが設備内電線に供給する電力の一部を蓄電池システムに充電させる。制御周期は、例えば数ミリ秒~数十ミリ秒に設定される。
発電制御装置は、発電許容電力値算出手段と、出力抑制手段とを有する。発電許容電力値算出手段は、発電システムが設備内電線に供給する電力の現在値から蓄電池システムが充電する電力の現在値を減じた値に、発電設備の定格出力の規定割合に応じた電力値と、蓄電池システムの1制御周期あたりの充電電力の最大値とを加えた発電許容電力値を算出する。
出力抑制手段は、次制御周期において、発電装置から供給される電力が発電許容電力値よりも大きい場合に、発電システムが設備内電線に供給する電力を発電許容電力値以下に抑制する。
本発明によれば、発電制御装置は、制御周期毎に、次制御周期における最適な発電許容電力値を算出できる。そして、次制御周期において、発電装置から供給される電力が発電許容電力値よりも大きい場合に、発電システムが設備内電線に供給する電力を発電許容電力値以下に抑制する。制御周期毎に次制御周期における最適な発電許容電力値が算出されるため、蓄電池システムの定格出力が発電システムの定格出力より低い発電設備において、急峻な発電電力の変化があった場合にも、電力系統に供給される電力の1制御周期あたりの変化を発電設備の定格出力の規定割合以内に収めることができる。すなわち、蓄電池システムの能力が低い、コストが低い発電設備において、電力系統に安定した電力供給を行うことができる。
以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1に係るシステム構成を説明するための概念構成図である。図1に示す発電設備10は、電力系統の送電設備20に接続する。電力系統には、送電設備20の他、送電設備20に接続された他の発電設備(図示省略)、送電設備20に接続された負荷設備(図示省略)が含まれる。
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1に係るシステム構成を説明するための概念構成図である。図1に示す発電設備10は、電力系統の送電設備20に接続する。電力系統には、送電設備20の他、送電設備20に接続された他の発電設備(図示省略)、送電設備20に接続された負荷設備(図示省略)が含まれる。
また、発電設備10は、天候によって発電電力が変動する発電システム30と、蓄電池を有する蓄電池システム40と、発電システム30と蓄電池システム40と電力系統とを接続する設備内電線21を備える。なお、発電設備10において、蓄電池システム40の定格出力(蓄電池システム40が充放電可能な最大電力)は、発電システム30の定格出力(発電システム30が供給可能な最大電力)よりも小さい。
さらに、発電設備10は、統括制御装置50を備える。統括制御装置50は、コンピュータネットワーク22を介して発電システム30および蓄電池システム40と接続する。発電設備10と電力系統との連系点には電力計25が設けられる。電力計25は、信号線により統括制御装置50に接続する。
(発電システム)
図1に示す発電システム30は、太陽光発電(PV)システムである。なお、発電システム30は、風力発電システム等であってもよい。発電システム30は、太陽光発電装置31、太陽光発電用のパワーコンディショニングシステム(以下、PV-PCS)32、電力計33を備える。太陽光発電装置31は、複数のPVモジュール311、複数のPVモジュール311が接続する接続箱312、複数の接続箱312が接続する集電箱313を備える。集電箱313はPV-PCS32に接続する。複数のPVモジュール311で発電された電力は、集電箱313を介してPV-PCS32に供給される。
図1に示す発電システム30は、太陽光発電(PV)システムである。なお、発電システム30は、風力発電システム等であってもよい。発電システム30は、太陽光発電装置31、太陽光発電用のパワーコンディショニングシステム(以下、PV-PCS)32、電力計33を備える。太陽光発電装置31は、複数のPVモジュール311、複数のPVモジュール311が接続する接続箱312、複数の接続箱312が接続する集電箱313を備える。集電箱313はPV-PCS32に接続する。複数のPVモジュール311で発電された電力は、集電箱313を介してPV-PCS32に供給される。
PV-PCS32は、太陽光発電装置31から供給される直流電力を交流電力に変換する機能を備える。また、PV-PCS32は、電流センサと電圧センサとを備え、これらのセンサの出力値を参照して電力の調整を実施する。PV-PCS32は設備内電線21に接続する。電力計33は、信号線により統括制御装置50に接続する。発電システム30は、コンピュータネットワーク22を介して蓄電池システム40、統括制御装置50に接続する。
電力計33は、発電システム30から設備内電線21に供給される供給電力を常時検出する。ただし、本実施の形態でいう常時検出とは、センサから絶え間のない連続した信号を取り込む動作だけでなく、所定の短い周期でセンサの信号を取り込む動作を含む概念である。電力計33で検出された供給電力値は統括制御装置50に入力される。
(蓄電池システム)
蓄電池システム40は、蓄電池装置41、蓄電池用のパワーコンディショニングシステム(以下、蓄電池用PCS)42を備える。図1に示す蓄電池システム40は、1つの蓄電池用PCS42に対して1つの蓄電池装置41が接続されているが、これは単なる一例である。一般に、1つの蓄電池用PCS42に対して複数の蓄電池装置41が並列に接続される。蓄電池装置41の並列数は蓄電池用PCS42の仕様に基づいて定められる。蓄電池システム40は、コンピュータネットワーク22を介して発電システム30、統括制御装置50に接続する。
蓄電池システム40は、蓄電池装置41、蓄電池用のパワーコンディショニングシステム(以下、蓄電池用PCS)42を備える。図1に示す蓄電池システム40は、1つの蓄電池用PCS42に対して1つの蓄電池装置41が接続されているが、これは単なる一例である。一般に、1つの蓄電池用PCS42に対して複数の蓄電池装置41が並列に接続される。蓄電池装置41の並列数は蓄電池用PCS42の仕様に基づいて定められる。蓄電池システム40は、コンピュータネットワーク22を介して発電システム30、統括制御装置50に接続する。
蓄電池装置41は、蓄電池モジュール411、及び蓄電池監視装置(以下、BMU:Battery Management Unit)412を備える。蓄電池モジュール411は、複数のセルが直列に接続されたモジュールである。各セルはリチウムイオン電池(LiB)である。蓄電池モジュール411は、コンタクタ及びヒューズを介して送電線により蓄電池用PCS42に接続する。また、蓄電池モジュール411は、信号線によりBMU412に接続する。BMU412は、コンピュータネットワーク22を介して統括制御装置50に接続する。
BMU412は、蓄電池モジュール411の状態を監視する。具体的には、BMU412は、蓄電池モジュール411の状態量を計測する手段として電流センサ、電圧センサ、及び温度センサを備える。電流センサによって蓄電池モジュール411に流れる電流が計測される。電圧センサによって各セルの電圧が計測される。そして、温度センサによって蓄電池モジュール411の温度が計測される。BMU412による蓄電池モジュール411の監視は常時行われる。ただし、本実施の形態でいう常時監視とは、センサから絶え間のない連続した信号を取り込む動作だけでなく、所定の短い周期でセンサの信号を取り込む動作を含む概念である。BMU412は、各センサによる計測で得られた情報を含む蓄電池情報を統括制御装置50に送信する。
蓄電池用PCS42は、変圧器を介して送電線により設備内電線21に接続される。蓄電池用PCS42は、発電システム30が出力した交流電力を直流電力に変換して蓄電池モジュール411に充電する充電機能と、蓄電池モジュール411の直流電力を交流電力に変換して電力系統に放電する放電機能とを備える。蓄電池モジュール411への充電電力量、及び蓄電池モジュール411からの放電電力量は、蓄電池用PCS42によって調整される。蓄電池用PCS42による充放電電力量の調整は、統括制御装置50から供給される充放電指令に従って行われる。充放電指令は、蓄電池用PCS42に充放電させる有効電力と無効電力に関する要求を含む。蓄電池用PCS42は電流センサと電圧センサとを備え、蓄電池用PCS42はこれらのセンサの出力値を参照して充放電電力量の調整を実施する。
(統括制御装置)
統括制御装置50は、コンピュータネットワーク22を介して発電システム30、蓄電池システム40に接続する。統括制御装置50は、電力系統と発電設備10との間の電力需給を制御する。例えば、統括制御装置50は、後述する充放電指令部60や発電許容電力値算出部61を備える。
統括制御装置50は、コンピュータネットワーク22を介して発電システム30、蓄電池システム40に接続する。統括制御装置50は、電力系統と発電設備10との間の電力需給を制御する。例えば、統括制御装置50は、後述する充放電指令部60や発電許容電力値算出部61を備える。
電力計25は、発電設備10から電力系統に供給される合成電力を常時検出する。合成電力は、発電システム30が供給する電力と蓄電池システム40の充放電電力とを合算した電力である。ただし、本実施の形態でいう常時検出とは、センサから絶え間のない連続した信号を取り込む動作だけでなく、所定の短い周期でセンサの信号を取り込む動作を含む概念である。電力計25で検出された合成電力値は統括制御装置50に入力される。
[実施の形態1の特徴的構成]
図2は、本発明の実施の形態1に係るシステムのブロック図である。本発明に係る発電制御装置1は、統括制御装置50と発電システム30の一部を含みうる概念である。
図2は、本発明の実施の形態1に係るシステムのブロック図である。本発明に係る発電制御装置1は、統括制御装置50と発電システム30の一部を含みうる概念である。
統括制御装置50を示すブロック内には、発電制御装置1が備える種々の機能のうちの一部がブロックで表されている。同様に、発電システム30を示すブロック内には、発電制御装置1が備える種々の機能のうちの一部がブロックで表わされている。
(充放電指令部)
発電制御装置1は、充放電指令機能を有し、その機能は充放電指令部60が受け持つ。発電制御装置1は、電力計25から合成電力値を受信し、電力計33から供給電力値を受信し、蓄電池システム40(BMU412)から蓄電池情報を受信する。充放電指令部60は、合成電力値と供給電力値と蓄電池情報とに基づいて充放電指令を決定し、充放電指令を蓄電池システム40に送信する。
発電制御装置1は、充放電指令機能を有し、その機能は充放電指令部60が受け持つ。発電制御装置1は、電力計25から合成電力値を受信し、電力計33から供給電力値を受信し、蓄電池システム40(BMU412)から蓄電池情報を受信する。充放電指令部60は、合成電力値と供給電力値と蓄電池情報とに基づいて充放電指令を決定し、充放電指令を蓄電池システム40に送信する。
図3は、太陽光発電システムによる時刻毎の発電電力の変動について説明するための図である。太陽光発電システムの出力は日射量によって変動する。典型的なのが、晴天時に雲が流れている場合で、雲の影が太陽光パネルの上を通過する過程で、出力が短時間で激しく変動する。太陽光発電の出力変動を打ち消すように蓄電池システム40に充放電させることで、急峻な変動を平準化する必要がある。
図3に示す例では、破線301に示す太陽光発電システムの出力を相殺するように、蓄電池システム40に充放電させることで、実線302のように出力変動が緩和される。充放電指令部60は、太陽光発電の急峻な出力変動を、蓄電池システム40の充放電制御により平準化させるように充放電指令を決定する。
具体的には、発電設備10には、電力系統に安定した電力供給を行うために、発電設備10の定格出力(発電設備10が電力系統に供給可能な最大電力)に対する電力系統に供給される電力の変化率(以下、系統供給電力変化率という。)を、±n%/分の範囲内に制御することが要求されている。そのため、充放電指令部60は、電力系統に供給される電力の1制御周期あたりの変化が、発電設備の定格出力の規定割合以内に収まるように、蓄電池システム40に対する充放電指令を決定する。例えば、発電システム30が設備内電線21に供給する電力が増大する制御周期においては、充放電指令部60は、発電システム30が設備内電線21に供給する電力の一部を蓄電池システム40に充電させる充放電指令を決定する。なお、制御周期は数ミリ秒~数十ミリ秒に設定される。一例として、制御周期が20ミリ秒の場合、上記規定割合は、n%の3000分の1である。
(発電許容電力値算出部)
図4は、制御周期毎の発電システム30の出力と、発電許容電力値の算出について説明するための図である。実線71は、制御周期毎の発電システム30の出力を示す。点72は、現制御周期におけるサイト出力(発電設備10が電力系統に供給する電力)である。点74は、次制御周期におけるサイト出力である。また、点72は、現制御周期におけるサイト出力上限許容値であり、点73は、現制御周期におけるサイト出力下限許容値である。サイト出力上限許容値は、系統供給電力変化率の最大値(+n%/分)に対応する値である。サイト出力下限許容値は、系統供給電力変化率の最小値(-n%/分)に対応する値である。また、図4に示す(A)~(E)は以下のように定義される。
(A)は、現制御周期において、発電システム30が設備内電線21に供給する電力の現在値であり、電力計33により検出される。
(B)は、蓄電池システム40が充電する電力の現在値であり、充放電指令部60により算出される充放電指令に含まれる。
(C)は、発電設備10の定格出力の規定割合に応じた電力値である。規定割合は、系統供給電力変化率の最大値と制御周期に応じて予め設定された固定値である。
(D)は、蓄電池システム40の1制御周期あたりの充電電力の最大値であり、蓄電池用PCS42の定格出力として予め設定された固定値である。
(E)は、次制御周期における発電許容電力値であり、次制御周期における発電許容電力値は、上記(A)~(E)を用いて次式(1)で表わされる。
(E)=(A)-(B)+(C)+(D) ・・・(1)
図4は、制御周期毎の発電システム30の出力と、発電許容電力値の算出について説明するための図である。実線71は、制御周期毎の発電システム30の出力を示す。点72は、現制御周期におけるサイト出力(発電設備10が電力系統に供給する電力)である。点74は、次制御周期におけるサイト出力である。また、点72は、現制御周期におけるサイト出力上限許容値であり、点73は、現制御周期におけるサイト出力下限許容値である。サイト出力上限許容値は、系統供給電力変化率の最大値(+n%/分)に対応する値である。サイト出力下限許容値は、系統供給電力変化率の最小値(-n%/分)に対応する値である。また、図4に示す(A)~(E)は以下のように定義される。
(A)は、現制御周期において、発電システム30が設備内電線21に供給する電力の現在値であり、電力計33により検出される。
(B)は、蓄電池システム40が充電する電力の現在値であり、充放電指令部60により算出される充放電指令に含まれる。
(C)は、発電設備10の定格出力の規定割合に応じた電力値である。規定割合は、系統供給電力変化率の最大値と制御周期に応じて予め設定された固定値である。
(D)は、蓄電池システム40の1制御周期あたりの充電電力の最大値であり、蓄電池用PCS42の定格出力として予め設定された固定値である。
(E)は、次制御周期における発電許容電力値であり、次制御周期における発電許容電力値は、上記(A)~(E)を用いて次式(1)で表わされる。
(E)=(A)-(B)+(C)+(D) ・・・(1)
発電制御装置1は、発電許容電力値算出機能を有し、その機能は発電許容電力値算出部61が受け持つ。発電許容電力値算出部61は、式(1)を用いて、次制御周期における発電許容電力値を算出する。算出された発電許容電力値は、出力抑制部62に送信される。
(出力抑制部)
発電制御装置1は、出力抑制機能を有し、その機能は出力抑制部62が受け持つ。出力抑制部62は、制御周期毎に、太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値よりも大きいかを判定する。太陽光発電装置31からPV-PCS32に供給される発電電力は、PV-PCS32内の電流センサと電圧センサの出力値から算出される。判定に用いられる発電許容電力値は、出力抑制部62の処理が実行される1つ前の制御周期において発電許容電力値算出部61により算出された値である。
発電制御装置1は、出力抑制機能を有し、その機能は出力抑制部62が受け持つ。出力抑制部62は、制御周期毎に、太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値よりも大きいかを判定する。太陽光発電装置31からPV-PCS32に供給される発電電力は、PV-PCS32内の電流センサと電圧センサの出力値から算出される。判定に用いられる発電許容電力値は、出力抑制部62の処理が実行される1つ前の制御周期において発電許容電力値算出部61により算出された値である。
太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値以下である場合には、急激に増大した電力を蓄電池システム40に充電させることで、系統供給電力変化率を±n%/分以内に制御することが可能である。一方、太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値よりも大きい場合には、蓄電池システム40の充電能力不足のため、急激に増大した電力を蓄電池システム40に充電させるだけでは、系統供給電力変化率を±n%/分以内に制御することができない。
図5は、本発明の実施の形態1における出力抑制制御について説明するための図である。次制御周期において、太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値よりも大きい場合には、破線75で示すような発電システム30の出力を回避するため、出力抑制部62は、発電システム30が設備内電線21に供給する電力を発電許容電力値以下に抑制する出力抑制制御を実行する(矢印76)。具体的には、出力抑制部62は、PV-PCS32に対して、PV-PCS32が設備内電線21に供給する電力を発電許容電力値以下に抑制させる制御を実行する。
(フローチャート)
図6は、発電制御装置1の充放電指令部60および発電許容電力値算出部61の処理について説明するためのフローチャートである。図6に示す制御ルーチンは制御周期毎に実行される。
図6は、発電制御装置1の充放電指令部60および発電許容電力値算出部61の処理について説明するためのフローチャートである。図6に示す制御ルーチンは制御周期毎に実行される。
電力計33は、発電システム30から設備内電線21に供給される供給電力を常時検出する。統括制御装置50は、電力計33により検出された供給電力値を制御周期毎に取得する(ステップS101)。
電力計25は、発電設備10から電力系統に供給される合成電力を常時検出する。統括制御装置50は、電力計25により検出された合成電力値を制御周期毎に取得する(ステップS102)。
蓄電池システム40は、蓄電池情報を統括制御装置50に送信する(ステップS301)。蓄電池情報には、蓄電池モジュール411に流れる電流、各セルの電圧、蓄電池モジュール411の温度が含まれる。統括制御装置50は、蓄電池システム40から送信された蓄電池情報を制御周期毎に受信する(ステップS103)。
ステップS101~S103の処理後、充放電指令部60は充放電指令を決定する(ステップS104)。具体的には、充放電指令部60は、ステップS101において取得した供給電力と、ステップS102において取得した合成電力と、ステップS103において取得した蓄電池情報とに基づいて、系統供給電力変化率が±n%/分の変動範囲内に収まるように充放電指令を決定する。例えば、発電システム30が設備内電線21に供給する電力が増大する制御周期においては、発電システム30が設備内電線21に供給する電力の一部を蓄電池システム40に充電させる充放電指令が決定される。
ステップS104の処理後、充放電指令部60は、充放電指令を蓄電池システム40に送信する(ステップS105)。蓄電池システム40は、統括制御装置50から送信された充放電指令を受信する(ステップS302)。蓄電池用PCS42は、受信した充放電指令に従って充放電操作を実行する(ステップS303)
ステップS104の処理後、発電許容電力値算出部61は、現制御周期においてステップS101、S103、S104で得られた値と、上述した式(1)を用いて、次制御周期における発電許容電力値を算出する(ステップS106)。
ステップS106の処理後、統括制御装置50は、発電許容電力値を発電システム30に送信する(ステップS107)。発電システム30は、統括制御装置50から送信された発電許容電力値を受信する(ステップS201)。
図7は、発電制御装置1の出力抑制部62の処理について説明するためのフローチャートである。図7に示す制御ルーチンは制御周期毎に実行される。ここでは、図6に示す制御ルーチンが実行された制御周期の次の制御周期における処理について説明する。
出力抑制部62は、太陽光発電装置31からPV-PCS32に供給される発電電力を取得する(ステップS210)。また、出力抑制部62は、図7に示す制御ルーチンが実行される1つ前の制御周期において図6のステップS201において受信した発電許容電力値を、出力抑制部62に設定する。
ステップS210およびS211の処理後、出力抑制部62は、太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値よりも大きいかを判定する(ステップS212)。
太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値よりも大きい場合には、出力抑制部62は、発電システム30が設備内電線21に供給する電力を発電許容電力値以下に抑制する(ステップS213)。
一方、太陽光発電装置31からPV-PCS32に供給される発電電力が発電許容電力値以下である場合には、出力抑制部62は、出力を抑制する制御を実行しない(ステップS214)。
以上説明したように、本実施形態のシステムによれば、発電制御装置1は、制御周期毎に、次制御周期における最適な発電許容電力値を算出できる。そして、次制御周期において、太陽光発電装置31から供給される電力が発電許容電力値よりも大きい場合に、発電システム30が設備内電線21に供給する電力を発電許容電力値以下に抑制する。制御周期毎に次制御周期における最適な発電許容電力値が算出されるため、蓄電池システム40の定格出力が発電システム30の定格出力より低い発電設備10において、急峻な発電電力の変化(1制御周期で上述した(C)+(D)を超える電力変化)があった場合にも、電力系統に供給される電力の1制御周期あたりの変化を発電設備10の定格出力の規定割合以内に収めることができる。すなわち、蓄電池システム40の能力が低い、コストが低い発電設備10において、電力系統に安定した電力供給を行うことができる。
また、本発明によれば、制御周期毎に最適な発電許容電力値が算出されるため、各制御周期において出力抑制を必要最低限とすることができる。そのため、出力抑制スケジュールが予め定められている場合に比して、不必要な発電電力の抑制が少なく、発電効率を高めることが可能である。
尚、実施の形態1において、符号60~62に示す各部は、発電制御装置1が有する機能を示す。図8は、発電制御装置1のハードウェア構成を示す図である。発電制御装置1は、ハードウェア資源として、各種情報を入出力する入出力インタフェース(図示省略)、各種情報および各種プログラムを記憶するメモリ201、メモリ201に記憶された各種情報および各種プログラムに基づいて演算処理を実行可能なプロセッサ200を含む回路を備える。発電制御装置1は、メモリ201に記憶されたプログラムをプロセッサ200によって実行することにより各部60~62が有する各機能を実現する。発電制御装置1は、複数のプロセッサ200を備えても良い。発電制御装置1は、複数のメモリ201を備えても良い。発電制御装置1は、複数の入出力インタフェースを備えても良い。即ち、複数のプロセッサ200と複数のメモリ201と複数の入出力インタフェースが連携して各部60~62が有する各機能を実現しても良い。また、各部60~62が有する各機能の一部又は全部は、回路によって構成されてもよい。
なお、図2に示すように、発電制御装置1は、統括制御装置50と発電システム30とがコンピュータネットワーク22で接続されて構成されてもよい。この場合、統括制御装置50、発電システム30がそれぞれプロセッサ、メモリ、入出力インタフェースを有する。
1 発電制御装置
10 発電設備
20 電力系統の送電設備
21 設備内電線
22 コンピュータネットワーク
25 電力計
30 発電システム
31 太陽光発電装置
32 PV-PCS
33 電力計
40 蓄電池システム
41 蓄電池装置
42 蓄電池用PCS
50 統括制御装置
60 充放電指令部
61 発電許容電力値算出部
62 出力抑制部
200 プロセッサ
201 メモリ
311 PVモジュール
312 接続箱
313 集電箱
411 蓄電池モジュール
412 BMU
10 発電設備
20 電力系統の送電設備
21 設備内電線
22 コンピュータネットワーク
25 電力計
30 発電システム
31 太陽光発電装置
32 PV-PCS
33 電力計
40 蓄電池システム
41 蓄電池装置
42 蓄電池用PCS
50 統括制御装置
60 充放電指令部
61 発電許容電力値算出部
62 出力抑制部
200 プロセッサ
201 メモリ
311 PVモジュール
312 接続箱
313 集電箱
411 蓄電池モジュール
412 BMU
Claims (4)
- 天候によって発電電力が変動する発電装置を有する発電システムと、
蓄電池を有する蓄電池システムと、
前記発電システムと蓄電池システムと電力系統とを接続する設備内電線とを備え、
前記電力系統に供給される電力の1制御周期あたりの変化が、定格出力の規定割合以内に収まるように、前記発電システムが前記設備内電線に供給する電力の一部を前記蓄電池システムに充電させる発電設備であって、
前記発電システムが前記設備内電線に供給する電力の現在値から前記蓄電池システムが充電する電力の現在値を減じた値に、前記定格出力の前記規定割合に応じた電力値と、前記蓄電池システムの前記1制御周期あたりの充電電力の最大値とを加えた発電許容電力値を算出する発電許容電力値算出手段と、
次制御周期において、前記発電装置から供給される電力が前記発電許容電力値よりも大きい場合に、前記発電システムが前記設備内電線に供給する電力を前記発電許容電力値以下に抑制する出力抑制手段と、を有する発電制御装置を備えること、
を特徴とする発電設備。 - 前記蓄電池システムの定格出力は、前記発電システムの定格出力よりも小さいこと、
を特徴とする請求項1記載の発電設備。 - 天候によって発電電力が変動する発電装置を有する発電システムと、
蓄電池を有する蓄電池システムと、
前記発電システムと蓄電池システムと電力系統とを接続する設備内電線とを備え、
前記電力系統に供給される電力の1制御周期あたりの変化が、定格出力の規定割合以内に収まるように、前記発電システムが供給する電力の一部を前記蓄電池システムに充電させる発電設備に設けられる発電制御装置であって、
前記発電システムが前記設備内電線に供給する電力の現在値から前記蓄電池システムが充電する電力の現在値を減じた値に、前記定格出力の前記規定割合に応じた電力値と、前記蓄電池システムの前記1制御周期あたりの充電電力の最大値とを加えた発電許容電力値を算出する発電許容電力値算出手段と、
次制御周期において、前記発電装置から供給される電力が前記発電許容電力値よりも大きい場合に、前記発電システムが前記設備内電線に供給する電力を前記発電許容電力値以下に抑制する出力抑制手段と、
を備えることを特徴とする発電制御装置。 - 前記蓄電池システムの定格出力は、前記発電システムの定格出力よりも小さいこと、
を特徴とする請求項3記載の発電制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015562227A JP5896096B1 (ja) | 2015-09-01 | 2015-09-01 | 発電設備および発電制御装置 |
US15/741,316 US10476272B2 (en) | 2015-09-01 | 2015-09-01 | Power generation facility and power generation control device |
CN201580082780.1A CN108028546B (zh) | 2015-09-01 | 2015-09-01 | 发电设备以及发电控制装置 |
PCT/JP2015/074845 WO2017037868A1 (ja) | 2015-09-01 | 2015-09-01 | 発電設備および発電制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/074845 WO2017037868A1 (ja) | 2015-09-01 | 2015-09-01 | 発電設備および発電制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017037868A1 true WO2017037868A1 (ja) | 2017-03-09 |
Family
ID=55628598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074845 WO2017037868A1 (ja) | 2015-09-01 | 2015-09-01 | 発電設備および発電制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10476272B2 (ja) |
JP (1) | JP5896096B1 (ja) |
CN (1) | CN108028546B (ja) |
WO (1) | WO2017037868A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021136852A (ja) * | 2020-02-28 | 2021-09-13 | パナソニックIpマネジメント株式会社 | 電力管理システム、電力管理方法、及びプログラム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11211641B2 (en) | 2012-10-18 | 2021-12-28 | Ambri Inc. | Electrochemical energy storage devices |
WO2015058010A1 (en) | 2013-10-16 | 2015-04-23 | Ambri Inc. | Seals for high temperature reactive material devices |
US11387497B2 (en) | 2012-10-18 | 2022-07-12 | Ambri Inc. | Electrochemical energy storage devices |
US10541451B2 (en) | 2012-10-18 | 2020-01-21 | Ambri Inc. | Electrochemical energy storage devices |
US11721841B2 (en) | 2012-10-18 | 2023-08-08 | Ambri Inc. | Electrochemical energy storage devices |
US10181800B1 (en) * | 2015-03-02 | 2019-01-15 | Ambri Inc. | Power conversion systems for energy storage devices |
WO2016141354A2 (en) | 2015-03-05 | 2016-09-09 | Ambri Inc. | Ceramic materials and seals for high temperature reactive material devices |
US10855080B2 (en) * | 2016-02-29 | 2020-12-01 | Nec Corporation | Systems and methods for generating power generation suppression control information by a control device |
US11929466B2 (en) | 2016-09-07 | 2024-03-12 | Ambri Inc. | Electrochemical energy storage devices |
WO2018187777A1 (en) | 2017-04-07 | 2018-10-11 | Ambri Inc. | Molten salt battery with solid metal cathode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006174694A (ja) * | 2004-12-17 | 2006-06-29 | General Electric Co <Ge> | 風力タービン発電機の制御方法および制御システム |
WO2011122681A1 (ja) * | 2010-03-30 | 2011-10-06 | 三洋電機株式会社 | 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム |
JP2013179737A (ja) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | 出力平滑化装置、出力平滑化方法及びプログラム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002204531A (ja) * | 2000-10-31 | 2002-07-19 | Canon Inc | 交流連系装置およびその制御方法 |
JP4213941B2 (ja) * | 2002-10-11 | 2009-01-28 | シャープ株式会社 | 複数の分散電源の出力抑制方法および分散電源管理システム |
US8237301B2 (en) * | 2008-01-31 | 2012-08-07 | General Electric Company | Power generation stabilization control systems and methods |
JP5372724B2 (ja) * | 2009-12-21 | 2013-12-18 | 株式会社日立製作所 | 自然エネルギを用いた発電システム |
WO2012108033A1 (ja) * | 2011-02-10 | 2012-08-16 | 三菱重工業株式会社 | 風力発電設備及び風力発電設備の制御方法 |
JP2012249476A (ja) * | 2011-05-30 | 2012-12-13 | Panasonic Corp | 電力供給システム |
JP2014200120A (ja) * | 2011-08-12 | 2014-10-23 | シャープ株式会社 | 複合型自立発電システム |
JP5625005B2 (ja) * | 2012-02-27 | 2014-11-12 | 株式会社日立製作所 | 独立型電力供給システム |
AU2013101461A4 (en) * | 2012-11-09 | 2013-12-12 | Mpower Projects Pty Ltd | Grid stability control system and method |
JP2017117003A (ja) | 2015-12-21 | 2017-06-29 | 株式会社リコー | 制御装置および起動制御方法 |
-
2015
- 2015-09-01 WO PCT/JP2015/074845 patent/WO2017037868A1/ja active Application Filing
- 2015-09-01 CN CN201580082780.1A patent/CN108028546B/zh active Active
- 2015-09-01 US US15/741,316 patent/US10476272B2/en active Active
- 2015-09-01 JP JP2015562227A patent/JP5896096B1/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006174694A (ja) * | 2004-12-17 | 2006-06-29 | General Electric Co <Ge> | 風力タービン発電機の制御方法および制御システム |
WO2011122681A1 (ja) * | 2010-03-30 | 2011-10-06 | 三洋電機株式会社 | 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム |
JP2013179737A (ja) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | 出力平滑化装置、出力平滑化方法及びプログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021136852A (ja) * | 2020-02-28 | 2021-09-13 | パナソニックIpマネジメント株式会社 | 電力管理システム、電力管理方法、及びプログラム |
JP7411909B2 (ja) | 2020-02-28 | 2024-01-12 | パナソニックIpマネジメント株式会社 | 電力管理システム、電力管理方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
US10476272B2 (en) | 2019-11-12 |
JPWO2017037868A1 (ja) | 2017-09-07 |
CN108028546B (zh) | 2020-09-08 |
US20180191162A1 (en) | 2018-07-05 |
JP5896096B1 (ja) | 2016-03-30 |
CN108028546A (zh) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896096B1 (ja) | 発電設備および発電制御装置 | |
JP6304392B2 (ja) | 充放電管理装置 | |
JP6384482B2 (ja) | 蓄電池システム | |
JP5520365B2 (ja) | 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム | |
Katsanevakis et al. | A novel voltage stability and quality index demonstrated on a low voltage distribution network with multifunctional energy storage systems | |
CN107078514B (zh) | 蓄电池系统 | |
JP6327356B2 (ja) | 蓄電池システム | |
JP6249022B2 (ja) | 蓄電池システム | |
JP6903882B2 (ja) | 制御装置、制御方法、およびプログラム | |
WO2018066044A1 (ja) | 電力制御装置およびその制御方法 | |
JP6288096B2 (ja) | 蓄電池システム | |
WO2015040723A1 (ja) | 蓄電池システム | |
JP6363412B2 (ja) | パワーコンディショナ及び電力制御方法 | |
JP6481694B2 (ja) | 蓄電池容量測定装置 | |
WO2016063351A1 (ja) | 充放電管理装置 | |
JP7047224B2 (ja) | 集中管理装置 | |
JP6174844B2 (ja) | 給電制御装置 | |
Pérez et al. | Frequency regulation of a weak microgrid through a distribution management system | |
JP6895145B2 (ja) | 電力制御装置およびその制御方法 | |
JP6922800B2 (ja) | 蓄電池システムおよびその充放電ロス演算装置 | |
Chauhan et al. | Solar PV output Firming using Battery Energy Storage Systems | |
JP2020018082A (ja) | 電力制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015562227 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15902988 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15902988 Country of ref document: EP Kind code of ref document: A1 |