WO2017012285A1 - 煤矿井下综采工作面液压支架集中控制平台的实现方法 - Google Patents

煤矿井下综采工作面液压支架集中控制平台的实现方法 Download PDF

Info

Publication number
WO2017012285A1
WO2017012285A1 PCT/CN2016/000368 CN2016000368W WO2017012285A1 WO 2017012285 A1 WO2017012285 A1 WO 2017012285A1 CN 2016000368 W CN2016000368 W CN 2016000368W WO 2017012285 A1 WO2017012285 A1 WO 2017012285A1
Authority
WO
WIPO (PCT)
Prior art keywords
shearer
control system
electro
hydraulic
centralized control
Prior art date
Application number
PCT/CN2016/000368
Other languages
English (en)
French (fr)
Inventor
田慕琴
许春雨
宋建成
柴文
赵龙
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510425692.9A external-priority patent/CN105065050B/zh
Priority claimed from CN201510527484.XA external-priority patent/CN105182820B/zh
Application filed by 太原理工大学 filed Critical 太原理工大学
Publication of WO2017012285A1 publication Critical patent/WO2017012285A1/zh
Priority to US15/869,944 priority Critical patent/US10655467B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/12Control, e.g. using remote control
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/12Control, e.g. using remote control
    • E21D23/14Effecting automatic sequential movement of supports, e.g. one behind the other
    • E21D23/142Measuring the advance of support units with respect to external points of reference
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/12Control, e.g. using remote control
    • E21D23/14Effecting automatic sequential movement of supports, e.g. one behind the other
    • E21D23/144Measuring the advance of support units with respect to internal points of reference, e.g. with respect to neighboring support units or extension of a cylinder
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D23/00Mine roof supports for step- by- step movement, e.g. in combination with provisions for shifting of conveyors, mining machines, or guides therefor
    • E21D23/12Control, e.g. using remote control
    • E21D23/14Effecting automatic sequential movement of supports, e.g. one behind the other
    • E21D23/148Wireless transmission of signals or commands
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/13Plc programming
    • G05B2219/13004Programming the plc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/15Plc structure of the system
    • G05B2219/15038Internet, tcp-ip, web server see under S05B219-40
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a method for realizing a centralized control platform, in particular to a method for realizing a centralized control platform for a hydraulic support of a coal mine underground fully mechanized mining face.
  • the level of automation in a country's coal production process can directly reflect the status of its industrial sector in the international arena, and can measure the industrial strength of a nation.
  • the international investment in mining technology has invested a lot.
  • the object of the present invention is to provide an implementation method for a centralized control platform for a hydraulic support of a fully mechanized coal mining face in a coal mine on the basis of the existing coal mining machine technology, so as to solve the centralized control problem of the hydraulic support of the unattended working face in the underground coal mine.
  • the invention selects Siemens PLC S7-300, C8051F020 single-chip microcomputer, PowerBuilder tool, SQLServer database and multi-protocol communication platform (including serial port MODBUS protocol, TCP/IP MODBUS protocol and multiple protocol conversion) Interface)
  • the equipment constitutes a centralized control platform, with PowerBuilder tool as the front-end development platform.
  • Siemens PLC S7-300 and C8051F020 single-chip microcomputers are real-time control platforms to realize centralized control of hydraulic support for coal mine underground mining face; PLC and electro-hydraulic control system connection, PLC
  • the communication protocol with the electro-hydraulic control system is TCP/IP MODBUS protocol, the PLC is the client, and the electro-hydraulic control system is the server.
  • the infrared transmitting device is installed on the shearer, and the receiving device is embedded in the bracket controller of the electro-hydraulic control system.
  • the shearer is moved to which bracket, the corresponding bracket receives the infrared information at the end of the electro-hydraulic control system.
  • the bracket controller When the controller inspects the bracket controller, the bracket controller will position information of the shearer, the front column pressure, the rear column pressure, the shifting stroke, and the first state quantity (the first state quantity includes: whether there is an emergency stop signal, presence or absence Whether the blocking signal, the presence or absence of the infrared signal, whether the column pressure is normal, whether the displacement is in place, and whether the communication between the devices is normal or not) is collected together and sent to the explosion-proof system of the electro-hydraulic control system. computer.
  • the first state quantity includes: whether there is an emergency stop signal, presence or absence Whether the blocking signal, the presence or absence of the infrared signal, whether the column pressure is normal, whether the displacement is in place, and whether the communication between the devices is normal or not
  • the Siemens PLC S7-300 of the centralized control platform transmits the position of the shearer to the explosion-proof computer of the electro-hydraulic control system in real time through TCP/IP communication; the position of the shearer is calculated by counting the number of chain links of the shearer get;
  • the electro-hydraulic control system comprises a three-layer network structure of a bracket controller, a terminal centralized control system and a channel monitoring system, wherein the channel monitoring system is developed on the PowerBuilder front-end development platform, and the terminal centralized control system and the bracket controller are provided by C8051F020.
  • MCU development the three-layer network structure is connected by MODBUS communication protocol.
  • the channel monitoring system uses PowerBuilder external object OLE to reference Winsock to realize network communication based on TCP/IP protocol. In the communication process, there is an ocx_error event script to monitor the communication failure. Once there is a disconnection fault, it will be reconnected immediately to ensure data. Communication is stable and reliable:
  • Ole_2.object.protocol 0//winsock communication protocol is set to TCP protocol
  • Ole_2.object.localport 502//winsock communication port number of this machine
  • the shearer When coal mining starts at the fully mechanized mining face, the shearer is located at one end of the working face. At this time, the position of the shearer is the initial position.
  • the Siemens PLC S7-300 sends the start command to the electro-hydraulic control system first. After the preparation of the electro-hydraulic control system is completed, the Siemens PLC S7-300 sends the position signal of the shearer and the signal of the process section to the electro-hydraulic control system, and starts the shearer.
  • the communication protocol between Siemens PLC S7-300 and the electro-hydraulic control system is TCP/IP MODBUS protocol
  • Siemens PLC S7-300 is the client
  • the electro-hydraulic control system is the server.
  • the electro-hydraulic control system is based on the infrared position signal of the shearer and the position detection signal of the shearer encoder, and issues a centralized control command to enable the relevant hydraulic support to automatically track the shearer. Actions.
  • the centralized control platform of the present invention completes a centralized control function, and the bracket for tracking the action of the shearer involves 30 hydraulic supports, wherein: 1 coal mining machine in position hydraulic support, hydraulic front coal working machine 14 brackets, 15 hydraulic supports behind the shearer;
  • the explosion-proof computer of the electro-hydraulic control system compares the position of the shearer from the inspection of the bracket controller with the position information of the shearer from the explosion-proof computer in the tracking monitoring system, if the two are the same, then send Normal information, the centralized control platform continues to implement the next control; if there is a deviation, the alarm message is sent, so that the centralized control platform stops issuing the centralized control command.
  • Siemens PLC S7-300 sends the current process number and shearer to the electro-hydraulic control system every 0.5s Encoder position detection signal, the electro-hydraulic control system responds to the support of the shearer in position, the first 14 brackets of the shearer and the 15 pillars of the shearer, the total column pressure of the 30 brackets, the rear column pressure, the rear column pressure.
  • the change schedule, the hydraulic bracket is normal or faulty, the bracket controller is normal or faulty, the terminal controller is normal or faulty, the communication is normal or faulty, for the centralized control platform to make a judgment on whether to continue the centralized control.
  • the electro-hydraulic control system controls the action of the hydraulic support; the electro-hydraulic control system determines whether the physical quantity involved in the action reaches the limit parameter according to the process segment number sent by the centralized control platform and the position information of the shearer, for example, determining whether the column pressure is The limit value is reached; whether the change stroke exceeds the given action limit time is still not in place; whether the control information and the return information form a closed loop is judged; whether the communication is smooth is determined; so that the corresponding action is stopped at the first time to prevent an accident.
  • the centralized control platform sends a write request for the process segment number and the shearer position to the electro-hydraulic control system, and simultaneously sends a read request for the real-time acquisition of the electro-hydraulic control system signal to the electro-hydraulic control system, and the electro-hydraulic control system is centrally controlled. After the platform's request, first determine the request type, and then execute the corresponding process.
  • the electro-hydraulic control system After receiving the read request from the centralized control platform, the electro-hydraulic control system sends the data in the read request to the centralized control platform in the form of TCP/IP MODBUS protocol, that is, firstly sends back the data.
  • the centralized control platform shall analyze and judge, and stop the coal mining machine operation in time when there is a fault, and alarm at the same time.
  • the electro-hydraulic control system After receiving the control command of the centralized control platform, the electro-hydraulic control system sends the information to the end-collection control system by the explosion-proof computer of the electro-hydraulic control system, and then the end of the terminal control system. The controller is then sent to the bracket controller of the bracket control system to implement specific control; the other way is to directly decompose the information from the explosion-proof computer of the electro-hydraulic control system to the bracket controller of the bracket control system to implement specific control. .
  • the explosion-proof computer of the electro-hydraulic control system sends the control command to the terminal controller of the terminal centralized control system through the serial port MODBUS protocol, and the end controller realizes the automatic chasing according to the infrared position signal of the shearer and the coal mining process segment. Machine pull.
  • the control process of the automatic chasing machine puller includes three stages of inspection, judgment and control.
  • the position of the shearer is obtained through one inspection, and the direction of the shearer on the working surface is judged by the position of the two shearers;
  • the inspection is that the terminal controller of the terminal centralized control system accesses each of the bracket controllers once every 0.5 seconds in a C8051F020 serial multi-level communication working mode, and collects all the information of the bracket controller into the end controller;
  • the determining is that the end controller determines the position of the shearer by the support controller according to the information of the collected bracket controller and the infrared position signal of the shearer and the coal mining process section sent by the explosion-proof computer through the serial port.
  • the position of the shearer sent by the explosion-proof computer is the same. If the position of the shearer from the inspection of the bracket controller is inconsistent with the position of the shearer from the explosion-proof computer, the alarm will be stopped and the bracket controller will be inspected.
  • the next control phase is carried out; that is, according to the coal mining process, a command is sent to the relevant support controller around the shearer to control the corresponding hydraulic support.
  • each related bracket is down frame, bottoming, pull frame, lifting frame, and the order of these actions can not be changed. After the down frame action is performed, the bottom can be lifted, otherwise it is easy to hit the top plate and damage the hydraulic support. .
  • the pulling action is carried out, and the lifting operation can be performed after the pulling frame is completed; all the related brackets can realize the automatic chasing and pushing function, and the centralized control pushing process includes the middle section pushing, bending section pushing and cutting triangle coal. Push.
  • the explosion-proof computer of the electro-hydraulic control system directly inspects and judges, and according to the infrared position signal of the coal mining machine and the coal mining process section, the position signal of the shearer is detected by real-time inspection to determine the coal mining machine at the working surface.
  • the control command is sent to the bracket controller that should be operated around the coal mining machine through the serial port MODBUS protocol, and the corresponding hydraulic bracket is controlled to perform the chasing operation.
  • the action flow of each related bracket is the same as above.
  • the invention is applied to underground coal mine safety production and has practicality.
  • the invention has the advantages that the utility model has the advantages of high automation, can meet the control function of the unmanned or small person on duty, and can reliably complete various control functions based on the operation of the adjacent frame; the automatic chasing machine function with centralized control; Complete video-based remote adjustment control function; can transmit various information to the ground monitoring center in real time; can carry out real-time monitoring of various faults during coal mining; realize automation of coal mine production, fill China's unattended production A blank in coal production.
  • FIG. 1 is a flow chart of a control command for a centralized control platform of a hydraulic support electro-hydraulic control system according to Embodiment 1 of the present invention.
  • FIG. 2 is a structural diagram of an automatic chasing machine control structure of an electro-hydraulic control system according to Embodiment 2 of the present invention.
  • FIG. 3 is a logic block diagram of an automatic chasing pull control of an electro-hydraulic control system according to Embodiment 2 of the present invention.
  • Embodiment 1 The method of the present invention adopts PowerBuilder tool as a front-end development platform, and Siemens PLC S7-300 and C8051F020 single-chip microcomputers are real-time control platforms to realize centralized control of hydraulic support of coal mine underground fully mechanized mining face.
  • Figure 1 shows the control flow chart of the hydraulic support tracking shearer to implement the corresponding action.
  • the specific implementation method is as follows:
  • the centralized control platform sends the process segment number and the location of the shearer to the centralized control computer of the electro-hydraulic control system through the TCP/IP protocol, and collects the operational data of the electro-hydraulic control system in real time.
  • the centralized control platform is the client, and the electro-hydraulic control system is the server.
  • the party A winsock communication protocol should be set and set to wait for the call. status.
  • the error event, the data arrival event, the receiving connection request event, and the sending completion event program are compiled.
  • the electro-hydraulic control system shall decompose the commands such as startup and process segments and send them to the corresponding controlled system to realize the corresponding actions.
  • the electro-hydraulic control system returns the operational data to the platform host for centralized control. The platform judges the error flag, and the fault is sent in real time to stop the operation of the electro-hydraulic control system and alarm.
  • Remote parameter setting and query is to set the working parameters and limit parameters of the hydraulic support of the working face when the centralized control platform is running.
  • the real-time monitoring interface of each system provides the working parameters required for display, and on the other hand, through the communication network. It is transmitted to the electro-hydraulic control system, and then transmitted to the bracket controller by the end controller of the electro-hydraulic control system as the control basis and constraint parameters when the bracket controller works.
  • Working parameters and limit parameters include the number of electro-hydraulic supports on the working face, the maximum pressure of the column, the pressure of the column in place, the maximum stroke of the push, the number of pushes in the group, the longest time to push, the longest time to lift the column, the longest time to drop the column, The longest time for pulling the frame, the longest time for stretching the guard, the longest time for the protection, the longest time for stretching the telescopic beam, and the longest time for the telescopic beam.
  • the remotely set parameters are first passed to the end controller and passed by the end controller to each of the rack controllers on the work surface.
  • the interface title is “Control Data Transfer System”. There are two parts, one part is “Transfer Parameter Input Area”, the other part is “Operation Command Input Area”, and the two areas are respectively used by groupbox control. Box up. This function implements the transfer parameters.
  • This module is mainly for the remote control of the hydraulic support by the centralized control platform.
  • the remote control function is to realize the function of sending action control commands to a certain bracket of the working face by clicking the analog soft keyboard on the centralized control platform.
  • the 14 sets of actions of the remote control hydraulic support can be realized on the centralized control platform, namely, the ascending front column, the ascending rear column, the descending front column, the descending rear column, the single frame pushing, raising the bottom, pulling the frame, extending the side protection, and receiving the side protection.
  • the control command is sent to the end controller first, and the end controller is sent to the bracket controller. After the command is sent, the command starts. Waiting for the return information of the receiving end controller, if the return information is not received within the specified time, the sending failure information is displayed.
  • the interface title is “centralized control platform control data transmission system”. There are two parts, one part is “transfer parameter input area”, and the other part is “operation command input area”. The two areas are respectively framed by groupbox. . This function implements the transfer operation command.
  • the icons of the control actions are arranged according to the keyboard of the controller, and two drop-down list controls (dropdownlistbox) are set at the same time.
  • two drop-down list controls dropdownlistbox
  • One drop-down list control is used to select the number of the motion bracket, and the other is used to select the number of the last motion bracket. After selecting the type of bracket and action to be operated, click the “send” button to implement the function of sending motion.
  • the centralized control platform In order to monitor the running state of the underground working face in real time, the centralized control platform periodically accesses the end controller to obtain the operating parameters and working state of each bracket and the bracket controller itself.
  • the centralized control platform sends a parameter inspection command to the end controller of the electro-hydraulic control system every 1 s, and then waits for the data information sent back by the end controller, and the communication with the end controller adopts the CRC check, if If the returned information is not received within the specified time, or the returned information is incorrect, the data reception failure message is displayed.
  • the simulation monitoring interface vividly displays the number of underground working face brackets, the support column pressure, the shift stroke, the shearer position, the emergency stop, the locked working surface production status in the form of graphs and curves, and with the movement of the mouse It can quickly display various physical quantities of the bracket at the mouse.
  • the centralized control computer receives information of a single hydraulic support from the end controller every 1 s, including the bracket number, front column pressure, rear column pressure, push displacement and flag position. Each of the flags represents different information, including emergency. Stop, lock, shearer position, inter-rack communication status and fault information.
  • brackets In the open event of this interface, the three rows of brackets should be placed first. Each row has 200 Richtextedit controls, each representing a bracket, and then these controls are evenly placed on the display according to the actual number of brackets; Secondly, the timer (1s) should be started. The timer (1s) should be restarted in the timing to event every time the timing is reached, and the parameter inspection command is issued to the terminal controller.
  • the first line should indicate the position of the shearer, so there must be two pictures of the shearer on the opposite side of the front and rear rollers. At each instant, only one shearer representing the direction of travel appears. It is displayed under the bracket corresponding to the shearer returned from the inspection, and the other shearer picture is invisible.
  • the second line is to indicate the rack number of the bracket controller that was pressed by the emergency stop, and the Richtextedit control is turned red.
  • the third line is to indicate the frame number of the bracket controller that is locked and is indicated by flashing this Richtextedit control.
  • bracket picture indicating the telescopic expansion, the bracket information of the shearer in place, the bracket overview, and the bracket information of the mouse click.
  • the information of the stand will be displayed in the information area. If you click on any Richtextedit control that represents the stand, a window displaying real-time data will pop up, which will curve.
  • Forms, tables, and graphs show all physical quantities of the rack, including analog and state quantities.
  • This module is to solve the online upgrade of the program of the terminal controller and the bracket controller of the electro-hydraulic control system.
  • the centralized control computer downloads the new program code to the end controller.
  • the terminal controller After receiving the program code to be upgraded, the terminal controller first judges whether it is the program of itself or the controller of the bracket through the synchronization header. If it is the upgrade program of its own, the program received is written online to FLASH to realize the new one. The program replaces the upgrade process of the old program; if it is the program of the stand controller, the end controller downloads to each stand controller through the bus to complete the online upgrade of the entire work surface end controller and the stand controller program.
  • This interface first sets the conversion data button (commandbutton) control to convert the compiled program file (txt) into the data window, and then send it in blocks.
  • the sent data has the first address and data length of the flash. , data and other information.
  • the address frame is sent first, and the data frame is sent after receiving the response from the terminal controller, and the verification mode is CRC test.
  • the shearer If the shearer is operated to the 54th position, 6 sets of advances need to be carried out to receive the first-level mutual help action, that is, the 48th set performs the first-level protective action; the front and rear drums of the shearer need to be sprayed to reduce dust, so The 50th and 58th perform the spraying action; 8 brackets at the back of the shearer center position need to perform a small cycle action, that is, the 62nd frame needs to be lowered, raised, pulled, raised, and extended. Action; 12 brackets behind the center position of the shearer need to be pushed, that is, the 66th performs the pushing action.
  • the curved section needs to be pushed out by 10 brackets; when the shearer is operated to the 8th frame, 6 sets of the first need to perform the first-level mutual assisting action, that is, the second execution is performed.
  • the 16th need to carry out the five columns of lowering the column, lifting the bottom, pulling the frame, lifting the column, and stretching each other.
  • 12 brackets need to be pushed, that is, the 20th performs the bending section pushing, only 7/10, and before that, 23, 22, 21 It has been pushed 10/10, 9/10, 8/10 respectively.
  • the coal mining machine runs the bottom coal operation to the tail of the machine. During this process, the brackets at the front and rear rollers are sprayed.
  • the shearer runs the bottom coal operation to the nose, during which the brackets at the front and rear rollers are sprayed.
  • the shearer is operated to the 16th frame, 6 sets of advances need to be carried out to receive the first-level mutual help action, that is, the 22nd set performs the first-level protective action; in the front and rear of the shearer, the spray is required to reduce dust, so The 20th and 12th perform spray operations; 8 brackets at the rear of the shearer center position need to perform small cycle action, that is, the 8th frame needs to be lowered, raised, pulled, raised, and extended. action.
  • the fifth process section - 30 cuts of left-handed triangular coal (left row) ⁇ 6 racks:
  • the shearer returns to the drum and starts to cut the triangle coal until the machine casts and cuts through the coal wall, and the brackets at the front and rear rollers spray.
  • the coal mining machine runs the bottom coal operation to the tail of the machine. During this process, the brackets at the front and rear rollers are sprayed.
  • the shearer runs the bottom coal operation to the nose, during which the brackets at the front and rear rollers are sprayed.
  • the 8-14 process section is similar to the 1-8 process section.
  • Embodiment 2 As shown in FIG. 2 and FIG. 3, the centralized control platform of this embodiment includes a high-speed embedded computer UN0-3072A. High-speed data acquisition card PCI-1716, PowerBuilder front-end development platform, SQLServer database, Modbus TCP/IP communication protocol and Industrial Ethernet Ethernet.
  • the centralized control platform is based on the large-scale equipment of the existing coal mining underground coal mining face.
  • the large equipment includes a shearer system, a hydraulic support system, a work surface transportation system, a pump station system, a power supply system, and a video monitoring system.
  • the server uses the high-speed embedded computer UNO-3072A for human-computer interaction, realizes the status display and real-time control of the large-scale equipment working conditions of the fully mechanized mining face, and realizes the unattended collaborative work of each device through the PowerBuilder front-end development platform;
  • the industrial computer includes the high-speed embedded computer UNO-3072A and the high-speed data acquisition card PCI-1716A.
  • the high-speed data acquisition card PCI-1716A collects 16 analog and 16 digital signals, and outputs 2 analog and 16 digital control signals.
  • the centralized control platform controls the coal mining machine system.
  • the industrial control machine first collects the coal mining machine monitoring information through the acquisition card, and then compares the shearer monitoring information with the set value. If the comparison result does not meet the set value, the alarm is The fault information is displayed; if the comparison result satisfies the working condition, the equipment is sequentially started in the order of the reverse coal flow of the belt, the crusher, the loader, the scraper conveyor and the shearer.
  • the monitoring information of the shearer includes cutting head vibration, current of 5 motors, temperature, temperature of the gearbox, temperature of the pump box, oil temperature, oil level, oil pressure, inverter input/output current, voltage, frequency, Power, shearer operating speed, running direction, flow rate and pressure of each part of cooling water, flow rate of left and right external spray, drum height, shearer inclination;
  • the drum height is obtained by a rotary encoder to obtain the drum angle, and the drum height is obtained, and the drum height can also be obtained by using the cylinder stroke position sensor, and the two are mutually verified; the shearer inclination is obtained by using an electronic inclinometer.
  • the automatic control of the height of the shearer drum includes:
  • the height adjustment rocker of the shearer height adjustment mechanism can be regarded as the rigid body rotating around the fixed point.
  • the height adjustment cylinder can be equivalent to the damping hydraulic spring----the mass vibration system, which is expressed as follows:
  • the external moments for the O point are:
  • Resistance torque R a sin ⁇ a t ⁇ Lcos ⁇ 1 ; R b sin ⁇ b t ⁇ Lsin ⁇ 1 ;
  • the dynamic torque of the hydraulic oil acting on the piston (determined by the electromagnetic current of the servo valve);
  • the centrifugal moment generated by the eccentric mass of the drum is me ⁇ 2 sin ⁇ t ⁇ Lcos ⁇ 1 ;me ⁇ 2 cos ⁇ t ⁇ Lsin ⁇ 1 ;
  • a 3 K f ⁇ lsin ⁇ 2 .
  • the sampling period is T
  • Q is a semi-positive definite matrix
  • Q e and H are positive definite matrices
  • Solution of formula (12) to the right of a second, three are utilized from the start to the current time k feedforward compensation predicted target information and the interference information M R next step.
  • the height memory track of the shearer drum is the target trajectory H(t).
  • the centralized control platform controls the working surface transportation system by first collecting the monitoring information of the working surface transportation system, and then comparing and comparing the monitoring information of the working surface transportation system with the set value. If the set value is not met, the alarm is displayed and the fault information is displayed;
  • the monitoring information of the working surface transportation system includes the current of the scraper conveyor motor, the winding temperature, the oil temperature of the reduction gearbox, the oil level, the shaft temperature, the pressure and flow of the cooling water, the cylinder pressure, the motor current and temperature of the belt conveyor, and the belt Coal, smoke, longitudinal tear, broken belt, slip and tension failure.
  • the centralized control platform controls the pump station system by first collecting the monitoring information of the emulsion pump, and then comparing the monitoring information of the emulsion pump with the set value. If the set value is not met, the alarm is displayed and the fault information is displayed;
  • the monitoring information of the emulsion pump includes water supply amount, oil supply amount, oil temperature, oil level, inlet pressure, outlet pressure, liquid level and concentration;
  • the centralized control platform controls the power supply system by first collecting the monitoring information of the primary and secondary sides of the mobile substation and the leakage, overcurrent, short circuit, overtemperature and phase failure of the primary and secondary sides, and then moving the substation.
  • the monitoring information of the primary side and the secondary side and the leakage, overcurrent, short circuit, over temperature and phase failure of the primary side and the secondary side are compared with the set value, and if the set value is not met, the alarm is displayed and the fault information is displayed;
  • the monitoring information of the primary side of the mobile substation has A/B/C phase current, high voltage voltage, leakage current and power frequency.
  • the monitoring information of the secondary side of the mobile substation has low voltage, current and insulation resistance.
  • the shearer Before the shearer starts, it should be located at one end of the working face, and the position of the shearer at this time is set to zero, that is, the initial position.
  • the shearer keeps memorizing the number of links of the scraper conveyor that is walking during the operation. The number of links determines the position of the shearer, at which bracket, and also the position of the shearer detected by the infrared sensor in the hydraulic support system. If the two are consistent, the motion of the corresponding hydraulic support is automatically controlled.
  • the centralized control platform automatically judges the coal mining process section according to the position and running direction of the shearer, and issues a centralized control command, so that the corresponding hydraulic support automatically tracks the shearer to implement the corresponding action.
  • the fully mechanized mining face is divided into 14
  • the process section covers the middle section, the curved section and the whole process of cutting the triangular coal at both ends.
  • the number of brackets is also different, then the number of brackets in the middle section, the curved section and the triangular coal position at both ends Also different;
  • the centralized control platform of the invention can receive the control parameters maintained by the hydraulic support system (including the number of working face supports, the action limit time, the maximum pressure of the column, the longest stroke of the moving frame, the length of the shearer), and is automatically calculated to be bent at both ends.
  • the beginning and end of the segment can automatically adapt to the automatic control of the hydraulic support of the fully mechanized mining face of different lengths;
  • the centralized control platform tracks the movement of the shearer to be the support of the shearer in place, the first 14 supports of the shearer and the 15 hydraulic supports of the 15 supports behind the shearer to realize automatic chasing.
  • control of the present invention also includes the following:
  • the industrial control machine When the industrial control machine starts the coal mining work, it first collects the working status information of each equipment, and sends an inquiry signal to each equipment. After receiving the inquiry signal, each equipment responds to the industrial control information indicating the status of the equipment. Machine, the industrial computer judges whether they can start normal operation, and gives the start signal if the condition is satisfied;
  • the centralized control platform sends the centralized control command to the end controller of the electro-hydraulic automatic control system, and the end controller controls the bracket controller to perform specific actions, if the hydraulic bracket electro-hydraulic is detected
  • the other end controller of the electro-hydraulic control system will be started immediately.
  • the two end controllers are responsible for interrupting the fault and the controllers on both sides of the interrupt point are normally controlled to ensure the coal production.
  • the centralized control platform automatically adjusts the operating speed of the working surface transportation system equipment according to the working condition of the shearer to achieve maximum power saving
  • the centralized control platform determines that the inlet pressure and outlet pressure of the emulsion pump are only greater than The backwashing filter is automatically activated at 1.1Mpa to ensure the normal operation of the emulsion pump, thus ensuring the continuity of coal production.
  • the industrial computer controls the automatic tension of the scraper conveyor chain according to the cylinder pressure, the current of the scraper conveyor motor and the position of the shearer, and the scraper conveyor chain is automatically tensioned.
  • the device is automatically controlled by multi-variable, and combined with the parameters such as cylinder pressure, scraper conveyor running state (running current) and coal mining position, and then controlled;
  • the industrial computer automatically controls the camera in the video surveillance system according to the location of the coal mining machine. It can not only collect effective video surveillance information, but also save energy and reduce the amount of massive video surveillance information. Transfer.
  • Control layer high-speed embedded computer UNO-3072A and each subsystem's high-speed embedded computer UNO-3072A realize network communication based on TCP/IP protocol.
  • Control layer high-speed industrial computer uses PowerBuilder external object OLE to refer to Winsock to realize network communication based on TCP/IP protocol.
  • the control layer high-speed industrial computer is used as the client or the client. The following statement must be added to the Open event of the PowerBuilder front-end development software window. :
  • Ole_1.object.remotehost “219.226.96.151”//the ip address of the other party;
  • Ole_1.object.remoteport 502//winsock communication port number of the other party to be contacted;
  • Ole_1.object.connect()// makes a connection request
  • the control layer high-speed industrial computer patrols all systems once every 500ms, and then gives the control amount according to the inspection result.
  • each system acts as Party A or server, and has an ocx_error event script to monitor the communication with the centralized control platform. Once there is a disconnected fault, it will be reconnected immediately to ensure data communication. Stable and reliable:
  • Ole_1.object.localport 502//winsock communication port number of this machine
  • the RBF neural network structure has three layers, an input layer, an output layer, and an implicit layer;
  • the hidden layer uses a Gaussian function:
  • the parameters for the RBF neural network include the output unit weight ⁇ i , the center of the hidden unit x i , and the function width ⁇ .
  • the training of the weight of the output unit of the invention is directly calculated by the least squares method, and the K-means clustering is adopted for the selection of the latter two parameters, and the samples are grouped into the M class, and the class center is used as the center of the RBF, and then the function width is determined.
  • the energy characteristic value of the 20 frequency bands of the shearing vibration signal of the coal mining machine, the energy characteristic value of the 8 frequency bands of the oil pressure signal and the energy characteristic values of the 6 frequency bands of the drum motor current signal are taken as the input of the RBF neural network.
  • the samples are clustered to find the center of the basis function. From these signals, the current coal rock condition can be judged.
  • the corresponding feature vectors are clustered by clustering Class, that is, the clustering result 7 of the above coal rock sample is taken as the number of hidden layer units, and the corresponding feature vector is taken as the center xi of the corresponding hidden unit, and the outputs are respectively 0, 1, 2, 3, 4, 5, 6 classification predicts the above seven states, and obtains 34 input, 1 output and 7 implicit unit RBF neural networks as above, as a coal rock interface recognition model, where x1, x2, ..., x20 are vibration signals through wavelet The signal feature quantity extracted after packet analysis, x21, x2,..., x26 It is the characteristic quantity of the signal extracted by the oil wave signal after wavelet packet analysis.
  • x27, x2, ..., x34 are the signal characteristic quantities extracted by the wavelet motor current signal after wavelet packet analysis, ⁇ 1, ⁇ 2, ..., ⁇ 7 is the RBF neural network.
  • the memory trajectory is generated under the premise that the coal seam conditions along the coal seam in the same coal mining area can be considered to be the same, but if the coal seam is thick or special, the curve of the coal rock boundary will change during the cutting process.
  • the memory track may be biased. Therefore, the present invention continuously corrects the tracking curve based on various information on the basis of memory cutting, so that the control is more accurate.
  • the drum angle obtained by the rotary encoder, the drum height obtained by the cylinder stroke position sensor and the shearer inclination obtained by the electronic inclinometer are effectively combined with the DS evidence theory at the decision level to obtain the actual trajectory of the drum, and then The coal rock proportion information cut by the coal machine is fused to obtain the next memory tracking trajectory.
  • control layer high-speed industrial control machine automatically controls the tension of the scraper conveyor chain according to the cylinder pressure, the current of the scraper conveyor motor and the position of the shearer;
  • the tension automatic control consists of two steps: pre-tensioning and automatic tensioning.
  • the pre-tensioning consists of two parts, the start chain and the stop loose chain, which are used to realize the tension of the scraper chain to a certain extent before the start of the scraper conveyor to avoid the failure caused by the loose chain; and after the scraper conveyor is stopped, The scraper chain is relaxed to a certain extent, minus Fatigue and deformation of small chains.
  • the scraper conveyor automatic tensioning device automatically monitors the tension of the hydraulic cylinder and performs the following Comparison:
  • the tension time measurement is started and the hydraulic cylinder extension procedure is executed.
  • the slack time measurement is started and the hydraulic cylinder retracting procedure is executed.

Abstract

煤矿井下综采工作面液压支架集中控制平台的实现方法,用于煤矿井下安全生产,它选用西门子PLC S7-300、C8051F020单片机、PowerBuilder工具、SQLServer数据库和多协议通讯平台构成集控平台;以PowerBuilder工具作为前端开发平台,西门子PLC S7-300、C8051F020单片机为实时控制平台,PLC与电液控制系统连接,其通讯协议为TCP/IP MODBUS协议,PLC为客户端,电液控制系统为服务器端,采煤机上安装红外发射装置,接收装置内嵌于电液控制系统的支架控制器内,支架控制接收红外信息后将其发送给电液控制系统的防爆计算机。该方法可满足无人或少人值守工作面要求的控制功能;能可靠完成基于邻架操作的各种控制功能;能将各种信息实时远程传到地面监控中心;能进行采煤过程中各种故障的实时监测。

Description

煤矿井下综采工作面液压支架集中控制平台的实现方法 技术领域
本发明涉及一种集中控制平台的实现方法,尤其是一种用于煤矿井下综采工作面液压支架集中控制平台的实现方法。
技术背景
一个国家采煤生产过程自动化水平的高低,可以直接反映其工业领域在国际中的地位,可以衡量一个民族的工业实力。上世纪初叶,因为世界上能源的基本形式就是煤炭,所以国际上在采矿技术研究方面投入了较大的力量。
英国在上世纪八十年代就诞生了无人或少人值守工作面,也就是说,一个采煤工作面,只需要很少几个人就能完成采、支、运、供各大环节的自动衔接,达到了高效生产的目的,大大提高了生产效率。但在集中控制平台控制下的多装备自动控制系统统一协调的智能化集成控制体系,在国外和国内还未有应用报道。
因此建立综采工作面大型装备集中控制平台的系统模型,探索综采工作面群控系统的集中协同智能化控制规律,提出基于模型的适用于综采工作面采煤装备智能控制方法和控制策略,为实现综采工作面无人值守的自动化采煤目标提供理论和技术支持是非常必要的,也是急需的研究热点。
发明内容
本发明的目的是在现有采煤机技术的基础上,提供用于煤矿井下综采工作面液压支架集中控制平台的实现方法,以解决煤矿井下无人值守工作面液压支架的集中控制问题。
为实现上述目的,本发明的技术方案:本发明选用了西门子PLC S7-300、C8051F020单片机、PowerBuilder工具、SQLServer数据库和多协议通讯平台(包括串口MODBUS协议、TCP/IP MODBUS协议以及多种协议转换接口)设备构成集中控制平台,以PowerBuilder工具作为前端开发平台,西门子PLC S7-300、C8051F020单片机为实时控制平台,实现煤矿井下综采工作面液压支架集中控制;PLC与电液控制系统连接,PLC与电液控制系统的通讯协议为TCP/IP MODBUS协议,PLC为客户端,电液控制系统为服务器端。
红外发送装置安装于采煤机上,接收装置内嵌于电液控制系统的支架控制器内,采煤机移到哪个支架时,对应的支架便接收到红外信息,在电液控制系统的端头控制器巡检支架控制器时,支架控制器将采煤机的位置信息、前立柱压力、后立柱压力、推移行程、第一状态量(第一状态量包括:有无急停信号、有无闭锁信号、有无红外信号、立柱压力是否正常、推移是否到位以及各装置之间通讯是否正常)一起采集回来,再发送给电液控制系统的防爆 计算机。
所述集中控制平台的西门子PLC S7-300通过TCP/IP通讯,将采煤机位置实时发给电液控制系统的防爆计算机;采煤机位置是通过计算采煤机所走镏子链结数得到;
所述电液控制系统包括支架控制器、端头集控系统和顺槽监控系统这三层网络结构,其中顺槽监控系统在PowerBuilder前端开发平台上开发,端头集控系统和支架控制器由C8051F020单片机开发,三层网络结构采用MODBUS通讯协议连接。顺槽监控系统用PowerBuilder外部事物OLE引用Winsock来实现基于TCP/IP协议的网络通讯,在通讯过程中,有ocx_error事件脚本,监视通讯的故障,一旦有断开的故障,立即重连,保证数据通讯的稳定可靠:
ole_2.object.close()
ole_2.object.protocol=0//winsock通讯协议设为TCP协议
ole_2.object.localport=502//本机的winsock通讯端口号
ole_2.object.listen()
ss=0
sle_1.text=″TCPIP通讯错误,已重新连接!″
本发明的具体内容如下:
(1)综采工作面开始采煤时,采煤机位于工作面的一端,此时的采煤机位置为初始位置,西门子PLC S7-300先将启动的命令发给电液控制系统,得到电液控制系统准备完毕的响应后,西门子PLC S7-300再将采煤机的位置信号、工艺段信号发给电液控制系统,同时启动采煤机。上述启动过程中,西门子PLC S7-300与电液控制系统的通讯协议为TCP/IP MODBUS协议,西门子PLC S7-300为客户端,电液控制系统为服务器端。
(2)综采工作面工作中,电液控制系统以采煤机的红外位置信号和采煤机编码器位置检测信号为依据,发出集中控制命令,使相关液压支架自动跟踪采煤机实施相应的动作。根据煤矿的生产工艺要求,本发明中集中控制平台完成一次集控功能,跟踪采煤机进行动作的支架涉及30个液压支架,其中:采煤机在位液压支架1个、采煤机前液压支架14个,采煤机后液压支架15个;
(3)电液控制系统的防爆计算机将来自支架控制器巡检来的采煤机位置与顺槽监控系统中的防爆计算机发来的采煤机位置信息进行比对,若两者相同则发送正常信息,集中控制平台继续实施下一步的控制;若出现偏差,则发送报警信息,使集中控制平台停止下达集控命令。
(4)西门子PLC S7-300每隔0.5s向电液控制系统发送目前进行的工艺段号和采煤机 编码器位置检测信号,电液控制系统在接到后回应采煤机在位的支架、采煤机前14个支架以及采煤机后15个支架共30个支架的前立柱压力、后立柱压力、推移行程、液压支架正常或故障、支架控制器正常或故障、端头控制器正常或故障、通讯正常或故障的信息,以供集中控制平台做出是否能继续进行集中控制的判断。
(5)电液控制系统控制液压支架的动作;电液控制系统根据集中控制平台发送的工艺段号和采煤机位置信息,随时判断动作涉及的物理量是否达到极限参数,例如,判断立柱压力否达到极限值;判断推移行程是否超过了给定的动作极限时间仍不能到位;判断控制信息和返回信息是否形成闭环;判断通讯是否畅通;以便在第一时间停止对应动作,防止发生事故。
(6)集中控制平台向电液控制系统发送工艺段号和采煤机位置的写请求,同时向电液控制系统发送实时采集电液控制系统信号的读请求,电液控制系统在得到集中控制平台的请求后,首先要判断请求类型,然后执行相应的流程。
(7)电液控制系统在接到集中控制平台的读请求后,电液控制系统的防爆计算机以TCP/IP MODBUS协议的形式将读请求中的数据发给集中控制平台,即首先发接收回的前5个数,其次发(客户端要的数)*2+3,第三发接收回的第7、8个数(即设备地址和功能码),第四发(客户端要的数)*2,第五发数据存放的首地址,接着依次发数据量,最后发校验码。
(8)集中控制平台收到数据后,要进行分析判断,有故障时及时停止采煤机运行,同时报警。
所述电液控制系统在接到集中控制平台的控制命令后,一种途径是由电液控制系统的防爆计算机将信息分解发送给端头集控系统,再由端头集控系统的端头控制器再下发给支架控制系统的支架控制器来实施具体的控制;另一种途径是由电液控制系统的防爆计算机直接将信息分解发送给支架控制系统的支架控制器来实施具体的控制。
1)电液控制系统的防爆计算机将控制命令通过串口MODBUS协议发送给端头集控系统的端头控制器后,端头控制器根据采煤机红外位置信号和采煤工艺段,实现自动追机拉架。
实现自动追机拉架的控制过程包括巡检、判断和控制三个阶段,通过一次巡检得到采煤机的位置,通过两次采煤机的位置判断出采煤机在工作面的行进方向;所述巡检是端头集控系统的端头控制器每隔0.5秒以C8051F020串口多级通信工作方式访问每个支架控制器一次,将支架控制器的信息全部采集到端头控制器中;所述判断是端头控制器根据采集的支架控制器的信息和防爆计算机通过串口发来的采煤机红外位置信号和采煤工艺段,首先判断由支架控制器巡检来的采煤机位置与防爆计算机发来的采煤机位置是否一致,若支架控制器巡检来的采煤机位置与防爆计算机发来的采煤机位置不一致,则报警并停止工作,支架控制器巡检 来的采煤机位置与防爆计算机发来的采煤机位置一致,则进行下一步的控制阶段;即根据采煤工艺流程,向采煤机周围的相关支架控制器发送命令,控制相应液压支架按照降架——提底——拉架——升架的顺序动作,进行追机拉架。
通过实时巡检采煤机的位置信号,判断出采煤机在工作面的行进方向,根据采煤工艺流程,向采煤机运行周围的支架控制器发送命令,控制相应液压支架进行追机拉架动作。每个相关支架的动作流程为降架、提底、拉架、升架,而且这几个动作的先后顺序不能变,降架动作执行完之后才可以提底,否则容易碰到顶板,损坏液压支架。提底动作完成后进行拉架动作,拉架完成之后才可以进行升架动作;所有相关支架能实现自动追机推镏功能,集中控制推镏过程包括中间段推镏、弯曲段推镏和割三角煤推镏。
2)电液控制系统的防爆计算机直接巡检、判断,并根据采煤机红外位置信号和采煤工艺段,通过实时巡检到采煤机的位置信号,判断出采煤机在工作面的行进方向,根据采煤工艺流程,将控制命令通过串口MODBUS协议发送给采煤机运行周围的应该动作的支架控制器,控制相应液压支架进行追机拉架动作。每个相关支架的动作流程同上。
本发明应用于煤矿井下安全生产,具有实用性。
本发明的有益效果是:具有高度自动化,可满足无人或少人值守工作面要求的控制功能;能可靠完成基于邻架操作的各种控制功能;具有集中控制的自动追机拉架功能;能完成基于视频的顺槽远程调整控制功能;能将各种信息实时远程传到地面监控中心;能进行采煤过程中各种故障的实时监测;实现了煤矿生产的自动化,填补中国无人值守采煤生产的空白。
附图说明
图1是本发明实施例1液压支架电液控制系统响应集中控制平台控制命令流程图。
图2是本发明实施例2电液控制系统自动追机拉架控制结构图。
图3是本发明实施例2电液控制系统自动追机拉架控制逻辑框图。
具体实施方式
下面结合附图用具体实施方式进一步详细描述本发明的实现方法,本领域的技术人员在阅读了本具体实施方式后,利用现有的液压支架的防爆计算机、端头控制器、支架控制器,结合西门子PLC S7-300、C8051F020单片机、PowerBuilder工具、SQLServer数据库和多协议通讯平台实现本发明所述的煤矿井下综采工作面液压支架集中控制平台的控制方法,同时也能够实现本发明所述的积极效果。
实施例1:本发明方法是采用PowerBuilder工具作为前端开发平台,西门子PLC S7-300、C8051F020单片机为实时控制平台,实现煤矿井下综采工作面液压支架集中控制。
如图1所示为液压支架跟踪采煤机实施相应动作的控制流程图,其具体的实现方法如下:
1)集中控制平台的TCP/IP远程控制功能的实现
集中控制平台通过TCP/IP协议向电液控制系统的集控计算机发送工艺段号和采煤机位置,并实时采集电液控制系统的运行数据。
集中控制平台为客户端,电液控制系统为服务器端,在用PowerBuilder前端平台开发的电液控制系统控制界面的open事件中要设置甲方(作为服务器端)winsock通讯协议,并设置在等待呼叫的状态。在外部事物winsock控件中编制错误事件、数据到达事件、接收对方连接请求事件和发送完成事件程序。电液控制系统接到集中控制平台的数据后要将启动、工艺段等命令分解出来发给相应的被控系统实现对应的动作,同时电液控制系统将运行数据返给平台主机,由集中控制平台判错误标志,做到有故障实时发出停止电液控制系统的运行并报警。
2)集控参数远程设置
(1)远程参数设置和查询是在集中控制平台对工作面液压支架运行时的工作参数和极限参数进行设置,一方面为各系统实时监测界面提供显示需要的工作参数,另一方面通过通讯网络传送给电液控制系统,再由电液控制系统的端头控制器传送给支架控制器,作为支架控制器工作时的控制依据和约束参数。
工作参数和极限参数包括工作面电液支架数量、立柱最大压力、立柱到位压力、推镏最大行程、成组推镏数量、推镏最长时间、升柱最长时间、降柱最长时间、拉架最长时间、伸护帮最长时间、收护帮最长时间、伸伸缩梁最长时间、收伸缩梁最长时间进行远程设置。远程设置的参数首先是传到端头控制器,由端头控制器再传给工作面每一个支架控制器。
(2)实现的界面题目为“控制数据传送系统”,共有两个部分,一部分为“传送参数输入区”,另一部分为“操作命令键入区”,两个区域分别用组合框(groupbox)控件框起来。本功能实现的是传送参数。
将要设置的参数列出来,将左边写上参数名,右边放一单行编辑控件,以便输入参数值,有几个参数就均匀地排列几行,全部输完后,点击“发送”按钮,即实现发送参数的功能。
3)远程控制
此模块主要是集中控制平台对液压支架的远程控制。
(1)远程控制功能是实现在集中控制平台上通过点击模拟软键盘向工作面某一支架发送动作控制命令的功能。
在集中控制平台上可以实现远程控制液压支架的14组动作,即升前柱、升后柱、降前柱、降后柱、单架推镏、提底、拉架、伸侧护、收侧护、伸护帮、收护帮、喷雾、伸伸缩梁、收伸缩梁,控制命令先发给端头控制器,端头控制器再发给支架控制器,发送完命令后,开始 等待接收端头控制器的返回信息,若在规定的时间内接不到返回信息,则显示发送失败信息。
(2)实现的界面题目为“集中控制平台控制数据传送系统”,共有两个部分,一部分为“传送参数输入区”,另一部分为“操作命令键入区”,两个区域分别用groupbox框起来。本功能实现的是传送操作命令。
将控制动作的图标按控制器的键盘排列,同时设置两个下拉列表控件(dropdownlistbox),在窗口的open事件中将两个下拉列表控件中列上从1到工作面支架总数的所有数值。一个下拉列表控件用来选择动作支架的编号,另一个用来选择上次动作支架的编号,选好要动作的支架和动作的种类后,点击“发送”按钮,即实现发送动作的功能。
4)工作面支架运行状态远程巡检
(1)为了实时监控井下工作面的运行状态,集中控制平台定时访问端头控制器,获取每一支架和支架控制器本身的运行参数和工作状态。
集中控制平台每隔1s向电液控制系统的端头控制器发出参数巡检命令,之后等待端头控制器发回的数据信息,与端头控制器之间的通讯采用CRC校验,若在规定的时间内接不到返回信息,或接到的返回信息不正确,则显示数据接收失败信息。
(2)此功能是在“工作面液压支架工作状态远程实时远程监控功能”的界面中实现的。
5)工作面液压支架工作状态远程实时远程监控功能
(1)模拟监控界面以图形、曲线的形式生动形象地显示井下工作面支架数量、支架立柱压力、推移行程、采煤机位置、急停、闭锁的工作面生产状况,并且随着鼠标的移动,能快速显示鼠标处支架的各种物理量。
集控计算机每隔1s从端头控制器接收单个液压支架的信息,包括支架号、前立柱压力、后立柱压力、推镏位移和标志位,标志位中每一位代表不同的信息,包括急停、闭锁、采煤机位置、架间通讯状态和故障信息。
(2)此界面的open事件中首先要完成三行支架的摆放,每一行有200个Richtextedit控件,每一个代表一个支架,然后根据实际的支架数将这些控件均匀地放置在显示屏上;其次要启动定时器(1s),每次定时到都要在定时到事件中重新启动定时器(1s),同时向端头控制器发出参数巡检命令。
三行Richtextedit控件中,第一行要表示采煤机的位置,因此在下方要有两个前后滚筒上下相反的采煤机图片,每个瞬间只有一个代表行进方向的采煤机出现,其位置显示在巡检回来的采煤机对应的支架下,另一个采煤机图片隐身。第二行要表示急停按下的支架控制器的架号,将这个Richtextedit控件变成红色表示。第三行要表示闭锁按下的支架控制器的架号,用闪烁这个Richtextedit控件来表示。
在界面下方设置曲线的数据窗口,上面有3条曲线,分别表示前立柱压力、后立柱压力 和推移行程。
在界面上方设置有表示护帮伸缩的支架图片、采煤机在位的支架信息、支架概况和鼠标点击的支架信息的区域。无论何时鼠标指向任何代表支架的Richtextedit控件,则此支架的信息就会显示在信息的区域,若用鼠标单击任何代表支架的Richtextedit控件,则会弹出一个显示实时数据的窗口,会以曲线、表格和图形等形式显示此架的所有物理量,包括模拟量和状态量。
6)程序远程在线升级
(1)本模块是要解决电液控制系统的端头控制器和支架控制器的程序在线升级,是由集控计算机将新程序代码下载给端头控制器。
端头控制器接到要升级的程序代码后,首先通过同步头判断是本身的程序还是支架控制器的程序,若是本身的升级程序,则将接到的程序在线写到FLASH里,以实现新程序替代旧程序的升级过程;若是支架控制器的程序,则端头控制器通过总线下载给每一台支架控制器即可完成整个工作面端头控制器和支架控制器程序的在线升级。
(2)此界面首先设置转换数据按钮(commandbutton)控件,实现将编译好的程序文件(txt)转换到数据窗口中,然后分块发送,发送的数据中有写入flash的首地址、数据长、数据等信息。在发送时,先发地址帧,得到端头控制器的回应后再发数据帧,检验方式为CRC检验。
下面以122个支架为例说明本发明的具体控制过程。
1)第1工艺段--正常割煤(左行)117架→06架:
(1)当采煤机位置由117号支架向左运行到12号支架的过程中,执行正常段的跟机拉架作业,动作规程以采煤机位置在54架处说明,规程如下:
如采煤机运行到第54架处,提前6架需要进行收一级互帮动作,即第48架执行收一级护帮动作;在采煤机的前、后滚筒处需要喷雾降尘,所以第50架和第58架执行喷雾动作;在采煤机中心位置后边8架的支架需要执行小循环动作,即第62架需要进行降柱、提底、拉架、升柱、伸互帮五个动作;在采煤机中心位置后边12架的支架需要进行推镏动作,即第66架执行推镏动作。
(2)当采煤机位置由11号支架向左运行到6号支架的过程中,需要推出弯曲段,动作规程以采煤机位置在8架处说明,规程如下:
由于弯曲段长度为10个支架,所以弯曲段需要由10个支架分次推出;当采煤机运行到第8架时,提前6架需要进行收一级互帮动作,即第2架执行收一级护帮动作;在采煤机的前、后滚筒处需要喷雾降尘,所以第4架和第12架执行喷雾动作;在采煤机中心位置后边8架的支架需要执行小循环动作,即第16架需要进行降柱、提底、拉架、升柱、伸互帮五个动 作;在采煤机中心位置后边12架的支架需要进行推镏动作,即第20架执行弯曲段推镏动作,仅推镏7/10,而在此之前,23号、22号、21号已分别推镏10/10、9/10、8/10。
2)第2工艺段--左侧扫底刀1(右行)6架→10架:
采煤机割煤至机头并割透煤壁后,采煤机向机尾运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
3)第3工艺段--左侧扫底刀1(左行)10架→6架:
采煤机向机头运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
4)第4工艺段--左侧斜切进刀(右行)6架→30架:
(1)当采煤机位置由6号支架向右运行到13号支架的过程中,支架仅执行采煤机前后滚筒上方喷雾动作和提前6架的收一级护帮动作。
(2)当采煤机位置由13号支架向右运行到21号支架的过程中,支架执行移架动作,动作规程以采煤机位置在16架处说明,规程如下:
如采煤机运行到第16架处,提前6架需要进行收一级互帮动作,即第22架执行收一级护帮动作;在采煤机的前、后滚筒处需要喷雾降尘,所以第20架和第12架执行喷雾动作;在采煤机中心位置后边8架的支架需要执行小循环动作,即第8架需要进行降柱、提底、拉架、升柱、伸互帮五个动作。
(3)当采煤机位置由22号支架向右运行到30号支架的过程中,支架执行成组推镏动作,规程如下:
当采煤机运行到第23架处,1-5架执行成组推镏动作,当采煤机运行到第24架处,6-10架执行成组推镏动作,当采煤机运行到第26架处,11-15架执行成组推镏动作,当采煤机运行到第28架处,16-20架执行成组推镏动作,当采煤机运行到第30架处,21-23架执行成组推镏动作,并且在由24号运行到27号的过程中,1-4号分别执行小循环动作1次。
5)第5工艺段--左侧割三角煤(左行)30架→6架:
采煤机返向调换滚筒,开始割三角煤,直到机投并割透煤壁,前后滚筒处的支架喷雾。
6)第6工艺段--左侧扫底刀2(右行)6架→10架:
采煤机割煤至机头并割透煤壁后,采煤机向机尾运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
7)第7工艺段--左侧扫底刀2(左行)10架→6架:
采煤机向机头运行进行扫底煤作业,此过程中前后滚筒处的支架喷雾。
8)第8-14工艺段与1-8工艺段类似。
实施例2:图2、图3所示,本实施例的集中控制平台包括高速嵌入式计算机UN0-3072A、 高速数据采集卡PCI-1716、PowerBuilder前端开发平台、SQLServer数据库、Modbus TCP/IP通讯协议和工业以太网Ethernet。
集中控制平台是基于现有煤矿井下综采工作面的大型装备实现的。
所述大型装备包括采煤机系统、液压支架系统、工作面运输系统、泵站系统、供电系统和视频监控系统。
服务器使用高速嵌入式计算机UNO-3072A,用于人机交互,实现综采工作面的大型装备工况运行的状态显示和实时控制,通过PowerBuilder前端开发平台,实现各设备无人值守的协同工作;通过工控机控制完成,工控机包括高速嵌入式计算机UNO-3072A和高速数据采集卡PCI-1716A。
高速数据采集卡PCI-1716A采集16路模拟量和16路数字量信号,输出2路模拟和16路数字控制信号。
集中控制平台控制采煤机系统的方法,工控机首先通过采集卡采集采煤机监测信息、然后将采煤机监测信息与设定值进行比较判断,如果比较结果不符合设定值,报警并显示故障信息;如果比较结果满足工作条件,则依次按照皮带、破碎机、转载机、刮板输送机和采煤机的逆煤流顺序启动这些设备。
采煤机的监测信息包括截割头振动、5个电机的电流、温度、减速箱的温度,泵箱的温度、油温、油位、油压,变频器输入/输出电流、电压、频率、功率,采煤机的运行速度、运行方向,各部分冷却水的流量、压力,左右外喷雾的流量、滚筒高度、采煤机倾角;
滚筒高度通过旋转编码器获得滚筒角度,从而得到滚筒高度,并利用油缸行程位置传感器也可以获得滚筒高度,两者互相验证;采煤机倾角利用电子倾角仪获得。
采煤机滚筒高度的自动控制内容包括:
1)采煤机滚筒控制量
液压油缸调高的采煤机调高机构的动力学模型及数学模型:
采煤机调高机构的调高摇臂可视为刚体绕定点转动,调高油缸可等效为有阻尼液压弹簧-----质量振动系统,表示如下:
Figure PCTCN2016000368-appb-000001
式中:J----滚筒及摇臂绕o点的转动惯量,kg.m2
Figure PCTCN2016000368-appb-000002
----摇臂绕o点转动的角加速度,rad/s2
kh----油缸的液压弹簧刚度,N.m-1;
ch----油缸的液压粘性阻尼系数,Pa.S;
x----油缸的位移,m;
Figure PCTCN2016000368-appb-000003
----油缸的移动速度,m/s;
l----小摇臂的长度,m;
Φ2----小摇臂与油缸活塞杆之间的夹角,rad;
∑Mo----对O点所有外力矩之和,N.m;
对O点的外力矩有:
阻力矩Rasinωat·LcosΦ1;Rbsinωbt·LsinΦ1
液压油作用于活塞的动力矩(由伺服阀电磁电流决定);
kf·if·lsinΦ2
滚筒偏心质量产生的离心力矩meω2sinωt·LcosΦ1;meω2cosωt·LsinΦ1
把这些力矩代入式(12)中:
Figure PCTCN2016000368-appb-000004
式中:L----大摇臂的长度,m;
Φ1----大摇臂相对水平面的夹角,rad;
kf----电磁系数,N/A;
if----电磁电流,A;
m----滚筒由于加工、安装及截齿排列等因素而产生的偏心质量,kg;
e----滚筒由于加工、安装及截齿排列等因素而产生的偏心距,m;
ω----滚筒的角速度,rad/s。
液压油缸的位移x=lsinθ,当摇臂绕o点的摆角θ较小时,可近似地认为x=l·θ,则油缸的移动速度
Figure PCTCN2016000368-appb-000005
滚筒及摇臂对o点的转动惯量
Figure PCTCN2016000368-appb-000006
代入式(2)中,得:
Figure PCTCN2016000368-appb-000007
Figure PCTCN2016000368-appb-000008
式中:m1----滚筒的集中质量,kg;
m2----摇臂的集中质量,kg;
由文献分析,ωa=ωb=ω,经整理最后得:
Figure PCTCN2016000368-appb-000009
其中:
Figure PCTCN2016000368-appb-000010
Figure PCTCN2016000368-appb-000011
Figure PCTCN2016000368-appb-000012
A3=Kf·lsinΦ2
令A2sin(ωt+ψ)=d(t),称为扰动,
所以
Figure PCTCN2016000368-appb-000013
Figure PCTCN2016000368-appb-000014
由此得出系统的状态方程为:
Figure PCTCN2016000368-appb-000015
y(t)=CX(t)
其中:
Figure PCTCN2016000368-appb-000016
C=[1 0]
用零阶保持器,采样周期为T
将(6)式离散化后得:
Figure PCTCN2016000368-appb-000017
其中:
Figure PCTCN2016000368-appb-000018
Figure PCTCN2016000368-appb-000019
Figure PCTCN2016000368-appb-000020
C=[1 0]
假设系统可控、可观测,并设r≥m。设目标值为R(k)(m×1),定义误差信号e(k)=R(k)-y(k),则由式(7)可求得
Figure PCTCN2016000368-appb-000021
或写成
X0(k+1)=ΦX0(k)+GΔu(k)+GRΔR(k+1)+GdΔd(k)       (10)
则称式(10)描述的系统为广义误差系统,假定从当前时刻(设k=1)开始到未来MR步的目标值已知,这意味着为使输出y(k)跟踪当前目标值R(k),必须使控制输出u(k)在MR步之前就开始变化,即MR步预见控制。对于式(3)广义误差系统,定义式(11)的二次型性能指标:
Figure PCTCN2016000368-appb-000022
式中Q为半正定矩阵,Qe、H为正定矩阵;
由最优控制理论,知使式(11)为最优的输入有下面的形式:
Figure PCTCN2016000368-appb-000023
其中,F0X0为全状态反馈最优解,而且
F0=-[H+GTPG]-1GTPΦ       (13)
P为Riccati方程
P=Q+ΦTPΦ-ΦTPG[H+GTPG]-1GTPΦ     (14)
的解,式(12)右边的第二、三项分别为利用了从现在时刻k开始到未来MR步的目标值信息及干扰信息的预见前馈补偿。
如果仅考虑目标值预见,则可设Δd(k+j)=0而求出FR(j),如果仅考虑干扰预见可同样设ΔR(k+j)=0而求出Fd(j)。
根据需要我们现在只研究目标值预见,因为我们控制的是记忆跟踪切割,Δd(k+j)=0, 将(12)式代入(11)式,并设当前时刻(k=1)目标值才有变化,即ΔR(1)=R0,如果设
Figure PCTCN2016000368-appb-000024
因为使性能指标J取最小的FRR必满足
Figure PCTCN2016000368-appb-000025
所以可求得
Figure PCTCN2016000368-appb-000026
预见前馈系数FR(j)用下式求得:
FR(0)=0
Figure PCTCN2016000368-appb-000027
j=1,…,MR
设采煤机滚筒的高度记忆轨迹即目标轨迹为H(t),由前面结构数学模型分析可推得小摇臂摆角的目标值为R(t),则输出的误差为e(k)=R(k)-y(k)=R(k)-CX(k),控制规则:
Figure PCTCN2016000368-appb-000028
由经验所得,仅考虑目标值预见,Δd(k+j)=0,将由预见控制得出的前馈系数FR(j)(J=1,…,MR)代入(15)式可得出F0、FR(j),即Δif(k),也即求得了控制电流的大小,针对输出为数字量开关信号,则Δif(k)可转换为通液的持续时间,MR为预见的步数。
集中控制平台控制工作面运输系统的方法是,先采集工作面运输系统监测信息、然后将工作面运输系统监测信息与设定值进行比较判断,如果不符合设定值,报警并显示故障信息;
工作面运输系统监测信息包括刮板输送机电机的电流、绕组温度,减速箱的油温、油位、轴温,冷却水的压力和流量,油缸压力;皮带运输机的电机电流和温度,皮带的堆煤、烟雾、纵撕、断带、打滑和张紧故障。
集中控制平台控制泵站系统的方法是,先采集乳化液泵的监测信息、然后将乳化液泵的监测信息与设定值进行比较判断,如果不符合设定值,报警并显示故障信息;
乳化液泵的监测信息包括供水量、供油量、油温、油位、进口压力、出口压力、液位和浓度;
集中控制平台控制供电系统的方法是,先采集移动变电站的一次侧和二次侧的监测信息和一次侧和二次侧的漏电、过流、短路、超温和断相故障,然后将移动变电站的一次侧和二次侧的监测信息和一次侧和二次侧的漏电、过流、短路、超温和断相故障与设定值进行比较判断,如果不符合设定值,报警并显示故障信息;
移动变电站的一次侧的监测信息有A/B/C相电流、高压电压、漏电电流和电源频率,移动变电站的二次侧的监测信息有低压电压、电流和绝缘电阻。
采煤机启动前应位于工作面的一端,将此时的采煤机位置设为零,即初始位置,采煤机在运行过程中不断记忆其行走的刮板输送机的链节数,由链节数判断采煤机的位置,在哪一个支架处,同时还要结合液压支架系统由红外线传感器检测到的采煤机位置距离,如果两者一致则由此自动控制相应液压支架的动作,实现自动追机拉架,如果两者不一致则报警,并停止采煤机的运行;为减少计算采煤机行走刮板输送机链节数引起的位置误差,每完成一个往返采煤过程,采煤机回到工作面的初始一端时,要将采煤机位置设为零(初始位置)。
集中控制平台根据采煤机位置及运行方向自动判断采煤工艺段,发出集中控制命令,使相应液压支架自动跟踪采煤机实施相应的动作,根据煤矿的生产工艺要求,综采工作面分14个工艺段,涵盖中间段、弯曲段和两端割三角煤的全部过程,根据工作面长度的不同,支架的数量也不同,则处于中间段、弯曲段和两端割三角煤位置的支架数也不同;
本发明的集中控制平台能接收液压支架系统维护好的控制参数(包括工作面支架数量、动作极限时间、立柱最大压力、移架最长行程、采煤机长度),自动计算出处于两端弯曲段的开始、结束支架号,能自动适应不同长度的综采工作面液压支架的自动控制;
集中控制平台跟踪采煤机进行动作的支架为采煤机在位的支架、采煤机前14个支架以及采煤机后15个支架共30个液压支架的动作,实现自动追机拉架。
本发明控制还包括下述内容:
(1)工控机在启动采煤工作时,首先采集各装备的工作状态信息,向每一设备发出问询信号,各个装备接到问询信号后将约定好的表示自身状态的信息回应给工控机,工控机判断它们是否能开始正常工作,认为条件满足则给出启动信号;
(2)在采煤过程中,如检测到刮板输送机有堆煤发生,堆煤往往发生在刮板输送机的机头部位,此时,工控机立刻控制电液控制系统中的端头液压支架启动安装在其一级护帮上的铁爪动作,将堆煤快速送入转载环节,保证采煤生产的连续性;
(3)在采煤过程中,集中控制平台将集控命令发给电液自动控制系统的端头控制器,由端头控制器控制支架控制器执行具体的动作,如果检测到液压支架电液控制系统通讯中断,则会立即启动电液控制系统的另一个端头控制器,由两个端头控制器分别负责中断故障发生后中断点两侧控制器正常受控进行动作,保证采煤生产的连续性;
(4)在采煤过程中,集中控制平台根据采煤机工作状况自动调整工作面运输系统装备的运行速度,实现最大限度的电能节约;
(5)在采煤过程中,集中控制平台当判断出乳化液泵的进口压力和出口压力只差大于 1.1Mpa时自动启动反冲洗过滤器,保证乳化液泵的正常工作,进而保证采煤生产的连续性。
(6)在采煤过程中,工控机根据油缸压力、刮板输送机电机的电流以及采煤机的位置对刮板输送机链条进行自动张紧力的控制,刮板输送机链条自动张紧装置由多变量自动控制,结合油缸压力、刮板输送机运行状态(运行电流)和采煤位置等参量综合判断后进行控制;
(7)在采煤过程中,工控机自动根据采煤机位置控制视频监控系统中摄像头的亮灭,既能将有效视频监控信息采集回来,又能节约电能、减小海量视频监控信息量的传送。
3、网络构架
1)控制层高速嵌入式计算机UNO-3072A与各子系统的高速嵌入式计算机UNO-3072A实现基于TCP/IP协议的网络通讯。
2)控制层高速工控机利用PowerBuilder外部事物OLE引用Winsock来实现基于TCP/IP协议的网络通讯,控制层高速工控机作为乙方即客户端,须在PowerBuilder前端开发软件窗口的Open事件中加入如下语句:
ole_1.object.protocol=0//winsock通讯协议设为TCP协议;
ole_1.object.remotehost=″219.226.96.151″//对方的ip地址;
ole_1.object.remoteport=502//要联系的对方的winsock通讯端口号;
ole_1.object.connect()//发出连接请求;
控制层高速工控机每个500ms轮巡一次所有系统,然后根据巡检结果给出控制量。
3)在TCP/IP通讯中,每一系统都作为甲方即服务器端,都有ocx_error事件脚本,监视与集控平台通讯的故障,一旦有断开的故障,立即重连,保证数据通讯的稳定可靠:
ole_1.object.close();
ole_1.object.protocol=0//winsock通讯协议设为TCP协议;
ole_1.object.localport=502//本机的winsock通讯端口号;
ole_1.object.listen();
sle_1.text=″TCP/IP通讯错误,已重新连接!″;
4)应用RBF神经网络进行煤岩界面识别
RBF神经网络结构为三层,输入层、输出层和隐含层;
隐含层用高斯函数:
Figure PCTCN2016000368-appb-000029
作为RBF神经网络的基函数,从而
Figure PCTCN2016000368-appb-000030
这样,对RBF神经网络的参数包括输出单元权值ωi、隐单元的中心xi和函数宽度σ。
本发明输出单元权值的训练采用最小二乘法直接计算,对后两个参数的选择采用K-均值聚类,把样本聚为M类,类中心就作为RBF的中心,进而再确定函数宽度。
本发明取采煤机截割头振动信号的20个频段的能量特征值、油压信号的8个频段的能量特征值和滚筒电机电流信号的6个频段的能量特征值作为RBF神经网络的输入,同时对样本进行聚类以求得基函数的中心,从这些信号中可以判断目前切割的煤岩情况,在实验中发明人提取了100%煤,80%煤、20%岩,70%煤、30%岩,50%煤、50%岩,30%煤、70%岩,20%煤、80%岩,0%煤、100%岩7种样本,通过聚类将相应的特征向量进行归类,即将上述煤岩样本的聚类结果7作为隐层单元的个数,同时将相应的特征向量作为相应隐单元的中心xi,将输出分别以0,1,2,3,4,5,6分类预测上述七种状态,像上面一样就得到34个输入、1个输出和7个隐单元的RBF神经网络,作为煤岩界面识别模型,其中x1,x2,…,x20是振动信号经小波包分析后提取的信号特征量,x21,x2,…,x26是油压信号经小波包分析后提取的信号特征量,x27,x2,…,x34是滚筒电机电流信号经小波包分析后提取的信号特征量,Φ1,Φ2,…,Φ7是RBF神经网络的隐层,其基函数是高斯函数,而f(x)即是煤岩比例的输出结果。
5)记忆轨迹的修正
记忆轨迹是在同一采煤区沿煤层走向的煤层条件可以近似认为是相同的前提下产生的,但如果煤层较厚,或情况特殊,在切割过程中煤岩分界的曲线会发生变化,初始的记忆轨迹会产生偏差,因此,本发明在记忆切割的基础上不断地根据各种信息修正跟踪曲线,使控制更加精确。
本发明对旋转编码器获得的滚筒角度、油缸行程位置传感器获得的滚筒高度与电子倾角仪获得的采煤机倾角,经D-S证据理论在决策级进行有效融合得出滚筒的实际轨迹,再与采煤机切割的煤岩比例信息进行融合得出下一次的记忆跟踪轨迹。
在采煤过程中,控制层高速工控机根据油缸压力、刮板输送机电机的电流以及采煤机的位置综合判断后对刮板输送机链条进行张紧力自动控制;
张紧力自动控制包含预张紧和自动张紧两个步骤。
1)预张紧
预张紧包括开机紧链和停机松链两部分,用于实现刮板输送机启动前将刮板链张紧到一定程度,避免链条过松造成的故障;以及刮板输送机停机后,使刮板链松弛到一定程度,减 小链条的疲劳和形变。
2)自动张紧
当刮板输送机发出启动信号和执行预张紧功能后,刮板送机启动,并发出成功启动信号,随后刮板输送机链条自动张紧装置自动监控张紧液压缸的压力,并进行下面的比较:
如果实测液压缸压力小于理想液压缸压力值下部滞后范围,则开始进行张紧时间测量,并执行液压缸伸出程序。
如果实测液压缸压力大于理想液压缸压力值上部滞后范围,则开始进行松弛时间测量,执行液压缸缩回程序。

Claims (5)

  1. 煤矿井下综采工作面液压支架集中控制平台的实现方法,完成一次集控功能涉及30个液压支架,其中:采煤机在位液压支架1个、采煤机前液压支架14个,采煤机后液压支架15个;所述集中控制平台包括西门子PLC S7-300、C8051F020单片机、PowerBuilder工具、SQLServer数据库;以PowerBuilder工具作为前端开发平台,西门子PLC S7-300、C8051F020单片机为实时控制平台;其特征在于:西门子PLC S7-300与电液控制系统连接,西门子PLC S7-300与电液控制系统之间的通讯协议为TCP/IP MODBUS协议,西门子PLC S7-300为客户端,电液控制系统为服务器端;所述采煤机上安装有红外发射装置,接收装置内嵌于电液控制系统的支架控制器内,支架控制器接收来自红外发射装置的红外信息并将红外信息发送给电液控制系统的防爆计算机;所述电液控制系统包括支架控制系统、端头集控系统和顺槽监控系统,其中顺槽监控系统在PowerBuilder前端开发平台上开发,端头集控系统和支架控制系统由C8051F020单片机开发,顺槽监控系统用PowerBuilder外部事物OLE引用Winsock来实现基于TCP/IP协议的网络通讯;西门子PLC S7-300将采煤机位置实时发给电液控制系统的防爆计算机;具体操作步骤如下:
    (1)综采工作面开始采煤时,采煤机位于综采工作面的一端,位置设为初始位置;确认准备工作完成后,西门子PLC S7-300启动采煤机:即首先将要启动的命令发给电液控制系统,得到电液控制系统准备完毕的响应后,西门子PLC S7-300就将采煤机的位置信号、工艺段信号发给电液控制系统,同时启动采煤机;
    (2)电液控制系统以采煤机的位置信号和采煤机编码器位置检测信号为依据,发出集中控制命令,使相关液压支架自动跟踪采煤机实施相应的动作;
    (3)电液控制系统中顺槽监控系统的防爆计算机将采煤机的两个检测位置信息进行比对,若两个检测位置信息相同则发送正常信息,集中控制平台继续实施下一步的控制;若两个检测位置信息出现偏差,则发送报警信息,集中控制平台停止下达集控命令;所述采煤机的两个检测位置信息是指西门子PLC S7-300传来的采煤机位置信号和红外发射装置发来的采煤机位置信号;
    (4)正常启动采煤机后,西门子PLC S7-300每隔0.5s向电液控制系统发送目前进行的工艺段号和采煤机编码器位置检测信号;电液控制系统接到西门子PLC S7-300的信号后回应采煤机在位液压支架、采煤机前液压支架以及采煤机前液压支架的前立柱压力、后立柱压力、推移行程以及第一状态量,所述第一状态量包含液压支架正常或故障、支 架控制器正常或故障、端头控制器正常或故障和通讯正常或故障的信息,以供集中控制平台做出是否能继续进行集中控制的判断;
    (5)电液控制系统根据集中控制平台发送的工艺段号和采煤机位置信号控制液压支架的动作时,要随时判断动作涉及的物理量是否达到极限参数,如立柱压力,是否超过了给定的动作极限时间仍不能到位,如推移行程,控制信息和返回信息是否形成闭环,通讯是否畅通;
    (6)集中控制平台向电液控制系统发送工艺段号和采煤机位置的写请求,同时发送实时采集电液控制系统信号的读请求,电液控制系统中顺槽监控系统的防爆计算机得到集控平台的请求后,首先要判断请求类型,然后执行相应的流程;
    (7)电液控制系统接到集中控制平台的读请求后,顺槽监控系统的防爆计算机以TCP/IP MODBUS协议的形式将读请求中的数据发给集中控制平台;首先发接收回的前5个数;其次发(客户端要的数)*2+3个数;第三发接收回的第7、8个数,即设备地址和功能码;第四发(客户端要的数)*2个数;第五发数据存放的首地址;接着依次发数据量,最后发校验码;
    (8)集中控制平台收到步骤(7)发来的数据后,要进行分析判断,有故障时及时停止采煤机运行,同时报警。
  2. 根据权利要求1所述的煤矿井下综采工作面液压支架集中控制平台的实现方法,其特征在于:所述红外接收装置及时反馈采煤机的位置信息,在电液控制系统的端头控制器巡检支架控制器时,支架控制器将采煤机的位置信息连同前立柱压力、后立柱压力、推移行程以及第二状态量一起采集回来,再发送给电液控制系统的防爆计算机;所述第二状态量包括:有无急停信号、有无闭锁信号、有无红外信号、立柱压力是否正常、推移是否到位以及各装置之间通讯是否正常。
  3. 根据权利要求1所述的煤矿井下综采工作面液压支架集中控制平台的实现方法,其特征在于:所述电液控制系统在接到集控平台的控制命令后,一种途径是由顺槽监控系统的防爆计算机将信息分解发送给端头集控系统,再由端头集控系统的端头控制器下发给支架控制系统的支架控制器来实施具体的控制;另一种途径是由顺槽监控系统的防爆计算机直接将信息分解发送给支架控制系统的支架控制器来实施具体的控制。
  4. 根据权利要求1~3任一项所述的煤矿井下综采工作面液压支架集中控制平台的实现方法,其特征在于:顺槽监控系统的防爆计算机将控制命令通过串口,以MODBUS协 议发送给端头集控系统的端头控制器后,端头控制器根据采煤机红外位置信号和采煤工艺段,实现自动追机拉架。
  5. 根据权利要求4所述的煤矿井下综采工作面液压支架集中控制平台的实现方法,其特征在于:实现自动追机拉架的控制过程包括巡检、判断和控制三个阶段,通过一次巡检得到采煤机的位置,通过两次采煤机的位置判断出采煤机在工作面的行进方向;所述巡检是端头集控系统的端头控制器每隔0.5秒以C8051F020串口多级通信工作方式访问每个支架控制器一次,将支架控制器的信息全部采集到端头控制器中;所述判断是端头控制器根据采集的支架控制器的信息和防爆计算机通过串口发来的采煤机红外位置信号和采煤工艺段,首先判断由支架控制器巡检来的采煤机位置与防爆计算机发来的采煤机位置是否一致,若支架控制器巡检来的采煤机位置与防爆计算机发来的采煤机位置不一致,则报警并停止工作,支架控制器巡检来的采煤机位置与防爆计算机发来的采煤机位置一致,则进行下一步的控制阶段;即根据采煤工艺流程,向采煤机周围的相关支架控制器发送命令,控制相应液压支架按照降架——提底——拉架——升架的顺序动作,进行追机拉架。
PCT/CN2016/000368 2015-07-20 2016-07-08 煤矿井下综采工作面液压支架集中控制平台的实现方法 WO2017012285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/869,944 US10655467B2 (en) 2015-07-20 2018-01-12 Method for implementing a centralized control platform of hydraulic support on fully mechanized mining working face in underground coal mines

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510425692.9A CN105065050B (zh) 2015-07-20 2015-07-20 一种用于煤矿井下综采工作面液压支架集中控制平台的实现方法
CN201510425692.9 2015-07-20
CN201510527484.X 2015-08-25
CN201510527484.XA CN105182820B (zh) 2015-08-25 2015-08-25 一种煤矿综采工作面大型装备集中控制平台的实现方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/869,944 Continuation US10655467B2 (en) 2015-07-20 2018-01-12 Method for implementing a centralized control platform of hydraulic support on fully mechanized mining working face in underground coal mines

Publications (1)

Publication Number Publication Date
WO2017012285A1 true WO2017012285A1 (zh) 2017-01-26

Family

ID=57834845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000368 WO2017012285A1 (zh) 2015-07-20 2016-07-08 煤矿井下综采工作面液压支架集中控制平台的实现方法

Country Status (2)

Country Link
US (1) US10655467B2 (zh)
WO (1) WO2017012285A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106657935A (zh) * 2017-03-01 2017-05-10 中国矿业大学(北京) 基于图像的采煤机异常工作及灾害报警系统
CN112431593A (zh) * 2020-10-15 2021-03-02 重庆市能源投资集团科技有限责任公司 一种自动化割煤工艺
CN112945160A (zh) * 2021-03-24 2021-06-11 太原理工大学 一种虚实融合的液压支架间相对位姿试验平台及试验方法
CN113464141A (zh) * 2021-08-25 2021-10-01 国能神东煤炭集团有限责任公司 一种三角煤区域回采方法
CN113838133A (zh) * 2021-09-23 2021-12-24 上海商汤科技开发有限公司 一种状态检测方法、装置、计算机设备和存储介质
CN114348550A (zh) * 2022-01-10 2022-04-15 乌审旗蒙大矿业有限责任公司 智能化采煤工作面运输机自动找直控制系统和方法
CN114439528A (zh) * 2021-12-16 2022-05-06 中国矿业大学 一种智能充填液压支架结构干涉自主控制方法
CN114439527A (zh) * 2021-12-16 2022-05-06 中国矿业大学 一种智能固体充填液压支架工况位态表征方法
CN117569805A (zh) * 2024-01-17 2024-02-20 山西启创达矿山设备制造有限责任公司 一种调节式采煤机摇臂及其使用方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109057847A (zh) * 2018-11-05 2018-12-21 郑州煤机液压电控有限公司 液压支架电液控制系统
CN109451691A (zh) * 2018-12-07 2019-03-08 中煤北京煤矿机械有限责任公司 一种矿用本安型液压支架电液控制装置的控制器
CN109826660B (zh) * 2019-01-18 2021-01-08 中国矿业大学 一种液压支架远程定位通讯错误支架的系统和方法
WO2020172705A1 (en) * 2019-02-26 2020-09-03 Auger Mining Pty Ltd Mining apparatus
CN110045694A (zh) * 2019-03-27 2019-07-23 苏州艾米妮娜工业智能技术有限公司 一种具有安全系统的云智能加工设备
CN110048465B (zh) * 2019-05-28 2021-09-03 江西清华泰豪三波电机有限公司 一种分闸处理方法、装置及发电机组
CN110488786B (zh) * 2019-09-19 2021-11-09 江苏海湾电气科技有限公司 一种海工平台升降控制系统
CN110989580A (zh) * 2019-11-25 2020-04-10 国网上海市电力公司 一种隧道内电缆敷设的输送机的定位控制系统
CN111323044A (zh) * 2020-04-14 2020-06-23 中国矿业大学(北京) 掘进机二维位移测量装置及测量方法
CN111426315A (zh) * 2020-05-14 2020-07-17 淮北矿业股份有限公司 一种采煤机定位装置及方法
CN113685179A (zh) * 2020-05-19 2021-11-23 郑州煤机智能工作面科技有限公司 一种煤矿综采工作面自动化控制系统及其控制方法
CN112068521A (zh) * 2020-09-15 2020-12-11 合肥约翰芬雷矿山装备有限公司 一种用于洗选煤设备的检测预警系统
CN112230597B (zh) * 2020-10-16 2022-06-07 兖矿能源集团股份有限公司 一种煤矿采掘机操作技能培训系统及方法
CN112506152B (zh) * 2020-12-02 2022-03-22 三一重型装备有限公司 一种采煤机及其控制器、控制方法
CN112610264B (zh) * 2020-12-02 2023-02-24 北京天玛智控科技股份有限公司 液压支架电液控制方法、装置、电子设备及存储介质
CN112610263B (zh) * 2020-12-07 2023-03-14 北京天玛智控科技股份有限公司 基于综采工作面的跟机控制方法、装置和电子设备
CN113847076B (zh) * 2021-08-31 2023-07-07 北京天玛智控科技股份有限公司 液压支架控制器和液压支架控制系统
CN113756849B (zh) * 2021-09-01 2024-02-09 中煤科工开采研究院有限公司 一种全向移动液压支架控制方法
CN114215520B (zh) * 2021-10-25 2023-10-24 北京天玛智控科技股份有限公司 煤矿工作面中的设备协同控制方法和装置
CN114086996B (zh) * 2021-11-16 2023-12-01 重庆大学 一种分级吸能自启防冲装置及方法
CN115437248A (zh) * 2022-08-16 2022-12-06 煤炭科学研究总院有限公司 基于深度q学习算法的设备运行控制方法、装置及设备
CN115185173B (zh) * 2022-09-09 2023-01-20 三一重型装备有限公司 综采工作面的总控系统、控制方法、控制装置和存储介质
CN115235676B (zh) * 2022-09-26 2022-12-09 山东济矿鲁能煤电股份有限公司阳城煤矿 一种矿井液压支架压力异常自动报警方法
CN116151043B (zh) * 2023-04-20 2023-07-21 西安华创马科智能控制系统有限公司 刮板输送机位姿反演方法及装置
CN117115758B (zh) * 2023-10-25 2023-12-26 山西榕行智能科技有限公司 一种基于煤矿智能主煤流运输ai监控系统的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509842B1 (en) * 1999-04-16 2003-01-21 Tiefenbach Bergbautechnik Gmbh Control system for a longwall support
CN101906985A (zh) * 2010-01-14 2010-12-08 太原理工大学 用于井下工作面液压支架远程监测及控制的实现方法
CN102619511A (zh) * 2012-04-18 2012-08-01 中国煤矿机械装备有限责任公司 薄煤层滚筒采煤机工作面自动化集成控制系统
CN103306700A (zh) * 2013-05-15 2013-09-18 太原理工大学 一种煤矿综采工作面无人值守作业的控制方法
CN104775839A (zh) * 2015-02-09 2015-07-15 太原理工大学 一种基于端头控制器的液压支架集控系统热备份方法
CN105065050A (zh) * 2015-07-20 2015-11-18 太原理工大学 一种井下综采工作面液压支架集中控制平台的实现方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066340B (en) * 1979-11-22 1983-03-16 Dowty Mining Equipment Ltd Mining apparatus
DE3207517C2 (de) * 1982-03-03 1985-09-05 Gebr. Eickhoff Maschinenfabrik U. Eisengiesserei Mbh, 4630 Bochum Steuerung für Ausbaugestelle des Untertagebergbaues
DE4011091A1 (de) * 1990-04-06 1991-10-10 Gewerk Eisenhuette Westfalia Verfahren zur automatisierten hobelgewinnung von kohle u. dgl.
US5029943A (en) * 1990-05-17 1991-07-09 Gullick Dobson Limited Apparatus for transmitting data
JP3135207B2 (ja) 1995-12-07 2001-02-13 株式会社大林組 トンネル掘進機の施工管理システム
US6481802B1 (en) * 1998-10-21 2002-11-19 Tiefenbach Bergbautechnik Gmbh Control system for longwall face alignment
RU2335632C2 (ru) * 2002-12-16 2008-10-10 Тифенбах Контрол Системс Гмбх Система управления крепью, предназначенная для управления движениями секций щитовой крепи в очистном забое шахты
KR100620755B1 (ko) 2004-12-23 2006-09-13 한국항공우주연구원 발사체 지상제어시스템
CN101418688B (zh) 2007-10-26 2011-09-07 三一重型装备有限公司 智能型全自动联合采煤系统
US20110224835A1 (en) 2009-06-03 2011-09-15 Schlumberger Technology Corporation Integrated flow assurance system
DE102009026011A1 (de) * 2009-06-23 2010-12-30 Bucyrus Europe Gmbh Verfahren zur Bestimmung der Position oder Lage von Anlagekomponenten in Bergbau-Gewinnungsanlagen und Gewinnungsanlage
CN101727085A (zh) 2009-11-24 2010-06-09 太原理工大学 煤矿井下工作面输送设备状态监测与故障诊断装置
CN102004483A (zh) 2010-12-15 2011-04-06 河北天择重型机械有限公司 综采数字化无人工作面控制系统
CN102102519B (zh) 2010-12-30 2012-11-14 北京天地玛珂电液控制系统有限公司 一种综采工作面生产自动化的方法
CN203191811U (zh) 2013-04-26 2013-09-11 中平能化集团机械制造有限公司 煤矿综采工作面机电设备协同集中控制隔爆装置
CN203965908U (zh) 2014-06-30 2014-11-26 山西平阳广日机电有限公司 综采工作面集控设备
CN104184637B (zh) 2014-08-29 2017-08-29 广州日滨科技发展有限公司 综采工作面数据传输系统及其数据传输方法
AU2016280009A1 (en) * 2015-06-15 2017-12-21 Joy Global Underground Mining Llc Systems and methods for monitoring longwall mine roof stability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509842B1 (en) * 1999-04-16 2003-01-21 Tiefenbach Bergbautechnik Gmbh Control system for a longwall support
CN101906985A (zh) * 2010-01-14 2010-12-08 太原理工大学 用于井下工作面液压支架远程监测及控制的实现方法
CN102619511A (zh) * 2012-04-18 2012-08-01 中国煤矿机械装备有限责任公司 薄煤层滚筒采煤机工作面自动化集成控制系统
CN103306700A (zh) * 2013-05-15 2013-09-18 太原理工大学 一种煤矿综采工作面无人值守作业的控制方法
CN104775839A (zh) * 2015-02-09 2015-07-15 太原理工大学 一种基于端头控制器的液压支架集控系统热备份方法
CN105065050A (zh) * 2015-07-20 2015-11-18 太原理工大学 一种井下综采工作面液压支架集中控制平台的实现方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106657935A (zh) * 2017-03-01 2017-05-10 中国矿业大学(北京) 基于图像的采煤机异常工作及灾害报警系统
CN112431593A (zh) * 2020-10-15 2021-03-02 重庆市能源投资集团科技有限责任公司 一种自动化割煤工艺
CN112431593B (zh) * 2020-10-15 2023-07-14 重庆市能源投资集团科技有限责任公司 一种自动化割煤工艺
CN112945160A (zh) * 2021-03-24 2021-06-11 太原理工大学 一种虚实融合的液压支架间相对位姿试验平台及试验方法
CN113464141A (zh) * 2021-08-25 2021-10-01 国能神东煤炭集团有限责任公司 一种三角煤区域回采方法
CN113838133A (zh) * 2021-09-23 2021-12-24 上海商汤科技开发有限公司 一种状态检测方法、装置、计算机设备和存储介质
CN114439528A (zh) * 2021-12-16 2022-05-06 中国矿业大学 一种智能充填液压支架结构干涉自主控制方法
CN114439527A (zh) * 2021-12-16 2022-05-06 中国矿业大学 一种智能固体充填液压支架工况位态表征方法
CN114439527B (zh) * 2021-12-16 2023-04-28 中国矿业大学 一种智能固体充填液压支架工况位态表征方法
CN114348550A (zh) * 2022-01-10 2022-04-15 乌审旗蒙大矿业有限责任公司 智能化采煤工作面运输机自动找直控制系统和方法
CN117569805A (zh) * 2024-01-17 2024-02-20 山西启创达矿山设备制造有限责任公司 一种调节式采煤机摇臂及其使用方法
CN117569805B (zh) * 2024-01-17 2024-03-19 山西启创达矿山设备制造有限责任公司 一种调节式采煤机摇臂及其使用方法

Also Published As

Publication number Publication date
US10655467B2 (en) 2020-05-19
US20180135412A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2017012285A1 (zh) 煤矿井下综采工作面液压支架集中控制平台的实现方法
US10378352B2 (en) Method for realizing centralized control platform for large fully-mechanized coal mining face equipment
CN105065050B (zh) 一种用于煤矿井下综采工作面液压支架集中控制平台的实现方法
CN101770221B (zh) 基于现场总线的双臂巡线机器人控制系统
CN103306700B (zh) 一种煤矿综采工作面无人值守作业的控制方法
CN109066473A (zh) 一种输电线路高空巡线智能巡检机器人及巡检方法
CN106655006A (zh) 输电线路巡检机器人越障行走装置
CN107091107A (zh) 智能放顶煤控制系统及方法
CN111946341B (zh) 一种边帮成套采煤设备远程控制系统及开采方法
CN103543716A (zh) 综采工作面设备的远程控制系统及方法
CN105785203A (zh) 输电线路监测设备远程智能诊断装置
CN104196553A (zh) 一种基于EtherCAT的液压支架远程控制系统
CN104314526A (zh) 基于示功图工况分析的抽油机智能设备及其计算方法
CN101555717A (zh) 驱动柔性可开启屋面行走安全监控及调整系统
CN112431591B (zh) 三软两大倾斜中厚煤层综合机械化采煤自动控制系统
CN203573140U (zh) 综采工作面设备的远程控制系统
CN202381121U (zh) 一种arm控制的多路压力传感器的矿压检测系统
CN103291338A (zh) 液压支架电液控制系统
CN103457203A (zh) 一种基于物联网的机器人综合布线方法
CN207004518U (zh) 一种具有远程通讯设备的采煤机
CN109613900B (zh) 一种刨煤作业综合监控系统及刨煤机作业综合监控中心
CN106368699B (zh) 一种以自动割煤为主远程干预为辅的采煤机采煤控制方法
CN116736809A (zh) 基于环境压力感知的工作面设备的联动控制系统
CN114893237A (zh) 一种优化极薄煤层综采工作面支架电控及自动化系统
CN217206447U (zh) 采煤综采工作面的煤机截割路径规划控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16826982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16826982

Country of ref document: EP

Kind code of ref document: A1