WO2017033342A1 - 触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池 - Google Patents

触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池 Download PDF

Info

Publication number
WO2017033342A1
WO2017033342A1 PCT/JP2015/074309 JP2015074309W WO2017033342A1 WO 2017033342 A1 WO2017033342 A1 WO 2017033342A1 JP 2015074309 W JP2015074309 W JP 2015074309W WO 2017033342 A1 WO2017033342 A1 WO 2017033342A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
catalyst
particles
platinum metal
catalyst particles
Prior art date
Application number
PCT/JP2015/074309
Other languages
English (en)
French (fr)
Inventor
一樹 在原
裕行 田中
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201580082734.1A priority Critical patent/CN107921419B/zh
Priority to JP2017536161A priority patent/JP6583417B2/ja
Priority to EP15902311.8A priority patent/EP3342484B1/en
Priority to PCT/JP2015/074309 priority patent/WO2017033342A1/ja
Priority to KR1020187005564A priority patent/KR101951612B1/ko
Priority to CA2996870A priority patent/CA2996870C/en
Priority to US15/755,330 priority patent/US10686196B2/en
Publication of WO2017033342A1 publication Critical patent/WO2017033342A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes

Definitions

  • the present invention relates to catalyst particles and an electrode catalyst, an electrolyte membrane-electrode assembly and a fuel cell using the same.
  • the present invention relates to catalyst particles that can exhibit high activity, and electrode catalysts, electrolyte membrane-electrode assemblies, and fuel cells using the same.
  • a fuel cell is a clean power generation system in which the product of an electrode reaction is water in principle and has almost no adverse effect on the global environment.
  • a polymer electrolyte fuel cell (PEFC) is expected as a power source for electric vehicles because it operates at a relatively low temperature.
  • the polymer electrolyte fuel cell generally has a structure in which an electrolyte membrane-electrode assembly (MEA) is sandwiched between separators.
  • MEA electrolyte membrane-electrode assembly
  • the electrolyte membrane-electrode assembly is formed by sandwiching a polymer electrolyte membrane between a pair of electrode catalyst layers and a gas diffusible electrode (gas diffusion layer; GDL).
  • both electrodes (cathode and anode) sandwiching the solid polymer electrolyte membrane are represented by the following reaction formulas according to their polarities. Electrode reaction proceeds to obtain electrical energy. First, hydrogen contained in the fuel gas supplied to the anode (negative electrode) side is oxidized by the catalyst component to become protons and electrons (2H 2 ⁇ 4H + + 4e ⁇ : reaction 1). Next, the generated protons pass through the solid polymer electrolyte contained in the electrode catalyst layer and the solid polymer electrolyte membrane in contact with the electrode catalyst layer, and reach the cathode (positive electrode) side electrode catalyst layer.
  • the electrons generated in the anode-side electrode catalyst layer include the conductive carrier constituting the electrode catalyst layer, the gas diffusion layer in contact with the side of the electrode catalyst layer different from the solid polymer electrolyte membrane, the separator, and the outside.
  • the cathode side electrode catalyst layer is reached through the circuit.
  • the protons and electrons that have reached the cathode electrode catalyst layer react with oxygen contained in the oxidant gas supplied to the cathode side to generate water (O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O: Reaction 2). .
  • electricity can be taken out through the above-described electrochemical reaction.
  • Patent Document 1 reports metal nanoparticles having a confetti shape in which dendritic portions are radially extended from the center. According to Patent Document 1, it is described that the specific surface area can be increased while having a thermally stable particle diameter, so that the catalytic function can be improved.
  • the metal nanoparticles described in Patent Document 1 still require a large amount of metal (particularly platinum) that is required to achieve the desired activity. For this reason, the metal nanoparticles described in Patent Document 1 cannot be said to have sufficient activity required as a catalyst.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide catalyst particles that can exhibit high activity.
  • the present inventors have conducted intensive research to solve the above problems. As a result, the present inventors have found that the above-mentioned problems can be solved by substantially forming the projecting portion mainly contributing to the reaction with platinum having high activity among the catalyst particles having a confetti shape.
  • the catalyst particles of the present invention are alloy particles composed of platinum atoms and non-platinum metal atoms, and the alloy particles have a granular main body portion and a plurality of protrusions protruding outward from the outer surface of the main body portion.
  • the main body portion is formed of non-platinum metal and platinum
  • the protruding portion is formed mainly of platinum
  • an aspect ratio (diameter / length) of the protruding portion is more than 0 and 2 or less. It is. According to the above configuration, the activity of the catalyst can be improved.
  • the “granular body part” is also referred to as “a body part according to the present invention” or simply “a body part”.
  • the “plural protrusions protruding outward from the outer surface of the main body” are also referred to as “protrusions according to the present invention” or simply “protrusions”.
  • particulate catalysts have been used for catalyst layers for fuel cells.
  • a simple spherical structure has a problem that the specific surface area is small and therefore the activity (area specific activity, mass specific activity) is inferior.
  • the metal nanoparticles of Patent Document 1 are in the shape of confetti, the specific surface area can be increased as compared with a simple spherical structure. For this reason, a catalyst in which such metal nanoparticles are supported on a carrier can improve activity, particularly mass specific activity, as compared with metal particles having a simple spherical structure having the same composition.
  • metal nanoparticles in the shape of confetti are formed of platinum.
  • the catalyst particles of the present invention are (A) alloy particles consisting of platinum atoms and non-platinum metal atoms; (B) The alloy particles have a granular main body portion and a plurality of protruding portions protruding outward from the outer surface of the main body portion; (C) The main body is formed of non-platinum metal and platinum, and the protrusion is formed mainly of platinum; and (d) the aspect ratio (diameter / length) of the protrusion exceeds zero. 2 or less, It is characterized by that.
  • the catalyst (alloy) particles according to the present invention are a main body part formed from a non-platinum metal and platinum and a protruding part substantially formed from platinum.
  • the main body portion having a low reaction contribution rate is configured to include non-platinum metal having a relatively low catalytic activity in addition to platinum, while contacting with the reaction gas and contributing to the reaction.
  • the projecting portion having a high rate is mainly composed of platinum having a high catalytic activity.
  • the utilization rate of platinum can be raised and the amount of platinum required in order to achieve the same activity can be reduced.
  • a large number of crystal faces exhibiting high activity can be exposed.
  • activity (mass specific activity and area specific activity), especially area specific activity can be improved. That is, it is possible to provide a platinum alloy catalyst in which the activity of the electrode catalyst is improved and the platinum content in the catalyst particles is reduced.
  • the roughness of the catalyst particle surface increases, so that the area that can effectively contribute to the reaction increases. For this reason, activity, especially area specific activity can be improved. Further, since the specific surface area of the catalyst particles is increased, the activity, particularly the mass specific activity can be improved.
  • the catalyst particles of the present invention can exhibit high activity (mass specific activity and area specific activity) even with a small platinum content. For this reason, the electrode catalyst using the catalyst particles of the present invention, the membrane electrode assembly having the electrode catalyst in the catalyst layer, and the fuel cell are excellent in power generation performance.
  • the catalyst particles having the above structure platinum is mainly present on the catalyst particle surface due to the structure (platinum is exposed). For this reason, the catalyst particles have high elution resistance, and can suppress / prevent chain elution of non-platinum metal even under acidic conditions, for example, even in contact with a strongly acidic electrolyte. Therefore, the catalyst particles of the present invention can exhibit the effect of non-platinum metal atoms over a long period of time.
  • the catalyst particles of the present invention are excellent in durability and can maintain high activity (mass specific activity and area specific activity) for a long period of time. For this reason, the electrode catalyst using the catalyst particles of the present invention, the membrane electrode assembly having the electrode catalyst in the catalyst layer, and the fuel cell are excellent in durability.
  • the present invention is not limited by the above mechanism.
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the catalyst particles of the present invention have the following configuration: (A) alloy particles consisting of platinum atoms and non-platinum metal atoms; (B) The alloy particles have a granular main body portion and a plurality of protruding portions protruding outward from the outer surface of the main body portion; (C) The main body is formed of non-platinum metal and platinum, and the protrusion is formed mainly of platinum; and (d) the aspect ratio (diameter / length) of the protrusion exceeds zero. 2 or less.
  • FIG. 1 is a cross-sectional view schematically showing catalyst particles according to an embodiment of the present invention.
  • the catalyst particle 20 according to the present invention has a main body portion 21 and a plurality of protruding portions 22, and preferably includes the main body portion 21 and the plurality of protruding portions 22.
  • the main body 21 has a granular (spherical) structure (configuration (b)).
  • the main-body part 21 is comprised from a non-platinum metal and platinum (structure (c)).
  • the entire main body portion may have any structure such as a substantially uniform composition or a portion having a different composition.
  • the main body has at least a portion formed mainly of a non-platinum metal.
  • the utilization rate of platinum can be further increased, and the amount of platinum required to achieve the same activity can be further reduced.
  • the central portion of the main body is formed of non-platinum metal.
  • the main body portion has a central portion (core portion) formed mainly of a non-platinum metal.
  • the body part surface layer which touches a protrusion part may be in the state of the solid solution in which the non-platinum metal and platinum were mixed uniformly.
  • the main body includes a central part (core part) formed of a non-platinum metal as a main component and the central part (core part) and covers the non-platinum metal and platinum. It is comprised from the outer shell part (shell part) comprised from these.
  • the center of the main body is substantially composed of non-platinum metal that is easy to elute, and platinum that is difficult to elute exists more selectively on the catalyst particle surface (more platinum is exposed).
  • the catalyst particles can further improve elution resistance, and can more effectively suppress and prevent chain elution of non-platinum metal even under acidic conditions, for example, in contact with a strongly acidic electrolyte (durability). Can be improved.
  • the main body part or the central part (core part) is formed mainly of non-platinum metal” means that the main body part or the central part (core part) exceeds 50 mol% with respect to the total molar amount. It means that it is composed of a non-platinum metal at a ratio of (upper limit: 100 mol%).
  • a main-body part is comprised with a non-platinum metal in the ratio of 60 mol% or more (upper limit: 100 mol%) with respect to the total molar amount of a main-body part.
  • the proportion of the non-platinum metal in the main body can be confirmed by the composition distribution in each particle by TEM-EDX or the like.
  • the composition of the outer shell portion (shell portion) is not particularly limited and can be appropriately adjusted depending on the production conditions of the catalyst particles (for example, the amount of non-platinum metal or platinum added).
  • the protruding portion 22 protrudes outward from the outer surface of the main body portion 21 (configuration (b)). Further, the projecting portion 22 is formed with platinum as a main component (configuration (c)).
  • the protrusion is formed mainly of platinum” means that the protrusion exceeds 50 mol% (upper limit: 100 mol%) with respect to the total molar amount of the protrusion. Means that it is composed of platinum.
  • a protrusion part is comprised with platinum in the ratio of 60 mol% or more (upper limit: 100 mol%) with respect to the total molar amount of a protrusion part.
  • the proportion of platinum in the protrusions can be confirmed by the composition distribution in each particle by TEM-EDX or the like.
  • the aspect ratio (diameter / length) of the projecting portion exceeds 0 and is 2 or less (configuration (d)).
  • the roughness of the catalyst particle surface is increased, so that the area that can effectively contribute to the reaction, that is, the specific surface area of the catalyst particle is increased. For this reason, activity, especially mass specific activity can be improved.
  • a large number of crystal planes exhibiting high activity can be exposed.
  • by making the catalyst particles have a confetti-like structure compressive stress acts and the distance between platinum is shortened. For this reason, activity, especially area specific activity can be improved.
  • the aspect ratio of the protrusions exceeds 2
  • the catalyst particles are almost spherical, the effect of increasing the specific surface area is reduced, the exposure of crystal surfaces showing high activity is reduced, and the compression is further reduced. Since it becomes difficult for stress to act, it becomes difficult to shorten the distance between platinum, which is not preferable.
  • the aspect ratio of the projecting portion is preferably 0.1 to 2, preferably 0.2 to 2 is more preferable.
  • the size of the protrusion is not particularly limited as long as the aspect ratio is within the range according to the present invention.
  • the diameter of the protrusion is preferably more than 0 nm and not more than 5 nm, more preferably 0 nm. More than 4 nm, particularly preferably 1.5 to 4 nm.
  • the length of the protruding portion is more than 0 nm and not more than 10 nm, more preferably 2 ⁇ 8 nm.
  • the protruding portion is more than 0 nm and not more than 10 nm, more preferably 2 ⁇ 8 nm.
  • the protrusions it is not necessary for all of them to satisfy the above size (diameter or length of the protrusion).
  • the total number of protrusions preferably 60% or more, more preferably 80% or more, and particularly preferably all (100%) satisfy the above size (diameter or length of the protrusions).
  • the size of the main body is not particularly limited as long as the aspect ratio is within the range according to the present invention.
  • the diameter of the main body is preferably 3 to 40 nm or less, more preferably 5 to 30 nm.
  • the protruding portion is a region outward from the boundary (outside the dotted line in FIG. 1).
  • the “boundary between the main body portion 21 and the protruding portion 22 (dotted line in FIG. 1)” is an approximate circle obtained based on a line connecting the bottom portions between adjacent protruding portions.
  • the approximate circle is obtained from the coordinates of the measurement point by the least square method.
  • the length of the projecting portion is the length of the perpendicular line (“L 22 ” in FIG. 1) drawn from the apex of the projecting portion to the approximate circle.
  • the diameter of the protruding portion is the maximum diameter of the protruding portion (“R 22 ” in FIG. 1).
  • the diameter of the main body is the maximum of the approximate circle (“R 21 ” in FIG. 1).
  • the diameter (“R 22 ” in FIG. 1) and length (“L 22 ” in FIG. 1) of the protrusion, and the diameter of the main body (“R 21 ” in FIG. 1) are known.
  • values measured by a transmission electron microscope (TEM) are employed.
  • the size of the catalyst (alloy) particles is not particularly limited, and is preferably a size that satisfies the size of the main body portion and the protruding portion.
  • the diameter of the catalyst (alloy) particles is preferably more than 0 nm and 100 nm or less, more preferably more than 6 nm and 60 nm or less, and particularly preferably 10 to 50 nm. With such a size, the catalyst (alloy) particles can exhibit higher activity (mass specific activity and area specific activity).
  • the diameter of the catalyst (alloy) particles is the maximum diameter of the catalyst (alloy) particles (“R 20 ” in FIG. 1).
  • the catalyst particles are alloy particles composed of platinum atoms and non-platinum metal atoms (Configuration (a)).
  • the alloy particles according to the present invention are not intended that the entire particle is composed of an alloy composed of platinum atoms and non-platinum metal atoms, but at least a portion is composed of an alloy composed of platinum atoms and non-platinum metal atoms. Intended to be.
  • the main body part is formed mainly of non-platinum metal
  • the protruding part is formed mainly of platinum
  • the vicinity of the boundary between the main body part and the protruding part is platinum atoms and non-platinum.
  • An alloy with a metal atom is used as a main component.
  • an “alloy” is a general term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the catalyst particles of the present invention have an alloy structure in which a component element becomes a separate crystal, that is, a eutectic alloy that is a mixture, a component element completely melted into a solid solution, a component element is an intermetallic compound or Some form a compound of a metal and a nonmetal.
  • the catalyst particles may be in any form, but include those in which at least a platinum atom and a non-platinum atom form an intermetallic compound.
  • the non-platinum metal atom is not particularly limited, but is preferably a transition metal atom from the viewpoint of catalytic activity and ease of formation of the structure (particularly, the main body portion and the projecting portion) according to the present invention.
  • the transition metal atom refers to a Group 3 element to a Group 12 element, and the type of the transition metal atom is not particularly limited.
  • transition metal atoms are vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni). It is preferably selected from the group consisting of copper (Cu) and zinc (Zn).
  • the transition metal atom is more preferably nickel (Ni) or cobalt (Co). Since the transition metal atom easily forms an intermetallic compound with platinum (Pt), the activity (mass specific activity and area specific activity) can be further improved while reducing the amount of platinum used.
  • the transition metal atom may be alloyed with platinum alone, or two or more of them may be alloyed with platinum, but is preferably alloyed with platinum alone.
  • the composition of the catalyst particles is not particularly limited. From the viewpoints of catalyst activity and ease of formation of protrusions, the composition of the catalyst particles is preferably 0.1 to 1 mole of non-platinum metal atoms with respect to 1 mole of platinum atoms. The amount is more preferably 1 to 0.5 mol, and particularly preferably 0.15 to 0.3 mol. With such a composition, the catalyst particles can exhibit and maintain high activity.
  • the composition of the catalyst particles (content of each metal atom in the catalyst particles) is based on inductively coupled plasma emission spectrometry (ICP atomic emission spectrometry), inductively coupled plasma mass spectrometry (ICP mass spectrometry), and fluorescent X-ray analysis (XRF). It can be determined by a conventionally known method.
  • the method for producing the catalyst particles is not particularly limited as long as the method can produce catalyst particles having the following configurations (a) to (d): (A) alloy particles consisting of platinum atoms and non-platinum metal atoms; (B) The alloy particles have a granular main body portion and a plurality of protruding portions protruding outward from the outer surface of the main body portion; (C) The main body is formed of non-platinum metal and platinum, and the protrusion is formed mainly of platinum; and (d) the aspect ratio (diameter / length) of the protrusion exceeds zero. 2 or less.
  • a non-platinum metal precursor solution containing a non-platinum metal precursor (step (1)); Preparing a reducing agent mixed solution containing an adsorbent and a reducing agent (step (2)); Mixing the non-platinum metal precursor solution and the reducing agent mixed solution, and reducing the non-platinum metal precursor to obtain a non-platinum metal particle dispersion (step (3)); Preparing a platinum precursor solution containing a platinum precursor (step (4)); The non-platinum metal particle dispersion and the platinum precursor solution are mixed, the platinum precursor is reduced, and platinum grows on the surface of the non-platinum metal particles to form protrusions (step (5)).
  • the catalyst particles according to the present invention can be produced.
  • the non-platinum metal constituting the non-platinum metal precursor is not particularly limited, but the description thereof is omitted here because it is the same as the description in the non-platinum metal atom.
  • the form of the non-platinum metal precursor is not particularly limited, but non-platinum metal salts and non-platinum metal complexes can be preferably used.
  • carboxylates such as acid salts and formate salts, hydroxides, alkoxides, oxides, ammine complexes, cyano complexes, halogeno complexes, and hydroxy complexes. That is, a compound in which the non-platinum metal can be converted into a metal ion in a solvent such as pure water is preferable.
  • non-platinum metal salt halide (particularly chloride), sulfate, nitrate, and sulfamate are more preferable, and sulfate and sulfamate are particularly preferable.
  • the said non-platinum metal precursor may be used individually by 1 type, or may be used as a 2 or more types of mixture.
  • the non-platinum metal precursor may be in the form of a hydrate.
  • the solvent used for the preparation of the non-platinum metal precursor solution is not particularly limited and is appropriately selected depending on the type of the non-platinum metal precursor used.
  • the form of the non-platinum metal precursor solution is not particularly limited, and includes solutions, dispersions, and suspensions. From the viewpoint of being able to mix uniformly, the non-platinum metal precursor solution is preferably in the form of a solution. Specific examples include water, organic solvents such as methanol, ethanol, 1-propanol and 2-propanol, acids and alkalis. Among these, water is preferable from the viewpoint of sufficiently dissolving the non-platinum metal ionic compound, and it is particularly preferable to use pure water or ultrapure water.
  • the said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
  • the concentration of the non-platinum metal precursor in the non-platinum metal precursor solution is not particularly limited, but is preferably 0.01 M (mol / L) or more in terms of metal, and is 0.02 M (mol / L) or more. Is more preferable, and 0.03M (mol / L) or more is particularly preferable.
  • the upper limit of the concentration of the non-platinum metal precursor in the non-platinum metal precursor solution is not particularly limited, but is preferably 0.10 M (mol / L) or less in terms of metal, and is 0.09 M (mol / L). ) Or less, more preferably 0.08 M (mol / L) or less. With the concentration as described above, the size of the main body can be efficiently controlled within the range as described above.
  • a reducing agent mixed solution containing an adsorbent and a reducing agent is prepared.
  • the adsorbent is adsorbed on the surface of the non-platinum metal particles when the non-platinum metal precursor is reduced to become non-platinum metal particles in the following step (3), and the platinum in the following step (5).
  • the adsorbent also acts to prevent agglomeration.
  • the reducing agent is a compound capable of reducing a non-platinum metal precursor (preferably a transition metal precursor) and a platinum precursor.
  • the adsorbent that can be used in this step is not particularly limited, but citrates such as sodium citrate and trisodium citrate; citrate hydrates such as trisodium citrate dihydrate; Acid; water-soluble polymer such as polyvinylpyrrolidone, polyethyleneimine, chitosan, sodium polyacrylate, polyacrylate ester; sulfur compound such as decanethiol and hexanethiol; aliphatic 4 such as cetyltrimethylammonium bromide and cetyltrimethylammonium chloride And a secondary amine salt.
  • citrate or a hydrate thereof is preferable, and trisodium citrate dihydrate is more preferable.
  • the adsorbents selectively and more uniformly adsorb on the surface of the non-platinum metal particles when the non-platinum metal precursor is reduced to become non-platinum metal particles, and the platinum ions in the following step (5) More effectively inhibit the substitution reaction. Therefore, in the following step (5), the protruding portion can be selectively and more uniformly formed on the surface of the non-platinum metal particles.
  • the adsorbent has an excellent anti-aggregation effect, can act as a buffering agent, can minimize pH change during the reaction, and can facilitate the uniform progress of the reaction.
  • the said adsorbent may be used individually by 1 type, or may be used as a 2 or more types of mixture.
  • the reducing agent that can be used in this step is not particularly limited, but is preferably a reducing agent that exhibits a reducing action at 30 ° C. or lower, more preferably 20 ° C. or lower.
  • a reducing agent include sodium borohydride (NaBH 4 ), calcium borohydride (Ca (BH 4 ) 2 ), lithium borohydride (LiBH 4 ), and aluminum borohydride (Al (BH 4).
  • borohydride compounds such as magnesium borohydride (Mg (BH 4 ) 2 ); lower alcohols such as ethanol, methanol, propanol; formates such as formic acid, sodium formate and potassium formate; sodium thiosulfate, and Hydrazine (N 2 H 4 ) or the like can be used. These may be in the form of hydrates.
  • the said reducing agent may be used individually by 1 type, or may be used as a 2 or more types of mixture.
  • Citrate for example, trisodium citrate dihydrate, is a platinum reducing agent, but is not included in the reducing agent in the present invention because it cannot reduce transition metal atoms.
  • a borohydride compound as a reducing agent, and it is more preferable to use sodium borohydride.
  • citrate or its hydrate is used as an adsorbent, the use of a borohydride compound makes the aqueous solution weakly alkaline and can also play a role of extending the life of the reducing ability of the borohydride compound. ,preferable.
  • the solvent used for the preparation of the mixed liquid containing the reducing agent and the adsorbent is not particularly limited, and is appropriately selected depending on the type of the reducing agent and the adsorbent used.
  • the form of the mixed solution is not particularly limited, and includes a solution, a dispersion, and a suspension. In view of uniform mixing, the mixed solution is preferably in the form of a solution. Further, it is preferable to add the reducing agent in a solution state to the non-platinum metal precursor solution because the reaction rate becomes uniform in the mixed solution and the particle diameter tends to be uniform rather than adding the powdery reducing agent.
  • the reaction rate becomes more uniform in the mixed solution than when a powdered reducing agent is added, and it is more selective to the surface of the non-platinum metal particles. And can be adsorbed more uniformly.
  • the solvent include water, organic solvents such as methanol, ethanol, 1-propanol and 2-propanol, acids and alkalis.
  • water is preferable from the viewpoint of sufficiently dissolving the reducing agent and the adsorbent, and it is particularly preferable to use pure water or ultrapure water.
  • the said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
  • concentration of adsorbent and a reducing agent in a reducing agent liquid mixture is not restrict
  • the concentration of the adsorbent in the reducing agent mixture is preferably 0.1 to 5 g / 100 mL of solvent, more preferably 0.2 to 3 g / 100 mL of solvent.
  • the concentration of the reducing agent in the reducing agent mixed solution is preferably 0.3 to 10 g / 100 mL of solvent, more preferably 0.5 to 5 g / 100 mL of solvent.
  • the method for preparing the reducing agent mixed solution containing the reducing agent and the adsorbent is not particularly limited. For example, after adding the adsorbent to the solvent, add the reducing agent; add the reducing agent to the solvent, then add the adsorbent; dissolve the adsorbent and the reducing agent separately in the solvent, and then mix them Any method of adding the adsorbent and the reducing agent to the solvent at once may be used.
  • the above mixed solution may be stirred in order to mix uniformly.
  • the stirring conditions are not particularly limited as long as they can be mixed uniformly.
  • the mixture can be uniformly dispersed and mixed by using an appropriate stirrer such as a stirrer or a homogenizer, or by applying ultrasonic waves such as an ultrasonic dispersing device.
  • the stirring time may be appropriately set so that the dispersion is sufficiently performed, and is usually 0.5 to 60 minutes, preferably 1 to 40 minutes.
  • the mixing method of the reducing agent mixed solution and the non-platinum metal precursor solution is not particularly limited.
  • the reducing agent mixed solution is added to the non-platinum metal precursor solution, the non-platinum metal precursor solution is added to the reducing agent mixed solution, or the non-platinum metal precursor solution and the reducing agent mixed solution are batched. It may be added either.
  • the reducing agent mixed solution to the non-platinum metal precursor solution.
  • the addition method is not particularly limited.
  • the reducing agent mixed solution may be added to the non-platinum metal precursor solution all at once or in divided portions.
  • the non-platinum metal precursor solution may be added to the reducing agent mixed solution all at once or in divided portions.
  • the mixing ratio of the reducing agent mixed solution and the non-platinum metal precursor solution is not particularly limited, and is appropriately selected according to a desired effect.
  • the amount of adsorbent added to the reducing agent mixture is easy to control the adsorption state of the adsorbent to the non-platinum metal particles (and hence easy to form protrusions in the subsequent process). In consideration of the effect of preventing aggregation, it is appropriately set.
  • the addition amount of the adsorbent in the reducing agent mixed solution is preferably 2.3 mol or more, and preferably 2.4 mol or more with respect to 1 mol (metal conversion) of the non-platinum metal precursor. Is more preferable.
  • the upper limit of the addition amount of the adsorbent in the reducing agent mixed solution is not particularly limited, but is preferably 10 mol or less, and 8 mol or less with respect to 1 mol (metal conversion) of the non-platinum metal precursor. Is more preferable.
  • platinum protrusions can be more efficiently formed on the surface of the non-platinum metal particles (main body portion) by the following mechanism.
  • the following mechanism is estimation and this invention is not limited by the following estimation.
  • the ionic platinum precursor in the platinum precursor solution ionizes the metal constituting the non-platinum metal particles.
  • the platinum precursor itself is reduced to become platinum, and the non-platinum metal constituting the non-platinum metal particles is substituted with platinum.
  • platinum is deposited on the surface of the non-platinum metal particles.
  • the non-platinum metal particle portion where the adsorbent is present (adsorbed) does not come into contact with the platinum ions, so that the adsorbent inhibits the ionization of the non-platinum metal.
  • the amount of the reducing agent added to the reducing agent mixed solution is not particularly limited as long as it is an amount capable of efficiently reducing the non-platinum precursor.
  • the addition amount of the reducing agent in the reducing agent mixed solution is preferably 3 mol or more, more preferably 5 mol or more with respect to 1 mol (metal conversion) of the non-platinum metal precursor.
  • the upper limit of the amount of adsorbent added in the reducing agent mixed solution is not particularly limited, but is preferably 20 mol or less and 1 mol or less with respect to 1 mol (metal conversion) of the non-platinum metal precursor. Is more preferable. With such an amount, the non-platinum precursor can be reduced more efficiently.
  • the mixing of the reducing agent mixed solution and the non-platinum metal precursor solution is preferably stirred in order to mix uniformly. Since the reduction reaction of the non-platinum metal precursor by the reducing agent proceeds more uniformly and more efficiently by the stirring treatment, the unreduced non-platinum metal precursor can be more effectively suppressed. In addition, since the adsorbent is more uniformly distributed on the surface of the non-platinum metal particles, the projecting portion can be formed more locally and more uniformly in the following step (5).
  • the stirring conditions are not particularly limited as long as they can be mixed uniformly.
  • the mixture can be uniformly dispersed and mixed by using an appropriate stirrer such as a stirrer (for example, a magnetic stirrer) or a homogenizer (for example, an ultrasonic homogenizer), or by applying ultrasonic waves such as an ultrasonic dispersion device.
  • the mixing conditions are not particularly limited as long as the reducing agent, the adsorbent and the non-platinum metal precursor can be uniformly dispersed.
  • a stirrer for example, a magnetic stirrer
  • the stirring speed is preferably 100 to 600 rpm, more preferably 200 to 400 rpm.
  • the stirring temperature is preferably 10 to 50 ° C., more preferably 15 to 40 ° C.
  • the stirring time is preferably 5 minutes to 2 hours, more preferably 10 minutes to 1 hour.
  • the said mixing may combine 2 or more types suitably, such as a stirrer (for example, magnetic stirrer) and a homogenizer (for example, ultrasonic homogenizer), for example. At this time, two or more kinds of operations may be performed simultaneously or sequentially.
  • the platinum precursor is not particularly limited, but platinum salts and platinum complexes can be used. More specifically, chloroplatinic acid (typically its hexahydrate; H 2 [PtCl 6 ] ⁇ 6H 2 O), nitrates such as dinitrodiammine platinum, sulfates, ammonium salts, amines, tetraammine platinum and Ammine complexes such as hexaammineplatinum, cyano complexes, halogeno complexes, hydroxy complexes, carbonates, bicarbonates, halides such as bromide and platinum chloride, inorganic salts such as nitrite and oxalic acid, sulfamate and formate, etc. Carboxylates, hydroxides, alkoxides, and the like can be used. In addition, the said platinum precursor may be used individually by 1 type, or may be used as a 2 or more types of mixture.
  • chloroplatinic acid typically its hexahydrate; H
  • the solvent used for the preparation of the platinum precursor solution is not particularly limited and is appropriately selected depending on the type of the non-platinum metal precursor used.
  • the form of the platinum precursor solution is not particularly limited, and includes solutions, dispersions, and suspensions. From the viewpoint of being able to mix uniformly, the platinum precursor solution is preferably in the form of a solution. Specific examples include water, organic solvents such as methanol, ethanol, 1-propanol and 2-propanol, acids and alkalis. Among these, water is preferable from the viewpoint of sufficiently dissolving the non-platinum metal ionic compound, and it is particularly preferable to use pure water or ultrapure water.
  • the said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
  • the concentration of the platinum precursor in the platinum precursor solution is not particularly limited, but is preferably such a ratio that the catalyst particle composition is as described above.
  • the concentration of the platinum precursor in the platinum precursor solution is preferably 0.1 M (mol / L) or more, more preferably 0.3 M (mol / L) or more in terms of metal (Pt). , 0.5 (mol / L) or more is particularly preferable.
  • the upper limit of the concentration of the platinum precursor in the platinum precursor solution is not particularly limited, but is preferably 7 M (mol / L) or less, more preferably 5 M (mol / L) or less in terms of metal. 3M (mol / L) or less is particularly preferable.
  • the platinum precursor in the ionic form in the platinum precursor solution induces ionization of the metal constituting the non-platinum metal particles, and the platinum precursor.
  • the body itself is reduced to platinum, and the non-platinum metal constituting the non-platinum metal particles is replaced with platinum.
  • platinum is deposited on the surface of the non-platinum metal particles.
  • the non-platinum metal particle portion where the adsorbent is present (adsorbed) does not come into contact with the platinum ions, the adsorbent inhibits the ionization of the non-platinum metal particles.
  • the reducing agent and the adsorbent cause the substitution reaction of non-platinum metal and platinum ions (alloying of non-platinum metal and platinum) and the reduction reaction of platinum ions to proceed locally. It grows (precipitates) in a protruding manner.
  • a projecting portion (a confetti-like structure) can be formed efficiently. Further, a solid solution in which the non-platinum metal and platinum are uniformly mixed is formed on the surface of the non-platinum metal particles where the substitution reaction occurs. Therefore, by this step, an outer shell portion (shell portion) composed of the non-platinum metal and platinum is formed so as to cover the central portion (core portion) formed mainly of the non-platinum metal.
  • the mixing method of the non-platinum metal particle dispersion and the platinum precursor solution is not particularly limited.
  • the platinum precursor solution may be added to the platinum precursor solution or the platinum precursor solution may be added to the non-platinum metal particle dispersion. It is preferable to add to the dispersion. Thereby, the substitution reaction (non-platinum metal and platinum alloying) state (for example, speed) of the non-platinum metal and the platinum ion is more effectively controlled, and the desired protrusion size (aspect ratio, (Diameter, length) can be achieved more efficiently.
  • the addition method is not particularly limited.
  • the platinum precursor solution may be added to the non-platinum metal particle dispersion in a batch or divided.
  • the non-platinum metal particle dispersion may be added to the platinum precursor solution all at once or in divided portions.
  • the mixing ratio of the non-platinum metal particle dispersion and the platinum precursor solution is not particularly limited, but is preferably such a ratio that the composition of the catalyst particles is as described above.
  • the mixing conditions of the non-platinum metal particle dispersion and the platinum precursor solution are not particularly limited.
  • the mixing temperature is preferably 10 to 50 ° C., more preferably 15 to 40 ° C.
  • the non-platinum metal particle dispersion and the platinum precursor solution may be mixed without stirring (by simply adding them) or may be mixed while stirring.
  • Stirring conditions for stirring are not particularly limited as long as they can be uniformly mixed.
  • the mixture can be uniformly dispersed and mixed by using an appropriate stirrer such as a stirrer (for example, a magnetic stirrer) or a homogenizer (for example, an ultrasonic homogenizer), or by applying ultrasonic waves such as an ultrasonic dispersion device.
  • the mixing conditions are not particularly limited as long as the reducing agent, the adsorbent and the non-platinum metal precursor can be uniformly dispersed.
  • a stirrer for example, a magnetic stirrer
  • the stirring speed is preferably 100 to 600 rpm, more preferably 200 to 400 rpm.
  • the stirring temperature is preferably 10 to 50 ° C., more preferably 15 to 40 ° C.
  • the stirring time is preferably 5 minutes to 2 hours, more preferably 10 minutes to 1 hour.
  • the said mixing may combine 2 or more types suitably, such as a stirrer (for example, magnetic stirrer) and a homogenizer (for example, ultrasonic homogenizer), for example. At this time, two or more kinds of operations may be performed simultaneously or sequentially.
  • catalyst particles can be obtained.
  • the catalyst particles may be isolated from the dispersion obtained above.
  • the isolation method is not particularly limited, and the catalyst particles may be filtered and dried. If necessary, the catalyst particles may be filtered and then washed (for example, washed with water). Further, the filtration and the washing step may be repeated if necessary. Further, the catalyst particles may be dried after filtration or washing. Here, drying of the catalyst particles may be performed in air or may be performed under reduced pressure.
  • the drying temperature is not particularly limited, but can be performed, for example, in the range of about 10 to 100 ° C., preferably about room temperature (25 ° C.) to about 80 ° C.
  • the drying time is not particularly limited. For example, the drying time can be 1 to 60 hours, preferably 5 to 50 hours.
  • the catalyst particles according to the present invention have many highly active crystal planes exposed and have a large area that can effectively contribute to the reaction. For this reason, the catalyst particles have high activity (area specific activity, mass specific activity). Therefore, the catalyst particles are preferably supported on a conductive carrier and can be used as an electrode catalyst. That is, the present invention also provides an electrode catalyst having the catalyst particles of the present invention and a conductive carrier for supporting the catalyst particles.
  • the electrode catalyst of the present invention can exhibit and maintain high activity (area specific activity, mass specific activity) even with a small platinum content.
  • the conductive carrier functions as a carrier for supporting the above-described catalyst particles and an electron conduction path involved in the transfer of electrons between the catalyst particles and other members. Any conductive carrier may be used as long as it has a specific surface area for supporting the catalyst particles in a desired dispersed state and has sufficient electronic conductivity as a current collector.
  • the main component is carbon. Is preferred. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. In some cases, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Incidentally, being substantially composed of carbon atoms means that contamination of impurities of about 2 to 3% by weight or less is allowed.
  • the conductive carrier include carbon blacks such as acetylene black, channel black, oil furnace black, gas furnace black (for example, Vulcan), lamp black, thermal black, and ketjen black (registered trademark); black pearl Graphitized acetylene black; graphitized channel black; graphitized oil furnace black; graphitized gas furnace black; graphitized lamp black; graphitized thermal black; graphitized Ketjen black; graphitized black pearl; carbon nanotube; Carbon nanohorns, carbon fibrils, activated carbon, coke, natural graphite, and carbon materials such as artificial graphite.
  • examples of the conductive carrier include zeolite template carbon (ZTC) having a structure in which nano-sized band-shaped graphene is regularly connected in a three-dimensional manner.
  • the BET specific surface area of the conductive support may be a specific surface area sufficient to support the catalyst particles in a highly dispersed state, but is preferably 10 to 5000 m 2 / g, more preferably 50 to 2000 m 2 / g. Good. With such a specific surface area, sufficient catalyst particles are supported (highly dispersed) on the conductive support, and sufficient power generation performance can be achieved.
  • the “BET specific surface area (m 2 / g carrier)” of the carrier is measured by a nitrogen adsorption method.
  • the size of the conductive carrier is not particularly limited, but from the viewpoint of easy loading, catalyst utilization, and control of the thickness of the electrode catalyst layer within an appropriate range, the average particle size is 5 to 200 nm, The thickness is preferably about 10 to 100 nm.
  • the “average particle size of the carrier” is the average of the crystallite size obtained from the half-value width of the diffraction peak of the carrier particle in X-ray diffraction (XRD), or the average particle size of the carrier examined by a transmission electron microscope (TEM). It can be measured as a value.
  • the “average particle size of the carrier” means the average particle size of the carrier particles examined from a transmission electron microscope image of a statistically significant number (for example, at least 200, preferably at least 300) of samples. Value.
  • the “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
  • the conductive carrier has a total amount of at least one functional group selected from the group consisting of a lactone group, a hydroxyl group, an ether group, and a carbonyl group (hereinafter also referred to as “specific functional group”) on the surface. It is preferably a carbon carrier having 5 ⁇ mol / m 2 or more. More preferably, the carbon support has a total amount of 0.8 to 5 ⁇ mol / m 2 of at least one functional group selected from the group consisting of a lactone group, a hydroxyl group, an ether group, and a carbonyl group on the surface.
  • the aspect ratio of the projecting portions of the obtained catalyst particles can be more easily controlled, and the activity (area specific activity, mass specific activity) can be further improved. This is considered to be because the aggregation of the alloy particles can be suppressed even by the heat treatment for obtaining the catalyst particles, and the decrease in the specific surface area of the entire supported catalyst particles can be suppressed.
  • the temperature programmed desorption method is a technique in which a sample is heated at a constant speed under an ultra-high vacuum and gas components (molecules / atoms) released from the sample are detected in real time by a quadrupole mass spectrometer.
  • the temperature at which a gas component is released depends on the adsorption / chemical binding state of that component on the sample surface, ie, components that require large energy for desorption / dissociation are detected at relatively high temperatures.
  • the surface functional groups formed on the carbon are discharged as CO or CO 2 at different temperatures depending on the type.
  • the temperature-programmed desorption curve obtained for CO or CO 2 is peak-separated, the integrated intensity T of each peak is measured, and the amount ( ⁇ mol) of each functional group component can be calculated from the integrated intensity T. From this amount ( ⁇ mol), the functional group amount is calculated by the following formula.
  • Desorption gas and temperature due to temperature rise of each functional group are as follows; lactone group CO 2 (700 ° C.), hydroxyl group CO (650 ° C.), ether group CO (700 ° C.), carbonyl group CO (800 ° C.) .
  • the carbon carrier having the specific functional group may be commercially available or manufactured.
  • the method for producing a carbon carrier having a specific functional group is not particularly limited.
  • the carbon material listed above as a conductive carrier is brought into contact with an acidic solution, and then heat treatment is performed ( Hereinafter, it can also be obtained by vapor activation treatment; gas phase oxidation treatment (ozone, fluorine gas, etc.); liquid phase oxidation treatment (permanganic acid, chloric acid, ozone water, etc.).
  • the acid used in the acidic solution is not particularly limited, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid and the like can be mentioned. Especially, it is preferable to use at least 1 sort (s) of a sulfuric acid and nitric acid from the point of surface functional group formation.
  • the carbon material to be contacted with the acidic solution is not particularly limited, but is preferably carbon black because it has a large specific surface area and is stable even by acid treatment.
  • the acid treatment may be repeated not only when the carrier is brought into contact with the acidic solution once but also multiple times. Moreover, when performing acid treatment in multiple times, you may change the kind of acidic solution for every process.
  • the concentration of the acidic solution is appropriately set in consideration of the carbon material, the type of acid, etc., but is preferably 0.1 to 10 mol / L.
  • the stirring conditions are not particularly limited as long as they can be mixed uniformly.
  • the mixture can be uniformly dispersed and mixed by applying ultrasonic waves such as an ultrasonic dispersion device using an appropriate stirrer such as a stirrer or a homogenizer.
  • the stirring temperature is preferably 5 to 40 ° C.
  • the stirring time may be appropriately set so that the dispersion is sufficiently performed, and is usually 1 to 60 minutes, preferably 3 to 30 minutes.
  • the heat treatment after the contact is appropriately set so that the specific responsive group becomes the above introduction amount, but the heat treatment temperature is preferably 20 to 90 ° C, more preferably 60 to 80 ° C.
  • the heat treatment time is preferably 30 minutes to 10 hours, more preferably 1 hour to 4 hours.
  • the heat treatment may be performed while stirring.
  • the stirring conditions for stirring are not particularly limited as long as the heat treatment can proceed evenly.
  • the mixture can be uniformly dispersed and mixed by using an appropriate stirrer such as a stirrer (for example, a magnetic stirrer) or a homogenizer (for example, an ultrasonic homogenizer), or by applying ultrasonic waves such as an ultrasonic dispersion device.
  • a stirrer for example, a magnetic stirrer
  • the stirring speed is preferably 100 to 600 rpm, more preferably 200 to 400 rpm.
  • a conductive carrier having a specific functional group is obtained by the heat treatment.
  • this carrier may be isolated.
  • the isolation method is not particularly limited, and the carrier may be filtered and dried. If necessary, the carrier may be filtered and then washed (for example, washed with water). Further, the filtration and the washing step may be repeated if necessary. Further, after filtration or washing, the carrier may be dried. Here, the carrier may be dried in air or under reduced pressure.
  • the drying temperature is not particularly limited, but can be performed, for example, in the range of 10 to 100 ° C., more preferably in the range of room temperature (25 ° C.) to 80 ° C.
  • the drying time is not particularly limited, but is, for example, 1 to 60 hours, preferably 5 to 48 hours.
  • BET specific surface area of the conductive support is not particularly limited, preferably 10 ⁇ 5000m 2 / g, more preferably 50 ⁇ 2000 m 2 / g. With such a BET specific surface area, an adequate specific surface area can be ensured, and sufficient catalyst particles can be supported (highly dispersed) on the conductive support, thereby achieving sufficient power generation performance.
  • the size of the conductive carrier in this case is not particularly limited, but the average particle diameter is 5 to 200 nm, preferably about 10 to 100 nm. With such a size, an appropriate size can be ensured, and sufficient catalyst particles can be supported (highly dispersed) on the conductive support to achieve sufficient power generation performance.
  • the support concentration (supported amount) of the catalyst particles is not particularly limited, but is preferably 2 to 70% by weight with respect to the total amount of the support. It is preferable to set the support concentration in such a range because aggregation of the catalyst particles is suppressed and an increase in the thickness of the electrode catalyst layer can be suppressed. More preferably, it is 5 to 60% by weight, still more preferably more than 5% by weight and 50% by weight or less, and particularly preferably 10 to 45% by weight. When the supported amount of the catalyst component is within such a range, the balance between the degree of dispersion of the catalyst component on the catalyst support and the catalyst performance can be appropriately controlled.
  • the amount of catalyst component supported can be examined by a conventionally known method such as inductively coupled plasma emission spectrometry (ICP atomicemission spectrometry), inductively coupled plasma mass spectrometry (ICP mass spectrometry), or fluorescent X-ray analysis (XRF). it can.
  • ICP atomicemission spectrometry inductively coupled plasma emission spectrometry
  • ICP mass spectrometry inductively coupled plasma mass spectrometry
  • XRF fluorescent X-ray analysis
  • the catalyst can be produced using a known method except that the catalyst particles of the present invention are used.
  • a conductive carrier carbon carrier
  • a catalyst electroactive metal precursor solution and the reducing agent mixed solution
  • a catalyst electroactive metal precursor solution and the reducing agent mixed solution
  • a catalyst electroactive metal precursor solution
  • a conductive carrier carbon carrier
  • the catalyst particles may be produced (method (i)).
  • the catalyst particles may be produced according to the method described in [Method for producing catalyst particles] above, and then the catalyst particles and the conductive carrier (carbon carrier) may be mixed to produce a catalyst (electrode catalyst).
  • Method (i) and method (ii) will be described.
  • this invention is not limited by these methods, You may manufacture a catalyst (electrode catalyst) by another method.
  • the mixing ratio of the non-platinum metal precursor solution and the conductive support is not particularly limited, but is preferably an amount that provides the supported concentration (supported amount) of the catalyst particles as described above.
  • the mixing order of the non-platinum metal precursor solution, the reducing agent mixed solution and the conductive support (carbon support) is not particularly limited.
  • the reducing agent mixed solution is added; after mixing the non-platinum metal precursor solution and the reducing agent mixed solution, the conductive carrier is added; reducing agent After mixing the mixed solution and the conductive carrier, the non-platinum metal precursor solution is added; the non-platinum metal precursor solution, the reducing agent mixed solution and the conductive carrier are added all at once or in a divided manner.
  • the reducing agent mixed solution is added after the non-platinum metal precursor solution and the conductive support are mixed.
  • the distribution of the adsorbent on the surface of the non-platinum metal particles can be made more uniform. For this reason, in the subsequent step (5), the protruding portions can be formed more uniformly and more selectively. Moreover, it is easy to appropriately control the reduction rate of the non-platinum metal precursor, and the non-platinum metal particles (main body part) having a predetermined size can be formed more efficiently. Moreover, a part of non-platinum metal particle can be carry
  • the conductive carrier may be mixed as it is or added in the form of a solution.
  • the non-platinum metal precursor solution and the conductive carrier are mixed and then stirred. Accordingly, since the non-platinum metal precursor (non-platinum metal precursor particles) and the conductive carrier are uniformly mixed, the non-platinum metal particles can be highly dispersed and supported on the conductive carrier. Moreover, since the reduction reaction of the unreduced non-platinum metal precursor with the reducing agent occurs simultaneously by the stirring treatment, it is possible to further promote the high dispersion and loading of the non-platinum metal particles on the conductive carrier.
  • the stirring conditions are not particularly limited, but specifically, they are the same as the conditions in the step (3).
  • the dispersion containing the catalyst particles may be stirred again. Accordingly, since the catalyst particles and the conductive carrier are mixed more uniformly, the catalyst particles can be efficiently dispersed and supported by the conductive carrier. Moreover, since the reduction reaction of the unreduced platinum precursor and the non-platinum metal precursor with the reducing agent occurs simultaneously by the stirring treatment, it is possible to further promote the high dispersion and loading of the catalyst particles on the conductive support. is there.
  • the stirring conditions are not particularly limited as long as the catalyst particles can be further supported on the conductive carrier.
  • the mixture can be uniformly dispersed and mixed by using an appropriate stirrer such as a stirrer (for example, a magnetic stirrer) or a homogenizer (for example, an ultrasonic homogenizer), or by applying ultrasonic waves such as an ultrasonic dispersion device.
  • the mixing conditions are not particularly limited as long as the reducing agent, the adsorbent and the non-platinum metal precursor can be uniformly dispersed.
  • a stirrer for example, a magnetic stirrer
  • the stirring speed is preferably 100 to 600 rpm, more preferably 200 to 400 rpm.
  • the stirring temperature is preferably 0 to 50 ° C., more preferably 5 to 40 ° C.
  • the stirring time is preferably 0.3 to 90 hours, more preferably 0.5 to 80 hours.
  • the said mixing may combine 2 or more types suitably, such as a stirrer (for example, magnetic stirrer) and a homogenizer (for example, ultrasonic homogenizer), for example. At this time, two or more kinds of operations may be performed simultaneously or sequentially.
  • a conductive carrier carrying catalyst particles is obtained.
  • this carrier may be isolated.
  • the isolation method is not particularly limited, and the supported carrier may be filtered and dried. If necessary, the supported carrier may be filtered and then washed (for example, washed with water). Further, the filtration and the washing step may be repeated if necessary. Further, after the filtration or washing, the supported carrier may be dried.
  • the support carrier may be dried in air or under reduced pressure.
  • the drying temperature is not particularly limited, but can be performed, for example, in the range of 10 to 100 ° C., more preferably in the range of room temperature (25 ° C.) to 80 ° C.
  • the drying time is not particularly limited, but is, for example, 1 to 60 hours, preferably 3 to 48 hours. Further, the drying may be performed in air or in an inert atmosphere (nitrogen gas atmosphere, helium gas atmosphere, argon gas atmosphere).
  • Method (ii) After producing catalyst particles according to the method described in [Method for producing catalyst particles], the catalyst particles and a conductive carrier (carbon carrier) are mixed to produce a catalyst (electrode catalyst). To do.
  • the mixing ratio of the catalyst particles and the conductive carrier is not particularly limited, but is preferably such an amount that the catalyst particle loading concentration (loading amount) is as described above.
  • the conductive carrier may be mixed as it is or added in the form of a solution.
  • the catalyst particles may be mixed in solid form or added in the form of a solution.
  • at least one of the catalyst particles and the conductive support is mixed in the form of a solution. More preferably, both the catalyst particles and the conductive support are mixed in the form of a solution.
  • the catalyst particles and the conductive carrier are more uniformly mixed, so that the catalyst particles can be uniformly dispersed and supported by the conductive carrier.
  • the mixing order of the catalyst particles (or catalyst particle solution) and the conductive carrier (or conductive carrier solution) is not particularly limited.
  • conductive carrier (or conductive carrier solution) is added to catalyst particles (or catalyst particle solution);
  • catalyst particles (or catalyst particle solution) are added to conductive carrier (or conductive carrier solution);
  • catalyst particles (Or catalyst particle solution) and conductive carrier (or conductive carrier solution) may be added and mixed at the same time.
  • the mixed solution of the catalyst particles (or catalyst particle solution) and the conductive carrier (or conductive carrier solution) may be stirred. Accordingly, since the catalyst particles and the conductive carrier are more uniformly mixed, the catalyst particles can be efficiently dispersed and supported by the conductive carrier. Moreover, since the reduction reaction of the unreduced platinum precursor and the non-platinum metal precursor with the reducing agent occurs simultaneously by the stirring treatment, it is possible to further promote the high dispersion and loading of the catalyst particles on the conductive support. is there.
  • the stirring conditions are not particularly limited as long as the catalyst particles can be further supported on the conductive carrier.
  • the mixture can be uniformly dispersed and mixed by using an appropriate stirrer such as a stirrer (for example, a magnetic stirrer) or a homogenizer (for example, an ultrasonic homogenizer), or by applying ultrasonic waves such as an ultrasonic dispersion device.
  • the mixing conditions are not particularly limited as long as the reducing agent, the adsorbent and the non-platinum metal precursor can be uniformly dispersed.
  • a stirrer for example, a magnetic stirrer
  • the stirring speed is preferably 100 to 600 rpm, more preferably 200 to 400 rpm.
  • the stirring temperature is preferably 0 to 50 ° C., more preferably 5 to 40 ° C.
  • the stirring time is preferably 0.5 to 60 hours, more preferably 1 to 48 hours.
  • the said mixing may combine 2 or more types suitably, such as a stirrer (for example, magnetic stirrer) and a homogenizer (for example, ultrasonic homogenizer), for example. At this time, two or more kinds of operations may be performed simultaneously or sequentially.
  • a conductive carrier carrying catalyst particles is obtained.
  • this carrier may be isolated.
  • the isolation method is not particularly limited, and the supported carrier may be filtered and dried. If necessary, the supported carrier may be filtered and then washed (for example, washed with water). Further, the filtration and the washing step may be repeated if necessary. Further, after the filtration or washing, the supported carrier may be dried.
  • the support carrier may be dried in air or under reduced pressure.
  • the drying temperature is not particularly limited, but can be performed, for example, in the range of 10 to 100 ° C., more preferably in the range of room temperature (25 ° C.) to 80 ° C.
  • the drying time is not particularly limited, but is, for example, 1 to 60 hours, preferably 3 to 48 hours. Further, the drying may be performed in air or in an inert atmosphere (nitrogen gas atmosphere, helium gas atmosphere, argon gas atmosphere).
  • the electrode catalyst described above can be suitably used for an electrolyte membrane-electrode assembly (MEA) and a fuel cell. That is, the present invention also provides an electrolyte membrane-electrode assembly (MEA) containing the electrode catalyst obtained by the above production method, and a fuel cell containing the electrolyte membrane-electrode assembly (MEA).
  • MEA electrolyte membrane-electrode assembly
  • a fuel cell comprises a pair of separators comprising an electrolyte membrane-electrode assembly (MEA), an anode separator having a fuel gas passage through which fuel gas flows, and a cathode separator having an oxidant gas passage through which oxidant gas flows And have.
  • MEA electrolyte membrane-electrode assembly
  • Anode separator having a fuel gas passage through which fuel gas flows
  • a cathode separator having an oxidant gas passage through which oxidant gas flows And have.
  • the fuel cell of the present invention can exhibit high power generation performance.
  • FIG. 2 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first has a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the solid polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute an electrolyte membrane-electrode assembly (MEA) 10 in a stacked state. To do.
  • the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5a, 5c) are illustrated so as to be located at both ends of the illustrated MEA.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2 or between PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 2 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
  • a recess (space between the separator and the MEA generated due to the uneven shape of the separator) seen from the MEA side of the separator (5a, 5c) is used for circulating gas during operation of PEFC 1. Functions as a gas flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) is a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance.
  • the type of the fuel cell is not particularly limited.
  • the polymer electrolyte fuel cell has been described as an example, but other examples include alkaline fuel cells, direct methanol fuel cells, and micro fuel cells. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • PEFC polymer electrolyte fuel cell
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited. Among them, it is particularly preferable to use as a power source for a mobile body such as an automobile that requires a high output voltage after a relatively long time of operation stop.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of the present invention is particularly advantageous when applied to a vehicle from the viewpoint of in-vehicle performance.
  • Electrode membrane-electrode assembly The electrode catalyst described above can be suitably used for an electrolyte membrane-electrode assembly (MEA). That is, the present invention also provides an electrolyte membrane-electrode assembly (MEA) containing the electrode catalyst of the present invention, particularly an electrolyte membrane-electrode assembly (MEA) for fuel cells.
  • the electrolyte membrane-electrode assembly (MEA) of the present invention can exhibit high power generation performance.
  • the electrolyte membrane-electrode assembly (MEA) of the present invention can also exhibit high durability.
  • MEA electrolyte membrane-electrode assembly
  • MEA is composed of an electrolyte membrane, an anode catalyst layer and an anode gas diffusion layer, a cathode catalyst layer and a cathode gas diffusion layer that are sequentially formed on both surfaces of the electrolyte membrane.
  • the electrode catalyst of the present invention is used for at least one of the cathode catalyst layer and the anode catalyst layer.
  • the electrolyte membrane is composed of, for example, a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane has a function of selectively allowing protons generated in the anode catalyst layer during operation of a fuel cell (such as PEFC) to permeate the cathode catalyst layer along the film thickness direction.
  • the solid polymer electrolyte membrane also has a function as a partition for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the fluorine-based polymer electrolyte and the hydrocarbon-based polymer electrolyte described as the polymer electrolyte in the following catalyst layer can be used in the same manner. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte membrane is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte membrane is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the catalyst layer is a layer where the battery reaction actually proceeds. Specifically, the oxidation reaction of hydrogen proceeds in the anode catalyst layer, and the reduction reaction of oxygen proceeds in the cathode catalyst layer.
  • the catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer. Considering the necessity of improving the oxygen reduction activity, it is preferable that the electrode catalyst of the present invention is used at least for the cathode catalyst layer.
  • the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
  • the catalyst layer contains the electrode catalyst of the present invention and an electrolyte.
  • the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole, phosphonated polybenzimidazole, sulfonated polystyrene, and sulfonated polyetherether.
  • S-PES sulfonated polyethersulfone
  • S-PEEK sulfonated polyphenylene
  • S-PPP sulfonated polyphenylene
  • These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high.
  • the ion exchange resin mentioned above only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
  • the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
  • the following polymer electrolyte is included, and particularly preferably 1000 g / eq.
  • the following polymer electrolytes are included.
  • the EW of the polymer electrolyte is preferably 600 or more.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within a range of 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the area.
  • a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
  • a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
  • the film thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the above applies to both the cathode catalyst layer and the anode catalyst layer.
  • the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
  • the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
  • MPL microporous layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • the method for producing the electrolyte membrane-electrode assembly is not particularly limited, and a conventionally known method can be used. For example, a method of joining a gas diffusion layer to a catalyst layer transferred or applied to an electrolyte membrane by hot pressing and drying it, or a microporous layer side of the gas diffusion layer (when a microporous layer is not included)
  • GDE gas diffusion electrodes
  • the application and joining conditions such as hot pressing can be adjusted as appropriate depending on the type of polymer electrolyte in the solid polymer electrolyte membrane or catalyst layer (perfluorosulfonic acid type or hydrocarbon type). Good.
  • the electrolyte membrane-electrode assembly (MEA) described above can be suitably used for a fuel cell. That is, the present invention also provides a fuel cell using the electrolyte membrane-electrode assembly (MEA) of the present invention.
  • the fuel cell of the present invention can exhibit high power generation performance and durability.
  • the fuel cell of the present invention has a pair of anode separator and cathode separator that sandwich the electrolyte membrane-electrode assembly of the present invention.
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a refrigerant flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of electrolyte membrane-electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the above-mentioned PEFC and electrolyte membrane-electrode assembly use a catalyst layer having excellent power generation performance. Further, the above-described PEFC and electrolyte membrane-electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the electrolyte membrane-electrode assembly are excellent in power generation performance (or power generation performance and durability).
  • the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
  • Example 1 First, nickel (II) sulfamate tetrahydrate was dissolved in ultrapure water to prepare a nickel aqueous solution (1) having a concentration of 0.0645M.
  • Carbon carrier (Ketjen Black (registered trademark) KetjenBlack EC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation) is added to 500 mL of 0.5 M HNO 3 solution in a beaker. The mixture was stirred and mixed with a stirrer at 300 rpm for 30 minutes at room temperature (25 ° C.). Subsequently, a carbon support was obtained by performing a heat treatment at 80 ° C. for 2 hours under stirring at 300 rpm. Then, after filtering the carbon support, it was washed with ultrapure water. The above filtration and washing operations were repeated a total of 3 times. The carbon support was dried at 60 ° C.
  • the amount of at least one functional group selected from the group consisting of a lactone group, a hydroxyl group, an ether group, and a carbonyl group formed on the surface of the obtained acid-treated carbon carrier A is 1.25 ⁇ mol / m 2 .
  • the BET specific surface area was 850 m 2 / g, and the average particle size was 40 nm.
  • 0.2 g of acid-treated carbon carrier A was added to 100 ml of ultrapure water placed in a beaker and subjected to ultrasonic treatment for 15 minutes to obtain a carrier dispersion (1).
  • the carrier dispersion (1) was continuously stirred at 150 rpm at room temperature (25 ° C.) until mixed with the nickel aqueous solution (1).
  • the reducing agent aqueous solution (1) was added, and the mixture was added at 35 ° C. and 300 rpm with a magnetic stirrer at 30 rpm.
  • a dispersion of a catalyst precursor containing the nickel particles and the support was prepared.
  • the molar ratio of sodium borohydride which is a reducing agent with respect to nickel (metal conversion) is 6.2.
  • the molar ratio of trisodium citrate dihydrate, which is an adsorbent to nickel (in metal conversion) is 2.4.
  • catalyst particles (1) were referred to as catalyst particles (1).
  • the catalyst particles (1) thus obtained had a molar ratio of nickel (in terms of metal, respectively) to platinum of 9.8.
  • the catalyst particles (1) thus obtained were observed with a transmission electron microscope (TEM). As a result, it was observed that the catalyst particles had a granular main body portion and a plurality of projecting portions protruding outward from the outer surface of the main body portion. Further, the particle diameter (particle diameter), the diameter of the main body, and the diameter and length of the projecting portion of the catalyst particles were measured, and the results are shown in Table 1 below. Further, the aspect ratio (diameter / length) is calculated based on the diameter and length of the protrusions, and the results are shown in Table 1 below.
  • the composition of the main body part and the projecting part of the catalyst particles (1) thus obtained was measured by TEM-EDX.
  • the main body portion is composed of a central portion made of non-platinum metal (nickel) at a ratio of 60 mol% or more with respect to the total molar amount, and non-platinum metal and platinum formed around the central portion. It was comprised from the outer shell part, and it confirmed that the protruding part was comprised with platinum in the ratio of 60 mol% or more with respect to the total molar amount.
  • the catalyst particle-containing dispersion (1) prepared above was stirred at room temperature (25 ° C.) with an ultrasonic homogenizer for 30 minutes, and then stirred with a magnetic stirrer at 300 rpm for 72 hours, whereby the catalyst was supported on the carrier. Particles were supported. Thereafter, the catalyst particle-supported carrier was filtered, washed with ultrapure water three times, and then dried in air at 60 ° C. for 4 hours or longer to prepare an electrode catalyst (1).
  • the supported concentration (supported amount) of the catalyst particles of the electrode catalyst (1) was 12.6 wt% (Pt: 11.8 wt%, Ni: 0.8 wt%) with respect to the support.
  • Example 2 First, nickel (II) sulfamate tetrahydrate was dissolved in ultrapure water to prepare a 0.041M nickel aqueous solution (2).
  • a carrier dispersion (2) was prepared by mixing 0.2 g of the acid-treated carbon carrier A prepared above with 100 mL of ultrapure water. In the following, the carrier dispersion (2) was continuously stirred at 150 rpm at room temperature (25 ° C.) until mixed with the nickel aqueous solution (2).
  • the reducing agent aqueous solution (2) is added, and a magnetic stirrer is added at room temperature (25 ° C.). While rotating at 300 rpm, the mixture was stirred with an ultrasonic homogenizer for 30 minutes to prepare a catalyst precursor dispersion (precursor dispersion (2)) containing nickel particles and a carrier.
  • a catalyst precursor dispersion precursor dispersion (2)
  • the molar ratio of sodium borohydride which is a reducing agent with respect to nickel (metal conversion) is 7.9.
  • the molar ratio of trisodium citrate dihydrate, which is an adsorbent to nickel (in metal conversion) is 2.4.
  • the catalyst particles (2) thus obtained were observed with a transmission electron microscope (TEM). As a result, it was observed that the catalyst particles had a granular main body portion and a plurality of projecting portions protruding outward from the outer surface of the main body portion. Further, the particle diameter (particle diameter), the diameter of the main body, and the diameter and length of the projecting portion of the catalyst particles were measured, and the results are shown in Table 1 below. Further, the aspect ratio (diameter / length) is calculated based on the diameter and length of the protrusions, and the results are shown in Table 1 below.
  • the composition of the main body portion and the protruding portion of the catalyst particles (2) thus obtained was measured by TEM-EDX.
  • the main body portion is composed of a central portion made of non-platinum metal (nickel) at a ratio of 60 mol% or more with respect to the total molar amount, and non-platinum metal and platinum formed around the central portion. It was comprised from the outer shell part, and it confirmed that the protruding part was comprised with platinum in the ratio of 60 mol% or more with respect to the total molar amount.
  • the catalyst particle-containing dispersion (2) prepared above was stirred at room temperature (25 ° C.) with an ultrasonic homogenizer for 60 minutes, and then stirred with a magnetic stirrer at 300 rpm for 48 hours, whereby the catalyst was supported on the carrier. Particles were supported. Thereafter, the catalyst particle-supported carrier was filtered, washed with ultrapure water three times, and then dried in air at 60 ° C. for 4 hours or more to prepare an electrode catalyst (2).
  • the supported concentration (supported amount) of the catalyst particles of the electrode catalyst (2) was 18.0 wt% (Pt: 17.0 wt%, Ni: 1.0 wt%) with respect to the support.
  • Example 3 First, nickel (II) sulfate (NiSO 4 ) was dissolved in ultrapure water to prepare a nickel aqueous solution (3) having a concentration of 0.0645M.
  • a carrier dispersion (3) was prepared by mixing 0.2 g of the acid-treated carbon carrier A prepared above with 100 mL of ultrapure water. In the following, the carrier dispersion (3) was continuously stirred at 150 rpm at room temperature (25 ° C.) until mixed with the catalyst particle-containing dispersion (3).
  • the reducing agent aqueous solution (3) was added, and at room temperature (25 ° C.), while rotating the magnetic stirrer at 300 rpm, A nickel particle dispersion (3) was prepared by stirring for 30 minutes with a homogenizer.
  • the molar ratio of sodium borohydride which is a reducing agent with respect to nickel (metal conversion) is 6.2.
  • the molar ratio of trisodium citrate dihydrate, which is an adsorbent to nickel (in metal conversion) is 2.4.
  • the catalyst particles (3) thus obtained were observed with a transmission electron microscope (TEM). As a result, it was observed that the catalyst particles had a granular main body portion and a plurality of projecting portions protruding outward from the outer surface of the main body portion. Further, the particle diameter (particle diameter), the diameter of the main body, and the diameter and length of the projecting portion of the catalyst particles were measured, and the results are shown in Table 1 below. Further, the aspect ratio (diameter / length) is calculated based on the diameter and length of the protrusions, and the results are shown in Table 1 below.
  • the composition of the main body part and the projecting part of the catalyst particles (3) thus obtained was measured by TEM-EDX.
  • the main body portion is composed of a central portion made of non-platinum metal (nickel) at a ratio of 60 mol% or more with respect to the total molar amount, and non-platinum metal and platinum formed around the central portion. It was comprised from the outer shell part, and it confirmed that the protruding part was comprised with platinum in the ratio of 60 mol% or more with respect to the total molar amount.
  • the carrier particle dispersion (3) was mixed with the catalyst particle-containing dispersion (3) prepared above, stirred at room temperature (25 ° C.) for 60 minutes with an ultrasonic homogenizer, and then 300 rpm with a magnetic stirrer.
  • the catalyst particles were supported on ketjen black by stirring for 24 hours. Thereafter, ketjen black carrying catalyst particles was filtered, washed with ultrapure water three times, and then dried in air at 60 ° C. for 4 hours or more to prepare an electrode catalyst (3).
  • the supported concentration (supported amount) of the catalyst particles of the electrode catalyst (3) was 38.4% by weight (Pt: 35.7% by weight, Ni: 2.7% by weight) with respect to the support.
  • Comparative Example 1 0.2 g of carbon carrier (Ketjen Black (registered trademark) KetjenBlack EC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation) was weighed and put into a 200 mL beaker, and from the wall of the beaker Ultrapure water was added and water was added to the carbon. Next, ultrapure water was added to the beaker until the total amount reached 100 mL, and the mixture was dispersed with ultrasonic waves, and then stirred with a magnetic stirrer to obtain a carrier dispersion (4).
  • carbon carrier Ketjen Black (registered trademark) KetjenBlack EC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation
  • Nickel (II) chloride (NiCl 2 ) was dissolved in ultrapure water to prepare a nickel aqueous solution (4) having a concentration of 0.105M.
  • chloroplatinic acid hexachloride platinum (IV) acid (H 2 PtCl 6 )
  • hexachloride platinum (IV) acid H 2 PtCl 6
  • an electrode catalyst having an average particle diameter (particle diameter) of 4.0 nm (particle diameter) 4) was prepared.
  • the supported concentration (supported amount) of the catalyst particles of the electrode catalyst (4) was 34.3% by weight (Pt: 29.6% by weight, Ni: 4.7% by weight) with respect to the support.
  • Carbon carrier (Ketjen Black (registered trademark) KetjenBlack EC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation) is added to 500 mL of 0.5 M HNO 3 solution in a beaker. The mixture was stirred and mixed with a stirrer at 300 rpm for 30 minutes at room temperature (25 ° C.). Subsequently, a carbon support was obtained by performing a heat treatment at 80 ° C. for 2 hours under stirring at 300 rpm. Then, after filtering the carbon support, it was washed with ultrapure water. The above filtration and washing operations were repeated a total of 3 times.
  • the carbon support was dried at 60 ° C. for 24 hours, and then an acid-treated carbon support A was obtained.
  • the amount of at least one functional group selected from the group consisting of a lactone group, a hydroxyl group, an ether group, and a carbonyl group formed on the surface of the obtained acid-treated carbon carrier A is 1.25 ⁇ mol / m 2 .
  • the BET specific surface area was 850 m 2 / g, and the average particle size was 40 nm.
  • 0.2 g of acid-treated carbon carrier A was added to 100 ml of ultrapure water placed in a beaker and subjected to ultrasonic treatment for 15 minutes to obtain a carrier dispersion (5).
  • the carrier dispersion (5) was continuously stirred at room temperature (25 ° C.) and 150 rpm until mixed with the catalyst particle dispersion (5).
  • Cobalt (II) chloride (CoCl 2 ) was dissolved in ultrapure water to prepare a 0.105 M concentration aqueous cobalt solution (5).
  • chloroplatinic acid hexachloride platinum (IV) acid (H 2 PtCl 6 )
  • hexachloride platinum (IV) acid H 2 PtCl 6
  • the catalyst particle-supported carrier is filtered, washed with ultrapure water three times, and then dried in air at 60 ° C. for 12 hours or longer, whereby an electrode catalyst having an average particle diameter (particle diameter) of 2.7 nm ( 5) was prepared.
  • the supported concentration (supported amount) of the catalyst particles of the electrode catalyst (5) was 34.1% by weight (Pt: 29.6% by weight, Co: 4.5% by weight) with respect to the support.
  • ketjen black (Ketjen Black (registered trademark) KetjenBlack EC300J, average particle size: 40 nm, BET specific surface area: 800 m 2 / g, manufactured by Lion Corporation) was used, and an average particle size of 1.
  • An electrode catalyst (6) was obtained by supporting 8 nm of platinum (Pt) so that the supporting rate was 50% by weight. That is, 46 g of a carrier (Ketjen Black) was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by weight and stirred, and then 100 ml of 100% ethanol was added as a reducing agent.
  • the catalyst effective surface area (ECA), the area specific activity (i a ), and the mass specific activity (i m ) were evaluated according to the following methods. The results are shown in Table 1 below.
  • the catalytic effective surface area (ECA) was calculated by cyclic voltammetry (CV). Prior to the measurement, a 20-cycle potential scan was performed in a potential range of 0 to 1.2 V at a potential sweep rate of 500 mV / s (catalyst surface cleaning process). Thereafter, a potential range of 0 to 1.2 V was measured for 3 cycles at a potential sweep rate of 50 mV / s. The catalytic effective surface area (ECA) was calculated using the data of the third cycle at this time and using the amount of electricity of hydrogen adsorption of 210 ⁇ C / cm 2 .
  • a potential scan was performed from 0.2 V to 1.2 V at a rate of 10 mV / s in 0.1 M perchloric acid saturated at 25 ° C. with oxygen. Furthermore, the current value at 0.9 V was extracted from the current obtained by the potential scan after correcting the influence of mass transfer (oxygen diffusion) using the Koutecky-Levich equation. A value obtained by dividing the obtained current value by the above-described electrochemical surface area was defined as area specific activity ( ⁇ Acm ⁇ 2 ). In addition, the amount of platinum in the catalyst carrying the obtained current value (g) at a value obtained by dividing a mass ratio of activity (i m) (A ⁇ g -1 Pt).
  • the method using the Koutecky-Levich equation is described, for example, on “4 Pt / C catalyst of Electrochemistry Vol.79, No.2, p.116-121 (2011) (convection voltammogram (1) oxygen reduction (RRDE)). Is described in “Analysis of Oxygen Reduction Reaction”.
  • the area specific activity (i a ) is calculated by dividing the extracted current value of 0.9 V by the electrochemical surface area.
  • Table 1 above shows that the catalyst particles of Examples 1 to 3 are higher in both area specific activity and mass specific activity than the granular catalyst particles of Comparative Example 1 having almost the same composition.
  • the mass specific activity of the catalyst particles of Example 2 is slightly low, it is considered that this is because ECA was measured low because the catalyst particles were partially agglomerated.
  • PEFC Polymer electrolyte fuel cell
  • Solid polymer electrolyte membrane 3 ... Catalyst layer, 3a ... anode catalyst layer, 3c ... cathode catalyst layer, 4a ... anode gas diffusion layer, 4c ... cathode gas diffusion layer, 5a ... anode separator, 5c ... cathode separator, 6a ... anode gas flow path, 6c ... cathode gas flow path, 7: Refrigerant flow path, 10 ...
  • Electrolyte membrane-electrode assembly 20 ... catalyst particles, 21 ... body part, 22 ... Projection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】高活性を発揮できる触媒粒子を提供する。 【解決手段】白金原子および非白金金属原子からなる合金粒子であり、前記合金粒子は粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有する。ここで、前記本体部は非白金金属および白金で形成され、前記突状部は白金を主成分として形成され、および前記突状部のアスペクト比(直径/長さ)が0を超えて2以下である触媒粒子。

Description

触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池
 本発明は、触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池に関する。特に、本発明は、高活性を発揮できる触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池に関する。
 近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、常温でも作動して高出力密度が得られる燃料電池が電気自動車用電源、定置型電源として注目されている。燃料電池は、電極反応による生成物が原理的に水であり、地球環境への悪影響がほとんどないクリーンな発電システムである。特に、固体高分子形燃料電池(PEFC)は、比較的低温で作動することから、電気自動車用電源として期待されている。固体高分子形燃料電池の構成は、一般的には、電解質膜-電極接合体(MEA)を、セパレータで挟持した構造となっている。電解質膜-電極接合体は、高分子電解質膜が一対の電極触媒層およびガス拡散性の電極(ガス拡散層;GDL)により挟持されてなるものである。
 上記したような電解質膜-電極接合体を有する固体高分子形燃料電池では、固体高分子電解質膜を挟持する両電極(カソードおよびアノード)において、その極性に応じて以下に記す反応式で示される電極反応を進行させ、電気エネルギーを得ている。まず、アノード(負極)側に供給された燃料ガスに含まれる水素は、触媒成分により酸化され、プロトンおよび電子となる(2H→4H+4e:反応1)。次に、生成したプロトンは、電極触媒層に含まれる固体高分子電解質、さらに電極触媒層と接触している固体高分子電解質膜を通り、カソード(正極)側電極触媒層に達する。また、アノード側電極触媒層で生成した電子は、電極触媒層を構成している導電性担体、さらに電極触媒層の固体高分子電解質膜と異なる側に接触しているガス拡散層、セパレータおよび外部回路を通してカソード側電極触媒層に達する。そして、カソード側電極触媒層に達したプロトンおよび電子はカソード側に供給されている酸化剤ガスに含まれる酸素と反応し水を生成する(O+4H+4e→2HO:反応2)。燃料電池では、上述した電気化学的反応を通して、電気を外部に取り出すことが可能となる。
 発電性能を向上させることを目的として、例えば、特許文献1では、中心部より放射状に樹枝状部分が伸長した金平糖形状を有する金属ナノ粒子が報告されている。特許文献1によると、熱的に安定な粒子径を有しながら、比表面積が増加することができるため、触媒機能を向上できることが記載されている。
特開2011-26665号公報
 しかしながら、特許文献1に記載の金属ナノ粒子は、所望の活性を達成しようとするために必要とされる金属(特に白金)量を依然として多く必要とする。このため、特許文献1に記載の金属ナノ粒子は、触媒として必要とされる活性が十分であるとはいえない。
 したがって、本発明は、上記事情を鑑みてなされたものであり、高活性を発揮できる触媒粒子を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った。その結果、金平糖形状を有する触媒粒子のうち、反応に主に寄与する突状部を活性の高い白金で実質的に形成することによって上記課題を解決できることを見出し、本発明を完成した。
本発明の一実施形態に係る触媒粒子を模式的に示す断面図である。 本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。
 本発明の触媒粒子は、白金原子および非白金金属原子からなる合金粒子であり、前記合金粒子は粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有する。ここで、前記本体部は非白金金属および白金で形成され、前記突状部は白金を主成分として形成され、および前記突状部のアスペクト比(直径/長さ)が0を超えて2以下である。上記構成によると、触媒の活性を向上できる。
 本明細書において、「粒状をなす本体部」を、「本発明に係る本体部」または単に「本体部」とも称する。同様にして、「本体部の外面よりも外側に向けて突出している複数の突状部」を、「本発明に係る突状部」または単に「突状部」とも称する。
 従来、燃料電池用の触媒層には粒子状の触媒(特に白金粒子)が使用されていた。しかしながら、このような単純な球状構造では、比表面積が小さいため、活性(面積比活性、質量比活性)に劣るという課題があった。一方、上記特許文献1の金属ナノ粒子は金平糖形状であるため、単純な球状構造に比して比表面積を増加することができる。このため、このような金属ナノ粒子を担体に担持した触媒は、組成の同じ単純な球状構造の金属粒子に比べると、活性、特に質量比活性を向上できる。特許文献1の実施例では、金平糖形状の金属ナノ粒子を白金で形成している。しかし、このような金平糖形状の金属ナノ粒子では、粒状の中心部は反応ガスとあまり接触しないため、反応への寄与が小さい。ここで、白金は、触媒活性は非常に高く、通常、電極触媒の触媒成分として使用されているが、非常に高価であり、資源的にも稀少な金属である。このため、可能な限り白金の利用率を高める必要があるが、上記特許文献1に記載の金属ナノ粒子をもっても、白金を有効利用しているとはいいがたく、活性、特に質量比活性が十分であるといえなかった。また、特許文献1によると、白金と他の金属との合金化させた金属ナノ粒子も製造できることが記載されている(段落「0026」)。しかし、当該方法をもってしても、反応への寄与が小さい中心部に白金が使用されているため、白金を有効利用しているとはいいがたく、活性、特に質量比活性が十分であるといえなかった。このため、白金の有効利用率を高め、活性(面積比活性、質量比活性)が向上した触媒粒子の開発が希求されていた。
 これに対して、本発明の触媒粒子は、
(a)白金原子および非白金金属原子からなる合金粒子であり;
(b)合金粒子は粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有し;
(c)前記本体部は非白金金属および白金で形成され、前記突状部は白金を主成分として形成され;および
(d)前記突状部のアスペクト比(直径/長さ)が0を超えて2以下である、
ことを特徴とする。
 上記構成(a)、(b)及び(c)によると、本発明に係る触媒(合金)粒子は、非白金金属および白金から形成される本体部及び白金から実質的に形成される突状部から構成される。上記構成(b)及び(c)によると、反応寄与率の低い本体部は白金に加えて触媒活性が相対的に低い非白金金属を含むよう構成する一方で、反応ガスと接触し、反応寄与率の高い突状部を触媒活性が高い白金で主に構成する。このため、白金で形成する触媒粒子や上記特許文献1に記載の金属粒子に比して、白金の利用率を高め、同じ活性を達成するために必要とされる白金量を低減することができる。また、上記構成により、高活性を示す結晶面を多く露出できる。また、触媒粒子を金平糖様構造とすることで、圧縮応力が作用して、白金間距離が短縮する。このため、活性(質量比活性および面積比活性)、特に面積比活性を向上させることができる。つまり、電極触媒の活性が向上し、触媒粒子に占める白金含有量を低減した白金合金系触媒を提供することができる。上記構成(d)によると、触媒粒子表面のラフネスが増加するため、反応に有効に寄与できる面積が増加する。このため、活性、特に面積比活性を向上できる。また、触媒粒子の比表面積が増大するため、活性、特に質量比活性をも向上できる。
 したがって、本発明の触媒粒子は、少ない白金含有量であっても、高い活性(質量比活性および面積比活性)を発揮できる。このため、本発明の触媒粒子を用いた電極触媒、当該電極触媒を触媒層に有する膜電極接合体および燃料電池は、発電性能に優れる。
 また、上記構造をとる触媒(合金)粒子は、その構造により、触媒粒子表面には白金が主として存在している(白金が露出している)。このため、触媒粒子は、溶出耐性が高く、酸性条件下、例えば、強酸性の電解質に接触した状態であっても、非白金金属の連鎖的溶出を抑制・防止できる。ゆえに、本発明の触媒粒子は、非白金金属原子による効果を長期間にわたって発揮できる。
 したがって、本発明の触媒粒子は、耐久性にも優れ、高い活性(質量比活性および面積比活性)を長期間維持できる。このため、本発明の触媒粒子を用いた電極触媒、当該電極触媒を触媒層に有する膜電極接合体および燃料電池は、耐久性に優れる。
 なお、本発明は、上記メカニズムによって限定されるものではない。
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 以下、適宜図面を参照しながら、本発明の触媒粒子の一実施形態、並びにこれを使用した電極、電解質膜-電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかしながら、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態を図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 また、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 [触媒粒子]
 本発明の触媒粒子は、下記構成を有する:
(a)白金原子および非白金金属原子からなる合金粒子であり;
(b)合金粒子は粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有し;
(c)前記本体部は非白金金属および白金で形成され、前記突状部は白金を主成分として形成され;および
(d)前記突状部のアスペクト比(直径/長さ)が0を超えて2以下である。
 図1は、本発明の一実施形態に係る触媒粒子を模式的に示す断面図である。図1に示されるように、本発明に係る触媒粒子20は、本体部21及び複数の突状部22を有し、好ましくは本体部21及び複数の突状部22から構成される。本体部21は、粒状(球状)構造を有する(構成(b))。また、本体部21は、非白金金属および白金から構成される(構成(c))。ここで、本体部21は、非白金金属および白金から構成される限り、本体部全体が実質的に均一の組成を有する、組成の異なる部分から構成されるなど、いずれの構造をとってもよい。好ましくは、本体部は、少なくとも非白金金属を主成分として形成される部分を有する。これにより、白金の利用率をより高め、同じ活性を達成するために必要とされる白金量をより低減することができる。本発明の一実施形態によると、本体部の中心部分は非白金金属で形成される。このため、本発明の好ましい実施形態によると、本体部は、非白金金属を主成分として形成される中心部(コア部)を有する。また、上記形態において、突状部と接する本体部表面層は非白金金属および白金が均一に混ざり合った固溶体の状態であってもよい。このため、本発明のより好ましい実施形態によると、本体部は、非白金金属を主成分として形成される中心部(コア部)ならびに当該中心部(コア部)を被覆しかつ非白金金属及び白金から構成される外殻部(シェル部)から構成される。当該構成をとることによって、本体部中心は溶出しやすい非白金金属で実質的に構成され、かつ触媒粒子表面には溶出しにくい白金がより選択的に存在する(より多くの白金が露出している)。このため、触媒粒子は、溶出耐性をより向上し、酸性条件下、例えば、強酸性の電解質に接触した状態であっても、非白金金属の連鎖的溶出をより有効に抑制・防止できる(耐久性をより向上できる)。ここで、「本体部または中心部(コア部)が非白金金属を主成分として形成される」とは、本体部または中心部(コア部)が全モル量に対して50モル%を超えて(上限:100モル%)の割合で非白金金属で構成されることを意味する。また、本体部が本体部の全モル量に対して60モル%以上(上限:100モル%)の割合で非白金金属で構成されることが好ましい。なお、本体部に非白金金属が占める割合は、TEM-EDX等による各粒子内の組成分布によって確認できる。なお、上記より好ましい形態において、外殻部(シェル部)の組成は、特に制限されず、触媒粒子の製造条件(例えば、非白金金属や白金の添加量など)によって適切に調整できる。
 突状部22は、本体部21の外面よりも外側に向けて突出している(構成(b))。また、突状部22は、白金を主成分として形成される(構成(c))。ここで、「突状部は、白金を主成分として形成される」とは、突状部が突状部の全モル量に対して50モル%を超えて(上限:100モル%)の割合で白金で構成されることを意味する。また、突状部が突状部の全モル量に対して60モル%以上(上限:100モル%)の割合で白金で構成されることが好ましい。なお、突状部に白金が占める割合は、TEM-EDX等による各粒子内の組成分布によって確認できる。
 また、突状部22に関しては、突状部のアスペクト比(直径/長さ)が0を超えて2以下である(構成(d))。このような構成により、触媒粒子表面のラフネスが増加するため、反応に有効に寄与できる面積、すなわち触媒粒子の比表面積が大きくなる。このため、活性、特に質量比活性を向上できる。また、このような構成により、高活性を示す結晶面を多く露出できる。また、触媒粒子を金平糖様構造とすることで、圧縮応力が作用して、白金間距離が短縮する。このため、活性、特に面積比活性を向上させることができる。逆に、突状部のアスペクト比が2を超える場合には、触媒粒子が球状に近くなり、比表面積を大きくとれる効果が小さくなり、また高活性を示す結晶面の露出が少なくなり、さらに圧縮応力が作用しにくくなるため白金間距離が短縮しにくくなり、好ましくない。比表面積の増大、高活性を示す結晶面の露出、圧縮応力による白金間距離の短縮などを考慮すると、突状部のアスペクト比は、0.1~2であることが好ましく、0.2~2であることがより好ましい。なお、突状部は複数存在するが、これらのすべてが上記アスペクト比を満足する必要はない。しかし、突状部の全本数のうち、好ましくは60%以上、より好ましく80%以上、特に好ましくすべて(100%)が上記アスペクト比を満足する。
 突状部の大きさは、アスペクト比が本発明に係る範囲に含まれるものであれば、特に制限されない。比表面積の増大、高活性を示す結晶面の露出、圧縮応力による白金間距離の短縮などを考慮すると、突状部の直径が、好ましくは0nmを超えて5nm以下であり、より好ましくは0nmを超えて4nm以下、特に好ましくは1.5~4nmである。また、比表面積の増大、高活性を示す結晶面の露出、圧縮応力による白金間距離の短縮などを考慮すると、突状部の長さが、0nmを超えて10nm以下であり、より好ましくは2~8nmである。なお、突状部は複数存在するが、これらのすべてが上記大きさ(突状部の直径または長さ)を満足する必要はない。しかし、突状部の全本数のうち、好ましくは60%以上、より好ましく80%以上、特に好ましくすべて(100%)が上記大きさ(突状部の直径または長さ)を満足する。
 本体部の大きさも、アスペクト比が本発明に係る範囲に含まれるものであれば、特に制限されない。本体部の直径が、好ましくは3~40nm以下であり、より好ましくは5~30nmである。
 ここで、突状部のアスペクト比は、突状部の直径を突状部の長さで除した割合(=突状部の直径/突状部の長さ)であり、下記により定義・決定される。すなわち、上述したように、触媒粒子は、本体部及び突状部から構成されるが、この際、本体部及び突状部は、本体部21と突状部22との境界(図1中の点線)に対して定義される。すなわち、本体部は上記境界に対して中心部側の領域(図1中の点線の内部)を意図し、突状部は上記境界に対して外方向の領域(図1中の点線より外側の部分)を意図する。この際、上記「本体部21と突状部22との境界(図1中の点線)」は、隣り合う突状部の間の底部を結んだ線に基づいて求められた近似円とする。ここで、近似円は、測定点の座標から最小二乗法により求められる。突状部の長さは、突状部の頂点から上記近似円におろした垂線の長さ(図1中の「L22」)である。突状部の直径は、突状部の最大直径(図1中の「R22」)である。また、本体部の直径は、上記近似円の最大(図1中の「R21」)である。上記突状部の直径(図1中の「R22」)及び長さ(図1中の「L22」)、ならびに本体部の直径(図1中の「R21」)は、それぞれ、公知の方法によって測定できるが、本明細書では、透過型電子顕微鏡(TEM)によって測定された値を採用する。
 触媒(合金)粒子の大きさは、特に制限されず、上記本体部や突状部の大きさを満たすような大きさであることが好ましい。具体的には、触媒(合金)粒子の直径は、好ましくは0nmを超えて100nm以下であり、より好ましくは6nmを超えて60nm以下であり、特に好ましくは10~50nmである。このような大きさであれば、触媒(合金)粒子は、より高い活性(質量比活性および面積比活性)を発揮できる。なお、触媒(合金)粒子の大きさが均一でない場合には、触媒(合金)粒子の直径は触媒(合金)粒子の最大径(図1中の「R20」)とする。
 また、触媒粒子は、白金原子および非白金金属原子からなる合金粒子である(構成(a))。本発明に係る合金粒子は、粒子全体が白金原子および非白金金属原子からなる合金で構成されていることを意図するものではなく、少なくとも一部が白金原子および非白金金属原子からなる合金で構成されることを意図する。好ましい実施形態では、触媒粒子では、本体部が非白金金属を主成分として形成され、突状部が白金を主成分として形成され、本体部と突状部との境界付近が白金原子と非白金金属原子との合金を主成分として形成される。本明細書において、「合金」とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。本発明の触媒粒子は、その合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがある。本発明では、触媒粒子は、いずれの形態であってもよいが、少なくとも白金原子および非白金原子が金属間化合物を形成しているものを含む。
 上記非白金金属原子は、特に制限されないが、触媒活性、本発明に係る構造(特に本体部や突状部)の形成しやすさなどの観点から、遷移金属原子であることが好ましい。ここで、遷移金属原子とは、第3族元素から第12族元素を指し、遷移金属原子の種類もまた、特に制限されない。触媒活性、突状部の形成しやすさなどの観点から、遷移金属原子は、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)および亜鉛(Zn)からなる群より選択されることが好ましい。遷移金属原子は、ニッケル(Ni)、コバルト(Co)であることがより好ましい。上記遷移金属原子は、白金(Pt)と金属間化合物を形成しやすいため、白金の使用量を低減しつつも、活性(質量比活性および面積比活性)をより向上できる。なお、上記遷移金属原子は、単独で白金と合金化されても、あるいは2種以上が白金と合金化されても、いずれでもよいが、単独で白金と合金化されることが好ましい。
 触媒粒子の組成もまた、特に制限されない。触媒活性、突状部の形成しやすさなどの観点から、触媒粒子の組成は、白金原子1モルに対して、非白金金属原子が、0.1~1モルであることが好ましく、0.1~0.5モルであることがより好ましく、0.15~0.3モルであることが特に好ましい。このような組成であれば、触媒粒子は、高い活性を発揮・維持できる。なお、触媒粒子の組成(触媒粒子中の各金属原子の含有量)は、誘導結合プラズマ発光分析(ICP atomic emission spectrometry)や誘導結合プラズマ質量分析(ICP mass spectrometry)、蛍光X線分析(XRF)等の、従来公知の方法によって決定できる。
 [触媒粒子の製造方法]
 上記触媒粒子の製造方法は、下記構成(a)~(d)を有する触媒粒子を製造できる方法であれば、特に限定されるものではない:
(a)白金原子および非白金金属原子からなる合金粒子であり;
(b)合金粒子は粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有し;
(c)前記本体部は非白金金属および白金で形成され、前記突状部は白金を主成分として形成され;および
(d)前記突状部のアスペクト比(直径/長さ)が0を超えて2以下である。
 好ましい実施形態によると、
非白金金属前駆体を含む非白金金属前駆体溶液を調製し(工程(1));
吸着剤および還元剤を含む還元剤混合液を調製し(工程(2));
前記非白金金属前駆体溶液と前記還元剤混合液とを混合し、前記非白金金属前駆体を還元して、非白金金属粒子分散液を得(工程(3));
白金前駆体を含む白金前駆体溶液を調製し(工程(4));
前記非白金金属粒子分散液と前記白金前駆体溶液とを混合し、前記白金前駆体を還元して、非白金金属粒子表面に白金が成長して突状部を形成する(工程(5))
ことによって、本発明に係る触媒粒子が製造できる。
 以下、上記実施形態の製造方法の各工程について詳述する。しかしながら、本発明は、下記方法に限定されるものではない。
 (工程(1))
 本工程では、非白金金属前駆体を含む非白金金属前駆体溶液を調製する。
 ここで、非白金金属前駆体を構成する非白金金属は、特に制限されないが、上記非白金金属原子における記載と同様であるため、ここでは説明を省略する。また、非白金金属前駆体の形態は、特に制限されないが、非白金金属塩及び非白金金属錯体が好ましく使用できる。より具体的には、非白金金属の、硝酸塩、硫酸塩、アンモニウム塩、アミン塩、炭酸塩、重炭酸塩、臭化物及び塩化物などのハロゲン化物、亜硝酸塩、シュウ酸塩などの無機塩類、スルファミン酸塩、ギ酸塩などのカルボン酸塩、水酸化物、アルコキサイド、酸化物、アンミン錯体、シアノ錯体、ハロゲノ錯体、ヒドロキシ錯体などを用いることができる。つまり、非白金金属が、純水などの溶媒中で金属イオンになれる化合物が好ましく挙げられる。これらのうち、非白金金属の塩としては、ハロゲン化物(特に塩化物)、硫酸塩、硝酸塩、スルファミン酸塩がより好ましく、硫酸塩、スルファミン酸塩が特に好ましい。なお、上記非白金金属前駆体は、1種を単独で使用してもあるいは2種以上の混合物として使用されてもよい。また、非白金金属前駆体は、水和物の形態であってもよい。
 上記非白金金属前駆体溶液の調製に使用される溶媒は、特に制限されず、使用される非白金金属前駆体の種類によって適宜選択される。なお、上記非白金金属前駆体溶液の形態は特に制限されず、溶液、分散液および懸濁液を包含する。均一に混合できるという観点から、非白金金属前駆体溶液は溶液の形態であることが好ましい。具体的には、水、メタノール、エタノール、1-プロパノール、2-プロパノール等の有機溶媒、酸、アルカリなどが挙げられる。これらのうち、非白金金属のイオン化合物を十分に溶解する観点から、水が好ましく、純水または超純水を用いることが特に好ましい。上記溶媒は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
 非白金金属前駆体溶液における非白金金属前駆体の濃度は、特に制限されないが、金属換算で0.01M(mol/L)以上であることが好ましく、0.02M(mol/L)以上であることがより好ましく、0.03M(mol/L)以上であることが特に好ましい。また、非白金金属前駆体溶液における非白金金属前駆体の濃度の上限もまた特に制限されないが、金属換算で0.10M(mol/L)以下であることが好ましく、0.09M(mol/L)以下であることがより好ましく、0.08M(mol/L)以下であることが特に好ましい。上記したような濃度であれば、本体部の大きさを上記したような範囲により効率よく制御できる。
 (工程(2))
 本工程では、吸着剤および還元剤を含む還元剤混合液を調製する。ここで、吸着剤とは、下記工程(3)において、非白金金属前駆体が還元されて非白金金属粒子となる際に非白金金属粒子表面に吸着して、下記工程(5)での白金イオンとの置換反応を阻害する化合物を指す。吸着剤はまた、凝集を防止するように作用する。また、還元剤とは、非白金金属前駆体(好適には遷移金属前駆体)及び白金前駆体を還元しうる化合物である。
 本工程で使用できる吸着剤としては、特に限定されるものではないが、クエン酸ナトリウム、クエン酸三ナトリウム等のクエン酸塩;クエン酸三ナトリウム二水和物などのクエン酸塩水和物;クエン酸;ポリビニルピロリドン、ポリエチレンイミン、キトサン、ポリアクリル酸ナトリウム、ポリアクリル酸エステルなどの水溶性高分子;デカンチオール、ヘキサンチオールなどの硫黄化合物;セチルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムクロリドなどの脂肪族4級アミン塩などが挙げられる。これらのうち、クエン酸塩またはその水和物であることが好ましく、クエン酸三ナトリウム二水和物であることがより好ましい。これらの吸着剤は、非白金金属前駆体が還元されて非白金金属粒子となる際に非白金金属粒子表面により選択的にかつより均一に吸着して、下記工程(5)での白金イオンとの置換反応をより有効に阻害する。このため、下記工程(5)で、突状部が非白金金属粒子表面により選択的にかつより均一に形成できる。また、上記吸着剤は、凝集防止効果に優れ、また緩衝剤として作用して反応時のpH変化を最小限にでき、反応が均一に進行しやすくすることもできる。
 なお、上記吸着剤は、1種を単独で使用してもあるいは2種以上の混合物として使用してもよい。
 また、本工程で使用できる還元剤は、特に制限されないが、30℃以下、より好ましくは20℃以下で還元作用を示す還元剤であることが好ましい。このような還元剤としては、例えば、水素化ホウ素ナトリウム(NaBH)、水素化ホウ素カルシウム(Ca(BH)、水素化ホウ素リチウム(LiBH)、水素化ホウ素アルミニウム(Al(BH)、水素化ホウ素マグネシウム(Mg(BH)などの水素化ホウ素化合物;エタノール、メタノール、プロパノールなどの低級アルコール;ギ酸、ギ酸ナトリウムやギ酸カリウムなどのギ酸塩;チオ硫酸ナトリウム、およびヒドラジン(N)などが使用できる。これらは水和物の形態になっていてもよい。また、上記還元剤は、1種を単独で使用してもあるいは2種以上の混合物として使用してもよい。なお、クエン酸塩、例えば、クエン酸三ナトリウム二水和物は、白金の還元剤ではあるが、遷移金属原子を還元させることはできないため、本発明でいう還元剤には含まれない。中でも、還元作用の点から、還元剤として水素化ホウ素化合物を用いることが好ましく、水素化ホウ素ナトリウムを用いることがより好ましい。特にクエン酸塩またはその水和物を吸着剤として使用する場合には、水素化ホウ素化合物を用いると、水溶液が弱アルカリ性になり、水素化ホウ素化合物の還元能力の寿命を延ばすという役割も果たせるため、好ましい。
 上記還元剤および吸着剤を含む混合液の調製に使用される溶媒は、特に制限されず、使用される還元剤および吸着剤の種類によって適宜選択される。なお、上記混合液の形態は特に制限されず、溶液、分散液および懸濁液を包含する。均一に混合できるという観点から、混合液は溶液の形態であることが好ましい。また、還元剤を溶液状態で非白金金属前駆体溶液に添加することで、粉末状の還元剤を添加するよりも混合溶液内で反応速度が均一となり、粒子径が均一になりやすいため好ましい。同様にして、吸着剤を溶液状態で非白金金属前駆体溶液に添加することで、粉末状の還元剤を添加するよりも混合溶液内で反応速度が均一となり、非白金金属粒子表面により選択的にかつより均一に吸着できるため好ましい。
 溶媒としては、具体的には、水、メタノール、エタノール、1-プロパノール、2-プロパノール等の有機溶媒、酸、アルカリなどが挙げられる。これらのうち、還元剤および吸着剤を十分に溶解する観点から、水が好ましく、純水または超純水を用いることが特に好ましい。上記溶媒は、単独で使用されてもあるいは2種以上の混合物の形態で使用してもよい。なお、還元剤混合液における吸着剤や還元剤の濃度は、特に制限されず、吸着剤及び還元剤が下記工程(3)に記載される好ましい添加量となるように適宜決定されればよい。例えば、還元剤混合液における吸着剤の濃度は、好ましくは0.1~5g/溶媒100mLであり、より好ましくは0.2~3g/溶媒100mLである。また、還元剤混合液における還元剤の濃度は、好ましくは0.3~10g/溶媒100mLであり、より好ましくは0.5~5g/溶媒100mLである。
 還元剤および吸着剤を含む還元剤混合液の調製方法は、特に制限されない。例えば、吸着剤を溶媒に添加した後、還元剤を添加する;還元剤を溶媒に添加した後、吸着剤を添加する;吸着剤および還元剤をそれぞれ別々に溶媒に溶解した後、これらを混合する;吸着剤および還元剤を一括して溶媒に添加する;のいずれの方法を使用してもよい。
 また、上記混合液は、均一に混合するために、撹拌してもよい。ここで、撹拌条件は、特に均一に混合できる条件であれば特に制限されない。例えば、スターラーやホモジナイザなどの適当な攪拌機を用いる、あるいは、超音波分散装置など超音波を印加することによって、均一に分散混合できる。また、撹拌時間としては分散が十分に行われるように適宜設定すればよく、通常、0.5~60分であり、好ましくは1~40分である。
 (工程(3))
 本工程では、上記工程(1)で調製された非白金金属前駆体溶液と、上記工程(2)で調製された還元剤混合液とを混合し、前記非白金金属前駆体を還元して、非白金金属粒子分散液を得る。
 ここで、還元剤混合液と非白金金属前駆体溶液との混合方法(還元剤混合液と非白金金属前駆体溶液との混合液の調製方法)は、特に制限されない。例えば、還元剤混合液を非白金金属前駆体溶液に添加しても、非白金金属前駆体溶液を還元剤混合液に添加しても、または非白金金属前駆体溶液及び還元剤混合液を一括して添加しても、いずれでもよい。還元/吸着条件(例えば、還元速度、非白金金属粒子表面への吸着剤の吸着状態)を制御しやすいなどの観点から、還元剤混合液を非白金金属前駆体溶液に添加することが好ましい。また、添加方法もまた特に制限されない。例えば、還元剤混合液を、非白金金属前駆体溶液に一括してまたは分割して添加してもよい。同様にして、非白金金属前駆体溶液を、還元剤混合液に一括してまたは分割して添加してもよい。
 また、還元剤混合液と非白金金属前駆体溶液との混合割合は、特に制限されず、所望の効果に応じて適宜選択される。
 例えば、還元剤混合液中の吸着剤の添加量は、非白金金属粒子への吸着剤の吸着状態の制御のしやすさ(ゆえに、後の工程での突状部の形成のしやすさ)、凝集防止の効果などを考慮して、適宜設定される。例えば、還元剤混合液中の吸着剤の添加量は、非白金金属前駆体の1モル(金属換算)に対して、2.3モル以上であることが好ましく、2.4モル以上であることがより好ましい。還元剤混合液中の吸着剤の添加量の上限は特に制限されないが、非白金金属前駆体の1モル(金属換算)に対して、10モル以下であることが好ましく、8モル以下であることがより好ましい。このように吸着剤が非白金金属に対して比較的多量に使用することによって、下記メカニズムにより、非白金金属粒子(本体部)表面に白金の突状部がより効率よく形成できる。なお、下記メカニズムは推定であり、本発明は下記推定によって限定されない。すなわち、下記工程(5)で、非白金金属粒子分散液と白金前駆体溶液とを混合すると、白金前駆体溶液中でイオン形態の白金前駆体は、非白金金属粒子を構成する金属のイオン化を誘導し、白金前駆体自身は還元されて白金となり、非白金金属粒子を構成する非白金金属を白金に置換する。上記置換反応によって、非白金金属粒子表面に白金が析出する。一方、吸着剤が存在する(吸着した)非白金金属粒子部分は、白金イオンと接触しないため、吸着剤が非白金金属のイオン化を阻害する。このため、吸着剤が存在する(吸着した)非白金金属粒子表面では、溶液中で非白金金属のイオン化が起こりにくい(非白金金属が溶出しにくい)。すなわち、本工程で吸着剤が吸着した非白金金属粒子表面では、白金は析出しにくいまたは析出しない。したがって、上記したような量で吸着剤を表面に過剰に存在させることにより、非白金金属と白金イオンとの置換反応(非白金金属と白金との合金化)が局部的に進行して、白金が突状に成長する。ゆえに、突状部(金平糖状の構造)が効率よく形成できる。
 また、還元剤混合液中の還元剤の添加量は、非白金前駆体を効率よく還元できる量であれば特に制限されない。例えば、還元剤混合液中の還元剤の添加量は、非白金金属前駆体の1モル(金属換算)に対して、3モル以上であることが好ましく、5モル以上であることがより好ましい。還元剤混合液中の吸着剤の添加量の上限は特に制限されないが、非白金金属前駆体の1モル(金属換算)に対して、20モル以下であることが好ましく、10モル以下であることがより好ましい。このような量であれば、非白金前駆体をより効率よく還元できる。
 還元剤混合液と非白金金属前駆体溶液との混合は、均一に混合するために、撹拌することが好ましい。撹拌処理によって、非白金金属前駆体の還元剤による還元反応がより均一にかつより効率よく進行するため、未還元の非白金金属前駆体をより有効に抑制できる。また、非白金金属粒子表面に吸着剤がより均一に分布するため、下記工程(5)で突状部がより局部的にかつより均一に形成できる。ここで、撹拌条件は、特に均一に混合できる条件であれば特に制限されない。例えば、スターラー(例えば、マグネチックスターラー)やホモジナイザ(例えば、超音波ホモジナイザ)などの適当な攪拌機を用いる、あるいは、超音波分散装置など超音波を印加することによって、均一に分散混合できる。また、混合条件は、還元剤、吸着剤及び非白金金属前駆体が均一に分散できるような条件であれば特に制限されない。具体的には、スターラー(例えば、マグネチックスターラー)を使用する場合には、撹拌速度は、好ましくは100~600rpm、より好ましくは200~400rpmである。また、撹拌温度は、好ましくは10~50℃、より好ましくは15~40℃である。また、撹拌時間は、好ましくは5分~2時間であり、より好ましくは10分~1時間である。なお、上記混合は、例えば、スターラー(例えば、マグネチックスターラー)及びホモジナイザ(例えば、超音波ホモジナイザ)など、2種以上を適宜組み合わせてもよい。また、この際、2種以上の操作を同時にまたは順次行ってもよい。
 (工程(4))
 本工程では、白金前駆体を含む白金前駆体溶液を調製する。
 ここで、白金前駆体としては、特に制限されないが、白金塩および白金錯体が使用できる。より具体的には、塩化白金酸(典型的にはその六水和物;H[PtCl]・6HO)、ジニトロジアンミン白金等の硝酸塩、硫酸塩、アンモニウム塩、アミン、テトラアンミン白金およびヘキサアンミン白金等のアンミン錯体、シアノ錯体、ハロゲノ錯体、ヒドロキシ錯体、炭酸塩、重炭酸塩、臭化物や塩化白金等のハロゲン化物、亜硝酸塩、シュウ酸などの無機塩類、スルファミン酸塩やギ酸塩などのカルボン酸塩、水酸化物、アルコキサイドなどを使用することができる。なお、上記白金前駆体は、1種を単独で使用してもあるいは2種以上の混合物として使用してもよい。
 上記白金前駆体溶液の調製に使用される溶媒は、特に制限されず、使用される非白金金属前駆体の種類によって適宜選択される。なお、上記白金前駆体溶液の形態は特に制限されず、溶液、分散液および懸濁液を包含する。均一に混合できるという観点から、白金前駆体溶液は溶液の形態であることが好ましい。具体的には、水、メタノール、エタノール、1-プロパノール、2-プロパノール等の有機溶媒、酸、アルカリなどが挙げられる。これらのうち、非白金金属のイオン化合物を十分に溶解する観点から、水が好ましく、純水または超純水を用いることが特に好ましい。上記溶媒は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
 白金前駆体溶液における白金前駆体の濃度は、特に制限されないが、上記したような触媒粒子組成になるような割合であることが好ましい。例えば、白金前駆体溶液における白金前駆体の濃度は、金属(Pt)換算で0.1M(mol/L)以上であることが好ましく、0.3M(mol/L)以上であることがより好ましく、0.5(mol/L)以上であることが特に好ましい。また、白金前駆体溶液における白金前駆体の濃度の上限もまた特に制限されないが、金属換算で7M(mol/L)以下であることが好ましく、5M(mol/L)以下であることがより好ましく、3M(mol/L)以下であることが特に好ましい。上記したような濃度であれば、本体部表面に所望の大きさの突状部をより効率よく形成できる。
 (工程(5))
 本工程では、上記工程(3)で調製された非白金金属粒子分散液と上記工程(4)で調製された白金前駆体溶液とを混合し、前記白金前駆体を還元して、非白金金属粒子表面に白金が成長して突状部を形成する。
 本工程では、非白金金属粒子分散液と白金前駆体溶液とを混合すると、白金前駆体溶液中でイオン形態の白金前駆体は、非白金金属粒子を構成する金属のイオン化を誘導し、白金前駆体自身は還元されて白金となり、非白金金属粒子を構成する非白金金属を白金に置換する。上記置換反応によって、非白金金属粒子表面に白金が析出する。一方、吸着剤が存在する(吸着した)非白金金属粒子部分は、白金イオンと接触しないため、吸着剤が上記非白金金属粒子のイオン化を阻害する。このため、吸着剤が存在する(吸着した)非白金金属粒子表面では、溶液中で非白金金属のイオン化が起こりにくい(非白金金属が溶出しにくい)。すなわち、本工程で吸着剤が吸着した非白金金属粒子表面では、白金は析出しにくいまたは析出しない。したがって、本工程では、還元剤及び吸着剤により、非白金金属と白金イオンとの置換反応(非白金金属と白金との合金化)および白金イオンの還元反応が局部的に進行して、白金が突状に成長(析出)する。ゆえに、突状部(金平糖状の構造)が効率よく形成できる。また、上記置換反応が生じる非白金金属粒子表面では、非白金金属および白金が均一に混ざり合った固溶体が形成する。ゆえに、本工程により、非白金金属を主成分として形成される中心部(コア部)を被覆するように、非白金金属及び白金から構成される外殻部(シェル部)が形成する。
 ここで、非白金金属粒子分散液と白金前駆体溶液との混合方法(非白金金属粒子分散液と白金前駆体溶液との混合液の調製方法)は、特に制限されない。例えば、非白金金属粒子分散液を白金前駆体溶液に添加しても、または白金前駆体溶液を非白金金属粒子分散液に添加してもいずれでもよいが、白金前駆体溶液を非白金金属粒子分散液に添加することが好ましい。これにより、非白金金属と白金イオンとの置換反応(非白金金属と白金との合金化)状態(例えば、速度)をより有効に制御して、所望の突状部の大きさ(アスペクト比、直径、長さ)をより効率よく達成できる。また、添加方法もまた特に制限されない。例えば、白金前駆体溶液を、非白金金属粒子分散液に一括してまたは分割して添加してもよい。同様にして、非白金金属粒子分散液を、白金前駆体溶液に一括してまたは分割して添加してもよい。
 また、非白金金属粒子分散液と白金前駆体溶液との混合割合は、特に制限されないが、上記したような触媒粒子の組成となるような割合であることが好ましい。
 非白金金属粒子分散液と白金前駆体溶液との混合条件は特に制限されない。例えば、混合温度は、好ましくは10~50℃、より好ましくは15~40℃である。また、非白金金属粒子分散液と白金前駆体溶液との混合は、攪拌せずに(単に添加することにより)行っても、または攪拌しながら混合してもよい。攪拌する際の、撹拌条件は、特に均一に混合できる条件であれば特に制限されない。例えば、スターラー(例えば、マグネチックスターラー)やホモジナイザ(例えば、超音波ホモジナイザ)などの適当な攪拌機を用いる、あるいは、超音波分散装置など超音波を印加することによって、均一に分散混合できる。また、混合条件は、還元剤、吸着剤及び非白金金属前駆体が均一に分散できるような条件であれば特に制限されない。具体的には、スターラー(例えば、マグネチックスターラー)を使用する場合には、撹拌速度は、好ましくは100~600rpm、より好ましくは200~400rpmである。また、撹拌温度は、好ましくは10~50℃、より好ましくは15~40℃である。また、撹拌時間は、好ましくは5分~2時間であり、より好ましくは10分~1時間である。なお、上記混合は、例えば、スターラー(例えば、マグネチックスターラー)及びホモジナイザ(例えば、超音波ホモジナイザ)など、2種以上を適宜組み合わせてもよい。また、この際、2種以上の操作を同時にまたは順次行ってもよい。
 上記により、触媒粒子が得られる。ここで、必要であれば、触媒粒子を、上記にて得られた分散液から単離してもよい。ここで、単離方法は、特に制限されず、触媒粒子を濾過し、乾燥すればよい。なお、必要であれば、触媒粒子を濾過した後に、洗浄(例えば、水洗)を行ってもよい。また、上記濾過ならびに必要であれば洗浄工程は、繰り返し行ってもよい。また、濾過または洗浄後、触媒粒子を乾燥してもよい。ここで、触媒粒子の乾燥は、空気中で行ってもよく、また減圧下で行ってもよい。また、乾燥温度は特に限定されないが、例えば、10~100℃、好ましくは室温(25℃)~80℃程度の範囲で行うことができる。また、乾燥時間もまた、特に限定されないが、例えば、1~60時間、好ましくは5~50時間程度の範囲で行うことができる。
 [触媒(電極触媒)]
 上述したように、本発明に係る触媒粒子は、高活性な結晶面が多く露出しており、反応に有効に寄与できる面積が大きい。このため、触媒粒子は、活性(面積比活性、質量比活性)が高い。ゆえに、触媒粒子は好適には導電性担体に担持されて、電極触媒として使用できる。すなわち、本発明は、本発明の触媒粒子、および前記触媒粒子を担持する導電性担体を有する電極触媒をも提供する。本発明の電極触媒は、少ない白金含有量であっても、高い活性(面積比活性、質量比活性)を発揮・維持できる。
 導電性担体は、上述した触媒粒子を担持するための担体、および触媒粒子と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。導電性担体としては、触媒粒子を所望の分散状態で担持させるための比表面積を有し、集電体として十分な電子導電性を有しているものであればよく、主成分がカーボンであるのが好ましい。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、実質的に炭素原子からなるとは、2~3重量%程度以下の不純物の混入が許容されることを意味する。
 導電性担体としては、具体的には、アセチレンブラック、チャンネルブラック、オイルファーネスブラック、ガスファーネスブラック(例えば、バルカン)、ランプブラック、サーマルブラック、ケッチェンブラック(登録商標)などのカーボンブラック;ブラックパール;黒鉛化アセチレンブラック;黒鉛化チャンネルブラック;黒鉛化オイルファーネスブラック;黒鉛化ガスファーネスブラック;黒鉛化ランプブラック;黒鉛化サーマルブラック;黒鉛化ケッチェンブラック;黒鉛化ブラックパール;カーボンナノチューブ;カーボンナノファイバー;カーボンナノホーン;カーボンフィブリル;活性炭;コークス;天然黒鉛;人造黒鉛等のカーボン材料などを挙げることができる。また、導電性担体として、ナノサイズの帯状グラフェンが3次元状に規則的に連結した構造を有するゼオライト鋳型炭素(ZTC)も挙げることができる。
 導電性担体のBET比表面積は、触媒粒子を高分散担持させるのに十分な比表面積であればよいが、好ましくは10~5000m/g、より好ましくは50~2000m/gとするのがよい。このような比表面積であれば、導電性担体に十分な触媒粒子を担持(高分散)して、十分な発電性能を達成できる。なお、担体の「BET比表面積(m/g担体)」は、窒素吸着法により測定される。
 また、導電性担体の大きさは、特に限定されないが、担持の容易さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点からは、平均粒子径が5~200nm、好ましくは10~100nm程度とするのがよい。なお、「担体の平均粒子径」は、X線回折(XRD)における担体粒子の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)により調べられる担体の粒子径の平均値として測定されうる。本明細書では、「担体の平均粒子径」は、統計上有意な数(例えば、少なくとも200個、好ましくは少なくとも300個)のサンプルについて透過型電子顕微鏡像より調べられる担体粒子の粒子径の平均値である。ここで、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
 導電性担体は、表面上にラクトン基、水酸基、エーテル基、およびカルボニル基からなる群より選択される少なくとも一つ以上の官能基(以下、「特定の官能基」とも称する)を、総量として0.5μmol/m以上を有するカーボン担体であることが好ましい。より好ましくは表面上にラクトン基、水酸基、エーテル基、およびカルボニル基からなる群より選択される少なくとも一つ以上の官能基を、総量として0.8~5μmol/mを有するカーボン担体である。かようなカーボン担体を用いることで、得られる触媒粒子の突状部のアスペクト比をより容易に制御し、活性(面積比活性、質量比活性)をより向上できる。これは、触媒粒子を得るための熱処理によっても合金粒子の凝集を抑制でき、担持されている触媒粒子全体の比表面積の低下を抑制できるためであると考えられる。
 ここで、官能基量の測定方法は、昇温脱離法により計測した値を採用する。昇温脱離法とは超高真空下で試料を等速昇温し、試料から放出されるガス成分(分子・原子)を四重極質量分析計でリアルタイム検出する手法である。ガス成分が放出される温度は、試料表面上でのその成分の吸着/化学結合状態に依存する、すなわち脱着/解離に大きなエネルギーを必要とする成分は、相対的に高い温度で検出される。カーボン上に形成された表面官能基は、その種類に応じて異なる温度でCOあるいはCOとして排出されることになる。COあるいはCOに対して得られた昇温脱離曲線をピーク分離し、各ピークの積分強度Tを測定し、積分強度Tから各官能基成分の量(μmol)を算出することができる。この量(μmol)から下記式により官能基量が算出される。
Figure JPOXMLDOC01-appb-M000001
 各官能基の昇温による脱離ガスおよび温度は以下のとおりである;ラクトン基 CO(700℃)、水酸基 CO(650℃)、エーテル基 CO(700℃)、カルボニル基 CO(800℃)。
 また、本発明においては、下記装置および条件により測定された値を採用する。
Figure JPOXMLDOC01-appb-C000002
 上記特定の官能基を有するカーボン担体は、市販されていてもまたは製造してもよい。後者の場合、特定の官能基を有するカーボン担体の製造方法としては特に限定されるものではないが、例えば、導電性担体として上記列挙したカーボン材料を酸性溶液に接触させた後、熱処理を行う(以下、「酸処理」とも称する);蒸気賦活処理;気相酸化処理(オゾン、フッ素ガス等);液相酸化処理(過マンガン酸、塩素酸、オゾン水等)などによって得ることができる。
 以下、好適な形態である酸処理について述べる。
 酸性溶液に用いられる酸としては特に限定されるものではないが、塩酸、硫酸、硝酸、過塩素酸などを挙げることができる。中でも、表面官能基形成の点から、硫酸および硝酸の少なくとも1種を用いることが好ましい。
 また、酸性溶液に接触させるカーボン材料としては、特に限定されるものではないが、比表面積が大きく、酸処理によっても安定であることから、カーボンブラックであることが好ましい。
 酸処理は、担体を酸性溶液に1回接触させる場合のみならず、複数回繰り返し行っても良い。また、複数回の酸処理を行う場合には、処理ごとに酸性溶液の種類を変更しても良い。酸性溶液の濃度は、カーボン材料、酸の種類などを考慮して適宜設定されるが、0.1~10mol/Lとすることが好ましい。
 カーボン材料を酸性溶液に接触させる方法としては、酸性溶液にカーボン材料を混合することが好ましい。また、上記混合液は、均一に混合するために、撹拌することが好ましい。ここで、撹拌条件は、特に均一に混合できる条件であれば特に制限されない。例えば、スターラーやホモジナイザなどの適当な攪拌機を用いる、超音波分散装置など超音波を印加することによって、均一に分散混合できる。また、撹拌温度は、好ましくは5~40℃である。また、撹拌時間としては分散が十分に行われるように適宜設定すればよく、通常、1~60分であり、好ましくは3~30分である。
 接触後の熱処理は、特定の官応基が上記導入量となるように適宜設定されるが、熱処理温度としては、20~90℃が好ましく、60~80℃がより好ましい。また、熱処理時間としては、30分~10時間が好ましく、1時間~4時間がより好ましい。上記熱処理は、攪拌しながら行ってもよい。攪拌する際の、撹拌条件は、熱処理が均等に進行できる条件であれば特に制限されない。例えば、スターラー(例えば、マグネチックスターラー)やホモジナイザ(例えば、超音波ホモジナイザ)などの適当な攪拌機を用いる、あるいは、超音波分散装置など超音波を印加することによって、均一に分散混合できる。また、スターラー(例えば、マグネチックスターラー)を使用する場合には、撹拌速度は、好ましくは100~600rpm、より好ましくは200~400rpmである。
 上記熱処理により、特定の官能基を有する導電性担体が得られる。ここで、必要であれば、この担体を単離してもよい。ここで、単離方法は、特に制限されず、担体を濾過し、乾燥すればよい。なお、必要であれば、担体を濾過した後に、洗浄(例えば、水洗)してもよい。また、上記濾過ならびに必要であれば洗浄工程は、繰り返し行ってもよい。また、濾過または洗浄後、担体を乾燥してもよい。ここで、担体の乾燥は、空気中で行ってもよく、また減圧下で行ってもよい。また、乾燥温度は特に限定されないが、例えば、10~100℃、より好ましくは室温(25℃)~80℃程度の範囲で行うことができる。また、乾燥時間もまた、特に限定されないが、例えば、1~60時間、好ましくは5~48時間である。
 なお、導電性担体が上記酸処理により特定の官能基を有する場合に、導電性担体のBET比表面積は、特に制限されないが、好ましくは10~5000m/g、より好ましくは50~2000m/gである。このようなBET比表面積であれば、適切な比表面積を確保して、導電性担体に十分な触媒粒子を担持(高分散)して、十分な発電性能を達成できる。また、この場合の導電性担体の大きさもまた、特に制限されないが、平均粒子径が5~200nm、好ましくは10~100nm程度とするのがよい。このような大きさであれば、適切な大きさを確保して、導電性担体に十分な触媒粒子を担持(高分散)して、十分な発電性能を達成できる。
 導電性担体に触媒粒子が担持された電極触媒において、触媒粒子の担持濃度(担持量)は、特に制限されないが、担体の全量に対して、2~70重量%とすることが好ましい。担持濃度をこのような範囲にすることで、触媒粒子同士の凝集が抑制され、また、電極触媒層の厚さの増加を抑制できるため好ましい。より好ましくは5~60重量%、さらにより好ましくは5重量%を超えて50重量%以下、特に好ましくは10~45重量%である。触媒成分の担持量がかような範囲内の値であると、触媒担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。なお、触媒成分の担持量は、誘導結合プラズマ発光分析(ICP atomic emission spectrometry)や誘導結合プラズマ質量分析(ICP mass spectrometry)、蛍光X線分析(XRF)等の、従来公知の方法によって調べることができる。
 [触媒(電極触媒)の製造方法]
 触媒(電極触媒)は、本発明の触媒粒子を使用する以外は公知の方法を用いて製造できる。例えば、上記[触媒粒子の製造方法]に記載の方法において、上記工程(3)で、非白金金属前駆体溶液及び還元剤混合液に加えて、導電性担体(カーボン担体)を混合して、触媒(電極触媒)を製造してもよい(方法(i))。または、上記[触媒粒子の製造方法]に記載の方法に従って触媒粒子を製造した後、上記触媒粒子と導電性担体(カーボン担体)とを混合して、触媒(電極触媒)を製造してもよい(方法(ii))。以下では、方法(i)および方法(ii)を説明する。なお、本発明は、これらの方法によって限定されるものではなく、他の方法によって触媒(電極触媒)を製造してもよい。
 (方法(i))
 本実施形態によると、上記工程(3)で、非白金金属前駆体溶液及び還元剤混合液に加えて、導電性担体(カーボン担体)を混合する以外は、上記[触媒粒子の製造方法]に記載の方法に従うことによって、触媒(電極触媒)を製造する。
 ここで、非白金金属前駆体溶液と導電性担体との混合比は、特に制限されないが、上記したような触媒粒子の担持濃度(担持量)となるような量であることが好ましい。
 非白金金属前駆体溶液、還元剤混合液および導電性担体(カーボン担体)の混合順序は特に制限されない。例えば、非白金金属前駆体溶液及び導電性担体を混合した後、還元剤混合液を添加する;非白金金属前駆体溶液及び還元剤混合液を混合した後、導電性担体を添加する;還元剤混合液及び導電性担体を混合した後、非白金金属前駆体溶液を添加する;非白金金属前駆体溶液、還元剤混合液及び導電性担体を一括してまたは分割しながら添加する、などいずれでもよい。好ましくは、非白金金属前駆体溶液及び導電性担体を混合した後、還元剤混合液を添加する。当該方法によると、非白金金属粒子表面への吸着剤の分布をより均一にすることができる。このため、後の工程(5)において、突状部がより均一に及びより位置選択的に形成できる。また、非白金金属前駆体の還元速度を適切に制御しやすく、所定の大きさの非白金金属粒子(本体部)をより効率よく形成できる。また、導電性担体上に非白金金属粒子の一部を担持できる。なお、導電性担体は、そのまま混合されても、または溶液の形態で添加されてもよい。
 また、非白金金属前駆体溶液と導電性担体とを混合した後、撹拌することが好ましい。これにより、非白金金属前駆体(非白金金属前駆体粒子)及び導電性担体を均一に混合するため、非白金金属粒子を導電性担体に高分散・担持することが可能である。また、上記撹拌処理によって、未還元の非白金金属前駆体の還元剤による還元反応も同時に起こるため、非白金金属粒子の導電性担体への高分散・担持をより進行させることも可能である。ここで、撹拌条件は、特に制限されないが、具体的には上記工程(3)での条件と同様である。
 また、本方法(i)では、工程(5)が終了した後、触媒粒子を含む分散液(触媒粒子含有分散液)を再度撹拌してもよい。これにより、触媒粒子及び導電性担体をさらに均一に混合するため、触媒粒子を導電性担体により効率よく高分散・担持できる。また、上記撹拌処理によって、未還元の白金前駆体や非白金金属前駆体の還元剤による還元反応も同時に起こるため、触媒粒子の導電性担体への高分散・担持をより進行させることも可能である。ここで、撹拌条件は、触媒粒子の導電性担体への担持をより進行できる条件であれば特に制限されない。例えば、スターラー(例えば、マグネチックスターラー)やホモジナイザ(例えば、超音波ホモジナイザ)などの適当な攪拌機を用いる、あるいは、超音波分散装置など超音波を印加することによって、均一に分散混合できる。また、混合条件は、還元剤、吸着剤及び非白金金属前駆体が均一に分散できるような条件であれば特に制限されない。具体的には、スターラー(例えば、マグネチックスターラー)を使用する場合には、撹拌速度は、好ましくは100~600rpm、より好ましくは200~400rpmである。また、撹拌温度は、好ましくは0~50℃、より好ましくは5~40℃である。また、撹拌時間は、好ましくは0.3~90時間であり、より好ましくは0.5~80時間である。なお、上記混合は、例えば、スターラー(例えば、マグネチックスターラー)及びホモジナイザ(例えば、超音波ホモジナイザ)など、2種以上を適宜組み合わせてもよい。また、この際、2種以上の操作を同時にまたは順次行ってもよい。
 上記処理により、触媒粒子が担持した導電性担体(触媒粒子担持担体または担持担体)が得られる。ここで、必要であれば、この担持担体を単離してもよい。ここで、単離方法は、特に制限されず、担持担体を濾過し、乾燥すればよい。なお、必要であれば、担持担体を濾過した後に、洗浄(例えば、水洗)してもよい。また、上記濾過ならびに必要であれば洗浄工程は、繰り返し行ってもよい。また、濾過または洗浄後、担持担体を乾燥してもよい。ここで、担持担体の乾燥は、空気中で行ってもよく、また減圧下で行ってもよい。また、乾燥温度は特に限定されないが、例えば、10~100℃、より好ましくは室温(25℃)~80℃程度の範囲で行うことができる。また、乾燥時間もまた、特に限定されないが、例えば、1~60時間、好ましくは3~48時間である。また、乾燥は、空気中で行われてもまたは不活性雰囲気(窒素ガス雰囲気、ヘリウムガス雰囲気、アルゴンガス雰囲気)中で行われてよい。
 (方法(ii))
 本実施形態によると、上記[触媒粒子の製造方法]に記載の方法に従って触媒粒子を製造した後、上記触媒粒子と導電性担体(カーボン担体)とを混合して、触媒(電極触媒)を製造する。
 ここで、触媒粒子と導電性担体との混合比は、特に制限されないが、上記したような触媒粒子の担持濃度(担持量)となるような量であることが好ましい。なお、導電性担体は、そのまま混合されても、または溶液の形態で添加されてもよい。同様にして、触媒粒子は、固体形状で混合されても、または溶液の形態で添加されてもよい。好ましくは、触媒粒子及び導電性担体の少なくとも一方が溶液の形態で混合される。より好ましくは、触媒粒子及び導電性担体双方が溶液の形態で混合される。これにより、触媒粒子と導電性担体とがより均一に混合されるため、触媒粒子を導電性担体により均一に分散・担持することが可能である。
 触媒粒子(または触媒粒子溶液)および導電性担体(または導電性担体溶液)の混合順序は特に制限されない。例えば、導電性担体(または導電性担体溶液)を触媒粒子(または触媒粒子溶液)に添加する;触媒粒子(または触媒粒子溶液)を導電性担体(または導電性担体溶液)に添加する;触媒粒子(または触媒粒子溶液)及び導電性担体(または導電性担体溶液)を同時に添加・混合する、などいずれでもよい。
 また、触媒粒子(または触媒粒子溶液)および導電性担体(または導電性担体溶液)の混合との混合液を撹拌してもよい。これにより、触媒粒子及び導電性担体をより均一に混合するため、触媒粒子を導電性担体により効率よく高分散・担持できる。また、上記撹拌処理によって、未還元の白金前駆体や非白金金属前駆体の還元剤による還元反応も同時に起こるため、触媒粒子の導電性担体への高分散・担持をより進行させることも可能である。ここで、撹拌条件は、触媒粒子の導電性担体への担持をより進行できる条件であれば特に制限されない。例えば、スターラー(例えば、マグネチックスターラー)やホモジナイザ(例えば、超音波ホモジナイザ)などの適当な攪拌機を用いる、あるいは、超音波分散装置など超音波を印加することによって、均一に分散混合できる。また、混合条件は、還元剤、吸着剤及び非白金金属前駆体が均一に分散できるような条件であれば特に制限されない。具体的には、スターラー(例えば、マグネチックスターラー)を使用する場合には、撹拌速度は、好ましくは100~600rpm、より好ましくは200~400rpmである。また、撹拌温度は、好ましくは0~50℃、より好ましくは5~40℃である。また、撹拌時間は、好ましくは0.5~60時間であり、より好ましくは1~48時間である。なお、上記混合は、例えば、スターラー(例えば、マグネチックスターラー)及びホモジナイザ(例えば、超音波ホモジナイザ)など、2種以上を適宜組み合わせてもよい。また、この際、2種以上の操作を同時にまたは順次行ってもよい。
 上記処理により、触媒粒子が担持した導電性担体(触媒粒子担持担体または担持担体)が得られる。ここで、必要であれば、この担持担体を単離してもよい。ここで、単離方法は、特に制限されず、担持担体を濾過し、乾燥すればよい。なお、必要であれば、担持担体を濾過した後に、洗浄(例えば、水洗)してもよい。また、上記濾過ならびに必要であれば洗浄工程は、繰り返し行ってもよい。また、濾過または洗浄後、担持担体を乾燥してもよい。ここで、担持担体の乾燥は、空気中で行ってもよく、また減圧下で行ってもよい。また、乾燥温度は特に限定されないが、例えば、10~100℃、より好ましくは室温(25℃)~80℃程度の範囲で行うことができる。また、乾燥時間もまた、特に限定されないが、例えば、1~60時間、好ましくは3~48時間である。また、乾燥は、空気中で行われてもまたは不活性雰囲気(窒素ガス雰囲気、ヘリウムガス雰囲気、アルゴンガス雰囲気)中で行われてよい。
 上述した電極触媒は、電解質膜-電極接合体(MEA)および燃料電池に好適に使用できる。すなわち、本発明は、上記製造方法によって得られた電極触媒を含む電解質膜-電極接合体(MEA)、および該電解質膜-電極接合体(MEA)を含む燃料電池をも提供する。
 [燃料電池]
 燃料電池は、電解質膜-電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本発明の燃料電池は、高い発電性能を発揮できる。
 図2は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC 1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で電解質膜-電極接合体(MEA)10を構成する。
 PEFC 1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図2において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC 1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図2ではこれらの記載を省略する。
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図2に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC 1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC 1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
 なお、図2に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
 上記のような、本発明のMEAを有する燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されない。上記した説明中では固体高分子形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、固体高分子形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に適用した場合に特に有利である。
 [電解質膜-電極接合体(MEA)]
 上述した電極触媒は、電解質膜-電極接合体(MEA)に好適に使用できる。すなわち、本発明は、本発明の電極触媒を含む電解質膜-電極接合体(MEA)、特に燃料電池用電解質膜-電極接合体(MEA)をも提供する。本発明の電解質膜-電極接合体(MEA)は、高い発電性能を発揮できる。また、本発明の電解質膜-電極接合体(MEA)は、高い耐久性をも発揮できる。
 本発明の電解質膜-電極接合体(MEA)は、従来の電極触媒に代えて、本発明の電極触媒(触媒)を用いる以外は、同様の構成を適用できる。以下に、本発明のMEAの好ましい形態を説明するが、本発明は下記形態に限定されない。
 MEAは、電解質膜、上記電解質膜の両面に順次形成されるアノード触媒層及びアノードガス拡散層ならびにカソード触媒層及びカソードガス拡散層から構成される。そしてこの電解質膜-電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方に本発明の電極触媒が使用される。
 (電解質膜)
 電解質膜は、例えば、固体高分子電解質膜から構成される。この固体高分子電解質膜は、例えば、燃料電池(PEFC等)の運転時にアノード触媒層で生成したプロトンを膜厚方向に沿ってカソード触媒層へと選択的に透過させる機能を有する。また、固体高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 固体高分子電解質膜を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、以下の触媒層にて高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を同様にして用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。
 電解質膜の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質膜の厚さは、通常は5~300μm程度である。電解質膜の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。
 (触媒層)
 触媒層は、実際に電池反応が進行する層である。具体的には、アノード触媒層では水素の酸化反応が進行し、カソード触媒層では酸素の還元反応が進行する。ここで、本発明の触媒は、カソード触媒層またはアノード触媒層のいずれに存在していてもよい。酸素還元活性の向上の必要性を考慮すると、少なくともカソード触媒層に本発明の電極触媒が使用されることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。
 触媒層は、本発明の電極触媒および電解質を含む。電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。
 当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾール、ホスホン化ポリベンズイミダゾール、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
 さらには、燃料電池システムの抵抗値を小さくする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガス及び酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
 触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
 触媒層の膜厚(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記は、カソード触媒層およびアノード触媒層双方に適用される。しかしながら、カソード触媒層及びアノード触媒層は、同じであってもあるいは異なってもよい。
 (ガス拡散層)
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
 (電解質膜-電極接合体の製造方法)
 電解質膜-電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
 [燃料電池]
 上述した電解質膜-電極接合体(MEA)は、燃料電池に好適に使用できる。すなわち、本発明は、本発明の電解質膜-電極接合体(MEA)を用いてなる燃料電池をも提供する。本発明の燃料電池は、高い発電性能および耐久性を発揮できる。ここで、本発明の燃料電池は、本発明の電解質膜-電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する。
 (セパレータ)
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷媒流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して電解質膜-電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
 上述したPEFCや電解質膜-電極接合体は、発電性能に優れる触媒層を用いている。また、上述したPEFCや電解質膜-電極接合体は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや電解質膜-電極接合体は発電性能(または発電性能および耐久性)に優れる。
 本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「重量%」および「重量部」を意味する。
 実施例1
 まず、スルファミン酸ニッケル(II)四水和物を超純水に溶解し、0.0645M濃度のニッケル水溶液(1)を調製した。
 別途、超純水100mLに、クエン酸三ナトリウム二水和物0.78g及び水素化ホウ素ナトリウム0.26gを添加・混合して、還元剤水溶液(1)を調製した。
 ビーカーにいれた0.5MのHNO溶液500mLに、カーボン担体(ケッチェンブラック(登録商標)KetjenBlack EC300J、平均粒子径:40nm、BET比表面積:800m/g、ライオン株式会社製)2gを添加し、室温(25℃)で30分、300rpmでスターラーで撹拌・混合した。続いて、300rpmの撹拌下で、80℃、2時間の熱処理を行ってカーボン担体を得た。そして、カーボン担体をろ過した後、超純水で洗浄した。上記ろ過・洗浄操作を計3回繰り返した。このカーボン担体を60℃で24時間乾燥させた後、酸処理カーボン担体Aを得た。得られた酸処理カーボン担体Aの表面に形成されたラクトン基、水酸基、エーテル基、およびカルボニル基からなる群より選択される少なくとも一つ以上の官能基量は、1.25μmol/mであり、BET比表面積は850m/gであり、平均粒子径は40nmであった。
 ビーカーに入れた100ml超純水に、酸処理カーボン担体A 0.2gを添加し、15分間超音波処理を行って担体分散液(1)を得た。下記において、ニッケル水溶液(1)と混合するまで、担体分散液(1)を室温(25℃)、150rpmで撹拌し続けた。
 超純水1000mLに、上記ニッケル水溶液(1)17.1mL及び上記担体分散液(1)を混合した後、上記還元剤水溶液(1)を添加し、35℃で、マグネチックスターラーで300rpmで30分間撹拌することにより、ニッケル粒子及び担体を含む触媒前駆体の分散液(前駆体分散液(1))を調製した。この際、ニッケル(金属換算)に対する還元剤である水素化ホウ素ナトリウムのモル比は6.2である。また、ニッケル(金属換算)に対する吸着剤であるクエン酸三ナトリウム二水和物のモル比は2.4である。
 次に、上記前駆体分散液(1)に、0.51M濃度の塩化白金酸(ヘキサクロリド白金(IV)酸(HPtCl))水溶液を0.22mL添加し、35℃で、300rpmでマグネチックスターラーを回転させながら、超音波ホモジナイザで30分間攪拌することにより、ニッケル粒子表面に白金突状部が形成してなる触媒粒子および担体を含む分散液(触媒粒子含有分散液(1))を調製した。ここで、得られた触媒粒子を触媒粒子(1)と称する。このようにして得られた触媒粒子(1)の、白金に対するニッケル(それぞれ、金属換算)のモル比は、9.8である。
 このようにして得られた触媒粒子(1)を透過型電子顕微鏡(TEM)にて観察した。その結果、触媒粒子は、粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有することが観察された。また、触媒粒子の、粒径(粒子直径)、本体部の直径、ならびに突状部の直径及び長さを測定し、その結果を下記表1に示す。また、上記突状部の直径及び長さに基づいて、アスペクト比(直径/長さ)を算出し、その結果を下記表1に合わせて示す。なお、下記表1では、触媒粒子の、触媒粒子の粒径(粒子直径)、本体部の直径、ならびに突状部の直径及び長さは、200nm×300nmのTEM写真内に観察される触媒粒子全てについて測定し、その最大値及び最小値を範囲として示す(以下、同様)。
 また、このようにして得られた触媒粒子(1)の本体部及び突状部の組成を、TEM-EDXによって測定した。その結果、本体部は全モル量に対して60モル%以上の割合で非白金金属(ニッケル)で構成された中心部ならびに当該中心部の周辺に形成された非白金金属及び白金から構成される外殻部から構成され、突状部は全モル量に対して60モル%以上の割合で白金で構成されていることを確認した。
 さらに、上記で調製された触媒粒子含有分散液(1)を、室温(25℃)で、超音波ホモジナイザで30分間撹拌した後、マグネチックスターラーで300rpmで72時間攪拌することにより、担体に触媒粒子を担持した。その後、触媒粒子担持担体を濾過し、超純水で3回洗浄した後、空気中、60℃で4時間以上乾燥することにより、電極触媒(1)を調製した。電極触媒(1)の触媒粒子の担持濃度(担持量)は、担体に対して、12.6重量%(Pt:11.8重量%、Ni:0.8重量%)であった。
 実施例2
 まず、スルファミン酸ニッケル(II)四水和物を超純水に溶解し、0.041M濃度のニッケル水溶液(2)を調製した。
 別途、超純水100mLに、クエン酸三ナトリウム二水和物1.2g及び水素化ホウ素ナトリウム0.5gを添加・混合して、還元剤水溶液(2)を調製した。
 上記実施例1と同様にして、酸処理カーボン担体Aを得た。超純水100mLに、上記にて調製した酸処理カーボン担体A 0.2gを混合して、担体分散液(2)を調製した。下記において、ニッケル水溶液(2)と混合するまで、担体分散液(2)を室温(25℃)、150rpmで撹拌し続けた。
 超純水1000mLに、上記ニッケル水溶液(2)40.8mL及び上記担体分散液(2)を混合した後、上記還元剤水溶液(2)を添加し、室温(25℃)で、マグネチックスターラーを300rpmで回転させながら、超音波ホモジナイザで30分間攪拌することにより、ニッケル粒子及び担体を含む触媒前駆体の分散液(前駆体分散液(2))を調製した。この際、ニッケル(金属換算)に対する還元剤である水素化ホウ素ナトリウムのモル比は7.9である。また、ニッケル(金属換算)に対する吸着剤であるクエン酸三ナトリウム二水和物のモル比は2.4である。
 次に、上記前駆体分散液(2)に、0.51M濃度の塩化白金酸(ヘキサクロリド白金(IV)酸(HPtCl))水溶液を0.34mL添加し、室温(25℃)で、マグネチックスターラーで400rpmで30分間攪拌することにより、ニッケル粒子表面に白金突状部が形成してなる触媒粒子および担体を含む分散液(触媒粒子含有分散液(2))を調製した。ここで、得られた触媒粒子を触媒粒子(2)と称する。このようにして得られた触媒粒子(2)の、白金に対するニッケル(それぞれ、金属換算)のモル比は、9.6である。
 このようにして得られた触媒粒子(2)を透過型電子顕微鏡(TEM)にて観察した。その結果、触媒粒子は、粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有することが観察された。また、触媒粒子の、粒径(粒子直径)、本体部の直径、ならびに突状部の直径及び長さを測定し、その結果を下記表1に示す。また、上記突状部の直径及び長さに基づいて、アスペクト比(直径/長さ)を算出し、その結果を下記表1に合わせて示す。
 また、このようにして得られた触媒粒子(2)の本体部及び突状部の組成を、TEM-EDXによって測定した。その結果、本体部は全モル量に対して60モル%以上の割合で非白金金属(ニッケル)で構成された中心部ならびに当該中心部の周辺に形成された非白金金属及び白金から構成される外殻部から構成され、突状部は全モル量に対して60モル%以上の割合で白金で構成されていることを確認した。
 さらに、上記で調製された触媒粒子含有分散液(2)を、室温(25℃)で、超音波ホモジナイザで60分間撹拌した後、マグネチックスターラーで300rpmで48時間攪拌することにより、担体に触媒粒子を担持した。その後、触媒粒子担持担体を濾過し、超純水で3回洗浄した後、空気中、60℃で4時間以上乾燥することにより、電極触媒(2)を調製した。電極触媒(2)の触媒粒子の担持濃度(担持量)は、担体に対して、18.0重量%(Pt:17.0重量%、Ni:1.0重量%)であった。
 実施例3
 まず、硫酸ニッケル(II)(NiSO)を超純水に溶解し、0.0645M濃度のニッケル水溶液(3)を調製した。
 別途、超純水100mLに、クエン酸三ナトリウム二水和物1.57g及び水素化ホウ素ナトリウム0.52gを添加・混合して、還元剤水溶液(3)を調製した。
 上記実施例1と同様にして、酸処理カーボン担体Aを得た。超純水100mLに、上記にて調製した酸処理カーボン担体A 0.2gを混合して、担体分散液(3)を調製した。下記において、触媒粒子含有分散液(3)と混合するまで、担体分散液(3)を室温(25℃)、150rpmで撹拌し続けた。
 超純水1000mLに、上記ニッケル水溶液(3)34.2mLを混合した後、上記還元剤水溶液(3)を添加し、室温(25℃)で、マグネチックスターラーを300rpmで回転させながら、超音波ホモジナイザで30分間攪拌することにより、ニッケル粒子の分散液(3)を調製した。この際、ニッケル(金属換算)に対する還元剤である水素化ホウ素ナトリウムのモル比は6.2である。また、ニッケル(金属換算)に対する吸着剤であるクエン酸三ナトリウム二水和物のモル比は2.4である。
 次に、上記ニッケル粒子の分散液(3)に、16℃で、1.16M濃度の塩化白金酸(ヘキサクロリド白金(IV)酸(HPtCl))水溶液 0.39mLを30分間かけて添加し、ニッケル粒子表面に白金突状部が形成してなる触媒粒子を含む分散液(触媒粒子含有分散液(3))を調製した。ここで、得られた触媒粒子を触媒粒子(3)と称する。このようにして得られた触媒粒子(3)の、白金に対するニッケル(それぞれ、金属換算)のモル比は、4.9である。
 このようにして得られた触媒粒子(3)を透過型電子顕微鏡(TEM)にて観察した。その結果、触媒粒子は、粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有することが観察された。また、触媒粒子の、粒径(粒子直径)、本体部の直径、ならびに突状部の直径及び長さを測定し、その結果を下記表1に示す。また、上記突状部の直径及び長さに基づいて、アスペクト比(直径/長さ)を算出し、その結果を下記表1に合わせて示す。
 また、このようにして得られた触媒粒子(3)の本体部及び突状部の組成を、TEM-EDXによって測定した。その結果、本体部は全モル量に対して60モル%以上の割合で非白金金属(ニッケル)で構成された中心部ならびに当該中心部の周辺に形成された非白金金属及び白金から構成される外殻部から構成され、突状部は全モル量に対して60モル%以上の割合で白金で構成されていることを確認した。
 さらに、上記で調製された触媒粒子含有分散液(3)に、上記担体分散液(3)を混合し、室温(25℃)で、超音波ホモジナイザで60分間撹拌した後、マグネチックスターラーで300rpmで24時間攪拌することにより、ケッチェンブラックに触媒粒子を担持した。その後、触媒粒子を担持したケッチェンブラックを濾過し、超純水で3回洗浄した後、空気中、60℃で4時間以上乾燥することにより、電極触媒(3)を調製した。電極触媒(3)の触媒粒子の担持濃度(担持量)は、担体に対して、38.4重量%(Pt:35.7重量%、Ni:2.7重量%)であった。
 比較例1
 0.2gのカーボン担体(ケッチェンブラック(登録商標)KetjenBlack EC300J、平均粒子径:40nm、BET比表面積:800m/g、ライオン株式会社製)を秤量し、200mLビーカーに入れ、ビーカーの壁面から超純水を加え、カーボンに水を含ませた。次に、このビーカーに、超純水を総量が100mLになるまで加え、超音波にて分散した後、マグネチックスターラーで攪拌して、担体分散液(4)を得た。
 別途、超純水100mLに、クエン酸三ナトリウム二水和物1.2g及び水素化ホウ素ナトリウム0.4gを添加・混合して、還元剤水溶液(4)を調製した。
 塩化ニッケル(II)(NiCl)を超純水に溶解し、0.105M濃度のニッケル水溶液(4)を調製した。
 また、塩化白金酸(ヘキサクロリド白金(IV)酸(HPtCl))を超純水に溶解し、1.16M濃度の塩化白金酸水溶液(4)を調製した。
 超純水を1000mL加えたビーカーに、ニッケル水溶液(4) 11.174gおよび塩化白金酸水溶液(4) 0.6gを混合した後、還元剤水溶液(4)を添加し、室温(25℃)で30分間撹拌して、触媒粒子分散液(4)を調製した。この触媒粒子分散液(4)に、担体分散液(4)を混合し、室温(25℃)で60時間攪拌することにより、担体に触媒粒子を担持した。その後、触媒粒子担持担体を濾過し、超純水で3回洗浄した後、空気中、60℃で4時間以上乾燥することにより、平均粒径(粒子直径)が4.0nmである電極触媒(4)を調製した。電極触媒(4)の触媒粒子の担持濃度(担持量)は、担体に対して、34.3重量%(Pt:29.6重量%、Ni:4.7重量%)であった。
 比較例2
 ビーカーにいれた0.5MのHNO溶液500mLに、カーボン担体(ケッチェンブラック(登録商標)KetjenBlack EC300J、平均粒子径:40nm、BET比表面積:800m/g、ライオン株式会社製)2gを添加し、室温(25℃)で30分、300rpmでスターラーで撹拌・混合した。続いて、300rpmの撹拌下で、80℃、2時間の熱処理を行ってカーボン担体を得た。そして、カーボン担体をろ過した後、超純水で洗浄した。上記ろ過・洗浄操作を計3回繰り返した。このカーボン担体を60℃で24時間乾燥させた後、酸処理カーボン担体Aを得た。得られた酸処理カーボン担体Aの表面に形成されたラクトン基、水酸基、エーテル基、およびカルボニル基からなる群より選択される少なくとも一つ以上の官能基量は、1.25μmol/mであり、BET比表面積は850m/gであり、平均粒子径は40nmであった。
 ビーカーに入れた100ml超純水に、酸処理カーボン担体A 0.2gを添加し、15分間超音波処理を行って担体分散液(5)を得た。下記において、触媒粒子分散液(5)と混合するまで、担体分散液(5)を室温(25℃)、150rpmで撹拌し続けた。
 別途、超純水100mLに、クエン酸三ナトリウム二水和物1.2g及び水素化ホウ素ナトリウム0.4gを添加・混合して、還元剤水溶液(5)を調製した。
 塩化コバルト(II)(CoCl)を超純水に溶解し、0.105M濃度のコバルト水溶液(5)を調製した。
 また、塩化白金酸(ヘキサクロリド白金(IV)酸(HPtCl))を超純水に溶解し、1.16M濃度の塩化白金酸水溶液(5)を調製した。
 超純水を1000mL加えたビーカーに、コバルト水溶液(5) 22.348gおよび塩化白金酸水溶液(5) 0.6gを混合し、室温(25℃)で300rpmで撹拌した後、還元剤水溶液(5)を添加し、室温(25℃)で30分間撹拌して、触媒粒子分散液(5)を調製した。この触媒粒子分散液(5)に、担体分散液(5)を混合し、室温(25℃)で72時間攪拌することにより、担体に触媒粒子を担持した。その後、触媒粒子担持担体を濾過し、超純水で3回洗浄した後、空気中、60℃で12時間以上乾燥することにより、平均粒径(粒子直径)が2.7nmである電極触媒(5)を調製した。電極触媒(5)の触媒粒子の担持濃度(担持量)は、担体に対して、34.1重量%(Pt:29.6重量%、Co:4.5重量%)であった。
 比較例3
 担体として、ケッチェンブラック(ケッチェンブラック(登録商標)KetjenBlack EC300J、平均粒子径:40nm、BET比表面積:800m/g、ライオン株式会社製)を用い、これに触媒金属として平均粒径1.8nmの白金(Pt)を担持率が50重量%となるように担持させて、電極触媒(6)を得た。すなわち、白金濃度4.6重量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体(ケッチェンブラック)を46g浸漬させ撹拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、撹拌、混合し、白金を担体に担持させた。そして、濾過、乾燥することにより、担持率が50重量%の触媒粉末を得た。その後、水素雰囲気において、温度900℃に1時間保持し、平均粒径(粒子直径)が4.5nmである電極触媒(6)を得た。電極触媒(6)の触媒粒子の担持濃度(担持量)は、担体に対して、50重量%(Pt)であった。
 上記電極触媒(1)~(6)について、下記方法にしたがって、触媒有効表面積(ECA)、面積比活性(i)および質量比活性(i)を評価した。結果を下記表1に示す。
 (触媒の性能評価)
 <触媒有効表面積(ECA)の測定>
 三電極式の電気化学セルを用い、ポテンショスタットとして、北斗電工社製電気化学システムHZ-5000を用いた。作用極として、グラッシーカーボン回転電極(GC-RDE)を用い、分散媒(イソプロピルアルコール(IPA)6ml、水19mlとの混合溶媒)に各種電極触媒をインク中のカーボン量が10mgとなる濃度で分散させたインクをコーティングして乾燥させた電極を用いた。電極面積は0.196cmであった。対極に白金ワイヤー、参照電極には可逆水素電極を用いた。電解液は0.1M過塩素酸を用い、Oで飽和させた。測定は25℃で行なった。
 触媒有効表面積(ECA)の算出は、サイクリックボルタンメトリー(CV)により実施した。測定実施前に、500mV/sの電位掃引速度で0~1.2Vの電位範囲を、20サイクル電位走査を実施した(触媒表面クリーニング処理)。その後、0~1.2Vの電位範囲を50mV/sの電位掃引速度で3サイクル測定した。このときの3サイクル目のデータを用い、水素吸着の電気量210μC/cmを用いて触媒有効表面積(ECA)を算出した。
 <面積比活性(i)および質量比活性(i)の測定>
 各電極触媒を、直径5mmのグラッシーカーボンディスクにより構成される回転ディスク電極(幾何面積:0.19cm)上に34μg・cm-2となるように均一にNafionと共に分散担持し、性能評価用電極を作製した。
 各電極に対して、Nガスで飽和した25℃の0.1M過塩素酸中において、可逆水素電極(RHE)に対して0.05~1.2Vの電位範囲で、50mVs-1の走査速度でサイクリックボルタンメトリーを行った。得られたボルタモグラムの0.05~0.4Vに現れる水素吸着ピークの面積より、各電極触媒の電気化学的表面積(cm)を算出した。
 次に、電気化学計測装置を用い、酸素で飽和した25℃の0.1M過塩素酸中で、0.2Vから1.2Vまで速度10mV/sで電位走査を行った。さらに、電位走査によりに得られた電流から、物質移動(酸素拡散)の影響をKoutecky-Levich式を用いて補正した上で、0.9Vでの電流値を抽出した。そして、得られた電流値を上述の電気化学的表面積で除した値を面積比活性(μAcm-2)とした。また、得られた電流値を担持した触媒中の白金量(g)で除した値を質量比活性(i)(A・g-1 Pt)とした。Koutecky-Levich式を用いた方法は、例えば、Electrochemistry Vol.79, No.2, p.116-121 (2011) (対流ボルタモグラム(1)酸素還元(RRDE))の「4 Pt/C触媒上での酸素還元反応の解析」に記載されている。抽出した0.9Vの電流値を電気化学表面積で除算することで面積比活性(i)が算出される。
Figure JPOXMLDOC01-appb-T000003
 上記表1から、実施例1~3の触媒粒子は、ほぼ同組成の粒状の比較例1の触媒粒子に比して、面積比活性および質量比活性共により高いことが示される。なお、実施例2の触媒粒子の質量比活性が若干低いが、これは、触媒粒子が一部凝集していたため、ECAが低く計測されたためであると考察される。
  1…固体高分子形燃料電池(PEFC)、
  2…固体高分子電解質膜、
  3…触媒層、
  3a…アノード触媒層、
  3c…カソード触媒層、
  4a…アノードガス拡散層、
  4c…カソードガス拡散層、
  5a…アノードセパレータ、
  5c…カソードセパレータ、
  6a…アノードガス流路、
  6c…カソードガス流路、
  7…冷媒流路、
  10…電解質膜-電極接合体(MEA)
  20…触媒粒子、
  21…本体部、
  22…突状部。

Claims (8)

  1.  白金原子および非白金金属原子からなる合金粒子であり、前記合金粒子は粒状をなす本体部と、前記本体部の外面よりも外側に向けて突出している複数の突状部と、を有し、
     前記本体部は非白金金属および白金で形成され、前記突状部は白金を主成分として形成され、および
     前記突状部のアスペクト比(直径/長さ)が0を超えて2以下である、触媒粒子。
  2.  前記合金粒子の直径が0nmを超えて100nm以下である、請求項1に記載の触媒粒子。
  3.  前記突状部は、直径が0nmを超えて4nm以下であり、かつ長さが0nmを超えて10nm以下である、請求項1または2に記載の触媒粒子。
  4.  前記非白金金属原子が、遷移金属原子である、請求項1~3のいずれか1項に記載の触媒粒子。
  5.  前記遷移金属原子が、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)および亜鉛(Zn)からなる群より選択される、請求項4に記載の触媒粒子。
  6.  請求項1~5のいずれか1項に記載の触媒粒子、および前記触媒粒子を担持する導電性担体を有する電極触媒。
  7.  請求項6に記載の電極触媒を含む電解質膜-電極接合体。
  8.  請求項7に記載の電解質膜-電極接合体を用いてなる燃料電池。
PCT/JP2015/074309 2015-08-27 2015-08-27 触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池 WO2017033342A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580082734.1A CN107921419B (zh) 2015-08-27 2015-08-27 催化剂颗粒以及使用其而构成的电极催化剂、电解质膜-电极接合体及燃料电池
JP2017536161A JP6583417B2 (ja) 2015-08-27 2015-08-27 触媒粒子ならびにこれを用いてなる電極触媒、電解質膜−電極接合体および燃料電池
EP15902311.8A EP3342484B1 (en) 2015-08-27 2015-08-27 Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using catalyst particles
PCT/JP2015/074309 WO2017033342A1 (ja) 2015-08-27 2015-08-27 触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池
KR1020187005564A KR101951612B1 (ko) 2015-08-27 2015-08-27 촉매 입자, 그리고 이것을 사용하여 이루어지는 전극 촉매, 전해질막-전극 접합체 및 연료 전지
CA2996870A CA2996870C (en) 2015-08-27 2015-08-27 Catalyst particles, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using catalyst particles
US15/755,330 US10686196B2 (en) 2015-08-27 2015-08-27 Catalyst particles, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using catalyst particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074309 WO2017033342A1 (ja) 2015-08-27 2015-08-27 触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池

Publications (1)

Publication Number Publication Date
WO2017033342A1 true WO2017033342A1 (ja) 2017-03-02

Family

ID=58099744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074309 WO2017033342A1 (ja) 2015-08-27 2015-08-27 触媒粒子ならびにこれを用いてなる電極触媒、電解質膜-電極接合体および燃料電池

Country Status (7)

Country Link
US (1) US10686196B2 (ja)
EP (1) EP3342484B1 (ja)
JP (1) JP6583417B2 (ja)
KR (1) KR101951612B1 (ja)
CN (1) CN107921419B (ja)
CA (1) CA2996870C (ja)
WO (1) WO2017033342A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502235A (ja) * 2017-11-09 2021-01-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 陽子交換膜燃料電池のための触媒担体上の超薄型電気化学触媒

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022413B1 (ko) * 2016-11-21 2019-09-18 주식회사 엘지화학 촉매 및 이의 제조방법
CN113226545A (zh) * 2018-12-26 2021-08-06 可隆工业株式会社 催化剂、其制备方法、包括其的电极、包括该电极的膜-电极组件和包括该组件的燃料电池
US20210260368A1 (en) * 2019-07-09 2021-08-26 Shenzhen Institutes Of Advanced Technology Microelectrode, preparation method thereof and neural prosthesis
KR20220081728A (ko) * 2020-12-09 2022-06-16 현대자동차주식회사 연료전지 촉매용 탄소 지지체, 및 이의 제조방법
KR20220103288A (ko) * 2021-01-15 2022-07-22 현대자동차주식회사 인터메탈릭 촉매 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242179A (ja) * 2009-04-07 2010-10-28 Noritake Co Ltd 合金微粒子およびその製造と利用
JP2011072981A (ja) * 2008-10-30 2011-04-14 Sony Corp 白金含有触媒及びその製造方法、並びに電極及び電気化学デバイス
WO2011108162A1 (ja) * 2010-03-01 2011-09-09 株式会社ノリタケカンパニーリミテド 金属微粒子担持触媒体及びその利用
JP2014508038A (ja) * 2011-02-22 2014-04-03 ユナイテッド テクノロジーズ コーポレイション 白金原子の原子層を有する触媒を形成する方法
WO2014129253A1 (ja) * 2013-02-25 2014-08-28 日産自動車株式会社 燃料電池用触媒粒子及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490201B2 (ja) * 2004-08-04 2010-06-23 Dowaホールディングス株式会社 凹凸表面をもつ微細な合金粒子粉末およびその製造法
KR100550998B1 (ko) * 2004-10-28 2006-02-13 삼성에스디아이 주식회사 연료 전지용 전극 및 이를 포함하는 연료 전지 시스템
US20110275009A1 (en) 2008-10-30 2011-11-10 Sony Corporation Platinum-containing catalyst and method of producing the same, electrode and electrochemical device
JP5641385B2 (ja) 2009-07-27 2014-12-17 独立行政法人物質・材料研究機構 樹枝状部分を有する金属ナノ粒子及びその製法
KR20140070246A (ko) * 2012-11-30 2014-06-10 삼성전자주식회사 연료전지용 전극 촉매, 그 제조방법, 이를 포함한 연료전지용 전극 및 연료전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072981A (ja) * 2008-10-30 2011-04-14 Sony Corp 白金含有触媒及びその製造方法、並びに電極及び電気化学デバイス
JP2010242179A (ja) * 2009-04-07 2010-10-28 Noritake Co Ltd 合金微粒子およびその製造と利用
WO2011108162A1 (ja) * 2010-03-01 2011-09-09 株式会社ノリタケカンパニーリミテド 金属微粒子担持触媒体及びその利用
JP2014508038A (ja) * 2011-02-22 2014-04-03 ユナイテッド テクノロジーズ コーポレイション 白金原子の原子層を有する触媒を形成する方法
WO2014129253A1 (ja) * 2013-02-25 2014-08-28 日産自動車株式会社 燃料電池用触媒粒子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3342484A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502235A (ja) * 2017-11-09 2021-01-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 陽子交換膜燃料電池のための触媒担体上の超薄型電気化学触媒
JP7366892B2 (ja) 2017-11-09 2023-10-23 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 陽子交換膜燃料電池のための触媒担体上の超薄型電気化学触媒
US11955646B2 (en) * 2017-11-09 2024-04-09 The Board Of Trustees Of The Leland Stanford Junior University Ultrathin electrochemical catalysts on catalyst support for proton exchange membrane fuel cells

Also Published As

Publication number Publication date
JP6583417B2 (ja) 2019-10-02
US20180248200A1 (en) 2018-08-30
KR20180034569A (ko) 2018-04-04
CA2996870A1 (en) 2017-03-02
EP3342484B1 (en) 2020-01-15
CN107921419A (zh) 2018-04-17
EP3342484A4 (en) 2018-07-04
US10686196B2 (en) 2020-06-16
KR101951612B1 (ko) 2019-02-22
CA2996870C (en) 2019-05-07
EP3342484A1 (en) 2018-07-04
CN107921419B (zh) 2021-08-17
JPWO2017033342A1 (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
US10847811B2 (en) Catalyst particle, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using the same
JP6583417B2 (ja) 触媒粒子ならびにこれを用いてなる電極触媒、電解質膜−電極接合体および燃料電池
CN109070064B (zh) 电极催化剂以及使用该电极催化剂的膜电极接合体及燃料电池
JP2016054065A (ja) 電極触媒の製造方法
JP6759651B2 (ja) 触媒粒子の製造方法および電極触媒の製造方法
JP2007087827A (ja) 電極触媒、および、その製造方法
JP6191326B2 (ja) 燃料電池用電極触媒粒子、これを用いる燃料電池用電極触媒、電解質−電極接合体、および燃料電池、ならびに触媒粒子および触媒の製造方法
JP6720611B2 (ja) 電極触媒の製造方法
JP6862792B2 (ja) 電極触媒の製造方法
WO2018069979A1 (ja) 触媒層の製造方法、触媒層、ならびに触媒前駆体および当該触媒前駆体の製造方法
JP2016143595A (ja) 電極触媒の製造方法
JP6950255B2 (ja) 燃料電池用触媒
JP6846210B2 (ja) 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池
WO2015118922A1 (ja) 電極触媒およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536161

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187005564

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755330

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2996870

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015902311

Country of ref document: EP