WO2017029972A1 - プリント配線板及び電子部品 - Google Patents

プリント配線板及び電子部品 Download PDF

Info

Publication number
WO2017029972A1
WO2017029972A1 PCT/JP2016/072504 JP2016072504W WO2017029972A1 WO 2017029972 A1 WO2017029972 A1 WO 2017029972A1 JP 2016072504 W JP2016072504 W JP 2016072504W WO 2017029972 A1 WO2017029972 A1 WO 2017029972A1
Authority
WO
WIPO (PCT)
Prior art keywords
base film
printed wiring
wiring board
layer
copper
Prior art date
Application number
PCT/JP2016/072504
Other languages
English (en)
French (fr)
Inventor
康平 岡本
宏介 三浦
上田 宏
春日 隆
和弘 宮田
Original Assignee
住友電気工業株式会社
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工プリントサーキット株式会社 filed Critical 住友電気工業株式会社
Priority to CN201680046234.7A priority Critical patent/CN107926116B/zh
Priority to US15/752,383 priority patent/US10537017B2/en
Priority to JP2017535316A priority patent/JP6696988B2/ja
Publication of WO2017029972A1 publication Critical patent/WO2017029972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • H05K3/1291Firing or sintering at relative high temperatures for patterns on inorganic boards, e.g. co-firing of circuits on green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Definitions

  • the present invention relates to a printed wiring board and an electronic component.
  • This application claims priority based on Japanese Patent Application No. 2015-160591 filed on August 17, 2015, and incorporates all the content described in the above Japanese application.
  • a printed wiring board having a base film and a conductive pattern laminated on one surface of the base film is known.
  • Such a printed wiring board is obtained, for example, by laminating a seed layer having a thickness of 1 ⁇ m or less on one surface of a base film by sputtering and further laminating a metal plating layer on one surface of the seed layer by electroplating.
  • the metal layer is formed by etching into a desired pattern (see JP-A-9-136378).
  • the above-mentioned printed wiring board is usually shipped as a product after checking the presence or absence of a circuit defect by an automatic optical inspection device after circuit formation.
  • the inspection by the automatic optical inspection apparatus is performed by irradiating the printed wiring board with light, and the presence or absence of a circuit defect is determined based on the contrast of the reflected light.
  • the printed wiring board which concerns on 1 aspect of this invention is a printed wiring board provided with the base film which has a polyimide as a main component, and the conductive pattern laminated
  • the said conductive pattern is A copper particle bonding layer fixed to the base film is included, and the external transmittance at a wavelength of 500 nm in the conductive pattern non-lamination region of the base film is 70% or less of the internal transmittance at a wavelength of 500 nm in the middle layer portion of the base film.
  • an electronic component includes the printed wiring board and an element mounted on the printed wiring board.
  • the base film of the conventional printed wiring board as described above is formed with a transparent synthetic resin as a main component, the light irradiated on the printed wiring board is likely to pass through the base film. As a result, the back side of the printed wiring board can be seen through, which can easily lead to an erroneous inspection. Furthermore, as the thinning of the base film is promoted as in today, the rate of such erroneous inspection tends to increase.
  • This invention is made based on such a situation, and provides the electronic component which can reduce the printed wiring board which can reduce the erroneous inspection rate of a circuit defect, and the incidence rate of a circuit defect. With the goal.
  • the printed wiring board according to one embodiment of the present invention can reduce an erroneous inspection rate of circuit defects. Further, the electronic component of the present invention can reduce the occurrence rate of circuit defects.
  • the printed wiring board which concerns on 1 aspect of this invention is a printed wiring board provided with the base film which has a polyimide as a main component, and the conductive pattern laminated
  • the said conductive pattern is A copper particle bonding layer fixed to the base film is included, and the external transmittance at a wavelength of 500 nm in the conductive pattern non-lamination region of the base film is 70% or less of the internal transmittance at a wavelength of 500 nm in the middle layer portion of the base film.
  • the external transmittance at a wavelength of 500 nm in the non-laminating region of the conductive pattern of the base film is 70% or less of the internal transmittance at a wavelength of 500 nm in the middle layer of the base film.
  • the external transmittance of the conductive pattern non-laminated region of the base film can be reduced while preventing a decrease in the transmittance.
  • the printed wiring board is different from the conventional base film in which the overall light transmittance is determined based on the modification of the composition of the base film or the inclusion of other substances, and the material properties of the main component polyimide in the middle layer
  • the external transmittance of the conductive pattern non-laminated region of the base film can be reduced while maintaining the internal transmittance. Therefore, the printed wiring board can prevent the deterioration of the quality by maintaining the material properties of polyimide, while suppressing the light emitted from the circuit defect inspection device from being transmitted to the back side, thereby erroneously inspecting the circuit defect.
  • the rate can be reduced.
  • the middle layer part of the base film is preferably at least a part other than the modified surface layer.
  • the external transmittance is reduced by modifying the surface layer, and the effect of reducing the erroneous inspection rate of the above-described printed wiring board circuit defects is reduced. Can be played reliably.
  • the base film contains substantially no pigment. As described above, since the base film does not substantially contain a pigment, the erroneous inspection rate of circuit defects can be reduced while more reliably maintaining the material characteristics of the base film.
  • the external transmittance at a wavelength of 500 nm in the conductive pattern non-lamination region of the base film is preferably 15% or less.
  • the erroneous inspection rate of circuit defects can be reliably reduced.
  • An electronic component according to an aspect of the present invention includes the printed wiring board and an element mounted on the printed wiring board.
  • the electronic component includes the printed wiring board that can reduce the erroneous inspection rate of circuit defects, the occurrence rate of circuit defects can be reduced.
  • the “main component” refers to a component having the highest content, for example, a component having a content of 50% by mass or more, and preferably a component having a content of 80% by mass or more.
  • the “copper particle bonding layer” refers to a layer including a structure in which a plurality of copper particles are bonded and bonded.
  • base film external transmittance refers to transmittance in consideration of the surface reflection of the base film, the ratio (I / I 0) of the transmitted light intensity (I) specifically with respect to the incident light intensity (I 0) Means.
  • Light intensity refers to incident light flux per unit area.
  • the “internal transmittance (T) of the base film” refers to the transmittance of the material itself excluding the loss due to surface reflection of the base film, and the external transmittance (T 1 ) and average thickness of the base film having an average thickness d 1.
  • the middle layer portion of the base film refers to a central portion in the thickness direction of the base film, for example, a portion excluding a region of 500 nm or less from the surface of the base film, preferably a region of 200 nm or less from the surface of the base film. It means the part excluding.
  • Modification refers to a change in composition relative to other regions.
  • Substantially no pigment means that no pigment is positively added unless it is inevitably contained, for example, the pigment content is 1% by mass or less, Preferably it is 0.1 mass% or less, More preferably, it means 0.01 mass% or less.
  • a printed wiring board 1 in FIG. 1 includes a base film 2 and a conductive pattern 3 laminated on one surface of the base film 2.
  • a printed wiring board 1 in FIG. 1 is a flexible printed wiring board having flexibility.
  • the base film 2 has insulation and flexibility.
  • the base film 2 is configured as a single layer body (a single resin film in which a plurality of resin films are not laminated) having polyimide as a main component.
  • the printed wiring board 1 can improve the insulation, flexibility, heat resistance, and the like of the base film 2 by using polyimide as a main component.
  • the polyimide has high heat resistance as described above, the external transmittance of the base film 2 is improved by modifying the surface layer of the base film 2 as described later while preventing deterioration of the quality of the base film 2 such as thermal deformation. Can be adjusted easily and reliably.
  • the lower limit of the average thickness of the base film 2 is preferably 5 ⁇ m, more preferably 12 ⁇ m, and even more preferably 25 ⁇ m.
  • the upper limit of the average thickness of the base film 2 is preferably 2 mm, more preferably 1.6 mm, still more preferably 500 ⁇ m, and particularly preferably 200 ⁇ m. If the average thickness of the base film 2 is less than the lower limit, the insulation and mechanical strength may be insufficient. On the other hand, if the average thickness of the base film 2 exceeds the above upper limit, there is a risk that it will violate the demand for thinning.
  • the printed wiring board 1 can easily and reliably reduce the external transmittance of the base film 2 by modifying the surface layer even if the average thickness of the base film 2 is reduced to the above range.
  • the “average thickness” means an average value of measured values at arbitrary 10 points.
  • the surface of the base film 2 to which a later-described copper particle bonding layer 3a is fixed is subjected to a hydrophilic treatment in addition to the modification of the surface layer of the base film 2.
  • a hydrophilic treatment for example, plasma treatment for irradiating plasma to hydrophilize the fixing surface or alkali treatment for hydrophilizing the fixing surface with an alkaline solution can be employed.
  • plasma treatment is preferable as the hydrophilic treatment.
  • the printed wiring board 1 can be more reliably reduced in external transmittance of the base film 2 by performing plasma treatment as the hydrophilic treatment and further modifying the surface layer of the base film 2 described later. Further, the printed wiring board 1 is preferably subjected to blasting in addition to the plasma processing. Among these, as this blasting treatment, wet blasting treatment in which inorganic particles are dispersed in a liquid is more preferable.
  • the base film 2 has a surface layer modified when the copper particle bonding layer 3a is fixed, and an intermediate layer that is at least a portion other than the modified surface layer (hereinafter also referred to as “modified surface layer”). .
  • the modified surface layer is formed in the entire region of the base film 2 in plan view. It is preferable that the arithmetic average roughness Ra of the base film 2 is not substantially changed before and after the modification.
  • the arithmetic average roughness Ra of one surface of the base film 2 after modification is preferably 0.03 ⁇ m or more and 0.12 ⁇ m or less, for example.
  • the “modified surface layer” means a region having a low transmittance and a certain thickness from the fixing surface of the copper particle bonding layer 3a of the base film 2.
  • the copper particle bonding layer 3 a when the copper particle bonding layer 3 a is fixed to both surfaces of the base film 2, this modified surface layer may be present on both surfaces of the base film 2.
  • the portion other than the modified surface layer on the one surface side is the middle layer.
  • the printed wiring board 1 is such that at least a portion other than the modified surface layer of the base film 2 is an intermediate layer portion, thereby reducing the external transmittance by modifying the surface layer and reducing the erroneous inspection rate of circuit defects. An effect can be produced reliably.
  • the lower limit of the average thickness of the modified surface layer is preferably 5 nm, and more preferably 10 nm.
  • the upper limit of the average thickness of the modified surface layer is preferably 100 nm, and more preferably 50 nm. If the average thickness of the modified surface layer is less than the lower limit, the external transmittance of the base film 2 may not be sufficiently reduced. Conversely, if the average thickness of the modified surface layer exceeds the upper limit, the thickness of the middle layer that is important in maintaining the quality of the base film 2 may be unnecessarily reduced.
  • the base film 2 preferably contains substantially no pigment.
  • the printed wiring board 1 can reduce the erroneous inspection rate of circuit defects while maintaining the material characteristics of the base film 2 more reliably because the base film 2 does not substantially contain a pigment.
  • the upper limit of the external transmittance at a wavelength of 500 nm in the conductive pattern non-laminated region X (hereinafter also referred to as “non-laminated region X”) of the base film 2 is 70% of the internal transmittance at a wavelength of 500 nm in the middle layer of the base film 2. Yes, 60% is preferable, and 50% is more preferable.
  • the external transmittance exceeds the upper limit, there is a possibility that transmission of light emitted from the circuit defect inspection apparatus cannot be sufficiently suppressed.
  • the lower limit of the external transmittance at a wavelength of 500 nm in the non-laminated region X of the base film 2 is not particularly limited, but for example, 10% of the internal transmittance at a wavelength of 500 nm in the middle layer of the base film 2. be able to.
  • the upper limit of the external transmittance at a wavelength of 600 nm in the non-laminated region X of the base film 2 is preferably 70% of the internal transmittance at a wavelength of 600 nm in the middle layer portion of the base film 2, more preferably 60%, and even more preferably 50%. .
  • the lower limit of the external transmittance at a wavelength of 600 nm in the non-laminated region X of the base film 2 is not particularly limited. For example, it is 10% of the internal transmittance at a wavelength of 600 nm in the middle layer of the base film 2. be able to.
  • the upper limit of the external transmittance at a wavelength of 500 nm in the non-laminated region X of the base film 2 is preferably 15%, more preferably 12%, and even more preferably 10%.
  • the external transmittance exceeds the upper limit, there is a possibility that transmission of light emitted from the circuit defect inspection apparatus cannot be sufficiently suppressed.
  • it does not specifically limit as a minimum of this external transmittance, For example, it can be 1%.
  • the upper limit of the external transmittance at a wavelength of 600 nm in the non-laminated region X of the base film 2 is preferably 45%, more preferably 40%, and even more preferably 35%.
  • the external transmittance exceeds the upper limit, there is a possibility that transmission of light emitted from the circuit defect inspection apparatus cannot be sufficiently suppressed.
  • it does not specifically limit as a minimum of this external transmittance, For example, it can be 1%.
  • the lower limit of the internal transmittance at a wavelength of 500 nm in the middle layer of the base film 2 is preferably 20%, more preferably 25%.
  • the upper limit of the internal transmittance is preferably 40%, and more preferably 35%. If the internal transmittance is less than the lower limit, the base film 2 may contain a relatively large amount of impurities and the like, so that the material characteristics may not be sufficiently exhibited. Conversely, when the internal transmittance exceeds the upper limit, it may be difficult to manufacture the base film 2.
  • the conductive pattern 3 includes a copper particle bonding layer 3 a that is fixed to the base film 2.
  • the conductive pattern 3 is composed only of the copper particle bonding layer 3a.
  • the conductive pattern 3 is obtained by laminating a copper particle bonding layer 3a on the entire surface of one surface of the base film 2, and patterning the copper particle bonding layer 3a. Examples of the method for laminating the copper particle bonding layer 3a include a method in which an ink containing copper particles is applied to one surface of the base film 2 and baked, as will be described later. In this case, the copper particle bonding layer 3a is configured as a copper particle sintered layer.
  • a method for the conductive pattern 3 for example, a method (subtractive method) in which the copper particle bonding layer 3a laminated on the entire surface of one surface of the base film 2 is masked with a resist pattern or the like and etched (subtractive method) may be employed. It can.
  • the conductive pattern 3 can improve the conductivity while suppressing the manufacturing cost.
  • the modified surface layer can be formed on the base film 2 because the conductive pattern 3 includes such a copper particle bonding layer 3 a.
  • the lower limit of the average diameter of the copper particles constituting the copper particle bonding layer 3a is preferably 1 nm, more preferably 10 nm, and even more preferably 30 nm.
  • the upper limit of the average particle diameter of the copper particles is preferably 500 nm, more preferably 300 nm, and even more preferably 100 nm. If the average particle diameter of the copper particles is less than the lower limit, the dispersibility and stability of the copper particles in the ink used when forming the copper particle bonding layer 3a may be reduced. Conversely, if the average particle diameter of the copper particles exceeds the upper limit, the copper particles may be easily precipitated and the density of the copper particles may be non-uniform when the ink is applied.
  • the “average particle diameter” refers to the average particle diameter represented by the volume center diameter D50 of the particle size distribution of the copper particles in the dispersion.
  • the lower limit of the average thickness of the copper particle bonding layer 3a is preferably 10 nm, more preferably 50 nm, and even more preferably 100 nm.
  • the upper limit of the average thickness of the copper particle bonding layer 3a is preferably 1 ⁇ m, more preferably 700 nm, and even more preferably 500 nm. If the average thickness of the copper particle bonding layer 3a is less than the above lower limit, the copper particle bonding layer 3a may be cut in plan view, and it may be difficult to modify the surface of the base film 2 over the entire region. is there.
  • the average thickness of the copper particle bonding layer 3a exceeds the above upper limit, it takes time to remove the copper particle bonding layer 3a between the conductive patterns 3 when applied to wiring formation by the semi-additive method, and the productivity is increased. May decrease.
  • the lower limit of the peel strength between the base film 2 and the copper particle bonding layer 3a is preferably 1 N / cm, more preferably 1.5 N / cm, still more preferably 2 N / cm, and particularly preferably 5 N / cm.
  • the printed wiring board 1 with high electrical connection reliability can be manufactured by making the said peeling strength into the said minimum or more.
  • the upper limit of the peel strength is not particularly limited, but is, for example, about 20 N / cm.
  • the peel strength can be controlled by, for example, the amount of copper particles fixed to the base film 2, the size of copper particles in the ink described later, the baking temperature and baking time when baking the coating film described later.
  • the upper limit of the lightness L * of the non-laminated region X of the base film 2 is preferably 60, more preferably 55, and even more preferably 50.
  • the surface (one surface of the circuit) of a circuit (hereinafter also simply referred to as “circuit”) formed by the non-stacked region X and the conductive pattern 3
  • the lower limit of the lightness L * of the non-stacked region X is not particularly limited, and may be 30, for example.
  • the “lightness” means the lightness defined by L * a * b * , and is a value based on JIS-Z8781-4 (2013).
  • the upper limit of the chromaticity a * of the non-laminated region X of the base film 2 is preferably 30, more preferably 25, and even more preferably 20. If the chromaticity a * of the non-stacked region X exceeds the upper limit, the contrast between the non-stacked region X and the circuit surface cannot be obtained sufficiently, and there is a possibility that the erroneous inspection rate of circuit defects cannot be reduced sufficiently.
  • the lower limit of the chromaticity a * of the non-stacked region X is not particularly limited, and can be, for example, 10. “Chromaticity” means chromaticity defined by L * a * b * , and is a value based on JIS-Z8781-4 (2013).
  • chromaticity b * of non-lamination field X of base film 2 18 is preferred, 25 is more preferred, 30 is still more preferred, and 34 is especially preferred. If the chromaticity b * of the non-stacked region X is less than the lower limit, the contrast between the non-stacked region X and the circuit surface cannot be obtained sufficiently, and the erroneous inspection rate of circuit defects may not be sufficiently reduced. .
  • the upper limit of the chromaticity b * of the non-stacked region X is not particularly limited, and may be 40, for example.
  • the lower limit of the absolute value of the difference between the lightness L * lightness L * and the non-laminated area X of the circuit surface preferably 15, 20 is more preferable. If the absolute value of the difference in lightness L * is less than the lower limit, there is a possibility that the erroneous inspection rate of circuit defects cannot be reduced sufficiently.
  • the upper limit of the absolute value of the difference in lightness L * is not particularly limited, and may be 40, for example.
  • the absolute value of the difference between the chromaticity a * chromaticity a * and the non-laminated area X of the circuit surface can be, for example, 4 to 10. Further, as the absolute value of the difference between the chromaticity b * chromaticity b * and non-laminated area X of the circuit surface can be, for example, 3 to 20.
  • the printed wiring board 1 adjusts the absolute value of the difference between chromaticity a * and chromaticity b * to the above range. It is possible to easily and reliably reduce the defect inspection rate.
  • the printed wiring board 1 is configured such that the external transmittance at a wavelength of 500 nm in the non-laminated region X of the base film 2 is 70% or less of the internal transmittance at a wavelength of 500 nm in the middle layer of the base film 2. It is possible to reduce the external transmittance of the non-laminated region X of the base film 2 while preventing a decrease in the internal transmittance.
  • the printed wiring board 1 is different from the conventional base film in which the entire light transmittance is determined based on the modification of the composition of the base film and the inclusion of other substances, and the polyimide material which is the main component in the middle layer portion
  • the external transmittance of the non-laminated region X of the base film 2 can be reduced while maintaining the characteristics and increasing the internal transmittance. Therefore, the printed wiring board 1 prevents the deterioration of the quality by maintaining the material characteristics of polyimide, and suppresses the light transmitted from the circuit defect inspection apparatus from being transmitted to the back side, thereby preventing the circuit defect from being mistaken.
  • the inspection rate can be reduced.
  • the modified surface layer is formed by fixing the copper particle bonding layer 3a, it is considered that copper oxide based on the oxidation of the copper particles is diffused in the modified surface layer. Therefore, in addition to the effect of reducing the false inspection rate of circuit defects due to the modification of the surface layer, the printed wiring board 1 firmly adheres the copper particle bonding layer 3a to the base film 2 by the diffusion of copper oxide based on the modification. It becomes easy.
  • the printed wiring board 11 in FIG. 2 is a flexible printed wiring board having flexibility.
  • a printed wiring board 11 in FIG. 2 includes a base film 2 and a conductive pattern 12 laminated on one surface of the base film 2.
  • the printed wiring board 11 of FIG. 2 has a configuration in which the conductive pattern 12 has a metal plating layer 12a formed on the outer surface of the copper particle bonding layer 3a of the printed wiring board 1 of FIG. It is the same.
  • a patterning method for the conductive pattern 12 for example, a subtractive method can be adopted as in the printed wiring board 1 of FIG.
  • the base film 2 and the copper particle bonding layer 3a in the printed wiring board 11 are the same as the printed wiring board 1 in FIG.
  • the metal plating layer 12a is formed by filling the voids of the copper particle bonding layer 3a with plating metal and laminating it on one surface of the copper particle bonding layer 3a. Moreover, this plating metal is filled in all the voids of the copper particle bonding layer 3a.
  • the conductive pattern 12 is peeled off from the base film 2 by filling the voids of the copper particle bonding layer 3 a with the plating metal so that the void portions of the copper particle bonding layer 3 a become the starting points of destruction. Can be suppressed.
  • the said printed wiring board 11 can further accelerate
  • the plating method for forming the metal plating layer 12a is not particularly limited, and may be electroless plating or electroplating. Electroless plating that easily improves the modification effect of the base film 2 by performing heat treatment after filling the plating metal by filling the gaps between the copper particles forming the copper particle bonding layer 3a more preferably is preferable.
  • metal constituting the metal plating layer 12a copper, nickel, silver or the like having good electrical conductivity can be used, but it is preferable to use copper or nickel in consideration of the adhesion with the copper particles.
  • the lower limit of the average thickness of the metal plating layer 12a is preferably 50 nm, more preferably 100 nm, and even more preferably 200 nm.
  • the upper limit of the average thickness of the metal plating layer 12a is preferably 2 ⁇ m, more preferably 1.5 ⁇ m, and even more preferably 1 ⁇ m. If the average thickness of the metal plating layer 12a is less than the lower limit, the plating metal may not be sufficiently filled in the voids of the copper particle bonding layer 3a.
  • the average thickness of the metal plating layer 12a exceeds the upper limit, for example, when the metal plating layer 12a is formed by electroless plating, the time required for the electroless plating may be increased and productivity may be reduced.
  • the metal plating layer 12a is formed by filling the gap of the copper particle bonding layer 3a with the plating metal and laminating it on one surface of the copper particle bonding layer 3a.
  • the metal plating layer 12a does not necessarily have to be laminated on one surface of the copper particle bonding layer 3a as long as the plating metal is filled in the voids of the copper particle bonding layer 3a.
  • the heat treatment is performed after filling the plating metal to promote the modification of the base film 2 and the external transmittance of the base film 2 Can be further reduced.
  • the printed wiring board 21 in FIG. 3 is a flexible printed wiring board having flexibility.
  • the printed wiring board 21 of FIG. 3 includes a base film 2 and a conductive pattern 23 laminated on one surface of the base film 2.
  • the printed wiring board 21 of FIG. 3 is the same as the printed wiring board 1 of FIG. 1 except that the conductive pattern 23 has a metal plating layer formed on the outer surface of the copper particle bonding layer 3a of the printed wiring board 1 of FIG. It is the same.
  • a patterning method for the conductive pattern 23 for example, a subtractive method can be adopted as in the printed wiring board 1 of FIG.
  • the base film 2 and the copper particle bonding layer 3a in the printed wiring board 21 are the same as the printed wiring board 1 in FIG.
  • the metal plating layer has a first plating layer 12a and a second plating layer 22a.
  • the 1st plating layer 12a is set as the structure similar to the metal plating layer 12a of FIG.
  • the second plating layer 22a is laminated on one surface of the first plating layer 12a.
  • the plating method for forming the second plating layer 22a is not particularly limited, and may be electroless plating or electroplating, but the thickness can be adjusted easily and accurately, and a comparison is made. Electroplating that can form the second plating layer 22a in a short time is preferable.
  • Examples of the metal constituting the second plating layer 22a include copper, nickel, silver and the like having good conductivity.
  • the average thickness of the second plating layer 22a is not particularly limited and is set depending on what kind of printed circuit is produced, but may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the metal plating layer of the printed wiring board 21 includes the first plating layer 12a and the second plating layer 22a, the thickness of the conductive pattern 23 can be easily and reliably adjusted.
  • the method of manufacturing the printed wiring board 1 includes a step of forming a coating film 42 by applying an ink containing copper particles 41 on one surface of the base film 2, and a copper particle bonding layer 3 a (copper particles by firing the coating film 42. Forming a sintered layer) and patterning the copper particle bonding layer 3a.
  • Coating film formation process In the coating film forming step, as shown in FIG. 4A, an ink containing copper particles 41 is applied to one surface of the base film 2, and the coating film 42 is formed by drying, for example.
  • the coating film 42 may contain a dispersion medium of the ink.
  • the copper particles 41 dispersed in the ink can be produced by a high temperature treatment method, a liquid phase reduction method, a gas phase method, or the like. Especially, according to the liquid phase reduction method, the manufacturing cost can be further reduced, and the particle diameter of the copper particles 41 can be easily made uniform by stirring in an aqueous solution.
  • a water-soluble copper compound and a dispersant that are the source of copper ions that form the copper particles 41 are dissolved in water, and a reducing agent is added. What is necessary is just to make a copper ion reduce-react for a fixed time.
  • the copper particles 41 produced by the liquid phase reduction method are spherical or granular in shape, and can be made into fine particles.
  • the water-soluble copper compound that is the source of the copper ions include copper nitrate (II) (Cu (NO 3 ) 2 ), copper sulfate (II) pentahydrate (CuSO 4 .5H 2 O), and the like. It is done.
  • the reducing agent various reducing agents capable of reducing and precipitating copper ions in a liquid phase (aqueous solution) reaction system can be used.
  • the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, transition metal ions such as trivalent titanium ions and divalent cobalt ions, reducing sugars such as ascorbic acid, glucose and fructose, Examples include polyhydric alcohols such as ethylene glycol and glycerin.
  • a trivalent titanium ion is preferable as the reducing agent.
  • the liquid phase reduction method using trivalent titanium ions as a reducing agent is referred to as a titanium redox method.
  • the titanium redox method copper ions are reduced by the redox action when trivalent titanium ions are oxidized to tetravalent, and copper particles 41 are deposited. Since the copper particles 41 obtained by the titanium redox method have small and uniform particle diameters, the copper particles 41 are filled with a higher density, and the coating film 42 can be formed into a denser film.
  • the types and proportions of the copper compound, the dispersant and the reducing agent are adjusted, and the stirring speed, temperature, time, pH, etc. are adjusted when the copper compound is reduced. do it.
  • the lower limit of the pH of the reaction system is preferably 7, and the upper limit of the pH of the reaction system is preferably 13.
  • the pH of the reaction system can be easily adjusted to the above range by using a pH adjuster.
  • this pH adjuster common acids or alkalis such as hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, sodium carbonate, ammonia and the like can be used.
  • alkali metals, alkaline earths are used to prevent deterioration of peripheral members.
  • Nitric acid and ammonia which do not contain impurities such as metals, halogen elements, sulfur, phosphorus and boron are preferred.
  • the lower limit of the content ratio of the copper particles 41 in the ink is preferably 5% by mass, more preferably 10% by mass, and still more preferably 20% by mass. Moreover, as an upper limit of the content rate of the copper particle 41 in an ink, 50 mass% is preferable, 40 mass% is more preferable, and 30 mass% is further more preferable.
  • the coating film 42 can be formed into a denser film. On the other hand, when the content ratio of the copper particles 41 exceeds the above upper limit, the film thickness of the coating film 42 may be nonuniform.
  • the ink may contain a dispersant other than the copper particles 41.
  • the dispersant is not particularly limited, and various dispersants that can favorably disperse the copper particles 41 can be used.
  • the lower limit of the molecular weight of the dispersant is preferably 2,000.
  • the upper limit of the molecular weight of the dispersant is preferably 30,000.
  • the molecular weight of the dispersant is less than the lower limit, the effect of preventing the aggregation of the copper particles 41 and maintaining the dispersion may not be obtained sufficiently.
  • the molecular weight of the dispersant exceeds the above upper limit, the bulk of the dispersant is too large, and when the coating film 42 is baked, sintering of the copper particles 41 may be hindered to generate voids.
  • the volume of the dispersant is too large, the denseness of the coating film 42 may decrease, or the decomposition residue of the dispersant may decrease the conductivity.
  • the above dispersant is preferably free from sulfur, phosphorus, boron, halogen and alkali from the viewpoint of preventing deterioration of peripheral members.
  • Preferred dispersants are those having a molecular weight in the above-mentioned range, such as amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, polyacrylic acid, and hydrocarbon-based polymers having a carboxy group in the molecule such as carboxymethylcellulose.
  • High molecular weight dispersants such as molecular dispersants, poval (polyvinyl alcohol), styrene-maleic acid copolymers, olefin-maleic acid copolymers, and copolymers having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule. Examples thereof include molecular dispersants.
  • the above dispersant can also be added to the ink in the form of a solution dissolved in water or a water-soluble organic solvent.
  • the lower limit of the content ratio of the dispersant is preferably 1 part by mass with respect to 100 parts by mass of the copper particles 41.
  • an upper limit of the content rate of a dispersing agent 60 mass parts is preferable with respect to 100 mass parts copper particle 41.
  • the dispersion medium in the ink for example, water can be used.
  • the lower limit of the water content is preferably 20 parts by mass with respect to 100 parts by mass of the copper particles 41.
  • the upper limit of the water content is preferably 1,900 parts by mass with respect to 100 parts by mass of the copper particles 41.
  • the water as the dispersion medium for example, sufficiently swells the dispersant and serves to satisfactorily disperse the copper particles 41 surrounded by the dispersant. However, if the water content is less than the lower limit, the dispersion is performed. The swelling effect of the agent may be insufficient.
  • the content ratio of the water exceeds the upper limit, the content ratio of the copper particles 41 in the ink is decreased, and a good sintered body having a necessary thickness and density may not be formed.
  • the above ink can be blended with an organic solvent as needed for viscosity adjustment, vapor pressure adjustment and the like.
  • organic solvent various organic solvents that are water-soluble can be used. Specific examples thereof include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol; ketones such as acetone and methyl ethyl ketone; Examples include polyhydric alcohols such as ethylene glycol and glycerin and other esters; glycol ethers such as ethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
  • the lower limit of the organic solvent content is preferably 30 parts by mass with respect to 100 parts by mass of the copper particles 41.
  • the upper limit of the content ratio of the organic solvent is preferably 900 parts by mass with respect to 100 parts by mass of the copper particles 41. If the content ratio of the organic solvent is less than the lower limit, the effects of adjusting the viscosity and vapor pressure of the ink may not be sufficiently obtained. On the other hand, when the content ratio of the organic solvent exceeds the upper limit, for example, the swelling effect of the dispersant by water becomes insufficient, and the copper particles 41 may be aggregated in the ink.
  • the copper particle 41 deposited in the reaction system of the liquid phase (aqueous solution) is once powdered through steps such as filtration, washing, drying, and crushing.
  • Ink can be prepared using the above.
  • powdered copper particles 41, a dispersion medium such as water, and a dispersant, an organic solvent, and the like are blended at a predetermined ratio as necessary, whereby an ink containing the copper particles 41 can be obtained.
  • the liquid phase (aqueous solution) containing the precipitated copper particles 41 is subjected to treatment such as ultrafiltration, centrifugation, water washing, and electrodialysis to remove impurities, and if necessary, concentrated to remove water.
  • treatment such as ultrafiltration, centrifugation, water washing, and electrodialysis to remove impurities, and if necessary, concentrated to remove water.
  • the ink containing the copper particle 41 is prepared by mix
  • the ink in which the copper particles 41 are dispersed to one surface of the base film 2 As a method of applying the ink in which the copper particles 41 are dispersed to one surface of the base film 2, a spin coating method, a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a dip coating method, etc.
  • the conventionally known coating method can be used.
  • the ink may be applied to only a part of one surface of the base film 2 by screen printing, a dispenser or the like.
  • the coating film 42 is formed by drying at a temperature equal to or higher than room temperature, for example.
  • As an upper limit of drying temperature 100 degreeC is preferable and 40 degreeC is more preferable. When the drying temperature exceeds the upper limit, cracks may occur in the coating film 42 due to rapid drying of the coating film 42.
  • the copper particle bonding layer 3 a is formed by firing the coating film 42.
  • the copper particles 41 are sintered together by firing, and the sintered body is fixed to one surface of the base film 2 to thereby form the copper particle bonding layer 3a.
  • the dispersant and other organic substances that can be contained in the ink are volatilized or decomposed by baking.
  • the metal oxide derived from the copper particles 41 specifically, mainly copper oxide is diffused in the surface layer of the base film 2 by this firing, and the surface layer of the base film 2 is modified.
  • the firing promotes the oxidation of the copper particles 41 in the vicinity of the interface between the copper particle bonding layer 3a and the base film 2 to surely modify the surface layer of the base film 2, and therefore, in an atmosphere containing a certain amount of oxygen.
  • the lower limit of the oxygen concentration in the firing atmosphere is preferably 1 volume ppm, and more preferably 10 volume ppm.
  • an upper limit of the said oxygen concentration 10,000 volume ppm is preferable and 1,000 volume ppm is more preferable. If the oxygen concentration is less than the lower limit, the amount of copper oxide generated in the vicinity of the interface between the copper particle bonding layer 3a and the base film 2 decreases, and the surface layer of the base film 2 may not be sufficiently modified. Conversely, if the oxygen concentration exceeds the upper limit, the conductivity of the copper particle bonding layer 3a may be reduced due to excessive oxidation of the copper particles 41.
  • the lower limit of the firing temperature is preferably 250 ° C, more preferably 300 ° C, and further preferably 330 ° C.
  • the upper limit of the firing temperature is preferably 500 ° C and more preferably 400 ° C. If the firing temperature is less than the lower limit, the amount of copper oxide or the like produced in the vicinity of the interface between the copper particle bonding layer 3a and the base film 2 decreases, and the surface layer of the base film 2 may not be sufficiently modified. Conversely, if the firing temperature exceeds the upper limit, the base film 2 may be deformed.
  • the firing temperature is not limited as long as it is a temperature at which the sintered body of the copper particles 41 is fixed to the base film 2, and can be appropriately set depending on the combination with the firing time to be described later. It can also be set to about °C or less.
  • the lower limit of the firing time is preferably 80 minutes, and more preferably 100 minutes.
  • the upper limit of the firing time is preferably 180 minutes, and more preferably 150 minutes. If the firing time is less than the lower limit, the surface layer of the base film 2 may not be sufficiently modified. Conversely, if the firing temperature exceeds the upper limit, the base film 2 may be deformed. Note that it is particularly preferable that both the firing temperature and the firing time are within the above ranges. Thereby, the surface layer of the base film 2 can be sufficiently modified while preventing the deformation of the base film 2, and the external transmittance of the base film 2 can be easily and reliably reduced.
  • a conductive pattern is formed on one surface of the base film 2 by patterning the copper particle bonding layer 3a formed in the copper particle bonding layer forming step. Through this patterning step, the printed wiring board 1 of FIG. 1 is obtained.
  • the patterning in the patterning step can be performed by a known etching method.
  • the method of manufacturing the printed wiring board 11 includes a step of forming a coating film 42 by applying an ink containing copper particles 41 on one surface of the base film 2, and a copper particle bonding layer 3 a (copper particles by firing the coating film 42.
  • a step of forming a sintered layer a step of forming a metal plating layer 12a on the outer surface of the copper particle bonding layer 3a, and a step of patterning a laminate including the copper particle bonding layer 3a and the metal plating layer 12a.
  • the coating film forming step and the copper particle bonding layer forming step in the method for manufacturing the printed wiring board 11 are the same as the coating film forming step and the copper particle bonding layer forming step of the printed wiring board 1 described above. Moreover, the patterning in the patterning process of the manufacturing method of the said printed wiring board 11 can be performed by a well-known etching method similarly to the above-mentioned printed wiring board 1. FIG. Therefore, only the metal plating layer forming step will be described below.
  • Metal plating layer forming process In the metal plating layer forming step, the voids of the copper particle bonding layer 3a are filled with the plating metal, and the plating metal is laminated on one surface of the copper particle bonding layer 3a.
  • the plating method for forming the metal plating layer 12a is not particularly limited, and may be electroless plating or electroplating. Electroless plating that easily improves the modification effect of the base film 2 by performing heat treatment after filling the plating metal by filling the gaps between the copper particles forming the copper particle bonding layer 3a more preferably is preferable.
  • the procedure in the case of adopting the above electroless plating is not particularly limited, for example, with a process such as a cleaner process, a water washing process, an acid treatment process, a water washing process, a pre-dip process, an activator process, a water washing process, a reduction process, a water washing process, What is necessary is just to perform electroless plating by a well-known means.
  • the procedure is not particularly limited, and may be appropriately selected from known electrolytic plating baths and plating conditions, for example.
  • the heat treatment temperature and the heat treatment time can be the same as the firing temperature and firing time in the copper particle bonding layer forming step of the printed wiring board 1 described above.
  • the method of manufacturing the printed wiring board 21 includes a step of forming a coating film 42 by applying an ink containing copper particles 41 on one surface of the base film 2, and a copper particle bonding layer 3 a (copper particles by firing the coating film 42. Forming a sintered layer), forming a metal plating layer on the outer surface of the copper particle bonding layer 3a, and patterning a laminate composed of the copper particle bonding layer 3a and the metal plating layer.
  • the coating film forming step and the copper particle bonding layer forming step in the method for manufacturing the printed wiring board 21 are the same as the coating film forming step and the copper particle bonding layer forming step of the printed wiring board 1 described above. Further, the patterning in the patterning step of the method for manufacturing the printed wiring board 21 can be performed by a known etching method as in the above-described printed wiring board 1. Therefore, only the metal plating layer forming step will be described below.
  • the metal plating layer forming step includes a step of forming a first plating layer 12a similar to the metal plating layer 12a and a step of forming a second plating layer 22a on the surface of the first plating layer 12a. Since the first plating layer forming step is the same as the step of forming the metal plating layer 12a described above, description thereof is omitted.
  • the plating method for forming the second plating layer 22a is not particularly limited, and may be electroless plating or electroplating, but the thickness can be adjusted easily and accurately. At the same time, electroplating capable of forming the second plating layer 22a in a relatively short time is preferable.
  • the procedure in the case of employing the above electroless plating is not particularly limited, and can be performed by the same procedure as that for forming the metal plating layer 12a. Moreover, also when employ
  • the printed wiring board manufacturing method can easily and reliably manufacture the printed wiring board. Moreover, the manufacturing method of the said printed wiring board accelerates
  • the printed wiring board does not necessarily have flexibility.
  • the printed wiring board does not need to have a conductive pattern including a copper particle bonding layer on only one surface of the base film, and may have this conductive pattern on both surfaces of the base film.
  • the said printed wiring board may have a metal plating layer on the outer surface of both these copper particle coupling layers.
  • both surface layers of the base film can be modified, and the external transmittance can be further reduced.
  • the printed wiring board can prevent the circuit on the other side from being visually recognized from one side of the base film by modifying the surface layer of the base film. The suppression effect can be promoted.
  • the middle layer portion of the base film does not necessarily have to be the entire portion other than the modified surface layer, and the middle layer portion may include a portion other than the modified surface layer.
  • the printed wiring board is not necessarily formed by the subtractive method, and may be formed by the semi-additive method.
  • the present invention is also directed to electronic components using the printed wiring board.
  • the printed wiring board as in the above embodiment and an electronic component in which an element such as a semiconductor device or a chip resistor is electrically connected are within the intended range. Since the electronic component includes the printed wiring board that can reduce the erroneous inspection rate of circuit defects, the occurrence rate of circuit defects can be reduced.
  • No. 1-No. Electroless plating of copper was performed on one surface of the copper particle bonding layer of the printed wiring board base material 4 to form a first plating layer having an average thickness of 1 ⁇ m. Further, copper electroplating was performed to form a second plating layer having an average thickness of 25 ⁇ m. Subsequently, the substrate for a printed wiring board on which the first plating layer and the second plating layer are formed is heat-treated at 350 ° C. for 120 minutes in a nitrogen atmosphere having an oxygen concentration of 100 ppm by volume, and then using a subtractive method. No. 10 having 10 circuits each having an average circuit width of 100 ⁇ m, an average circuit interval of 100 ⁇ m, and an average circuit length of 3 cm. 1-No. 4 printed wiring boards between terminals were manufactured. Note that an aqueous caustic soda solution was used as an etching solution in the subtractive method.
  • No. 5 A polyimide film having an average thickness of 25 ⁇ m was used as the base film. 1-No. The same surface treatment as in No. 4 was performed. Further, a rolled copper foil (average thickness 12 ⁇ m) was laminated on one surface of the polyimide film using an adhesive. 5 was obtained. Further, this printed wiring board substrate was heat-treated at 350 ° C. for 120 minutes in a nitrogen atmosphere having an oxygen concentration of 100 ppm by volume. Thereafter, using a subtractive method, No. 1 in which 10 circuits having an average circuit width of 100 ⁇ m, an average circuit interval of 100 ⁇ m, and an average circuit length of 3 cm were formed. 5 printed wiring boards between terminals. Note that an aqueous caustic soda solution was used as an etching solution in the subtractive method.
  • a plurality of printed wiring boards 5 were prepared, and a circuit defect was detected for each of the plurality of printed wiring boards by using an automatic optical inspection system (AOI: Automated Optical Inspection system).
  • AOI Automated Optical Inspection system
  • No. in which a circuit defect was detected by AOI. 1-No. 5 About 100 printed wiring boards each, the presence or absence of an accurate circuit defect was visually inspected using an optical microscope. The number of printed wiring boards in which a circuit defect was detected using the optical microscope was A, and No. 1-No.
  • the error detection rate of each circuit defect of the printed wiring board No. 5 was calculated by (100 ⁇ A) / 100 ⁇ 100 [%]. Table 2 shows the calculation results.
  • the ratio of the external transmittance at a wavelength of 500 nm in the non-laminated region of the printed wiring board to the external transmittance at a wavelength of 500 nm of the base film before surface treatment in the substrate for a printed wiring board is 74%. It is high.
  • no. 1-No. When the cross section in the thickness direction of the base film 4 was observed with a scanning electron microscope (SEM), an insulating layer having a composition different from that of the middle layer was formed in the region from the surface to which the copper particle bonding layer was fixed to 10 nm. From this, it is considered that the region where the composition is different is the modified surface layer.
  • the external thickness (T 2 ) at a wavelength of 500 nm of the base film having an average thickness of 20 ⁇ m obtained by removing the above-mentioned modified surface layer of the printed wiring board 4 by sand blasting is measured, and subsequently the average thickness of the base film is reduced to 10 ⁇ m by sand blasting
  • the external transmittance (T 1 ) at a wavelength of 500 nm was measured.
  • the internal transmittance (T) (logT 1 -logT 2 ) ⁇ 25 / (20 ⁇ 10)
  • the external transmittance at a wavelength of 500 nm in the non-laminated region is calculated.
  • the ratio of the external transmittance at a wavelength of 500 nm in the non-laminated region to the internal transmittance at a wavelength of 500 nm in the middle layer of the base film calculated based on the above formula is the base before surface treatment in the substrate for a printed wiring board. It was found that the ratio of the external transmittance at a wavelength of 500 nm in the non-laminated region of the printed wiring board to the external transmittance at a wavelength of 500 nm of the film was substantially equal.
  • No. 1-No. No. 4 printed wiring board is No. 4.
  • the light transmittance except for the modified surface layer was comparable, but the external transmittance of the base film was low, so that the erroneous inspection rate of circuit defects was reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の一態様に係るプリント配線板は、ポリイミドを主成分とするベースフィルムと、このベースフィルムの少なくとも一方の面に積層される導電パターンとを備えるプリント配線板であって、上記導電パターンがベースフィルムに固着する銅粒子結合層を含み、上記ベースフィルムの導電パターン非積層領域の波長500nmの外部透過率が上記ベースフィルムの中層部の波長500nmの内部透過率の70%以下である。

Description

プリント配線板及び電子部品
 本発明は、プリント配線板及び電子部品に関する。
 本出願は、2015年8月17日出願の日本出願第2015-160591号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
 ベースフィルムと、このベースフィルムの一方の面に積層される導電パターンとを有するプリント配線板が知られている。このようなプリント配線板は、例えばベースフィルムの一方の面にスパッタリング法によって厚み1μm以下のシード層を積層し、さらにこのシード層の一方の面に電気めっきによって金属めっき層を積層して得られた金属層を所望のパターンにエッチングすることで形成される(特開平9-136378号公報参照)。
 上述のプリント配線板は、通常回路形成後に自動光学検査装置によって回路欠陥の有無を調べた上で製品として出荷される。また、この自動光学検査装置による検査は、プリント配線板に光を照射することで行われ、反射光のコントラストに基づいて回路欠陥の有無が判断される。
特開平9-136378号公報
 本発明の一態様に係るプリント配線板は、ポリイミドを主成分とするベースフィルムと、このベースフィルムの少なくとも一方の面に積層される導電パターンとを備えるプリント配線板であって、上記導電パターンがベースフィルムに固着する銅粒子結合層を含み、上記ベースフィルムの導電パターン非積層領域の波長500nmの外部透過率が上記ベースフィルムの中層部の波長500nmの内部透過率の70%以下である。
 また、本発明の他の一態様に係る電子部品は、当該プリント配線板と、このプリント配線板に実装される素子とを備える。
本発明の一実施形態に係るプリント配線板の模式的断面図である。 図1のプリント配線板とは異なる実施形態に係るプリント配線板を示す模式的断面図である。 図1及び図2のプリント配線板とは異なる実施形態に係るプリント配線板を示す模式的断面図である。 本発明のプリント配線板の製造方法の塗膜形成工程を示す模式的断面図である。 本発明のプリント配線板の製造方法の銅粒子結合層形成工程を示す模式的断面図である。 本発明のプリント配線板の製造方法の金属めっき層形成工程を示す模式的断面図である。 図4Cの金属めっき層形成工程とは異なる実施形態に係る金属めっき層形成工程を示す模式的断面図である。
[本開示が解決しようとする課題]
 上述のような従来のプリント配線板のベースフィルムは透明な合成樹脂を主成分として形成されるため、プリント配線板に照射された光がこのベースフィルムを透過し易い。またその結果、プリント配線板の裏面側が透けて誤検査につながり易い。さらに、今日のようにベースフィルムの薄膜化が促進されるほど、このような誤検査の割合は高くなる傾向にある。
 本発明は、このような事情に基づいてなされたものであり、回路欠陥の誤検査率を低減することができるプリント配線板及び回路欠陥の発生率を低減することができる電子部品を提供することを目的とする。
[本開示の効果]
 本発明の一態様に係るプリント配線板は、回路欠陥の誤検査率を低減することができる。また、本発明の電子部品は、回路欠陥の発生率を低減することができる。
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 本発明の一態様に係るプリント配線板は、ポリイミドを主成分とするベースフィルムと、このベースフィルムの少なくとも一方の面に積層される導電パターンとを備えるプリント配線板であって、上記導電パターンがベースフィルムに固着する銅粒子結合層を含み、上記ベースフィルムの導電パターン非積層領域の波長500nmの外部透過率が上記ベースフィルムの中層部の波長500nmの内部透過率の70%以下である。
 ベースフィルムの光透過率を低減させるには、ベースフィルムの組成を改質したり、顔料等を含有させたりすることが必要となる。このような組成の改質や他の物質の含有はベースフィルムの耐熱性等の特性の低下を招来する傾向にある。一方、当該プリント配線板は、ベースフィルムの導電パターン非積層領域の波長500nmの外部透過率がベースフィルムの中層部の波長500nmの内部透過率の70%以下とされることで、中層部の内部透過率の低下を防止しつつ、ベースフィルムの導電パターン非積層領域の外部透過率を小さくすることができる。つまり、当該プリント配線板は、ベースフィルムの組成の改質や他の物質の含有に基づいて全体の光透過率が定まる従来のベースフィルムとは異なり、中層部では主成分であるポリイミドの材料特性を維持して内部透過率を高めつつ、ベースフィルムの導電パターン非積層領域の外部透過率は小さくすることができる。従って、当該プリント配線板は、ポリイミドの材料特性を維持することで品質の劣化を防止しつつ、回路欠陥検査装置から照射される光が裏面側に透過するのを抑えることによって回路欠陥の誤検査率を低減することができる。
 上記ベースフィルムの中層部が、少なくとも改質表層以外の部分であるとよい。このように、上記ベースフィルムの中層部が少なくとも改質表層以外の部分であることによって、表層の改質により外部透過率を低下させ、上述のプリント配線板の回路欠陥の誤検査率の低減効果を確実に奏することができる。
 上記ベースフィルムが実質的に顔料を含有しないことが好ましい。このように、上記ベースフィルムが実質的に顔料を含有しないことによって、ベースフィルムの材料特性をより確実に維持しつつ、回路欠陥の誤検査率を低減することができる。
 上記ベースフィルムの導電パターン非積層領域の波長500nmの外部透過率としては、15%以下が好ましい。このように、上記ベースフィルムの波長500nmの外部透過率が上記上限以下であることによって、回路欠陥の誤検査率を確実に低減することができる。
 本発明の一態様に係る電子部品は、当該プリント配線板と、このプリント配線板に実装される素子とを備える。
 当該電子部品は、回路欠陥の誤検査率を低減可能な当該プリント配線板を備えるので、回路欠陥の発生率を低減することができる。
 なお、本発明において、「主成分」とは、最も含有量の多い成分をいい、例えば含有量が50質量%以上の成分をいい、好ましくは80質量%以上の成分をいう。「銅粒子結合層」とは、複数の銅粒子が固着して結合する構造を含む層をいう。「ベースフィルムの外部透過率」とは、ベースフィルムの表面反射を考慮した透過率をいい、具体的には入射光強度(I)に対する透過光強度(I)の比(I/I)を意味する。また、「光強度」とは、単位面積当たりの入射光束をいう。「ベースフィルムの内部透過率(T)」とは、ベースフィルムの表面反射による損失を除いた材料自体の透過率をいい、平均厚みdのベースフィルムの外部透過率(T)及び平均厚みd(但しd>d)の上記ベースフィルムと同一の表面状態を有するベースフィルムの外部透過率(T)を用い、ベースフィルムの平均厚みをLとした場合に、下記式によって算出される値をいう。
 log(T)=(logT-logT)×L/(d-d
 「ベースフィルムの中層部」とは、ベースフィルムの厚さ方向における中央部分をいい、例えばベースフィルムの表面から500nm以下の領域を除いた部分をいい、好ましくはベースフィルムの表面から200nm以下の領域を除いた部分をいう。「改質」とは、その他の領域に対して組成が変化していることをいう。「実質的に顔料を含有しない」とは、不可避的に含まれる場合を除いて積極的に顔料が添加されていないことをいい、例えば顔料の含有量が1質量%以下であることをいい、好ましくは0.1質量%以下、より好ましくは0.01質量%以下であることをいう。
[本発明の実施形態の詳細]
 以下、適宜図面を参照しつつ、本発明の実施形態に係るプリント配線板について説明する。
[第一実施形態]
<プリント配線板>
 図1のプリント配線板1は、ベースフィルム2と、ベースフィルム2の一方の面に積層される導電パターン3とを備える。図1のプリント配線板1は、可撓性を有するフレキシブルプリント配線板である。
(ベースフィルム)
 ベースフィルム2は、絶縁性及び可撓性を有する。ベースフィルム2は、ポリイミドを主成分とする単層体(複数の樹脂フィルムを積層していない単一の樹脂フィルム)として構成される。当該プリント配線板1は、ポリイミドを主成分とすることによって、ベースフィルム2の絶縁性、柔軟性、耐熱性等を向上することができる。また、このようにポリイミドは耐熱性が高いことから、ベースフィルム2の熱変形等の品質の劣化を防止しつつ、後述するようにベースフィルム2の表層の改質によってベースフィルム2の外部透過率を容易かつ確実に調整することができる。
 ベースフィルム2の平均厚みの下限としては、5μmが好ましく、12μmがより好ましく、25μmがさらに好ましい。一方、ベースフィルム2の平均厚みの上限としては、2mmが好ましく、1.6mmがより好ましく、500μmがさらに好ましく、200μmが特に好ましい。ベースフィルム2の平均厚みが上記下限に満たないと、絶縁性及び機械的強度が不十分となるおそれがある。逆に、ベースフィルム2の平均厚みが上記上限を超えると、薄膜化の要請に反するおそれがある。これに対し、ベースフィルム2の平均厚みが上記範囲内であることで、ベースフィルム2の絶縁性及び機械的強度の低下を抑えつつ、薄膜化を促進することができる。また、当該プリント配線板1は、ベースフィルム2の平均厚みを上記範囲と薄くしても、表層の改質によってベースフィルム2の外部透過率を容易かつ確実に小さくすることができる。なお、「平均厚み」とは、任意の10点での測定値の平均値をいう。
 また、ベースフィルム2の後述する銅粒子結合層3aが固着される面にはベースフィルム2の表層の改質に加え、親水化処理を施すことが好ましい。上記親水化処理としては、例えばプラズマを照射して固着面を親水化するプラズマ処理や、アルカリ溶液で固着面を親水化するアルカリ処理を採用することができる。固着面に親水化処理を施すことにより、固着面に対するインクの表面張力が小さくなるので、インクを固着面に均一に塗布することができる。中でも、上記親水化処理としてはプラズマ処理が好ましい。当該プリント配線板1は、上記親水化処理としてプラズマ処理を施し、さらに後述するベースフィルム2の表層の改質を行うことでこのベースフィルム2の外部透過率をより確実に低下することができる。さらに、当該プリント配線板1は、上記プラズマ処理に加えて、ブラスト処理を行うことも好ましい。中でも、このブラスト処理としては、液中に無機粒子を分散させて行うウェットブラスト処理がより好ましい。
 ベースフィルム2は、銅粒子結合層3aの固着の際に改質された表層と、少なくともこの改質された表層(以下、「改質表層」ともいう。)以外の部分である中層とを有する。また、この改質表層は、平面視におけるベースフィルム2の全領域に形成されている。ベースフィルム2は、この改質前後で算術平均粗さRaが実質的に変化していないことが好ましい。改質後におけるベースフィルム2の一方の面の算術平均粗さRaとしては、例えば0.03μm以上0.12μm以下が好ましい。なお、「改質表層」とは、ベースフィルム2の銅粒子結合層3aの固着面から一定の厚みを有する透過率が低い領域を意味する。そのため、例えばベースフィルム2の両面に銅粒子結合層3aが固着される場合、この改質表層はベースフィルム2の両面側に存在していてもよい。一方、ベースフィルム2の一方の面のみに銅粒子結合層3aが固着される場合、この一方の面側の改質表層以外の部分が中層とされる。当該プリント配線板1は、このようにベースフィルム2の少なくとも改質表層以外の部分が中層部とされることによって、表層の改質により外部透過率を低下させ、回路欠陥の誤検査率の低減効果を確実に奏することができる。
 上記改質表層の平均厚みの下限としては、5nmが好ましく、10nmがより好ましい。一方、上記改質表層の平均厚みの上限としては、100nmが好ましく、50nmがより好ましい。上記改質表層の平均厚みが上記下限に満たないと、ベースフィルム2の外部透過率が十分に小さくならないおそれがある。逆に、上記改質表層の平均厚みが上記上限を超えると、ベースフィルム2の品質を維持する上で重要な中層の厚みが不要に小さくなるおそれがある。
 ベースフィルム2は、実質的に顔料を含有しないことが好ましい。当該プリント配線板1は、ベースフィルム2が実質的に顔料を含有しないことによって、ベースフィルム2の材料特性をより確実に維持しつつ、回路欠陥の誤検査率を低減することができる。
 ベースフィルム2の導電パターン非積層領域X(以下「非積層領域X」ともいう)の波長500nmの外部透過率の上限としては、ベースフィルム2の中層部の波長500nmの内部透過率の70%であり、60%が好ましく、50%がより好ましい。上記外部透過率が上記上限を超えると、回路欠陥検査装置から照射される光の透過を十分に抑えられないおそれがある。なお、ベースフィルム2の非積層領域Xの波長500nmの外部透過率の下限としては、特に限定されるものではないが、例えばベースフィルム2の中層部の波長500nmの内部透過率の10%とすることができる。
 ベースフィルム2の非積層領域Xの波長600nmの外部透過率の上限としては、ベースフィルム2の中層部の波長600nmの内部透過率の70%が好ましく、60%がより好ましく、50%がさらに好ましい。上記外部透過率が上記上限を超えると、回路欠陥検査装置から照射される光の透過を十分に抑えられないおそれがある。なお、ベースフィルム2の非積層領域Xの波長600nmの外部透過率の下限としては、特に限定されるものではないが、例えばベースフィルム2の中層部の波長600nmの内部透過率の10%とすることができる。
 ベースフィルム2の非積層領域Xの波長500nmの外部透過率の上限としては、15%が好ましく、12%がより好ましく、10%がさらに好ましい。上記外部透過率が上記上限を超えると、回路欠陥検査装置から照射される光の透過を十分に抑えられないおそれがある。なお、上記外部透過率は小さい方が好ましいため、この外部透過率の下限としては特に限定されるものではないが、例えば1%とすることができる。
 ベースフィルム2の非積層領域Xの波長600nmの外部透過率の上限としては、45%が好ましく、40%がより好ましく、35%がさらに好ましい。上記外部透過率が上記上限を超えると、回路欠陥検査装置から照射される光の透過を十分に抑えられないおそれがある。なお、上記外部透過率は小さい方が好ましいため、この外部透過率の下限としては特に限定されるものではないが、例えば1%とすることができる。
 ベースフィルム2の中層部の波長500nmの内部透過率の下限としては、20%が好ましく、25%がより好ましい。一方、上記内部透過率の上限としては、40%が好ましく、35%がより好ましい。上記内部透過率が上記下限に満たないと、ベースフィルム2に比較的多くの不純物等が含まれることにより材料特性が十分に発揮できないおそれがある。逆に、上記内部透過率が上記上限を超えると、ベースフィルム2の製造が困難になるおそれがある。
(導電パターン)
 導電パターン3は、ベースフィルム2に固着する銅粒子結合層3aを含む。特に本実施形態では、導電パターン3はこの銅粒子結合層3aのみから構成されている。導電パターン3は、ベースフィルム2の一方の面の全面に銅粒子結合層3aを積層した上、この銅粒子結合層3aをパターニングしたものである。銅粒子結合層3aの積層方法としては、後述するように、銅粒子を含むインクをベースフィルム2の一方の面に塗布して焼成する方法が挙げられる。また、この場合、銅粒子結合層3aは、銅粒子焼結層として構成される。導電パターン3のパターニング方法としては、例えばベースフィルム2の一方の面の全面に積層された銅粒子結合層3aにレジストパターン等のマスキングを施してエッチングする方法(サブトラクティブ法)を採用することができる。導電パターン3は、このような銅粒子結合層3aを含むことによって、製造コストを抑えつつ、導通性を向上することができる。また、導電パターン3がこのような銅粒子結合層3aを含むことで、ベースフィルム2に改質表層を形成することができる。
 銅粒子結合層3aを構成する銅粒子の平均径の下限としては、1nmが好ましく、10nmがより好ましく、30nmがさらに好ましい。一方、上記銅粒子の平均粒子径の上限としては、500nmが好ましく、300nmがより好ましく、100nmがさらに好ましい。上記銅粒子の平均粒子径が上記下限に満たないと、銅粒子結合層3aを形成する際に用いられるインク中での銅粒子の分散性及び安定性が低下するおそれがある。逆に、上記銅粒子の平均粒子径が上記上限を超えると、銅粒子が沈殿し易くなるおそれがあると共にインクを塗布した際に銅粒子の密度が不均一になるおそれがある。なお、「平均粒子径」とは、分散液中の銅粒子の粒度分布の体積中心径D50で表される平均粒子径を指す。
 銅粒子結合層3aの平均厚みの下限としては、10nmが好ましく、50nmがより好ましく、100nmがさらに好ましい。一方、銅粒子結合層3aの平均厚みの上限としては、1μmが好ましく、700nmがより好ましく、500nmがさらに好ましい。銅粒子結合層3aの平均厚みが上記下限に満たないと、平面視において銅粒子結合層3aに切れ目が生じ、ベースフィルム2の表面を全領域に亘って改質するのが困難になるおそれがある。逆に、銅粒子結合層3aの平均厚みが上記上限を超えると、セミアディティブ法による配線形成に適用した際、導電パターン3間の銅粒子結合層3aの除去に時間を要し、生産性が低下するおそれがある。
 ベースフィルム2と銅粒子結合層3aとの間の剥離強度の下限としては、1N/cmが好ましく、1.5N/cmがより好ましく、2N/cmがさらに好ましく、5N/cmが特に好ましい。上記剥離強度を上記下限以上とすることで、電気的な接続信頼性の高いプリント配線板1を製造できる。一方、上記剥離強度の上限としては、特に限定されないが、例えば20N/cm程度である。上記剥離強度は、例えばベースフィルム2に固着される銅粒子の量、後述するインク中の銅粒子のサイズ、後述する塗膜を焼成する際の焼成温度及び焼成時間等により制御できる。
 ベースフィルム2の非積層領域Xの明度Lの上限としては、60が好ましく、55がより好ましく、50がさらに好ましい。上記非積層領域Xの明度Lが上記上限を超えると、上記非積層領域Xと導電パターン3によって形成される回路(以下、単に「回路」ともいう。)の表面(回路の一方の面)とのコントラストが十分に得られず、回路欠陥の誤検査率を十分に低減できないおそれがある。なお、上記非積層領域Xの明度Lの下限としては、特に限定されるものではなく、例えば30とすることができる。また、「明度」とは、Lで規定される明度を意味し、JIS-Z8781-4(2013)に準拠した値をいう。
 ベースフィルム2の非積層領域Xの色度aの上限としては、30が好ましく、25がより好ましく、20がさらに好ましい。上記非積層領域Xの色度aが上記上限を超えると、上記非積層領域Xと回路表面とのコントラストが十分に得られず、回路欠陥の誤検査率を十分に低減できないおそれがある。なお、上記非積層領域Xの色度aの下限としては、特に限定されるものではなく、例えば10とすることができる。また、「色度」とは、Lで規定される色度を意味し、JIS-Z8781-4(2013)に準拠した値をいう。
 ベースフィルム2の非積層領域Xの色度bの下限としては、18が好ましく、25がより好ましく、30がさらに好ましく、34が特に好ましい。上記非積層領域Xの色度bが上記下限に満たないと、上記非積層領域Xと回路表面とのコントラストが十分に得られず、回路欠陥の誤検査率を十分に低減できないおそれがある。なお、上記非積層領域Xの色度bの上限としては、特に限定されるものではなく、例えば40とすることができる。
 回路表面の明度Lと上記非積層領域Xの明度Lとの差の絶対値の下限としては、15が好ましく、20がより好ましい。上記明度Lの差の絶対値が上記下限に満たないと、回路欠陥の誤検査率を十分に低減できないおそれがある。なお、上記明度Lの差の絶対値の上限としては、特に限定されるものではなく、例えば40とすることができる。
 また、回路表面の色度aと上記非積層領域Xの色度aとの差の絶対値としては、例えば4以上10以下とすることができる。さらに、回路表面の色度bと非積層領域Xの色度bとの差の絶対値としては、例えば3以上20以下とすることができる。当該プリント配線板1は、上述の明度Lの差の絶対値を上記範囲とすることに加え、色度a及び色度bの差の絶対値を上記範囲に調整することによって、回路欠陥の誤検査率を容易かつ確実に低減することができる。
<利点>
 ベースフィルムの光透過率を低減させるには、ベースフィルムの組成を改質したり、顔料等を含有させたりすることが必要となる。このような組成の改質や他の物質の含有はベースフィルムの耐熱性等の特性の低下を招来する傾向にある。一方、当該プリント配線板1は、ベースフィルム2の非積層領域Xの波長500nmの外部透過率がベースフィルム2の中層部の波長500nmの内部透過率の70%以下とされることで、中層部の内部透過率の低下を防止しつつ、ベースフィルム2の非積層領域Xの外部透過率を小さくすることができる。つまり、当該プリント配線板1は、ベースフィルムの組成の改質や他の物質の含有に基づいて全体の光透過率が定まる従来のベースフィルムとは異なり、中層部では主成分であるポリイミドの材料特性を維持して内部透過率を高めつつ、ベースフィルム2の非積層領域Xの外部透過率は小さくすることができる。従って、当該プリント配線板1は、ポリイミドの材料特性を維持することで品質の劣化を防止しつつ、回路欠陥検査装置から照射される光が裏面側に透過するのを抑えることによって回路欠陥の誤検査率を低減することができる。また、上記改質表層は銅粒子結合層3aの固着によって形成されるため、この改質表層には銅粒子の酸化に基づく酸化銅が拡散されていると考えられる。そのため、当該プリント配線板1は、表層の改質による回路欠陥の誤検査率の低減効果に加え、この改質に基づく酸化銅の拡散により銅粒子結合層3aをベースフィルム2により強固に固着し易くなる。
[第二実施形態]
<プリント配線板>
 図2のプリント配線板11は、可撓性を有するフレキシブルプリント配線板である。図2のプリント配線板11は、ベースフィルム2と、ベースフィルム2の一方の面に積層される導電パターン12とを備える。図2のプリント配線板11は、導電パターン12が図1のプリント配線板1の銅粒子結合層3aの外面に金属めっき層12aが形成された構成とされる以外、図1のプリント配線板1と同様である。また、導電パターン12のパターニング方法としては、例えば図1のプリント配線板1と同様、サブトラクティブ法を採用することができる。当該プリント配線板11におけるベースフィルム2及び銅粒子結合層3aは、図1のプリント配線板1と同様のため、同一符号を付して説明を省略する。
(金属めっき層)
 金属めっき層12aは、めっき金属が銅粒子結合層3aの空隙に充填され、かつ銅粒子結合層3aの一方の面に積層されることで形成されている。また、このめっき金属は、銅粒子結合層3aの全ての空隙に充填されている。当該プリント配線板11は、銅粒子結合層3aの空隙にめっき金属が充填されることで、銅粒子結合層3aの空隙部分が破壊起点となって導電パターン12がベースフィルム2から剥離するのを抑制することができる。また、当該プリント配線板11は、銅粒子結合層3aの空隙にめっき金属が充填されることで、めっき金属の充填後に熱処理を施すことによってベースフィルム2の改質をさらに促進することができる。
 金属めっき層12aを形成するためのめっき方法は、特に限定されず、無電解めっきであっても電気めっきであってもよい。銅粒子結合層3aを形成する銅粒子間の空隙をより的確に埋めることで、めっき金属の充填後に熱処理を施すことによってベースフィルム2の改質効果を向上し易い無電解めっきが好ましい。
 金属めっき層12aを構成する金属としては、導通性のよい銅、ニッケル、銀等を用いることができるが、上記銅粒子との密着力を考慮して、銅又はニッケルを用いることが好ましい。
 金属めっき層12aの平均厚みの下限としては、50nmが好ましく、100nmがより好ましく、200nmがさらに好ましい。一方、金属めっき層12aの平均厚みの上限としては、2μmが好ましく、1.5μmがより好ましく、1μmがさらに好ましい。金属めっき層12aの平均厚みが上記下限に満たないと、めっき金属が銅粒子結合層3aの空隙に十分に充填されないおそれがある。逆に、金属めっき層12aの平均厚みが上記上限を超えると、例えば無電解めっきによって金属めっき層12aを形成する場合、この無電解めっきに要する時間が長くなり生産性が低下するおそれがある。
 なお、本実施形態では、金属めっき層12aは、めっき金属が銅粒子結合層3aの空隙に充填され、かつ銅粒子結合層3aの一方の面に積層されることで形成されている。しかしながら、金属めっき層12aは、めっき金属が銅粒子結合層3aの空隙に充填される限り、必ずしも銅粒子結合層3aの一方の面にまで積層される必要はない。
<利点>
 当該プリント配線板11は、銅粒子結合層3aの外面に金属めっき層12aを有するので、めっき金属の充填後に熱処理を施すことによってベースフィルム2の改質を促進してベースフィルム2の外部透過率をさらに小さくすることができる。
[第三実施形態]
<プリント配線板>
 図3のプリント配線板21は、可撓性を有するフレキシブルプリント配線板である。図3のプリント配線板21は、ベースフィルム2と、ベースフィルム2の一方の面に積層される導電パターン23とを備える。図3のプリント配線板21は、導電パターン23が図1のプリント配線板1の銅粒子結合層3aの外面に金属めっき層が形成された構成とされる以外、図1のプリント配線板1と同様である。また、導電パターン23のパターニング方法としては、例えば図1のプリント配線板1と同様、サブトラクティブ法を採用することができる。当該プリント配線板21におけるベースフィルム2及び銅粒子結合層3aは、図1のプリント配線板1と同様のため、同一符号を付して説明を省略する。
(金属めっき層)
 金属めっき層は、第1めっき層12aと、第2めっき層22aとを有する。第1めっき層12aは、図2の金属めっき層12aと同様の構成とされる。
(第2めっき層)
 第2めっき層22aは、第1めっき層12aの一方の面に積層される。第2めっき層22aを形成するためのめっき方法は、特に限定されず、無電解めっきであっても電気めっきであってもよいが、厚みの調整を容易かつ正確に行うことができると共に、比較的短時間で第2めっき層22aを形成することができる電気めっきが好ましい。
 第2めっき層22aを構成する金属としては、例えば導通性のよい銅、ニッケル、銀等が挙げられる。
 第2めっき層22aの平均厚みは、どのようなプリント回路を作製するかによって設定されるもので特に限定されるものではないが、例えば1μm以上100μm以下とすることができる。
<利点>
 当該プリント配線板21は、金属めっき層が第1めっき層12a及び第2めっき層22aを有するので、導電パターン23の厚みを容易かつ確実に調整することができる。
<プリント配線板の製造方法>
 次に、図4A~4Dを参照しつつ、当該プリント配線板1,11,21の製造方法を説明する。
 まず、図4A及び図4Bを参照して、当該プリント配線板1の製造方法を説明する。当該プリント配線板1の製造方法は、ベースフィルム2の一方の面に銅粒子41を含むインクの塗布により塗膜42を形成する工程と、塗膜42の焼成により銅粒子結合層3a(銅粒子焼結層)を形成する工程と、銅粒子結合層3aをパターニングする工程とを備える。
(塗膜形成工程)
 上記塗膜形成工程では、図4Aに示すように、ベースフィルム2の一方の面に銅粒子41を含むインクを塗布し、例えば乾燥することにより塗膜42を形成する。なお、塗膜42には、上記インクの分散媒等が含まれていてもよい。
(銅粒子)
 上記インクに分散させる銅粒子41は、高温処理法、液相還元法、気相法等で製造することができる。中でも、液相還元法によれば、製造コストをより低減できる上、水溶液中での攪拌等により、容易に銅粒子41の粒子径を均一にすることができる。
 液相還元法によって銅粒子41を製造するためには、例えば水に銅粒子41を形成する銅イオンのもとになる水溶性の銅化合物と分散剤とを溶解させると共に、還元剤を加えて一定時間銅イオンを還元反応させればよい。液相還元法で製造される銅粒子41は、形状が球状又は粒状で揃っており、しかも微細な粒子とすることができる。上記銅イオンのもとになる水溶性の銅化合物としては、硝酸銅(II)(Cu(NO)、硫酸銅(II)五水和物(CuSO・5HO)等が挙げられる。
 上記還元剤としては、液相(水溶液)の反応系において、銅イオンを還元及び析出させることができる種々の還元剤を用いることができる。この還元剤としては、例えば水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、3価のチタンイオンや2価のコバルトイオン等の遷移金属のイオン、アスコルビン酸、グルコースやフルクトース等の還元性糖類、エチレングリコールやグリセリン等の多価アルコールなどが挙げられる。中でも、還元剤としては3価のチタンイオンが好ましい。なお、3価のチタンイオンを還元剤とする液相還元法は、チタンレドックス法という。チタンレドックス法では、3価のチタンイオンが4価に酸化される際の酸化還元作用によって銅イオンを還元し、銅粒子41を析出させる。チタンレドックス法で得られる銅粒子41は、粒子径が小さくかつ揃っているため、銅粒子41がより高密度に充填され、塗膜42をより緻密な膜に形成することができる。
 銅粒子41の粒子径を調整するには、銅化合物、分散剤及び還元剤の種類並びに配合割合を調整すると共に、銅化合物を還元反応させる際に、攪拌速度、温度、時間、pH等を調整すればよい。反応系のpHの下限としては7が好ましく、反応系のpHの上限としては13が好ましい。反応系のpHを上記範囲とすることで、微小な粒子径の銅粒子41を得ることができる。このときpH調整剤を用いることで、反応系のpHを上記範囲に容易に調整することができる。このpH調整剤としては、塩酸、硫酸、硝酸、水酸化ナトリウム、炭酸ナトリウム、アンモニア等の一般的な酸又はアルカリが使用できるが、特に周辺部材の劣化を防止するために、アルカリ金属、アルカリ土類金属、ハロゲン元素、硫黄、リン、ホウ素等の不純物を含まない硝酸及びアンモニアが好ましい。
 インク中の銅粒子41の含有割合の下限としては、5質量%が好ましく、10質量%がより好ましく、20質量%がさらに好ましい。また、インク中の銅粒子41の含有割合の上限としては、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。銅粒子41の含有割合を上記下限以上とすることで、塗膜42をより緻密な膜に形成することができる。一方、銅粒子41の含有割合が上記上限を超えると、塗膜42の膜厚が不均一になるおそれがある。
(その他の成分)
 上記インクには、銅粒子41以外に分散剤が含まれていてもよい。この分散剤としては、特に限定されず、銅粒子41を良好に分散させることができる種々の分散剤を用いることができる。分散剤の分子量の下限としては、2,000が好ましい。一方、分散剤の分子量の上限としては、30,000が好ましい。分子量が上記範囲の分散剤を用いることで、銅粒子41をインク中に良好に分散させることができ、塗膜42の膜質を緻密でかつ欠陥のないものにすることができる。上記分散剤の分子量が上記下限に満たないと、銅粒子41の凝集を防止して分散を維持する効果が十分に得られないおそれがある。一方、上記分散剤の分子量が上記上限を超えると、分散剤の嵩が大きすぎて、塗膜42の焼成時において、銅粒子41同士の焼結を阻害してボイドを生じさせるおそれがある。また、分散剤の嵩が大きすぎると、塗膜42の緻密さが低下したり、分散剤の分解残渣が導電性を低下させるおそれがある。
 上記分散剤は、周辺部材の劣化防止の観点より、硫黄、リン、ホウ素、ハロゲン及びアルカリを含まないものが好ましい。好ましい分散剤としては、分子量が上記範囲にあるもので、ポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子分散剤、ポリアクリル酸、カルボキシメチルセルロース等の分子中にカルボキシ基を有する炭化水素系の高分子分散剤、ポバール(ポリビニルアルコール)、スチレン-マレイン酸共重合体、オレフィン-マレイン酸共重合体、1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の極性基を有する高分子分散剤などを挙げることができる。
 上記分散剤は、水又は水溶性有機溶媒に溶解させた溶液の状態でインクに配合することもできる。インクに分散剤を配合する場合、分散剤の含有割合の下限としては、100質量部の銅粒子41に対して1質量部が好ましい。一方、分散剤の含有割合の上限としては、100質量部の銅粒子41に対して60質量部が好ましい。上記分散剤の含有割合が上記下限に満たないと、銅粒子41の凝集防止効果が不十分となるおそれがある。逆に、上記分散剤の含有割合が上記上限を超えると、塗膜42の焼成時に過剰の分散剤が銅粒子41の焼結を阻害してボイドが発生するおそれがあり、また、分散剤の分解残渣が不純物として焼結体中に残存して導電性を低下させるおそれがある。
 上記インクにおける分散媒としては、例えば水が使用できる。水を分散媒とする場合、水の含有割合の下限としては、100質量部の銅粒子41に対して20質量部が好ましい。一方、水の含有割合の上限としては、100質量部の銅粒子41に対して1,900質量部が好ましい。分散媒である水は、例えば分散剤を十分に膨潤させて分散剤で囲まれた銅粒子41を良好に分散させる役割を果たすが、上記水の含有割合が上記下限に満たないと、この分散剤の膨潤効果が不十分となるおそれがある。逆に、上記水の含有割合が上記上限を超えると、インク中の銅粒子41の含有割合が少なくなり、必要な厚みと密度とを有する良好な焼結体を形成できないおそれがある。
 上記インクには、粘度調整や蒸気圧調整等のために必要に応じて有機溶媒を配合することができる。このような有機溶媒としては、水溶性である種々の有機溶媒が使用可能である。その具体例としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;エチレングリコール、グリセリン等の多価アルコールやその他のエステル類;エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類などが挙げられる。
 インクに有機溶媒を配合する場合、有機溶媒の含有割合の下限としては、100質量部の銅粒子41に対して30質量部が好ましい。一方、有機溶媒の含有割合の上限としては、100質量部の銅粒子41に対して900質量部が好ましい。有機溶媒の含有割合が上記下限に満たないと、インクの粘度調整及び蒸気圧調整の効果が十分に得られないおそれがある。逆に、有機溶媒の含有割合が上記上限を超えると、例えば水による分散剤の膨潤効果が不十分となり、インク中で銅粒子41の凝集が生じるおそれがある。
 なお、液相還元法で銅粒子41を製造する場合、液相(水溶液)の反応系で析出させた銅粒子41は、ろ別、洗浄、乾燥、解砕等の工程を経て、一旦粉末状としたものを用いてインクを調製することができる。この場合は、粉末状の銅粒子41と、水等の分散媒と、必要に応じて分散剤、有機溶媒等とを所定の割合で配合し、銅粒子41を含むインクとすることができる。このとき、銅粒子41を析出させた液相(水溶液)を出発原料としてインクを調製することが好ましい。具体的には、析出した銅粒子41を含む液相(水溶液)を限外ろ過、遠心分離、水洗、電気透析等の処理に供して不純物を除去し、必要に応じて濃縮して水を除去する。又は、逆に水を加えて銅粒子41の濃度を調整した後、さらに必要に応じて有機溶媒を所定の割合で配合することによって銅粒子41を含むインクを調製する。この方法では、銅粒子41の乾燥時の凝集による粗大で不定形な粒子の発生を防止することができ、緻密で均一な焼結体を形成し易い。
 銅粒子41を分散させたインクをベースフィルム2の一方の面に塗布する方法としては、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等の従来公知の塗布法を用いることができる。また、スクリーン印刷、ディスペンサ等によりベースフィルム2の一方の面の一部のみにインクを塗布するようにしてもよい。インクの塗布後、例えば室温以上の温度で乾燥することにより塗膜42が形成される。乾燥温度の上限としては、100℃が好ましく、40℃がより好ましい。乾燥温度が上記上限を超えると、塗膜42の急激な乾燥により、塗膜42にクラックが発生するおそれがある。
(銅粒子結合層形成工程)
 上記銅粒子結合層形成工程では、塗膜42の焼成により銅粒子結合層3aを形成する。
 上記銅粒子結合層形成工程では、図4Bに示すように、焼成によって銅粒子41同士を焼結すると共に、焼結体をベースフィルム2の一方の面に固着することで銅粒子結合層3aを形成する。なお、インクに含まれ得る分散剤やその他の有機物は、焼成によって揮発又は分解される。また、この焼成によって、ベースフィルム2の表層に銅粒子41に由来する金属酸化物、具体的には主に酸化銅が拡散し、ベースフィルム2の表層が改質されると考えられる。
 上記焼成は、銅粒子結合層3aとベースフィルム2との界面近傍の銅粒子41の酸化を促進させてベースフィルム2の表層を確実に改質するため、一定量の酸素が含まれる雰囲気下で行うことが好ましい。この場合、焼成雰囲気の酸素濃度の下限としては、1体積ppmが好ましく、10体積ppmがより好ましい。また、上記酸素濃度の上限としては、10,000体積ppmが好ましく、1,000体積ppmがより好ましい。上記酸素濃度が上記下限に満たないと、銅粒子結合層3aとベースフィルム2との界面近傍における酸化銅の生成量が少なくなり、ベースフィルム2の表層を十分に改質できないおそれがある。逆に、上記酸素濃度が上記上限を超えると、銅粒子41の過度の酸化によって銅粒子結合層3aの導電性が低下するおそれがある。
 焼成温度の下限としては、250℃が好ましく、300℃がより好ましく、330℃がさらに好ましい。一方、焼成温度の上限としては、500℃が好ましく、400℃がより好ましい。焼成温度が上記下限に満たないと、銅粒子結合層3aとベースフィルム2との界面近傍における酸化銅等の生成量が少なくなり、ベースフィルム2の表層を十分に改質できないおそれがある。逆に、焼成温度が上記上限を超えると、ベースフィルム2が変形するおそれがある。但し、上記焼成温度としては、銅粒子41の焼結体がベースフィルム2に固着される温度である限り限定されるものではなく、後述する焼成時間との組合せによって適宜設定可能であり、例えば100℃以下程度とすることもできる。
 焼成時間の下限としては、80分が好ましく、100分がより好ましい。一方、焼成時間の上限としては、180分が好ましく、150分がより好ましい。焼成時間が上記下限に満たないと、ベースフィルム2の表層を十分に改質できないおそれがある。逆に、焼成温度が上記上限を超えると、ベースフィルム2が変形するおそれがある。なお、上記焼成温度及び焼成時間をいずれも上記範囲とすることが特に好ましい。これにより、ベースフィルム2の変形を防止しつつベースフィルム2の表層を十分に改質し、このベースフィルム2の外部透過率を容易かつ確実に小さくすることができる。
(パターニング工程)
 上記パターニング工程では、上記銅粒子結合層形成工程で形成された銅粒子結合層3aのパターニングによりベースフィルム2の一方の面に導電パターンを形成する。このパターニング工程によって、図1のプリント配線板1が得られる。上記パターニング工程におけるパターニングは、公知のエッチング手法によって行うことができる。
 次に、図4A及び図4Cを参照して、当該プリント配線板11の製造方法を説明する。当該プリント配線板11の製造方法は、ベースフィルム2の一方の面に銅粒子41を含むインクの塗布により塗膜42を形成する工程と、塗膜42の焼成により銅粒子結合層3a(銅粒子焼結層)を形成する工程と、銅粒子結合層3aの外面に金属めっき層12aを形成する工程と、銅粒子結合層3a及び金属めっき層12aからなる積層体をパターニングする工程とを備える。
 当該プリント配線板11の製造方法における塗膜形成工程及び銅粒子結合層形成工程は、上述のプリント配線板1の塗膜形成工程及び銅粒子結合層形成工程と同様である。また、当該プリント配線板11の製造方法のパターニング工程におけるパターニングは、上述のプリント配線板1と同様、公知のエッチング手法によって行うことができる。そのため、以下では、金属めっき層形成工程についてのみ説明する。
(金属めっき層形成工程)
 上記金属めっき層形成工程では、銅粒子結合層3aの空隙をめっき金属で充填すると共に、このめっき金属を銅粒子結合層3aの一方の面に積層する。
 金属めっき層12aを形成するためのめっき方法は、特に限定されず、無電解めっきであっても電気めっきであってもよい。銅粒子結合層3aを形成する銅粒子間の空隙をより的確に埋めることで、めっき金属の充填後に熱処理を施すことによってベースフィルム2の改質効果を向上し易い無電解めっきが好ましい。
 上記無電解めっきを採用する場合の手順は特に限定されず、例えばクリーナ工程、水洗工程、酸処理工程、水洗工程、プレディップ工程、アクチベータ工程、水洗工程、還元工程、水洗工程等の処理と共に、公知の手段で無電解めっきを行えばよい。
 上記電気めっきを採用する場合についても、手順は特に限定されず、例えば公知の電解めっき浴及びめっき条件から適宜選択すればよい。
 また、銅粒子結合層3aの空隙をめっき金属で充填した後、さらに熱処理を行うことが好ましい。この熱処理により、銅粒子結合層3aとベースフィルム2との界面近傍における酸化銅がさらに増加するため、ベースフィルム2の表層の改質をさらに促進することができる。なお、この熱処理温度及び熱処理時間としては、上述のプリント配線板1の銅粒子結合層形成工程における焼成温度及び焼成時間と同様とすることができる。
 続いて、図4A及び図4Dを参照して、当該プリント配線板21の製造方法を説明する。当該プリント配線板21の製造方法は、ベースフィルム2の一方の面に銅粒子41を含むインクの塗布により塗膜42を形成する工程と、塗膜42の焼成により銅粒子結合層3a(銅粒子焼結層)を形成する工程と、銅粒子結合層3aの外面に金属めっき層を形成する工程と、銅粒子結合層3a及び金属めっき層からなる積層体をパターニングする工程とを備える。
 当該プリント配線板21の製造方法における塗膜形成工程及び銅粒子結合層形成工程は、上述のプリント配線板1の塗膜形成工程及び銅粒子結合層形成工程と同様である。また、当該プリント配線板21の製造方法のパターニング工程におけるパターニングは、上述のプリント配線板1と同様、公知のエッチング手法によって行うことができる。そのため、以下では、金属めっき層形成工程についてのみ説明する。
(金属めっき層形成工程)
 上記金属めっき層形成工程では、上記金属めっき層12aと同様の第1めっき層12aを形成する工程と、第1めっき層12aの表面に第2めっき層22aを形成する工程とを有する。第1めっき層形成工程は、上述の金属めっき層12aを形成する工程と同様のため、説明を省略する。
 第2めっき層22aを形成するためのめっき方法は、特に限定されるものではなく、無電解めっきであっても電気めっきであってもよいが、厚みの調整を容易かつ正確に行うことができると共に、比較的短時間で第2めっき層22aを形成することができる電気めっきが好ましい。
 上記無電解めっきを採用する場合の手順は特に限定されず、上述の金属めっき層12aを形成する場合と同様の手順で行うことができる。また、上記電気めっきを採用する場合についても、手順は特に限定されず、上述の金属めっき層12aを形成する場合と同様の手順で行うことができる。
<利点>
 当該プリント配線板の製造方法は、当該プリント配線板を容易かつ確実に製造することができる。また、当該プリント配線板の製造方法は、金属めっき層形成工程においてめっき金属の充填後に熱処理を施すことによって、ベースフィルム2の改質を促進してベースフィルム2の外部透過率をさらに小さくすることができる。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、当該プリント配線板は、必ずしも可撓性を有しなくてもよい。また、当該プリント配線板は、ベースフィルムの一方の面のみに銅粒子結合層を含む導電パターンを有する必要はなく、この導電パターンをベースフィルムの両面に有していてもよい。また、当該プリント配線板は、ベースフィルムの両面に上記導電パターンを有する場合、この両方の銅粒子結合層の外面に金属めっき層を有していてもよい。当該プリント配線板は、ベースフィルムの両面に導電パターンを有する場合、ベースフィルムの両表層を改質することができ、外部透過率をさらに小さくすることができる。また、当該プリント配線板は、ベースフィルムの表層が改質されることによってこのベースフィルムの一方側から他方側の回路が視認されるのを防止することができるので、回路欠陥の誤検出率の抑制効果を促進することができる。
 上記ベースフィルムの中層部は、必ずしも改質表層以外の全部分である必要はなく、この中層部には改質表層以外の部分が含まれていてもよい。
 当該プリント配線板は、必ずしもサブトラクティブ法によって形成される必要はなく、セミアディティブ法によって形成してもよい。
 また、本発明は当該プリント配線板を用いた電子部品も対象とする。具体的には、本発明においては、例えば上記実施形態のような当該プリント配線板と、半導体デバイスやチップ抵抗器等の素子が電気的に接続される電子部品も意図する範囲内である。当該電子部品は、回路欠陥の誤検査率を低減可能な当該プリント配線板を備えるので、回路欠陥の発生率を低減することができる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[No.1~No.4]
 液相還元法によって得られた平均粒子径60nmの銅粒子を溶媒の水に分散させ、銅濃度が26質量%のインクを調製した。次に、ベースフィルムとして平均厚み25μmのポリイミドフィルムを用い、このポリイミドフィルムの一方の面にウェットブラスト処理及びプラズマ処理をこの順で施した(以下、このウェットブラスト処理及びプラズマ処理をまとめて「表面処理」ともいう。)。さらに、上記インクをポリイミドフィルムの一方の面に塗布し、大気中で乾燥して塗膜を形成した。そして、酸素濃度が100体積ppmの窒素雰囲気中で120分間、350℃で上記塗膜を焼成し、ポリイミドフィルムの一方の面に銅粒子結合層(平均厚み150nm)を備えたNo.1~No.4のプリント配線板用基材を得た。
 続いて、No.1~No.4のプリント配線板用基材の銅粒子結合層の一方の面に銅の無電解めっきを行い平均厚み1μmの第1めっき層を形成した。さらに銅の電気めっきを行い平均厚み25μmの第2めっき層を形成した。続いて第1めっき層及び第2めっき層が形成されたプリント配線板用基材を、酸素濃度が100体積ppmの窒素雰囲気中で120分間、350℃で熱処理した上、サブトラクティブ法を用いて、平均回路幅100μm、平均回路間隔100μm、平均回路長さ3cmの回路が10本形成されたNo.1~No.4の端子間プリント配線板を製造した。なお、上記サブトラクティブ法におけるエッチング液としては、苛性ソーダ水溶液を用いた。
[No.5]
 ベースフィルムとして平均厚み25μmのポリイミドフィルムを用い、このポリイミドフィルムの一方の面にNo.1~No.4と同様の表面処理を施した。さらに、ポリイミドフィルムの一方の面に接着剤を用いて圧延銅箔(平均厚み12μm)を積層し、No.5のプリント配線板用基材を得た。また、このプリント配線板用基材を、酸素濃度が100体積ppmの窒素雰囲気中で120分間、350℃で熱処理した。その後、サブトラクティブ法を用いて、平均回路幅100μm、平均回路間隔100μm、平均回路長さ3cmの回路が10本形成されたNo.5の端子間プリント配線板を製造した。なお、上記サブトラクティブ法におけるエッチング液としては、苛性ソーダ水溶液を用いた。
[プリント配線板用基材の品質]
<外部透過率>
 上記No.1~No.5のプリント配線板用基材について、表面処理前におけるベースフィルムの波長500nmの外部透過率を測定した。この外部透過率は、朝日分光株式会社製の「TLV-304-BP」を用いて測定した。この外部透過率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[プリント配線板の品質及び評価]
<外部透過率>
 No.1~No.5のプリント配線板について、ベースフィルムの導電パターン非積層領域及び回路表面(回路の一方の面)の波長500nmの外部透過率を上記と同様の測定装置を用いて測定した。この外部透過率の測定結果を表2に示す。
<明度及び色度>
 No.1~No.5のプリント配線板について、上記非積層領域及び上記回路表面の明度及び色度を測定した。この明度及び色度は、色差計(コニカミノルタ株式会社製の「CR-400」)を用い、JIS-Z8781-4(2013)に準拠して測定した。この明度及び色度の測定結果を表2に示す。なお、表2に示す明度差は、上記回路表面の明度Lと上記非積層領域Xの明度Lとの差の絶対値である。
<回路欠陥の誤検出率>
 No.1~No.5のプリント配線板をそれぞれ複数用意し、これら複数のプリント配線板について自動光学検査装置(AOI:Automated Optical Inspection system)を用いて回路欠陥を検出した。次に、AOIで回路欠陥が検出されたNo.1~No.5それぞれ100個のプリント配線板について、正確な回路欠陥の有無を光学顕微鏡を用いて目視にて検査した。上記光学顕微鏡を用いて回路欠陥が検出されたプリント配線板の数をAとし、No.1~No.5のプリント配線板のそれぞれの回路欠陥の誤検出率を(100-A)/100×100[%]によって算出した。この算出結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[評価結果]
 表1と表2を参照して、No.1~No.4のプリント配線板は、上記非積層領域における波長500nmの外部透過率が、プリント配線板用基材における表面処理前のベースフィルムの波長500nmの外部透過率の70%以下になっていることが分かる。つまり、No.1~No.4のプリント配線板においては、ベースフィルムの外部透過率が、プリント配線板用基材のベースフィルムの外部透過率よりも大きく低下していることが分かる。一方、No.5のプリント配線板では、プリント配線板用基材における表面処理前のベースフィルムの波長500nmの外部透過率に対するプリント配線板の上記非積層領域における波長500nmの外部透過率の比は、74%と高くなっている。ここで、No.1~No.4のベースフィルムの厚み方向の断面を走査型電子顕微鏡(SEM)によって観察したところ、銅粒子結合層が固着した面から10nmまでの領域に中層部とは異なる組成の絶縁層が形成されており、このことからこの組成が異なった領域が改質表層であると考えられる。なお、No.5のプリント配線板では銅粒子結合層が存在せず、このような改質表層は観察されない。
 また、No.1~No.4のプリント配線板の上記改質表層をサンドブラストで除去した平均厚み20μmベースフィルムの波長500nmの外部透過率(T)を測定し、続いてサンドブラストでこのベースフィルムの平均厚みを10μmまで薄くして波長500nmの外部透過率(T)を測定した。そして、log(T)=(logT-logT)×25/(20-10)によってベースフィルムの中層部の内部透過率(T)を算出すると、上記非積層領域における波長500nmの外部透過率は、ベースフィルムの中層部の波長500nmの内部透過率の70%以下であった。また、上記式に基づいて算出されたベースフィルムの中層部の波長500nmの内部透過率に対する上記非積層領域における波長500nmの外部透過率の比は、プリント配線板用基材における表面処理前のベースフィルムの波長500nmの外部透過率に対するプリント配線板の上記非積層領域における波長500nmの外部透過率の比に略等しいことが分かった。
 さらに、No.1~No.4のプリント配線板の上記非積層領域における波長500nmの外部透過率は、7~10%でいずれも15%以下であった。一方、No.5のプリント配線板の上記非積層領域における波長500nmの外部透過率は、20%と高かった。また、No.1~No.4のプリント配線板の上記回路表面の明度Lと上記非積層領域Lとの差の絶対値は、15以上と高かったが、No.5のプリント配線板では、15より低い値を示した。
 また、No.1~No.4のプリント配線板は、No.5のプリント配線板に比較すると、改質表層以外の光透過率は同程度である一方、ベースフィルムの外部透過率が低いため、回路欠陥の誤検査率が低下していることが分かった。
 1,11,21 プリント配線板
 2 ベースフィルム
 3,12,23 導電パターン
 3a 銅粒子結合層
 12a 金属めっき層(第1めっき層)
 22a 第2めっき層
 41 銅粒子
 42 塗膜

Claims (5)

  1.  ポリイミドを主成分とするベースフィルムと、
     上記ベースフィルムの少なくとも一方の面に積層される導電パターンと
     を備えるプリント配線板であって、
     上記導電パターンが上記ベースフィルムに固着する銅粒子結合層を含み、
     上記ベースフィルムの導電パターン非積層領域の波長500nmの外部透過率が上記ベースフィルムの中層部の波長500nmの内部透過率の70%以下であるプリント配線板。
  2.  上記ベースフィルムの中層部が、少なくとも改質表層以外の部分である請求項1に記載のプリント配線板。
  3.  上記ベースフィルムが実質的に顔料を含有しない請求項1又は請求項2に記載のプリント配線板。
  4.  上記ベースフィルムの導電パターン非積層領域の波長500nmの上記外部透過率が15%以下である請求項1、請求項2又は請求項3に記載のプリント配線板。
  5.  請求項1から請求項4のいずれか1項に記載のプリント配線板と、上記プリント配線板に実装される素子とを備える電子部品。
PCT/JP2016/072504 2015-08-17 2016-08-01 プリント配線板及び電子部品 WO2017029972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680046234.7A CN107926116B (zh) 2015-08-17 2016-08-01 印刷线路板和电子部件
US15/752,383 US10537017B2 (en) 2015-08-17 2016-08-01 Printed circuit board and electronic component
JP2017535316A JP6696988B2 (ja) 2015-08-17 2016-08-01 プリント配線板及び電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160591 2015-08-17
JP2015-160591 2015-08-17

Publications (1)

Publication Number Publication Date
WO2017029972A1 true WO2017029972A1 (ja) 2017-02-23

Family

ID=58052182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072504 WO2017029972A1 (ja) 2015-08-17 2016-08-01 プリント配線板及び電子部品

Country Status (4)

Country Link
US (1) US10537017B2 (ja)
JP (1) JP6696988B2 (ja)
CN (1) CN107926116B (ja)
WO (1) WO2017029972A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197851A (ja) * 2018-05-11 2019-11-14 住友電気工業株式会社 プリント配線板及びプリント配線板の製造方法
JPWO2019225269A1 (ja) * 2018-05-25 2021-07-01 住友電気工業株式会社 プリント配線板用基材及びプリント配線板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966492B (zh) * 2018-08-01 2020-05-12 苏州华兴源创科技股份有限公司 一种柔性pcb板及其信号传输方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211683A (ja) * 1987-02-27 1988-09-02 Ulvac Corp 太陽光選択吸収膜
JPH02765U (ja) * 1988-06-10 1990-01-05
JPH0382750A (ja) * 1989-07-11 1991-04-08 Minnesota Mining & Mfg Co <3M> ポリイミド基体の少なくとも1面の変性方法
JP2004195774A (ja) * 2002-12-18 2004-07-15 Fuji Photo Film Co Ltd 導電性フィルムおよびその作製方法
WO2009004774A1 (ja) * 2007-07-02 2009-01-08 Panasonic Corporation 金属積層ポリイミド基盤及びその製造方法
JP2012059756A (ja) * 2010-09-06 2012-03-22 Nitto Denko Corp 配線回路基板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2728465C2 (de) * 1977-06-24 1982-04-22 Preh, Elektrofeinmechanische Werke, Jakob Preh, Nachf. Gmbh & Co, 8740 Bad Neustadt Gedruckte Schaltung
US4404237A (en) * 1980-12-29 1983-09-13 General Electric Company Fabrication of electrical conductor by replacement of metallic powder in polymer with more noble metal
JP3570802B2 (ja) 1995-11-14 2004-09-29 三井化学株式会社 銅薄膜基板及びプリント配線板
JP5181618B2 (ja) 2007-10-24 2013-04-10 宇部興産株式会社 金属箔積層ポリイミド樹脂基板
WO2010002182A2 (en) * 2008-06-30 2010-01-07 Kolon Industries, Inc. Plastic substrate and device including the same
JP5334617B2 (ja) 2009-02-17 2013-11-06 日東電工株式会社 配線回路基板の製造方法
JP5244020B2 (ja) * 2009-04-15 2013-07-24 日東電工株式会社 配線回路基板の製造方法
US20120031656A1 (en) 2009-04-24 2012-02-09 Yoshio Oka Substrate for printed wiring board, printed wiring board, and methods for producing same
JP2011249511A (ja) * 2010-05-26 2011-12-08 Sumitomo Bakelite Co Ltd 金メッキ金属微細パターン付き基材の製造方法、金メッキ金属微細パターン付き基材、プリント配線板、インターポーザ及び半導体装置
US20140162071A1 (en) * 2011-05-31 2014-06-12 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and metal foil-clad laminate using the same
TWI569700B (zh) * 2011-11-25 2017-02-01 昭和電工股份有限公司 導電性圖案生成方法
KR101457769B1 (ko) 2011-12-15 2014-11-13 주식회사 엘지화학 반사형 편광판
JP2013135089A (ja) * 2011-12-27 2013-07-08 Ishihara Chem Co Ltd 導電膜形成方法、銅微粒子分散液及び回路基板
KR102198316B1 (ko) * 2012-06-19 2021-01-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 표시장치 및 그 제조방법, 그리고 표시장치 지지기재용 폴리이미드 필름 및 그 제조방법
TWI584708B (zh) * 2014-11-28 2017-05-21 財團法人工業技術研究院 導線結構及其製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211683A (ja) * 1987-02-27 1988-09-02 Ulvac Corp 太陽光選択吸収膜
JPH02765U (ja) * 1988-06-10 1990-01-05
JPH0382750A (ja) * 1989-07-11 1991-04-08 Minnesota Mining & Mfg Co <3M> ポリイミド基体の少なくとも1面の変性方法
JP2004195774A (ja) * 2002-12-18 2004-07-15 Fuji Photo Film Co Ltd 導電性フィルムおよびその作製方法
WO2009004774A1 (ja) * 2007-07-02 2009-01-08 Panasonic Corporation 金属積層ポリイミド基盤及びその製造方法
JP2012059756A (ja) * 2010-09-06 2012-03-22 Nitto Denko Corp 配線回路基板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197851A (ja) * 2018-05-11 2019-11-14 住友電気工業株式会社 プリント配線板及びプリント配線板の製造方法
JP7063101B2 (ja) 2018-05-11 2022-05-09 住友電気工業株式会社 プリント配線板及びプリント配線板の製造方法
JPWO2019225269A1 (ja) * 2018-05-25 2021-07-01 住友電気工業株式会社 プリント配線板用基材及びプリント配線板

Also Published As

Publication number Publication date
CN107926116B (zh) 2020-07-24
CN107926116A (zh) 2018-04-17
US10537017B2 (en) 2020-01-14
JPWO2017029972A1 (ja) 2018-06-07
US20190008035A1 (en) 2019-01-03
JP6696988B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6696989B2 (ja) プリント配線板及び電子部品
CN107113982B (zh) 印刷配线板用基板、制作印刷配线板用基板的方法、印刷配线板、制作印刷配线板的方法以及树脂基材
JP6400503B2 (ja) プリント配線板用基材及びプリント配線板
US10292265B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
WO2015141769A1 (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
JP6585032B2 (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
WO2017029972A1 (ja) プリント配線板及び電子部品
JP6466110B2 (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
JP6484026B2 (ja) プリント配線板用基板及びプリント配線板並びにプリント配線板用基板の製造方法
WO2019077815A1 (ja) プリント配線板用基材及びプリント配線板
US9967976B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
JP2023014235A (ja) プリント配線板用基材、プリント配線板用基材の製造方法およびプリント配線板
JP7032127B2 (ja) プリント配線板用基材、プリント配線板及びプリント配線板用基材の製造方法
US20200324517A1 (en) Base material for printed circuit board and printed circuit board
WO2019225269A1 (ja) プリント配線板用基材及びプリント配線板
WO2019077816A1 (ja) プリント配線板用基材及びプリント配線板
JP2018029139A (ja) プリント配線板用基板及びプリント配線板用基板の製造方法
JP2016136595A (ja) プリント配線板用基板の製造方法、プリント配線板用基板及びプリント配線板
JP2020177989A (ja) プリント配線板用基板及びプリント配線板
JP2019038148A (ja) プリント配線板用基材及びプリント配線板用基材の製造方法
JP2019114679A (ja) プリント配線板用基材
JP2016167558A (ja) プリント配線板用基材の製造方法、プリント配線板用基材及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836963

Country of ref document: EP

Kind code of ref document: A1