WO2017033827A1 - モータ、モータの制御方法、及びモータの制御装置 - Google Patents

モータ、モータの制御方法、及びモータの制御装置 Download PDF

Info

Publication number
WO2017033827A1
WO2017033827A1 PCT/JP2016/074094 JP2016074094W WO2017033827A1 WO 2017033827 A1 WO2017033827 A1 WO 2017033827A1 JP 2016074094 W JP2016074094 W JP 2016074094W WO 2017033827 A1 WO2017033827 A1 WO 2017033827A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
stator
rotor
pair
cores
Prior art date
Application number
PCT/JP2016/074094
Other languages
English (en)
French (fr)
Inventor
暢子 立石
佳朗 竹本
匡史 松田
浩成 鈴木
横山 誠也
茂昌 加藤
一憲 島田
貴宏 土屋
Original Assignee
アスモ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015163697A external-priority patent/JP6477358B2/ja
Priority claimed from JP2015178647A external-priority patent/JP6724319B2/ja
Priority claimed from JP2016156524A external-priority patent/JP6705331B2/ja
Application filed by アスモ 株式会社 filed Critical アスモ 株式会社
Priority to US15/541,139 priority Critical patent/US10826339B2/en
Priority to CN201680003330.3A priority patent/CN107078620B/zh
Priority to DE112016003800.3T priority patent/DE112016003800T5/de
Publication of WO2017033827A1 publication Critical patent/WO2017033827A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention relates to a motor, a motor control method, and a motor control device.
  • a Landell type motor is known (for example, Patent Document 1).
  • This Patent Document 1 includes a stator core having a plurality of claw-shaped magnetic poles arranged in the circumferential direction in addition to the Landel rotor, and an annular winding included in the stator core.
  • a Landel motor having a Landel-type stator that causes the magnetic poles to alternately function as different magnetic poles is disclosed.
  • This Landell type motor is also called a multi-Landel type motor because the rotor (rotor) and the stator (stator) are both of the Landel type.
  • the Landel-type stator has a plurality of Landel-type stator portions arranged in the axial direction in the motor housing. Each stator portion includes a pair of stator cores.
  • the stator portions are not directly stacked, but a gap is provided by interposing an insulating member such as a spacer therebetween.
  • an insulating member such as a spacer
  • each of the rotor parts has a permanent magnet.
  • a sensor for detecting the magnetic flux of the permanent magnet of the rotor is provided so as to face the axial end of the rotor in order to detect the rotation angle of the rotor. In this case, there is a problem that the sensor is greatly affected by the magnetic flux from the stator, and it is difficult to detect the magnetic flux of the permanent magnet with high accuracy (in a form close to a sine wave).
  • a first object of the present invention is to provide a motor, a motor control method, and a motor control device capable of improving torque and output.
  • a second object of the present invention is to provide a motor capable of suppressing magnetic interference between stator portions while suppressing an increase in the number of parts.
  • a third object of the present invention is to provide a motor capable of accurately detecting the magnetic flux of the permanent magnet of the rotor.
  • the motor according to the first aspect of the present invention includes a two-layer rotor, a two-layer stator, and a control unit.
  • the two-layer rotor includes an A-phase rotor and a B-phase rotor that are stacked on each other.
  • the A-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the B-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the two-layer stator includes an A-phase stator and a B-phase stator that are stacked on each other.
  • the A-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and an A-phase winding arranged between the pair of stator cores.
  • the B-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a B-phase winding arranged between the pair of stator cores.
  • the control unit controls an A-phase input voltage applied to the A-phase winding and a B-phase input voltage applied to the B-phase winding.
  • the relative arrangement angle between the A-phase stator and the A-phase rotor and the B-phase stator and the B-phase rotor is set to 90 degrees in electrical angle.
  • the control unit gives an advance phase angle to the basic voltage waveforms of the A-phase input voltage and the B-phase input voltage, and sets the energization width to 180 degrees or less.
  • the motor includes a two-layer rotor, a two-layer stator, and a control unit.
  • the two-layer rotor includes an A-phase rotor and a B-phase rotor that are stacked on each other.
  • the A-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the B-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the two-layer stator includes an A-phase stator and a B-phase stator that are stacked on each other.
  • the A-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and an A-phase winding arranged between the pair of stator cores.
  • the B-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a B-phase winding arranged between the pair of stator cores.
  • the relative arrangement angle between the A-phase stator and the A-phase rotor and the B-phase stator and the B-phase rotor is set to 90 degrees in electrical angle.
  • the motor control method includes applying an A phase input voltage to the A phase winding and applying a B phase input voltage to the B phase winding.
  • the motor control method further sets a lead-side phase angle of 24 to 42 degrees with respect to the basic voltage waveforms of the A-phase input voltage and the B-phase input voltage, and energizes 150 to 170 degrees, respectively. Setting the width.
  • the motor includes a two-layer rotor, a two-layer stator, and a control unit.
  • the two-layer rotor includes an A-phase rotor and a B-phase rotor that are stacked on each other.
  • the A-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the B-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the two-layer stator includes an A-phase stator and a B-phase stator that are stacked on each other.
  • the A-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and an A-phase winding arranged between the pair of stator cores.
  • the B-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a B-phase winding arranged between the pair of stator cores.
  • the relative arrangement angle between the A-phase stator and the A-phase rotor and the B-phase stator and the B-phase rotor is set to 90 degrees in electrical angle.
  • the motor control method includes applying an A phase input voltage to the A phase winding and applying a B phase input voltage to the B phase winding.
  • the motor control method further sets a leading phase angle of 0 to 36 degrees (not including 0) for each of the basic voltage waveforms of the A-phase input voltage and the B-phase input voltage, Including setting an energization width of 155 to 180 degrees.
  • the motor includes a two-layer rotor, a two-layer stator, and a control unit.
  • the two-layer rotor includes an A-phase rotor and a B-phase rotor that are stacked on each other.
  • the A-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the B-phase rotor includes a pair of rotor cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a field magnet arranged between the pair of rotor cores.
  • the two-layer stator includes an A-phase stator and a B-phase stator that are stacked on each other.
  • the A-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and an A-phase winding arranged between the pair of stator cores.
  • the B-phase stator includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged at equiangular intervals, and a B-phase winding arranged between the pair of stator cores.
  • the relative arrangement angle between the A-phase stator and the A-phase rotor and the B-phase stator and the B-phase rotor is set to 90 degrees in electrical angle.
  • the motor control method includes applying an A phase input voltage to the A phase winding and applying a B phase input voltage to the B phase winding.
  • the motor control method further sets a leading phase angle of 24 to 36 degrees for the basic voltage waveforms of the A phase input voltage and the B phase input voltage, and energizes 155 to 170 degrees, respectively. Setting the width.
  • a motor includes a stator and a housing that houses the stator.
  • the stator includes two stator portions arranged in the axial direction.
  • Each of the stator portions includes a pair of stator cores each having a plurality of claw-shaped magnetic poles arranged along the circumferential direction, and windings positioned between the pair of stator cores in the axial direction.
  • the housing includes a first case and a second case assembled together. One stator portion is fixed to the first case. The other stator part is fixed to the second case. In a state where the first and second cases are assembled to each other, a gap is provided between the two stator portions in the axial direction.
  • a motor includes a stator, a rotor, and a sensor.
  • the stator has a plurality of stator portions arranged in the axial direction.
  • Each of the stator portions has a first stator core, a second stator core, and a winding provided between the first and second stator cores.
  • Each of the first stator core and the second stator core has a claw-shaped magnetic pole.
  • the claw-shaped magnetic pole has a radially extending portion extending in the radial direction and a magnetic pole portion extending in the axial direction from the tip of the radially extending portion.
  • the rotor has a plurality of rotor portions arranged in the axial direction. The number of the rotor parts and the number of the stator parts is the same.
  • the rotor part has a permanent magnet facing the magnetic pole part.
  • the sensor is provided between the permanent magnets in the axial direction, and detects a magnetic flux of the permanent magnet.
  • FIG. 1 is a perspective view of a motor according to a first embodiment of the present invention.
  • the disassembled perspective view of the motor of FIG. 1 which cut
  • FIG. 2 is a drive control circuit diagram of the motor of FIG. 1.
  • (A) is a basic voltage waveform diagram of the input voltage
  • (b) is a waveform diagram in which the phase angle of (a) is changed
  • (c) is a waveform diagram in which the phase angle and energization width of (b) are changed.
  • FIG. 8 is a perspective view showing a part of the rotor of FIG. 7 and the cut stator. The perspective view of the 1st and 2nd stator unit of FIG. The top view for demonstrating the assembly
  • FIG. 13 is a partially exploded perspective view of the motor of FIG. 12.
  • FIG. 13 is a partial cross-sectional view of the motor of FIG. 12.
  • the perspective view of the drive circuit board of FIG. The top view of the connection terminal of FIG.
  • FIG. 1 is an overall perspective view of a motor M of this embodiment, and a rotor 2 is fixed to a rotating shaft 1.
  • a stator 3 fixed to a motor housing (not shown) is disposed outside the rotor 2.
  • the motor M is a two-layer, two-phase multi-Landel motor in which a multi-Landel type A-phase motor Ma and a multi-Landel type B-phase motor Mb are sequentially stacked from the top.
  • the A-phase motor Ma and the B-phase motor Mb are each configured as a multi-Landel type single motor.
  • the rotor 2 of the motor M is a two-layer, two-phase rotor in which an A-phase rotor 2 a and a B-phase rotor 2 b having a Landell structure are stacked.
  • the A-phase rotor 2a and the B-phase rotor 2b have the same configuration, and include a first rotor core 10, a second rotor core 20, and a field magnet 30, respectively.
  • the first rotor core 10 is made of an electromagnetic steel plate and has a first rotor core base 11 having an annular shape. At the center position of the first rotor core base 11, a through hole 12 for externally fixing and fixing the first rotor core base 11 to the rotary shaft 1 is formed.
  • a through hole 12 for externally fixing and fixing the first rotor core base 11 to the rotary shaft 1 is formed.
  • eight identically-shaped first rotor-side claw-shaped magnetic poles 13 protruding outward in the radial direction are provided at equal angular intervals. The tips of the first rotor-side claw-shaped magnetic poles 13 are bent toward the second rotor core 20 in the axial direction.
  • first rotor side claw-shaped magnetic pole 13 a portion protruding radially outward from the outer peripheral surface 11 a of the first rotor core base 11 is a first rotor side base portion 13 x, and a tip portion bent in the axial direction is a first rotor side magnetic pole. Part 13y.
  • the shape of the first rotor side base 13x when viewed from the axial direction has a trapezoidal shape that becomes narrower toward the outside in the radial direction.
  • the shape of the first rotor-side magnetic pole portion 13y when viewed from the radial direction is rectangular.
  • the shape of the first rotor-side magnetic pole portion 13 y when viewed from the axial direction is an arc shape along a circumference centered on the central axis O of the rotating shaft 1.
  • the circumferential angle range of each first rotor-side claw-shaped magnetic pole 13 is set to be smaller than the angular range of the gap between the adjacent first rotor-side claw-shaped magnetic poles 13.
  • the second rotor core 20 has a second rotor core base 21 having the same material and shape as the first rotor core 10 and having an annular shape.
  • a through hole 22 is formed at the center position of the second rotor core base 21 for externally fitting and fixing the second rotor core base 21 to the rotary shaft 1.
  • eight identically-shaped second rotor-side claw-shaped magnetic poles 23 protruding outward in the radial direction are provided at equal angular intervals. Each tip of the second rotor-side claw-shaped magnetic pole 23 is bent toward the first rotor core 10 in the axial direction.
  • a portion protruding radially outward from the outer peripheral surface 21a of the second rotor core base 21 is a second rotor-side base portion 23x, and a tip portion bent in the axial direction is a second rotor-side magnetic pole.
  • the shape of the second rotor side base 23x when viewed from the axial direction has a trapezoidal shape that becomes narrower as it goes radially outward.
  • the shape of the second rotor-side magnetic pole portion 23y when viewed from the radial direction is a rectangular shape.
  • the shape of the second rotor-side magnetic pole portion 23 y when viewed from the axial direction is an arc shape along the circumference centered on the central axis O of the rotating shaft 1. Further, the circumferential angle range of each second rotor-side claw-shaped magnetic pole 23 is set smaller than the angular range of the gap between the adjacent second rotor-side claw-shaped magnetic poles 23.
  • the second rotor core 20 and the first rotor core 10 are formed so that each of the second rotor side claw-shaped magnetic poles 23 of the second rotor core 20 is between the first rotor side claw-shaped magnetic poles 13 of the first rotor core 10 when viewed from the axial direction. It is fixed so that it is located in At this time, the second rotor core 20 and the first rotor core 10 are assembled such that the field magnet 30 is disposed between the rotor core bases 11 and 21 in the axial direction. In this assembled state, the tip surface of the first rotor-side claw-shaped magnetic pole 13 is the outer surface in the axial direction of the second rotor core base 21 (the surface opposite to the surface facing the field magnet 30 of the second rotor core base 21).
  • the front end surface of the second rotor-side claw-shaped magnetic pole 23 is the outer surface in the axial direction of the first rotor core base 11 (the surface opposite to the surface facing the field magnet 30 of the first rotor core base 11). It will be the same.
  • the field magnet 30 is an annular plate-shaped permanent magnet made of a sintered ferrite magnet or the like.
  • the field magnet 30 has a through hole 32 that penetrates the rotating shaft 1 at the center position.
  • the field magnet 30 is disposed between the first and second rotor core bases 11 and 21 such that one side surface of the field magnet 30 contacts the first rotor core base 11 and the other side surface contacts the second rotor core base 21. It is clamped and fixed to.
  • the outer diameter of the field magnet 30 is set to coincide with the outer diameters of the first and second rotor core bases 11 and 21.
  • the field magnet 30 is magnetized in the axial direction, and is magnetized so that the first rotor core 10 has an N pole and the second rotor core 20 has an S pole. Therefore, by this field magnet 30, the first rotor side claw-shaped magnetic pole 13 of the first rotor core 10 functions as an N pole, and the second rotor side claw-shaped magnetic pole 23 of the second rotor core 20 functions as an S pole.
  • each of the A-phase rotor 2a and the B-phase rotor 2b composed of the first and second rotor cores 10 and 20 and the field magnet 30 is a so-called Landel-type rotor.
  • the first rotor-side claw-shaped magnetic poles 13 that are N poles and the second rotor-side claw-shaped magnetic poles 23 that are S poles are alternately arranged in the circumferential direction.
  • the A-phase rotor 2a and the B-phase rotor 2b are stacked in the axial direction and configured as a two-layer, two-phase Landell-type rotor 2.
  • the A-phase rotor 2a and the B-phase rotor 2b are laminated with the second rotor cores 20 in contact with each other.
  • the second rotor-side claw-shaped magnetic pole 23 (first rotor-side claw-shaped magnetic pole 13) of the B-phase rotor 2b with respect to the second rotor-side claw-shaped magnetic pole 23 (first rotor-side claw-shaped magnetic pole 13) of the A-phase rotor 2a. ) Are stacked while being shifted counterclockwise by an electrical angle ⁇ 2 (45 degrees).
  • stator 3 disposed on the outer side in the radial direction of the rotor 2 is a two-layer two-phase stator in which an A-phase stator 3 a and a B-phase stator 3 b having a Landell structure are stacked.
  • the A-phase stator 3a and the B-phase stator 3b are laminated in the axial direction so as to face the corresponding A-phase rotor 2a and B-phase rotor 2b on the radially inner side.
  • the A-phase stator 3a and the B-phase stator 3b have the same configuration, and include a first stator core 40, a second stator core 50, and a coil portion 60, respectively.
  • the first stator core 40 is made of an electromagnetic steel plate and has a first stator core base 41 having an annular shape.
  • a first stator side cylindrical outer wall 42 extending in a cylindrical shape in the axial direction is formed on the radially outer portion of the first stator core base 41.
  • eight identical first stator side claw-shaped magnetic poles 43 that protrude radially inward are provided at equal angular intervals. The tips of the first stator side claw-shaped magnetic poles 43 are bent toward the second stator core 50 in the axial direction.
  • first stator side claw-shaped magnetic pole 43 a portion protruding radially inward from the inner peripheral surface 41a of the first stator core base 41 is a first stator side base portion 43x, and a tip portion bent in the axial direction is the first stator side. Let it be a magnetic pole part 43y.
  • the shape when the first stator side base portion 43x is viewed from the axial direction has a trapezoidal shape that becomes narrower as it goes radially inward.
  • the shape of the first stator side magnetic pole part 43y when viewed from the radial direction is a rectangular shape.
  • the shape of the first stator side magnetic pole portion 43 y when viewed from the axial direction is an arc shape along a circumference centering on the central axis O of the rotating shaft 1. Further, the circumferential angle range of each first stator side claw-shaped magnetic pole 43 is set smaller than the angular range of the gap between the adjacent first stator side claw-shaped magnetic poles 43.
  • the second stator core 50 has a second stator core base 51 having the same material and shape as the first stator core 40 and having an annular shape.
  • a second stator side cylindrical outer wall 52 extending in a cylindrical shape in the axial direction is formed on the radially outer portion of the second stator core base 51.
  • the second stator side cylindrical outer wall 52 and the first stator side cylindrical outer wall 42 are in contact with each other in the axial direction.
  • eight identically shaped second stator side claw-shaped magnetic poles 53 that protrude radially inward are provided at equal angular intervals. The tips of the second stator side claw-shaped magnetic poles 53 are bent toward the first stator core 40 in the axial direction.
  • a portion protruding radially inward from the inner peripheral surface 51a of the second stator core base 51 is a second stator side base portion 53x, and a tip portion bent in the axial direction is the second stator side.
  • the magnetic pole part 53y is used.
  • the shape when the second stator side base 53x is viewed from the axial direction has a trapezoidal shape that becomes narrower inward in the radial direction.
  • the shape of the second stator side magnetic pole portion 53y when viewed from the radial direction is rectangular.
  • the shape of the second stator side magnetic pole portion 53 y when viewed from the axial direction is an arc shape along the circumference centering on the central axis O of the rotating shaft 1.
  • the circumferential angle range of each second stator side claw-shaped magnetic pole 53 is set smaller than the angular range of the gap between the adjacent second stator side claw-shaped magnetic poles 53.
  • the second stator core 50 and the first stator core 40 abut the first stator side cylindrical outer wall 42 and the second stator side cylindrical outer wall 52, and when viewed from the axial direction, the second stator core 50 of the second stator core 50.
  • the side claw-shaped magnetic poles 53 are arranged and fixed so as to be positioned between the first stator-side claw-shaped magnetic poles 43 of the first stator core 40.
  • the first and second stator core bases 41 and 51, the first and second stator side cylindrical outer walls 42 and 52, and the first and second stator side claw-shaped magnetic poles 43 and 53 have an annular shape with a rectangular cross section. A space is formed.
  • the first stator core 40 and the second stator core 50 are assembled so that the coil portion 60 is disposed in this space.
  • the tip surface of the first stator side claw-shaped magnetic pole 43 is the axially outer surface of the second stator core base 51 (the surface opposite to the surface facing the coil portion 60 of the second stator core base 51).
  • the tip surface of the second stator side claw-shaped magnetic pole 53 is flush with the axially outer side surface of the first stator core base 41 (the surface opposite to the surface facing the coil portion 60 of the first stator core base 41). It becomes.
  • the coil unit 60 includes an annular winding 61 and a coil insulating layer 62 made of a resin mold that covers the periphery of the annular winding 61.
  • the coil unit 60 includes inner surfaces of the first and second stator core bases 41 and 51, inner surfaces of the first and second stator side cylindrical outer walls 42 and 52, and first and second stator side claw-shaped magnetic poles 43, It is accommodated in an annular space defined by the inner side surfaces so as to abut on the inner side surfaces of 53.
  • each of the A-phase stator 3a and the B-phase stator 3b constituted by the first and second stator cores 40, 50 and the coil portion 60 is a so-called Landel type stator.
  • the annular winding 61 between the first and second stator cores 40 and 50 excites the first and second stator side claw-shaped magnetic poles 43 and 53 to different magnetic poles from time to time.
  • the A-phase stator 3a and the B-phase stator 3b are 16-pole so-called Landel type stators.
  • the A-phase stator 3a and the B-phase stator 3b are stacked in the axial direction and configured as a two-layer, two-phase Landell-type stator 3.
  • the A-phase stator 3a and the B-phase stator 3b are laminated with the second stator cores 50 in contact with each other. Further, the first stator side claw-shaped magnetic pole 43 (second stator side claw-shaped magnetic pole 53) of the B-phase stator 3b is opposed to the first stator side claw-shaped magnetic pole 43 (second stator side claw-shaped magnetic pole 53) of the A-phase stator 3a. ) Are stacked with an electrical angle ⁇ 1 (45 degrees) shifted in the clockwise direction.
  • the deviation direction of the A-phase and B-phase stators 3a, 3b of the stator 3 and the deviation direction of the A-phase and B-phase rotors 2a, 2b of the rotor 2 are opposite to each other.
  • the A-phase and B-phase stators 3a and 3b of the stator 3 and the A-phase and B-phase rotors 2a and 2b of the rotor 2 are shifted by 90 degrees (electrical angle ⁇ 1 +
  • the A-phase input voltage va of the two-phase AC power supply is applied to the coil portion 60 (annular winding 61) of the A-phase stator 3a, and the coil portion 60 (annular winding 61) of the B-phase stator 3b is applied to the coil portion 60 (annular winding 61).
  • a B-phase input voltage vb of the two-phase AC power supply is applied.
  • the drive control circuit 70 as a control unit includes an A-phase drive circuit unit 71, a B-phase drive circuit unit 72, and a control circuit 73 that drives and controls both the drive circuit units 71 and 72. ing.
  • the A-phase drive circuit unit 71 is configured by a full bridge circuit using four MOS transistors Qa1, Qa2, Qa3, and Qa4.
  • the four MOS transistors Qa1 to Qa4 are composed of a pair of MOS transistors Qa1 and Qa4 connected in a hanging manner with the annular winding 61 (hereinafter referred to as A-phase annular winding 61a) of the A-phase stator 3a interposed therebetween. It is divided into a set of Qa2 and Qa3.
  • the A-phase input voltage is supplied from the DC power supply G of, for example, 12 volts supplied to the A-phase drive circuit unit 71. Va is generated and applied to the A-phase annular winding 61a.
  • the B-phase drive circuit unit 72 is configured by a full bridge circuit that similarly uses four MOS transistors Qb1, Qb2, Qb3, and Qb4.
  • the four MOS transistors Qb1 to Qb4 are composed of a pair of MOS transistors Qb1 and Qb4 connected in a hanging manner with the annular winding 61 of the B-phase stator 3b (hereinafter referred to as B-phase annular winding 61b) sandwiched between the MOS transistors It is divided into a set of Qb2 and Qb3.
  • Control circuit 73 The control circuit 73 generates drive signals Sa1 to Sa4 to be output to the gate terminals of the MOS transistors Qa1 to Qa4 of the A phase drive circuit unit 71, respectively. That is, the control circuit 73 alternately turns on / off the set of the MOS transistors Qa1, Qa4 and the set of the MOS transistors Qa2, Qa3, and supplies the drive signals Sa1 to Sa4 for controlling the energization of the A-phase annular winding 61a. Is generated.
  • control circuit 73 generates drive signals Sb1 to Sb4 to be output to the gate terminals of the MOS transistors Qb1 to Qb4 of the B-phase drive circuit unit 72, respectively. That is, the control circuit 73 alternately turns on and off the set of the MOS transistors Qb1 and Qb4 and the set of the MOS transistors Qb2 and Qb3 to control the drive signals Sb1 to Sb4 for controlling the energization of the B-phase annular winding 61b. Is generated.
  • FIG. 5A basic voltage waveforms ⁇ of the A-phase and B-phase input voltages va and vb to be applied to the A-phase and B-phase annular windings 61a and 61b are shown.
  • the phase difference between the A-phase and B-phase input voltages va and vb is set to 90 degrees.
  • the energization width ⁇ w of each polarity on the positive side and the negative side of the basic voltage waveform ⁇ of the A-phase and B-phase input voltages va and vb is 180 degrees.
  • the inventor changed the phase from the basic voltage waveform ⁇ of the A-phase and B-phase input voltages va and vb to the leading side (setting of the phase angle ⁇ d), and accordingly changed the energization width ⁇ w from 180 degrees. Changes in torque and output (torque, rotation speed) of the motor M were examined.
  • the voltage waveform shown in FIG. 5B is a first voltage waveform ⁇ in which only the leading phase angle ⁇ d is set with respect to the basic voltage waveform ⁇ of the A-phase and B-phase input voltages va and vb.
  • the voltage waveform shown in FIG. 5C sets the lead-side phase angle ⁇ d with respect to the basic voltage waveform ⁇ of the A-phase and B-phase input voltages va and vb, and accordingly, the energization width ⁇ w is set to 180.
  • the energization width ⁇ w is changed to a symmetrical shape at the center position so that the rising edge and the falling edge are changed equally with respect to the center position.
  • 6 (a) and 6 (b) show changes in the phase angle ⁇ d and energization width ⁇ w with respect to the basic voltage waveform ⁇ of the A-phase and B-phase input voltages va and vb, and changes in the output and torque of the motor M. Show.
  • FIG. 6 (a) shows that the energization width ⁇ w is in the range of 120 to 180 degrees when the phase angle ⁇ d is 0 degrees (basic voltage waveform ⁇ ), 12 degrees, 24 degrees, 36 degrees, and 42 degrees.
  • the output value when the phase angle ⁇ d is greater than 0 degrees and the energization width ⁇ w is set to 180 degrees or less is that the phase angle ⁇ d is 0 degrees and the energization width ⁇ w is 180 degrees. That is, it exceeds the first reference value X1, which is the output value for the basic voltage waveform ⁇ .
  • the output of the motor M becomes the maximum value when the conduction width ⁇ w is around 140 degrees.
  • the range of the phase angle ⁇ d and the conduction width ⁇ w that exceeds the second reference value X2 is such that the conduction width ⁇ w is 125 to 165 when the phase angle ⁇ d is 12 degrees.
  • the maximum value of the output is when the energization width ⁇ w is around 150 ⁇ 5 degrees.
  • the energization width ⁇ w is 125 to 175 degrees and the output exceeds the second reference value X2, and the maximum output is when the energization width ⁇ w is around 155 ⁇ 5 degrees.
  • the energization width ⁇ w is 125 to 180 degrees and the output exceeds the second reference value X2, and the maximum output value is that the energization width ⁇ w is around 160 ⁇ 5 degrees.
  • the energization width ⁇ w is 130 to 180 degrees and the output exceeds the second reference value X2, and the maximum output is when the energization width ⁇ w is around 160 ⁇ 5 degrees. At least in the range where the phase angle ⁇ d is 0 degree to 42 degrees, the maximum value of the output of the motor M is large.
  • the advance-side phase angle ⁇ d with respect to the basic voltage waveform ⁇ is larger than 0 degree and the energization width ⁇ w is 180 degrees or less. Then, it is possible to improve the output of the motor M. Furthermore, if the lead-side phase angle ⁇ d with respect to the basic voltage waveform ⁇ is 24 to 42 degrees and the energization width ⁇ w is 150 to 170 degrees, the output of the motor M can be improved more reliably.
  • phase angle ⁇ d is 0 degree (basic voltage waveform ⁇ ), 12 degrees, 24 degrees, 36 degrees, and 42 degrees, and the conduction width ⁇ w is in the range of 120 to 180 degrees every 10 degrees.
  • 6 is a graph showing the torque change of the motor M when changed to.
  • the torque when the phase angle ⁇ d is larger than 0 degree and the conduction width ⁇ w is set to 180 degrees or less is obtained when the phase angle ⁇ d is 0 degree and the conduction width ⁇ w is 180 degrees. That is, it exceeds the reference value Y, which is the torque at the basic voltage waveform ⁇ .
  • the torque of the motor M gradually increases when the conduction width ⁇ w is reduced from 180 degrees to 120 degrees.
  • the torque of the motor M gradually decreases as the energization width ⁇ w is increased from 120 degrees to 180 degrees.
  • the range of the phase angle ⁇ d and the conduction width ⁇ w exceeding this range is such that the conduction width ⁇ w is 135 to 180 when the phase angle ⁇ d is 12 degrees. Degree.
  • the energization width ⁇ w is 145 to 180 degrees, and the torque exceeds the reference curve Z. Further, when the phase angle ⁇ d is 36 degrees, the energization width ⁇ w is 155 to 180 degrees, and the torque exceeds the reference curve Z. When the phase angle ⁇ d is 42 degrees, the energization width ⁇ w is 160 to 180 degrees, and the torque exceeds the reference curve Z.
  • the energization width ⁇ w that more reliably exceeds the reference curve Z is 160 to 180 degrees.
  • the torque when the phase angle ⁇ d is 42 degrees is generally lower than the torque when the phase angle ⁇ d is 36 degrees, when the phase angle ⁇ d is set without including 42 degrees, the reference is more reliably established.
  • the energization width ⁇ w exceeding the curve Z is 155 to 180 degrees.
  • the advance-side phase angle ⁇ d with respect to the basic voltage waveform ⁇ is larger than 0 degree and the energization width ⁇ w is 180 degrees or less. By doing so, it is possible to improve the torque of the motor M. Furthermore, if the lead-side phase angle ⁇ d with respect to the basic voltage waveform ⁇ is 0 to 42 degrees (not including 0) and the energization width ⁇ w is 160 to 180 degrees, the torque of the motor M can be improved more reliably. It is. Further, if the phase angle ⁇ d excluding 42 degrees is 0 to 36 degrees (not including 0) and the energization width ⁇ w is 155 to 180 degrees, the torque of the motor M can be improved more reliably. .
  • the phase angle ⁇ d is set to 24 to 36 degrees and the conduction width ⁇ w is set to 155 to 170 degrees. It is preferable to do this.
  • the phase angle ⁇ d is set to 0 degree and the conduction width ⁇ w is set to 180 degrees (basic voltage waveform ⁇ )
  • the falling of the current is delayed with respect to the induced voltage generated in the coil unit 60 of the motor M, so that the induced voltage is reduced.
  • the sign and the sign of the current are reversed, and negative torque (negative torque) is generated.
  • the energization width ⁇ w is set to 155 to 170 degrees, a non-energization section is provided when the polarities of the first and second stator side claw-shaped magnetic poles 43 and 53 are switched, and the fall of the current is completed during that period.
  • the period in which the sign of the induced voltage and the sign of the current are reversed is shortened, and the occurrence of negative torque is suppressed.
  • the energization width ⁇ w to 155 to 170 degrees, energization can be performed only in a range effective for the magnetic attractive force between the rotor 2 and the stator 3.
  • the phase angle ⁇ d on the advance side is set to 24 to 36 degrees, the rise of the current is advanced, and the generation of negative torque due to the delay of the fall of the current is suppressed.
  • the energization width ⁇ w and the phase angle ⁇ d are set to appropriate values, the generation of minus torque is suppressed, leading to an improvement in the output and torque of the motor M.
  • the A-phase and B-phase input voltages va and vb having the phase angle ⁇ d and the energization width ⁇ w within the above range are generated, and the motor M is driven to rotate.
  • A-phase and B-phase input voltages va, vb are applied to the A-phase and B-phase annular windings 61a, 61b. If the lead-side phase angle ⁇ d is set to be greater than 0 degrees and the energization width ⁇ w is set to 180 degrees or less with respect to the basic voltage waveforms ⁇ of the A-phase and B-phase input voltages va and vb (FIG. 6A) b)), the output of the motor M and the torque can be improved.
  • A-phase and B-phase input voltages va and vb are applied to the A-phase and B-phase annular windings 61a and 61b. If the lead-side phase angle ⁇ d is set to 24 to 42 degrees and the conduction width ⁇ w is set to 150 to 170 degrees with respect to the basic voltage waveforms ⁇ of the A-phase and B-phase input voltages va and vb (FIG. 6A). Reference), the output of the motor M can be improved more reliably.
  • Advancing side phase angle ⁇ d is 0 to 36 degrees (not including 0) with respect to basic voltage waveform ⁇ of A phase and B phase input voltages va and vb, and energization width ⁇ w is 155 to 180 degrees. If set (see FIG. 6B), the torque of the motor M can be improved more reliably.
  • phase angle ⁇ d on the leading side is set to 24 to 36 degrees and the conduction width ⁇ w is set to 155 to 170 degrees (FIG. (See (a) and (b)), it is possible to achieve both improvement in output of the motor M and improvement in torque.
  • the first embodiment may be modified as follows.
  • the combination of the setting of the phase angle ⁇ d and the energization width ⁇ w on the leading side of the A-phase and B-phase input voltages va and vb may be appropriately changed within a range where the output of the motor M and the torque can be improved.
  • stator cores 40 and 50 and the rotor cores 10 and 20 are both made of electromagnetic steel plates.
  • powder magnetic core materials formed by compression molding may be used.
  • the stator cores 40 and 50 and the rotor cores 10 and 20 are made by heat-pressing a mixture of a magnetic powder such as iron powder and an insulating material such as a resin using a mold.
  • the degree of freedom in designing the stator cores 40 and 50 and the rotor cores 10 and 20 becomes high, and the manufacturing process becomes very simple.
  • the amount of suppression of eddy current can be easily adjusted by adjusting the distribution amount of magnetic powder and an insulator.
  • the motor 110 is a brushless motor, and includes a housing 111, a stator 112 and a rotor 113 housed in the housing 111.
  • the housing 111 includes a pair of cases (a first case and a second case) 114a and 114b having a bottomed cylindrical shape.
  • Each case 114a, 114b has substantially the same shape as each other, and includes a disc-shaped bottom 115, a cylindrical side wall 116 extending from the outer periphery of the bottom 115, and a side wall 116 opposite to the bottom 115.
  • a flange portion 117 extending radially outward from the end portion (opening side end portion).
  • the flange portion 117 has a flat plate shape orthogonal to the axial direction of the motor 110.
  • the bottom part 115 and the side wall part constitute a case main body part of each case 114a, 114b.
  • Each case 114a, 114b constitutes the housing 111 by being fixed with screws 118 in a state where the flange portions 117 are in contact with each other in the axial direction.
  • a bearing 119a that pivotally supports the rotating shaft 119 of the rotor 113 is provided at the center of the bottom 115 of each case 114a, 114b.
  • the rotor 113 includes a rotating shaft 119, and an A-phase rotor portion 120a and a B-phase rotor portion 120b that are configured to rotate integrally with the rotating shaft 119.
  • the A-phase rotor portion 120a and the B-phase rotor portion 120b are arranged side by side in the axial direction. Further, both the A-phase rotor portion 120a and the B-phase rotor portion 120b have a Landel structure, and have the same configuration and the same shape.
  • Each of the A-phase rotor portion 120a and the B-phase rotor portion 120b has an annular shape centered on the axis L of the rotation shaft 119.
  • each of the A-phase rotor portion 120a and the B-phase rotor portion 120b includes a pair of rotor cores (first rotor core 121 and second rotor core 122) having the same shape, and the pair of rotor cores 121 and 122. And a field magnet 123 disposed therebetween.
  • Each of the rotor cores 121 and 122 includes a core base 124 having an annular plate shape, and a plurality of (four in this embodiment) claw-shaped magnetic poles 125 extending radially outward from the outer peripheral edge of the core base 124.
  • the claw-shaped magnetic poles 125 have the same shape as each other, and extend from the outer peripheral edge of the core base 124 in the radial direction outwardly in the radial direction, and from the distal end portion (radial outer end portion) of the radial extension portion 125a.
  • the magnetic pole portion 125b extends in the axial direction.
  • the claw-shaped magnetic poles 125 are provided at equal intervals (90-degree intervals) in the circumferential direction.
  • the first and second rotor cores 121 and 122 configured as described above are assembled such that their claw-shaped magnetic poles 125 (magnetic pole portions 125b) face in opposite directions in the axial direction.
  • the magnetic pole portions 125b of the first rotor core 121 and the magnetic pole portions 125b of the second rotor core 122 are alternately arranged at equal intervals in the circumferential direction.
  • the field magnet 123 is interposed between the axial directions of the first and second rotor cores 121 and 122.
  • the field magnet 123 is an annular plate-shaped permanent magnet made of, for example, a ferrite sintered magnet.
  • the field magnet 123 is disposed between the pair of core bases 124 of the first and second rotor cores 121 and 122 in the axial direction.
  • the field magnet 123 is magnetized in the axial direction so that the first rotor core 121 has an N pole and the second rotor core 122 has an S pole. Therefore, as shown in FIG. 8, the claw-shaped magnetic pole 125 of the first rotor core 121 functions as an N pole, and the claw-shaped magnetic pole 125 of the second rotor core 122 functions as an S pole. ing.
  • the first and second rotor cores 121 and 122, and the A-phase rotor portion 120 a and the B-phase rotor portion 120 b configured by the field magnet 123 have a so-called Landell-type structure using the field magnet 123. Composed.
  • the claw-shaped magnetic pole 125 of the first rotor core 121 that is the N pole and the claw-shaped magnetic pole 125 of the second rotor core 122 that is the S pole are alternately arranged in the circumferential direction.
  • the number of magnetic poles is 8 and the number of pole pairs is 4.
  • the A-phase rotor portion 120a and the B-phase rotor portion 120b configured as described above are arranged side by side in the axial direction to form a two-phase Landel-type rotor 113.
  • the arrangement angle of the B-phase rotor portion 120b with respect to the A-phase rotor portion 120a is configured to deviate by a predetermined angle in the clockwise direction when viewed from the A-phase side in the axial direction. That is, the claw-shaped magnetic pole 125 of the B-phase rotor portion 120b is configured to be shifted by a predetermined angle in the clockwise direction with respect to the claw-shaped magnetic pole 125 of the A-phase rotor portion 120a.
  • the deviation angle of the B-phase rotor portion 120b in the clockwise direction is set to, for example, 45 degrees in electrical angle (11.25 degrees in mechanical angle).
  • the stator 112 includes an A-phase stator portion 130 a and a B-phase stator portion 130 b that are arranged in the axial direction in the housing 111. Both the A-phase stator portion 130a and the B-phase stator portion 130b have a Landel structure and have the same configuration and the same shape. Each of the A-phase stator portion 130a and the B-phase stator portion 130b has an annular shape centered on the axis L of the rotation shaft 119. The A-phase stator portion 130a and the B-phase stator portion 130b are arranged on the outer peripheral sides of the A-phase rotor portion 120a and the B-phase rotor portion 120b, respectively.
  • each of the A-phase stator portion 130a and the B-phase stator portion 130b includes a pair of stator cores (first stator core 131 and second stator core 132) having the same shape, and the pair of stator cores 131 and 132. And a winding 133 disposed between the two.
  • Each of the stator cores 131 and 132 has an outer peripheral wall portion 134 having a cylindrical shape centered on the axis L. At one end in the axial direction of the outer peripheral wall portion 134, an inner extending portion 134 a that is bent at a substantially right angle and extends radially inward is formed over the entire circumference of the outer peripheral wall portion 134.
  • each stator core 131, 132 has a plurality of (four in this embodiment) claw-shaped magnetic poles 135 that extend radially inward from the inner extension 134a.
  • Each claw-shaped magnetic pole 135 has the same shape as each other, a radially extending portion 135a extending radially inward from the inner peripheral edge of the inner extending portion 134a, and a distal end portion (radially outer end) of the radially extending portion 135a.
  • Part) and a magnetic pole part 135b extending in the axial direction.
  • the claw-shaped magnetic poles 135 are provided at equal intervals (90-degree intervals) in the circumferential direction.
  • the first and second stator cores 131 and 132 configured as described above are assembled so that their claw-shaped magnetic poles 135 (magnetic pole portions 135b) face in opposite directions in the axial direction.
  • the magnetic pole portions 135b of the first stator core 131 and the magnetic pole portions 135b of the second rotor core 122 are alternately arranged at equal intervals in the circumferential direction.
  • the winding 133 is interposed between the axial directions of the first and second stator cores 131 and 132.
  • the winding 133 has an annular shape along the circumferential direction of the stator 112.
  • the winding 133 is disposed between the radially extending portions 135a of the first and second stator cores 131 and 132 in the axial direction, and each outer peripheral wall portion 134 and the first and second stator cores 131 in the radial direction. , 132 and the magnetic pole part 135b.
  • the winding 133 excites the claw-shaped magnetic pole 135 of the first stator core 131 and the claw-shaped magnetic pole 135 of the second stator core 132 to different magnetic poles by energization.
  • the lead terminal of the winding 133 is omitted in the drawing.
  • notches and grooves for leading out the lead terminals formed on the outer peripheral wall portion 134 of the first and second stator cores 131 and 132 and the housing 111 are omitted in the drawing.
  • the first and second stator cores 131 and 132, and the A-phase stator portion 130a and the B-phase stator portion 130b configured by the winding 133 are configured as a so-called Landel type structure. More specifically, the A-phase stator portion 130a and the B-phase stator portion 130b are different from each other in the claw-shaped magnetic pole 135 of the first stator core 131 and the claw-shaped magnetic pole 135 of the second stator core 132 due to the excitation of the winding 133. It is configured as an 8-pole Landell-type structure that excites the magnetic poles.
  • the second stator core 132 of the A-phase stator portion 130a and the first stator core 131 of the B-phase stator portion 130b are spaced in the axial direction. Are arranged side by side so as to constitute a two-phase Landel-type stator 112.
  • the arrangement angle of the B-phase stator portion 130b with respect to the A-phase stator portion 130a is configured to deviate by a predetermined angle in the counterclockwise direction when viewed from the A-phase side in the axial direction. That is, the claw-shaped magnetic pole 135 of the B-phase stator portion 130b is configured to deviate by a predetermined angle in the counterclockwise direction with respect to the claw-shaped magnetic pole 135 of the A-phase stator portion 130a.
  • the deviation angle of the B-phase stator portion 130b in the counterclockwise direction is set to, for example, 45 degrees in electrical angle (11.25 degrees in mechanical angle).
  • the housing 112 and the stator 112 composed of the A-phase stator portion 130a and the B-phase stator portion 130b will be described.
  • the A-phase stator portion 130a is fixed to one case 114a constituting the housing 111, and the stator portion 130a and the case 114a constitute a first stator unit 140a.
  • the B-phase stator portion 130b is fixed to the other case 114b constituting the housing 111, and the stator portion 130b and the case 114b constitute a second stator unit 140b.
  • case 114a to which the A-phase stator portion 130a is fixed will be described as an A-phase side case 114a
  • case 114b to which the B-phase stator portion 130b is fixed will be described as a B-phase side case 114b.
  • the A-phase side case 114a is formed with a contact portion 141a protruding from the side wall portion 116 of the case 114a toward the inner peripheral side.
  • the contact portion 141a is in contact with the inner extension portion 134a and the radial extension portion 135a (claw-shaped magnetic pole 135) of the first stator core 131 in the A-phase stator portion 130a in the axial direction.
  • the A-phase stator portion 130a is positioned in the axial direction with respect to the A-phase side case 114a.
  • the A-phase stator portion 130a positioned in the axial direction in this way is located inside the case with respect to the axial end surface 117a of the flange portion 117 that is a contact surface with the B-phase side case 114b in the A-phase side case 114a ( It is located near the bottom 115 of the A-phase side case 114a.
  • the axial end surface of the A-phase stator portion 130a near the B-phase stator portion 130b, that is, the inner extension portion 134a and the radial extension portion 135a (claw-shaped magnetic pole 135) of the second stator core 132 are It is located in the case inner side from the axial direction end surface 117a of the flange portion 117 of the side case 114a (see FIG. 9).
  • the B-phase side case 114b is formed with a contact portion 141b protruding from the side wall portion 116 of the case 114b toward the inner peripheral side.
  • the contact portion 141b is in contact with the inner extension portion 134a and the radial extension portion 135a (claw-shaped magnetic pole 135) of the second stator core 132 in the B-phase stator portion 130b in the axial direction.
  • the B-phase stator portion 130b is positioned in the axial direction with respect to the B-phase side case 114b.
  • the B-phase stator portion 130b positioned in the axial direction in this way is located on the inner side of the case with respect to the axial end surface 117b of the flange portion 117 that is a contact surface with the A-phase side case 114a in the B-phase side case 114b. It is located near the bottom 115 of the B-phase side case 114b.
  • the end face in the axial direction of the B-phase stator portion 130b near the A-phase stator portion 130a, that is, the inner extension portion 134a and the radial extension portion 135a (claw-shaped magnetic pole 135) of the first stator core 131 are It is located inside the case from the axial end surface 117b of the flange portion 117 of the side case 114b (see FIG. 9).
  • the A-phase A gap K is formed between the stator portion 130a and the B-phase stator portion 130b in the axial direction (see FIG. 7).
  • the A-phase side case 114a to which the A-phase stator portion 130a is fixed and the B-phase side case 114b to which the B-phase stator portion 130b is fixed are fixed by screws 118 in a state where the flange portions 117 are in contact with each other in the axial direction.
  • the screw 118 is inserted into screw insertion holes 117c and 117d that are formed through the flange portion 117 of each case 114a and 114b in the axial direction.
  • the screw insertion hole 117d of the B-phase side case 114b is a circular hole.
  • the screw insertion hole 117c of the A-phase side case 114a is a long hole extending along the motor circumferential direction. This makes it possible to rotate the A-phase side case 114a relative to the B-phase side case 114b in a state where the screws 118 are inserted through the screw insertion holes 117c and 117d. For this reason, it is possible to adjust the circumferential position of each case 114a, 114b, and consequently the relative position of the stator portions 130a, 130b in the circumferential direction can be adjusted. Then, after the position adjustment, the flanges 117 are fastened and fixed by screws 118.
  • the A-phase driving current is supplied to the winding 133 of the A-phase stator unit 130a and the B-phase driving current is supplied to the winding 133 of the B-phase stator unit 130b, a rotating magnetic field is generated in the stator 112, and the rotating shaft 119 is moved.
  • the included rotor 113 is driven to rotate.
  • the A-phase driving current and the B-phase driving current are alternating currents, and the phase difference between them is set to 90 degrees, for example.
  • the housing 111 of the motor 110 is configured by assembling a phase A side case 114a to which the phase A stator portion 130a is fixed and a phase B side case 114b to which the phase B stator portion 130b is fixed.
  • a gap K is provided between the A-phase stator portion 130a and the B-phase stator portion 130b in the axial direction with the cases 114a and 114b assembled to each other.
  • the first stator unit 140a in which the A-phase stator portion 130a is fixed to the A-phase side case 114a, and the second stator unit 140b in which the B-phase stator portion 130b is fixed to the B-phase side case 114b are prepared.
  • a gap K (gap) is provided between the A-phase stator portion 130a and the B-phase stator portion 130b in the axial direction. it can.
  • Each of the cases 114a and 114b includes a case main body portion (the bottom portion 115 and the side wall portion 116) in which the stator portions 130a and 130b are accommodated, and a flange portion 117 extending in the radial direction from the opening of the case main body portion.
  • the flanges 117 are fixed with screws 118. For this reason, each case 114a, 114b can be fixed easily.
  • the flange portion 117 of the A-phase side case 114a is formed with a screw insertion hole 117c which is a hole through which the screw 118 is inserted and which is a long hole extending in the circumferential direction. Therefore, the circumferential positions of the cases 114a and 114b (that is, the stator portions 130a) in a state in which the flanges 117 of the cases 114a and 114b are brought into contact with each other and the screws 118 are inserted through the screw insertion holes 117c and 117d. , 130b in the circumferential direction) can be adjusted, which provides an advantageous configuration for obtaining desired motor characteristics.
  • the second embodiment may be modified as follows.
  • the cases 114a and 114b may be locked in the circumferential direction to position the cases 114a and 114b in the circumferential direction.
  • irregularities in the axial direction are formed at the opening side end portions of the side wall portions 116 of the cases 114a and 114b, and the convex portions 151a of the A-phase side case 114a are formed as concave portions of the B-phase side case 114b.
  • the projection 151b of the B-phase side case 114b may be fitted to the recess 152a of the A-phase side case 114a.
  • the cases 114a and 114b are locked in the circumferential direction by fitting the convex portions 151a and 151b and the concave portions 152a and 152b, thereby positioning the cases 114a and 114b in the circumferential direction. it can.
  • stator portions 130a and 130b are positioned in the circumferential direction with respect to the corresponding cases 114a and 114b, respectively, thereby enabling relative positioning of the stator portions 130a and 130b in the circumferential direction.
  • each case 114a, 114b in 2nd Embodiment is abbreviate
  • the presence or absence of a flange part does not ask
  • a flange part is provided in each case 114a, 114b
  • the convex portions 151a and 151b and the concave portions 152a and 152b are provided in the cases 114a and 114b.
  • the present invention is not limited thereto, and the convex portions are provided only on one of the cases 114a and 114b. You may provide only in the other.
  • the screw insertion hole 117c of the A-phase side case 114a is a long hole extending in the circumferential direction, but the screw insertion hole 117d of the B-phase side case 114b may be a long hole, and the screw insertion hole Both 117c and 117d may be long holes.
  • case 114a, 114b was fixed by fastening of the screw 118, it is not specifically limited to this, You may fix each case 114a, 114b by fixing means other than a screw. .
  • the number of poles of the rotor 113 (number of claw-shaped magnetic poles) and the number of poles of the stator 112 (number of claw-shaped magnetic poles) are not limited to those in the second embodiment, and may be changed as appropriate according to the configuration. .
  • the configuration such as the shape of each case 114a, 114b is not limited to the second embodiment, and may be appropriately changed according to the configuration.
  • the rotor 113 is composed of the rotor parts 120a and 120b having a Landel structure, but other than this, for example, an SPM type or IPM type rotor may be used in the present invention.
  • the motor 201 of this embodiment includes an annular stator 202 and a rotor 203 that is disposed inside the stator 202 and is rotatably supported.
  • the stator 202 includes an A-phase stator portion 202a and a B-phase stator portion 202b, both of which are Landel-type structures.
  • the A-phase stator portion 202a and the B-phase stator portion 202b are juxtaposed (laminated) in the axial direction.
  • the rotor 203 includes a surface magnet type A-phase rotor portion 203a and a B-phase rotor portion 203b.
  • the A-phase rotor portion 203a and the B-phase rotor portion 203b are juxtaposed (laminated) in the axial direction.
  • the A-phase stator portion 202a and the B-phase stator portion 202b constituting the stator 202 have the same configuration, and each includes a first stator core 204, a second stator core 205, and a winding 206.
  • the first stator core 204 has an outer wall annular portion 204a and a first claw-shaped magnetic pole 204b, and the first claw-shaped magnetic pole 204b extends radially inward from the axial end of the outer wall annular portion 204a.
  • Part 204c and a magnetic pole part 204d extending in the axial direction from the tip of the radially extending part 204c.
  • the second stator core 205 includes an outer wall annular portion 205a and a second claw-shaped magnetic pole 205b, and the second claw-shaped magnetic pole 205b extends radially inward from the axial end of the outer wall annular portion 205a. It has an extension part 205c and a magnetic pole part 205d extending in the axial direction from the tip of the radial extension part 205c.
  • the first stator core 204 and the second stator core 205 are formed by winding 206 with the radially extending portions 204c and 205c while the first claw-shaped magnetic poles 204b and the second claw-shaped magnetic poles 205b are alternately arranged in the circumferential direction. Are assembled so as to sandwich them in the axial direction. Thereby, twelve magnetic pole portions 204d and 205d are formed in the circumferential direction.
  • the A-phase stator portion 202a and the B-phase stator portion 202b configured as described above are juxtaposed in the axial direction so that the second stator cores 205 face each other (oppose), and
  • the B-phase stator portion 202b in the lower stage (lower stage in FIG. 13) is juxtaposed with the upper-stage A-phase stator portion 202a so as to deviate by 45 ° counterclockwise in electrical angle.
  • each winding 206 is drawn out radially outward of the first and second stator cores 204 and 205 and is provided on a cover of a housing (not shown) of the motor 201.
  • the drive circuit board 207 is electrically connected to the connection terminal 208.
  • the drive circuit board 207 of this embodiment is formed in a substantially C shape having a recess 207a when viewed from the plane orthogonal direction, and the connection terminal 208 is the bottom of the recess 207a when viewed from the plane orthogonal direction. It is provided so as to be accommodated in the recess 207a while projecting from it.
  • connection terminal 208 of the present embodiment has a plurality of grooves 208a on both sides in the width direction when viewed from the plane orthogonal direction, and the end portion 206a of the winding 206 fits into the groove 208a. Is wound around the connection terminal 208 (in a spiral). The winding 206 is electrically connected to the connection terminal 208 by removing the coating on the wound portion of the winding 206.
  • the A-phase rotor portion 203 a and the B-phase rotor portion 203 b constituting the rotor 203 have the same configuration, and are respectively fixed to the disk-shaped rotor core 211 and the outer periphery of the rotor core 211.
  • the magnetic pole portions 204d and 205d have an annular permanent magnet 212 opposed in the radial direction.
  • the permanent magnet 212 is magnetized so as to have 12 magnetic poles (N pole and S pole) alternately in the circumferential direction.
  • a rotating shaft 213 is press-fitted into the center hole of each rotor core 211, and the rotating shaft 213 is supported so as to be rotatable with respect to a housing (not shown).
  • the A-phase rotor portion 203a and the B-phase rotor portion 203b configured as described above are arranged such that the lower-stage (lower stage in FIG. 13) B-phase rotor section 203b is replaced with the upper-stage A-phase rotor section 203a.
  • they are arranged side by side in the clockwise direction with an electrical angle of 45 °.
  • the motor 201 of the present embodiment is provided between the permanent magnets 212 in the rotor 203 in the axial direction, and the A-phase sensor 221 and the B-phase sensor are sensors for detecting the magnetic flux of the permanent magnet 212.
  • a sensor 222 is provided.
  • the A-phase rotor portion 203a and the B-phase rotor portion 203b of the rotor 203 are arranged in parallel with the rotor cores 211 sandwiching a disk-shaped rotor spacer member 223a in the axial direction.
  • the permanent magnet 212 of the A-phase rotor portion 203a and the permanent magnet 212 of the B-phase rotor portion 203b are arranged side by side so as to have a gap in the axial direction.
  • a substrate 224 is interposed between the A-phase stator portion 202a and the B-phase stator portion 202b in an axial direction between a pair of disk-shaped stator spacer members 223b.
  • the substrate 224 has an inward extending portion 224a extending radially inward between the permanent magnets 212 (gap), and an A-phase sensor 221 and a B-phase sensor 222 at the distal end of the inward extending portion 224a. Is provided.
  • the A-phase sensor 221 and the B-phase sensor 222 are Hall ICs in this embodiment, and the A-phase sensor 221 is a sensor for detecting the magnetic flux of the permanent magnet 212 of the A-phase rotor portion 203a.
  • the B-phase sensor 222 is a sensor for detecting the magnetic flux of the permanent magnet 212 of the B-phase rotor portion 203b.
  • the A-phase sensor 221 includes a peripheral portion between the magnetic pole portions 204d and 205d adjacent to each other in the circumferential direction in the A-phase stator portion 202a corresponding to the permanent magnet 212 detected by the A-phase sensor 221. It is provided within an angle range ⁇ between the directions. In the present embodiment, the A-phase sensor 221 is provided at the center position between the magnetic pole portions 204d and 205d in the circumferential direction. Further, the B-phase sensor 222 is provided within an angular range between the circumferential directions of the magnetic pole portions 204d and 205d adjacent to each other in the circumferential direction in the B-phase stator portion 202b corresponding to the permanent magnet 212 to be detected.
  • the B-phase sensor 222 is provided at the center position between the magnetic pole portions 204d and 205d in the circumferential direction.
  • the A-phase sensor 221 and the B-phase sensor 222 are electrically connected to the drive circuit board 207 through signal lines (not shown) extending from the board 224.
  • the A-phase sensor 221 and the B-phase sensor 222 for detecting the magnetic flux of the permanent magnet 212 of the A-phase rotor portion 203a and the B-phase rotor portion 203b are provided between the permanent magnets 212 in the axial direction. .
  • the sensor is provided so as to face the axial end of the rotor 203, it is less affected by the magnetic flux from the stator 202, and the magnetic flux of the permanent magnet 212 is accurately (sinusoidal). Can be detected.
  • the rotation angle of the rotor 203 (the A-phase rotor portion 203a and the B-phase rotor portion 203b) can be easily detected with high accuracy, and the rotor 203 can be driven to rotate favorably.
  • the A-phase sensor 221 is provided in an angular range ⁇ between the circumferential directions of the magnetic pole portions 204d and 205d adjacent in the circumferential direction in the A-phase stator portion 202a corresponding to the permanent magnet 212 to be detected.
  • the B-phase sensor 222 is provided within an angular range between the circumferential directions of the magnetic pole portions 204d and 205d adjacent to each other in the circumferential direction in the B-phase stator portion 202b corresponding to the permanent magnet 212 to be detected.
  • the A-phase sensor 221 and the B-phase sensor 222 are less affected by the magnetic flux from the magnetic pole portions 204d and 205d of the stator 202 (the A-phase stator portion 202a and the B-phase stator portion 202b).
  • the magnetic flux can be detected with higher accuracy.
  • the A-phase sensor 221 and the B-phase sensor 222 are provided on the substrate 224 interposed between the A-phase stator portion 202a and the B-phase stator portion 202b in the axial direction, the A-phase sensor 221 and The B-phase sensor 222 can be easily provided.
  • connection terminal 208 Since the end portion 206a of the winding 206 is wound (spirally) around the connection terminal 208 and is electrically connected to the connection terminal 208, the end of the winding 206 is easily and firmly connected.
  • the unit 206 a can be connected to the connection terminal 208.
  • connection terminal 208 has a groove 208a, and the end 206a of the winding 206 is wound around the connection terminal 208 (spiral) so as to fit into the groove 208a.
  • the end 206 a can be connected to the connection terminal 208.
  • the drive circuit board 207 is formed in a substantially C shape having a recess 207a when viewed from the plane orthogonal direction, and the connection terminal 208 is accommodated in the recess 207a while protruding from the bottom of the recess 207a when viewed from the plane orthogonal direction.
  • the drive circuit board 207 can be made thinner than the configuration in which the connection terminal 208 protrudes from the plane of the drive circuit board 207.
  • the third embodiment may be modified as follows.
  • the A-phase sensor 221 is provided within the angular range ⁇ between the circumferential directions of the magnetic pole portions 204d and 205d adjacent to each other in the circumferential direction in the A-phase stator portion 202a corresponding to the permanent magnet 212 to be detected.
  • the present invention is not limited to this, and it may be provided outside the angle range ⁇ .
  • the B-phase sensor 222 the B-phase sensor 222 may be provided outside the angular range between the magnetic pole portions 204d and 205d in the circumferential direction.
  • the A-phase sensor 221 and the B-phase sensor 222 are provided on the substrate 224 interposed between the A-phase stator portion 202a and the B-phase stator portion 202b in the axial direction. As long as the A-phase sensor 221 and the B-phase sensor 222 can be provided between the magnets 212 in the axial direction, the configuration may be changed to another configuration.
  • the drive circuit board 207 provided with the drive circuit is provided separately from the board 224 provided with the A-phase sensor 221 and the B-phase sensor 222.
  • a driving circuit may be provided on the substrate 224.
  • the substrate 224 is interposed between the A-phase stator portion 202a and the B-phase stator portion 202b in the axial direction, the substrate 224 can be disposed near both the windings 206, Connection between the substrate 224 and each winding 206 is facilitated.
  • the A-phase sensor 221 and the B-phase sensor 222 may be provided so that their detection surfaces are orthogonal to the circumferential direction. If it does in this way, it will become possible to detect the magnetic flux of permanent magnet 212 with sufficient accuracy.
  • the A-phase sensor 221 and the B-phase sensor 222 may be provided such that their detection surfaces are orthogonal to the axial direction.
  • connection terminal 231 has a plurality of grooves 231 a on both sides in the width direction of the connection terminal 208 as viewed from the direction orthogonal to the plane of the connection terminal 208, and the width increases toward the tip. 208 may be changed.
  • connection terminal 208 may be changed to the configuration shown in FIG. In this configuration, the pair of connection terminals 233 sandwich an insulating member 232 (shown by a thick line).
  • a plurality of ends 206a of the winding 206 (for example, the winding start end 206a and winding end 206a of the A-phase stator unit 202a) are alternately wound around the pair of connection terminals 233.
  • the coating is removed only at the portion of the end portion 206a corresponding to the connection terminal 233 to be connected.
  • connection terminal 208 is provided along the plane of the drive circuit board 207, but the end 206a of the winding 206 may be connected to the drive circuit board in a different configuration.
  • connection terminals 241 to 244 extending along the axial direction of the motor 201 are juxtaposed in an arc shape so as to fit between the outer periphery of the stator 202 and a housing (not shown), and the connection terminals 241 to 244 Insulating members 245 (shown by bold lines) are interposed between the circumferential directions.
  • the connection terminals 241 to 244 are provided with different lengths so that the end surfaces in the circumferential direction of the connection terminals 241 to 244 are exposed, and the end 246a of the winding 246 is connected to the exposed surface. .
  • connection terminals 241 to 244 are electrically connected to the upper drive circuit board 247.
  • this example is an example of a motor having three stator portions (three phases), and one end portion 246a of the winding 246 of each phase is connected to the connection terminal 241 which is a neutral point.
  • the other ends 246a of the windings 246 of the respective phases are connected to the connection terminals 242 to 244 corresponding to the respective phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

モータは、2層ロータと2層ステータと制御部とを含んでいる。A相用ロータは、一対のロータコアと界磁磁石とを含んでいる。B相用ロータは、一対のロータコアと界磁磁石とを含んでいる。A相用ステータは、一対のステータコアとA相用巻線とを含んでいる。B相用ステータは、一対のステータコアとB相用巻線とを含んでいる。制御部は、A相用巻線に印加するA相入力電圧及び前記B相用巻線に印加するB相入力電圧を制御する。A相用ステータ及びA相用ロータと、B相用ステータ及びB相用ロータとの相対配置角度が電気角で90度に設定されている。制御部は、A相入力電圧及びB相入力電圧の基本電圧波形に対して、それぞれ進み側の位相角を与え、通電幅を180度以下に設定する。

Description

モータ、モータの制御方法、及びモータの制御装置
 本発明は、モータ、モータの制御方法、及びモータの制御装置に関するものである。
 周方向に配置された複数の爪状磁極を有する回転子鉄心と、回転子鉄心内に内包された界磁磁石とを含み、それら爪状磁極を交互に異なる磁極に機能させるランデル型ロータを備えたランデル型モータが知られている(例えば特許文献1)。この特許文献1には、ランデル型ロータに加えて、周方向に配置された複数の爪状磁極を有する固定子鉄心と、固定子鉄心に内包された環状巻線とによって構成され、それら爪状磁極を交互に異なる磁極に機能させるランデル型ステータを備えたランデル型モータが開示されている。
 このランデル型モータは、回転子(ロータ)及び固定子(ステータ)が共にランデル型で構成されていることから、マルチランデル型モータとも言われている。
 特許文献1のモータにおいて、ランデル型ステータは、モータハウジング内で軸方向に並設された複数のランデル型ステータ部を有している。各ステータ部は、一対のステータコアを含んでいる。
特開2013-226026号公報
 ところで、モータにおいて、トルク向上や出力(トルク、回転数)向上を図ることは常に考えられていることである。上記したマルチランデル型モータにおいても、トルク向上や出力向上を図ることが発明者にて検討されている。
 また、上記のようなモータにおいて、各段のステータ部同士の磁気干渉を抑制するために、ステータ部同士を直接積層せずに、その間にスペーサ等の絶縁部材を介在させてギャップを設けることが好ましいが、絶縁部材を設けることで部品点数が増加してしまうといった問題がある。
 また、上記のようなステータに対するロータとしては、ステータ部にそれぞれ対向する複数のロータ部を軸方向に配置した構成が考えられる。ロータ部の各々は永久磁石を有する。そして、ロータの回転角度を検出すべくロータの永久磁石の磁束を検出するためのセンサをロータの軸方向端部と対向するように設ける。この場合、センサがステータからの磁束の影響を大きく受けてしまい、永久磁石の磁束を精度良く(正弦波に近い形で)検出することが困難であるという問題がある。
 本発明の第1の目的は、トルク向上や出力向上を図ることができるモータ、モータの制御方法、及びモータの制御装置を提供することにある。
 本発明の第2の目的は、部品点数の増加を抑えながらも、ステータ部同士の磁気干渉を抑制することができるモータを提供することにある。
 本発明の第3の目的は、ロータの永久磁石の磁束を精度良く検出することができるモータを提供することにある。
 上記第1の目的を達成するため、本発明の第1の態様にかかるモータは、2層ロータと2層ステータと制御部とを含んでいる。前記2層ロータは、互いに積層されたA相用ロータとB相用ロータとを含む。前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記2層ステータは、互いに積層されたA相用ステータとB相用ステータとを含む。前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでいる。前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる。前記制御部は、前記A相用巻線に印加するA相入力電圧及び前記B相用巻線に印加するB相入力電圧を制御する。前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されている。前記制御部は、前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ進み側の位相角を与え、通電幅を180度以下に設定する。
 上記第1の目的を達成するため、本発明の第2の態様にかかるモータの制御方法が提供される。前記モータは、2層ロータと2層ステータと制御部とを含んでいる。前記2層ロータは、互いに積層されたA相用ロータとB相用ロータとを含む。前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記2層ステータは、互いに積層されたA相用ステータとB相用ステータとを含む。前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでいる。前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる。前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されている。前記モータの制御方法は、前記A相用巻線にA相入力電圧を印加することと、前記B相用巻線にB相入力電圧を印加することと、を含む。前記モータの制御方法はさらに、前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ24~42度の進み側の位相角を設定するとともに、それぞれ150~170度の通電幅を設定すること、を含む。
 上記第1の目的を達成するため、本発明の第3の態様にかかるモータの制御方法が提供される。前記モータは、2層ロータと2層ステータと制御部とを含んでいる。前記2層ロータは、互いに積層されたA相用ロータとB相用ロータとを含む。前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記2層ステータは、互いに積層されたA相用ステータとB相用ステータとを含む。前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでいる。前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる。前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されている。前記モータの制御方法は、前記A相用巻線にA相入力電圧を印加することと、前記B相用巻線にB相入力電圧を印加することと、を含む。前記モータの制御方法はさらに、前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ0~36度(0を含まず)の進み側の位相角を設定するとともに、それぞれ155~180度の通電幅を設定すること、を含む。
 上記第1の目的を達成するため、本発明の第4の態様にかかるモータの制御方法が提供される。前記モータは、2層ロータと2層ステータと制御部とを含んでいる。前記2層ロータは、互いに積層されたA相用ロータとB相用ロータとを含む。前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる。前記2層ステータは、互いに積層されたA相用ステータとB相用ステータとを含む。前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでいる。前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる。前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されている。前記モータの制御方法は、前記A相用巻線にA相入力電圧を印加することと、前記B相用巻線にB相入力電圧を印加することと、を含む。前記モータの制御方法はさらに、前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ24~36度の進み側の位相角を設定するとともに、それぞれ155~170度の通電幅を設定すること、を含む。
 上記第2の目的を達成するため、本発明の第5の態様にかかるモータは、ステータと、該ステータを収容するハウジングと、を含む。前記ステータは、軸方向に並ぶ2つのステータ部を含む。前記ステータ部の各々は、周方向に沿って配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの軸方向間に位置する巻線と、を含んでいる。前記ハウジングは、互いに組み付けられた第1のケースと第2のケースとを含んでいる。前記第1のケースには一方の前記ステータ部が固定されている。前記第2のケースには他方の前記ステータ部が固定されている。前記第1及び第2のケースが互いに組み付けられた状態で、前記2つのステータ部の軸方向の間には空隙部が設けられている。
 上記第3の目的を達成するため、本発明の第6の態様にかかるモータは、ステータとロータとセンサとを含む。前記ステータは、軸方向に配置された複数のステータ部を有する。前記ステータ部の各々は第1ステータコアと第2ステータコアと前記第1及び第2ステータコアの間に設けられた巻線とを有している。第1ステータコア及び第2ステータコアの各々は爪状磁極を有している。該爪状磁極は径方向に延びた径方向延出部と該径方向延出部の先端から軸方向に延びた磁極部とを有する。前記ロータは、軸方向に配置された複数のロータ部を有する。前記ロータ部と前記ステータ部とは同数である。前記ロータ部は前記磁極部と対向する永久磁石をそれぞれ有する。前記センサは、前記永久磁石同士の軸方向の間に設けられ、前記永久磁石の磁束を検出する。
本発明の第1実施形態にかかるモータの斜視図。 ステータの一部を切断した図1のモータの分解斜視図。 ステータの一部を切断した径方向から見た図1のモータの分解正面図。 図1のモータの駆動制御回路図。 (a)は入力電圧の基本電圧波形図、(b)は(a)の位相角を変化させた波形図、(c)は(b)の位相角及び通電幅を変化させた波形図。 (a)は各位相角における通電幅に対する出力を示すグラフ、(b)は各位相角における通電幅に対するトルクを示すグラフ。 本発明の第2実施形態にかかるモータの断面図。 図7のロータ及び切断したステータの一部を示す斜視図。 図1の第1及び第2ステータユニットの斜視図。 図9の第1及び第2ステータユニットの組付態様を説明するための平面図。 第2実施形態の別例における第1及び第2ステータユニットの斜視図。 本発明の第3実施形態にかかるモータの斜視図。 図12のモータの一部分解斜視図。 図12のモータの一部断面図。 図14の駆動回路基板の斜視図。 図15の接続ターミナルの平面図。 第3実施形態の別例における接続ターミナルの平面図。 第3実施形態の別例における駆動回路基板の斜視図。 第3実施形態の別例における接続構成を説明するための分解斜視図。
 以下、モータ(制御方法及び制御装置)の第1実施形態を図1~6に従って説明する。
 図1は、本実施形態のモータMの全体斜視図を示し、回転軸1にはロータ2が固着されている。そのロータ2の外側には、モータハウジング(図示せず)に固着されたステータ3が配置されている。モータMは、図1において、上からマルチランデル型のA相モータMa、マルチランデル型のB相モータMbが順に積層された2層2相のマルチランデル型モータである。A相モータMa及びB相モータMbは、それぞれマルチランデル型の単一モータとして構成されている。
 (ロータ2)
 図2及び図3に示すように、モータMのロータ2は、ランデル型構造のA相ロータ2a及びB相ロータ2bを積層した2層2相構造のロータである。A相ロータ2a及びB相ロータ2bは、同じ構成であって、それぞれ第1ロータコア10、第2ロータコア20及び界磁磁石30から構成されている。
 (第1ロータコア10)
 第1ロータコア10は、電磁鋼板にて作製され、円環状をなす第1ロータコアベース11を有している。第1ロータコアベース11の中央位置には、第1ロータコアベース11を回転軸1に外嵌固着するための貫通穴12が形成されている。また、第1ロータコアベース11の外周面11aには、それぞれ径方向外側に突出する8個の同一形状の第1ロータ側爪状磁極13が等角度間隔に設けられている。第1ロータ側爪状磁極13の各々の先端は軸方向の第2ロータコア20に向かって屈曲形成されている。
 第1ロータ側爪状磁極13において、第1ロータコアベース11の外周面11aから径方向外側に突出した部分を第1ロータ側基部13xとし、軸方向に屈曲された先端部分を第1ロータ側磁極部13yとする。第1ロータ側基部13xを軸方向から見たときの形状は、径方向外側にいくほど幅狭になる台形状をなしている。第1ロータ側磁極部13yを径方向から見たときの形状は、長方形状をなしている。また、第1ロータ側磁極部13yを軸方向から見たときの形状は、回転軸1の中心軸線Oを中心とした円周に沿った円弧形状をなしている。また、各第1ロータ側爪状磁極13の周方向角度範囲は、隣り合う第1ロータ側爪状磁極13間の隙間の角度範囲より小さく設定されている。
 (第2ロータコア20)
 第2ロータコア20は、第1ロータコア10と同一材質及び同一形状であって、円環状をなす第2ロータコアベース21を有している。第2ロータコアベース21の中央位置には、第2ロータコアベース21を回転軸1に外嵌固着するための貫通穴22が形成されている。また、第2ロータコアベース21の外周面21aには、それぞれ径方向外側に突出する8個の同一形状の第2ロータ側爪状磁極23が等角度間隔に設けられている。第2ロータ側爪状磁極23の各々の先端は軸方向の第1ロータコア10に向かって屈曲形成されている。
 第2ロータ側爪状磁極23において、第2ロータコアベース21の外周面21aから径方向外側に突出した部分を第2ロータ側基部23xとし、軸方向に屈曲された先端部分を第2ロータ側磁極部23yとする。第2ロータ側基部23xを軸方向から見たときの形状は、径方向外側にいくほど幅狭になる台形状をなしている。第2ロータ側磁極部23yを径方向から見たときの形状は、長方形状をなしている。また、第2ロータ側磁極部23yを軸方向から見たときの形状は、回転軸1の中心軸線Oを中心とした円周に沿った円弧形状をなしている。また、各第2ロータ側爪状磁極23の周方向角度範囲は、隣り合う第2ロータ側爪状磁極23間の隙間の角度範囲より小さく設定されている。
 そして、第2ロータコア20と第1ロータコア10とは、軸方向から見て、第2ロータコア20の第2ロータ側爪状磁極23の各々が第1ロータコア10の第1ロータ側爪状磁極13間に位置するように配置固定される。このとき、第2ロータコア20と第1ロータコア10とは、軸方向においてロータコアベース11,21間に界磁磁石30が配置されるようにして組み付けられる。この組付状態では、第1ロータ側爪状磁極13の先端面が第2ロータコアベース21の軸方向外側面(第2ロータコアベース21の界磁磁石30と対向する面とは反対側の面)と面一となり、第2ロータ側爪状磁極23の先端面が第1ロータコアベース11の軸方向外側面(第1ロータコアベース11の界磁磁石30と対向する面とは反対側の面)と面一となる。
 (界磁磁石30)
 界磁磁石30は、フェライト焼結磁石等よりなる円環板状の永久磁石である。界磁磁石30は、その中央位置に回転軸1を貫通させる貫通穴32が形成されている。そして、界磁磁石30の一側面が第1ロータコアベース11と当接し、他側面が第2ロータコアベース21と当接するようにして、界磁磁石30は第1及び第2ロータコアベース11,21間に挟持固定される。界磁磁石30の外径は、第1及び第2ロータコアベース11,21の外径と一致するように設定されている。界磁磁石30は、軸方向に磁化されていて、第1ロータコア10をN極、第2ロータコア20をS極とするように磁化されている。従って、この界磁磁石30によって、第1ロータコア10の第1ロータ側爪状磁極13はN極として機能し、第2ロータコア20の第2ロータ側爪状磁極23はS極として機能する。
 このように第1及び第2ロータコア10,20と界磁磁石30とから構成されたA相ロータ2a及びB相ロータ2bの各々は、所謂ランデル型構造のロータとなる。A相ロータ2a及びB相ロータ2bの各々は、N極となる第1ロータ側爪状磁極13とS極となる第2ロータ側爪状磁極23とが周方向に交互に配置され、磁極数が16極(極数対が8個)のロータとなる。そして、A相ロータ2a及びB相ロータ2bは、軸方向に積層されて2層2相のランデル型のロータ2として構成される。
 また、A相ロータ2a及びB相ロータ2bの積層構造において、A相ロータ2aとB相ロータ2bとは、それぞれの第2ロータコア20同士を当接させて積層される。また、A相ロータ2aの第2ロータ側爪状磁極23(第1ロータ側爪状磁極13)に対し、B相ロータ2bの第2ロータ側爪状磁極23(第1ロータ側爪状磁極13)が反時計回り方向に電気角θ2(45度)だけずらして積層される。
 (ステータ3)
 図2及び図3に示すように、ロータ2の径方向外側に配置されたステータ3は、ランデル型構造のA相ステータ3a及びB相ステータ3bを積層した2層2相構造のステータである。A相ステータ3a及びB相ステータ3bは、径方向内側において対応するA相ロータ2a及びB相ロータ2bとそれぞれ対向するように軸方向に積層されている。A相ステータ3a及びB相ステータ3bは、同じ構成であって、それぞれ第1ステータコア40、第2ステータコア50及びコイル部60から構成されている。
 (第1ステータコア40)
 第1ステータコア40は、電磁鋼板にて作製され、円環状をなす第1ステータコアベース41を有している。第1ステータコアベース41の径方向外側部には、軸方向に円筒状に延びる第1ステータ側円筒外壁42が形成されている。また、第1ステータコアベース41の内周面41aには、それぞれ径方向内側に突出する8個の同形状の第1ステータ側爪状磁極43が等角度間隔に設けられている。第1ステータ側爪状磁極43の各々の先端は軸方向の第2ステータコア50に向かって屈曲形成されている。
 第1ステータ側爪状磁極43において、第1ステータコアベース41の内周面41aから径方向内側に突出した部分を第1ステータ側基部43xとし、軸方向に屈曲された先端部分を第1ステータ側磁極部43yとする。第1ステータ側基部43xを軸方向から見たときの形状は、径方向内側にいくほど幅狭になる台形状をなしている。第1ステータ側磁極部43yを径方向から見たときの形状は、長方形状をなしている。また、第1ステータ側磁極部43yを軸方向から見たときの形状は、回転軸1の中心軸線Oを中心とした円周に沿った円弧形状をなしている。また、各第1ステータ側爪状磁極43の周方向角度範囲は、隣り合う第1ステータ側爪状磁極43間の隙間の角度範囲より小さく設定されている。
 (第2ステータコア50)
 第2ステータコア50は、第1ステータコア40と同一材質及び同一形状であって、円環状をなす第2ステータコアベース51を有している。第2ステータコアベース51の径方向外側部には、軸方向に円筒状に延びる第2ステータ側円筒外壁52が形成されている。この第2ステータ側円筒外壁52と第1ステータ側円筒外壁42とは、軸方向に当接するようになっている。第2ステータコアベース51の内周面51aには、それぞれ径方向内側に突出する8個の同形状の第2ステータ側爪状磁極53が等角度間隔に設けられている。第2ステータ側爪状磁極53の各々の先端は軸方向の第1ステータコア40に向かって屈曲形成されている。
 第2ステータ側爪状磁極53において、第2ステータコアベース51の内周面51aから径方向内側に突出した部分を第2ステータ側基部53xとし、軸方向に屈曲された先端部分を第2ステータ側磁極部53yとする。第2ステータ側基部53xを軸方向から見たときの形状は、径方向内側にいくほど幅狭になる台形状をなしている。第2ステータ側磁極部53yを径方向から見たときの形状は、長方形状をなしている。また、第2ステータ側磁極部53yを軸方向から見たときの形状は、回転軸1の中心軸線Oを中心とした円周に沿った円弧形状をなしている。また、各第2ステータ側爪状磁極53の周方向角度範囲は、隣り合う第2ステータ側爪状磁極53間の隙間の角度範囲より小さく設定されている。
 そして、第2ステータコア50と第1ステータコア40とは、第1ステータ側円筒外壁42と第2ステータ側円筒外壁52とを当接させるとともに、軸方向から見て、第2ステータコア50の第2ステータ側爪状磁極53の各々が第1ステータコア40の第1ステータ側爪状磁極43間に位置するように配置固定される。このとき、第1及び第2ステータコアベース41,51、第1及び第2ステータ側円筒外壁42、52、及び第1及び第2ステータ側爪状磁極43,53の内側には断面長方形状の環状空間が形成される。この空間にコイル部60が配置されるようにして第1ステータコア40と第2ステータコア50とが組み付けられる。この組付状態では、第1ステータ側爪状磁極43の先端面が第2ステータコアベース51の軸方向外側面(第2ステータコアベース51のコイル部60と対向する面とは反対側の面)と面一となり、第2ステータ側爪状磁極53の先端面が第1ステータコアベース41の軸方向外側面(第1ステータコアベース41のコイル部60と対向する面とは反対側の面)と面一となる。
 (コイル部60)
 コイル部60は、環状巻線61と、環状巻線61の周囲を覆う樹脂モールドよりなるコイル絶縁層62とを含んでいる。そして、コイル部60は、第1及び第2ステータコアベース41,51の内側面、第1及び第2ステータ側円筒外壁42、52の内側面、及び第1及び第2ステータ側爪状磁極43,53の内側面に当接するようにして、それら内側面によって画定された環状空間に収容される。
 このように第1及び第2ステータコア40,50とコイル部60とから構成されたA相ステータ3a及びB相ステータ3bの各々は、所謂ランデル型構造のステータとなる。第1及び第2ステータコア40,50間の環状巻線61は第1及び第2ステータ側爪状磁極43,53をその時々で互いに異なる磁極に励磁する。A相ステータ3a及びB相ステータ3bは16極の所謂ランデル型構造のステータとなる。そして、A相ステータ3a及びB相ステータ3bは、軸方向に積層されて2層2相のランデル型のステータ3として構成される。
 また、A相ステータ3a及びB相ステータ3bの積層構造において、A相ステータ3aとB相ステータ3bとは、それぞれの第2ステータコア50同士を当接させて積層される。また、A相ステータ3aの第1ステータ側爪状磁極43(第2ステータ側爪状磁極53)に対し、B相ステータ3bの第1ステータ側爪状磁極43(第2ステータ側爪状磁極53)が時計回り方向に電気角θ1(45度)だけずれて積層される。
 これにより、ステータ3のA相及びB相ステータ3a,3bのずれ方向と、ロータ2のA相及びB相ロータ2a,2bのずれ方向とが逆方向となっており、それぞれ45度ずつずれている。ステータ3のA相及びB相ステータ3a,3bとロータ2のA相及びB相ロータ2a,2bとは電気角で90度(電気角θ1+|θ2|)ずれている。すなわち、A相ステータ3a及びA相ロータ2aと、B相ステータ3b及びB相ロータ2bとの相対配置角度が電気角で90度に設定されている。そして、A相ステータ3aのコイル部60(環状巻線61)には2相交流電源のうちのA相入力電圧vaが印加され、B相ステータ3bのコイル部60(環状巻線61)には2相交流電源のうちのB相入力電圧vbが印加される。
 次に、上記のように構成した2層2相のランデル型のモータMの駆動制御態様について図4を用いて説明する。
 図4に示すように、制御部としての駆動制御回路70は、A相駆動回路部71、B相駆動回路部72、及び、両駆動回路部71,72を駆動制御する制御回路73を有している。
 (A相駆動回路部71)
 A相駆動回路部71は、4個のMOSトランジスタQa1,Qa2,Qa3,Qa4を用いたフルブリッジ回路にて構成される。4個のMOSトランジスタQa1~Qa4は、A相ステータ3aの環状巻線61(以下、A相環状巻線61aという)を挟んで、襷掛けに接続されたMOSトランジスタQa1,Qa4の組とMOSトランジスタQa2,Qa3の組とに分かれる。そして、2つの組のMOSトランジスタQa1,Qa4とMOSトランジスタQa2,Qa3とを交互にオン・オフさせることによって、A相駆動回路部71に供給される例えば12ボルトの直流電源GからA相入力電圧vaを生成してA相環状巻線61aに印加する。
 (B相駆動回路部72)
 B相駆動回路部72は、同じく4個のMOSトランジスタQb1,Qb2,Qb3,Qb4を用いたフルブリッジ回路にて構成される。4個のMOSトランジスタQb1~Qb4は、B相ステータ3bの環状巻線61(以下、B相環状巻線61bという)を挟んで、襷掛けに接続されたMOSトランジスタQb1,Qb4の組とMOSトランジスタQb2,Qb3の組とに分かれる。そして、2つの組のMOSトランジスタQb1,Qb4とMOSトランジスタQb2,Qb3とを交互にオン・オフさせることによって、同じく直流電源GからB相入力電圧vbを生成してB相環状巻線61bに印加する。
 (制御回路73)
 制御回路73は、A相駆動回路部71のMOSトランジスタQa1~Qa4のゲート端子にそれぞれ出力する駆動信号Sa1~Sa4を生成する。つまり、制御回路73は、MOSトランジスタQa1,Qa4の組とMOSトランジスタQa2,Qa3の組を交互にオン・オフさせて、A相環状巻線61aの通電を制御するための駆動信号Sa1~Sa4を生成している。
 また、制御回路73は、B相駆動回路部72のMOSトランジスタQb1~Qb4のゲート端子にそれぞれ出力する駆動信号Sb1~Sb4を生成する。つまり、制御回路73は、MOSトランジスタQb1,Qb4の組とMOSトランジスタQb2,Qb3の組を交互にオン・オフさせて、B相環状巻線61bの通電を制御するための駆動信号Sb1~Sb4を生成している。
 ここで、図5(a)において、A相及びB相環状巻線61a,61bに印加させるA相及びB相入力電圧va,vbの基本電圧波形αを示す。A相及びB相入力電圧va,vbの位相差は、本実施形態では90度に設定されている。また、A相及びB相入力電圧va,vbの基本電圧波形αの正側及び負側の各極性の通電幅θwはそれぞれ180度である。本発明者は、A相及びB相入力電圧va,vbの基本電圧波形αから進み側に位相を変化させ(位相角θdの設定)、またそれに伴い通電幅θwを180度から小さく変化させたときのモータMのトルクや出力(トルク、回転数)の変化を検討した。
 ちなみに、図5(b)に示す電圧波形は、A相及びB相入力電圧va,vbの基本電圧波形αに対し、進み側の位相角θdのみを設定した第1電圧波形βである。また、図5(c)に示す電圧波形は、A相及びB相入力電圧va,vbの基本電圧波形αに対し、進み側の位相角θdを設定するとともに、それに伴って通電幅θwを180度から小さくした第2電圧波形γである。通電幅θwは、中央位置を基準として立ち上がりエッジ及び立ち下がりエッジが同等に変更されるように、その中央位置にて対称形状に変更される。
 図6(a)及び図6(b)は、A相及びB相入力電圧va,vbの基本電圧波形αに対する位相角θd及び通電幅θwの変化と、モータMの出力及びトルクの変化とを示している。
 具体的に、図6(a)は、位相角θdが0度(基本電圧波形α)、12度、24度、36度、42度の各角度において、通電幅θwを120~180度の範囲で10度ごとに変化させたときのモータMの出力変化(トルク、回転数)をグラフとしたものである。
 図6(a)から明らかなように、位相角θdを0度より大きく、通電幅θwを180度以下に設定した場合の出力値は、位相角θdが0度かつ通電幅θwが180度のとき、すなわち基本電圧波形αのときの出力値である第1基準値X1を上回る。
 また、位相角θdが0度のとき、通電幅θwが140度付近でモータMの出力が最大値となる。このときの出力値を第2基準値X2とするとき、第2基準値X2を上回るような位相角θd及び通電幅θwの範囲は、位相角θdが12度のとき通電幅θwが125~165度である。出力の最大値は通電幅θwが150±5度付近である。また、位相角θdが24度のとき通電幅θwが125~175度で出力が第2基準値X2を上回り、出力の最大値は通電幅θwが155±5度付近である。また、位相角θdが36度のとき通電幅θwが125~180度で出力が第2基準値X2を上回り、出力の最大値は通電幅θwが160±5度付近である。また、位相角θdが42度のとき通電幅θwが130~180度で出力が第2基準値X2を上回り、出力の最大値は通電幅θwが160±5度付近である。少なくとも位相角θdが0度から42度までの範囲では、モータMの出力の最大値が大きい。
 これらから、A相及びB相入力電圧va,vbの位相角θd及び通電幅θwの設定に際し、基本電圧波形αに対する進み側の位相角θdを0度より大きく、通電幅θwを180度以下とすれば、モータMの出力向上を図ることが可能である。さらに、基本電圧波形αに対する進み側の位相角θdを24~42度、通電幅θwを150~170度とすれば、より確実にモータMの出力向上を図ることが可能である。
 図6(b)は、位相角θdが0度(基本電圧波形α)、12度、24度、36度、42度の各角度において、通電幅θwを120~180度の範囲で10度ごとに変化させたときのモータMのトルク変化をグラフとしたものである。
 図6(b)から明らかなように、位相角θdを0度より大きく、通電幅θwを180度以下に設定した場合のトルクは、位相角θdが0度かつ通電幅θwが180度のとき、すなわち基本電圧波形αのときのトルクである基準値Yを上回る。
 また、位相角θdが0度のとき、通電幅θwを180度から120度まで小さくするとモータMのトルクは次第に大きくなる。換言すると、位相角θdが0度の場合では、通電幅θwを120度から180度まで大きくすると、モータMのトルクは次第に小さくなる。位相角θdが0度のときのトルクの変化を基準曲線Zとすると、これを上回るような位相角θd及び通電幅θwの範囲は、位相角θdが12度のとき通電幅θwが135~180度である。また、位相角θdが24度のとき通電幅θwが145~180度でトルクが基準曲線Zを上回る。また、位相角θdが36度のとき通電幅θwが155~180度でトルクが基準曲線Zを上回る。また、位相角θdが42度のとき通電幅θwが160~180度でトルクが基準曲線Zを上回る。
 また上記のように、位相角θdを0度以外の12度,24度,36度,42度に設定する場合、より確実に基準曲線Zを上回るような通電幅θwは160~180度である。さらに、位相角θdが42度のときのトルクは、位相角θdが36度のときのトルクよりも全体的に下回るため、42度を含まないで位相角θdを設定する場合、より確実に基準曲線Zを上回るような通電幅θwは155~180度である。
 これらから、A相及びB相入力電圧va,vbの位相角θd及び通電幅θwの設定に際し、基本電圧波形αに対する進み側の位相角θdを0度より大きく、通電幅θwを180度以下とすれば、モータMのトルク向上を図ることが可能である。さらに、基本電圧波形αに対する進み側の位相角θdを0~42度(0は含まず)、通電幅θwを160~180度とすれば、より確実にモータMのトルク向上を図ることが可能である。また、42度を除いた位相角θdを0~36度(0は含まず)とし、通電幅θwを155~180度とすれば、より確実にモータMのトルク向上を図ることが可能である。
 さらに、図6(a)及び図6(b)の両特性を考慮し高出力及び高トルクの両立を図るには、位相角θdを24~36度、通電幅θwを155~170度に設定するのが好ましい。
 位相角θdを0度、通電幅θwを180度(基本電圧波形α)に設定する場合、モータMのコイル部60にて発生する誘起電圧に対し電流の立ち下がりが遅れることで、誘起電圧の符号と電流の符号とが逆向きになる期間が存在し、マイナストルク(ネガティブトルク)が発生する。一方、通電幅θwを155~170度に設定する場合、第1及び第2ステータ側爪状磁極43,53の極性の切り替え時に無通電区間が設けられ、その間に電流の立ち下がりが完了する。これにより、誘起電圧の符号と電流の符号とが逆向きになる期間が短くなり、マイナストルクの発生が抑制される。また、通電幅θwを155~170度に設定することで、ロータ2及びステータ3間の磁気吸引力に有効な範囲のみで通電を行うことができる。さらに、進み側の位相角θdを24~36度に設定する場合、電流の立ち上がりが前倒しされ、電流の立ち下がりの遅れによるマイナストルクの発生が抑制される。
 このように通電幅θw及び位相角θdを適切な数値に設定することによって、マイナストルクの発生が抑制され、モータMの出力及びトルクの向上に繋がる。そして、本実施形態では、上記範囲内の位相角θd及び通電幅θwのA相及びB相入力電圧va,vbの生成が行われ、モータMの回転駆動が行われる。
 次に、第1実施形態の特徴的な利点を記載する。
 (1)A相及びB相環状巻線61a,61bにA相及びB相入力電圧va,vbを印加する。A相及びB相入力電圧va,vbの各々の基本電圧波形αに対して進み側の位相角θdを0度より大きく、通電幅θwを180度以下に設定すれば(図6(a)(b)参照)、モータMの出力向上及びトルク向上を図ることができる。
 (2)A相及びB相環状巻線61a,61bにA相及びB相入力電圧va,vbを印加する。A相及びB相入力電圧va,vbの各々の基本電圧波形αに対して進み側の位相角θdを24~42度で通電幅θwを150~170度に設定すれば(図6(a)参照)、より確実にモータMの出力向上を図ることができる。
 (3)A相及びB相入力電圧va,vbの各々の基本電圧波形αに対して進み側の位相角θdを0~36度(0を含まず)で通電幅θwを155~180度に設定すれば(図6(b)参照)、より確実にモータMのトルク向上を図ることができる。
 (4)A相及びB相入力電圧va,vbの各々の基本電圧波形αに対して進み側の位相角θdを24~36度で通電幅θwを155~170度に設定すれば(図6(a)(b)参照)、モータMの出力向上とトルク向上との両立を図ることができる。
 なお、第1実施形態は、以下のように変更してもよい。
 ・A相及びB相入力電圧va,vbの進み側の位相角θd及び通電幅θwの設定の組み合わせは、モータMの出力向上やトルク向上が図れる範囲で適宜変更してもよい。
 ・モータMのロータ2及びステータ3の構成は一例であり、適宜変更してもよい。
 ・第1実施形態では、ステータコア40,50及びロータコア10,20は共に電磁鋼板にて作製されていたが、電磁鋼板に代えて、圧縮成形により成形された圧粉磁心材料を用いてもよい。例えば、鉄粉等の磁性粉末と樹脂等の絶縁物とが混ざった混合物を金型で加熱プレス成形してステータコア40,50及びロータコア10,20を作るようにする。この場合、ステータコア40,50及びロータコア10,20の設計の自由度が高くなり、製造プロセスが非常に簡単になる。また、磁性粉末と絶縁物との配分量を調整することで、渦電流の抑制量を容易に調整することができる。
 以下、本発明の第2実施形態について説明する。
 図7に示すように、本実施形態のモータ110は、ブラシレスモータであって、ハウジング111と、ハウジング111に収容されたステータ112及びロータ113とを備えている。
 ハウジング111は、有底筒状をなす一対のケース(第1のケース及び第2のケース)114a,114bからなる。各ケース114a,114bは、互いに略同一形状をなすものであり、円盤状の底部115と、底部115の外周縁から延びる円筒状の側壁部116と、側壁部116における底部115とは反対側の端部(開口側端部)から径方向外側に延びるフランジ部117とを有している。なお、フランジ部117は、モータ110の軸方向と直交する平板状をなしている。また、底部115及び側壁部は、各ケース114a,114bのケース本体部を構成している。各ケース114a,114bは、それらのフランジ部117同士が軸方向に当接する状態でねじ118によって固定されることで、ハウジング111を構成している。なお、各ケース114a,114bの底部115の中心部には、ロータ113の回転軸119を軸支する軸受119aが設けられている。
 [ロータの構成]
 ロータ113は、回転軸119と、回転軸119と一体回転可能に構成されたA相ロータ部120a及びB相ロータ部120bとを備えている。A相ロータ部120a及びB相ロータ部120bは軸方向に並設されている。また、A相ロータ部120a及びB相ロータ部120bは共にランデル型構造であって、互いに同一構成、同一形状を有している。また、A相ロータ部120a及びB相ロータ部120bはそれぞれ、回転軸119の軸線Lを中心とする円環状をなしている。
 図8に示すように、A相ロータ部120a及びB相ロータ部120bの各々は、互いに同一形状をなす一対のロータコア(第1ロータコア121及び第2ロータコア122)と、該一対のロータコア121,122の間に配置された界磁磁石123とを備えている。
 各ロータコア121,122は、円環板状をなすコアベース124と、該コアベース124の外周縁から径方向外側に延出された複数(本実施形態では4つ)の爪状磁極125とを有している。爪状磁極125は、互いに同一形状をなし、コアベース124の外周縁から径方向外側に延びる径方向延出部125aと、該径方向延出部125aの先端部(径方向外側端部)から軸方向に延びる磁極部125bとからなる。爪状磁極125は、周方向において等間隔(90度間隔)に設けられている。
 上記構成の第1及び第2ロータコア121,122は、それらの爪状磁極125(磁極部125b)が軸方向において互いに反対方向を向くように組み付けられる。また、この組付状態において、第1ロータコア121の磁極部125bと第2ロータコア122の磁極部125bとが周方向等間隔に交互に配置される。
 また、この組付状態において、第1及び第2ロータコア121,122の軸方向の間には界磁磁石123が介在されている。界磁磁石123は、例えばフェライト焼結磁石よりなる円環板状の永久磁石である。界磁磁石123は、軸方向において第1及び第2ロータコア121,122の一対のコアベース124の間に配置されている。この界磁磁石123は、第1ロータコア121がN極、第2ロータコア122がS極となるように軸方向に磁化されている。従って、この界磁磁石123によって、図8に示すように、第1ロータコア121の爪状磁極125がN極として機能し、第2ロータコア122の爪状磁極125がS極として機能するようになっている。
 このように、第1及び第2ロータコア121,122、並びに、界磁磁石123にて構成されたA相ロータ部120a及びB相ロータ部120bは、界磁磁石123を用いた所謂ランデル型構造として構成される。そして、A相ロータ部120a及びB相ロータ部120bは、N極となる第1ロータコア121の爪状磁極125と、S極となる第2ロータコア122の爪状磁極125とが周方向に交互に配置され、磁極数が8極(極対数が4)として構成される。
 上記のように構成されたA相ロータ部120a及びB相ロータ部120bは、軸方向に並設されて2相のランデル型のロータ113を構成している。
 ここで、A相ロータ部120aに対するB相ロータ部120bの配置角度は、軸方向のA相側から見て時計回り方向に所定角度だけずれるように構成されている。つまり、A相ロータ部120aの爪状磁極125に対し、B相ロータ部120bの爪状磁極125が、時計回り方向に所定角度だけずれるように構成されている。なお、このB相ロータ部120bの時計回り方向へのずれ角度は、例えば電気角で45度(機械角で11.25度)に設定されている。
 [ステータの構成]
 図7に示すように、ステータ112は、ハウジング111内において軸方向に並設されるA相ステータ部130a及びB相ステータ部130bを備えている。A相ステータ部130a及びB相ステータ部130bは共にランデル型構造であって、互いに同一構成、同一形状を有している。また、A相ステータ部130a及びB相ステータ部130bはそれぞれ、回転軸119の軸線Lを中心とする円環状をなしている。そして、A相ステータ部130a及びB相ステータ部130bは、A相ロータ部120a及びB相ロータ部120bの外周側にそれぞれ配置されている。
 図8に示すように、A相ステータ部130a及びB相ステータ部130bの各々は、互いに同一形状をなす一対のステータコア(第1ステータコア131及び第2ステータコア132)と、該一対のステータコア131,132の間に配置された巻線133とを備えている。
 各ステータコア131,132は、軸線Lを中心とする円筒状をなす外周壁部134を有している。外周壁部134の軸方向一端部には、略直角に屈曲形成されて径方向内側に延出する内側延出部134aが、該外周壁部134の全周に亘って形成されている。
 また、各ステータコア131,132は、内側延出部134aから径方向内側に延出された複数(本実施形態では4つ)の爪状磁極135を有している。各爪状磁極135は、互いに同一形状をなし、内側延出部134aの内周縁から径方向内側に延びる径方向延出部135aと、該径方向延出部135aの先端部(径方向外側端部)から軸方向に延びる磁極部135bとからなる。各爪状磁極135は、周方向において等間隔(90度間隔)に設けられている。
 上記構成の第1及び第2ステータコア131,132は、それらの爪状磁極135(磁極部135b)が軸方向において互いに反対方向を向くように組み付けられる。また、この組付状態において、第1ステータコア131の磁極部135bと第2ロータコア122の磁極部135bとが周方向等間隔に交互に配置される。
 また、この組付状態において、第1及び第2ステータコア131,132の軸方向の間には巻線133が介在されている。巻線133は、ステータ112の周方向に沿った円環状をなしている。また、巻線133は、軸方向において、第1及び第2ステータコア131,132の径方向延出部135aの間に配置され、径方向において、各外周壁部134と第1及び第2ステータコア131,132の磁極部135bとの間に配置されている。この巻線133は、通電によって、第1ステータコア131の爪状磁極135と第2ステータコア132の爪状磁極135とを互いに異なる磁極に励磁する。
 なお、説明の便宜上、巻線133の引出し端子を図面上省略した。また、これに合わせて、第1及び第2ステータコア131,132の外周壁部134やハウジング111に形成する引出し端子を外部に導き出すための切り欠きや溝を図面上省略している。
 このように、第1及び第2ステータコア131,132、並びに、巻線133にて構成されたA相ステータ部130a及びB相ステータ部130bは、所謂ランデル型構造として構成される。より詳しくは、A相ステータ部130a及びB相ステータ部130bは、巻線133の励磁によって、第1ステータコア131の爪状磁極135と、第2ステータコア132の爪状磁極135をその時々で互いに異なる磁極に励磁する8極のランデル型構造として構成されている。
 上記のように構成されたA相ステータ部130a及びB相ステータ部130bは、A相ステータ部130aの第2ステータコア132と、B相ステータ部130bの第1ステータコア131とが軸方向に隙間を介して対向するように並設されて、2相のランデル型のステータ112を構成している。
 ここで、A相ステータ部130aに対するB相ステータ部130bの配置角度は、軸方向のA相側から見て反時計回り方向に所定角度だけずれるように構成されている。つまり、A相ステータ部130aの爪状磁極135に対し、B相ステータ部130bの爪状磁極135が、反時計回り方向に所定角度だけずれるように構成されている。なお、このB相ステータ部130bの反時計回り方向へのずれ角度は、例えば電気角で45度(機械角で11.25度)に設定されている。
 次に、A相ステータ部130a及びB相ステータ部130bからなるステータ112と、ハウジング111との関係について説明する。
 図7及び図9に示すように、A相ステータ部130aは、ハウジング111を構成する一方のケース114aに固定され、該ステータ部130aとケース114aとで第1ステータユニット140aを構成している。また、同様に、B相ステータ部130bは、ハウジング111を構成するもう一方のケース114bに固定され、該ステータ部130bとケース114bとで第2ステータユニット140bを構成している。なお、以下では、A相ステータ部130aが固定されたケース114aをA相側ケース114aとし、B相ステータ部130bが固定されたケース114bをB相側ケース114bとして説明する。
 図7に示すように、第1ステータユニット140aにおいて、A相側ケース114aには、該ケース114aの側壁部116から内周側にせり出した当接部141aが形成されている。当接部141aは、A相ステータ部130aにおける第1ステータコア131の内側延出部134aと径方向延出部135a(爪状磁極135)とに対して軸方向に当接している。これにより、A相ステータ部130aがA相側ケース114aに対して軸方向に位置決めされている。
 また、このように軸方向に位置決めされたA相ステータ部130aは、A相側ケース114aにおけるB相側ケース114bとの当接面であるフランジ部117の軸方向端面117aよりもケース内部側(A相側ケース114aの底部115寄り)に位置している。より詳しくは、A相ステータ部130aにおけるB相ステータ部130b寄りの軸方向端面、つまり、第2ステータコア132の内側延出部134aと径方向延出部135a(爪状磁極135)が、A相側ケース114aのフランジ部117の軸方向端面117aよりもケース内部側に位置している(図9参照)。
 第2ステータユニット140bにおいても同様に、B相側ケース114bには、該ケース114bの側壁部116から内周側にせり出した当接部141bが形成されている。当接部141bは、B相ステータ部130bにおける第2ステータコア132の内側延出部134aと径方向延出部135a(爪状磁極135)とに対して軸方向に当接している。これにより、B相ステータ部130bがB相側ケース114bに対して軸方向に位置決めされている。
 また、このように軸方向に位置決めされたB相ステータ部130bは、B相側ケース114bにおけるA相側ケース114aとの当接面であるフランジ部117の軸方向端面117bよりもケース内部側(B相側ケース114bの底部115寄り)に位置している。より詳しくは、B相ステータ部130bにおけるA相ステータ部130a寄りの軸方向端面、つまり、第1ステータコア131の内側延出部134aと径方向延出部135a(爪状磁極135)が、B相側ケース114bのフランジ部117の軸方向端面117bよりもケース内部側に位置している(図9参照)。
 以上のような第1及び第2ステータユニット140a,140bにおける各ステータ部130a,130bの配置によって、第1及び第2ステータユニット140a,140b(ケース114a,114b)を互いに組み付けた状態において、A相ステータ部130aとB相ステータ部130bとの軸方向の間に空隙部Kが形成されるようになっている(図7参照)。
 A相ステータ部130aが固定されたA相側ケース114aと、B相ステータ部130bが固定されたB相側ケース114bとは、互いのフランジ部117が軸方向に当接する状態でねじ118によって固定されている。ねじ118は、各ケース114a,114bのフランジ部117に軸方向に貫通形成されたねじ挿通孔117c,117dに挿通される。
 ここで、図9及び図10に示すように、B相側ケース114bのねじ挿通孔117dは円形の孔である。一方、A相側ケース114aのねじ挿通孔117cは、モータ周方向に沿って延びる長孔である。これにより、各ねじ挿通孔117c,117dにねじ118を挿通した状態において、A相側ケース114aをB相側ケース114bに対して相対的に回転させることが可能となる。このため、各ケース114a,114bの周方向の位置を調整することが可能となり、ひいては、ステータ部130a,130b同士の周方向の相対的な位置の調整が可能となっている。そして、その位置調整後、ねじ118にてフランジ部117同士が締結固定されるようになっている。
 次に、第2実施形態の作用について説明する。
 A相ステータ部130aの巻線133にA相駆動電流が、B相ステータ部130bの巻線133にB相駆動電流がそれぞれ供給されると、ステータ112に回転磁界が発生し、回転軸119を含むロータ113が回転駆動される。なお、A相駆動電流及びB相駆動電流は交流電流であり、互いの位相差が例えば90度に設定される。
 次に、第2実施形態の特徴的な利点を記載する。
 (5)モータ110のハウジング111は、A相ステータ部130aが固定されたA相側ケース114aと、B相ステータ部130bが固定されたB相側ケース114bとが互いに組み付けられて構成される。そして、ケース114a,114bが互いに組み付けられた状態で、A相ステータ部130a及びB相ステータ部130bの軸方向の間には空隙部Kが設けられる。
 この構成によれば、A相側ケース114aにA相ステータ部130aを固定した第1ステータユニット140aと、B相側ケース114bにB相ステータ部130bを固定した第2ステータユニット140bを用意し、それら第1及び第2ステータユニット140a,140b同士(ケース114a,114b同士)を組み付けるだけで、A相ステータ部130a及びB相ステータ部130bの軸方向の間に空隙部K(ギャップ)設けることができる。これにより、ステータ部130a,130bの軸方向間にギャップを設けるためのスペーサ等の特段の部品が不要となるため、部品点数の増加を抑えながらも、ステータ部130a,130b間の空隙部Kによってステータ部130a,130b同士の磁気干渉を抑制することができ、その結果、モータ特性の向上の寄与できる。
 (6)ケース114a,114bはそれぞれ、ステータ部130a,130bが収容されるケース本体部(底部115及び側壁部116)と、該ケース本体部の開口から径方向に延びるフランジ部117とを備え、該フランジ部117同士がねじ118にて固定される。このため、各ケース114a,114bを容易に固定することができる。
 (7)A相側ケース114aのフランジ部117には、ねじ118が挿通される孔であって周方向に延びる長孔であるねじ挿通孔117cが形成される。このため、各ケース114a,114bのフランジ部117同士を当接させてねじ挿通孔117c,117dにねじ118を挿通した状態で、各ケース114a,114bの周方向の位置(即ち、各ステータ部130a,130bの周方向の位置)を調整することができ、これにより、所望のモータ特性を得るのに有利な構成となる。
 (8)ケース114a,114bにはそれぞれ、収容されるステータ部130a,130bを軸方向に位置決めする位置決め部としての当接部141a,141bが設けられるため、各ステータ部130a,130bの軸方向間の空隙部Kを確実に確保することができる。
 なお、第2実施形態は、以下のように変更してもよい。
 ・ケース114a,114b同士を周方向に係止させて該ケース114a,114bの周方向における位置決めをしてもよい。
 例えば、図11に示すように、各ケース114a,114bの側壁部116の開口側端部に軸方向への凹凸を形成し、A相側ケース114aの凸部151aをB相側ケース114bの凹部152bに嵌合させ、B相側ケース114bの凸部151bをA相側ケース114aの凹部152aに嵌合させる構成としてもよい。この構成によれば、凸部151a,151bと凹部152a,152bとの嵌合によって、ケース114a,114b同士が周方向に係止され、これにより、ケース114a,114bを周方向に位置決めすることができる。この場合、ステータ部130a,130bがそれぞれ対応するケース114a,114bに対して周方向に位置決めされていることが望ましく、それにより、ステータ部130a,130b同士の周方向の相対的な位置決めが可能となる。
 なお、図11に示す構成では、第2実施形態における各ケース114a,114bのフランジ部117を省略しているが、フランジ部の有無は問わない。また、各ケース114a,114bにフランジ部を設けた場合には、凸部151a,151b及び凹部152a,152bをフランジ部に設けてもよい。また、図11に示す構成では、各ケース114a,114bに凸部151a,151b及び凹部152a,152bを設けたが、これに限らず、凸部をケース114a,114bの一方のみに設け、凹部を他方のみに設けてもよい。
 ・第2実施形態では、A相側ケース114aのねじ挿通孔117cを周方向に延びる長孔としたが、B相側ケース114bのねじ挿通孔117dを長孔としてもよく、また、ねじ挿通孔117c,117dの両方を長孔としてもよい。
 ・第2実施形態では、ねじ118の締結によってケース114a,114b同士が固定されたが、これに特に限定されるものではなく、ねじ以外の固定手段によって各ケース114a,114bを固定してもよい。
 ・ロータ113の極数(爪状磁極の個数)及びステータ112の極数(爪状磁極の個数)は、第2実施形態に限定されるものではなく、構成に応じて適宜変更してもよい。
 ・各ケース114a,114bの形状等の構成は第2実施形態に限定されるものではなく、構成に応じて適宜変更してもよい。
 ・第2実施形態では、ロータ113がランデル型構造をなすロータ部120a,120bからなるが、これ以外に例えば、SPM型やIPM型のロータを本発明に用いてもよい。
 以下、本発明の第3実施形態を図12~図16に従って説明する。
 図12に示すように、本実施形態のモータ201は、環状のステータ202と、ステータ202の内側に配置され、回転可能に支持されるロータ203とを備える。
 図13に示すように、ステータ202は、共にランデル型構造のA相ステータ部202a及びB相ステータ部202bを含んでいる。A相ステータ部202a及びB相ステータ部202bは軸方向に並設(積層)されている。また、ロータ203は、共に表面磁石型のA相ロータ部203a及びB相ロータ部203bを含んでいる。A相ロータ部203a及びB相ロータ部203bは軸方向に並設(積層)されている。
 ステータ202を構成するA相ステータ部202a及びB相ステータ部202bは、同じ構成であって、それぞれ第1ステータコア204と、第2ステータコア205と、巻線206とを有する。第1ステータコア204は、外壁環状部204aと第1爪状磁極204bとを有し、その第1爪状磁極204bは外壁環状部204aの軸方向端部から径方向内側に延びた径方向延出部204cと該径方向延出部204cの先端から軸方向に延びた磁極部204dとを有する。また、第2ステータコア205は、外壁環状部205aと第2爪状磁極205bとを有し、その第2爪状磁極205bは外壁環状部205aの軸方向端部から径方向内側に延びた径方向延出部205cと該径方向延出部205cの先端から軸方向に延びた磁極部205dとを有する。
 そして、第1ステータコア204と第2ステータコア205は、第1爪状磁極204bと第2爪状磁極205bが周方向に交互に配置されつつ、互いの径方向延出部204c,205cで巻線206を軸方向に挟むように組み付けられている。これにより、周方向において12個の磁極部204d,205dを形成する。尚、上記のように構成されたA相ステータ部202a及びB相ステータ部202bは、本実施形態では、互いの第2ステータコア205が向かい合う(対向する)ように軸方向に並設されるとともに、下段(図13中、下段)のB相ステータ部202bが上段のA相ステータ部202aに対して電気角で45°反時計回り方向にずれて並設されている。
 また、図14に示すように、本実施形態では、各巻線206の端部206aは第1及び第2ステータコア204,205の径方向外側に引き出され、モータ201の図示しないハウジングのカバーに設けられた駆動回路基板207の接続ターミナル208に電気的に接続されている。
 図15に示すように、本実施形態の駆動回路基板207は、平面直交方向から見て凹部207aを有する略C字状に形成され、接続ターミナル208は、平面直交方向から見て凹部207aの底から突出しつつ凹部207a内に収容されるように設けられている。
 また、図16に示すように、本実施形態の接続ターミナル208は、平面直交方向から見てその幅方向両側に複数の溝208aを有し、巻線206の端部206aは、溝208aに嵌るように接続ターミナル208に(螺旋状に)巻回される。巻線206において巻回された部位の被膜が除去されることで巻線206は接続ターミナル208に電気的に接続されている。
 図13及び図14に示すように、ロータ203を構成するA相ロータ部203a及びB相ロータ部203bは、同じ構成であって、それぞれ円盤状のロータコア211と、該ロータコア211の外周に固定され前記磁極部204d,205dと径方向に対向する環状の永久磁石212とを有する。この永久磁石212は、周方向に交互に12個の磁極(N極とS極)を有するように着磁されている。各ロータコア211の中心孔には回転軸213が圧入され、該回転軸213が図示しないハウジングに対して回転可能に支持されている。尚、上記のように構成されたA相ロータ部203a及びB相ロータ部203bは、本実施形態では、下段(図13中、下段)のB相ロータ部203bが上段のA相ロータ部203aに対して電気角で45°時計回り方向にずれて並設されている。
 ここで、本実施形態のモータ201は、ロータ203における永久磁石212同士の軸方向の間に設けられて、永久磁石212の磁束を検出するためのセンサとしてのA相用センサ221及びB相用センサ222を備えている。
 詳しくは、図14に示すように、まずロータ203のA相ロータ部203aとB相ロータ部203bとは、ロータコア211同士が円盤状のロータスペーサ部材223aを軸方向に挟んで並設されている。これにより、A相ロータ部203aの永久磁石212とB相ロータ部203bの永久磁石212とは軸方向に隙間を有するように並設されている。
 また、ステータ202において、A相ステータ部202aとB相ステータ部202bとの軸方向の間には、一対の円盤状のステータスペーサ部材223bに軸方向に挟まれた態様で基板224が介在されている。そして、基板224は、前記永久磁石212同士の間(隙間)まで径方向内側に延びる内延部224aを有し、その内延部224aの先端部にA相用センサ221及びB相用センサ222が設けられている。尚、A相用センサ221及びB相用センサ222は、本実施形態ではホールICであって、A相用センサ221はA相ロータ部203aの永久磁石212の磁束を検出するためのセンサであって、B相用センサ222はB相ロータ部203bの永久磁石212の磁束を検出するためのセンサである。
 また、図13に示すように、A相用センサ221は、同A相用センサ221が検出する永久磁石212と対応するA相ステータ部202aにおける周方向に隣り合う磁極部204d,205d同士の周方向の間の角度範囲θα内に設けられている。本実施形態では、A相用センサ221は磁極部204d,205d同士の周方向の間の中心位置に設けられている。また、B相用センサ222は、検出する永久磁石212と対応するB相ステータ部202bにおける周方向に隣り合う磁極部204d,205d同士の周方向の間の角度範囲内に設けられている。本実施形態では、B相用センサ222は磁極部204d,205d同士の周方向の間の中心位置に設けられている。そして、A相用センサ221及びB相用センサ222は、基板224から延びる図示しない信号線によって前記駆動回路基板207に電気的に接続されている。
 次に、上記のように構成された第3実施形態のモータ201の作用について説明する。
 駆動回路基板207の駆動回路から巻線206に駆動電流が供給されると、ステータ202(A相ステータ部202a及びB相ステータ部202b)にて回転磁界が発生され、ロータ203(A相ロータ部203a及びB相ロータ部203b)が回転駆動される。この際、A相用センサ221及びB相用センサ222にて各永久磁石212の磁束が検出され、その磁束の検出信号に基づいて駆動回路から各巻線206に最適なタイミングで切り替わる駆動電流が供給される。これにより、良好に回転磁界が発生され、ロータ203が良好に回転駆動される。
 次に、第3実施形態の特徴的な利点を以下に記載する。
 (9)A相ロータ部203a及びB相ロータ部203bの永久磁石212の磁束を検出するためのA相用センサ221及びB相用センサ222は、永久磁石212同士の軸方向の間に設けられる。これにより、例えば、センサがロータ203の軸方向端部と対向するように設けられた場合に比べて、ステータ202からの磁束の影響を受け難くなり、永久磁石212の磁束を精度良く(正弦波に近い形で)検出することが可能となる。これにより、例えば、ロータ203(A相ロータ部203a及びB相ロータ部203b)の回転角度を容易に精度良く検出することが可能となり、ひいてはロータ203を良好に回転駆動させることが可能となる。
 (10)A相用センサ221は、検出する永久磁石212と対応するA相ステータ部202aにおける周方向に隣り合う磁極部204d,205d同士の周方向の間の角度範囲θα内に設けられている。また、B相用センサ222は、検出する永久磁石212と対応するB相ステータ部202bにおける周方向に隣り合う磁極部204d,205d同士の周方向の間の角度範囲内に設けられている。よって、A相用センサ221及びB相用センサ222は、ステータ202(A相ステータ部202a及びB相ステータ部202b)の磁極部204d,205dからの磁束の影響をより受け難くなり、永久磁石212の磁束をより精度良く検出することが可能となる。
 (11)A相用センサ221及びB相用センサ222は、A相ステータ部202aとB相ステータ部202bとの軸方向の間に介在された基板224に設けられるため、A相用センサ221及びB相用センサ222を容易に設けることができる。
 (12)巻線206の端部206aは、接続ターミナル208に(螺旋状に)巻回されて該接続ターミナル208に電気的に接続される構成であるため、容易且つ強固に巻線206の端部206aを接続ターミナル208に接続することができる。また、接続ターミナル208は溝208aを有し、巻線206の端部206aは溝208aに嵌るように接続ターミナル208に(螺旋状に)巻回されるため、より容易且つ強固に巻線206の端部206aを接続ターミナル208に接続することができる。また、駆動回路基板207は、その平面直交方向から見て凹部207aを有する略C字状に形成され、接続ターミナル208は、平面直交方向から見て凹部207aの底から突出しつつ凹部207a内に収容されるように設けられる。そのため、例えば、接続ターミナル208が駆動回路基板207の平面上から突出した構成に比べて、駆動回路基板207の薄型化を図ることができる。
 第3実施形態は、以下のように変更してもよい。
 ・上記実施形態では、A相用センサ221は、検出する永久磁石212と対応するA相ステータ部202aにおける周方向に隣り合う磁極部204d,205d同士の周方向の間の角度範囲θα内に設けられるとしたが、これに限定されず、前記角度範囲θα外に設けてもよい。また、B相用センサ222においても同様に磁極部204d,205d同士の周方向の間の角度範囲外にB相用センサ222を設けてもよい。
 ・上記実施形態では、A相用センサ221及びB相用センサ222は、A相ステータ部202aとB相ステータ部202bとの軸方向の間に介在された基板224に設けられるとしたが、永久磁石212同士の軸方向の間にA相用センサ221及びB相用センサ222を設けることができれば、他の構成に変更してもよい。
 ・上記実施形態では、駆動回路が設けられた駆動回路基板207が、A相用センサ221及びB相用センサ222が設けられた基板224と別に設けられるとしたが、これに限定されず、例えば、前記基板224に駆動回路を設けてもよい。このようにすると、駆動回路基板207が不要となり、基板の数を減らすことができる。また、基板224はA相ステータ部202aとB相ステータ部202bとの軸方向の間に介在されるものであるため、基板224をそれぞれの巻線206の両方の近くに配置することができ、基板224と各巻線206との接続が容易となる。
 ・上記実施形態では、特に言及していないが、A相用センサ221及びB相用センサ222は、その検出面が周方向と直交するように設けられてもよい。このようにすると、永久磁石212の磁束を精度良く検出することが可能となる。また勿論、A相用センサ221及びB相用センサ222は、その検出面が軸方向と直交するように設けられてもよい。
 ・上記実施形態の接続ターミナル208の形状や構成は変更してもよい。
 例えば、図17に示すように、接続ターミナル208の平面と直交する方向から見て接続ターミナル208の幅方向両側に複数の溝231aを有し、先端に向かうほど幅が広い接続ターミナル231に接続ターミナル208を変更してもよい。
 また、例えば、接続ターミナル208を図18に示す構成に変更してもよい。この構成では、一対の接続ターミナル233は絶縁部材232(太線で図示)を挟んでいる。一対の接続ターミナル233には、巻線206の複数の端部206a(例えば、A相ステータ部202aの巻線206の巻始めの端部206aと巻終わりの端部206a)が交互に巻回される。端部206aの各々が接続されるべき接続ターミナル233にのみ電気的に接続されるべく、接続されるべき接続ターミナル233に対応した端部206aの部位のみ被膜が除去される。
 ・上記実施形態では、駆動回路基板207の平面に沿って接続ターミナル208が設けられた構成としたが、異なる構成で巻線206の端部206aを駆動回路基板に接続してもよい。
 例えば、図19に示すように変更してもよい。この例では、モータ201の軸方向に沿って延びる複数の接続ターミナル241~244がステータ202の外周と図示しないハウジングとの間に収まるように円弧状に並設され、各接続ターミナル241~244の周方向の間には絶縁部材245(太線で図示)が介在されている。そして、接続ターミナル241~244の長さを異ならせることで、接続ターミナル241~244の周方向端面がそれぞれ露出するように設けられ、その露出面に巻線246の端部246aが接続されている。そして、接続ターミナル241~244の各軸方向上端部が上方の駆動回路基板247に電気的に接続される。尚、この例(図19参照)は、ステータ部を3つ(3相)有するモータの例であって、各相の巻線246の一方の端部246aが中性点となる接続ターミナル241に接続され、各相の巻線246の他方の端部246aがそれぞれの相に対応した接続ターミナル242~244にそれぞれ接続された例を示している。
 ・上記した実施形態並びに各変形例は適宜組み合わせてもよい。

Claims (15)

  1.  互いに積層されたA相用ロータとB相用ロータとを含む2層ロータであって、
      前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでおり、
      前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる、
     前記2層ロータと、
     互いに積層されたA相用ステータとB相用ステータとを含む2層ステータであって、
      前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでおり、
      前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる、
     前記2層ステータと、
     前記A相用巻線に印加するA相入力電圧及び前記B相用巻線に印加するB相入力電圧を制御する制御部と、を備え、
     前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されており、
     前記制御部は、前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ進み側の位相角を与え、通電幅を180度以下に設定する、モータ。
  2.  モータの制御方法であって、前記モータは、
     互いに積層されたA相用ロータとB相用ロータとを含む2層ロータであって、
      前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでおり、
      前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる、
     前記2層ロータと、
     互いに積層されたA相用ステータとB相用ステータとを含む2層ステータであって、
      前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでおり、
      前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる、
     前記2層ステータと、を含んでおり、
     前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されており、
     前記モータの制御方法は、
     前記A相用巻線にA相入力電圧を印加することと、
     前記B相用巻線にB相入力電圧を印加することと、
     前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ24~42度の進み側の位相角を設定するとともに、それぞれ150~170度の通電幅を設定することと、を備える、モータの制御方法。
  3.  モータの制御方法であって、前記モータは、
     互いに積層されたA相用ロータとB相用ロータとを含む2層ロータであって、
      前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでおり、
      前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる、
     前記2層ロータと、
     互いに積層されたA相用ステータとB相用ステータとを含む2層ステータであって、
      前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでおり、
      前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる、前記2層ステータと、を含んでおり、
     前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されており、
     前記モータの制御方法は、
     前記A相用巻線にA相入力電圧を印加することと、
     前記B相用巻線にB相入力電圧を印加することと、
     前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ0~36度(0を含まず)の進み側の位相角を設定するとともに、それぞれ155~180度の通電幅を設定することと、を備える、モータの制御方法。
  4.  モータの制御方法であって、前記モータは、
     互いに積層されたA相用ロータとB相用ロータとを含む2層ロータであって、
      前記A相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでおり、
      前記B相用ロータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のロータコアと、該一対のロータコアの間に配置された界磁磁石と、を含んでいる、
     前記2層ロータと、
     互いに積層されたA相用ステータとB相用ステータとを含む2層ステータであって、
      前記A相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたA相用巻線と、を含んでおり、
      前記B相用ステータは、等角度間隔に配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、該一対のステータコアの間に配置されたB相用巻線と、を含んでいる、前記2層ステータと、を含んでおり、
     前記A相用ステータ及び前記A相用ロータと、前記B相用ステータ及び前記B相用ロータとの相対配置角度が電気角で90度に設定されており、
     前記モータの制御方法は、
     前記A相用巻線にA相入力電圧を印加することと、
     前記B相用巻線にB相入力電圧を印加することと、
     前記A相入力電圧及び前記B相入力電圧の基本電圧波形に対して、それぞれ24~36度の進み側の位相角を設定するとともに、それぞれ155~170度の通電幅を設定することと、を備える、モータの制御方法。
  5.  請求項2から請求項4のいずれか1項に記載のモータの制御方法にて設定される前記A相入力電圧及び前記B相入力電圧を生成して前記モータの制御を行うように構成されている、モータの制御装置。
  6.  軸方向に並ぶ2つのステータ部を含むステータであって、前記ステータ部の各々は、
      周方向に沿って配置された複数の爪状磁極をそれぞれ有する一対のステータコアと、
      該一対のステータコアの軸方向間に位置する巻線と、を含んでいる、
     前記ステータと、
     該ステータを収容するハウジングと、
    を備え、
     前記ハウジングは、互いに組み付けられた第1のケースと第2のケースとを含んでおり、
     前記第1のケースには一方の前記ステータ部が固定されており、
     前記第2のケースには他方の前記ステータ部が固定されており、
     前記第1及び第2のケースが互いに組み付けられた状態で、前記2つのステータ部の軸方向の間には空隙部が設けられているモータ。
  7.  請求項6に記載のモータにおいて、
     前記第1及び第2のケースの各々は、前記ステータ部が収容されるケース本体部と、該ケース本体部の開口から径方向に延びるフランジ部とを含んでおり、
     前記第1のケースのフランジ部と前記第2のケースのフランジ部とがねじにて固定されているモータ。
  8.  請求項7に記載のモータにおいて、
     前記第1及び第2のケースの少なくとも一方の前記フランジ部には、前記ねじが挿通される孔が形成されており、
     該孔は周方向に沿って延びる長孔であるモータ。
  9.  請求項6又は7に記載のモータにおいて、
     前記第1のケースは軸方向に突出する凸部を有しており、
     前記第2のケースは軸方向に凹む凹部を有しており、
     前記凸部と凹部とが嵌合されて前記第1のケースと前記第2のケースとが周方向に係止されているモータ。
  10.  請求項6~9のいずれか1項に記載のモータにおいて、
     前記第1及び第2のケースはそれぞれ、収容される前記ステータ部を軸方向に位置決めする位置決め部を有しているモータ。
  11.  軸方向に配置された複数のステータ部を有するステータであって、前記ステータ部の各々は第1ステータコアと第2ステータコアと前記第1及び第2ステータコアの間に設けられた巻線とを有しており、第1ステータコア及び第2ステータコアの各々は爪状磁極を有しており、該爪状磁極は径方向に延びた径方向延出部と該径方向延出部の先端から軸方向に延びた磁極部とを有する、前記ステータと、
     軸方向に配置された複数のロータ部を有するロータであって、前記ロータ部と前記ステータ部とは同数であり、前記ロータ部は前記磁極部と対向する永久磁石をそれぞれ有する、前記ロータと、
     前記永久磁石同士の軸方向の間に設けられ、前記永久磁石の磁束を検出するためのセンサと
    を備えるモータ。
  12.  請求項11に記載のモータにおいて、
     前記センサは、同センサが検出する永久磁石と対応するステータ部における周方向に隣り合う磁極部同士の周方向の間の角度範囲内に設けられているモータ。
  13.  請求項11又は12に記載のモータにおいて、
     前記ステータ部同士の軸方向の間に介在された基板をさらに備え、
     前記センサは、前記基板に設けられているモータ。
  14.  請求項13に記載のモータにおいて、
     前記基板は、前記巻線に駆動電流を供給する駆動回路を有しているモータ。
  15.  請求項11乃至14のいずれか1項に記載のモータにおいて、
     前記センサは検出面を有しており、
     前記センサは前記検出面が周方向と直交するように設けられているモータ。
PCT/JP2016/074094 2015-08-21 2016-08-18 モータ、モータの制御方法、及びモータの制御装置 WO2017033827A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/541,139 US10826339B2 (en) 2015-08-21 2016-08-18 Motor, motor control method and motor control device
CN201680003330.3A CN107078620B (zh) 2015-08-21 2016-08-18 电动机、电动机的控制方法以及电动机的控制装置
DE112016003800.3T DE112016003800T5 (de) 2015-08-21 2016-08-18 Motor, Motorsteuerverfahren und Motorsteuervorrichtung

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015163697A JP6477358B2 (ja) 2015-08-21 2015-08-21 モータ
JP2015-163697 2015-08-21
JP2015-178647 2015-09-10
JP2015178647A JP6724319B2 (ja) 2015-09-10 2015-09-10 モータ
JP2015-216019 2015-11-02
JP2015216019 2015-11-02
JP2016-156524 2016-08-09
JP2016156524A JP6705331B2 (ja) 2015-11-02 2016-08-09 モータ、モータの制御方法、及びモータの制御装置

Publications (1)

Publication Number Publication Date
WO2017033827A1 true WO2017033827A1 (ja) 2017-03-02

Family

ID=58100219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074094 WO2017033827A1 (ja) 2015-08-21 2016-08-18 モータ、モータの制御方法、及びモータの制御装置

Country Status (1)

Country Link
WO (1) WO2017033827A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548633A (en) * 1947-08-28 1951-04-10 Gen Electric Dynamoelectric machine
JP2001280247A (ja) * 2000-03-31 2001-10-10 Toyota Autom Loom Works Ltd 電動圧縮機
US20100181865A1 (en) * 2009-01-20 2010-07-22 Dong Hwan Oh Structure of casing of small stepping motor
JP2015089321A (ja) * 2013-09-24 2015-05-07 アスモ株式会社 モータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548633A (en) * 1947-08-28 1951-04-10 Gen Electric Dynamoelectric machine
JP2001280247A (ja) * 2000-03-31 2001-10-10 Toyota Autom Loom Works Ltd 電動圧縮機
US20100181865A1 (en) * 2009-01-20 2010-07-22 Dong Hwan Oh Structure of casing of small stepping motor
JP2015089321A (ja) * 2013-09-24 2015-05-07 アスモ株式会社 モータ

Similar Documents

Publication Publication Date Title
JP6667084B2 (ja) 表面磁石型モータ
US10110076B2 (en) Single-phase brushless motor
JP4269953B2 (ja) 回転電機
US10644552B2 (en) Brushless motor
US10367385B2 (en) Motor
JP2015080355A (ja) ブラシレスモータ
JP2006191789A (ja) モータ
US20130154405A1 (en) Hybrid rotary electrical machine
JP2013102597A (ja) 電動機用ロータおよびブラシレスモータ
WO2017195263A1 (ja) 永久磁石型モータ
CN107078620B (zh) 电动机、电动机的控制方法以及电动机的控制装置
JP2018082600A (ja) ダブルロータ型の回転電機
US20140001926A1 (en) Assembling structure for resolver and motor assembly having the same
WO2014069288A1 (ja) インナーロータ型モータ
JP2015154555A (ja) モータ
JP5290726B2 (ja) モータ
JP2007089304A (ja) 永久磁石式回転電機
JP2013198369A (ja) 電動モータ
WO2017033827A1 (ja) モータ、モータの制御方法、及びモータの制御装置
JP6477358B2 (ja) モータ
KR20160017159A (ko) 권선계자형 동기 전동기 및 그의 회전자
JP6190694B2 (ja) ロータ、ステータ、及び、モータ
KR20170039604A (ko) 브러시리스 모터
JP6705331B2 (ja) モータ、モータの制御方法、及びモータの制御装置
JP2020014368A (ja) ブラシレスモータ及びブラシレスモータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541139

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003800

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839174

Country of ref document: EP

Kind code of ref document: A1