WO2017032121A1 - 一种煤矿综采工作面大型装备集中控制平台的实现方法 - Google Patents

一种煤矿综采工作面大型装备集中控制平台的实现方法 Download PDF

Info

Publication number
WO2017032121A1
WO2017032121A1 PCT/CN2016/084400 CN2016084400W WO2017032121A1 WO 2017032121 A1 WO2017032121 A1 WO 2017032121A1 CN 2016084400 W CN2016084400 W CN 2016084400W WO 2017032121 A1 WO2017032121 A1 WO 2017032121A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
shearer
coal
equipment
centralized
Prior art date
Application number
PCT/CN2016/084400
Other languages
English (en)
French (fr)
Inventor
宋建成
田慕琴
许春雨
吝伶艳
郭俊
于亚运
耿泽昕
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Priority to US15/752,361 priority Critical patent/US10378352B2/en
Publication of WO2017032121A1 publication Critical patent/WO2017032121A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • E21F13/06Transport of mined material at or adjacent to the working face
    • E21F13/066Scraper chain conveyors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2616Earth moving, work machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0245Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a qualitative model, e.g. rule based; if-then decisions
    • G05B23/0251Abstraction hierarchy, e.g. "complex systems", i.e. system is divided in subsystems, subsystems are monitored and results are combined to decide on status of whole system

Definitions

  • the invention relates to a method for realizing a centralized control platform, in particular to a method for realizing a large-scale equipment centralized control platform for a fully mechanized mining face in a coal mine.
  • China's coal resources are abundant, accounting for more than 70% of primary energy.
  • China's coal industry has been following the path of “extensive, high-risk, disorderly” development. There are widespread problems such as the disconnection of production capacity and market demand, the variety of equipment, and the low degree of automation. After experiencing the development of the Golden Year, the coal industry is now in a low-lying period, facing problems such as continued low coal prices, declining sales, and sharply lower profits.
  • coal demand will continue to increase in the future. According to forecasts, China's coal demand in 2015, 2020, and 2030 is 3.7 billion to 3.9 billion, 3.9 billion to 4.4 billion, and 4.5 billion to 5.1 billion tons.
  • Coal mining equipment in fully mechanized mining face mainly includes coal mining machine, hydraulic support, scraper conveyor, transfer machine, crusher, pump station and belt conveyor.
  • the fully mechanized mining face forms coal flow through the coal mining machine, scraper conveyor, transfer machine, crusher and belt equipment in the whole process of coal falling from the coal wall to the working face. Due to the certainty of the coal flow, in order to prevent the fully mechanized mining equipment from appearing during the starting process, stopping process or equipment failure Coal-filling and other phenomena, it is necessary to establish a certain start-stop sequence and shutdown protection measures during the start-up, stop or equipment failure of the fully mechanized mining equipment.
  • the starting sequence of the fully mechanized mining equipment When starting work at the working surface, in order to allow the coal flow to proceed smoothly and avoid coal accumulation, the starting sequence of the fully mechanized mining equipment must be in accordance with belts, crushers, transfer machines, scraper conveyors and shearers when starting and stopping equipment. The sequence proceeds, that is, the start of the coal flow.
  • the stop sequence of the fully mechanized mining equipment When the working surface is from work to stop, in order to smoothly transport all the coal cut by the shearer to the working surface and prepare for the next start, the stop sequence of the fully mechanized mining equipment must be in accordance with the shearer and scraping.
  • the plate conveyor, the transfer machine, the crusher and the belt are sequentially carried out, that is, the coal flow is stopped.
  • the invention realizes a realization method of a centralized control platform for large-scale equipment of coal mine fully mechanized mining face
  • the law is proposed to achieve the above objectives.
  • the object of the present invention is to provide a method for realizing a centralized control platform for a large-scale equipment for a fully mechanized coal mining face in a coal mine to solve the problem of centralized control of coal mining in an unattended working face of a coal mine.
  • the invention discloses a method for realizing a large-scale equipment centralized control platform for a fully mechanized mining face in a coal mine, the method is based on a large-scale equipment subsystem of a coal mine fully mechanized mining face, including a shearer system, a hydraulic support system, a working surface transportation system, and an emulsion Pump station system, mobile substation system and video monitoring system, and through the control layer high-speed industrial computer and its high-speed data acquisition card, front-end development platform, database, communication network, under the centralized control of centralized control platform, realize underground coal mining
  • the unmanned coal mining method is automatically carried out according to the coal mining process for each subsystem of the large-scale equipment of the working face;
  • the implementation method of the centralized control platform includes real-time monitoring, centralized coordination control, and information communication network;
  • the real-time monitoring is to collect the information of each subsystem of the large-scale equipment by the high-speed data acquisition card, and after being integrated and integrated by the high-speed industrial control machine of the control layer, the network communication protocol is used to enter the high-speed industrial control machine of the control layer to perform real-time monitoring and control.
  • the control method of the real-time monitoring is as follows:
  • the centralized coordinated control is to use the high-speed industrial computer of the control layer to analyze and judge the information transmitted by each subsystem of the large equipment. If it is judged that the equipment status of each subsystem of the large equipment is normal, the corresponding control is performed according to the position of the shearer;
  • the centralized coordination control method is as follows:
  • the shearer When the shearer starts working, it should be located at one end of the working face, and the position of the shearer at this time is set to the initial position.
  • the shearer keeps remembering the number of the scraper conveyor chain running during the running process.
  • the movement of the bracket realizes the automatic chasing machine; if the two are inconsistent, the alarm is given to stop the operation of the shearer; each time the coal mining process is completed, the shearer returns to the initial position of the working surface;
  • the centralized control platform automatically judges the coal mining process section according to the position and running direction of the shearer, and issues a centralized control command to enable the corresponding hydraulic support to automatically track the shearer to perform corresponding actions;
  • control layer high-speed industrial control machine automatically adjusts the drum height according to the shearer vibration, oil pressure and drum motor current of the shearer.
  • the control scheme is based on the trajectory target for predicting the control method of memory cutting. This method is based on the coal-rock interface identification technology with radial basis neural network;
  • control layer high-speed industrial computer controls the automatic tension of the scraper conveyor chain according to the cylinder pressure, the current of the scraper conveyor motor and the position of the shearer, and the scraper conveyor chain automatically
  • the compact device is automatically controlled by multivariate, that is, the cylinder pressure, the scraper conveyor operating current and the coal mining position are merged;
  • the high-speed industrial control machine of the control layer automatically controls the lighting and extinction of the camera in the video monitoring system according to the position of the shearer to reduce the amount of video surveillance information transmission;
  • the high-speed industrial computer of the control layer starts the coal mining work, it first collects the working status information of each subsystem of the large equipment to judge whether it starts normal work.
  • the judgment method is to send an inquiry signal to each device, and the subsystems of the large equipment. After receiving the inquiry signal, the information indicating the status of the agreement is returned to the high-speed industrial computer of the control layer, and the high-speed industrial computer of the control layer of the centralized control platform passes the judgment, and if the start condition is satisfied, the start signal is issued;
  • the centralized control platform sends the centralized control command to the end controller of the electro-hydraulic automatic control system, and then the end controller controls the bracket controller to perform specific actions.
  • the hydraulic support is detected, the hydraulic support is detected.
  • the other end controller of the electro-hydraulic control system will be started immediately.
  • the two end controllers are responsible for interrupting the fault, and the controllers on both sides of the interruption point are normally controlled to operate;
  • the centralized control platform automatically adjusts the operating speed of the working surface transportation system equipment according to the working condition of the shearer
  • the centralized control platform determines that the inlet pressure of the emulsion pump and the outlet pressure are greater than 1.1Mpa, and the backwashing filter is automatically activated;
  • the information communication network is a network structure and communication mode for information transmission of large equipment subsystems and centralized control platforms.
  • the high-speed industrial computer of control layer and the high-speed industrial computer of each subsystem of large equipment are based on TCP/IP protocol.
  • Network communication, the control method of the information communication network is as follows:
  • the high-speed industrial computer with control layer high-speed industrial computer and each subsystem communicates through the information communication network;
  • the high-speed industrial computer of the control layer is used as the client, and the subsystems of the large equipment are used as the server.
  • the high-speed industrial computer of the control layer patrols all the large equipment subsystems every 500ms, and then gives the control according to the inspection result.
  • the working surface transportation system includes a scraper conveyor, a loader, a crusher and a belt conveyor;
  • the control layer high speed industrial computer is a high speed embedded computing Machine UNO-3072A;
  • high-speed data acquisition card is PCI-1716;
  • front-end development platform is PowerBuilder;
  • database is SQLServer;
  • communication protocol is Modbus TCP/IP;
  • communication network is industrial Ethernet Ethernet.
  • the technical solution for realizing the realization method of large-scale equipment centralized control platform for coal mine fully mechanized mining face realizes the automation of coal mine production, fills the gap of domestic unattended coal production, and breaks the foreign The monopoly of technology.
  • the advantages and positive effects of the centralized control method for large-scale equipment in the coal mine underground mining face are reflected in the following points.
  • the invention realizes the intelligent centralized control mode for unified coordination of multiple equipments, solves the problem that there is no information communication channel between the various equipments in the fully mechanized mining face, can not truly realize the automatic chain control, and establishes the concentration of large-scale equipment in the fully mechanized mining face.
  • the control platform explores the centralized collaborative intelligent control law of multiple equipment systems in fully mechanized mining face, and proposes an intelligent control method and control strategy suitable for coal mining equipment in fully mechanized mining face, which has the realization of no one or few people.
  • the core of coal mining equipment in fully mechanized mining face is the coal mining machine.
  • the operation of the coal mining machine means the beginning of coal mining work.
  • the position and walking direction of the walking position determines the coal mining process section of the coal mining work.
  • the method automatically controls the action and operation of the corresponding equipment according to the coal mining process, without manual intervention, achieving no one or less.
  • the coal mining mode of the man-made fully mechanized mining face greatly reduces the occurrence of safety accidents and improves labor productivity.
  • the automatic chasing machine that can be realized by the centralized control platform of the hydraulic support in the coal mine underground mining face only relies on the signal sent by the infrared sensor on the shearer received by the hydraulic support controller to judge the position of the shearer, and there is no correction link.
  • the automatic chasing machine for realizing the hydraulic support under the control of the centralized platform proposed by the invention is that the centralized control platform integrates the position information of the two shearers obtained from the hydraulic support system and the number of the tweezers of the mining shearer. It ensures the correctness of the hydraulic bracket automatic chasing machine, which ensures the safety and reliability of the support.
  • the invention controls the automatic tensioning force of the scraper conveyor chain according to the cylinder pressure, the current of the scraper conveyor motor and the position of the shearer, and can only break through the lateral information island between the equipments under the centralized control platform, effectively
  • the automatic tensioning control of the scraper conveyor chain is realized by integrating the physical information of multiple equipments.
  • the centralized control platform can comprehensively analyze and judge the working status of each equipment according to the obtained information, and find that the abnormality starts the processing flow in time, ensuring the safe, orderly and continuous operation of coal mining production, and is unattended mining. Coal operations provide security.
  • the centralized control platform of the invention can determine the current coal mining process segment according to the obtained information, and automatically adjust the start-stop and running speed of each equipment, such as automatically reducing the scraper conveyor and the transfer machine when the shearer stops running. And the operating speed of the crusher, and according to the position of the shearer, only the corresponding video camera is illuminated and transmitted, thereby avoiding the transmission of the video information of the entire working surface, achieving energy saving and improving the communication speed.
  • FIG. 1 is a structural diagram of a centralized control platform for a fully mechanized mining face according to the present invention.
  • FIG. 2 is a structural diagram of the automatic chasing pull control of the electro-hydraulic control system of the present invention.
  • FIG. 3 is a flow chart of the automatic chasing pull control of the electro-hydraulic control system of the present invention.
  • FIG. 4 is a structural diagram of an RBF neural network for identifying a coal rock interface according to the present invention.
  • Fig. 5 is a view showing the relationship between the tail running current I and the cylinder pressure P of the scraper conveyor of the present invention. detailed description
  • the comprehensive control platform for large-scale equipment in the fully mechanized mining face controls 7 systems—the shearer system, the hydraulic support system, the working surface transportation system, the pump station system, the power supply system and the video monitoring system.
  • the structure is shown in Figure 1.
  • the server uses the high-speed embedded computer UNO-3072A for human-computer interaction to realize the status display and real-time control of the working conditions of various equipments in the fully mechanized mining face, and realize the unattended collaborative work of each device, which is developed by the PowerBuilder front-end development platform;
  • the controller of each subsystem of the fully mechanized mining face is completed by the high-speed embedded computer UNO-3072A and the high-speed data acquisition card PCI-1716. It is the monitoring and control object of the centralized control system of the fully mechanized mining face, and is concentrated in the entire fully mechanized mining face. In the control system, monitoring is the foundation, and control of collaborative work is the core, and communication is the key.
  • the monitoring function is the working basis of the centralized control system of the fully mechanized mining face.
  • the centralized control system of the fully mechanized mining face needs to obtain the working and running status of each device from the various subsystems in the field, and complete the coordinated control and protection between the devices according to the monitoring information.
  • Each subsystem has an independent intelligent processing system, including signal acquisition and intelligent control.
  • Each subsystem can also be controlled by itself in the non-collection state.
  • Each subsystem hardware consists of high-speed embedded computer UNO-3072A and high speed.
  • the data acquisition card is composed of PCI-1716A.
  • the PCI-1716A can collect 16 analog signals and 16 digital signals, and can output 2 analog and 16 digital control signals.
  • the monitoring information of the shearer mainly includes Cutting head vibration, current of 5 motors, temperature, minus Speed of the speed box, temperature of the pump box, oil temperature, oil level, oil pressure, input/output current, voltage, frequency, power of the inverter, running speed of the shearer, running direction, flow rate and pressure of each part of the cooling water , the flow rate of the left and right external spray, etc., when the monitoring amount exceeds the set value, the system will automatically alarm and display the fault information, wherein the cutting head vibration, oil pressure and drum motor current are the signal basis for the shearer control.
  • the drum angle is obtained by a rotary encoder, thereby obtaining the drum height.
  • the height of the drum can also be obtained by using the cylinder stroke position sensor, and the two are mutually verified, and the inclination of the shearer is obtained by using an electronic inclinometer.
  • the hydraulic support plays a vital role in the support and propulsion of the working face.
  • the detection of the hydraulic support is small, but it is characterized by the large number of working face supports and the single hydraulic support.
  • the monitoring information mainly includes front column pressure, rear column pressure, shift stroke and shearer position. The position of the shearer is the basis for controlling the action of the hydraulic support.
  • the working surface transportation system transports coal from the working surface to the belt conveyor.
  • the key components of the scraper conveyor are the motor and the gearbox.
  • the two key components are monitored.
  • the monitoring quantity is the current and winding temperature of the motor.
  • the oil temperature, oil level, shaft temperature, etc. of the gearbox, the pressure and flow of the cooling water, the cylinder pressure, wherein the cylinder pressure, the current of the scraper conveyor motor and the position of the shearer are the automatic tensioning of the scraper conveyor chain The basis for force control.
  • the belt conveyor is an important part of the underground transportation system. It is located in the slot and has a long conveying distance.
  • the belt conveyor that can be controlled in the centralized control system of the fully mechanized mining face is only the belt conveyor closest to the fully mechanized mining face.
  • Belt conveyor There are two parts, the motor and the belt. The motor part only monitors the motor current and temperature, while the belt part mainly monitors the important faults such as coal, smoke, longitudinal tearing, broken belt, slip and tension of the belt. The basis for the tension of the belt conveyor.
  • the emulsion pumping station As the power source of the hydraulic system, the emulsion pumping station is a powerful guarantee for the advancement of the fully mechanized mining face.
  • the pressure of the pumping station and the quality of the emulsion directly determine the working stability of the hydraulic system of the fully mechanized mining face, and the emulsion is required.
  • the pump's water supply, fuel supply, oil temperature, oil level, inlet pressure, outlet pressure, liquid level and concentration are monitored.
  • the water supply, fuel supply, liquid level, concentration, inlet pressure and outlet pressure are automatically controlled to be emulsified. Liquid ratio and the basis for automatically starting the backwash filter.
  • the mobile substation is used for the power supply of fully mechanized mining equipment in fully mechanized mining. It is an indispensable link in underground comprehensive mining.
  • the key monitoring positions of mobile substation are primary side and secondary side.
  • the monitoring quantity of primary side has A/B/C phase. Current, high voltage, leakage current and power frequency.
  • the monitoring quantity on the secondary side has low voltage, current and insulation resistance. At the same time, it is necessary to monitor leakage, overcurrent, short circuit, over temperature and break faults on the primary and secondary sides.
  • the coal mining started in the fully mechanized mining face is started in reverse coal flow.
  • the industrial computer first collects the state information of all the equipment through the acquisition card, and then judges. If the working conditions are met, the belt, crusher and loader are followed. The reverse coal flow of the scraper conveyor and the shearer sequentially activates these devices.
  • the position of the shearer at this time is set to zero, that is, the initial position.
  • the coal miner keeps remembering the number of links of the scraper conveyor that is walking during the running process. Judging the position of the shearer, ie at which bracket, which is the basis for judging the position of the shearer, and also combining the position of the shearer detected by the infrared sensor in the hydraulic support system, if both Consistently, the action of the corresponding hydraulic support is automatically controlled, and the automatic chasing machine is realized.
  • the alarm is issued, and the alarm is stopped, and the operation of the shearer is stopped, so as to reduce the number of calculations of the shearer conveyor chain of the shearer
  • the resulting position error is set to zero when the shearer returns to the initial end of the working face for each round-trip coal mining process.
  • the centralized control platform automatically judges the coal mining process section according to the position and running direction of the shearer, and issues a centralized control command, so that the corresponding hydraulic support automatically tracks the shearer to perform corresponding actions.
  • the fully mechanized mining face It is divided into 14 process sections, covering the middle section, the curved section and the whole process of cutting triangular coal at both ends.
  • the number of brackets is also different, and it is in the middle section, the curved section and the position of the triangular coal at both ends. The number of brackets is also different.
  • the centralized control platform of the present invention can receive the control parameters maintained by the hydraulic support system (including the number of working face supports, the action limit time, the maximum pressure of the column column, and the shift).
  • the longest stroke of the frame, the length of the shearer, etc. automatically calculates the start and end bracket numbers at the curved ends of the two ends, and can automatically adapt to the automatic control of the hydraulic support of the fully mechanized mining face of different lengths; the present invention uses 122 hydraulic supports
  • the working face is taken as an example for illustration.
  • the support platform monitors the action of the shearer to be the support of the shearer in place and the front of the shearer.
  • the automatic adjustment control scheme of the height of the shearer drum of the invention is based on the trajectory target foreseeing control method of the memory cutting, which is realized by the coal rock interface recognition technology with the radial basis (RBF) neural network, RBF neural network has powerful parallel processing and nonlinear mapping ability, which can be well applied to the identification of coal-rock interface. Therefore, in this patent, a memory-cutting shearer with RBF neural network coal-rock interface identification is adopted. Automatically increase the foresight control method, and at the same time, in the automatic adjustment process of the shearer drum height, it is necessary to know the height of the current shearer drum and the nature of the currently cut coal rock. Therefore, this patent uses DS evidence theory to carry out multi-physical information. For effective fusion, the control process is shown in the specific embodiment 1.
  • the control layer high-speed industrial computer controls the automatic tension of the scraper conveyor chain according to the cylinder pressure, the current of the scraper conveyor motor and the position of the shearer, and the scraper conveyor chain automatically
  • the tensioning device is automatically controlled by multivariables, combined with the cylinder
  • the pressure, the running state of the scraper conveyor (running current) and the coal mining position are comprehensively judged and controlled, and the control process is shown in the specific embodiment 1.
  • the high-speed industrial control machine of the control layer automatically controls the camera in the video surveillance system according to the position of the coal mining machine. It can not only collect effective video surveillance information, but also save energy and reduce massive video surveillance information. Transfer of quantity.
  • the high-speed industrial control machine of the control layer can realize the coordinated control of the entire working surface equipment, and solve the problem that there is no horizontal communication between the equipments on the working surface, so that the running status of each equipment becomes an information island, and the unattended intelligent coordination cannot be realized.
  • the bottleneck of work In the coal mining process, the high-speed industrial control machine of the control layer can realize the coordinated control of the entire working surface equipment, and solve the problem that there is no horizontal communication between the equipments on the working surface, so that the running status of each equipment becomes an information island, and the unattended intelligent coordination cannot be realized. The bottleneck of work.
  • control layer high-speed industrial computer starts the coal mining work, it first collects the working status information of each equipment to determine whether they can start normal operation. The judgment method is to send an inquiry signal to each device, and each equipment receives the inquiry. After the signal, the agreed information indicating its own state is sent to the control layer high-speed industrial computer.
  • the centralized control platform that is, the control layer high-speed industrial computer, after judging, the start signal is given when the condition is satisfied. The startup process is described above.
  • the centralized control platform sends the centralized control command to the end controller of the electro-hydraulic automatic control system, and the end controller controls the bracket controller to perform specific actions, but if the hydraulic bracket is detected
  • the end controller controls the bracket controller to perform specific actions, but if the hydraulic bracket is detected
  • the other end controller of the electro-hydraulic control system will be started immediately.
  • the two end controllers are responsible for interrupting the fault, and the controllers on both sides of the interruption point are normally controlled to operate to ensure coal mining. Continuity of production.
  • the centralized control platform automatically adjusts the operating speed of the working surface transportation system equipment according to the working condition of the shearer to achieve maximum power saving.
  • the centralized control platform determines the inlet pressure of the emulsion pump and When the outlet pressure is only greater than 1.1Mpa, the backwash filter is automatically activated to ensure the normal operation of the emulsion pump, thus ensuring the continuity of coal production.
  • Control layer high-speed embedded computer UNO-3072A and each subsystem's high-speed embedded computer UNO-3072A realize network communication based on TCP/IP protocol.
  • Control layer high-speed industrial computer uses PowerBuilder external object OLE to refer to Winsock to realize network communication based on TCP/IP protocol.
  • the control layer high-speed industrial computer is used as the client or the client. The following statement must be added to the Open event of the PowerBuilder front-end development software window. :
  • Ole_1.object.remoteport 502//winsock communication port number of the other party to be contacted;
  • Ole_1.object.connect()// makes a connection request
  • the control layer high-speed industrial computer patrols all systems once every 500ms, and then gives the control amount according to the inspection result.
  • each system acts as Party A or server, and has an ocx_error event script to monitor the communication with the centralized control platform. Once there is a disconnected fault, it will be reconnected immediately to ensure data communication. Stable and reliable:
  • Ole_1.object.localport 502//winsock communication port number of this machine
  • the invention utilizes high-speed embedded computer UNO-3072A, high-speed data acquisition card PCI-1716, PowerBuilder front-end development platform, SQLServer database, ModbusTCP/IP communication protocol and industrial Ethernet (Ethernet) to realize large-scale equipment concentration in coal mine underground fully mechanized mining face. control.
  • the specific implementation method is as follows.
  • the hardware connection diagram of the centralized control platform is shown in Figure 1.
  • the centralized control platform and each system include high-speed embedded computer UNO-3072A, high-speed data acquisition card PCI-1716, high-speed embedded computer application PowerBuilder front-end development platform and SQLServer database development control software, between each system and the centralized control platform Information transfer via Modbus TCP/IP communication protocol and Industrial Ethernet Ethernet.
  • the centralized control platform automatically judges the coal mining process section according to the position and running direction of the shearer, and issues a centralized control command, so that the corresponding hydraulic support automatically tracks the shearer to implement the corresponding action, and the electro-hydraulic control system automatically chases the pull frame control structure as
  • the support for tracking the shearer in this system is the support of the shearer in place, the first 14 supports of the shearer and the 15 supports after the shearer.
  • the action of the bracket realizes the automatic chasing machine pull; the control flow is shown in Figure 3.
  • the specific control process is as follows (taking 122 brackets as an example).
  • the shearer If the shearer is operated to the 54th position, 6 sets of advances need to be carried out to receive the first-level mutual help action, that is, the 48th set performs the first-level protective action; the front and rear drums of the shearer need to be sprayed to reduce dust, so The 50th and 58th perform the spraying action; 8 brackets at the back of the shearer center position need to perform a small cycle action, that is, the 62nd frame needs to be lowered, raised, pulled, raised, and extended. Action; 12 brackets behind the center of the shearer Need to push the action, that is, the 66th implementation of the push action.
  • the curved section needs to be pushed out by 10 brackets; when the shearer is operated to the 8th frame, 6 sets of the first need to perform the first-level mutual assisting action, that is, the second execution is performed.
  • Second-level protective action spray dust is required at the front and rear drums of the shearer, so the fourth and twelfth racks perform the spraying action; in the center position of the shearer, eight brackets need to perform small circular motion, ie
  • the 16th frame needs to perform five actions of lowering the column, lifting the bottom, pulling the frame, lifting the column, and extending the mutual help; in the center position of the shearer, 12 brackets need to be pushed, that is, the 20th frame performs the bending segment pushing action. Only 7/10 was pushed, and before that, 23, 22, and 21 have been pushed 10/10, 9/10, and 8/10 respectively.
  • the coal mining machine runs the bottom coal operation to the tail of the machine. During this process, the brackets at the front and rear rollers are sprayed.
  • the shearer runs the bottom coal operation to the nose, during which the brackets at the front and rear rollers are sprayed.
  • the coal mining machine is running to the 16th frame, 6 sets of advances need to be carried out to receive the first-level mutual assistance action. That is, the 22nd frame performs the first-level protective action; the dust is required to be sprayed at the front and rear drums of the shearer, so the 20th and 12th perform the spraying action; the 8 brackets at the back of the shearer center position need Performing a small cycle action, that is, the eighth frame needs to perform five actions of lowering the column, lifting the bottom, pulling the frame, lifting the column, and stretching each other.
  • the fifth process section - 30 cuts of left-handed triangular coal (left row) ⁇ 6 racks:
  • the shearer returns to the drum and starts to cut the triangle coal until the machine casts and cuts through the coal wall, and the brackets at the front and rear rollers spray.
  • the coal mining machine runs the bottom coal operation to the tail of the machine. During this process, the brackets at the front and rear rollers are sprayed.
  • the shearer runs the bottom coal operation to the nose, during which the brackets at the front and rear rollers are sprayed.
  • the 8-14 process section is similar to the 1-8 process section.
  • the automatic control scheme of the shearer drum height is based on the trajectory target foreseeing control method of memory cutting. This method is based on the coal-rock interface identification technology with radial basis neural network. The steps are:
  • the dynamic model and mathematical model of the coal mining machine height adjustment mechanism using hydraulic cylinder height adjustment are shown in Fig. 1.
  • the height adjustment rocker arm of the coal mining machine height adjustment mechanism can be regarded as the rigid body rotating around the fixed point, and the height adjustment cylinder can be equivalent.
  • a damped hydraulic spring-----mass vibration system it can be expressed as follows:
  • the external moments for the O point are:
  • Resistance torque R a sin ⁇ a t ⁇ Lcos ⁇ 1 ; R b sin ⁇ b t ⁇ Lsin ⁇ 1 ;
  • the centrifugal moment generated by the eccentric mass of the drum is me ⁇ 2 sin ⁇ t ⁇ Lcos ⁇ 1 ;me ⁇ 2 cos ⁇ t ⁇ Lsin ⁇ 1 ;
  • a 3 K f ⁇ lsin ⁇ 2 .
  • the sampling period is T
  • Q is a semi-positive definite matrix
  • Q e and H are positive definite matrices
  • Solution of formula (12) to the right of a second, three are utilized from the start to the current time k feedforward compensation predicted target information and the interference information M R next step.
  • the height memory track of the shearer drum is the target trajectory H(t).
  • Equation can be found F 0 , F R (j), ie ⁇ i f (k), that is, the magnitude of the control current is obtained.
  • ⁇ i f (k) can be converted into a liquid Duration
  • M R is the number of steps foreseen.
  • the RBF neural network structure has three layers, an input layer, an output layer, and an implicit layer;
  • the hidden layer uses a Gaussian function:
  • the parameters for the RBF neural network include the output unit weight ⁇ i , the center of the hidden unit x i , and the function width ⁇ .
  • the training of the weight of the output unit of the invention is directly calculated by the least squares method, and the K-means clustering is adopted for the selection of the latter two parameters, and the samples are grouped into the M class, and the class center is used as the center of the RBF, and then the function width is determined.
  • the energy characteristic value of the 20 frequency bands of the shearing vibration signal of the coal mining machine, the energy characteristic value of the 8 frequency bands of the oil pressure signal and the energy characteristic values of the 6 frequency bands of the drum motor current signal are taken as the input of the RBF neural network.
  • the samples are clustered to find the center of the basis function. From these signals, the current coal rock condition can be judged.
  • the corresponding feature vectors are clustered by clustering Class, the clustering result of the above coal rock samples 7 as the number of hidden layer units, and the corresponding feature vector as the center xi of the corresponding hidden unit, the output is predicted by the 0, 1, 2, 3, 4, 5, 6 classification, respectively, as above.
  • the RBF neural network with 34 inputs, 1 output and 7 hidden elements is obtained as the coal rock interface identification model, as shown in Fig. 4, where x1, x2, ..., x20 are the vibration signals extracted by wavelet packet analysis.
  • the signal characteristic quantity, x21, x2, ..., x26 is the signal characteristic quantity extracted by the oil pressure signal after wavelet packet analysis
  • x27, x2, ..., x34 is the signal characteristic quantity extracted by the drum motor current signal after wavelet packet analysis
  • ⁇ 1 , ⁇ 2, ..., ⁇ 7 is the hidden layer of the RBF neural network
  • the basis function is the Gaussian function
  • f(x) is the output result of the proportion of coal and rock.
  • the memory trajectory is generated under the premise that the coal seam conditions along the coal seam in the same coal mining area can be considered to be the same, but if the coal seam is thick or special, the curve of the coal rock boundary will change during the cutting process.
  • the memory trajectory will be biased. Therefore, based on the memory cutting, this patent continually corrects the tracking curve based on various information to make the control more precise.
  • the drum angle obtained by the rotary encoder, the drum height obtained by the cylinder stroke position sensor and the shearer inclination obtained by the electronic inclinometer are effectively combined with the DS evidence theory at the decision level to obtain the actual trajectory of the drum, and then The coal rock proportion information cut by the coal machine is fused to obtain the next memory tracking trajectory.
  • the high-speed industrial control machine of the control layer controls the automatic tension of the scraper conveyor chain according to the cylinder pressure, the current of the scraper conveyor motor and the position of the shearer, and the scraper conveyor chain automatically
  • the tensioning device is driven by multivariables, namely cylinder pressure and scraper Automatic control is carried out after comprehensive judgment of parameters such as the running state of the machine (running current) and the coal mining position, which includes two steps of pre-tensioning and automatic tensioning.
  • the pre-tensioning consists of two parts, the start chain and the stop loose chain, which are used to realize the tension of the scraper chain to a certain extent before the start of the scraper conveyor to avoid the failure caused by the loose chain; and after the scraper conveyor is stopped, The scraper chain relaxes to a certain extent, reducing the fatigue and deformation of the chain.
  • the scraper conveyor automatic tensioning device automatically monitors the tension of the hydraulic cylinder and performs the following Comparison:
  • the relationship between the running current of the scraper conveyor and the hydraulic cylinder pressure is shown in the ideal state.
  • the curve is divided into multiple sections, and the approximate relationship of the curve is obtained. Judging the area where the running current of the scraper conveyor tail is located, and calculating the hydraulic cylinder pressure under the ideal state according to the previously obtained relationship of the region, the pressure value multiplied by the weight of the position of the shearer, that is, automatic The standard pressure value for tension control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Conveyors (AREA)

Abstract

一种煤矿综采工作面大型装备集中控制平台的实现方法,其所述方法是基于煤矿综采工作面大型装备的采煤机系统、液压支架系统、工作面运输系统、乳化液泵站系统、移动变电站系统和视频监控系统,并通过高速嵌入式计算机UNO-3072A、高速数据采集卡PCI-1716、PowerBuilder前端开发平台、SQLServer数据库、Modbus TCP/IP通讯协议和工业以太网,进行实时监测、集中协调控制和信息通讯网络,实现煤矿井下综采工作面大型装备的集中控制。实现了煤矿综采工作面的生产自动化。

Description

一种煤矿综采工作面大型装备集中控制平台的实现方法 技术领域
本发明涉及一种集中控制平台的实现方法,尤其是煤矿综采工作面大型装备集中控制平台的实现方法。
技术背景
我国煤炭资源储量丰富,比重占一次能源的70%以上。我国煤炭工业一直走着“粗放、高危、无序”的发展之路,普遍存在着产能与市场需求脱节、设备种类繁多、自动化程度单一低下等问题。在经历了黄金十年的发展之后,煤炭行业现在正处于低谷时期,面临着煤价持续走低、销量不断下滑、盈利大幅降低等问题。但是,煤炭作为我国的主导能源,在今后较长时期内,国内对煤炭的需求量依然会呈现增长趋势。根据预测我国煤炭在2015、2020、2030年的需求量分别为37亿~39亿,39亿~44亿、45亿~51亿t,从我国现有的煤炭开采设备来看,实现了单个设备部分功能的自动控制,实现了对大部分设备的实时监测,但是大部分设备的操控依然离不开人工手动机械操作,煤炭开采装备现状严重威胁着煤矿生产安全,制约着煤炭产量的提升。
综采工作面采煤装备主要包括采煤机、液压支架、刮板输送机、转载机、破碎机、泵站、顺槽皮带输送机。目前综采工作面在煤从煤壁落下到运送出工作面的整个过程中,煤依次经由采煤机、刮板运输机、转载机、破碎机和皮带设备,形成煤流。由于煤流的确定性,为了防止综采设备在起动过程、停止过程或者设备故障停机过程中出现 堆煤等现象,故需要对综采设备启动、停止或者设备故障停机等过程中确立一定的起停顺序和故障停机保护措施。在工作面开始工作时,为了让煤流可以顺利进行,避免堆煤,在起停设备的时候,综采设备的起动顺序必须按照皮带、破碎机、转载机、刮板输送机和采煤机的顺序进行,即逆煤流起动。在工作面从工作到停止时,为了让采煤机割下的煤顺利的全部运输至工作面外,同时为下一次起动做好准备工作,综采设备的停止顺序必须按照采煤机、刮板输送机、转载机、破碎机和皮带的顺序进行,即顺煤流停止。在工作面的设备因故障而出现自动停机时,为了尽可能的避免因堆煤而造成其它设备过负荷,在故障设备顺煤流方向的设备按照顺煤流的顺序依次停机,在故障设备逆煤流方向的设备全部急停。由上可见,目前综采工作面各装备的控制仅仅是简单的启停控制,而且各个装备之间没有信息沟通的渠道,无法实现真正的自动连锁控制。英国在上世纪八十年代就诞生了无或少人值守工作面,也就是说,一个采煤工作面,只需要很少几个人就能完成采、支、运、供各大环节的自动衔接,达到了高效生产的目的,大大提高了生产效率。但在集控平台控制下的多装备统一协调的智能化集控制模式,在国外和国内还未有应用报道。因此建立综采工作面大型装备的集中控制平台,探索综采工作面群控系统的集中协同智能化控制规律,提出适用于综采工作面采煤装备的智能控制方法和控制策略,为实现综采工作面无人值守的自动化采煤目标提供理论和技术支持是非常必要的。
本发明“一种煤矿综采工作面大型装备集中控制平台的实现方 法”就是为实现上述目标而提出的。
发明内容
本发明的目的是提供一种用于煤矿井下综采工作面大型装备集中控制平台的实现方法,以解决煤矿井下无人值守工作面采煤的集中控制问题。
实现上述目的的具体技术方案如下。
一种煤矿综采工作面大型装备集中控制平台的实现方法,其所述方法是基于煤矿综采工作面大型装备各子系统,包括采煤机系统、液压支架系统、工作面运输系统、乳化液泵站系统、移动变电站系统和视频监控系统,并通过控制层高速工控机及其高速数据采集卡、前端开发平台、数据库、通讯网络,在集中控制平台的集中协调控制下,实现煤矿井下综采工作面大型装备各子系统按采煤工艺自动进行无人值守的采煤方法;
所述集中控制平台的实现方法包括实时监测、集中协调控制和信息通讯网络;
1)所述实时监测是由高速数据采集卡采集所述大型装备各子系统的信息,经所述控制层高速工控机汇总融合后,以网络通讯协议进入控制层高速工控机,进行实时监测控制,所述实时监测的控制方法如下:
(1)实时监测采煤机系统的采煤机截割头振动、电机的电流和温度;减速箱的温度;泵箱的温度、油温、油位和油压;变频器输入/输出电流、电压、频率和功率;采煤机系统的采煤机运行速度和运 行方向;各部分冷却水的流量、压力和外喷雾流量;当监测量超过设定值后,系统自动进行报警,并显示故障信息;
(2)实时监测液压支架系统的液压支架前立柱压力、后立柱压力、推移行程和采煤机位置;
(3)实时监测工作面运输系统中刮板输送机电机电流和绕组温度,减速箱的油温、油位和轴温,冷却水的压力和流量,油缸压力,皮带部分的堆煤、烟雾、纵撕、断带、打滑和张紧的故障信息;
(4)实时监测乳化液泵站系统的供水量、供油量、油温、油位、进口压力、出口压力、液位和浓度;
(5)实时监测移动变电站系统的一次侧的A/B/C相电流、电压、漏电电流和电源频率;二次侧的电压、电流和绝缘电阻;一次侧和二次侧的漏电、过流、短路、超温和断相故障状态;
2)所述集中协调控制是利用控制层高速工控机对大型装备各子系统传送的信息进行分析判断,若判断大型装备各子系统装备状态正常,则根据采煤机位置进行相应的控制;所述集中协调的控制方法如下:
(1)综采工作面开始采煤时,装备按逆煤流顺序启动控制;
(2)采煤机位置的双重判断和校正;
采煤机开始工作时应位于工作面的一端,并将此时采煤机位置设置为初始位置,采煤机在运行过程中不断记忆其行走的刮板输送机链节数,由此判断采煤机行走位置,同时结合液压支架系统由红外线传感器检测到的采煤机位置,如果两者一致,则由此自动控制相应液压 支架动作,实现自动追机拉架;如果两者不一致,则报警,停止采煤机运行;每完成一个往返采煤过程,采煤机回到工作面的初始位置;
(3)集中控制平台根据采煤机位置及运行方向自动判断采煤工艺段,发出集中控制命令,使相应液压支架自动跟踪采煤机实施相应的动作;
(4)在采煤过程中,控制层高速工控机根据采煤机截割头振动、油压和滚筒电机电流对滚筒高度进行自动调整,控制方案是基于记忆截割的轨迹目标预见控制方法,这种方法是依据带有径向基神经网络的煤岩界面识别技术实现的;
(5)在采煤过程中,控制层高速工控机根据油缸压力、刮板输送机电机的电流以及采煤机位置对刮板输送机链条进行自动张紧力控制,刮板输送机链条自动张紧装置由多变量,即油缸压力、刮板输送机运行电流和采煤位置融合后进行自动控制;
(6)在采煤过程中,控制层高速工控机自动根据采煤机位置控制视频监控系统中摄像头的点亮和熄灭,减小海量视频监控信息量传送;
(7)控制层高速工控机在启动采煤工作时,首先采集大型装备各子系统的工作状态信息,判断是否开始正常工作,判断方法为向每一设备发出问询信号,大型装备各子系统接到问询信号后,将约定好的表示自身状态的信息回应给控制层高速工控机,集控平台的控制层高速工控机经过判断后,若满足启动条件,则发出启动信号;
a、在采煤过程中,检测到刮板输送机有堆煤发生,此时控制层 高速工控机立刻控制电液控制系统中的端头液压支架,启动安装在一级护帮上的铁爪动作,将堆煤快速送入转载环节;
b、在采煤过程中,集中控制平台将集控命令发给电液自动控制系统的端头控制器,再由端头控制器控制支架控制器执行具体动作,当检测到液压支架电液控制系统的通讯中断时,则会立即启动电液控制系统的另一个端头控制器,由两个端头控制器分别负责中断故障发生后中断点两侧控制器正常受控进行动作;
c、在采煤过程中,集中控制平台根据采煤机工作状况自动调整工作面运输系统装备的运行速度;
d、在采煤过程中,集中控制平台判断出乳化液泵的进口压力和出口压力大于1.1Mpa时自动启动反冲洗过滤器;
3)所述信息通讯网络是大型装备各子系统与集中控制平台信息传送的网络结构和通讯模式,控制层高速工控机与大型装备各个子系统的控制层高速工控机是基于TCP/IP协议的网络通讯,所述信息通讯网络的控制方法如下:
(1)控制层高速工控机与各个子系统的高速工控机是通过信息通讯网络进行通讯;
(2)控制层高速工控机作为客户端,大型装备各子系统都作为服务器端,控制层高速工控机每隔500ms轮巡一次所有大型装备子系统,然后根据巡检结果给出控制量。
在上述技术方案中,所述工作面运输系统包括刮板输送机、转载机、破碎机和胶带输送机;所述控制层高速工控机是高速嵌入式计算 机UNO-3072A;高速数据采集卡是PCI-1716;前端开发平台是PowerBuilder;数据库是SQLServer;通讯协议是Modbus TCP/IP;通讯网络是工业以太网Ethernet。
本发明上述所提供的一种煤矿综采工作面大型装备集中控制平台的实现方法的技术方案,实现了煤矿生产的自动化,填补了国内无人值守采煤生产的空白,打破了国外对该项技术的垄断。与现有技术相比,本煤矿井下综采工作面大型装备集中控制方法的优点与积极效果集中体现如下几点。
1)具有高度自动化的满足无人或少人值守工作面要求的控制功能。
本发明实现了对多装备统一协调的智能化集控模式,解决了综采工作面各个装备之间没有信息沟通渠道,无法真正实现自动连锁控制的问题,建立了综采工作面大型装备的集中控制平台,探索了综采工作面多个装备系统的集中协同智能化控制规律,提出了适用于综采工作面采煤装备之间的智能控制方法和控制策略,具备了实现无人或少人值守的综采工作面采煤模式。
2)能可靠完成基于采煤机位置的各种系统协调统一的自适应控制功能。
综采工作面采煤装备的核心是采煤机,采煤机的运行意味着采煤工作的开始,它行走到的支架位置和行走方向决定了采煤工作所进行到的采煤工艺段,本方法在准确检测到采煤机位置后,自动按采煤工艺集中控制相应装备的动作和运行,无需人工干预,实现了无人或少 人值守的综采工作面采煤模式,极大降低了安全事故的发生,提高了劳动生产效率。
3)在集中平台控制下实现采煤机滚筒的自动调高功能。
目前采煤机滚筒自动调高系统有很多种,是基于本身的监测信息进行的控制,本发明提出的在集中平台控制下实现采煤机滚筒的自动调高,是在综合了各装备运行状态下实施的采煤机滚筒调高,更符合实际采煤工艺的要求。
4)在集中平台控制下实现液压支架的自动追机拉架功能。
煤矿井下综采工作面液压支架集中控制平台所能实现的自动追机拉架仅仅依靠液压支架控制器接收到的采煤机上的红外传感器发送的信号来判断采煤机的位置,没有矫正环节。本发明提出的在集中平台控制下实现液压支架的自动追机拉架,是集控平台综合了来自液压支架系统和计算采煤机所走镏子链结数所得到的两个采煤机位置信息,保证了液压支架自动追机拉架的正确性,也就保证了支护的安全性和可靠性。
5)在集中平台控制下实现刮板输送机链条自动张紧力的控制功能。
在采煤过程中,刮板输送机的链张紧须到一定程度,避免链条过松造成的故障,而刮板输送机停机后,又必须使其松弛到一定程度,减小链条的疲劳和形变。本发明根据油缸压力、刮板输送机电机的电流以及采煤机的位置对刮板输送机链条进行自动张紧力的控制,只有在集中控制平台下才能突破装备之间的横向信息孤岛,有效综合多装备的物理信息,实现了刮板输送机链条的自动张紧控制。
6)能进行采煤过程中各个装备各种故障的实时监测和实时在线 处理,保证了采煤生产的连续性。
在采煤过程中,集控平台能根据得到的信息综合分析判断各个装备的工作状态,发现异常及时启动处理流程,保证了采煤生产的安全、有序和连续运行,为无人值守的采煤作业提供安全保障。
7)能根据采煤机工作状况自动调整各装备的运行速度,实现节能降耗。
本发明集控平台能根据得到的信息判断出目前所处的采煤工艺段,进而自动调整各装备的启停与运行速度,如在采煤机停止运行时自动降低刮板输送机、转载机和破碎机的运行速度,而且依据采煤机位置只点亮相应的视频摄像头并传送,避免了整个工作面视频摄像头信息的传送,实现了节能,也提高了通讯速度。
附图说明
图1是本发明综采工作面集中控制平台结构图。
图2是本发明电液控制系统自动追机拉架控制结构图。
图3是本发明电液控制系统自动追机拉架控制流程图。
图4是本发明用于煤岩界面识别的RBF神经网络结构图。
图5是本发明刮板输送机机尾运行电流I和液压缸压力P的关系示意图。具体实施方式
下面结合附图用具体实施方式进一步详细描述本发明自称的一种煤矿综采工作面大型装备集中控制平台的实现方法,本领域的技术人员在阅读了本具体实施方式后,利用现有的装备,结合本领域的现有技术能够实现本发明所述的煤矿综采工作面大型装备集中控制平台的控制方法,同时也能够实现本发明所述的积极效果。
实施一种煤矿综采工作面大型装备集中控制平台的实现方法,该方法是基于这些煤矿井下综采工作面的大型装备实现的,包括高速嵌 入式计算机UNO-3072A、高速数据采集卡PCI-1716、PowerBuilder前端开发平台、SQLServer数据库、Modbus TCP/IP通讯协议和工业以太网Ethernet。
综采工作面大型装备集中控制平台控制7个系统——采煤机系统、液压支架系统、工作面运输系统、泵站系统、供电系统和视频监控系统,其结构如图1所示。
服务器使用高速嵌入式计算机UNO-3072A,用于人机交互,实现综采工作面各设备工况运行的状态显示和实时控制,实现各设备无人值守的协同工作,由PowerBuilder前端开发平台开发;综采工作面各子系统的控制器,由高速嵌入式计算机UNO-3072A和高速数据采集卡PCI-1716完成,是综采工作面集中控制系统的监测和控制对象,在整个综采工作面集中控制系统中,监测是基础,控制协同工作是核心,通讯是关键。
监测功能是综采工作面集中控制系统的工作基础,综采工作面集中控制系统需要从现场各子系统中获取各设备的工作运行状态,根据监测信息来完成设备之间的协同控制和保护功能,各子系统中都有独立的智能处理系统,包括信号采集和智能控制环节,各子系统在非集控状态下也可自行进行控制,每个子系统硬件由高速嵌入式计算机UNO-3072A和高速数据采集卡PCI-1716A组成,PCI-1716A可采集16路模拟量和16路数字量信号,可输出2路模拟和16路数字控制信号。
1、监测部分
1)采煤机作为综采工作面的核心装备,其运行状态的情况直接反应了采煤效率,为此,需要对采煤机的工作状态进行全面的监测,采煤机的监测信息主要包括截割头振动、5个电机的电流、温度、减 速箱的温度,泵箱的温度、油温、油位、油压,变频器输入/输出电流、电压、频率、功率,采煤机的运行速度、运行方向,各部分冷却水的流量、压力,左右外喷雾的流量等,当监测量超过设定值后,系统会自动进行报警,并显示故障信息,其中截割头振动、油压和滚筒电机电流是进行采煤机控制的信号依据,在控制过程中实施的滚筒记忆轨迹的跟踪控制,因此必须正确监测其滚筒高度及采煤机倾角,以便实时调整记忆轨迹,在本发明中,通过旋转编码器获得滚筒角度,从而得到滚筒高度,并利用油缸行程位置传感器也可以获得滚筒高度,两者互相验证,同时利用电子倾角仪获得采煤机倾角。
2)液压支架作为综采工作面的关键装备,在工作面支护和推进起着至关重要的作用,液压支架的检测量少,但是其特点是工作面支架数量多,单台液压支架的监测信息主要有前立柱压力、后立柱压力、推移行程和采煤机位置,其中采煤机位置是控制液压支架动作的依据。
3)工作面运输系统是将煤从工作面运到顺槽皮带运输机上,刮板输送机关键部件是电机和减速箱,针对这2个关键部件进行监测,监测量为电机的电流和绕组温度,减速箱的油温、油位、轴温等,冷却水的压力和流量,油缸压力,其中油缸压力、刮板输送机电机的电流以及采煤机的位置是刮板输送机链条自动张紧力控制的依据。
4)皮带运输机是井下运输系统的重要组成部分,位于顺槽中,输送距离长,在综采工作面集中控制系统中可控制的皮带运输机仅为距离综采工作面最近的皮带运输机,皮带运输机主要有电机和皮带两部分组成,电机部分只监测电机电流和温度,而皮带部分主要监测皮带的堆煤、烟雾、纵撕、断带、打滑和张紧等重要的故障,其中张紧是控制皮带运输机张紧力的依据。
5)乳化液泵站作为液压系统的动力来源,是综采工作面推进的有力保证,泵站的压力和乳化液的质量直接决定了综采工作面液压系统的工作稳定性,需要对乳化液泵的供水量、供油量、油温、油位、进口压力、出口压力、液位和浓度进行监测,其中供水量、供油量、液位、浓度、进口压力和出口压力是自动控制乳化液配比和自动启动反冲洗过滤器的依据。
6)移动变电站用于综采工作综采设备的供电,是井下综采必不可少的环节,移动变电站重点监测位置是一次侧和二次侧,一次侧的监测量有A/B/C相电流、高压电压、漏电电流和电源频率,二次侧的监测量有低压电压、电流和绝缘电阻,同时要监测一次侧和二次侧的漏电、过流、短路、超温和断相等故障。
2、控制部分
1)综采工作面开始采煤是以逆煤流顺序起动的,工控机首先通过采集卡采集所有装备的状态信息,然后进行判断,如满足工作条件,则依次按照皮带、破碎机、转载机、刮板输送机和采煤机的逆煤流顺序启动这些设备。
2)采煤机启动前应位于工作面的一端,将此时的采煤机位置设为零,即初始位置,采煤机在运行过程中不断记忆其行走的刮板输送机的链节数,由此判断采煤机的位置,即在哪一个支架处,这是一个判断采煤机位置的依据,同时还要结合液压支架系统由红外线传感器检测到的采煤机位置距离,如果两者一致则由此自动控制相应液压支架的动作,实现自动追机拉架,如果两者不一致则报警,则报警,并停止采煤机的运行,为减少计算采煤机行走刮板输送机链节数引起的位置误差,每完成一个往返采煤过程,采煤机回到工作面的初始一端时,要将采煤机位置设为零。
3)集控平台根据采煤机位置及运行方向自动判断采煤工艺段,发出集中控制命令,使相应液压支架自动跟踪采煤机实施相应的动作,根据煤矿的生产工艺要求,综采工作面分14个工艺段,涵盖中间段、弯曲段和两端割三角煤的全部过程,根据工作面长度的不同,支架的数量也不同,则处于中间段、弯曲段和两端割三角煤位置的支架数也不同,为使本专利方法能适应不同工作面的要求,本发明集控平台能接收液压支架系统维护好的控制参数(包括工作面支架数量、动作极限时间、立柱立柱最大压力、移架最长行程、采煤机长度等),自动计算出处于两端弯曲段的开始、结束支架号,能自动适应不同长度的综采工作面液压支架的自动控制;本发明以122个液压支架的工作面为例进行说明,集控平台跟踪采煤机进行动作的支架为采煤机在位的支架、采煤机前14个支架以及采煤机后15个支架共30个液压支架的动作,实现自动追机拉架,其控制过程见具体实施例1。
4)本发明采煤机滚筒高度的自动调整控制方案是基于记忆截割的轨迹目标预见控制方法,这种方法是依据带有径向基(RBF)神经网络的煤岩界面识别技术实现的,RBF神经网络具有强大的并行处理和非线性映射能力,能很好地适用于煤岩界面的辩识,因此在本专利中采用带有RBF神经网络煤岩界面识别的基于记忆切割的采煤机自动调高预见控制方法,同时在采煤机滚筒高度的自动调整过程中,需要知道当前采煤机滚筒的高度以及目前截割煤岩的性质,因此本专利利用D-S证据理论将多物理信息进行有效融合,其控制过程见具体实施例1。
5)在采煤过程中,控制层高速工控机根据油缸压力、刮板输送机电机的电流以及采煤机的位置对刮板输送机链条进行自动张紧力的控制,刮板输送机链条自动张紧装置由多变量自动控制,结合油缸 压力、刮板输送机运行状态(运行电流)和采煤位置等参量综合判断后进行控制,其控制过程见具体实施例1。
6)在采煤过程中,控制层高速工控机自动根据采煤机位置控制视频监控系统中摄像头的亮灭,既能将有效视频监控信息采集回来,又能节约电能、减小海量视频监控信息量的传送。
7)在采煤过程中,控制层高速工控机能实现整个工作面装备的协同控制,解决了工作面各装备间没有横向通讯使各装备运行状态成为信息孤岛,无法实现无人值守的智能化协同工作的瓶颈问题。
(1)控制层高速工控机在启动采煤工作时,首先采集各装备的工作状态信息,判断它们是否能开始正常工作,判断方法为向每一设备发出问询信号,各个装备接到问询信号后将约定好的表示自身状态的信息回应给控制层高速工控机,集控平台即控制层高速工控机经过判断后,认为条件满足则给出启动信号,启动过程见上述描述。
(2)在采煤过程中,如检测到刮板输送机有堆煤发生,堆煤往往发生在刮板输送机的机头部位,此时控制层高速工控机立刻控制电液控制系统中的端头液压支架启动安装在其一级护帮上的铁爪动作,将堆煤快速送入转载环节,保证采煤生产的连续性。
(3)在采煤过程中,集控平台将集控命令发给电液自动控制系统的端头控制器,由端头控制器控制支架控制器执行具体的动作,但如果检测到液压支架电液控制系统通讯中断,则会立即启动电液控制系统的另一个端头控制器,由两个端头控制器分别负责中断故障发生后中断点两侧控制器正常受控进行动作,保证采煤生产的连续性。
(4)在采煤过程中,集控平台根据采煤机工作状况自动调整工作面运输系统装备的运行速度,实现最大限度的电能节约。
(5)在采煤过程中,集控平台当判断出乳化液泵的进口压力和 出口压力只差大于1.1Mpa时自动启动反冲洗过滤器,保证乳化液泵的正常工作,进而保证采煤生产的连续性。
3、网络构架
1)控制层高速嵌入式计算机UNO-3072A与各子系统的高速嵌入式计算机UNO-3072A实现基于TCP/IP协议的网络通讯。
2)控制层高速工控机利用PowerBuilder外部事物OLE引用Winsock来实现基于TCP/IP协议的网络通讯,控制层高速工控机作为乙方即客户端,须在PowerBuilder前端开发软件窗口的Open事件中加入如下语句:
ole_1.object.protocol=0//winsock通讯协议设为TCP协议;
ole_1.object.remotehost="219.226.96.151"//对方的ip地址;
ole_1.object.remoteport=502//要联系的对方的winsock通讯端口号;
ole_1.object.connect()//发出连接请求;
控制层高速工控机每个500ms轮巡一次所有系统,然后根据巡检结果给出控制量。
3)在TCP/IP通讯中,每一系统都作为甲方即服务器端,都有ocx_error事件脚本,监视与集控平台通讯的故障,一旦有断开的故障,立即重连,保证数据通讯的稳定可靠:
ole_1.object.close();
ole_1.object.protocol=0//winsock通讯协议设为TCP协议;
ole_1.object.localport=502//本机的winsock通讯端口号;
ole_1.object.listen();
sle_1.text="TCP/IP通讯错误,已重新连接!";
具体实施例1
本发明利用高速嵌入式计算机UNO-3072A、高速数据采集卡PCI-1716、PowerBuilder前端开发平台、SQLServer数据库、ModbusTCP/IP通讯协议和工业以太网(Ethernet),实现煤矿井下综采工作面大型装备集中控制。其具体的实现方法如下。
1、集中控制平台的硬件连接图如图1所示。集控平台和每一个系统都包括高速嵌入式计算机UNO-3072A、高速数据采集卡PCI-1716,高速嵌入式计算机应用PowerBuilder前端开发平台和SQLServer数据库开发集控软件,各个系统与集控平台之间通过Modbus TCP/IP通讯协议和工业以太网Ethernet进行信息传送。
2、集控平台根据采煤机位置及运行方向自动判断采煤工艺段,发出集中控制命令,使相应液压支架自动跟踪采煤机实施相应的动作,电液控制系统自动追机拉架控制结构如图2所示,根据煤矿的生产工艺要求,本系统跟踪采煤机进行动作的支架为采煤机在位的支架、采煤机前14个支架以及采煤机后15个支架共30个液压支架的动作,实现自动追机拉架;其控制流程如图3所示,具体控制过程如下(以122个支架为例进行说明)。
1)第1工艺段--正常割煤(左行)117架→06架:
(1)当采煤机位置由117号支架向左运行到12号支架的过程中,执行正常段的跟机拉架作业,动作规程以采煤机位置在54架处说明,规程如下:
如采煤机运行到第54架处,提前6架需要进行收一级互帮动作,即第48架执行收一级护帮动作;在采煤机的前、后滚筒处需要喷雾降尘,所以第50架和第58架执行喷雾动作;在采煤机中心位置后边8架的支架需要执行小循环动作,即第62架需要进行降柱、提底、拉架、升柱、伸互帮五个动作;在采煤机中心位置后边12架的支架 需要进行推镏动作,即第66架执行推镏动作。
(2)当采煤机位置由11号支架向左运行到6号支架的过程中,需要推出弯曲段,动作规程以采煤机位置在8架处说明,规程如下:
由于弯曲段长度为10个支架,所以弯曲段需要由10个支架分次推出;当采煤机运行到第8架时,提前6架需要进行收一级互帮动作,即第2架执行收一级护帮动作;在采煤机的前、后滚筒处需要喷雾降尘,所以第4架和第12架执行喷雾动作;在采煤机中心位置后边8架的支架需要执行小循环动作,即第16架需要进行降柱、提底、拉架、升柱、伸互帮五个动作;在采煤机中心位置后边12架的支架需要进行推镏动作,即第20架执行弯曲段推镏动作,仅推镏7/10,而在此之前,23号、22号、21号已分别推镏10/10、9/10、8/10。
2)第2工艺段--左侧扫底刀1(右行)6架→10架:
采煤机割煤至机头并割透煤壁后,采煤机向机尾运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
3)第3工艺段--左侧扫底刀1(左行)10架→6架:
采煤机向机头运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
4)第4工艺段--左侧斜切进刀(右行)6架→30架:
(1)当采煤机位置由6号支架向右运行到13号支架的过程中,支架仅执行采煤机前后滚筒上方喷雾动作和提前6架的收一级护帮动作。
(2)当采煤机位置由13号支架向右运行到21号支架的过程中,支架执行移架动作,动作规程以采煤机位置在16架处说明,规程如下:
如采煤机运行到第16架处,提前6架需要进行收一级互帮动作, 即第22架执行收一级护帮动作;在采煤机的前、后滚筒处需要喷雾降尘,所以第20架和第12架执行喷雾动作;在采煤机中心位置后边8架的支架需要执行小循环动作,即第8架需要进行降柱、提底、拉架、升柱、伸互帮五个动作。
(3)当采煤机位置由22号支架向右运行到30号支架的过程中,支架执行成组推镏动作,规程如下:
当采煤机运行到第23架处,1-5架执行成组推镏动作,当采煤机运行到第24架处,6-10架执行成组推镏动作,当采煤机运行到第26架处,11-15架执行成组推镏动作,当采煤机运行到第28架处,16-20架执行成组推镏动作,当采煤机运行到第30架处,21-23架执行成组推镏动作,并且在由24号运行到27号的过程中,1-4号分别执行小循环动作1次。
5)第5工艺段--左侧割三角煤(左行)30架→6架:
采煤机返向调换滚筒,开始割三角煤,直到机投并割透煤壁,前后滚筒处的支架喷雾。
6)第6工艺段--左侧扫底刀2(右行)6架→10架:
采煤机割煤至机头并割透煤壁后,采煤机向机尾运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
7)第7工艺段--左侧扫底刀2(左行)10架→6架:
采煤机向机头运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
8)第8-14工艺段与1-8工艺段类似。
3、采煤机滚筒高度的自动控制方案是基于记忆截割的轨迹目标预见控制方法,这种方法是依据带有径向基神经网络的煤岩界面识别技术实现的。其步骤为:
1)应用最优预见控制原理得出采煤机滚筒控制量
采用液压油缸调高的采煤机调高机构的动力学模型及数学模型如图1所示,采煤机调高机构的调高摇臂可视为刚体绕定点转动,调高油缸可等效为有阻尼液压弹簧-----质量振动系统,可表示如下:
式中:J----滚筒及摇臂绕o点的转动惯量,kg.m2;
Figure PCTCN2016084400-appb-000002
----摇臂绕o点转动的角加速度,rad/s2;
kh----油缸的液压弹簧刚度,N.m-1;
ch----油缸的液压粘性阻尼系数,Pa.S;
x----油缸的位移,m;
Figure PCTCN2016084400-appb-000003
----油缸的移动速度,m/s;
l----小摇臂的长度,m;
Φ2----小摇臂与油缸活塞杆之间的夹角,rad;
ΣMo----对O点所有外力矩之和,N.m;
对O点的外力矩有:
阻力矩Rasinωat·LcosΦ1;Rb sinωbt·LsinΦ1
液压油作用于活塞的动力矩(由伺服阀电磁电流决定)
kf·if·lsinΦ2
滚筒偏心质量产生的离心力矩meω2sinωt·LcosΦ1;meω2cosωt·LsinΦ1
把这些力矩代入式(12)中:
Figure PCTCN2016084400-appb-000004
(2)
式中:L----大摇臂的长度,m;
Φ1----大摇臂相对水平面的夹角,rad;
kf----电磁系数,N/A;
if----电磁电流,A;
m----滚筒由于加工、安装及截齿排列等因素而产生的偏心质量,kg;
e----滚筒由于加工、安装及截齿排列等因素而产生的偏心距,m;
ω----滚筒的角速度,rad/s。
液压油缸的位移x=lsinθ,当摇臂绕o点的摆角θ较小时,可近似地认为x=l·θ,则油缸的移动速度
Figure PCTCN2016084400-appb-000005
滚筒及摇臂对o点的转动惯量
Figure PCTCN2016084400-appb-000006
代入式(2)中,得:
Figure PCTCN2016084400-appb-000007
式中:m1----滚筒的集中质量,kg;
m2----摇臂的集中质量,kg;
由文献分析,ωa=ωb=ω,经整理最后得:
Figure PCTCN2016084400-appb-000008
其中:
Figure PCTCN2016084400-appb-000009
Figure PCTCN2016084400-appb-000010
Figure PCTCN2016084400-appb-000011
A3=Kf·lsinΦ2
令A2sin(ωt+ψ)=d(t),称为扰动,
所以
Figure PCTCN2016084400-appb-000012
(5)
Figure PCTCN2016084400-appb-000013
由此得出系统的状态方程为:
Figure PCTCN2016084400-appb-000014
其中:
Figure PCTCN2016084400-appb-000015
C=[1 0]
用零阶保持器,采样周期为T
将(6)式离散化后得:
X(k+1)=AX(k)+Bif(k)+Ed(k)
Y(k)=CX(k)
(7)
其中:
Figure PCTCN2016084400-appb-000016
C=[1 0]
假设系统可控、可观测,并设r≥m。设目标值为R(k)(m×1),定义误差信号e(k)=R(k)-y(k),则由式(7)可求得
Figure PCTCN2016084400-appb-000017
或写成
X0(k+1)=ΦX0(k)+GΔu(k)+GRΔR(k+1)+GdΔd(k)   (10)
则称式(10)描述的系统为广义误差系统,假定从当前时刻(设k=1)开始到未来MR步的目标值已知,这意味着为使输出y(k)跟踪当前目标值R(k),必须使控制输出u(k)在MR步之前就开始变化,即MR步预见控制。对于式(3)广义误差系统,定义式(11)的二次型性能指标:
Figure PCTCN2016084400-appb-000018
式中Q为半正定矩阵,Qe、H为正定矩阵;
由最优控制理论,知使式(11)为最优的输入有下面的形式:
Figure PCTCN2016084400-appb-000019
其中,F0X0为全状态反馈最优解,而且
F0=-[H+GTPG]-1GTPΦ   (13)
P为Riccati方程
P=Q+ΦTPΦ-ΦTPG[H+GTPG]-1GTPΦ   (14)
的解,式(12)右边的第二、三项分别为利用了从现在时刻k开始到未来MR步的目标值信息及干扰信息的预见前馈补偿。
如果仅考虑目标值预见,则可设Δd(k+j)=0而求出FR(j),如果仅考虑干扰预见可同样设ΔR(k+j)=0而求出Fd(j)。
根据需要我们现在只研究目标值预见,因为我们控制的是记忆跟踪切割,Δd(k+j)=0,将(12)式代入(11)式,并设当前时刻(k=1)目标值才有变化,即ΔR(1)=R0,如果设
Figure PCTCN2016084400-appb-000020
因为使性能指标J取最小的FRR必满足
Figure PCTCN2016084400-appb-000021
所以可求得FRR=-ΓRR -1ΔRR。预见前馈系数FR(j)用下式求得:
FR(0)=0
Figure PCTCN2016084400-appb-000022
j=1,…,MR
设采煤机滚筒的高度记忆轨迹即目标轨迹为H(t),由前面结构数学模型分析可推得小摇臂摆角的目标值为R(t),则输出的误差为e(k)=R(k)-y(k)=R(k)-CX(k),控制规则:
Figure PCTCN2016084400-appb-000023
根据发明人现在的研究,仅考虑目标值预见,△d(k+j)=0,将由 预见控制得出的前馈系数FR(j)(J=1,…,MR)代入(15)式可得出F0、FR(j),即Δif(k),也即求得了控制电流的大小,针对输出为数字量开关信号,则Δif(k)可转换为通液的持续时间,MR为预见的步数。
2)应用RBF神经网络进行煤岩界面识别
RBF神经网络结构为三层,输入层、输出层和隐含层;
隐含层用高斯函数:
Figure PCTCN2016084400-appb-000024
(16)作为RBF神经网络的基函数,从而
Figure PCTCN2016084400-appb-000025
这样,对RBF神经网络的参数包括输出单元权值ωi、隐单元的中心xi和函数宽度σ。
本发明输出单元权值的训练采用最小二乘法直接计算,对后两个参数的选择采用K-均值聚类,把样本聚为M类,类中心就作为RBF的中心,进而再确定函数宽度。
本发明取采煤机截割头振动信号的20个频段的能量特征值、油压信号的8个频段的能量特征值和滚筒电机电流信号的6个频段的能量特征值作为RBF神经网络的输入,同时对样本进行聚类以求得基函数的中心,从这些信号中可以判断目前切割的煤岩情况,在实验中发明人提取了100%煤,80%煤、20%岩,70%煤、30%岩,50%煤、50%岩,30%煤、70%岩,20%煤、80%岩,0%煤、100%岩7种样本,通过聚类将相应的特征向量进行归类,即将上述煤岩样本的聚类结果 7作为隐层单元的个数,同时将相应的特征向量作为相应隐单元的中心xi,将输出分别以0,1,2,3,4,5,6分类预测上述七种状态,象上面一样就得到34个输入、1个输出和7个隐单元的RBF神经网络,作为煤岩界面识别模型,如图4所示,其中x1,x2,…,x20是振动信号经小波包分析后提取的信号特征量,x21,x2,…,x26是油压信号经小波包分析后提取的信号特征量,x27,x2,…,x34是滚筒电机电流信号经小波包分析后提取的信号特征量,Φ1,Φ2,…,Φ7是RBF神经网络的隐层,其基函数是高斯函数,而f(x)即是煤岩比例的输出结果。
3)记忆轨迹的修正
记忆轨迹是在同一采煤区沿煤层走向的煤层条件可以近似认为是相同的前提下产生的,但如果煤层较厚,或情况特殊,在切割过程中煤岩分界的曲线会发生变化,初始的记忆轨迹会产生偏差,因此,本专利在记忆切割的基础上不断地根据各种信息修正跟踪曲线,使控制更加精确。
本发明对旋转编码器获得的滚筒角度、油缸行程位置传感器获得的滚筒高度与电子倾角仪获得的采煤机倾角,经D-S证据理论在决策级进行有效融合得出滚筒的实际轨迹,再与采煤机切割的煤岩比例信息进行融合得出下一次的记忆跟踪轨迹。
4、在采煤过程中,控制层高速工控机根据油缸压力、刮板输送机电机的电流以及采煤机的位置对刮板输送机链条进行自动张紧力的控制,刮板输送机链条自动张紧装置由多变量即油缸压力、刮板输 送机运行状态(运行电流)和采煤位置等参量综合判断后进行自动控制,其包含预张紧和自动张紧两个步骤。
1)预张紧
预张紧包括开机紧链和停机松链两部分,用于实现刮板输送机启动前将刮板链张紧到一定程度,避免链条过松造成的故障;以及刮板输送机停机后,使刮板链松弛到一定程度,减小链条的疲劳和形变。
2)自动张紧
当刮板输送机发出启动信号和执行预张紧功能后,刮板送机启动,并发出成功启动信号,随后刮板输送机链条自动张紧装置自动监控张紧液压缸的压力,并进行下面的比较:
如果液压缸压力小于用“压力计算公式”计算得的下部滞后范围,则开始进行张紧时间测量,并执行液压缸伸出程序。
如果液压缸压力大于用“压力计算公式”计算得的上部滞后范围,则开始进行松弛时间测量,执行液压缸缩回程序。
3)压力计算公式
根据试运行测量得到的理想状态下刮板输送机机尾运行电流和液压缸压力的关系曲线,如图5所示,将曲线分为多段,得到该段曲线的近似关系式,实际运行过程中,判断刮板输送机机尾运行电流所在的区域,根据之前得到的该区域关系式计算出理想状态下的液压缸压力,该压力值乘以采煤机所处位置的权重,即得出自动张紧控制的标准压力值。

Claims (3)

  1. 一种煤矿综采工作面大型装备集中控制平台的实现方法,其所述方法是基于煤矿综采工作面大型装备各子系统,包括采煤机系统、液压支架系统、工作面运输系统、乳化液泵站系统、移动变电站系统和视频监控系统,并通过控制层高速工控机及其高速数据采集卡、前端开发平台、数据库、通讯网络,在集中控制平台的集中协调控制下,实现煤矿井下综采工作面大型装备各子系统按采煤工艺自动进行无人值守的采煤方法;
    所述集中控制平台的实现方法包括实时监测、集中协调控制和信息通讯网络;
    1)所述实时监测是由高速数据采集卡采集所述大型装备各子系统的信息,经所述控制层高速工控机汇总融合后,以网络通讯协议进入控制层高速工控机,进行实时监测控制,所述实时监测的控制方法如下:
    (1)实时监测采煤机系统的采煤机截割头振动、电机的电流和温度、减速箱的温度;泵箱的温度、油温、油位和油压;变频器输入/输出电流、电压、频率和功率;采煤机系统的采煤机运行速度和运行方向;各部分冷却水的流量、压力和外喷雾流量;当监测量超过设定值后,系统自动进行报警,并显示故障信息;
    (2)实时监测液压支架系统的液压支架前立柱压力、后立柱压力、推移行程和采煤机位置;
    (3)实时监测工作面运输系统中刮板输送机电机电流和绕组温度,减速箱的油温、油位和轴温,冷却水的压力和流量,油缸压力, 皮带部分的堆煤、烟雾、纵撕、断带、打滑和张紧的故障信息;
    (4)实时监测乳化液泵站系统的供水量、供油量、油温、油位、进口压力、出口压力、液位和浓度;
    (5)实时监测移动变电站系统的一次侧的A/B/C相电流、电压、漏电电流和电源频率;二次侧的电压、电流和绝缘电阻;一次侧和二次侧的漏电、过流、短路、超温和断相故障状态;
    2)所述集中协调控制是利用控制层高速工控机对大型装备各子系统传送的信息进行分析判断,若判断大型装备各子系统装备状态正常,则根据采煤机位置进行相应的控制;所述集中协调控制的方法如下:
    (1)综采工作面开始采煤时,装备按逆煤流顺序启动控制;
    (2)采煤机位置的双重判断和校正;
    采煤机开始工作时应位于工作面的一端,并将此时采煤机位置设置为初始位置,在采煤机运行过程中不断记忆其行走的刮板输送机链节数,由此判断采煤机行走位置,同时结合液压支架系统由红外线传感器检测的采煤机位置,如果两者一致,则由此自动控制相应液压支架动作,实现自动追机拉架;如果两者不一致,则报警,停止采煤机运行;每完成一个往返采煤过程,采煤机回到工作面的初始位置;
    (3)集中控制平台根据采煤机位置及运行方向自动判断采煤工艺段,发出集中控制命令,使相应液压支架自动跟踪采煤机实施相应的动作;
    (4)在采煤过程中,控制层高速工控机根据采煤机截割头振动、 油压和滚筒电机电流对滚筒高度进行自动调整,控制方案是基于记忆截割的轨迹目标预见控制方法,这种方法是依据带有径向基神经网络的煤岩界面识别技术实现的;
    (5)在采煤过程中,控制层高速工控机根据油缸压力、刮板输送机电机的电流以及采煤机位置对刮板输送机链条进行自动张紧力控制,刮板输送机链条自动张紧装置由油缸压力、刮板输送机运行电流和采煤位置融合后进行自动控制;
    (6)在采煤过程中,控制层高速工控机自动根据采煤机位置控制视频监控系统中摄像头的点亮和熄灭,减小海量视频监控信息量传送;
    (7)控制层高速工控机在启动采煤工作时,首先采集大型装备各子系统的工作状态信息,判断是否开始正常工作,判断方法为向每一设备发出问询信号,大型装备各子系统接到问询信号后,将约定好的表示自身状态的信息回应给控制层高速工控机,集控平台的控制层高速工控机经过判断后,若满足启动条件,则发出启动信号;
    a、在采煤过程中,检测到刮板输送机有堆煤发生,此时控制层高速工控机立刻控制电液控制系统中的端头液压支架,启动安装在一级护帮上的铁爪动作,将堆煤快速送入转载环节;
    b、在采煤过程中,集中控制平台将集控命令发给电液自动控制系统的端头控制器,再由端头控制器控制支架控制器执行具体动作,当检测到液压支架电液控制系统的通讯中断时,即时启动电液控制系统的另一个端头控制器,由两个端头控制器分别负责中断故障发生后 中断点两侧控制器正常受控进行动作;
    c、在采煤过程中,集中控制平台根据采煤机工作状况自动调整工作面运输系统装备的运行速度;
    d、在采煤过程中,集中控制平台判断出乳化液泵的进口压力和出口压力大于1.1Mpa时,自动启动反冲洗过滤器;
    3)所述信息通讯网络是大型装备各子系统与集中控制平台信息传送的网络结构和通讯模式,控制层高速工控机与大型装备各个子系统的控制层高速工控机是基于TCP/IP协议的网络通讯,所述信息通讯网络的控制方法如下:
    (1)控制层高速工控机与各个子系统的高速工控机是通过信息通讯网络进行通讯;
    (2)控制层高速工控机作为客户端,大型装备各子系统都作为服务器端,控制层高速工控机每隔500ms轮巡一次所有大型装备子系统,然后根据巡检结果给出控制量。
  2. 如权利要求1所述的实现方法,所述工作面运输系统包括刮板输送机、转载机、破碎机和胶带输送机。
  3. 如权利要求1所述的实现方法,所述控制层高速工控机是高速嵌入式计算机UNO-3072A;高速数据采集卡是PCI-1716;前端开发平台是PowerBuilder;数据库是SQLServer;通讯协议是Modbus TCP/IP;通讯网络是工业以太网Ethernet。
PCT/CN2016/084400 2015-08-25 2016-06-01 一种煤矿综采工作面大型装备集中控制平台的实现方法 WO2017032121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,361 US10378352B2 (en) 2015-08-25 2016-06-01 Method for realizing centralized control platform for large fully-mechanized coal mining face equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510527484.XA CN105182820B (zh) 2015-08-25 2015-08-25 一种煤矿综采工作面大型装备集中控制平台的实现方法
CN201510527484X 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017032121A1 true WO2017032121A1 (zh) 2017-03-02

Family

ID=54904966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084400 WO2017032121A1 (zh) 2015-08-25 2016-06-01 一种煤矿综采工作面大型装备集中控制平台的实现方法

Country Status (3)

Country Link
US (1) US10378352B2 (zh)
CN (1) CN105182820B (zh)
WO (1) WO2017032121A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108252713A (zh) * 2018-03-29 2018-07-06 西安煤矿机械有限公司 采煤机自动截割模式下的多段运行速度调节装置及方法
CN109448484A (zh) * 2018-11-10 2019-03-08 山西能源学院 一种模拟井下采煤巷道综采全过程的实验及教学系统
CN109919994A (zh) * 2019-01-08 2019-06-21 浙江大学 一种基于深度学习图像处理的采煤机滚筒自动调高系统
CN112633131A (zh) * 2020-12-18 2021-04-09 宁波长壁流体动力科技有限公司 一种基于深度学习视频识别的井下自动跟机方法
CN113503160A (zh) * 2021-06-28 2021-10-15 陈迪蕾 一种综采工作面关键设备能耗建模和协同优化控制方法
CN113589851A (zh) * 2021-07-30 2021-11-02 太原理工大学 一种采煤机滚筒自动调高的控制方法
CN113686251A (zh) * 2021-08-19 2021-11-23 山东科技大学 一种综采工作面设备上窜下滑偏移测量方法及系统
CN113685180A (zh) * 2021-08-18 2021-11-23 太原向明智控科技有限公司 一种采煤机采割曲线修正测量方法
CN113803068A (zh) * 2021-08-30 2021-12-17 国能神东煤炭集团有限责任公司 一种边角煤回收方法
CN114253308A (zh) * 2020-09-21 2022-03-29 陕西环保产业研究院有限公司 一种空间框架结构振动的主动控制方法和设备
CN114251092A (zh) * 2021-12-22 2022-03-29 太原理工大学 基于激光雷达的综采装备实时决策与控制方法
CN115233143A (zh) * 2022-07-29 2022-10-25 河北科技大学 等离子喷涂控制系统
CN117010845A (zh) * 2023-06-29 2023-11-07 天地科技股份有限公司北京技术研究分公司 一种煤矿采、运、储一体化协同管理方法和装置
CN118083455A (zh) * 2024-04-23 2024-05-28 西安华创马科智能控制系统有限公司 刮板输送机三维空间形态控制方法和装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182820B (zh) * 2015-08-25 2017-12-05 太原理工大学 一种煤矿综采工作面大型装备集中控制平台的实现方法
CN107305732A (zh) * 2016-04-20 2017-10-31 中煤张家口煤矿机械有限责任公司 一种煤矿井下输送设备智能监控系统
CN106194179A (zh) * 2016-07-11 2016-12-07 太原理工大学 一种煤矿井下综采工作面生产设备自动停机控制方法
CN106292488A (zh) * 2016-08-19 2017-01-04 广州日滨科技发展有限公司 具有无线监控功能的工作面运输系统及无线监控方法
CN106640168B (zh) * 2016-12-15 2018-12-04 日立楼宇技术(广州)有限公司 一种煤矿综采设备的控制方法、装置及煤矿综采设备
CN106986142B (zh) * 2017-01-23 2018-10-19 中国矿业大学 基于拉压力传感器综采面刮板输送机自动调直装置及方法
CN108343437B (zh) * 2018-02-11 2019-08-30 陕西陕煤黄陵矿业有限公司 一种高效率综采工作面设备启动方法
CN108415278B (zh) * 2018-03-05 2020-10-16 天地科技股份有限公司 井下综采工作面分布式决策控制系统及其架构
CN108490897A (zh) * 2018-03-14 2018-09-04 北京天地玛珂电液控制系统有限公司 一种综采工作面的自动控制系统
CN109613900B (zh) * 2018-12-26 2021-07-02 山东省田庄煤矿有限公司 一种刨煤作业综合监控系统及刨煤机作业综合监控中心
CN109441548B (zh) * 2019-01-03 2024-02-20 兖矿能源集团股份有限公司 智能综采设备
CN109826271B (zh) * 2019-01-16 2021-02-12 大连理工大学 一种基于ros的智能挖掘机数据显示平台
CN109826660B (zh) * 2019-01-18 2021-01-08 中国矿业大学 一种液压支架远程定位通讯错误支架的系统和方法
CN109856631B (zh) * 2019-02-27 2020-12-11 中国矿业大学 一种基于顶煤厚度变化量实时监测的智能化放煤方法
CN110043257A (zh) * 2019-06-05 2019-07-23 中国矿业大学(北京) 一种采煤机自动调头系统
CN110365944B (zh) * 2019-07-19 2020-12-15 精英数智科技股份有限公司 空顶作业的监控方法、装置、设备和存储介质
CN113685179A (zh) * 2020-05-19 2021-11-23 郑州煤机智能工作面科技有限公司 一种煤矿综采工作面自动化控制系统及其控制方法
CN111919597B (zh) * 2020-08-11 2021-08-13 农业农村部南京农业机械化研究所 一种实现秸秆大幅宽覆盖还田的分流导向均匀抛撒装置
CN111994594B (zh) * 2020-08-25 2022-11-15 精英数智科技股份有限公司 一种煤流运输系统运行速度的调整方法、系统及电子设备
CN112001982B (zh) * 2020-09-04 2024-03-19 陕西陕煤黄陵矿业有限公司 基于煤层数字化模型ct剖切的采煤机智能截割方法及系统
CN112431591B (zh) * 2020-10-20 2023-02-21 重庆市能源投资集团科技有限责任公司 三软两大倾斜中厚煤层综合机械化采煤自动控制系统
CN112668109B (zh) * 2020-11-30 2024-01-30 天地(榆林)开采工程技术有限公司 一种综采工作面截割路线模型建立方法
CN112610263B (zh) * 2020-12-07 2023-03-14 北京天玛智控科技股份有限公司 基于综采工作面的跟机控制方法、装置和电子设备
CN112832867B (zh) * 2020-12-31 2024-01-19 西安合智宇信息科技有限公司 一种融合开采数据及地质信息的开采视频建模方法
CN112686889B (zh) * 2021-01-28 2022-03-25 郑州煤矿机械集团股份有限公司 基于单目视觉自动标签的液压支架推进度检测方法及系统
CN113093693B (zh) * 2021-03-18 2022-04-12 北京天玛智控科技股份有限公司 一种面向采煤机运行状态的在线故障诊断方法
CN112968906B (zh) * 2021-03-25 2022-02-18 湖南大学 一种基于多元组的Modbus TCP异常通讯检测方法和系统
CN113206979B (zh) * 2021-04-08 2023-04-14 中铁物贸集团昆明有限公司 一种高速公路巡逻机器人
CN113128109B (zh) * 2021-04-08 2022-11-29 太原理工大学 一种面向智能化综采机器人生产系统的测试与评估方法
CN113076895B (zh) * 2021-04-09 2022-08-02 太原理工大学 一种基于红外计算机视觉的输送带纵向损伤振动感知方法
CN113569459A (zh) * 2021-06-08 2021-10-29 中国矿业大学 基于群体智能的液压支架性能退化定量评估方法及系统
CN113638738A (zh) * 2021-09-15 2021-11-12 北京道思克矿山装备技术有限公司 一种基于矿山智能化快速掘进系统的控制装置
CN114215520B (zh) * 2021-10-25 2023-10-24 北京天玛智控科技股份有限公司 煤矿工作面中的设备协同控制方法和装置
CN114046174B (zh) * 2021-11-11 2023-05-26 招商局重庆交通科研设计院有限公司 一种隧道施工期粉尘监测与分段降尘系统及方法
CN114265373A (zh) * 2021-11-22 2022-04-01 煤炭科学研究总院 综采面一体式操控台控制系统
CN114278291B (zh) * 2021-12-20 2024-05-28 晋能控股煤业集团有限公司 一种煤矿掘进机自动截割工艺
CN114925586B (zh) * 2022-04-15 2023-06-16 中煤科工集团重庆研究院有限公司 一种煤矿综掘工作面长压短抽控风除尘装备参数计算方法
CN115237082A (zh) * 2022-09-22 2022-10-25 太原向明智控科技有限公司 基于可编程的方式实现综采工作面规划开采的系统及方法
CN116424802B (zh) * 2023-01-19 2023-10-20 陕西朗浩传动技术有限公司 刮板输送机链条工况监测系统及监控方法
CN117967307B (zh) * 2024-04-01 2024-06-07 枣庄矿业集团新安煤业有限公司 一种用于远程控制采煤机旋转调采的数据处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727085A (zh) * 2009-11-24 2010-06-09 太原理工大学 煤矿井下工作面输送设备状态监测与故障诊断装置
US20110224835A1 (en) * 2009-06-03 2011-09-15 Schlumberger Technology Corporation Integrated flow assurance system
CN103306700A (zh) * 2013-05-15 2013-09-18 太原理工大学 一种煤矿综采工作面无人值守作业的控制方法
CN203965908U (zh) * 2014-06-30 2014-11-26 山西平阳广日机电有限公司 综采工作面集控设备
CN104184637A (zh) * 2014-08-29 2014-12-03 广州日滨科技发展有限公司 综采工作面数据传输系统及其数据传输方法
CN105182820A (zh) * 2015-08-25 2015-12-23 太原理工大学 一种煤矿综采工作面大型装备集中控制平台的实现方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087099A (en) * 1988-09-02 1992-02-11 Stolar, Inc. Long range multiple point wireless control and monitoring system
JP3135207B2 (ja) * 1995-12-07 2001-02-13 株式会社大林組 トンネル掘進機の施工管理システム
KR100620755B1 (ko) * 2004-12-23 2006-09-13 한국항공우주연구원 발사체 지상제어시스템
CN101418688B (zh) * 2007-10-26 2011-09-07 三一重型装备有限公司 智能型全自动联合采煤系统
DE102009026011A1 (de) * 2009-06-23 2010-12-30 Bucyrus Europe Gmbh Verfahren zur Bestimmung der Position oder Lage von Anlagekomponenten in Bergbau-Gewinnungsanlagen und Gewinnungsanlage
PL2803818T3 (pl) * 2013-05-13 2019-07-31 Caterpillar Global Mining Europe Gmbh Sposób sterowania wrębiarką
RU2681735C2 (ru) * 2014-03-18 2019-03-12 Тифенбах Контрол Системс Гмбх Крепь лавы подземной горной выработки
ZA201506069B (en) * 2014-08-28 2016-09-28 Joy Mm Delaware Inc Horizon monitoring for longwall system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110224835A1 (en) * 2009-06-03 2011-09-15 Schlumberger Technology Corporation Integrated flow assurance system
CN101727085A (zh) * 2009-11-24 2010-06-09 太原理工大学 煤矿井下工作面输送设备状态监测与故障诊断装置
CN103306700A (zh) * 2013-05-15 2013-09-18 太原理工大学 一种煤矿综采工作面无人值守作业的控制方法
CN203965908U (zh) * 2014-06-30 2014-11-26 山西平阳广日机电有限公司 综采工作面集控设备
CN104184637A (zh) * 2014-08-29 2014-12-03 广州日滨科技发展有限公司 综采工作面数据传输系统及其数据传输方法
CN105182820A (zh) * 2015-08-25 2015-12-23 太原理工大学 一种煤矿综采工作面大型装备集中控制平台的实现方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108252713A (zh) * 2018-03-29 2018-07-06 西安煤矿机械有限公司 采煤机自动截割模式下的多段运行速度调节装置及方法
CN109448484A (zh) * 2018-11-10 2019-03-08 山西能源学院 一种模拟井下采煤巷道综采全过程的实验及教学系统
CN109448484B (zh) * 2018-11-10 2024-04-26 山西能源学院 一种模拟井下采煤巷道综采全过程的实验及教学系统
CN109919994A (zh) * 2019-01-08 2019-06-21 浙江大学 一种基于深度学习图像处理的采煤机滚筒自动调高系统
CN114253308B (zh) * 2020-09-21 2022-08-30 陕西环保产业研究院有限公司 一种空间框架结构振动的主动控制方法和设备
CN114253308A (zh) * 2020-09-21 2022-03-29 陕西环保产业研究院有限公司 一种空间框架结构振动的主动控制方法和设备
CN112633131A (zh) * 2020-12-18 2021-04-09 宁波长壁流体动力科技有限公司 一种基于深度学习视频识别的井下自动跟机方法
CN112633131B (zh) * 2020-12-18 2022-09-13 宁波长壁流体动力科技有限公司 一种基于深度学习视频识别的井下自动跟机方法
CN113503160A (zh) * 2021-06-28 2021-10-15 陈迪蕾 一种综采工作面关键设备能耗建模和协同优化控制方法
CN113503160B (zh) * 2021-06-28 2024-01-23 河南理工大学 一种综采工作面关键设备能耗建模和协同优化控制方法
CN113589851B (zh) * 2021-07-30 2023-09-01 太原理工大学 一种采煤机滚筒自动调高的控制方法
CN113589851A (zh) * 2021-07-30 2021-11-02 太原理工大学 一种采煤机滚筒自动调高的控制方法
CN113685180A (zh) * 2021-08-18 2021-11-23 太原向明智控科技有限公司 一种采煤机采割曲线修正测量方法
CN113686251A (zh) * 2021-08-19 2021-11-23 山东科技大学 一种综采工作面设备上窜下滑偏移测量方法及系统
CN113803068A (zh) * 2021-08-30 2021-12-17 国能神东煤炭集团有限责任公司 一种边角煤回收方法
CN113803068B (zh) * 2021-08-30 2024-01-23 国能神东煤炭集团有限责任公司 一种边角煤回收方法
CN114251092A (zh) * 2021-12-22 2022-03-29 太原理工大学 基于激光雷达的综采装备实时决策与控制方法
CN114251092B (zh) * 2021-12-22 2023-08-25 太原理工大学 基于激光雷达的综采装备实时决策与控制方法
CN115233143A (zh) * 2022-07-29 2022-10-25 河北科技大学 等离子喷涂控制系统
CN117010845A (zh) * 2023-06-29 2023-11-07 天地科技股份有限公司北京技术研究分公司 一种煤矿采、运、储一体化协同管理方法和装置
CN117010845B (zh) * 2023-06-29 2024-04-05 天地科技股份有限公司北京技术研究分公司 一种煤矿采、运、储一体化协同管理方法和装置
CN118083455A (zh) * 2024-04-23 2024-05-28 西安华创马科智能控制系统有限公司 刮板输送机三维空间形态控制方法和装置

Also Published As

Publication number Publication date
CN105182820A (zh) 2015-12-23
US20190003304A1 (en) 2019-01-03
CN105182820B (zh) 2017-12-05
US10378352B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2017032121A1 (zh) 一种煤矿综采工作面大型装备集中控制平台的实现方法
WO2017012285A1 (zh) 煤矿井下综采工作面液压支架集中控制平台的实现方法
CN107849919B (zh) 用于监测长壁矿井顶板稳定性的系统和方法
US10378356B2 (en) Horizon monitoring for longwall system
AU2019441818B2 (en) Wellbore inspection system and method for ultra-deep vertical shaft
CN103204351B (zh) 一种带式输送机自动纠偏装置及其控制方法
CN103306700B (zh) 一种煤矿综采工作面无人值守作业的控制方法
CN204624588U (zh) 一种输送机皮带自动纠偏系统
CN103543716A (zh) 综采工作面设备的远程控制系统及方法
CN205309441U (zh) 一种飞锯机自动控制系统
CN104418040A (zh) 一种煤矿胶带运输监控系统及方法
CN106194179A (zh) 一种煤矿井下综采工作面生产设备自动停机控制方法
RU2718888C2 (ru) Системы и способы для мониторинга высоты выемки и объема материала, вынимаемого для горной машины
CN108233823A (zh) 一种耦合控制结构下多电机伺服驱动系统的容错比例协调控制方法
CN103170502B (zh) 热轧粗矫直机带钢对中控制方法
CN117390735A (zh) 基于数据清洗的可视化钢箱梁顶推施工监测方法及系统
CN110359960A (zh) 一种用于煤矿转载机推移的安全报警方法及设备
CN111908063B (zh) 一种基于刮板机变频器及ai算法的断链判断方法
CN104891132A (zh) 一种输送机皮带免维护系统
CN203145832U (zh) 用于凿岩钻具的防偏控制系统
CN109613900B (zh) 一种刨煤作业综合监控系统及刨煤机作业综合监控中心
CN108643902B (zh) 一种大采高智能化工作面端头进刀方法
CN113865907B (zh) 一种滚筒采煤机健康监测系统及方法
CN113759764A (zh) 一种切废联锁智能校正的控制系统及方法
CN203199535U (zh) 一种带式输送机自动纠偏装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838381

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16838381

Country of ref document: EP

Kind code of ref document: A1