WO2017033941A1 - 生分解性インジェクタブルゲル - Google Patents
生分解性インジェクタブルゲル Download PDFInfo
- Publication number
- WO2017033941A1 WO2017033941A1 PCT/JP2016/074558 JP2016074558W WO2017033941A1 WO 2017033941 A1 WO2017033941 A1 WO 2017033941A1 JP 2016074558 W JP2016074558 W JP 2016074558W WO 2017033941 A1 WO2017033941 A1 WO 2017033941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peg
- gel
- pla
- chitosan
- pbs
- Prior art date
Links
- 0 C*(CC(C)(C(N)=O)O)C(N)=O Chemical compound C*(CC(C)(C(N)=O)O)C(N)=O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/664—Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/246—Intercrosslinking of at least two polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3415—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/06—Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
Definitions
- the present invention relates to a biodegradable injectable gel composed of a triblock copolymer PEG-PLA-PEG, a self-assembling peptide and chitosan.
- an interpenetrating polymer network (IPN) type injectable consisting of a self-assembled peptide gel (RADA16) as a pseudo-extracellular matrix and a covalently bonded gel (chitosan / PEG) as a mechanical support.
- the gel (chitosan / PEG / RADA16) was found to be a useful cartilage tissue regeneration scaffold. It has been confirmed that the fibrous network of peptides contained in the gel contributes to the enhancement of cell functions, and as a result, promotes excellent cartilage tissue regeneration in vivo.
- the scaffold is decomposed and disappeared and replaced with normal tissue.
- the covalently bonded chitosan / PEG gel has poor degradability, and it was difficult to control the degradation of the scaffold after regeneration of living tissue.
- the present invention provides a biodegradable injectable gel.
- a biodegradable injectable gel (chitosan / PEG-PLA-PEG / PEG) using a triblock copolymer PEG-PLA-PEG (FIGURE 1) into which Poly (D, L-lactide) (PLA) is introduced. RADA16) is provided.
- polymer or “polymer” can be used interchangeably and refer to molecules having a structure composed of repeating monomer units, which can be obtained from a monomer having a low molecular weight.
- polymer refers to a macromolecule formed by covalently bonding a large number of atoms, such as a protein, a nucleic acid and the like, in addition to a polymer.
- the term “average degree of polymerization” refers to the average number of monomer units contained in one polymer molecule. That is, in the polymer composition, polymer molecules having different lengths are dispersed within a certain range.
- the “number average molecular weight” means the average molecular weight per molecule in the polymer composition
- the “weight average molecular weight” means the molecular weight calculated by weighting the weight.
- the ratio between the number average molecular weight and the weight average molecular weight is referred to as the degree of dispersion, which is a measure of the molecular weight distribution of the polymer composition. The closer the degree of dispersion is to 1, the closer the average degree of polymerization in the polymer composition and the more polymer chains of the same length.
- biodegradable means a substance that can be chemically decomposed by an action such as hydrolysis, enzymatic decomposition, or microbial decomposition.
- the injectable gel of the present invention includes, for example, a radical scavenger, a peroxide decomposer, an antioxidant, an ultraviolet absorber, a heat stabilizer, a plasticizer within the range not departing from the spirit of the present invention.
- An additive such as an agent, a flame retardant, and an antistatic agent can be added and used. Moreover, it can be used by mixing with polymers other than the polymer of this invention.
- Such a composition comprising the biodegradable injectable gel of the present invention is also an object of the present invention.
- the biodegradable injectable gel of the present invention can be used alone by being dissolved in an appropriate organic solvent, or mixed with other polymer compounds depending on the purpose of use. Can be used as a thing.
- the medical device of this invention should just have the biodegradable injectable gel of this invention in at least one part of the surface used in contact with a biological tissue or blood. That is, the composition containing the biodegradable injectable gel of the present invention can be used as a surface treatment agent on the surface of a base material constituting a medical device.
- One aspect of the present invention is a biodegradable injector according to the present invention for suppressing a foreign body reaction to blood or tissue until it is decomposed when used in contact with tissue or blood in a living body. Burger.
- the biodegradable injectable gel of the present invention can be preferably used for medical purposes.
- the biodegradable injectable gel of the present invention can be used in an appropriate mixing ratio depending on the intended use.
- a composition having the characteristics of the present invention can be obtained.
- the ratio of the biodegradable injectable gel of the present invention to 50 to 70% by weight, it is possible to obtain a composition having various characteristics while utilizing the features of the present invention. .
- the “medical device” includes an in-vivo implantable device such as a prosthesis and a device such as a catheter that may temporarily come into contact with a living tissue, and is not limited to those handled in vivo.
- the medical device of the present invention is a device used for medical applications having the polymer composition of the present invention on at least a part of its surface.
- the surface of the medical device referred to in the present invention refers to, for example, the surface of the material constituting the medical device that contacts blood when the medical device is used, the surface portion of the hole in the material, and the like.
- the material and shape of the base material constituting the medical device are not particularly limited, and may be any of, for example, a porous body, fiber, nonwoven fabric, particle, film, sheet, tube, hollow fiber, and powder.
- the materials include natural polymers such as Kinishiki and hemp, nylon, polyester, polyacrylonitrile, polyolefin, halogenated polyolefin, polyurethane, polyamide, polycarbonate, polysulfone, polyethersulfone, poly (meth) acrylate, and ethylene-vinyl alcohol. Examples thereof include synthetic polymers such as polymers, butadiene-acrylonitrile copolymers, and mixtures thereof.
- metals, ceramics, composite materials thereof, and the like can be exemplified, and they may be composed of a plurality of base materials.
- the present invention is applied to at least a part of the surface in contact with blood, preferably almost the entire surface in contact with blood. Desirably, a biodegradable injectable gel is provided.
- the biodegradable injectable gel of the present invention can be used as a material constituting a whole medical device used in contact with tissue or blood in a living body or a material constituting a surface portion thereof, and is an implantable prosthesis. And therapeutic instruments, extracorporeal circulation type artificial organs, surgical sutures, and catheters (circulatory catheters such as angiographic catheters, guide wires, PTCA catheters, gastrointestinal catheters, gastrointestinal catheters, esophageal tubes, etc.)
- the biodegradable injector according to the present invention has at least a part of the surface in contact with blood of a medical device such as a catheter, tube, urinary catheter, urinary catheter, etc. Desirably, it is composed of bulgel. Further, the biodegradability of the biodegradable injectable gel according to the present invention can be used particularly preferably for a medical device placed in the body during treatment.
- the biodegradable injectable gel of the present invention comprises a hemostatic agent, an adhesive material for biological tissue, a repair material for tissue regeneration, a carrier for a sustained drug release system, a hybrid artificial organ such as an artificial pancreas and an artificial liver, an artificial blood vessel, and an embolization material It may also be used as a matrix material for a scaffold for cell engineering.
- These medical devices may be further provided with surface lubricity because they can be easily inserted into blood vessels and tissues and do not damage the tissues.
- surface lubricity a method of insolubilizing a water-soluble polymer to form a water-absorbing gel layer on the material surface is excellent. According to this method, a material surface having both biocompatibility and surface lubricity can be provided.
- the biodegradable injectable gel of the present invention is a material that is excellent in biocompatibility by itself, but can also carry various physiologically active substances, so that not only a blood filter, but also a blood storage container, a blood circuit It can be used for various medical devices such as indwelling needles, catheters, guide wires, stents, oxygenators, dialysis machines, and endoscopes.
- the biodegradable injectable gel of the present invention may be coated on at least a part of the substrate surface constituting the blood filter.
- the polymer compound of the present invention may be coated on at least a part of the blood bag and the surface of the tube communicating with the blood bag in contact with the blood.
- blood in an extracorporeal circulation blood circuit composed of an instrument side blood circuit unit composed of a tube, an arterial filter, a centrifugal pump, a hemoconcentrator, a cardio pregear, etc., and an operative field side blood circuit unit composed of a tube, catheter, soccer, etc At least a part of the surface in contact with the surface may be coated with the biodegradable injectable gel of the present invention.
- an inner needle having a sharp needle tip at a distal end, an inner needle hub installed on the proximal end side of the inner needle, a hollow outer needle into which the inner needle can be inserted, and a proximal end side of the outer needle
- An indwelling needle assembly comprising: an outer needle hub installed on the inner needle; a protector mounted on the inner needle and movable in the axial direction of the inner needle; and a connecting means for connecting the outer needle hub and the protector.
- At least a portion of the three-dimensional, blood-contacting surface may be coated with the biodegradable injectable gel of the present invention.
- at least a part of the surface of the long tube that contacts the blood of the catheter constituted by the adapter connected to the proximal end (hand side) thereof may be coated with the biodegradable injectable gel of the present invention.
- the surface of the guide wire that comes into contact with blood may be coated with the biodegradable injectable gel of the present invention.
- stents of various shapes such as hollow tubular bodies made of metal materials or polymer materials with pores on the side, metal material wires or polymer material fibers knitted into a cylindrical shape, etc. At least a portion of the surface in contact with blood may be coated with the biodegradable injectable gel of the present invention.
- a large number of porous hollow fiber membranes for gas exchange are housed in a housing, blood flows on the outer surface side of the hollow fiber membrane, and oxygen-containing gas flows inside the hollow fiber membrane.
- the lung may be an artificial lung in which the outer surface or outer layer of the hollow fiber membrane is coated with the biodegradable injectable gel of the present invention.
- a dialysate circuit including at least one dialysate container filled with dialysate and at least one drainage container for collecting dialysate, and starting from the dialysate container, or
- the end point may be a dialyzer having a liquid feeding means for feeding dialysate, and at least a part of the surface in contact with the blood may be coated with the biodegradable injectable gel of the present invention.
- the present invention is an excellent scaffold for cartilage tissue regeneration and has the effect of having excellent biodegradability.
- 1 is a 1 H-NMR spectrum of the product. 1 is a 1 H-NMR spectrum of the product. It is a GPC measurement result of a product. 1 is a 1 H-NMR spectrum of the product. 1 is a 1 H-NMR spectrum of the product. It is a gelation phase diagram when PEG 5k and PEG-PLA-PEG are used (left: chitosan / PEG 5k, right: chitosan / PEG-PLA-PEG). The frequency-dependent measurement results when PEG5k and PEG-PLA-PEG are used are shown (left: chitosan / PEG 5k, right: chitosan / PEG-PLA-PEG).
- the gelation behavior when PEG5k and PEG-PLA-PEG are used is shown (left: chitosan / PEG 5k, right: chitosan / PEG-PLA-PEG).
- the gelation behavior of the RADA mixed system is shown (upper: RADA, left: chitosan / PEG 5k / RADA, right: chitosan / PEG-PLA-PEG / RADA).
- GAG production (left: GAG production per day, right: integrated GAG production). This is the amount of GAG produced in the gel. GAG total production (in medium + in gel). 1 is a 1 H-NMR spectrum of the product. 1 is a 1 H-NMR spectrum of the product.
- Example 1 EXAMPLES
- medical agent used in the following examples used the commercial item as it was.
- the molecular weight distribution of the polymer obtained in each example was measured as follows.
- protons were assigned.
- the standard for the integrated value was 214.00 based on the peak a derived from the EO chain of PEG. From the value of PLA-derived peak b, the number of PLA chains was set to 5.
- protons were assigned.
- the standard for the integrated value was 428.00 based on the peak a derived from the EO chain of PEG, assuming that THP-PEG-PLA-OH was completely bonded to both ends of adipoyl chloride. From the value of the peak b derived from PLA, the PLA chain number was set to 10 chains.
- the GPC measurement results are shown in FIG.
- protons were assigned.
- the standard of the integrated value was set to 428.00 based on the peak a derived from the EO chain of PEG. Since the THP-derived peak disappeared, THP deprotection was confirmed.
- protons were assigned.
- the standard of the integrated value was set to 428.00 based on the peak a derived from the EO chain of PEG. From the NHS-derived peak, it was found that 99.3% NHS was formed.
- PEG-PLA-PEG is known to form a physical cross-linked gel by temperature phase transition (Sol-Gel transition) for the first time in a high concentration region such as 30 wt% at room temperature (20 ° C.) ( T, Mukose et al., Macromol. Biosci. 2014, 4, 361-367). The gelation of this system occurred in a very low concentration region, suggesting gelation based on the formation of chemical crosslinks between molecular chains.
- G ′ increased rapidly after a predetermined time, and a clear gel point (G ′> G ′′) was observed. Also, when PEG-PLA-PEG was used, the gelation rate decreased. This was confirmed by the inclusion of PLA, resulting in a decrease in solvation and consequently a decrease in reaction rate.
- FIG. 9 the measurement result of gelation behavior in the RADA mixed system is shown (FIG. 9).
- G ′ at the start of measurement was higher than G ′′, and it was suggested that gelation occurs immediately upon mixing with PBS.
- G ′ changed in multiple stages over time, and the inflection point was highly correlated with the gelation time of chitosan / PEG 5k and chitosan / PEG-PLA-PEG.
- the chitosan / PEG-PLA-PEG gel had a higher degree of swelling than the chitosan / PEG5k gel. This is considered to be due to the introduction of PLA, the reactivity decreased and the degree of swelling increased. In both cases, the degree of swelling was significantly reduced as a result of inclusion of the peptide. This suggests an increase in network density based on the formation of the IPN structure.
- Degradation behavior evaluation Decomposition tests are as follows: -Acid accelerated decomposition test (acetic acid, room temperature conditions) ⁇ Experimental operation was performed. Each 300 ⁇ L volume gel was made and swelled in 1 mL PBS (150 mM, pH 7.4) for 48 hours (4 ° C.). After swelling the gel, PBS was removed, 1 mL of CH 3 COOH was added, and the mixture was allowed to stand at room temperature. After a predetermined time, the sample was washed three times with PBS, and the swelling weight of the gel was measured. Each sample was lyophilized for 24 hours and then the dry weight of the gel was measured. The degree of swelling Q and weight loss were calculated using the following equations. The solution was changed every day ( Figure 12).
- Circular Dichroism (CD) Spectrum Measurement Each sample having a volume of 90 ⁇ L was prepared and applied to a quartz cell having an optical path length of 0.1 mm. The measurement conditions are as follows. Measurement wavelength: 300-205nm Data interval: 0.5 nm Scanning speed: 200 nm / min Integration count: 3 times Response: 2.0 s Band width: 1.0 nm Measurement temperature: 20 ° C
- RADA is known to exhibit a negative cotton effect based on the ⁇ sheet structure in the vicinity of 220 nm of the CD spectrum. Similarly, since a negative cotton effect was obtained in the gel containing the peptide, it was found that the fiber structure of the peptide was stably held inside the gel.
- a cell suspension was prepared using a 4 wt% chitosan solution.
- 25 ⁇ L of cell suspension was added to a 1.5 mL sampling tube.
- a 4 wt% PEG solution (in 300 mM PBS) was separately prepared using NHS-PEG-PLA-PEG-NHS that had been subjected to UV treatment for 20 minutes.
- 12.5 ⁇ L of the 4 wt% PEG solution of (6) was added to (5) above, and immediately after pipetting, 12.5 ⁇ L of 1.0 wt% RADA16 solution was added and mixed.
- the mitochondrial activity according to the MTT assay was reduced in all hydrogels at the beginning of the culture. Thereafter, the RADA non-mixed gel maintained a low state, but the RADA mixed gel showed a remarkable increase in activity. This is considered that the cell activity was improved as a result of the peptide fiber structure mimicking the biological environment. In addition, when PEG-PLA-PEG was used, the cell activity was significantly improved. This is considered to be the effect of imparting degradability. In addition, a decrease in activity was confirmed when PEG-PLA-PEG was used in the later stage of culture. This suggests that the gel has degraded and cells have been released.
- the produced chitosan / PEG-PLA-PEG / RADA16 gel showed the same amount of GAG production in the medium and GAG production in the gel at the initial stage of culture. However, in the late stage of culture, the amount of GAG produced is higher in the chitosan / PEG-PLA-PEG / RADA16 gel.
- the chitosan / PEG-PLA-PEG / RADA16 gel has been confirmed to show a mild degradation behavior under the culture conditions, and it is considered that the GAG production amount is improved as a result of imparting degradability to the gel.
- succinimide-PEG-PLA-PEG-succinimide is capable of cross-linking at a very low concentration, unlike a physical cross-linking gel using PEG-PLA-PEG or PLA-PEG-PLA. Therefore, since it can be handled as a cell mixture with low viscosity, it can be used as an injectable gel for in vivo administration and has high suitability for clinical treatment.
- the cell viability after the gelation reaction is an extremely low toxicity reaction that maintains 100% of that before crosslinking.
- the triblock copolymer of the present invention is useful for the production of biodegradable interpenetrating polymer networks (IPN).
- IPN biodegradable interpenetrating polymer networks
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Polyesters Or Polycarbonates (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
[1]ポリエチレングリコール-ポリ(D,L-ラクチド)-ポリエチレングリコール骨格を有する、トリブロック共重合体、
[2]式I:
(式中、
nは、重合度を表し、好ましくは、10~1000の範囲であり、
mは、重合度を表し、好ましくは、1~100の範囲である)
で示される繰り返し単位を含む、請求項1に記載のトリブロック共重合体、
[3]上記[1]又は[2]に記載のトリブロック共重合体、キトサン、自己組織化ペプチドを含む、生分解性インジェクタブルゲル、
[4]自己組織化ペプチドが、(RADA)4である、[3]に記載の生分解性インジェクタブルゲル、
[5]下記:
(式中、
nは、重合度を表し10~1000の範囲である)
をD,L-ラクチドと反応させ、
(式中、
mは、重合度を表し1~100の範囲である)
を得る工程、
得られた
を
と反応させ
を得る工程、
得られた
を脱保護し、
を得る工程、
得られた
を炭酸ジ(N-スクシンイミジル)と反応させ
を得る工程
を含む、ポリエチレングリコール-ポリ(D,L-ラクチド)-ポリエチレングリコール骨格を有する、トリブロック共重合体の製造方法、
[6]上記[1]のトリブロック共重合体を含む、架橋剤。
以下、実施例により本発明を詳細に説明するが、本発明はこれら実施例によって限定されるものではない。なお、以下の例で用いた薬品は、とくに断りの無い場合は市販品をそのまま用いた。以下の例において、各実施例で得られた重合体の分子量分布の測定は以下のようにして行った。
ピーク分子量が既知の標準ポリスチレンを用い、該標準ポリスチレンで校正したゲル浸透クロマトグラフィー(GPC)(東ソー社製「TOSO HLC-8320GPC」、カラム構成:TSKguardcolumn SuperMP(HZ)-M, TSKgel SuperMultiporeHZ-M 4本直列)を使用して、重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。(溶媒:THF、温度:40℃、流量:0.35mL/min)。
上記の方法で求めた重量平均分子量(Mw)と数平均分子量(Mn)の値を用い、その比(Mw/Mn)として求めた。
ポリマーの構造解析については、NMR測定装置(Bruker製、400MHz)を用い、1H-NMR測定及び13C-NMR測定を行った。なお、ケミカルシフトはCDCl3(1H:7.26ppm、13C:77.1ppm)を基準とした。
キトサン/PEG 2.0/1.0wt% 300μLゲルの作製
PBS(150mM,pH7.4)を用いて調製した6.0wt%キトサン100μLにPBS 150μLを添加した。そこにPBS(150mM,pH7.4)を用いて調製した6.0wt%両末端NHS-PEG 50μLを添加した。
PBS(150mM,pH7.4)を用いて調製した6.0wt%キトサン100μLにPBS(300mM,pH7.4)75μLを添加した。そこにPBS(150mM,pH7.4)を用いて調製した6.0wt%両末端NHS-PEG50μLを添加した後、1.0wt%RADA16水溶液75μLを素早く添加した。
・実験操作
溶液のゲル化を、20分間静置させた後、tilting test により評価した。各々のゲル化挙動を観察した後、ゲル化相図を作成した。目的とする濃度のキトサン/PEG-PLA-PEGゲルは、キトサン,PEG-PLA-PEG,PBSの混合比を適宜変化させることで作製した。すべてのゲルにおいて、イオン濃度の異なるPBSを適宜用いることで、最終PBS濃度が150mMとなるように調整した。ゲル化相図を図5に示す。
体積300μLのゲルを、直径15mmのディスク型に成形した。PBS(150mM,pH7.4)中で24時間膨潤させた(4℃)後、装置台座にセットした。パラレルプレートを、0.5Nの荷重が掛かるようにゲルに接近させた。周波数測定において、せん断応力ひずみは1%(=γ)とし、発振周波数を0.1-100Hzの範囲で測定した(図7)。双方において、貯蔵弾性率(G’)は損失弾性率(G”)よりも高く、典型的なゲル物性を確認した。
ゲル化挙動を、ゲルの典型的作製法と同様の手法でレオメーター台座上に体積210μLのゲル前駆体溶液を調製した後、即座に粘弾性測定を開始することで評価した。測定周波数は1Hzとし、測定荷重は1Paで行った。なお、RADAのゲル化は、PBS(200mM,pH7.4)157.5μLに対して1.0wt%RADA16水溶液52.5μLを添加することで観察した(図8)。
体積300μLのゲルを、直径15mmのディスク型に成形した。PBS(150mM,pH7.4)中で24時間膨潤させた(4℃)後、装置台座にセットした。
測定周波数を1Hzに固定した後、各ゲルサンプルに1Paから3000Paまでの圧力を印加することで力学強度を測定した。損失弾性率G”が貯蔵弾性率G’を上回る点をゲルの破断点と定義し、応力-ひずみ曲線を作成した。得られた応力-ひずみ曲線の初期の傾きを直線近似することで、ヤング率を算出した(図10)。
体積300μLのゲルを作製し、PBS(150mM,pH7.4)中で48時間膨潤させた(4℃)後、膨潤後のゲルの重量を測定した。各サンプルを24時間凍結乾燥させた後、ゲルの重量を再度測定した。以下の式を用いて、膨潤度Q0を算出した(図11)。
Q0=(Ws-Wd)/Wd
Ws:膨潤ゲルの重量、Wd:乾燥ゲルの重量
分解試験を、以下:
・酸加速分解試験(酢酸、室温条件下)
・実験操作
について行った。
体積300μLのゲルをそれぞれ作製し、1mLのPBS(150mM,pH7.4)中で48時間膨潤させた(4℃)。ゲルを膨潤させた後、PBSを取り除き、CH3COOHを1mL加え、室温条件下で静置した。所定時間経過後、サンプルを、PBSを用いて3回洗浄し、ゲルの膨潤重量を測定した。各サンプルを24時間凍結乾燥させた後、ゲルの乾燥重量を測定した。以下の式を用いて、膨潤度Q、重量損失を算出した。溶液は1日毎に取り換えた(図12)。
Q=(Ws-Wd)/Wd
WS:膨潤ゲルの重量、Wd:乾燥ゲルの重量
重量損失(%)=(Wd0-Wd)/Wd0×100
Wd0:初期乾燥重量(day0)
体積300μLのゲルをそれぞれ作製し、1mLのPBS(150mM,pH7.4)中で48時間膨潤させた(4℃)。ゲルを膨潤させた後、PBSを取り除き、新たなPBSを1mL加え、37℃条件下で静置した。所定時間経過後、サンプルをPBSを用いて3回洗浄し、ゲルの膨潤重量を測定した。各サンプルを24時間凍結乾燥させた後、ゲルの乾燥重量を測定した。以下の式を用いて、膨潤度Q、重量損失を算出した。溶液は3日毎に取り換えた(図13)。
Q=(Ws-Wd)/Wd
WS:膨潤ゲルの重量、Wd:乾燥ゲルの重量
重量損失(%)=(Wd0-Wd)/Wd0×100
Wd0:初期乾燥重量(day0)
体積90μLの各サンプルをそれぞれ作製し、光路長0.1mmの石英セルに塗布した。測定条件は以下のとおりである。
測定波長:300-205nm
データ間隔:0.5nm
走査速度:200nm/min
積算回数:3回
レスポンス:2.0s
バンド幅:1.0nm
測定温度:20℃
(1)20分間のUV滅菌処理を施したキトサン(カルボキシメチルキトサン、甲陽ケミカル)を用い、4wt%キトサン溶液(150mM PBS)を調製した。
(2)予めインキュベーター(37℃、5%CO2)で培養したサブコンフルのウシ由来軟骨細胞(P1)をトリプシン処理により基板から剥がし、遠心後(1,500rpm,5分間)、上澄みを除去した。
(3)DMEM培地を10mL加え、細胞数を測定した。
(4)遠心(1,500rpm,5分間)し、上澄み除去後、4wt%キトサン溶液を用いて、細胞懸濁液を作製した。
(5)1.5mLサンプリングチューブに細胞懸濁液を25μL加えた。
(6)20分間のUV処理を施したNHS-PEG-PLA-PEG-NHSを用いて、4wt%PEG溶液(300mMPBS中)を別途調製した。
(7)上記の(5)に(6)の4wt%PEG溶液を12.5μL加え、ピペッティングを行った後すぐに、1.0wt%RADA16溶液を12.5μL加え混ぜ合わせた。なお、キトサン/PEG-PLA-PEG=2.0/1.0wt%を足場とする場合には、RADA16溶液の代わりに同体積の150mM PBSを添加した。
(8)10分間ゲル化させた後、ゲル上部にDMEM(10%FBS,2%pen-strep)を500μL加え、インキュベーター(37℃,5%CO2)内で培養した。2-3日毎に培地サンプルを回収し、フレッシュなDMEMを500μL添加した。回収した培地サンプルは-80℃で保存した。
1.キトサン/PEG5k=2.0/1.0wt%
2.キトサン/PEG-PLA-PEG=2.0/1.0wt%
3.キトサン/PEG5k/RADA16=2.0/1.0/0.25wt%
4.キトサン/PEG-PLA-PEG/RADA16=2.0/1.0/0.25wt%
細胞数:5.0×105細胞
細胞密度:1.0×107細胞/ml
ゲル体積:50μL
培地量:500μL
分解挙動評価(細胞存在下)
上記と同様の方法で、体積300μLのキトサン/PEG 5k ゲル及びキトサン/PEG-PLA-PEGゲルをそれぞれ作製し、DMEMを1mL加え、37℃、5%CO2条件下で静置した。所定時間経過後、サンプルをPBSを用いて3回洗浄し、各サンプルを24時間凍結乾燥させ、ゲルの乾燥重量を測定した。以下の式を用いて、重量損失を算出した。培地は2,3日毎に取り換えた。
重量損失(%)=(Wd0-Wd)/Wd0×100
Wd0:初期乾燥重量(day0)
細胞数:3.0×106細胞
細胞密度:1.0×107細胞/ml
ゲル体積:300μL
培地量:1000μL
(1)サンプルの培地を交換する際に、DMEMを450μL加え、5mg/mL MTT試薬を50μL加えた。
(2)24時間、インキュベーション(37℃,5%CO2)した。
(3)上澄みを除去し、ゲルを崩し、MTT抽出用試薬(2-プロパノール:1M HCl=24:1vol%)を500μL加え、37℃で24時間振とうした。
(4)遠心(1,500rpm,5分間)後、96ウェルプレートに上澄みを100μL/ウェル加え、570nmにおける吸光度を測定した(図16)。
(1)DMMB 4mgをエタノール1.25mLに溶解させ、ギ酸0.75mL,1.0M NaOH溶液6.4mLを添加し、計250mLになるまでMilli Q水でメスアップすることにより、DMMB溶液を調製した。
(2)96ウェルプレートにDMMB溶液を125μL/ウェル加えた。
(3)検量線用コンドロイチン硫酸溶液(PBS中),サンプル(2倍希釈培地、ゲル融解液)を20μL/ウェル加え、よくピペッティングした。
(4)570nmにおける吸光度を測定した(図17~19)。
Claims (6)
- ポリエチレングリコール-ポリ(D,L-ラクチド)-ポリエチレングリコール骨格を有する、トリブロック共重合体。
- 請求項1又は2に記載のトリブロック共重合体、キトサン、自己組織化ペプチドを含む、生分解性インジェクタブルゲル。
- 自己組織化ペプチドが、(RADA)4である、請求項3に記載の生分解性インジェクタブルゲル。
- 請求項1のトリブロック共重合体を含む、架橋剤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/754,393 US10835637B2 (en) | 2015-08-24 | 2016-08-23 | Biodegradable injectable gel |
JP2017536444A JP6886402B2 (ja) | 2015-08-24 | 2016-08-23 | 生分解性インジェクタブルゲル |
EP16839288.4A EP3342795B1 (en) | 2015-08-24 | 2016-08-23 | Biodegradable injectable gel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-165204 | 2015-08-24 | ||
JP2015165204 | 2015-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017033941A1 true WO2017033941A1 (ja) | 2017-03-02 |
Family
ID=58100411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/074558 WO2017033941A1 (ja) | 2015-08-24 | 2016-08-23 | 生分解性インジェクタブルゲル |
Country Status (4)
Country | Link |
---|---|
US (1) | US10835637B2 (ja) |
EP (1) | EP3342795B1 (ja) |
JP (1) | JP6886402B2 (ja) |
WO (1) | WO2017033941A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113633823B (zh) * | 2021-07-19 | 2022-12-06 | 陕西未来多肽生物科技有限公司 | 功能性自组装纳米多肽水凝胶、制备方法、用途和制剂 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09157368A (ja) * | 1995-12-01 | 1997-06-17 | Kanebo Ltd | ポリ乳酸−ポリエチレングリコール−ポリ乳酸三元ブロック共重合体の精製方法 |
JPH11513985A (ja) * | 1995-10-25 | 1999-11-30 | マクロメド・インコーポレーテッド | ポリ(エーテル−エステル)ブロックコポリマーを基剤とする感熱生分解性ポリマー |
JP2001513368A (ja) * | 1997-08-06 | 2001-09-04 | フォーカル,インコーポレイテッド | 止血性組織シーラント |
JP2001517603A (ja) * | 1997-08-08 | 2001-10-09 | ユニバーシティ オブ ユタ リサーチ ファウンデイション | 薬物送達における使用のための注射可能な生分解性ブロックコポリマーゲル |
KR20020027747A (ko) * | 2000-10-05 | 2002-04-15 | 오석송 | 수용성 생체분해성 고분자 겔 및 그의 제조방법 |
JP2004167229A (ja) * | 2002-10-29 | 2004-06-17 | Toray Ind Inc | 血管塞栓材料 |
JP2006506335A (ja) * | 2002-07-19 | 2006-02-23 | オメロス コーポレイション | 生分解性トリブロックコポリマー、その合成方法、ならびにそれから作製されるヒドロゲルおよび生体材料 |
JP2007512094A (ja) * | 2003-11-20 | 2007-05-17 | アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド | 乳酸のポリマーを含む埋め込み型用具用コーティングおよびこのコーティングの製造方法 |
JP2010144178A (ja) * | 1997-10-03 | 2010-07-01 | Macromed Inc | 逆熱的ゲル化特性を有する生分解性低分子量トリブロックポリ(ラクチド−co−グリコリド)−ポリエチレングリコールコポリマー |
JP2013505336A (ja) * | 2009-09-18 | 2013-02-14 | プロセリクス メディスンズ ディベロプメント リミテッド | 再構成可能な逆熱ゲル化性ポリマー |
KR20130110776A (ko) * | 2012-03-30 | 2013-10-10 | 에스케이씨 주식회사 | 폴리알킬렌글리콜 폴리락티드 수지 |
KR20130110777A (ko) * | 2012-03-30 | 2013-10-10 | 에스케이씨 주식회사 | 고분자량의 폴리알킬렌글리콜과 락티드의 블록 공중합 폴리락티드 |
WO2014044704A1 (en) * | 2012-09-18 | 2014-03-27 | Corticalis As | Hydrogel coated scaffold |
WO2014133027A1 (ja) * | 2013-02-26 | 2014-09-04 | 株式会社スリー・ディー・マトリックス | ハイドロゲル |
JP2015108160A (ja) * | 2011-02-24 | 2015-06-11 | 東レ株式会社 | ポリ乳酸系フィルム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039483A2 (en) | 2006-09-26 | 2008-04-03 | Massachusetts Institute Of Technology | Modified self-assembling peptides |
KR100952034B1 (ko) | 2008-05-08 | 2010-04-07 | 엘지이노텍 주식회사 | 발광 소자 및 그 제조방법 |
JP2010010327A (ja) | 2008-06-26 | 2010-01-14 | Nisshinbo Holdings Inc | 太陽電池モジュールの検査装置および検査方法 |
JP2011012042A (ja) | 2009-07-03 | 2011-01-20 | Three D Matrix:Kk | 核酸徐放担体 |
US9707322B2 (en) | 2012-12-21 | 2017-07-18 | University Of Connecticut | Gradient porous scaffolds |
-
2016
- 2016-08-23 JP JP2017536444A patent/JP6886402B2/ja active Active
- 2016-08-23 EP EP16839288.4A patent/EP3342795B1/en active Active
- 2016-08-23 US US15/754,393 patent/US10835637B2/en active Active
- 2016-08-23 WO PCT/JP2016/074558 patent/WO2017033941A1/ja active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11513985A (ja) * | 1995-10-25 | 1999-11-30 | マクロメド・インコーポレーテッド | ポリ(エーテル−エステル)ブロックコポリマーを基剤とする感熱生分解性ポリマー |
JPH09157368A (ja) * | 1995-12-01 | 1997-06-17 | Kanebo Ltd | ポリ乳酸−ポリエチレングリコール−ポリ乳酸三元ブロック共重合体の精製方法 |
JP2001513368A (ja) * | 1997-08-06 | 2001-09-04 | フォーカル,インコーポレイテッド | 止血性組織シーラント |
JP2001517603A (ja) * | 1997-08-08 | 2001-10-09 | ユニバーシティ オブ ユタ リサーチ ファウンデイション | 薬物送達における使用のための注射可能な生分解性ブロックコポリマーゲル |
JP2010144178A (ja) * | 1997-10-03 | 2010-07-01 | Macromed Inc | 逆熱的ゲル化特性を有する生分解性低分子量トリブロックポリ(ラクチド−co−グリコリド)−ポリエチレングリコールコポリマー |
KR20020027747A (ko) * | 2000-10-05 | 2002-04-15 | 오석송 | 수용성 생체분해성 고분자 겔 및 그의 제조방법 |
JP2006506335A (ja) * | 2002-07-19 | 2006-02-23 | オメロス コーポレイション | 生分解性トリブロックコポリマー、その合成方法、ならびにそれから作製されるヒドロゲルおよび生体材料 |
JP2004167229A (ja) * | 2002-10-29 | 2004-06-17 | Toray Ind Inc | 血管塞栓材料 |
JP2007512094A (ja) * | 2003-11-20 | 2007-05-17 | アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド | 乳酸のポリマーを含む埋め込み型用具用コーティングおよびこのコーティングの製造方法 |
JP2013505336A (ja) * | 2009-09-18 | 2013-02-14 | プロセリクス メディスンズ ディベロプメント リミテッド | 再構成可能な逆熱ゲル化性ポリマー |
JP2015108160A (ja) * | 2011-02-24 | 2015-06-11 | 東レ株式会社 | ポリ乳酸系フィルム |
KR20130110776A (ko) * | 2012-03-30 | 2013-10-10 | 에스케이씨 주식회사 | 폴리알킬렌글리콜 폴리락티드 수지 |
KR20130110777A (ko) * | 2012-03-30 | 2013-10-10 | 에스케이씨 주식회사 | 고분자량의 폴리알킬렌글리콜과 락티드의 블록 공중합 폴리락티드 |
WO2014044704A1 (en) * | 2012-09-18 | 2014-03-27 | Corticalis As | Hydrogel coated scaffold |
WO2014133027A1 (ja) * | 2013-02-26 | 2014-09-04 | 株式会社スリー・ディー・マトリックス | ハイドロゲル |
Non-Patent Citations (1)
Title |
---|
See also references of EP3342795A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20180250435A1 (en) | 2018-09-06 |
JPWO2017033941A1 (ja) | 2018-07-12 |
EP3342795A1 (en) | 2018-07-04 |
EP3342795B1 (en) | 2023-01-04 |
JP6886402B2 (ja) | 2021-06-16 |
EP3342795A4 (en) | 2019-04-24 |
US10835637B2 (en) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7423677B2 (ja) | アルギネートヒドロゲル組成物 | |
Tran et al. | Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism | |
CN102181060A (zh) | 聚乙烯醇-聚肽-聚乙二醇接枝共聚物及其制备方法 | |
Mostafavi et al. | Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering | |
EP1709098A1 (en) | Polymer for use in conduits, medical devices and biomedical surface modification | |
WO2014138628A1 (en) | Bioadhesive hydrogel | |
WO2020262642A1 (ja) | 化学架橋アルギン酸を用いた移植用デバイス | |
CN105536055A (zh) | 一种形状记忆型高弹性活性纳米纤维支架及其应用 | |
Bu et al. | POSS-modified PEG adhesives for wound closure | |
JP6195335B2 (ja) | 高分子化合物、及びそれを用いた組成物、医療機器 | |
CN114907580A (zh) | 一种可降解的双组份水凝胶及其制备方法与应用 | |
Yu et al. | Miscibility, mechanical characteristic and platelet adhesion of 6-O-carboxymethylchitosan/polyurethane semi-IPN membranes | |
JP2019511997A (ja) | タンパク質−ポリマー・コンジュゲートを含む有機溶媒不含組成物および該組成物の使用 | |
WO2017033941A1 (ja) | 生分解性インジェクタブルゲル | |
EP3219330B1 (en) | Synthesis of nano aggregate of chitosan modified by self-assembling peptide and application thereof to protein delivery | |
WO2014133102A1 (ja) | 抗血栓性材料としての生体親和性ポリマー及びその中間体として有用な環状カーボネート並びにその製造方法 | |
US20230365754A1 (en) | Cross-linkable allylamido polymers | |
JP5119442B2 (ja) | ゲル及び該ゲルからなる医療用材料 | |
KR101409312B1 (ko) | 생체 내 분해기간 조절이 가능한 생체적합성 소장점막하조직 시트, 및 이의 제조방법 | |
JP2014161675A (ja) | 抗血栓性材料としての生体親和性ポリマー | |
WO2023010115A1 (en) | Biomaterials for embolization and drug delivery | |
Finnegan | Novel Functionalised Biodegradable Polymeric Micro-and Nano-structures for Tissue Engineering and Drug Delivery Applications | |
CN117615799A (zh) | 使用全水性制剂的基于纤维的水凝胶的构建和应用 | |
JP2017203062A (ja) | 新規ポリマー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839288 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017536444 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15754393 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016839288 Country of ref document: EP |