JP5520365B2 - 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム - Google Patents

系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム Download PDF

Info

Publication number
JP5520365B2
JP5520365B2 JP2012508372A JP2012508372A JP5520365B2 JP 5520365 B2 JP5520365 B2 JP 5520365B2 JP 2012508372 A JP2012508372 A JP 2012508372A JP 2012508372 A JP2012508372 A JP 2012508372A JP 5520365 B2 JP5520365 B2 JP 5520365B2
Authority
JP
Japan
Prior art keywords
power
power supply
threshold
threshold value
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012508372A
Other languages
English (en)
Other versions
JPWO2011122681A1 (ja
Inventor
総一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012508372A priority Critical patent/JP5520365B2/ja
Publication of JPWO2011122681A1 publication Critical patent/JPWO2011122681A1/ja
Application granted granted Critical
Publication of JP5520365B2 publication Critical patent/JP5520365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラムに関する。
近年、変電所からの交流電力の供給を受ける各需要家(たとえば、住宅や工場など)に、風力や太陽光などの再生可能エネルギーを利用した発電装置(太陽電池などの分散型電源)が設けられるケースが増加している。このような発電装置は、変電所の配下に設けられる電力系統に接続される。ここで、発電装置により発電された電力は、需要家内の電力消費装置側に出力される。また、需要家内の電力消費装置により消費されずに余った電力は、電力系統に出力される。この需要家から電力系統に向かう電力の流れは、「逆潮流」と呼ばれ、需要家から電力系統に出力される電力は「逆潮流電力」と呼ばれる。
ここで、電力会社等の電力供給者には、電力の安定供給の義務が課されており、逆潮流電力分も含めた電力系統全体における周波数や電圧を一定に保つ必要がある。たとえば、電力供給者は、変動周期の大きさに応じた複数の制御手法によって、電力系統全体の周波数を一定に保っている。具体的には、一般に十数分以上の変動周期をもつような負荷成分については、最も経済的な発電電力の出力分担が可能なように経済負荷配分制御(EDC:Economic Dispatching Control)が行われている。このEDCは、1日の負荷変動予想に基づいた制御であり、時々刻々と変動する負荷の増減(十数分より小さい変動周期の成分)に対する対応は困難である。そこで、電力会社は、時々刻々と変動する負荷に応じて電力系統への電力の供給量を調整し、周波数の安定化を行うための複数の制御を行っている。EDCを除いたこれらの制御は特に周波数制御と呼ばれており、この周波数制御によって、EDCで調整できない負荷変動分の調整を行っている。
より詳細には、約10秒以下の変動周期の成分については、電力系統自体の自己制御性により自然に吸収することができる。また、約10秒〜数分程度の変動周期の成分に対しては、各発電所の発電機のガバナフリー運転により対応が可能である。また、数分から十数分までの変動周期の成分については、負荷周波数制御(LFC:Load Frequency Control)により対応している。この負荷周波数制御では、電力供給者の中央給電指令所からの制御信号によってLFC用発電所が発電出力を調整することにより、周波数制御を行っている。
しかし、再生可能エネルギーを利用した発電装置の出力は、天候などに応じて急激に変化することがある。このような発電装置の出力の急激な変化は、連系している電力系統の周波数の安定度に大きな悪影響を与えてしまう。この悪影響は、再生可能エネルギーを利用した発電装置を有する需要家が増えるほど顕著になってくる。このため、今後、再生可能エネルギーを利用した発電装置を有する需要家がさらに増えてきた場合には、発電装置の出力の急激な変化を抑制することにより、電力系統の安定度を維持する必要が生じてくる。
そこで、従来、このような発電装置の出力の急激な変化を抑制するために、太陽電池の電力系統への出力を蓄電装置の充放電により平滑化可能な発電システムが提案されている。このような発電システムは、たとえば、特開2001−346332号公報に開示されている。
上記特開2001−346332号公報には、太陽電池と、太陽電池に接続されるとともに電力系統に接続されるインバータと、インバータと太陽電池とを接続する母線に接続された蓄電装置とを備えた発電システムが開示されている。この発電システムでは、太陽電池の発電電力(出力)の変動に伴って蓄電装置の充放電を行うことにより、インバータからの出力電力の変動を抑制している。これにより、電力系統への出力電力の変動を抑制することが可能であるので、電力系統の周波数などへの悪影響を抑制することが可能である。また、この発電システムでは、太陽電池の発電電力の変動量が所定の値(閾値)よりも大きくなった場合に、平滑化制御を開始する。これにより、平滑化制御(蓄電装置の充放電)を行う時間が短くなるので、蓄電装置の充放電量を少なくすることができ、その結果、蓄電装置の寿命の長寿命化を図ることが可能であると考えられる。
特開2001−346332号公報
しかしながら、上記特開2001−346332号公報では、平滑化制御の開始の閾値を大きくした場合に、蓄電装置の充放電量をより少なくして蓄電装置の長寿命化を図ることが可能である一方、平滑化制御を行う時間が短くなるので、十分に電力系統への出力電力の変動を平滑化することが困難となってしまう。また、平滑化制御の開始の閾値を小さくした場合には、蓄電装置の充放電量の低減効果が小さくなってしまうので、蓄電装置の充放電量を十分に少なくすることができないという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、電力系統への出力電力の変動を十分に平滑化し、かつ、蓄電装置の長寿命化を図ることが可能な系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラムを提供することである。
上記目的を達成するために、本発明の系統安定化システムは、複数の電力供給システムを備え、電力供給システムは、分散型電源と、分散型電源と電力系統との間の配線の所定部分を通過する電力を検出する電力検出部とを含み、電力検出部の検出電力データに基づいて、電力系統への出力電力の平滑化制御を行うものであり、複数の電力供給システムは、検出電力に関する値の変化量が第1閾値以上になった場合に平滑化制御を行う第1電力供給システムと、検出電力に関する値の変化量が第1閾値よりも大きい第2閾値以上になった場合に平滑化制御を行う第2電力供給システムとを含む。
本発明の電力供給システムは、電力系統への出力電力の平滑化制御を行う電力供給システムであって、再生可能エネルギーにより発電する発電装置を含む分散型電源と分散型電源と電力系統との間の配線の所定部分を通過する電力を検出する電力検出部とを含み、電力供給システムは、電力検出部の検出電力データに基づいて、検出電力に関する値の変化量が所定の閾値以上になった場合に平滑化制御を行うとともに、所定の閾値として、第1閾値と、第1閾値よりも大きい第2閾値とを入れ替えて用いる。
本発明の集中管理装置の制御方法は、外部と通信可能な通信部を介し、複数の電力供給システムと通信を行う集中管理装置の制御方法であって、所定時間毎に複数の電力供給システムから、発電電力データと、分散型電源の状態を示す分散電源データと電力供給システムの識別情報とが対応付けられた充放電管理データとを取得する充放電管理データ取得工程と、分散電源データに基づき、識別情報に相当する電力供給システムの充放電を開始するための発電電力の変化量の閾値を決定する閾値決定工程と、識別情報に相当する電力供給システムに閾値を送信する工程とを含む。
本発明の集中管理装置のプログラムは、外部と通信可能な通信部を介し、コンピュータを複数の電力供給システムと通信を行う集中管理装置として機能させるプログラムであって、コンピュータに対し、所定時間毎に複数の電力供給システムから、発電電力データと、分散型電源の状態を示す分散電源データと電力供給システムの識別情報とが対応付けられた充放電管理データとを取得させ、分散電源データに基づき、識別情報に相当する電力供給システムの充放電を開始するための発電電力の変化量の閾値を決定させ、識別情報に相当する電力供給システムに対して閾値を送信させる。
本発明によれば、第1電力供給システムの第1閾値を基準とした場合に、第2閾値を用いて平滑化制御を行う第2電力供給システムの蓄電装置の充放電量を減らすことができるので、地域内全体としてみた場合に、地域内の蓄電装置の長寿命化を図ることができる。
また、本願発明者は、第2閾値を適切な大きさに設定することにより、第1閾値よりも大きい第2閾値により平滑化制御の実行を判断する第2電力供給システムを地域内に設けた場合にも、地域内の電力供給システムの閾値を全て第1閾値とした場合と略同じレベルで平滑化を行う(電力系統への出力電力の変動を抑制する)ことが可能であることを見出した。したがって、第1の局面による系統安定化システムでは、電力系統への出力電力の変動を十分に平滑化し、かつ、蓄電装置の長寿命化を図ることができる。
本発明の第1実施形態による系統安定化システム(第1状態)の構成を示す模式図である。 本発明の第1実施形態による系統安定化システム(第2状態)の構成を示す模式図である。 本発明の第1実施形態による系統安定化システムに用いられる太陽光発電システムの構成を示すブロック図である。 電力系統に出力される負荷変動の大きさと変動周期との関係を説明するための図である。 図1に示した第1実施形態による太陽光発電システム(第1閾値の発電システム)の平滑化制御の制御フローを説明するためのフローチャートである。 図1に示した第1実施形態による太陽光発電システム(第2閾値の発電システム)の平滑化制御の制御フローを説明するためのフローチャートである。 平滑化制御におけるサンプリング期間について説明するための図である。 5月23日(発電電力の変動が比較的激しい日)における発電装置の発電電力の推移を示すグラフである。 5月23日(発電電力の変動が比較的激しい日)における発電装置の発電電力の変化量の大きさを示すグラフである。 8月24日(発電電力の変動が比較的激しい日)における発電装置の発電電力の推移を示すグラフである。 8月24日(発電電力の変動が比較的激しい日)における発電装置の発電電力の変化量の大きさを示すグラフである。 2月16日(発電電力の変動が比較的激しい日)における発電装置の発電電力の推移を示すグラフである。 2月16日(発電電力の変動が比較的激しい日)における発電装置の発電電力の変化量の大きさを示すグラフである。 5月19日(発電電力の変動が比較的緩やかな日)における発電装置の発電電力の推移を示すグラフである。 5月19日(発電電力の変動が比較的緩やかな日)における発電装置の発電電力の変化量の大きさを示すグラフである。 8月6日(発電電力の変動が比較的緩やかな日)における発電装置の発電電力の推移を示すグラフである。 8月6日(発電電力の変動が比較的緩やかな日)における発電装置の発電電力の変化量の大きさを示すグラフである。 2月5日(発電電力の変動が比較的緩やかな日)における発電装置の発電電力の推移を示すグラフである。 2月5日(発電電力の変動が比較的緩やかな日)における発電装置の発電電力の変化量の大きさを示すグラフである。 5月19日(発電電力の変動が比較的緩やかな日)において、実施例による平滑化制御と比較例による平滑化制御とを行った場合のFFT解析結果を示すグラフである。 5月23日(発電電力の変動が比較的激しい日)において、実施例による平滑化制御と比較例による平滑化制御とを行った場合のFFT解析結果を示すグラフである。 8月6日(発電電力の変動が比較的緩やかな日)において、実施例による平滑化制御と比較例による平滑化制御とを行った場合のFFT解析結果を示すグラフである。 8月24日(発電電力の変動が比較的激しい日)において、実施例による平滑化制御と比較例による平滑化制御とを行った場合のFFT解析結果を示すグラフである。 2月5日(発電電力の変動が比較的緩やかな日)において、実施例による平滑化制御と比較例による平滑化制御とを行った場合のFFT解析結果を示すグラフである。 2月16日(発電電力の変動が比較的激しい日)において、実施例による平滑化制御と比較例による平滑化制御とを行った場合のFFT解析結果を示すグラフである。 本発明の第2実施形態による系統安定化システムに用いられる発電システムの構成を示すブロック図である。 本発明の第1実施形態による系統安定化システムの変形例を示す模式図である。
以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
まず、図1〜図4を参照して、本発明の第1実施形態による系統安定化システムの構造を説明する。
図1および図2に示すように、第1実施形態による系統安定化システムは、所定の地域内に設置された複数の太陽光発電システム1を備えている。図3に示すように、太陽光発電システム1は、それぞれが電力系統50に連系されており、太陽電池(後述する発電装置2)による発電電力が負荷に消費されて余った電力が電力系統50に逆潮流される。なお、所定の地域とは、たとえば、電力会社の管轄地域である。地域内に設置された太陽光発電システム1は、電力系統50への逆潮流電力の変動を蓄電池31の充放電により平滑化することが可能な平滑化制御機能を有する。なお、太陽光発電システム1は、本発明の「電力供給システム」の一例である。また、発電装置2は、本発明の「分散型電源」の一例である。
また、後述するように、太陽光発電システム1は、太陽電池(発電装置2)の発電電力の変化量が所定の閾値(制御開始変化量)よりも大きくなった場合に、平滑化制御を開始する。ここで、第1実施形態では、太陽光発電システム1は、閾値を変更することが可能である。太陽光発電システム1は、小さい閾値(第1閾値)により平滑化制御の開始を判断する発電システム1aと、第1閾値よりも大きい第2閾値により平滑化制御の開始を判断する発電システム1bとして機能する。なお、発電システム1aおよび発電システム1bは、それぞれ、本発明の「第1電力供給システム」および「第2電力供給システム」の一例である。
地域内の複数の太陽光発電システム1は、発電システム1aと発電システム1bとのいずれかとなるように動作する。第1実施形態では、地域内の太陽光発電システム1の50%が発電システム1aとして動作し、残りの50%が発電システム1bとして動作する。また、地域内の太陽光発電システム1は、所定の期間(たとえば、1ヶ月)毎に、発電システム1aと発電システム1bとが入れ替わる。すなわち、図1に示すように、地域はたとえば4つの区域A、B、CおよびDに区分けされており、区域BおよびD内の太陽光発電システム1が発電システム1aの場合には、区域AおよびC内の太陽光発電システム1は発電システム1bとして動作する。閾値の入れ替え(発電システム1aと発電システム1bとの入れ替え)の前後において、地域内の発電システム1aの数と発電システム1bの数との割合は、それぞれ50%のまま変わらない。
以下、図1の状態を第1状態と呼ぶ。また、第1状態が1ヶ月継続した後には、図2に示すように、区域BおよびD内の太陽光発電システム1が発電システム1bとして動作するとともに、区域AおよびC内の太陽光発電システム1は発電システム1aとして動作する。以下、図2の状態を第2状態と呼ぶ。このように、第1状態と第2状態とが1ヶ月毎に繰り返される。
次に、太陽光発電システム1の詳細について説明する。
図3に示すように、第1実施形態による太陽光発電システム1は、太陽光を用いて発電する太陽電池からなる発電装置2と、発電装置2により発電された電力を蓄電可能な蓄電装置3と、発電装置2により発電された電力および蓄電装置3により蓄電された電力を電力系統50に出力するインバータを含む電力出力部4と、蓄電装置3の充放電を制御する充放電制御部5とを備えている。また、電力出力部4と電力系統50とを接続する交流側母線には、負荷60が接続されている。なお、充放電制御部5は、本発明の「制御装置」の一例である。
発電装置2と電力出力部4とを接続する直流側母線6には、DC−DCコンバータ7が直列的に接続されている。DC−DCコンバータ7は、発電装置2により発電された電力の直流電圧を一定の直流電圧(第1実施形態では、約260V)に変換して電力出力部4側に出力する機能を有する。また、DC−DCコンバータ7は、いわゆるMPPT(Maximum Power Point Tracking)制御機能を有している。MPPT機能とは、発電装置2により発電された電力が最大となるように発電装置2の動作電圧を自動的に調整する機能である。発電装置2とDC−DCコンバータ7との間には、発電装置2に向かって電流が逆流するのを防止するためのダイオード(図示せず)が設けられている。
また、蓄電装置3は、直流側母線6に対して発電装置2と並列的に接続された蓄電池31と、蓄電池31の充放電を行う充放電部32とを含んでいる。蓄電池31としては、自然放電が少なく、充放電効率の高い2次電池(たとえば、Li−ion蓄電池、Ni−MH蓄電池など)が用いられている。また、蓄電池31の電圧は約48Vである。
充放電部32は、DC−DCコンバータ33を有している。直流側母線6と蓄電池31とは、DC−DCコンバータ33を介して接続されている。DC−DCコンバータ33は、充電時には、蓄電池31に供給する電力の電圧を、直流側母線6の電圧から蓄電池31を充電するのに適した電圧まで降圧させることにより、直流側母線6側から蓄電池31側に電力を供給する。また、DC−DCコンバータ33は、放電時には、直流側母線6側に放電させる電力の電圧を、蓄電池31の電圧から直流側母線6の電圧付近まで昇圧させることにより、蓄電池31側から直流側母線6側に電力を放電させる。
充放電制御部5は、メモリ5aおよびCPU5bを備える。充放電制御部5は、DC−DCコンバータ33を制御することにより、蓄電池31の平滑化制御を行う。具体的には、充放電制御部5は、発電装置2の発電電力(DC−DCコンバータ7の出力電力)と、後述する目標出力電力とに基づいて、発電装置2の発電電力と目標出力電力との差を補償するように蓄電池31の充放電を行う。すなわち、充放電制御部5は、発電装置2の発電電力が目標出力電力よりも大きい場合には、過剰分の電力を蓄電池31に充電するようにDC−DCコンバータ33を制御する。充放電制御部5は、発電装置2の発電電力が目標出力電力よりも小さい場合には、不足分の電力を蓄電池31から放電するようにDC−DCコンバータ33を制御する。
また、DC−DCコンバータ7の出力側には、発電装置2の発電電力を検出する発電電力検出部8が設けられている。発電電力検出部8は、本発明の「電力検出部」の一例である。充放電制御部5は、発電電力検出部8の検出結果に基づいて、発電装置2の発電電力を所定の検出時間間隔(たとえば、30秒以下)毎に取得することが可能である。第1実施形態では、充放電制御部5は、30秒毎に発電装置2の発電電力データを取得している。なお、この発電電力の検出時間間隔は、長すぎても短すぎても発電電力の変化を正確に検出することができないので、発電装置2の発電電力の変動周期などを勘案して適正な値に定める必要がある。第1実施形態では、負荷周波数制御(LFC)により対応可能な変動周期の下限周期よりも短くなるように検出時間間隔が設定されている。また、充放電制御部5は、電力出力部4の出力電力を取得することにより、実際に電力出力部4から電力系統50に出力された電力と目標出力電力との差を認識する。これにより、電力出力部4からの出力電力が目標出力電力となるように充放電部32の充放電を制御することが可能である。
また、充放電制御部5は、電力系統50に出力する目標出力電力を、移動平均法を用いて算出する。移動平均法とは、ある時点の目標出力電力を、その時点より過去の期間の発電装置2の発電電力の平均値とする算出方法である。過去の発電電力データはメモリ5aに逐次記憶されている。以下、目標出力電力の算出に用いる発電電力データを取得するための期間をサンプリング期間と呼ぶ。なお、サンプリング期間は、本発明の「第1期間」の一例である。サンプリング期間は、負荷周波数制御(LFC)で対応する負荷の変動周期の下限周期T2〜上限周期T1の間、特に後半付近(長周期付近)からT1を超える範囲であまり長時間に渡らない範囲とすることが好ましい。サンプリング期間の具体的な値としては、たとえば、図4に示すような「負荷変動の大きさ−変動周期」特性を有する電力系統においては約10分以上約30分以下の期間であり、第1実施形態では、サンプリング期間を約20分としている。この場合、充放電制御部5は、約30秒置きに発電装置2の発電電力データを取得するので、過去20分の期間に含まれる40個の発電電力データの平均値を目標出力電力として算出している。この上限周期T1および下限周期T2については、後に詳細に説明する。
上記のように、第1実施形態では、太陽光発電システム1は発電装置2の発電電力をそのまま電力系統50に出力するのではない。第1実施形態では、充放電制御部5は、過去の発電装置2の発電電力から目標出力電力を算出し、発電装置2の発電電力と蓄電池31の充放電量との合計が目標出力電力となるように蓄電池31の充放電を制御して、目標出力電力を電力系統50に出力するように平滑化制御を行う。平滑化制御を行うことにより、電力系統50に出力する電力の変動が抑制されるので、雲の有無などによる発電装置2の発電電力の変動に起因する電力系統50への悪影響が抑制される。
ここで、第1実施形態では、充放電制御部5は、平滑化制御を常に行うわけではなく、特定の条件を満たした時にのみ平滑化制御を行う。すなわち、発電装置2の発電電力をそのまま電力系統50に出力しても電力系統50への悪影響が小さい場合には平滑化制御を行わず、悪影響が大きい場合にのみ平滑化制御を行う。具体的には、発電装置2の発電電力の変化量が所定の変化量(以下、「制御開始変化量」と呼ぶ)以上である場合に、平滑化制御を行う。充放電制御部5は、制御開始変化量として、第1閾値と、第1閾値よりも大きい第2閾値とのいずれかを選択することが可能である。第1実施形態では、充放電制御部5は、所定の期間(たとえば1ヶ月)毎に制御開始変化量の大きさを第1閾値と第2閾値とで変更する。
太陽光発電システム1が発電システム1aとして動作する場合には、制御開始変化量として第1閾値が用いられる。第1閾値は、たとえば、天候が安定している快晴時(雲が殆どない晴天)の昼間の時間帯における検出時間間隔毎の最大変化量よりも多い変化量であり、具体的な数値としては、たとえば、発電装置2の定格出力の5%である。太陽光発電システム1が発電システム1bとして動作する場合には、制御開始変化量として第2閾値が用いられる。第2閾値は、たとえば、第1閾値の2倍以上の値であり、具体的には発電装置2の定格出力の15%である。第1閾値および第2閾値は、後述するように、過去の発電電力のデータに基づいて統計的に求められる。たとえば、第2閾値は、発電電力の変動があまり大きくない日には、所定の検出時間間隔毎に算出される発電電力の変化量の値の多くが第2閾値を越えない程度の大きさに設定される。なお、「発電電力の変動があまり大きくない日」とは、比較的安定な天候の日のことである。また、発電電力の変化量は、所定の検出時間間隔毎に検出される発電装置2の発電電力のうち、連続する2つの発電電力データの差分を算出することにより求められる。
なお、上記の具体的な数値(発電装置2の定格出力の5%および15%)については、発電電力の検出時間間隔が約30秒である等、第1実施形態の場合に対応する数値であり、検出時間間隔を変えた場合には、その検出時間間隔に応じて制御開始変化量を設定する必要がある。
また、充放電制御部5は、平滑化制御を開始した後、発電電力の変動が所定の変化量(制御終了変化量)よりも小さくなっていると判断する状態が所定の期間(以下、「制御停止判断期間」と呼ぶ)の間、継続した場合には平滑化制御を停止し、継続しない場合には、継続するまで平滑化制御を継続する。ここで、制御停止判断期間は、負荷周波数制御(LFC)により対応可能な変動周期に相当する期間であり、第1実施形態では、上限周期T1の20分としている。また、制御終了変化量の値は制御開始変化量以下の値であり、第1実施形態では、制御開始変化量と同じ値に設定した。したがって、太陽光発電システム1が発電システム1aとして動作する場合には、制御終了変化量として発電装置2の定格出力の5%の値を用い、太陽光発電システム1が発電システム1bとして動作する場合には、制御終了変化量として発電装置2の定格出力の15%の値を用いる。
すなわち、充放電制御部5は、平滑化制御を行っている際に、発電電力の変化量が発電装置2の定格出力の5%または15%未満の状態が20分継続した場合に、平滑化制御を停止する。発電電力の変化量の検出は検出時間間隔(30秒)毎に行っており、充放電制御部5は、発電電力の変化量が発電装置2の定格出力の5%または15%未満であるか否かの判断も検出時間間隔(30秒)毎に行っている。したがって、検出時間間隔毎に算出される発電電力の変化量が40回(制御停止判断期間の20分)連続で定格出力の5%または15%未満である場合に、平滑化制御が停止される。なお、発電システム1aの制御終了変化量としての発電装置2の定格出力の5%の値および発電システム1bの制御終了変化量としての発電装置2の定格出力の15%の値は、それぞれ、本発明の「第3閾値」および「第4閾値」の一例である。また、制御停止期間は、本発明の「第2期間」の一例である。
次に、第1実施形態による平滑化制御により変動抑制を主に行う変動周期範囲について説明する。
図4に示すように、変動周期によって対応可能な制御方法が異なっており、負荷周波数制御(LFC)により対応可能な負荷の変動周期が領域D(ハッチングで示す領域)に示されている。また、EDCにより対応可能な負荷の変動周期は領域Aに示されている。なお、領域Bは、負荷変動による影響を電力系統50自体の自己制御性により自然に吸収する領域である。また、領域Cは、各発電所の発電機のガバナフリー運転により対応が可能な領域である。ここで、領域Dと領域Aとの境界線が負荷周波数制御(LFC)により対応可能な負荷の変動周期の上限周期T1となり、領域Cと領域Dとの境界線が負荷周波数制御により対応可能な負荷の変動周期の下限周期T2となる。この上限周期T1および下限周期T2は、固有の周期ではなく、負荷変動の大きさによって変化する数値である。さらに、構築された電力網によって図示されている変動周期の時間も変化する。たとえば、電力系統側におけるいわゆるならし効果などの影響により下限周期T2および上限周期T1の値は変化する。また、ならし効果の大きさも、太陽光発電システムの普及度および地域分散性などに応じて変化する。第1実施形態では、EDC、電力系統50自体の自己制御性およびガバナフリー運転などによって対応できない領域D(LFCにより対応可能な領域)の範囲内に含まれる変動周期(変動周波数)を有する負荷変動に着目し、抑制することを目的としている。
次に、図5を参照して、第1実施形態による系統安定化システムの太陽光発電システム1が発電システム1aとして動作する場合の制御フローについて説明する。
まず、ステップS1において、発電電力検出部8は、ある時刻における発電装置2の発電電力Pを検出する。そして、ステップS2において、充放電制御部5は、検出した発電電力Pを変動前発電電力P0とする。次に、ステップS3において、充放電制御部5は、発電電力P0の検出から30秒(検出時間間隔)経過後に発電電力を取得し、その検出値をP1とする。
この後、ステップS4において、充放電制御部5は、発電電力の変化量(|P1−P0|)が制御開始変化量(発電装置2の定格出力の5%)以上であるか否かを判断する。発電電力の変化量が制御開始変化量以上でない場合には、充放電制御部5は、ステップS5においてP1をP0とするとともにステップS3において新たにP1を取得して、発電電力の変化を監視する。
また、発電電力の変化量が制御開始変化量以上である場合には、充放電制御部5は、ステップS6において、平滑化制御を開始する。すなわち、充放電制御部5は、過去の20分の発電電力の平均値を目標出力電力として、その目標出力電力を電力出力部4から出力するように、蓄電池31の充放電を制御する。以下の説明において、平滑化制御の開始時点を時刻tとする。
平滑化制御を開始するのと同時(時刻t)に、ステップS7において、充放電制御部5は、発電電力の変化量が発電装置2の定格出力の5%未満の状態の継続時間kのカウントを開始する。また、ステップS8において、充放電制御部5は、時刻tにおいて、時刻(t+i)(i:検出時間間隔の30秒)において電力出力部4から出力する電力(目標出力電力Pm(t+i))を移動平均法により算出する。
この後、ステップS9において、充放電制御部5は、目標出力電力Pm(t+i)と発電電力P(t)との差分の電力(Pm(t+i)−P(t))を蓄電池31から充放電する。なお、充放電制御部5は、Pm(t+i)−P(t)が正の場合には、その差分を蓄電池31に充電し、負の場合には、その差分を蓄電池31から放電する。
そして、ステップS10において、時刻がt+iになると、充放電制御部5は、時刻t+iにおける発電電力P(t+i)を検出する。また、ステップS11では、時刻t+iにおいて、充放電制御部5は、発電電力の変化量(発電電力P(t+i)と発電電力P(t)との差分の絶対値)が発電装置2の定格出力PVcapの5%未満であるか否か(|P(t+i)−P(t)|<PVcap×0.05を満たすか否か)を判断する。
|P(t+i)−P(t)|<PVcap×0.05を満たさない場合には、充放電制御部5は、ステップS12において継続時間kを0とするとともに、時刻t=t+iとした後、ステップS8に戻る。また、|P(t+i)−P(t)|<PVcap×0.05を満たす場合には、充放電制御部5は、ステップS13において、継続時間kをk+iとする。
その後、ステップS14において、充放電制御部5は、継続時間kが1200秒(制御停止判断期間の20分)以上であるか否かを判断する。継続時間kが1200秒未満である場合には、充放電制御部5は、ステップS15において、時刻t=t+iとした後、ステップS8に戻り、ステップS8〜ステップS15の処理を継続時間kが1200秒以上になるまで繰り返す。継続時間kが1200秒以上である場合には、充放電制御部5は、ステップS16において平滑化制御を停止する。
また、第1実施形態による系統安定化システムの太陽光発電システム1が発電システム1bとして動作する場合の制御フローは、図6に示すように、ステップS104およびステップS111の閾値が図5のステップS4およびステップS11から変更されている点以外は発電システム1aの制御フローと同様である。発電システム1bでは、ステップS104において、充放電制御部5は、発電装置2の定格出力の15%の値を閾値として、平滑化制御の開始の判断を行う。また、ステップS111において、充放電制御部5は、発電装置2の定格出力の15%の値を閾値として、平滑化制御の終了の判断を行う。
第1実施形態の系統安定化システムは、上記構成により以下の効果を得ることができる。
すなわち、系統安定化システムの複数の太陽光発電システム1は、地域内に、発電電力の変化量が第1閾値以上になった場合に平滑化制御を開始する発電システム1aと、検出電力に関する値が第1閾値よりも大きい第2閾値以上になった場合に平滑化制御を開始する発電システム1bとを含む。これにより、発電システム1aの第1閾値を基準とした場合に、第2閾値を用いて平滑化制御を開始する発電システム1bの蓄電装置3の充放電量を減らすことができるので、地域内全体としてみた場合に、地域内の蓄電装置3の長寿命化を図ることができる。
また、第2閾値が第1閾値の2倍以上に設定されている。これにより、地域全体としての蓄電装置3の充放電量および充放電回数を大きく減らすことができる。
また、太陽光発電システム1が、所定の期間(たとえば1ヶ月)毎に第1閾値と第2閾値とを入れ替える。この場合、第1閾値を用いる太陽光発電システム1(発電システム1a)と第2閾値を用いる太陽光発電システム1(発電システム1b)とを固定する場合と異なり、ある特定の太陽光発電システム1の蓄電装置3のみを長寿命化させずに、地域全体の太陽光発電システム1に対して均一的に長寿命化を図ることができる。
また、検出時間間隔が負荷周波数制御により対応可能な変動周期の下限周期未満の期間に設定されている。このような検出時間間隔で発電電力を取得することにより、負荷周波数制御により対応可能な変動周期を有する発電電力の変化を容易に検出することができる。これにより、負荷周波数制御により対応可能な変動周期の変動成分を減少させるように、平滑化制御を行うことができる。
また、サンプリング期間が負荷周波数制御により対応可能な変動周期の下限周期以上の期間に設定されている。このようなサンプリング期間の範囲において算出した目標出力電力となるように充放電を制御することにより、特に、負荷周波数制御により対応可能な変動周期の成分を減少させることができる。これにより、負荷周波数制御により対応可能な変動周期の範囲における電力系統50への影響を有効に抑制することができる。
また、発電システム1aおよび発電システム1bは、それぞれ、発電電力の変化量が第1閾値(定格出力の5%)以上および第2閾値(定格出力の15%)以上になった場合に平滑化制御を開始し、検出電力に関する値が第1閾値(定格出力の5%)未満および第2閾値(定格出力の15%)未満になった状態が所定の期間(20分)継続する場合に、平滑化制御を停止する。このように構成すれば、発電電力が小さく平滑化制御が不要である場合に平滑化制御を停止することができるので、蓄電装置3の充放電量および充放電回数をより減少させることができる。これにより、蓄電装置3の長寿命化をさらに図ることができる。
次に、移動平均法のサンプリング期間について検討した。図7は、発電電力データの取得期間であるサンプリング期間を10分とした場合のFFT解析結果と、サンプリング期間を20分とした場合のFFT解析結果を示す。
図7に示すように、サンプリング期間が10分の場合には、変動周期が10分未満の範囲における変動が抑制されている一方、変動周期が10分以上の範囲における変動があまり抑制されていない。また、サンプリング期間が20分の場合には、変動周期が20分未満の範囲における変動が抑制されている一方、変動周期が20分以上の範囲における変動はあまり抑制されていない。したがって、サンプリング期間の大きさと、平滑化制御により抑制できる変動周期との間には良好な相関関係があることがわかる。このため、サンプリング期間の設定により効果的に変動周期を抑制できる範囲が変わることがいえる。そこで、本システムで主に注目している負荷周波数制御により対応可能な変動周期の部分を抑制するためには、サンプリング期間を負荷周波数制御で対応する変動周期以上、特にT1〜T2の後半付近(長周期付近)からT1以上の範囲の期間とすることが好ましい。たとえば、図4の例では20分以上のサンプリング期間とすることにより、負荷周波数制御で対応する変動周期の殆どを抑制することができることがわかる。ただし、サンプリング期間を長くすると、必要な蓄電池容量が大きくなる傾向があり、T1よりもあまり長くないサンプリング期間を選択することが好ましい。
次に、図8〜図25を参照して、本発明の第1実施形態による系統安定化システムの効果を検証したシミュレーション結果について説明する。
図8〜図19は、2月、5月および8月の発電電力の変動が激しい日と緩やかな日との1日の発電電力の推移およびその発電電力変化量の推移を示している。発電電力の変動が激しい日とは、発電電力の変動が繰り返し発生する日であり、発電電力の変動が緩やかな日とは、発電電力の変動があまり継続しない日である。図8〜図19のデータは、2009年の埼玉県において実測した実際の日射量データに基づいて、4kWの定格出力を有する太陽電池を用いたとした場合の発電電力をシミュレーションした結果である。また、本願明細書には示していないが、図8〜図19の日以外の日についてもシミュレーションを行った。
まず、変動が比較的緩やかな5月の日(たとえば図14および図15に示すような5月19日)においては、発電電力の変化量は定格出力の5%〜10%(200W〜400W)が主であり、部分的に、定格出力の10%〜15%の変化量も存在した。また、変動が比較的緩やかな8月の日(たとえば図16および図17に示すような8月6日)においては、発電電力の変化量が定格出力の5%〜10%で収まる場合が多く、やや大きな変動があった場合でも、変化量は定格出力の15%未満であった。また、変動が比較的緩やかな2月の日(たとえば図18および図19に示すような2月5日)においては、発電電力の変化量は最大で定格出力の10%(400W)であった。
一方、変動が比較的激しい5月の日(たとえば、図8および図9に示すような5月23日)においては、定格出力の20%(800W)を超える発電電力の変化がある日は、変動が激しい日であった。また、変動が比較的激しい8月の日(たとえば図10および図11に示すような8月24日)においては、定格出力の25%(1000W)を超える発電電力の変化がある日は、変動が激しい日であった。また、変動が比較的激しい2月の日(たとえば図12および図13に示すような2月16日)においては、定格出力の15%(600W)を超える発電電力の変化がある日は、変動が激しい日であった。
以上のような分析結果から、発電電力の変化量が定格出力の15%未満であれば、その日は変動が緩やかであり、変化量も小さいことが予測されることがわかった。したがって、第2閾値を定格出力の10%以上20%以下とすることにより、発電電力の変動の大きい日には、第2閾値が機能することにより、地域全体として平滑化の効果が得られ、発電電力の変動の小さい日には、第2閾値が機能せずとも、第1閾値が機能することにより、地域全体として平滑化の効果が得られる。なお、本発明の第1実施形態では、第1閾値を定格出力の5%とし、第2閾値として定格出力の15%に決定した。
次に、図8〜図19に示す発電電力の推移(5月19日、5月23日、8月6日、8月24日、2月5日および2月16日)に対して、実施例の系統安定化システムおよび比較例の系統安定化システムについて、蓄電装置3の充放電量をシミュレーションにより比較した。
なお、このシミュレーションでは、実施例の系統安定化システムとして、2軒の太陽光発電システム1のうち1軒を第1閾値(定格出力の5%)を用いて平滑化の開始の判断を行う発電システム1aとし、もう1軒が第2閾値(定格出力の15%)を用いて平滑化の開始の判断を行う発電システム1bとした。また、比較例の系統安定化システムとして、2軒の太陽光発電システム1のうち、2軒とも第1閾値を用いて平滑化の開始の判断を行う発電システム1aとした。このシミュレーション結果を以下の表1に示す。なお、充放電量は、1軒当たりのものである。
Figure 0005520365
表1に示すように、変動が比較的緩やかな日(5月19日、8月6日および2月5日)では、実施例の充放電量は比較例の約半分となっており、充放電量の低減効果が大きいことがわかった。これは、変動が比較的緩やかな日では、第2閾値(定格出力の15%)を超える発電電力の変化がないので、2軒のうちの第2閾値を用いて平滑化制御の開始の判断を行う発電システム1bでは、平滑化制御を行う期間がなかったからである。
なお、発電電力の変動があまり大きくない場合、発電システム1bでの平滑化制御を行わないが、地域全体としては、出力電力を十分に平滑化できる。
その一方、変動が比較的激しい日(5月23日、8月24日および2月16日)では、実施例と比較例とは充放電量はほとんど変わらないことがわかった。これは、変動が比較的激しい日では、第1閾値を超える発電電力の変化が生じた場合に、すぐに第2閾値を超える発電電力の変化が生じるので、実施例と比較例とで平滑化制御の開始のタイミングがあまり変わらないためである。
次に、図8〜図19に示す発電電力の推移(5月19日、5月23日、8月6日、8月24日、2月5日および2月16日)について、実施例の平滑化制御を行った場合の出力電力に対してFFT(高速フーリエ変換)解析を行うとともに、比較例の平滑化制御を行った場合の出力電力に対してFFT解析を行った。その解析結果を図20〜図25および以下の表2に示す。
Figure 0005520365
図24および表2に示すように、2月5日は実施例のパワースペクトルが比較例よりもやや大きくなっているものの、発電電力の変化量は、最大で定格出力の10%と小さいため、電力系統に与える影響は小さいと考えられる。2月5日以外では、図20〜図23、図25および表2より、実施例と比較例とはほとんど差がないことがわかった。すなわち、実施例と比較例とは、略同じレベルで発電電力の変動を抑制していることがわかった。
なお、このシミュレーションでは、地域内に2軒の太陽光発電システムがあるモデルについて検証したが、さらに多くの太陽光発電システムが地域内にある場合でも、第2閾値を適切に設定することにより、比較例と略同じレベルで発電電力の変動を抑制しながら、全体として充放電量を減少させる効果を得られると考えられる。また、上記実施例では、1つの太陽光発電システムの過去の発電電力の推移に基づいて第2閾値を定格出力の15%に決定したが、電力会社の管轄地域のように広い地域の全体で考えた場合、いわゆるならし効果により個々の太陽光発電システムの発電電力の変動が自然に抑制されることになる。この場合、ならし効果を考慮して、定格出力の15%より大きい値を第2閾値とした場合にも、比較例と略同じレベルで発電電力の変動を抑制しながら、全体として充放電量を減少させる効果を得られると考えられる。
上記のように、本願発明者は、第2閾値を適切な大きさに設定することにより、第1閾値よりも大きい第2閾値により平滑化制御の開始を判断する発電システム1bを地域内に設けた場合にも、地域内の太陽光発電システム1の閾値を全て第1閾値とした場合と略同じレベルで平滑化を行う(電力系統50への出力電力の変動を抑制する)ことが可能であることを見出した。
また、第1閾値と第2閾値との間の発電電力の変化があった場合に、第2閾値を用いて平滑化制御の開始の判断を行う発電システム1bでは平滑化を開始しないが、このような場合でも、地域全体の太陽光発電システムが第1閾値を用いて平滑化の制御の開始の判断を行う発電システム1aのみからなる系統安定化システムと略同じレベルで発電電力の変動を平滑化することができる。また、発電システム1bでは、閾値が大きい分、平滑化制御期間が短くなるので、地域全体としての蓄電装置3の充放電量および充放電回数を減らすことができ、その結果、蓄電装置3の長寿命化を図ることができる。
(第2実施形態)
次に、図26を参照して、本発明の第2実施形態による系統安定化システムについて説明する。第1実施形態では、発電装置2の発電電力に基づいて平滑化制御を行う例を示した。一方、この第2実施形態では、太陽光発電システム300と電力系統50とを出入りする電力(買電力または売電力)に基づいて平滑化制御を行う例について説明する。
図26に示すように、第2実施形態による系統安定化システムに用いられる太陽光発電システム300は、発電装置2と、蓄電装置3と、電力出力部4と、充放電制御部301と、DC−DCコンバータ7と、発電電力検出部8とを備えている。また、電力出力部4と電力系統50との間の交流側母線9には分電盤202を介して3つの負荷210、220および230が接続されている。
また、交流側母線9の分電盤202よりも電力系統50側には太陽光発電システム300から電力系統50に売却する電力を計量する電力メータ310と、電力系統50から購入する電力を計量する電力メータ320とが設けられている。電力メータ310および電力メータ320のそれぞれには、電力センサ302および電力センサ303が設けられている。なお、電力センサ302および電力センサ303は、本発明の「電力検出部」の一例である。
充放電制御部301は、電力センサ302および303の出力に基づいて、電力系統50と太陽光発電システム300とを出入りする電力のデータ(買電電力データまたは売電電力データ)を所定の検出時間間隔毎(たとえば、30秒以下)に取得することが可能である。充放電制御部301は、売電電力−買電電力の値を電力系統50と太陽光発電システムとを出入りする電力のデータ(検出電力データ)として取得する。また、充放電制御部301は、過去の検出電力データに基づいて目標出力電力を算出するとともに、実際の検出電力と目標出力電力との差を補償するように蓄電池31の充放電を行う。すなわち、充放電制御部301は、実際の検出電力が目標出力電力よりも大きい場合には、過剰分の電力を蓄電池31に充電するようにDC−DCコンバータ33を制御するとともに、実際の検出電力が目標出力電力よりも小さい場合には、不足分の電力を蓄電池31から放電するようにDC−DCコンバータ33を制御する。
太陽光発電システム300は、小さい閾値(第1閾値)により平滑化制御の開始を判断する発電システム300aと、第1閾値よりも大きい第2閾値により平滑化制御の開始を判断する発電システム300bとして機能する。なお、発電システム300aおよび発電システム300bは、それぞれ、本発明の「第1電力供給システム」および「第2電力供給システム」の一例である。
また、充放電制御部301は、上記第1実施形態と同様に、制御開始変化量として、第1閾値(たとえば定格出力の5%)と、第1閾値よりも大きい第2閾値(たとえば定格出力の15%)とのいずれかを選択することが可能である。第2実施形態では、充放電制御部5は、上記所定の期間(たとえば1ヶ月)毎に制御開始変化量の大きさを第1閾値と第2閾値とで変更する。太陽光発電システム300が発電システム300aとして動作する場合には、制御開始変化量として第1閾値が用いられる。太陽光発電システム300が発電システム300bとして動作する場合には、制御開始変化量として第2閾値が用いられる。
第2実施形態の上記以外の構成は、上記第1実施形態と同様である。
第2実施形態では、複数の負荷(負荷210、220および230)を備えているため、負荷全体として、負荷量の変動が大きい。電力センサ302および電力センサ303から検出する方が、発電電力検出部8から検出する場合よりも、負荷を反映した値が得られる。この負荷を反映した値に基づいて平滑化を行うことによって、より効果的に平滑化を行うことができる。
なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記第1および第2実施形態では、発電装置2として太陽電池を用いる例について説明したが、本発明はこれに限らず、風力発電装置などの他の再生可能エネルギー発電装置を用いてもよい。
また、上記第1および第2実施形態では、蓄電池(蓄電装置)としてLi−ion電池やNi−MH電池を用いる例を示したが、本発明はこれに限らず、他の2次電池を用いてもよい。また、蓄電装置としてキャパシタを用いてもよい。
上記第1および第2実施形態では、蓄電池31の電圧が48Vである例について説明したが、本発明はこれに限らず、48V以外の電圧にしてもよい。なお、蓄電池の電圧としては60V以下が望ましい。
また、上記第1実施形態では、需要家内で用いる負荷における消費電力量を想定しない場合について説明したが、本発明はこれに限らず、目標出力電力の算出において、需要家内で用いられる少なくとも一部の負荷で消費する電力量を検出し、その負荷消費電力量あるいは負荷消費電力変動量を加味して目標出力の算出を行ってもよい。
また、本発明では、サンプリング期間、母線電圧などの具体的な数値についても、上記第1および第2実施形態に記載された数値に限らず適宜変更が可能である。
また、上記第1実施形態では、目標出力電力と目標出力電力の出力時点における発電電力との差分を指標とした例について説明したが、本発明はこれに限らず、目標出力電力と目標出力電力の出力時点の1検出時間間隔(30秒)前の発電電力との差分など、目標出力電力と目標出力電力の出力時点の近傍の時点の発電電力との差分を指標としてもよい。
また、上記第1および第2実施形態では、制御停止判断期間をLFCにより対応可能な変動周期に相当する期間(下限周期T2以上で上限周期T1以下)とする例について説明したが、本発明はこれに限らず、上限周期T1より大きくてもよいし、下限周期T2より小さくてもよい。
また、上記第1および第2実施形態では、発電電力の変化量の制御開始変化量以上になった場合に平滑化制御を開始する例について説明したが、本発明はこれに限らず、発電電力の値そのものに基づいて平滑化制御の開始の判断を行ってもよい。
また、上記第1および第2実施形態では、地域内の太陽光発電システムが2つの閾値(第1閾値および第2閾値)を用いて平滑化制御の開始の判断を行う例について説明したが、本発明はこれに限らず、3つ以上の閾値を用いて平滑化制御の開始の判断を行ってもよい。この場合にも、地域内において均一な充放電量低減効果を得るために、地域内の太陽光発電システムの間で、所定期間毎に上記3つ以上の閾値を互いに入れ替えることが好ましい。
また、上記第1および第2実施形態では、第1閾値を用いる発電システム1aと第2閾値を用いる発電システム1bとの割合を50%/50%とした例について説明したが、本発明はこれに限らず、他の割合にしてもよい。したがって、電力系統が吸収することが可能な変動の大きさに応じて発電システム1bの割合を増やすことにより、より地域全体としての蓄電装置の充放電量を減らすことができる。
また、上記第1および第2実施形態では、第1閾値を定格出力の5%とし、第2閾値を定格出力の15%とした例について説明したが、本発明はこれに限らず、他の値でもよい。気候や日射量などが異なる地域では適切な第2閾値の値も異なると考えられる。
また、上記第1および第2実施形態では、制御終了変化量を制御開始変化量と同じ値にした例を示したが、本発明はこれに限らず、制御終了変化量を制御開始変化量よりも小さい値にしてもよい。
また、上記第1実施形態では、太陽光発電システム1が、所定の期間毎に第1閾値と第2閾値とを入れ替えるように構成した例を示したが、本発明はこれに限られない。たとえば、図27に示す変形例のように、充放電制御部401の通信部401cに、監視サーバー402から第1閾値と第2閾値とを入れ替えるような信号が入力された場合に、第1閾値と第2閾値とを入れ替えるようにしてもよい。監視サーバー402は、通信部401cを介して複数の太陽光発電システム400と通信を行うことで状態データを取得し、これらの状態を監視するものである。これにより、第1閾値で制御される太陽光発電システム400(発電システム400a)と第2閾値で制御される太陽光発電システム400(発電システム400b)の入れ替えを制御性よく簡単に行うことができる。ここで状態データとは、発電システムに含まれる蓄電池の状態を示すデータであり、例えば電圧電流値、SOC(State of Charge)、サイクル数、劣化に関するデータなどである。状態データは、各太陽光発電システム400を個別に特定するための識別情報と対応付けられる。そして、状態データと識別情報とを含む管理データが、各太陽光発電システム400から監視サーバー402に送信される。また、監視サーバー402から各太陽光発電システム400には、新たに設定される閾値のデータを含む閾値切替信号が送信される。なお、監視サーバー402は、本発明の「集中管理装置」の一例である。
監視サーバー402は、蓄電池のサイクル数や劣化に関する状態情報などから、各太陽光発電システム400の閾値を設定することもできる。具体的には、所定の基準よりも劣化が進んだ蓄電池を含む太陽光発電システムの閾値(第二閾値)を高く設定し、劣化のない蓄電池を含む太陽光発電システムの閾値(第一閾値)を低く設定する。さらに、監視サーバー402は、閾値を入れ換える期間を、劣化した蓄電池は、第二閾値で動作する期間(例えば1ヶ月)を第一閾値で動作する期間(例えば2週間)よりも長くなるように調整する。逆に、監視サーバー402は、劣化が少ない蓄電池は、第一閾値で動作する期間(例えば2週間)を第二閾値で動作する期間(例えば1カ月)よりも長くなるように調整する。これにより、劣化した蓄電池の充放電を抑制することができるため、蓄電池の寿命を延ばすことができる。

Claims (15)

  1. 複数の電力供給システムを備え、
    前記電力供給システムは、分散型電源と、前記分散型電源と電力系統との間の配線の所定部分を通過する電力を検出する電力検出部とを含み、前記電力検出部の検出電力データに基づいて、前記電力系統への出力電力の平滑化制御を行うものであり、
    前記複数の電力供給システムは、前記検出電力に関する値の変化量が第1閾値以上になった場合に平滑化制御を行う第1電力供給システムと、前記検出電力に関する値の変化量が前記第1閾値よりも大きい第2閾値以上になった場合に平滑化制御を行う第2電力供給システムとを含む、系統安定化システム。
  2. 前記系統安定化システムは、更に前記第1および第2電力供給システムと通信を行う集中管理装置を有し、
    前記第1および第2電力供給システムは、更に前記集中管理装置と通信可能な通信部を有し、前記通信部を介して、前記分散型電源の状態を示す分散電源データと前記電力供給システムを特定するための識別情報とを対応づけた管理データを前記集中管理装置に送信するとともに、前記第1閾値および前記第2閾値のうち少なくとも1つを、前記通信部を介して前記集中管理装置から受信する、請求項1に記載の系統安定化システム。
  3. 前記第2閾値は、前記第1閾値の2倍以上である、請求項1または2に記載の系統安定化システム。
  4. 前記第2閾値は、前記第2電力供給システムの分散型電源の定格出力の10%以上20%以下である、請求項1に記載の系統安定化システム。
  5. 前記第1電力供給システムおよび前記第2電力供給システムは、前記第1閾値と前記第2閾値とを入れ替えることにより、それぞれ、前記第2電力供給システムおよび前記第1電力供給システムとして動作する、請求項1または2に記載の系統安定化システム。
  6. 前記電力供給システムは、前記電力検出部による検出電力データを所定の検出時間間隔で取得するとともに、前記電力系統への出力電力の平滑化を行う際に、所定の第1期間の範囲で検出電力データを取得して移動平均法により前記電力系統に出力する目標出力電力を算出するように構成されている、請求項1に記載の系統安定化システム。
  7. 前記第1電力供給システムおよび前記第2電力供給システムは、それぞれ、平滑化制御の実行中に検出電力に関する値が前記第1閾値以下の所定の第3閾値未満および前記第2閾値以下の所定の第4閾値未満になった状態が所定の第2期間継続する場合に、平滑化制御を停止するように構成されている、請求項1に記載の系統安定化システム。
  8. 前記電力供給システムの分散型電源と電力系統との間の配線に負荷が接続される場合において、
    前記電力検出部は、前記配線の前記負荷が接続される部分よりも前記電力系統側で前記電力系統に出入りする電力を検出するように構成され、
    前記電力供給システムは、前記電力検出部による前記電力系統に出入りする電力の検出電力データに基づいて、前記電力系統への出力電力の平滑化制御を行うように構成されている、請求項1または2に記載の系統安定化システム。
  9. 電力系統への出力電力の平滑化制御を行う電力供給システムであって、
    再生可能エネルギーにより発電する発電装置を含む分散型電源と
    前記分散型電源と電力系統との間の配線の所定部分を通過する電力を検出する電力検出部とを含み、
    前記電力供給システムは、前記電力検出部の検出電力データに基づいて、前記検出電力に関する値の変化量が所定の閾値以上になった場合に平滑化制御を行うとともに、前記所定の閾値として、第1閾値と、前記第1閾値よりも大きい第2閾値とを入れ替えて用いる、電力供給システム。
  10. 前記電力供給システムは、更に集中管理装置と通信可能な通信部を有し、前記通信部を介して、前記分散型電源の状態を示す分散電源データと前記電力供給システムを特定するための識別情報とを対応づけた管理データを前記集中管理装置に送信するとともに、前記第1閾値および前記第2閾値のうち少なくとも1つを、前記通信部を介して前記集中管理装置から受信する、請求項9に記載の電力供給システム。
  11. 前記第2閾値は、前記第1閾値の2倍以上である、請求項9または10に記載の電力供給システム。
  12. 前記第2閾値は、前記分散型電源の定格出力の10%以上20%以下である、請求項9に記載の電力供給システム。
  13. 所定の期間毎に、前記第1閾値と前記第2閾値とを入れ替えるように構成されている、請求項9または10に記載の電力供給システム。
  14. 外部と通信可能な通信部を介し、複数の電力供給システムと通信を行う集中管理装置の制御方法であって、
    所定時間毎に前記複数の電力供給システムから、発電電力データと、分散型電源の状態を示す分散電源データと前記電力供給システムの識別情報とが対応付けられた充放電管理データとを取得する充放電管理データ取得工程と、
    前記分散電源データに基づき、前記識別情報に相当する電力供給システムの充放電を開始するための前記発電電力の変化量の閾値を決定する閾値決定工程と、
    前記識別情報に相当する前記電力供給システムに前記閾値を送信する工程とを含む、集中管理装置の制御方法。
  15. 外部と通信可能な通信部を介し、コンピュータを複数の電力供給システムと通信を行う集中管理装置として機能させるプログラムであって、
    前記コンピュータに対し、所定時間毎に前記複数の電力供給システムから、発電電力データと、分散型電源の状態を示す分散電源データと前記電力供給システムの識別情報とが対応付けられた充放電管理データとを取得させ、
    前記分散電源データに基づき、前記識別情報に相当する電力供給システムの充放電を開始するための前記発電電力の変化量の閾値を決定させ、
    前記識別情報に相当する前記電力供給システムに対して前記閾値を送信させる、集中管理装置のプログラム。
JP2012508372A 2010-03-30 2011-03-30 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム Active JP5520365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012508372A JP5520365B2 (ja) 2010-03-30 2011-03-30 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010078933 2010-03-30
JP2010078933 2010-03-30
PCT/JP2011/058134 WO2011122681A1 (ja) 2010-03-30 2011-03-30 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
JP2012508372A JP5520365B2 (ja) 2010-03-30 2011-03-30 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム

Publications (2)

Publication Number Publication Date
JPWO2011122681A1 JPWO2011122681A1 (ja) 2013-07-08
JP5520365B2 true JP5520365B2 (ja) 2014-06-11

Family

ID=44712374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012508372A Active JP5520365B2 (ja) 2010-03-30 2011-03-30 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム

Country Status (3)

Country Link
US (1) US20120228950A1 (ja)
JP (1) JP5520365B2 (ja)
WO (1) WO2011122681A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140316600A1 (en) * 2011-11-01 2014-10-23 Nation-E Ltd Electricity control system, apparatus and method
JP5967516B2 (ja) * 2011-11-22 2016-08-10 パナソニックIpマネジメント株式会社 電力管理装置、電力管理プログラム、及び、電力分配システム
JP5988758B2 (ja) * 2012-08-06 2016-09-07 京セラ株式会社 電力管理システム、電力管理方法、電力制御装置及び燃料電池装置
US20140266713A1 (en) * 2013-03-14 2014-09-18 Carefusion 303, Inc. Predictive Maintenance For Medical Devices
CN103944492A (zh) * 2014-05-08 2014-07-23 阳光电源股份有限公司 一种逆变器及光伏发电系统
US20170317507A1 (en) * 2014-10-23 2017-11-02 Nec Corporation Control device, power storage device, control method and recording medium
JP6407730B2 (ja) * 2015-01-07 2018-10-17 株式会社神戸製鋼所 発電電力の平滑化システム
US10476272B2 (en) * 2015-09-01 2019-11-12 Toshiba Mitsubishi—Electric Industrial Systems Corporation Power generation facility and power generation control device
CN107040034A (zh) 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法
JP6638632B2 (ja) * 2016-12-02 2020-01-29 東芝三菱電機産業システム株式会社 太陽光発電所の発電設備およびその統括制御装置
US11641177B2 (en) * 2019-02-08 2023-05-02 8Me Nova, Llc Coordinated control of renewable electric generation resource and charge storage device
US11894682B2 (en) 2020-05-15 2024-02-06 Caterpillar Inc. Methods and systems for off-grid load stabilization of energy distribution systems
US12061451B2 (en) 2021-10-20 2024-08-13 8Me Nova, Llc Target function prioritization of control modes for renewable electric generation resource and charge storage device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346332A (ja) * 2000-06-01 2001-12-14 Japan Storage Battery Co Ltd 電力変動補償システム
JP2002171669A (ja) * 2000-12-01 2002-06-14 Nissin Electric Co Ltd 系統安定化システム及びその制御方法
JP5354840B2 (ja) * 2006-02-24 2013-11-27 沖縄電力株式会社 新エネルギー発電システム出力変動緩和装置
JP5013372B2 (ja) * 2007-09-06 2012-08-29 国立大学法人 琉球大学 風力発電機用蓄電池設備の製作方法
JP5384155B2 (ja) * 2009-03-17 2014-01-08 三洋電機株式会社 発電システム
JP4771344B2 (ja) * 2009-06-12 2011-09-14 シャープ株式会社 電力運用システム、電力運用方法、太陽光発電装置、およびコントローラ
JP2011078168A (ja) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd 電力管理システム
JP5479182B2 (ja) * 2009-09-30 2014-04-23 三洋電機株式会社 発電システムおよび充放電制御装置
JP2011097816A (ja) * 2009-09-30 2011-05-12 Sanyo Electric Co Ltd 発電システムおよび充放電制御装置
WO2011118766A1 (ja) * 2010-03-25 2011-09-29 三洋電機株式会社 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム

Also Published As

Publication number Publication date
WO2011122681A1 (ja) 2011-10-06
US20120228950A1 (en) 2012-09-13
JPWO2011122681A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5520365B2 (ja) 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
US8527110B2 (en) Charge/discharge control device and power generation system
US9343926B2 (en) Power controller
US9148020B2 (en) Method of controlling a battery, computer readable recording medium, electric power generation system and device controlling a battery
JP5507669B2 (ja) 電力供給システム、電力供給方法および電力供給システムの制御プログラム
US8456878B2 (en) Power storage system and method of controlling the same
WO2011118766A1 (ja) 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム
JP5383902B2 (ja) 電力供給システム、電力供給方法および電力供給システムの制御プログラム
WO2011078151A1 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
JPWO2011074661A1 (ja) 充放電システム
WO2011040470A1 (ja) 充放電制御装置および発電システム
Xiao et al. Flat tie-line power scheduling control of grid-connected hybrid microgrids
JP5475019B2 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
WO2011078215A1 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
JP5479499B2 (ja) 充放電システムおよび充放電制御装置
JP5355721B2 (ja) 充放電システムおよび充放電制御装置
CN118367581A (zh) 光伏储能供电系统的控制方法、装置和光伏储能供电系统

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5520365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150