WO2017029943A1 - 検出システム、検出装置および検出方法 - Google Patents

検出システム、検出装置および検出方法 Download PDF

Info

Publication number
WO2017029943A1
WO2017029943A1 PCT/JP2016/071528 JP2016071528W WO2017029943A1 WO 2017029943 A1 WO2017029943 A1 WO 2017029943A1 JP 2016071528 W JP2016071528 W JP 2016071528W WO 2017029943 A1 WO2017029943 A1 WO 2017029943A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic sensor
magnetic field
biomolecule label
beads
Prior art date
Application number
PCT/JP2016/071528
Other languages
English (en)
French (fr)
Inventor
春希 柚賀
清悟 在間
菊川 隆
祥生 坪池
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201680047634.XA priority Critical patent/CN107923910A/zh
Priority to JP2017535303A priority patent/JP6673357B2/ja
Priority to US15/752,210 priority patent/US20190154676A1/en
Publication of WO2017029943A1 publication Critical patent/WO2017029943A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material

Definitions

  • the present invention relates to a technique for detecting a biomolecule label using magnetic beads, and relates to a detection system, a detection apparatus, and a detection method.
  • a magnetic biosensor as a method for increasing sensitivity.
  • a magnetic biosensor is one of the high-sensitivity sensing methods that have been proposed in recent years. Proteins, bacteria, viruses, DNA, or RNA in the sample liquid are detected by detecting the presence or number of magnetic beads located near the surface of the detection unit. The presence / absence and concentration of a biomolecule label is detected.
  • Patent Document 1 discloses a biomolecule label detector capable of highly sensitive detection of a biomolecule label by using a flow path through which a specimen liquid containing a biomolecule label and magnetic beads flows and a magnetic sensor as a detection unit. Has been.
  • the magnetic sensor surface constitutes a part of the flow path wall surface, and by detecting the magnetic field leaked when an external magnetic field is applied to the magnetic beads combined with the biomolecule label fixed on the magnetic sensor surface, Quantitative measurement of biomolecular labels.
  • An object of the present invention is to perform highly accurate detection of a biomolecular label using magnetic beads.
  • the detection system of the present invention that achieves the above-described object includes a space formed by a wall surface into which a liquid containing magnetic beads is introduced, and the surface of which constitutes a part of the wall surface, and a biomolecule label is immobilized on the surface.
  • a detection device in which at least a part of the magnetic beads binds to the biomolecule label or a molecule in the vicinity of the biomolecule label; and a direction in which the magnetic beads are moved away from the surface of the magnetic sensor.
  • a first magnetic field application mechanism for applying a magnetic field.
  • the “magnetic sensor” refers to a sensor in which a biomolecule label is fixed on the surface and the biomolecule label is magnetically detected. That is, in the present invention, the “surface of the magnetic sensor” is the outermost surface of the layer formed on the magnetic detection element and is the surface on which the biomolecule label is fixed.
  • the magnetic bead non-specifically adsorbed on the surface of the magnetic sensor that is not bound to the biomolecule label and the molecule in the vicinity of the biomolecule label is detected by the magnetic field applied by the first magnetic field application mechanism.
  • the influence of non-specifically adsorbed magnetic beads can be suppressed and detection of magnetic beads bound to biomolecule labels or molecules in the vicinity of biomolecule labels can be detected. Can be performed.
  • the detection system of the present invention has a space formed by a wall surface into which a liquid containing a biomolecule label and a liquid containing magnetic beads are introduced, and a magnetic sensor whose surface constitutes a part of the wall surface.
  • a detection device in which at least a part of the magnetic bead binds to the biomolecule label immobilized on the surface of the magnetic sensor or a molecule in the vicinity of the biomolecule label immobilized on the surface of the magnetic sensor; And a first magnetic field application mechanism for applying a magnetic field in a direction away from the surface of the magnetic sensor.
  • the magnetic bead non-specifically adsorbed on the surface of the magnetic sensor that is not bound to the biomolecule label and the molecule in the vicinity of the biomolecule label is detected by the magnetic field applied by the first magnetic field application mechanism.
  • the influence of non-specifically adsorbed magnetic beads can be suppressed and detection of magnetic beads bound to biomolecule labels or molecules in the vicinity of biomolecule labels can be detected. Can be performed.
  • the detection system of the present invention further includes a second magnetic field application mechanism that applies a magnetic field to the magnetic beads bound to the biomolecule label or a molecule in the vicinity of the biomolecule label at the time of magnetic detection by the magnetic sensor.
  • the magnetic field suitable for magnetic bead detection by the magnetic sensor can be applied by using the second magnetic field application mechanism, the magnetic bead bound to the biomolecule label or the molecule in the vicinity of the biomolecule label High sensitivity detection is possible.
  • the space is a flow path space in which the liquid containing the magnetic beads flows, and the surface of the magnetic sensor constitutes a part of a flow path wall surface forming the flow path space. It is characterized by.
  • the space is a flow path space in which the liquid containing the biomolecule label and the liquid containing the magnetic beads flow, and the surface of the magnetic sensor forms the flow path space. It constitutes a part of the road wall surface.
  • the detection device of the present invention that achieves the above object comprises a space formed by a wall surface into which a liquid containing magnetic beads is introduced, the surface of which constitutes a part of the wall surface, and a biomolecular gas label is formed on the surface.
  • a magnetic bead non-specifically adsorbed on the surface of the magnetic sensor that is not bound to a biomolecule label and a molecule in the vicinity of the biomolecule label by the magnetic field applied by the first magnetic field application mechanism is By moving away from the surface, it is possible to suppress the influence of non-specifically adsorbed magnetic beads and detect magnetic beads bound to biomolecule labels or molecules in the vicinity of biomolecule labels with high accuracy. it can.
  • the detection device of the present invention has a space formed by a wall surface into which a liquid containing a biomolecule label and a liquid containing magnetic beads are introduced, and a magnetic sensor whose surface constitutes a part of the wall surface. Inserting a detection device in which at least a part of the magnetic beads binds to the biomolecule label immobilized on the surface of the magnetic sensor or a molecule in the vicinity of the biomolecule label immobilized on the surface of the magnetic sensor And And And a first magnetic field application mechanism that applies a magnetic field in a direction away from the surface of the magnetic sensor.
  • a magnetic bead non-specifically adsorbed on the surface of the magnetic sensor that is not bound to a biomolecule label and a molecule in the vicinity of the biomolecule label by the magnetic field applied by the first magnetic field application mechanism is By moving away from the surface, it is possible to suppress the influence of non-specifically adsorbed magnetic beads and detect magnetic beads bound to biomolecule labels or molecules in the vicinity of biomolecule labels with high accuracy. it can.
  • the magnetic field suitable for magnetic bead detection by the magnetic sensor can be applied by using the second magnetic field application mechanism, the magnetic bead bound to the biomolecule label or the molecule in the vicinity of the biomolecule label High sensitivity detection is possible.
  • the space is a flow path space in which the liquid containing the magnetic beads flows, and the surface of the magnetic sensor constitutes a part of a flow path wall surface forming the flow path space. It is characterized by.
  • the space is a flow path space in which the liquid containing the biomolecule label and the liquid containing the magnetic beads flow, and the surface of the magnetic sensor forms the flow path space. It constitutes a part of the road wall surface.
  • the detection method of the present invention that achieves the above object comprises contacting a liquid containing a biomolecule label with the surface of a magnetic sensor to immobilize the biomolecule label on the surface of the magnetic sensor, and applying a liquid containing magnetic beads to the magnetic sensor.
  • a liquid containing magnetic beads to the magnetic sensor.
  • the magnetic beads are applied with a magnetic field in a direction away from the surface of the magnetic sensor, and then magnetic detection is performed by the magnetic sensor.
  • a magnetic bead that is not bound to a biomolecule label or a molecule in the vicinity of the biomolecule label by a magnetic field in a direction away from the surface of the magnetic sensor is magnetically attached to the surface of the magnetic sensor.
  • the magnetic beads detected by the magnetic sensor can be detected with high accuracy by suppressing the influence of nonspecifically adsorbed magnetic beads and binding to biomolecule labels or molecules in the vicinity of biomolecule labels. be able to.
  • the biomolecule label is applied to the surface of the magnetic sensor by flowing a liquid containing the biomolecule label into a channel space in which the surface of the magnetic sensor constitutes a part of the wall surface of the channel.
  • a liquid containing the magnetic beads is allowed to flow in the flow path space, and at least a part of the magnetic beads is fixed to the biomolecule label or the surface of the magnetic sensor fixed to the surface of the magnetic sensor. It is bound to a molecule in the vicinity of the biomolecule label.
  • a liquid that does not contain the magnetic beads is allowed to flow in the flow path space after the magnetic field is applied or after the application of the magnetic field is stopped, and then magnetic detection is performed by the magnetic sensor. It is characterized by that.
  • a liquid that does not contain the magnetic beads is allowed to flow in the flow path space.
  • Non-specifically adsorbed magnetic beads that are further away from the surface can be removed from the vicinity of the magnetic sensor, so that more accurate detection can be performed.
  • the biomolecule label is immobilized on the surface of the magnetic sensor by introducing a liquid containing the biomolecule label into a well space in which the surface of the magnetic sensor constitutes a part of the wall surface.
  • the liquid containing the magnetic beads is introduced into the well space, and at least a part of the magnetic beads is fixed to the surface of the magnetic sensor or the biomolecule label fixed to the surface of the magnetic sensor.
  • the magnetic beads are attached to a magnetic field application mechanism that applies the magnetic field to the molecule in the vicinity of the molecular label, applies the magnetic field, and then performs magnetic detection by the magnetic sensor.
  • the non-specifically adsorbed magnetic beads that are further away from the surface of the magnetic sensor can be removed from the vicinity of the magnetic sensor. Highly accurate detection can be performed.
  • the detection system, detection apparatus, and detection method of the present invention can detect a biomolecule label with high accuracy using magnetic beads.
  • FIG. 1 is a schematic diagram of a detection apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram of the detection system of the first embodiment.
  • FIG. 3 is a cross-sectional view of the detection device according to the first embodiment taken along a plane perpendicular to the direction in which the liquid flows in the flow path space. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a schematic diagram showing an initial state of a step of feeding a liquid containing a biomolecule label in the first embodiment.
  • FIG. 6 is a schematic diagram showing a step of precipitating the biomolecule label in the first embodiment.
  • FIG. 7 is a schematic diagram showing a process of removing an unfixed biomolecule label in the first embodiment.
  • FIG. 8 is a schematic diagram showing an initial state of a step of feeding a liquid containing magnetic beads in the first embodiment.
  • FIG. 9 is a schematic diagram showing a step of settling magnetic beads in the first embodiment.
  • FIG. 10 is a schematic diagram illustrating a process in which the first magnetic field application mechanism applies a magnetic field in the first embodiment.
  • FIG. 11 is a schematic diagram showing a process of removing non-specifically adsorbed magnetic beads with a liquid not containing magnetic beads in the first embodiment.
  • FIG. 12 is a schematic diagram showing a state where non-specifically adsorbed magnetic beads are removed in the first embodiment.
  • FIG. 13 is a schematic diagram showing a state where magnetic beads are bound to molecules present on the surface of the magnetic sensor in the vicinity of the biomolecule label.
  • FIG. 14 is a schematic diagram showing a state where magnetic beads are bound to magnetic bead supporting molecules that selectively grow in the vicinity of the biomolecule label.
  • FIG. 15 is a schematic diagram of a detection apparatus according to the second embodiment.
  • FIG. 16 is a schematic diagram of a detection system according to the second embodiment.
  • FIG. 17 is a cross-sectional view of the detection device of the second embodiment.
  • FIG. 18 is a schematic diagram showing an initial state of a step of introducing a liquid containing a biomolecule label in the second embodiment.
  • FIG. 19 is a schematic diagram showing a step of precipitating a biomolecule label in the second embodiment.
  • FIG. 20 is a schematic diagram showing a process of removing a non-immobilized biomolecule label in the second embodiment.
  • FIG. 21 is a schematic diagram showing an initial state of a step of introducing a liquid containing magnetic beads in the second embodiment.
  • FIG. 22 is a schematic diagram showing a step of settling magnetic beads in the second embodiment.
  • FIG. 23 is a schematic diagram illustrating a process in which the first magnetic field application mechanism applies a magnetic field in the second embodiment.
  • FIG. 24 is a schematic diagram showing a state where magnetic beads are attached to the first magnetic field application mechanism in the second embodiment.
  • FIG. 25 is a schematic diagram showing a state where non-specifically adsorbed magnetic beads are removed in the second embodiment.
  • FIG. 26 is a schematic diagram showing a state in which the magnetic beads are removed by the dropper in the modified example of the second embodiment.
  • FIG. 27 is a cross-sectional view of a detection device according to another modification of the second embodiment.
  • FIG. 28 is a cross-sectional view of a detection device according to still another modification of the second embodiment.
  • FIG. 29 is a cross-sectional view of a detection device according to still another modification of the second embodiment.
  • the detection apparatus 100 includes a biological fluid inlet 110, a magnetic bead-containing liquid inlet 120, a body fluid chemical treatment unit 130, a liquid outlet 140, and a first magnetic field application mechanism 150.
  • the second magnetic field application mechanism 160, the electric signal conversion unit 170, the display unit 180, and the detection device insertion port 190 are configured.
  • the detection system 300 As shown in FIG. 2, the detection system 300 according to the first embodiment includes a detection device 100 and a detection device 200 described later. The detection system 300 operates in a state where the detection device 200 is inserted into the detection device insertion port 190 of the detection apparatus 100.
  • the living body-derived liquid input port 110 is an input port into which a liquid derived from a living body is input, and a material such as metal, plastic, resin, or glass is selected as necessary.
  • the liquid derived from the organism to be introduced include body fluids and biomolecule labeling-containing liquids.
  • the body fluid include blood, serum, mouthwash, urine, brain serum, sputum, biopsy specimen, bone marrow sample, and the like, which are processed by the body fluid chemical processing unit 130 described later.
  • a liquid containing biomolecule-labeled molecules (biomolecule label-containing liquid) that has been processed in advance before the body fluid is input to the detection apparatus 100 may be input from the biological fluid input port 110. In this case, it is not necessary to pass the biomolecule label-containing liquid through the body fluid chemical treatment unit 130.
  • the magnetic bead-containing liquid inlet 120 is an inlet for introducing a liquid containing a magnetic bead 410 described later, and a metal, plastic, resin, glass, or the like is selected as necessary.
  • the liquid containing the magnetic beads 410 is required to have a property of being well dispersed without dissolving the magnetic beads 410, and a buffer solution having an appropriate pH depending on the type of binding reaction between the magnetic beads 410 and the biomolecule label 400. Is selected. For example, in the case of binding of biotin as the biomolecule label 400 and streptavidin as the surface material of the magnetic beads 410, a buffer solution composed of trishydroxymethylaminomethane and ethylenediaminetetraacetic acid adjusted to pH 7-8 is used.
  • the body fluid chemical processing unit 130 is a part that chemically processes cells, proteins, specimen molecules, and the like contained in the body fluid and performs biomolecule labeling when the liquid introduced from the biological fluid inlet 110 is a body fluid. . Specifically, in chemical treatment, cells contained in a body fluid are lysed, and then nucleic acids, proteins, sample molecules, etc. are extracted, and the nucleic acids, proteins, sample molecules, etc. are captured by antibodies, nucleic acids, etc. Or a process of cleaving a nucleic acid with a specific restriction enzyme or binding to a labeled molecule. Substances used for capture, cleavage and labeling are appropriately selected according to the disease to be identified, prevented or diagnosed. *
  • the liquid discharge unit 140 is a part that discharges the liquid discharged from the flow path space 230 of the detection device 200, and a metal, plastic, resin, glass, or the like is selected as necessary. Further, it is preferable to use a pump at an appropriate location in the detection apparatus 100 in order to efficiently supply liquid such as charging and discharging of the liquid.
  • the first magnetic field application mechanism 150 is a mechanism that applies a magnetic field in a direction away from the surface of a magnetic sensor 220 described later to a magnetic bead 410 in the detection device 200 described later.
  • the first magnetic field application mechanism 150 may be a permanent magnet or a coil (electromagnet) regardless of the type as long as it has a mechanism and function capable of applying a magnetic field. Therefore, it is preferable to use a coil (electromagnet).
  • the second magnetic field application mechanism 160 is a mechanism for applying a magnetic field necessary for magnetic bead detection by the magnetic sensor 220. At the time of magnetic detection by the magnetic sensor 220, the biomolecule label 400 or the vicinity of the biomolecule label 400 is used. A magnetic field is applied to the magnetic beads 410 bound to the molecules. By using the second magnetic field application mechanism 160 independently of the first magnetic field application mechanism 150, an appropriate magnetic field application for magnetic bead detection by the magnetic sensor 220 can be performed. Further, it is desirable that the magnetic field applied by the second magnetic field applying mechanism 160 is substantially uniform over the entire surface of the magnetic sensor 220.
  • the second magnetic field application mechanism 160 may be a permanent magnet or a coil (electromagnet) regardless of the type as long as it has a mechanism and function capable of applying a magnetic field. Therefore, it is preferable to use a coil (electromagnet). It is desirable that the first magnetic field application mechanism 150 applies a magnetic field stronger than the magnetic field applied by the second magnetic field application mechanism 160 on the surface of the magnetic sensor 220.
  • the electric signal converter 170 is a part that changes the magnetic bead detection result obtained from the detection device 200 into an electric signal.
  • the display unit 180 is a part that displays the electrical signal obtained from the electrical signal conversion unit 170 as the presence / absence and concentration of the biomolecule label.
  • the detection device 200 includes a flow path space 230, a magnetic sensor 220, and a flow path member 214.
  • the channel space 230 is a space formed by the wall surface of the channel member 214 and the surface (wall surface) of a magnetic sensor 220 described later.
  • the liquid containing the biomolecule label 400 introduced into the biological fluid inlet 110, the liquid containing the biomolecule label 400 processed by the body fluid chemical processing unit 13, or the magnetic bead-containing liquid inlet
  • the liquid containing the magnetic beads 410 charged into 120 flows.
  • 3 is a cross-sectional view of the detection device 200 taken along a plane perpendicular to the direction in which the liquid flows in the flow path space 230
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the magnetic sensor 220 includes a support 210, a magnetic detection element 211, a protective layer 212, and an organic layer 213.
  • the support 210 is a support for giving mechanical strength to handling of the detection device 200 and a substrate when the magnetic detection element 211 is manufactured.
  • the support 210 is preferably Si, SiO 2 , ITO, glass, Al 2 O 3 or the like from the viewpoint of mechanical strength and the process of producing the magnetic detection element 211, the protective layer 212, and the organic layer 213, and is most preferably inexpensive Si. .
  • the magnetic detection element 211 is an element used for magnetic bead detection. As an example, a giant magnetoresistive element (GMR element) is used.
  • the magnetic detection element 211 is formed on the support 210 using a vapor phase growth method or the like.
  • the protective layer 212 is a layer for protecting the magnetic element 211 from the atmosphere, and is Au, Pt, amorphous carbon, DLC (diamond-like carbon), SiO 2 , Al 2 O 3 , TiO 2 , ITO, SiC, or Si 3 N. Chemically stable noble metals such as 4 , carbon, metal oxides, metal carbides or metal nitrides can be used. Furthermore, an appropriate material is selected from the viewpoint of the process of forming the organic layer 213.
  • the protective layer 212 is formed on the support 210 and the magnetic detection element 211 using a vapor deposition method or the like. As shown in FIG. 4, the protective layer 212 on the magnetic detection element 211 is formed to be thinner than other portions.
  • Such a protective layer 212 can be formed by a lift-off method using a resist formed on the magnetic detection element 211.
  • the organic layer 213 is a layer for immobilizing the biomolecule label 400 on the surface of the magnetic sensor 220 and has a bonding group with the biomolecule label 400 on the surface of the layer.
  • the binding group to the biomolecule label 400 is, for example, a carboxyl group (—COOH) or an amine group (—NH 2 ).
  • an appropriate organic material is selected depending on the bonding group with the biomolecule label 400, and for example, phosphonic acid or 3-aminopropyltriethoxysilane can be used.
  • a nucleic acid or an antibody may be used as the organic layer 213 for binding with the biomolecule label 400.
  • the organic layer 213 is formed on the protective layer 212 by vapor deposition, vapor deposition, solution immersion, Langmuir-Blodgett, or the like.
  • the biomolecule label 400 is fixed on the surface thereof, and the biomolecule label 440 is magnetically detected.
  • the “surface of the magnetic sensor” is the outermost surface of the layer formed on the magnetic detection element and is the surface on which the biomolecule label is fixed.
  • the organic layer The surface 213 corresponds to the surface of the magnetic sensor 220.
  • the surface of the organic layer 213 that is the surface of the magnetic sensor 220 constitutes a part of the flow path wall surface that forms the flow path space 230.
  • the flow path member 214 is a member for forming the flow path space 230 by being combined with the magnetic sensor 220, and has a pair of side walls and an upper surface that connects between the pair of side walls. A concave groove portion is formed by the pair of side walls and the upper surface.
  • material of the flow path member 214 for example, chemically stable glass, resin, or rubber material can be used, and the liquidity, flow rate, viscosity, and the like of the liquid including the biomolecule label 400 and the liquid including the magnetic beads 410 can be used.
  • An appropriate material is selected in consideration of sealing between the magnetic sensor 220 and the like.
  • the detection device 200 is inserted into the detection device insertion port 190 such that the magnetic sensor 220 is located on the opposite side of the detection device insertion port 190 from the side where the first magnetic field application mechanism 150 is located.
  • the biomolecule label 400 of the first embodiment shown in FIGS. 5 to 14 is a protein capable of interaction between proteins, such as a receptor protein, an adhesion protein, an antigen or an antibody having a bindable ligand. Yes, it is related to the disease.
  • Such proteins include proteins that can be used for diagnosis of diseases, such as proteins whose increase or decrease in their abundance suggests the presence of a disease, such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF) Growth factors such as brain-derived growth factor (BDGF) or vascular endothelial growth factor (VEGF), cell adhesion factors such as fibronectin, laminin or vitronectin, hormones such as insulin, somatostatin, somatothrombin or gonadotropin releasing factor, LDL, etc. Specimen molecules such as lipoproteins, various tumor markers or antibodies. In addition, specimen molecules such as viruses such as HIV and HBV, nucleic acids such as bacteria or oncogenes can be used as biomolecule labels.
  • EGF epidermal growth factor
  • PDGF platelet-derived growth factor
  • BDGF brain-derived growth factor
  • VEGF vascular endothelial growth factor
  • cell adhesion factors such as fibronectin, laminin or vitronectin,
  • the biomolecule label can use not only the sample molecule exemplified above, but also a molecule bound to the sample molecule as exemplified above, or a molecule labeled with the sample molecule as exemplified above.
  • the liquid containing the biomolecule label 400 is required to have a property of being well dispersed without dissolving the biomolecule label 400, and a buffer having an appropriate pH according to the type of the binding reaction between the magnetic beads 410 and the biomolecule label 400. A solution is selected.
  • a buffer solution composed of trishydroxymethylaminomethane and ethylenediaminetetraacetic acid adjusted to pH 7-8 is used.
  • the magnetic beads 410 shown in FIGS. 8 to 14 are objects to be detected by the magnetic sensor 220 and bind to the biomolecule label 400.
  • the magnetic bead 410 has a structure including a magnetic substance therein, and examples of the magnetic substance include a ferromagnetic material containing iron or iron oxide and a superparamagnetic material.
  • the magnetic substance inside the magnetic beads 410 is coated with an organic substance that can bind to the biomolecule label 400.
  • the organic material include organic materials containing a reactive group such as an amine group or a carboxyl group. For example, streptavidin, hydroxyapatite, or the like can be used. These organics bind to biomolecular labels.
  • the organic material is appropriately selected according to the disease to be identified, prevented or diagnosed.
  • the structure of the magnetic beads 410 includes a structure in which fine magnetic materials are dispersed in an organic material, a structure in which a central magnetic material is coated with an organic material, and the like, and is appropriately selected according to the purpose.
  • the size of the magnetic beads 410 is 10 nm to 100 ⁇ m, and is appropriately selected according to the purpose.
  • FIGS. 5 to 12 an operation method of the detection system 300 (an example of the detection method in the present invention) will be described.
  • a liquid derived from a living body is charged into the biological liquid-derived inlet 110.
  • the liquid derived from the living body introduced into the living body-derived liquid input port 110 is processed by the body fluid chemical processing unit 130 as necessary, and flows into the flow path space 230 as a liquid containing the biomolecule label 400.
  • FIG. 5 shows an initial state of a step of feeding a liquid containing the biomolecule label 400 from the right to the left in the drawing of the channel space 230.
  • the liquid feeding is stopped, the liquid containing the biomolecule label 400 filling the channel space 230 is allowed to stand, and the biomolecule label 400 is allowed to settle.
  • the biomolecule label 400 on the magnetic sensor 220 is fixed to the surface of the magnetic sensor 220 by the organic layer 213, and the other biomolecule labels 400 are deposited on the protective layer 212 without being fixed. .
  • the biomolecule label 400 deposited without being fixed on the protective layer 212 is allowed to flow from the right to the left in the flow path space 230 with a liquid that does not include the biomolecule label. Remove with.
  • the liquid not containing the biomolecule label is introduced from the magnetic bead inlet 120 or a dedicated inlet (not shown).
  • Such a liquid is preferably the same liquid as the buffer in which the biomolecule label 400 is dispersed.
  • FIG. 8 shows an initial state of the step of feeding the liquid containing the magnetic beads 410 from the right to the left of the flow path space 230 in the drawing.
  • the liquid feeding is stopped, the liquid containing the magnetic beads 410 filling the flow path space 230 is allowed to stand, and the magnetic beads 410 are allowed to settle.
  • the bound magnetic beads 411 bind to the biomolecule label 400
  • the other non-specifically adsorbed magnetic beads 412 mainly consist of the bottom surface of the channel space 230 (the surface of the protective layer 212 and the organic layer 213). Non-specifically adsorbed on the surface) by hydrophobic interaction or electrostatic interaction.
  • a magnetic field in a direction in which the magnetic beads 410 (non-specific adsorption magnetic beads 412) are moved away from the surface of the magnetic sensor 220 is applied by the first magnetic field application mechanism 150.
  • the nonspecific adsorption magnetic beads 412 having a relatively weak binding force are attracted in a direction away from the surface of the magnetic sensor 220, while the binding forces are compared.
  • the strong binding magnetic beads 411 are not attracted even when a magnetic field is applied by the first magnetic field application mechanism 150, and remain in a state of being bound to the biomolecule label 400.
  • the non-specific adsorption magnetic beads 412 are attracted in a direction away from the surface of the magnetic sensor 220, and the binding magnetic beads 411 apply a magnetic field having a strength that keeps the state bound to the biomolecule label 400.
  • the first magnetic field application mechanism 150 is a coil
  • a magnetic field is applied by the first magnetic field application mechanism 150 by applying a current to the coil.
  • the first magnetic field application mechanism 150 is a permanent magnet
  • the magnetic field by the first magnetic field application mechanism 150 is applied by bringing the permanent magnet closer to the surface of the magnetic sensor 220.
  • a liquid not containing magnetic beads is flowed from right to left in the flow path space 230 in the drawing, and the surface of the magnetic sensor 220
  • the non-specifically adsorbed magnetic beads 412 that have been moved away from are removed.
  • a liquid may be allowed to flow through the flow path space 230 to remove the non-specific adsorption magnetic beads 412 that are away from the surface of the magnetic sensor 220.
  • the liquid not containing magnetic beads is introduced from the magnetic bead inlet 120 or a dedicated inlet (not shown). Such a liquid is preferably the same liquid as the buffer in which the magnetic beads are dispersed.
  • the first magnetic field application mechanism 150 is a coil
  • the application of the magnetic field by the first magnetic field application mechanism 150 is stopped by stopping the current application to the coil.
  • the first magnetic field application mechanism 150 is a permanent magnet
  • the application of the magnetic field by the first magnetic field application mechanism 150 is stopped by moving the permanent magnet away from the surface of the magnetic sensor 220.
  • the liquid not containing the magnetic beads is caused to flow into the flow path space 230. Therefore, the non-specifically adsorbed magnetic beads 412 can be removed from the surface of the magnetic sensor 220 more quickly than in the case where a liquid not containing magnetic beads is applied to the flow path space 230 without applying a magnetic field.
  • FIG. 12 shows a state where the non-specific adsorption magnetic beads 412 are removed. That is, the magnetic beads 410 (bound magnetic beads 411) are present only on the biomolecule label 400, and are not present in other portions. Therefore, by measuring the magnetic field generated from the coupled magnetic beads 411 using the magnetic sensor 220 (performing magnetic detection by the magnetic sensor 220), the number or concentration of the biomolecule label 400 can be accurately measured.
  • a method for detecting a biomolecule label by performing magnetic detection using the magnetic sensor 220 will be described. From the state of FIG. 12, a magnetic field is applied to the coupled magnetic beads 411 from the second magnetic field application mechanism 160, and the magnetic field generated from the coupled magnetic beads 411 by the magnetic field is detected by the magnetic sensor 220 and output as an electrical signal. The electric signal is output to the display unit 180 via the electric signal conversion unit 170, and the value of the magnetic field is displayed as the number of bound magnetic beads 411, the number of biomolecule labels 400, or the concentration.
  • the second magnetic field application mechanism 160 is a coil
  • a magnetic field is applied by the second magnetic field application mechanism 160 by applying a current to the coil.
  • the second magnetic field application mechanism 160 is a permanent magnet
  • the magnetic field by the second magnetic field application mechanism 160 is applied by bringing the permanent magnet closer to the surface of the magnetic sensor 220.
  • the magnetic field applied by the first magnetic field application mechanism 150 is not bound to the biomolecule label 400.
  • the non-specifically adsorbed magnetic beads 412 non-specifically adsorbed on the surface of the magnetic sensor 220 away from the surface of the magnetic sensor 220 the influence of the non-specifically adsorbed magnetic beads 412 is suppressed in the detection of the magnetic beads by the magnetic sensor 220, and biomolecules are detected.
  • the bound magnetic beads 411 bound to the label 400 can be detected with high accuracy.
  • the detection system 300 and the detection apparatus 100 include the second magnetic field application mechanism 160 that applies a magnetic field to the coupled magnetic beads 411 that are coupled to the biomolecule label 400 when the magnetic sensor 220 detects the magnetic beads.
  • the second magnetic field application mechanism 160 it is possible to apply an appropriate magnetic field for magnetic bead detection by the magnetic sensor 220, so that highly sensitive detection of the bound magnetic beads 411 bound to the biomolecule label 400 becomes possible.
  • the magnetic field is applied to the flow path space 230 after applying the magnetic field by the first magnetic field application mechanism 150 or after applying the magnetic field by the first magnetic field application mechanism 150. Since a liquid not containing beads is allowed to flow, and then magnetic detection is performed by the magnetic sensor 220, the non-specific adsorption magnetic beads 412 that are further away from the surface of the magnetic sensor 220 can be removed from the vicinity of the magnetic sensor 220. Accurate detection can be performed.
  • the detection system 300 and the detection apparatus 100 according to the first embodiment described above include the second magnetic field application mechanism 160.
  • the first magnetic field application mechanism 150 causes the A magnetic field may be applied to the coupled magnetic beads 411 coupled to the molecular label 400.
  • the second magnetic field application mechanism 160 may be omitted.
  • the flow path is in a state where a magnetic field is applied by the first magnetic field application mechanism 150 or after a magnetic field is applied by the first magnetic field application mechanism 150.
  • a liquid that does not contain magnetic beads is flowed into the space 230, and then magnetic detection is performed by the magnetic sensor 220.
  • the magnetic bead 410 is applied with a magnetic field in a direction away from the surface of the magnetic sensor 220, and then magnetic detection is performed by the magnetic sensor 220, thereby suppressing the influence of the non-specifically adsorbed magnetic beads 412 and the biomolecule labeling 400.
  • the bound magnetic beads 411 bound to can be detected with high accuracy.
  • the magnetic beads 410 are directly bonded to the biomolecule label 400 .
  • a catalyst (not shown) is supported on the biomolecule label 400 and the like.
  • the magnetic beads 410 are selectively bound to the molecules in the vicinity of the biomolecule label 400 (molecules existing on the surface of the magnetic sensor 220 in the vicinity of the biomolecule label 400), so that the magnetic beads 410 are biomolecules. You may make it exist in the vicinity of the biomolecule label
  • the magnetic bead support molecule 420 is selectively grown in the vicinity of the biomolecule label 400 as shown in FIG.
  • the magnetic beads 410 may be present in the vicinity of the biomolecule label 400 in a form that does not directly bind to the biomolecule label 400.
  • the detection device 101 of the second embodiment is obtained by removing the liquid discharge unit 140 from the detection device 100 of the first embodiment, and the biological fluid input port 110 and the magnetic beads of the detection device 101.
  • the liquid introduced into the contained liquid inlet 120 is introduced into a well space 500 of the detection device 201 described later.
  • Other configurations of the detection apparatus 101 are the same as those of the detection apparatus 100 of the first embodiment.
  • the detection system 301 of the second embodiment uses a detection device 101 instead of the detection device 100 of the first embodiment, and a detection device 201 instead of the detection device 200 of the first embodiment. Used.
  • the detection system 301 operates in a state where the detection device 201 is inserted into the detection device insertion port 190 of the detection apparatus 101.
  • the detection device 201 includes a well-type well space 500 that is open at the top, a magnetic sensor 220, and a well member 510.
  • the well space 500 is a space formed by the wall surface of the well member 510 and the surface (wall surface) of the magnetic sensor 220.
  • the liquid containing the biomolecule label 400 introduced into the biological fluid inlet 110, the liquid containing the biomolecule label 400 processed by the body fluid chemical processing unit 130, or the magnetic bead-containing liquid inlet 120.
  • a liquid containing the magnetic beads 410 charged in is introduced.
  • FIG. 17 is a cross-sectional view of the detection device 201.
  • the detection device 201 according to the second embodiment is different from the detection device 200 according to the first embodiment in that the flow path space 230 is replaced with a well space 500 and the flow path member 214 is replaced with a well member 510. Are common.
  • the biomolecule label 400 is fixed to the surface of the magnetic sensor 220, and the liquid containing the magnetic beads 410 is flowed into the flow path space 230.
  • the magnetic beads 410 are later bound to the biomolecule label 400 or molecules in the vicinity of the biomolecule label 400, whereas in the second embodiment, these liquids are introduced into the well space 500 and then retained so that the biomolecule label 400 is retained. Fixing and binding of magnetic beads.
  • the well member 510 is a member for forming the well space 500 and constitutes a side wall surface of the well space 500.
  • material of the well member 510 for example, chemically stable glass, resin, or rubber material can be used, and the liquidity, viscosity, and magnetic sensor 220 of the liquid including the biomolecule label 400 and the liquid including the magnetic beads 410 can be used.
  • An appropriate material is selected in consideration of the sealing property between the two.
  • FIGS. 18 to 26 an operation method of the detection system 301 (an example of a detection method in the present invention) will be described.
  • a liquid derived from a living body is charged into the biological liquid-derived inlet 110.
  • the liquid derived from the living body introduced into the living body-derived liquid inlet 110 is processed by the body fluid chemical processing unit 130 as necessary, and is introduced into the well space 500 as a liquid containing the biomolecule label 400.
  • FIG. 18 shows an initial state of the step of introducing the liquid containing the biomolecule label 400 from the top to the bottom of the well space 500 in the drawing.
  • the introduction of the liquid containing the biomolecule label 400 is stopped, the liquid containing the biomolecule label 400 is retained in the well space 500 for a predetermined time, and the biomolecule label 400 is settled.
  • the biomolecule label 400 on the magnetic sensor 220 is fixed to the surface of the magnetic sensor 220 by the organic layer 213, and other biomolecule labels 400 are deposited on the protective layer 212 without being fixed. To do.
  • the biomolecule label 400 deposited on the protective layer 212 is removed from the upper portion of the well space 500 using a dropper 600 or the like.
  • FIG. 21 shows an initial state of the step of introducing the liquid containing the magnetic beads 410 from the top to the bottom of the well space 500.
  • the introduction of the liquid containing the magnetic beads 410 is stopped, the liquid containing the magnetic beads 410 is retained in the well space 500 for a predetermined time, and the magnetic beads 410 are settled.
  • the bound magnetic beads 411 bind to the biomolecule label 400
  • the other non-specific adsorption magnetic beads 412 mainly consist of the bottom surface of the well space 500 (the surface of the protective layer 212 and the organic layer 213). Non-specifically adsorbed on the surface) by hydrophobic interaction or electrostatic interaction.
  • the first magnetic field application mechanism 150 applies a magnetic field in a direction in which the magnetic beads 410 (non-specific adsorption magnetic beads 412) are moved away from the surface of the magnetic sensor 220.
  • the nonspecific adsorption magnetic beads 412 having a relatively weak binding force are attracted in a direction away from the surface of the magnetic sensor 220.
  • the binding magnetic beads 411 having a relatively strong binding force remain attracted to the biomolecule label 400 without being attracted even when a magnetic field is applied by the first magnetic field application mechanism 150.
  • the non-specific adsorption magnetic beads 412 are attracted in a direction away from the surface of the magnetic sensor 220, and the binding magnetic beads 411 apply a magnetic field having a strength that keeps the state bound to the biomolecule label 400.
  • the first magnetic field application mechanism 150 is a coil
  • a magnetic field is applied by the first magnetic field application mechanism 150 by applying a current to the coil.
  • the first magnetic field application mechanism 150 is a permanent magnet
  • the magnetic field by the first magnetic field application mechanism 150 is applied by bringing the permanent magnet closer to the surface of the magnetic sensor 220.
  • non-specific adsorption magnetic beads 412 are attached to the first magnetic field application mechanism 150.
  • the first magnetic field application mechanism 150 to which the nonspecific adsorption magnetic beads 412 are attached is desirably moved away from the well space 500.
  • the non-specific adsorption magnetic beads 412 By attaching the non-specific adsorption magnetic beads 412 to the first magnetic field application mechanism 150, the non-specific adsorption magnetic beads 412 that are further away from the surface of the magnetic sensor 220 can be removed from the vicinity of the magnetic sensor 220. Highly accurate detection can be performed.
  • FIG. 25 shows a state where the non-specific adsorption magnetic beads 412 are removed. That is, the magnetic beads 410 (bound magnetic beads 411) are present only on the biomolecule label 400, and are not present in other portions. Therefore, by measuring the magnetic field generated from the coupled magnetic beads 411 using the magnetic sensor 220 (performing magnetic detection by the magnetic sensor 220), the number or concentration of the biomolecule label 400 can be accurately measured.
  • a method for detecting a biomolecule label by performing magnetic detection using the magnetic sensor 220 will be described. From the state of FIG. 25, in the same manner as in the first embodiment, a magnetic field is applied to the coupled magnetic beads 411 from the second magnetic field application mechanism 160, and the magnetic field generated from the coupled magnetic beads 411 by the magnetic field is detected by the magnetic sensor 220. And output as an electrical signal. The electric signal is output to the display unit 180 via the electric signal conversion unit 170, and the value of the magnetic field is displayed as the number of bound magnetic beads 411, the number of biomolecule labels 400, or the concentration.
  • the second magnetic field application mechanism 160 is a coil
  • a magnetic field is applied by the second magnetic field application mechanism 160 by applying a current to the coil.
  • the second magnetic field application mechanism 160 is a permanent magnet
  • the magnetic field by the second magnetic field application mechanism 160 is applied by bringing the permanent magnet closer to the surface of the magnetic sensor 220.
  • the first magnetic field application mechanism 150 is not bound to the biomolecule label 400 by the magnetic field applied.
  • the non-specifically adsorbed magnetic beads 412 non-specifically adsorbed on the surface of the magnetic sensor 220 away from the surface of the magnetic sensor 220 the influence of the non-specifically adsorbed magnetic beads 412 is suppressed in the detection of the magnetic beads by the magnetic sensor 220, and biomolecules are detected.
  • the bound magnetic beads 411 bound to the label 400 can be detected with high accuracy.
  • the detection system 301 and the detection apparatus 101 of the second embodiment include the second magnetic field application mechanism 160 that applies a magnetic field to the coupled magnetic beads 411 that are coupled to the biomolecule label 400 when the magnetic sensor 220 detects the magnetic beads.
  • the second magnetic field application mechanism 160 it is possible to apply an appropriate magnetic field for magnetic bead detection by the magnetic sensor 220, so that highly sensitive detection of the bound magnetic beads 411 bound to the biomolecule label 400 becomes possible.
  • the surface of the magnetic sensor 220 is introduced by introducing a liquid containing the biomolecule label 400 into the well space 500 where the surface of the magnetic sensor 220 forms a part of the wall surface.
  • the biomolecule label 400 is fixed to the well space 500 and a liquid containing the magnetic beads 410 is introduced into the well space 500, and at least a part of the magnetic beads 410 is fixed to the surface of the magnetic sensor 220.
  • a magnetic bead 410 (non-specifically adsorbed magnetic bead 412) is attached to a first magnetic field applying mechanism 150 that applies a magnetic field by binding to a molecule in the vicinity of the biomolecule label 400 immobilized on the surface of Thereafter, magnetic detection is performed by the magnetic sensor 220.
  • the non-specific adsorption magnetic beads 412 to the first magnetic field application mechanism 150, the non-specific adsorption magnetic beads 410 that are separated from the surface of the magnetic sensor 220 are moved in the vicinity of the magnetic sensor 220. Since it can be removed from the sensor, more accurate detection can be performed.
  • the detection system 301 and the detection apparatus 101 according to the second embodiment described above have the second magnetic field application mechanism 160, but when the magnetic detection is performed by the magnetic sensor 220, A magnetic field may be applied to the coupled magnetic beads 411 coupled to the molecular label 400. In such a case, the second magnetic field application mechanism 160 may be omitted.
  • the non-specific adsorption magnetic beads 412 are attached to and removed from the first magnetic field application mechanism 150 has been described, but as shown in FIG.
  • the non-specifically adsorbed magnetic beads 412 may be removed from the upper portion of the well space 500 using the dropper 600 or the like while the magnetic field is applied by the first magnetic field applying mechanism 150.
  • the well space 500 may be removed from the upper part using a dropper 600 or the like.
  • FIG. 27 is a diagram showing an example in which the well member 510 forms a part of the side wall surface and the bottom wall surface of the well space 500, and the magnetic sensor 220 is installed on the bottom of the well member 510.
  • FIG. 28 is a diagram illustrating an example in which a part of the well member 510 is installed so as to face the side surface of the protective layer 212.
  • FIG. 29 is a diagram illustrating an example in which a part of the well member 510 constitutes a part of the wall surface on the bottom surface of the well space 500.
  • the biomolecule label 400 is fixed to the surface of the magnetic sensor 220 in the well space 500 as described in the second embodiment, and then separated from the well member 510 and the first embodiment.
  • a flow path space 230 is formed in combination with the flow path member 214 described, and the binding of the magnetic beads 410 to the biomolecule label 400 or molecules in the vicinity of the biomolecule label 400 is performed as described in the first embodiment.
  • the biomolecule label 400 is fixed to the surface of the magnetic sensor 220 in the channel space 230 as described in the first embodiment, and then separated from the channel member 214 in the second embodiment.
  • the well member 510 described in the embodiment is combined with the well member 510 to form the well space 500, and the binding of the magnetic beads 410 to the biomolecule label 400 or to the molecule in the vicinity of the biomolecule label 400 is performed as described in the second embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

磁気ビーズを用いてバイオ分子標識の高精度な検出を行なうことを目的とする。 検出システム300は、バイオ分子標識を含む液体と磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が壁面の一部を構成する磁気センサーとを有し、磁気センサーの表面に固定されるバイオ分子標識または磁気センサーの表面に固定されるバイオ分子標識の近傍の分子に磁気ビーズの少なくとも一部が結合する検出デバイス200と、磁気ビーズを磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構150とを有することを特徴とする。

Description

検出システム、検出装置および検出方法
本発明は、バイオ分子標識を、磁気ビーズを用いて検出する技術に関し、検出システム、検出装置および検出方法に関する。
近年、疾患の同定や予防や診断を、電気信号などの定量可能なデジタルデータを用いて行う方法が医療工学の進歩に伴って可能になってきた。実際に、各種の生体由来の蛋白質、細菌、ウィルス、DNA(Deoxyribonucleic Acid)、又はRNA(Ribonucleic Acid)のデジタル検出が免疫学的な手法と工学的な手法を組み合わせて行われており、癌等の疾患の同定や予防や診断に役立てられている。
癌マーカーやホルモン等の蛋白質は生体内に微量しか存在しないことから、必然的にその検出には高感度化が要求されている。さらに、患者への負担を軽減するために、採取するサンプルの微量化が進行しており、血液電解質測定等では既に数マイクロリットルのサンプルから検出が行われている。
高感度化を目的とした手法として、磁気バイオセンサーがある。磁気バイオセンサーとは近年提案されている高感度センシング方式のひとつで、検出部の表面近傍に位置する磁気ビーズの有無、数を検知することにより検体液中の蛋白質、細菌、ウィルス、DNA又はRNAといったバイオ分子標識の有無、濃度を検出する。
特許文献1では、バイオ分子標識および磁気ビーズを含む検体液が流れる流路と、検出部としての磁気センサーとを使用することによって、バイオ分子標識の高感度検知を行えるバイオ分子標識検出器が開示されている。磁気センサー表面は流路壁面の一部を構成しており、磁気センサー表面に固定されたバイオ分子標識と結合した磁気ビーズに外部磁場を印加した時の漏洩磁界を磁気センサーで検出することで、バイオ分子標識の定量的な測定を行っている。
特開2013-029440号公報
流路に流された磁気ビーズにはバイオ分子標識と未結合のものが存在するが、これらの中には流路壁面に特別な化学結合性を持たずに吸着している磁気ビーズが存在する。このような吸着を非特異吸着と呼ぶ。流路壁面の一部を構成する磁気センサー表面に、非特異吸着している磁気ビーズが残留すると、バイオ分子標識の定量的な検出精度が悪化してしまう。本発明は、磁気ビーズを用いてバイオ分子標識の高精度な検出を行なうことを目的とする。
上記目的を達成する本発明の検出システムは、磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成し、その表面にバイオ分子標識が固定される磁気センサーとを有し、前記バイオ分子標識または前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスと、前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする。
本発明において、「磁気センサー」とは、その表面にバイオ分子標識が固定されてバイオ分子標識を磁気的に検出するもののことをいう。つまり、本発明において「磁気センサーの表面」とは、磁気検出素子の上に形成された層の最表面であり、バイオ分子標識が固定される面のことである。
上記特徴の検出システムによれば、第一の磁場印加機構が印加する磁場により、バイオ分子標識およびバイオ分子標識の近傍の分子に結合していない、磁気センサーの表面に非特異吸着した磁気ビーズを、磁気センサーの表面から遠ざけることで、磁気センサーによる磁気ビーズ検出において、非特異吸着した磁気ビーズの影響を抑え、バイオ分子標識またはバイオ分子標識の近傍の分子と結合した磁気ビーズの高精度な検出を行なうことができる。
さらに本発明の検出システムは、バイオ分子標識を含む液体と磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成する磁気センサーとを有し、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスと、前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする。
上記特徴の検出システムによれば、第一の磁場印加機構が印加する磁場により、バイオ分子標識およびバイオ分子標識の近傍の分子に結合していない、磁気センサーの表面に非特異吸着した磁気ビーズを、磁気センサーの表面から遠ざけることで、磁気センサーによる磁気ビーズ検出において、非特異吸着した磁気ビーズの影響を抑え、バイオ分子標識またはバイオ分子標識の近傍の分子と結合した磁気ビーズの高精度な検出を行なうことができる。
さらに本発明の検出システムは、前記磁気センサーによる磁気検出時に前記バイオ分子標識または前記バイオ分子標識の近傍の分子と結合した前記磁気ビーズに磁場を印加する第二の磁場印加機構をさらに有することを特徴とする。
これによれば、第二の磁場印加機構を用いることで、磁気センサーによる磁気ビーズ検出のために適切な磁場印加ができるため、バイオ分子標識またはバイオ分子標識の近傍の分子と結合した磁気ビーズの高感度検出が可能になる。
さらに本発明の検出システムは、前記空間は、前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする。
さらに本発明の検出システムは、前記空間は、前記バイオ分子標識を含む前記液体と前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする。
上記目的を達成する本発明の検出装置は、磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成し、その表面にバイオ分子気標識が固定される磁気センサーとを有し、前記バイオ分子標識または前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスが挿入される挿入部と、前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする。
これによれば、第一の磁場印加機構が印加する磁場により、バイオ分子標識およびバイオ分子標識の近傍の分子に結合していない、磁気センサーの表面に非特異吸着した磁気ビーズを、磁気センサーの表面から遠ざけることで、磁気センサーによる磁気ビーズ検出において、非特異吸着した磁気ビーズの影響を抑え、バイオ分子標識またはバイオ分子標識の近傍の分子と結合した磁気ビーズの高精度な検出を行なうことができる。
さらに本発明の検出装置は、バイオ分子標識を含む液体と磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成する磁気センサーとを有し、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスが挿入される挿入部と、
前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする。
これによれば、第一の磁場印加機構が印加する磁場により、バイオ分子標識およびバイオ分子標識の近傍の分子に結合していない、磁気センサーの表面に非特異吸着した磁気ビーズを、磁気センサーの表面から遠ざけることで、磁気センサーによる磁気ビーズ検出において、非特異吸着した磁気ビーズの影響を抑え、バイオ分子標識またはバイオ分子標識の近傍の分子と結合した磁気ビーズの高精度な検出を行なうことができる。
さらに本発明の検出装置は、前記磁気センサーによる磁気検出時に前記バイオ分子標識または前記バイオ分子標識の近傍の分子と結合した前記磁気ビーズに磁場を印加する第二の磁場印加機構をさらに有することを特徴とする。
これによれば、第二の磁場印加機構を用いることで、磁気センサーによる磁気ビーズ検出のために適切な磁場印加ができるため、バイオ分子標識またはバイオ分子標識の近傍の分子と結合した磁気ビーズの高感度検出が可能になる。
さらに本発明の検出装置は、前記空間は、前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする。
さらに本発明の検出装置は、前記空間は、前記バイオ分子標識を含む前記液体と前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする。
上記目的を達成する本発明の検出方法は、バイオ分子標識を含む液体を磁気センサーの表面に接触させて前記バイオ分子標識を前記磁気センサーの表面に固定させ、磁気ビーズを含む液体を前記磁気センサーの表面に接触させて、前記磁気ビーズの少なくとも一部を、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に結合させ、前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加し、その後、前記磁気センサーにより磁気検出を行うことを特徴とする。
これによれば、磁気ビーズを磁気センサーの表面から遠ざける方向の磁場により、バイオ分子標識およびバイオ分子標識の近傍の分子に結合していない、磁気センサーの表面に非特異吸着した磁気ビーズを、磁気センサーの表面から遠ざけることで、磁気センサーによる磁気ビーズ検出において、非特異吸着した磁気ビーズの影響を抑え、バイオ分子標識またはバイオ分子標識の近傍の分子と結合した磁気ビーズの高精度な検出を行なうことができる。
さらに本発明の検出方法は、前記磁気センサーの表面がその流路壁面の一部を構成する流路空間に、前記バイオ分子標識を含む液体を流して前記磁気センサーの表面に前記バイオ分子標識を固定させ、前記流路空間に前記磁気ビーズを含む液体を流して、前記磁気ビーズの少なくとも一部を、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に結合させることを特徴とする
さらに本発明の検出方法は、前記磁場を印加した状態、または前記磁場の印加を止めた後で前記流路空間に前記磁気ビーズを含まない液体を流し、その後、前記磁気センサーにより磁気検出を行うことを特徴とする。
これによれば、磁気ビーズを磁気センサーの表面から遠ざける方向の磁場を印加した状態、またはその磁場の印加を止めた後で流路空間に磁気ビーズを含まない液体を流すことにより、磁気センサーの表面より遠ざけられた非特異吸着していた磁気ビーズを、磁気センサー近傍から取り除くことができるので、より高精度な検出が行える。
さらに本発明の検出方法は、前記磁気センサーの表面がその壁面の一部を構成するウェル空間に、前記バイオ分子標識を含む液体を導入して前記磁気センサーの表面に前記バイオ分子標識を固定させ、前記ウェル空間に前記磁気ビーズを含む液体を導入して、前記磁気ビーズの少なくとも一部を、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に結合させ、前記磁場を印加して前記磁場を印加する磁場印加機構に前記磁気ビーズを付着させ、その後、前記磁気センサーにより磁気検出を行うことを特徴とする。
これによれば、第一の磁場印加機構に磁気ビーズを付着させることによって、磁気センサーの表面より遠ざけられた非特異吸着していた磁気ビーズを、磁気センサーの近傍から取り除くことができるので、より高精度な検出が行える。
本発明の検出システム、検出装置および検出方法は、磁気ビーズを用いてバイオ分子標識の高精度な検出を行なうことができる。
図1は、第1実施形態の検出装置の模式図である。 図2は、第1実施形態の検出システムの模式図である。 図3は、液体が流路空間内を流れる方向に垂直な面による第1実施形態の検出デバイスの断面図である。 図4は、図3のA-A線に沿った断面図である。 図5は、第1実施形態における、バイオ分子標識を含む液体を送液する工程の初期状態を示す模式図である。 図6は、第1実施形態における、バイオ分子標識を沈降させる工程を示す模式図である。 図7は、第1実施形態における、固定されていないバイオ分子標識を除去する工程を示す模式図である。 図8は、第1実施形態における、磁気ビーズを含む液体を送液する工程の初期状態を示す模式図である。 図9は、第1実施形態における、磁気ビーズを沈降させる工程を示す模式図である。 図10は、第1実施形態における、第一の磁場印加機構が磁場を印加する工程を示す模式図である。 図11は、第1実施形態における、磁気ビーズを含まない液体により非特異吸着磁気ビーズを除去する工程を示す模式図である。 図12は、第1実施形態における、非特異吸着磁気ビーズが除去された状態を示す模式図である。 図13は、磁気ビーズが、バイオ分子標識の近傍の磁気センサーの表面に存在する分子と結合している状態を示す模式図である。 図14は、磁気ビーズが、バイオ分子標識の近傍に選択的に成長する磁気ビーズ支持分子と結合している状態を示す模式図である。 図15は、第2実施形態の検出装置の模式図である。 図16は、第2実施形態の検出システムの模式図である。 図17は、第2実施形態の検出デバイスの断面図である。 図18は、第2実施形態における、バイオ分子標識を含む液体を導入する工程の初期状態を示す模式図である。 図19は、第2実施形態における、バイオ分子標識を沈降させる工程を示す模式図である。 図20は、第2実施形態における、固定されていないバイオ分子標識を除去する工程を示す模式図である。 図21は、第2実施形態における、磁気ビーズを含む液体を導入する工程の初期状態を示す模式図である。 図22は、第2実施形態における、磁気ビーズを沈降させる工程を示す模式図である。 図23は、第2実施形態における、第一の磁場印加機構が磁場を印加する工程を示す模式図である。 図24は、第2実施形態における、第一の磁場印加機構に磁気ビ―ズが付着した状態を示す模式図である。 図25は、第2実施形態における、非特異吸着磁気ビーズが除去された状態を示す模式図である。 図26は、第2実施形態の変形例における、スポイトにより磁気ビーズが除去される状態を示す模式図である。 図27は、第2実施形態の他の変形例の検出デバイスの断面図である。 図28は、第2実施形態のさらに他の変形例の検出デバイスの断面図である。 図29は、第2実施形態のさらに他の変形例の検出デバイスの断面図である。
以下、図面を用いて本発明を実施するための形態の例を説明する。なお、以下の説明は本発明の実施形態の一部を例示するものであり、本発明はこれら実施形態に限定されるものではなく、形態が本発明の技術的思想を有するものである限り、本発明の範囲に含まれる。各実施形態における各構成及びそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
(第1実施形態)
(検出装置)
第1実施形態の検出装置100は、図1に示すように、生体由来液体投入口110、磁気ビーズ含有液体投入口120、体液化学処理部130、液体排出部140、第一の磁場印加機構150、第二の磁場印加機構160、電気信号変換部170、表示部180および検出デバイス挿入口190(後述する検出デバイス200が挿入される挿入部)を有して構成されている。
(検出システム)
第1実施形態の検出システム300は、図2に示すように、検出装置100と後述する検出デバイス200を有して構成されている。検出システム300は、検出デバイス200が検出装置100の検出デバイス挿入口190に挿入された状態で作動する。
生体由来液体投入口110は、生体に由来する液体が投入される投入口であり、材質として、金属やプラスチック、樹脂、ガラスなど必要に応じて選択される。投入される生体に由来する液体として、体液やバイオ分子標識含有液体が挙げられる。体液としては血液、血清、口腔洗液、尿、脳漿、痰、生検標本または骨髄試料などが挙げられ、後述の体液化学処理部130で処理される。体液を検出装置100に投入する前に事前に処理をしてバイオ分子標識化した分子を含有する液体(バイオ分子標識含有液体)を、生体由来液体投入口110から投入してもよい。この場合、バイオ分子標識含有液体を体液化学処理部130に通過させる必要はない。
磁気ビーズ含有液体投入口120は、後述する磁気ビーズ410を含む液体を投入する入口であり、材質として、金属やプラスチック、樹脂、ガラスなどが必要に応じて選択される。磁気ビーズ410を含有する液体は磁気ビーズ410が溶解せずに良好に分散する性質が求められ、磁気ビーズ410とバイオ分子標識400との結合反応の種類に応じて、適切なpHを持つ緩衝溶液が選択される。例えば、バイオ分子標識400としてのビオチンと磁気ビーズ410の表面物質としてのストレプトアビジンとの結合の場合、pH7~8に調整したトリスヒドロキシメチルアミノメタンとエチレンジアミン四酢酸とでなる緩衝溶液が用いられる。
体液化学処理部130は、生体由来液体投入口110から投入された液体が体液である場合、体液に含まれる細胞や蛋白質や検体分子などを化学的に処理し、バイオ分子標識化する箇所である。具体的には、化学的処理は、体液に含まれる細胞を溶解させた後、核酸や蛋白質や検体分子などを抽出し、核酸や蛋白質や検体分子などを抗体や核酸などにより捕捉し、その抗体や核酸を特定の制限酵素で切断したり、標識分子と結合させたりするなどを行う処理である。捕捉や切断や標識化に用いる物質は同定や予防や診断を行う疾患に応じて、適切に選択される。 
生体由来液体投入口110および磁気ビーズ含有液体投入口120に投入された液体は、後述する検出デバイス200の流路空間230に流される。
液体排出部140は、検出デバイス200の流路空間230から排出される液体を排出する部分であり、材質として、金属やプラスチック、樹脂、ガラスなどが必要に応じて選択される。また効率よく液体の投入や排出といった送液を行うために検出装置100内の適切な箇所にポンプを用いることが好ましい。
第一の磁場印加機構150は、後述する検出デバイス200内の磁気ビーズ410を、後述する磁気センサー220の表面から遠ざける方向の磁場を印加する機構である。第一の磁場印加機構150としては、磁場を印加できる機構や機能を有すれば種類を問わず、永久磁石やコイル(電磁石)が挙げられるが、印加磁場の制御が電気的に行え、装置構成が簡便になるので、コイル(電磁石)を使用することが好ましい。
第二の磁場印加機構160は、磁気センサー220による磁気ビーズ検出のために必要な磁場を印加するための機構であり、磁気センサー220による磁気検出時にバイオ分子標識400またはバイオ分子標識400の近傍の分子と結合した磁気ビーズ410に磁場を印加する。第二の磁場印加機構160を第一の磁場印加機構150と独立して用いることで、磁気センサー220による磁気ビーズ検出のために適切な磁場印加を行うことができる。また、第二の磁場印加機構160が印加する磁場は、磁気センサー220の表面全体において実質的に一様であることが望ましい。第二の磁場印加機構160としては、磁場を印加できる機構や機能を有すれば種類を問わず、永久磁石やコイル(電磁石)が挙げられるが、印加磁場の制御が電気的に行え、装置構成が簡便になるので、コイル(電磁石)を使用することが好ましい。第一の磁場印加機構150は、磁気センサー220の表面において、第二の磁場印加機構160の印加する磁場よりも強い磁場を印加することが望ましい。
電気信号変換部170は、検出デバイス200から得られた、磁気ビーズ検出結果を電気信号に変化する部分である。
表示部180は、電気信号変換部170より得られた電気信号をバイオ分子標識の有無、濃度として表示する部分である。
(検出デバイス)
第1実施形態の検出デバイス200は、図3及び図4に示すように、流路空間230と、磁気センサー220と、流路部材214とを有して構成されている。流路空間230は、流路部材214の壁面と後述する磁気センサー220の表面(壁面)により形成される空間である。流路空間230には、生体由来液体投入口110に投入されたバイオ分子標識400を含む液体または、体液化学処理部13で処理されたバイオ分子標識400を含む液体や、磁気ビーズ含有液体投入口120に投入された磁気ビーズ410を含む液体が流れる。図3は、液体が流路空間230内を流れる方向に垂直な面による検出デバイス200の断面図であり、図4は、図3のA-A線に沿った断面図である。
磁気センサー220は、図3及び図4に示すように、支持体210、磁気検出素子211、保護層212および有機層213を有して構成されている。
支持体210は検出デバイス200のハンドリングに対する機械的強度を与えるための支持体であるとともに、磁気検出素子211の作製時の基板である。支持体210は、機械的強度や磁気検出素子211、保護層212および有機層213作製のプロセスの観点からSi、SiO、ITO、ガラスまたはAl等が好ましく、安価なSiが最も好ましい。
磁気検出素子211は磁気ビーズ検出のために用いられる素子であり、一例として、巨大磁気抵抗効果素子(GMR素子)が挙げられる。磁気検出素子211は支持体210上に気相成長法等を用いて形成される。
保護層212は磁気素子211を雰囲気から保護するための層であり、Au、Pt、アモルファスカーボン、DLC(ダイヤモンドライクカーボン)、SiO、Al、TiO、ITO、SiCまたはSi等の化学的に安定な貴金属、炭素、金属酸化物、金属炭化物または金属窒化物を用いることができる。さらには有機層213の形成のプロセスの観点から、適切な材料が選択される。保護層212は支持体210及び磁気検出素子211上に気相成長法等を用いて形成される。図4に示すように、磁気検出素子211上の保護層212は、他の部分よりも厚さが薄く形成されている。保護層212の上面には段差が存在しない、もしくは段差が存在しても段差が小さいことが好ましい。このような保護層212は、磁気検出素子211上に形成されたレジストを用いたリフトオフ法を用いて形成することができる。
有機層213はバイオ分子標識400を磁気センサー220の表面に固定させるための層であり、層表面にバイオ分子標識400との結合基を有する。バイオ分子標識400との結合基は、例えば、カルボキシル基(-COOH)やアミン基(-NH)である。有機層213の形成に用いる有機物はバイオ分子標識400との結合基によって適切な有機物が選択され、例えば、ホスホン酸や3-アミノプロピルトリエトキシシランなどを用いることができる。さらにバイオ分子標識400との結合のために、有機層213として核酸や抗体を用いてもよい。有機層213は保護層212上に蒸着法、気相成長法、溶液浸漬法またはラングミュア・ブロジェット法等を用いて形成される。
磁気センサー220は、その表面にバイオ分子標識400が固定されてバイオ分子標識440を磁気的に検出する。本発明において「磁気センサーの表面」とは、磁気検出素子の上に形成された層の最表面であり、バイオ分子標識が固定される面のことであり、第1実施形態においては、有機層213の表面が磁気センサー220の表面に相当する。磁気センサー220の表面である有機層213の表面は、流路空間230を形成する流路壁面の一部を構成している。
流路部材214は、磁気センサー220と組み合わせることで流路空間230を形成するための部材であり、1対の側壁と、1対の側壁の間を接続する上面とを有する。これら1対の側壁と上面とにより、凹状の溝部が形成される。流路部材214の材料としては、例えば、化学的に安定なガラスや樹脂、ゴム材を用いることができ、バイオ分子標識400を含む液体や磁気ビーズ410を含む液体の液性、流速、粘度および磁気センサー220との間の密閉性等を考慮し、適切な材料が選択される。
 検出デバイス200は、磁気センサー220が、検出デバイス挿入口190内において、第一の磁場印加機構150が位置する側とは反対側に位置するように、検出デバイス挿入口190に挿入される。
(バイオ分子標識)
図5から図14に示す第1実施形態のバイオ分子標識400は、例えば、結合可能なリガンドを有する受容体蛋白質、接着蛋白質、抗原または抗体などのように、蛋白質間相互作用が可能な蛋白質であり、疾患と関連するものである。そのようなものには、その存在量の増減が疾患の存在を示唆する蛋白質のように、疾患の診断に使用可能な蛋白質が含まれ、上皮増殖因子(EGF)、血小板由来増殖因子(PDGF)、脳由来増殖因子(BDGF)または血管内皮増殖因子(VEGF)などの増殖因子、フィブロネクチン、ラミニンまたはビトロネクチンなどの細胞接着因子、インスリン、ソマトスタチン、ソマトトロンビンまたは性腺刺激ホルモン放出因子などのホルモン、LDLなどのリポ蛋白質、種々の腫瘍マーカーまたは抗体などの検体分子が挙げられる。また、HIVおよびHBV等のウィルスや細菌あるいは癌遺伝子等の核酸などの検体分子をバイオ分子標識とすることもできる。また、バイオ分子標識は、上に例示した検体分子だけではなく、上に例示したような検体分子に結合している分子、上に例示したような検体分子を標識化した分子を用いることができる。バイオ分子標識400を含む液体はバイオ分子標識400を溶解せずに良好に分散する性質が求められ、磁気ビーズ410とバイオ分子標識400との結合反応の種類に応じて、適切なpHを持つ緩衝溶液が選択される。例えばバイオ分子標識400としてのビオチンと磁気ビーズ410の表面物質としてのストレプトアビジンとの結合の場合、pH7~8に調整したトリスヒドロキシメチルアミノメタンとエチレンジアミン四酢酸とでなる緩衝溶液が用いられる。
(磁気ビーズ)
図8から図14に示す磁気ビーズ410は磁気センサー220の被検知物であり、バイオ分子標識400と結合する。磁気ビーズ410は内部に磁性体を含む構造をしており、磁性体としては例えば、鉄または酸化鉄を含む強磁性材料や超常磁性材料が挙げられる。磁気ビーズ410の内部の磁性体はバイオ分子標識400と結合可能な有機物で被覆されている。この有機物としては、具体的にはアミン基やカルボキシル基等の反応性基を含む有機物が挙げられ、例えば、ストレプトアビジンやヒドロキシアパタイトなどを用いることができる。これらの有機物はバイオ分子標識と結合する。有機物の材料は同定や予防や診断を行う疾患に応じて、適切に選択される。磁気ビーズ410の構造は、微細な磁性体が有機物中に分散している構造や、中心の磁性体を有機物が被覆している構造などが挙げられ、目的に応じて適宜選択される。磁気ビーズ410の大きさは10nm~100μmであり、目的に応じて適宜選択される。
(検出システムの動作方法)
図5から図12を参照して、検出システム300の動作方法(本発明における検出方法の例)について説明する。まず、生体由来液体投入口110に生体に由来する液体が投入される。生体由来液体投入口110に投入された生体に由来する液体は、必要に応じて体液化学処理部130で処理され、バイオ分子標識400を含む液体として流路空間230に流される。図5は、流路空間230の図中右から左へバイオ分子標識400を含む液体を送液する工程の初期状態を示している。
次に、図6に示すように、送液を停止させ、流路空間230を満たしたバイオ分子標識400を含む液体を静置させ、バイオ分子標識400を沈降させる。沈降したバイオ分子標識400の内、磁気センサー220上のバイオ分子標識400は有機層213により磁気センサー220表面に固定され、それ以外のバイオ分子標識400は保護層212上に固定されずに堆積する。
次に、図7に示すように、保護層212上に固定されずに堆積しているバイオ分子標識400を、バイオ分子標識を含まない液体を流路空間230の図中右から左へ流すことで除去する。バイオ分子標識を含まない液体は磁気ビーズ投入口120または図示しない専用の投入口から投入される。このような液体としてはバイオ分子標識400が分散していた緩衝液と同一の液体が好ましい。
次に、磁気ビーズ含有液体投入口120に磁気ビーズ410を含む液体が投入され、流路空間230に磁気ビーズ410を含む液体が流される。図8は、流路空間230の図中右から左へ磁気ビーズ410を含む液体を送液する工程の初期状態を示している。
次に、図9に示すように、送液を停止させ、流路空間230を満たした磁気ビーズ410を含む液体を静置させ、磁気ビーズ410を沈降させる。沈降した磁気ビーズ410の内、結合磁気ビーズ411はバイオ分子標識400と結合し、それ以外の非特異吸着磁気ビーズ412は、主に流路空間230の底面(保護層212の表面および有機層213の表面)に疎水性相互作用や静電相互作用などによって非特異的に吸着する。
次に、第一の磁場印加機構150により、磁気ビーズ410(非特異吸着磁気ビーズ412)を磁気センサー220の表面から遠ざける方向の磁場を印加する。図10に示すように、第一の磁場印加機構150による磁場印加によって、結合力が比較的弱い非特異吸着磁気ビーズ412は磁気センサー220の表面から遠ざかる方向に引き寄せられ、一方、結合力が比較的強い結合磁気ビーズ411は、第一の磁場印加機構150による磁場を印加されても引き寄せられることなく、バイオ分子標識400に結合した状態を保つ。第一の磁場印加機構150は、非特異吸着磁気ビーズ412は磁気センサー220の表面から遠ざかる方向に引き寄せられ、結合磁気ビーズ411はバイオ分子標識400に結合した状態を保つような強度の磁場を印加する。第一の磁場印加機構150がコイルである場合、コイルへ電流を印加することにより、第一の磁場印加機構150による磁場が印加される。第一の磁場印加機構150が永久磁石である場合、磁気センサー220の表面へ永久磁石を近づけることにより、第一の磁場印加機構150による磁場が印加される。
次に、図11に示すように、第一の磁場印加機構150による磁場を印加した状態で、磁気ビーズを含まない液体を流路空間230の図中右から左へ流し、磁気センサー220の表面から遠ざけられた非特異吸着磁気ビーズ412を除去する。第一の磁場印加機構150による磁場の印加を止めた後、磁気センサー220の表面から遠ざけられた非特異吸着磁気ビーズ412が再び磁気センサー220の表面上に沈降する前に、磁気ビーズを含まない液体を流路空間230に流し、磁気センサー220の表面から遠ざけられた非特異吸着磁気ビーズ412を除去するようにしても良い。磁気ビーズを含まない液体は磁気ビーズ投入口120または図示しない専用の投入口から投入される。このような液体としては磁気ビーズが分散していた緩衝液と同一の液体が好ましい。第一の磁場印加機構150がコイルである場合、コイルへの電流印加を停止することにより、第一の磁場印加機構150による磁場の印加を止める。第一の磁場印加機構150が永久磁石である場合、磁気センサー220の表面から永久磁石を遠ざけることにより、第一の磁場印加機構150による磁場の印加を止める。
このように、第一の磁場印加機構150による磁場を印加した状態または第一の磁場印加機構150による磁場の印加を止めた後で、磁気ビーズを含まない液体を流路空間230に流しているので、磁場を印加せずに磁気ビーズを含まない液体を流路空間230に流す場合と比べて、磁気センサー220の表面からより迅速に非特異吸着磁気ビーズ412を除去することができる。
図12は非特異吸着磁気ビーズ412が除去された状態を示す。すなわち磁気ビーズ410(結合磁気ビーズ411)はバイオ分子標識400上にのみ存在し、その他の部分には存在していない。したがって磁気センサー220を用いて結合磁気ビーズ411から発生する磁界を測定する(磁気センサー220による磁気検出を行う)ことにより、バイオ分子標識400の個数あるいは濃度が精度良く測定できることになる。
磁気センサー220による磁気検出を行ってバイオ分子標識を検出する方法について説明する。図12の状態から、第2の磁場印加機構160より結合磁気ビーズ411へ磁場を印加し、その磁場によって結合磁気ビーズ411から発生した磁界を磁気センサー220で検知し、電気信号として出力する。その電気信号を、電気信号変換部170を介して表示部180に出力し、磁界の値を結合磁気ビーズ411の個数、バイオ分子標識400の個数または濃度として表示させる。第二の磁場印加機構160がコイルである場合、コイルへ電流を印加することにより、第二の磁場印加機構160による磁場が印加される。第二の磁場印加機構160が永久磁石である場合、磁気センサー220の表面へ永久磁石を近づけることにより、第二の磁場印加機構160による磁場が印加される。
このように、第1実施形態の検出システム300、検出装置100および検出システム300の動作方法によれば、第一の磁場印加機構150が印加する磁場により、バイオ分子標識400に結合していない、磁気センサー220の表面に非特異吸着した非特異吸着磁気ビーズ412を、磁気センサー220の表面から遠ざけることで、磁気センサー220による磁気ビーズ検出において、非特異吸着磁気ビーズ412の影響を抑え、バイオ分子標識400と結合した結合磁気ビーズ411の高精度な検出を行なうことができる。
さらに、第1実施形態の検出システム300および検出装置100は、磁気センサー220による磁気ビーズ検出時にバイオ分子標識400と結合した結合磁気ビーズ411に磁場を印加する第二の磁場印加機構160を有するので、第二の磁場印加機構160を用いることで、磁気センサー220による磁気ビーズ検出のために適切な磁場印加ができるため、バイオ分子標識400と結合した結合磁気ビーズ411の高感度検出が可能になる。
さらに、第1実施形態の検出システム300の動作方法は、第一の磁場印加機構150による磁場を印加した状態、または第一の磁場印加機構150による磁場を印加した後で流路空間230に磁気ビーズを含まない液体を流し、その後、磁気センサー220により磁気検出を行うので、磁気センサー220の表面より遠ざけられた非特異吸着磁気ビーズ412を、磁気センサー220近傍から取り除くことができるので、より高精度な検出が行える。
 上記で説明した第1実施形態の検出システム300および検出装置100は、第二の磁場印加機構160を有しているが、磁気センサー220による磁気検出時に、第一の磁場印加機構150により、バイオ分子標識400と結合した結合磁気ビーズ411に磁場を印加するようにすることもできる。このような場合には、第二の磁場印加機構160は無くても良い。
 また、上記で説明した第1実施形態の検出システム300の動作方法では、第一の磁場印加機構150による磁場を印加した状態、または第一の磁場印加機構150による磁場を印加した後で流路空間230に磁気ビーズを含まない液体を流し、その後、磁気センサー220により磁気検出を行っているが、流路空間230に磁気ビーズを含まない液体を流すことを省略することもできる。この場合でも、磁気ビーズ410を磁気センサー220の表面から遠ざける方向の磁場を印加し、その後、磁気センサー220により磁気検出を行うことにより、非特異吸着磁気ビーズ412の影響を抑え、バイオ分子標識400と結合した結合磁気ビーズ411の高精度な検出を行なうことができる。
また、上記で説明した実施形態では、磁気ビーズ410がバイオ分子標識400と直接的に結合する例で説明したが、例えばバイオ分子標識400に触媒(図示しない)を担持させるなどして、図13に示すように、磁気ビーズ410をバイオ分子標識400の近傍の分子(バイオ分子標識400の近傍の磁気センサー220の表面に存在する分子)と選択的に結合させることによって、磁気ビーズ410をバイオ分子標識400とは直接的には結合しない形でバイオ分子標識400の近傍に存在させるようにしてもよい。
あるいは、バイオ分子標識400に触媒(図示しない)を担持させるなどして、図14に示すように、磁気ビーズ支持分子420をバイオ分子標識400の近傍に選択的に成長させ、磁気ビーズ410を磁気ビーズ支持分子420と結合させることによって、磁気ビーズ410をバイオ分子標識400とは直接的には結合しない形でバイオ分子標識400の近傍に存在させるようにしてもよい。
(第2実施形態)
第2実施形態については、第1実施形態と異なる点について主に説明し、共通する事項は適宜説明を省略する。
(検出装置)
第2実施形態の検出装置101は、図15に示すように、第1実施形態の検出装置100から液体排出部140を取り除いたものであり、検出装置101の生体由来液体投入口110および磁気ビーズ含有液体投入口120に投入された液体は、後述する検出デバイス201のウェル空間500に導入される。検出装置101のその他の構成は、第1実施形態の検出装置100と同じである。
(検出システム)
 第2実施形態の検出システム301は、図16に示すように、第1実施形態の検出装置100にかえて検出装置101が用いられ、第1実施形態の検出デバイス200にかえて検出デバイス201が用いられる。検出システム301は、検出デバイス201が検出装置101の検出デバイス挿入口190に挿入された状態で作動する。
(検出デバイス)
第2実施形態の検出デバイス201は、図17に示すように、上部が開放されている井戸型のウェル空間500と、磁気センサー220と、ウェル部材510とを有して構成されている。ウェル空間500は、ウェル部材510の壁面と磁気センサー220の表面(壁面)により形成される空間である。ウェル空間500には、生体由来液体投入口110に投入されたバイオ分子標識400を含む液体または、体液化学処理部130で処理されたバイオ分子標識400を含む液体や、磁気ビーズ含有液体投入口120に投入された磁気ビーズ410を含む液体が導入される。図17は、検出デバイス201の断面図である。
第2実施形態の検出デバイス201は、第1実施形態の検出デバイス200に対して、流路空間230がウェル空間500に、流路部材214がウェル部材510に置き代わっており、それら以外の構成は共通している。
第1実施形態では、流路空間230にバイオ分子標識400を含む液体を流した後にバイオ分子標識400を磁気センサー220の表面に固定し、流路空間230に磁気ビーズ410を含む液体を流した後に磁気ビーズ410をバイオ分子標識400またはバイオ分子標識400の近傍の分子に結合させるのに対し、第2実施形態では、ウェル空間500にこれらの液体を導入後、滞留させることでバイオ分子標識400の固定や、磁気ビーズの結合を行う。
ウェル部材510は、ウェル空間500を形成するための部材であり、ウェル空間500の側壁面を構成する。ウェル部材510の材料としては、例えば、化学的に安定なガラスや樹脂、ゴム材を用いることができ、バイオ分子標識400を含む液体や磁気ビーズ410を含む液体の液性、粘度および磁気センサー220との間の密閉性等を考慮し、適切な材料が選択される。
(検出システムの動作方法)
図18から図26を参照して、検出システム301の動作方法(本発明における検出方法の例)について説明する。まず、生体由来液体投入口110に生体に由来する液体が投入される。生体由来液体投入口110に投入された生体に由来する液体は、必要に応じて体液化学処理部130で処理され、バイオ分子標識400を含む液体としてウェル空間500に導入される。図18は、ウェル空間500の図中上から下へバイオ分子標識400を含む液体を導入する工程の初期状態を示している。
次に、図19に示すように、バイオ分子標識400を含む液体の導入を停止させ、ウェル空間500内にバイオ分子標識400を含む液体を所定時間滞留させ、バイオ分子標識400を沈降させる。沈降したバイオ分子標識400の内、磁気センサー220上のバイオ分子標識400は有機層213により磁気センサー220の表面に固定され、それら以外のバイオ分子標識400は保護層212上に固定されずに堆積する。
次に、図20に示すように、保護層212上に堆積しているバイオ分子標識400を、ウェル空間500の上部からスポイト600等を用いて除去する。
次に、磁気ビーズ含有液体投入口120に磁気ビーズ410を含む液体が投入され、図21に示すように、ウェル空間500に磁気ビーズ410を含む液体が導入される。図21はウェル空間500の図中上から下へ磁気ビーズ410を含む液体を導入する工程の初期状態を示している。
次に、図22に示すように、磁気ビーズ410を含む液体の導入を停止させ、ウェル空間500内に磁気ビーズ410を含む液体を所定時間滞留させ、磁気ビーズ410を沈降させる。沈降した磁気ビーズ410の内、結合磁気ビーズ411はバイオ分子標識400と結合し、それ以外の非特異吸着磁気ビーズ412は、主にウェル空間500の底面(保護層212の表面および有機層213の表面)に疎水性相互作用や静電相互作用などによって非特異的に吸着する。
次に、図23に示すように、第一の磁場印加機構150により、磁気ビーズ410(非特異吸着磁気ビーズ412)を磁気センサー220の表面から遠ざける方向の磁場を印加する。図23に示すように、第一の磁場印加機構150による磁場印加によって、結合力が比較的弱い非特異吸着磁気ビーズ412は磁気センサー220の表面から遠ざかる方向に引き寄せられる。一方、結合力が比較的強い結合磁気ビーズ411は、第一の磁場印加機構150による磁場を印加されても引き寄せられることなく、バイオ分子標識400に結合した状態を保つ。第一の磁場印加機構150は、非特異吸着磁気ビーズ412は磁気センサー220の表面から遠ざかる方向に引き寄せられ、結合磁気ビーズ411はバイオ分子標識400に結合した状態を保つような強度の磁場を印加する。第一の磁場印加機構150がコイルである場合、コイルへ電流を印加することにより、第一の磁場印加機構150による磁場が印加される。第一の磁場印加機構150が永久磁石である場合、磁気センサー220の表面へ永久磁石を近づけることにより、第一の磁場印加機構150による磁場が印加される。
次に、図24に示すように、第一の磁場印加機構150に非特異吸着磁気ビーズ412を付着させる。非特異吸着磁気ビーズ412を付着させた第一の磁場印加機構150は、ウェル空間500から遠ざけた位置に移動させることが望ましい。第一の磁場印加機構150に非特異吸着磁気ビーズ412を付着させることによって、磁気センサー220の表面より遠ざけられた非特異吸着磁気ビーズ412を、磁気センサー220の近傍から取り除くことができるので、より高精度な検出が行える。
図25は非特異吸着磁気ビーズ412が除去された状態を示す。すなわち、磁気ビーズ410(結合磁気ビーズ411)はバイオ分子標識400上にのみ存在し、その他の部分には存在していない。したがって磁気センサー220を用いて結合磁気ビーズ411から発生する磁界を測定する(磁気センサー220による磁気検出を行う)ことにより、バイオ分子標識400の個数あるいは濃度が精度良く測定できることになる。
磁気センサー220による磁気検出を行ってバイオ分子標識を検出する方法について説明する。図25の状態から、第1実施形態と同様にして、第2の磁場印加機構160より結合磁気ビーズ411へ磁場を印加し、その磁場によって結合磁気ビーズ411から発生した磁界を磁気センサー220で検知し、電気信号として出力する。その電気信号を、電気信号変換部170を介して表示部180に出力し、磁界の値を結合磁気ビーズ411の個数、バイオ分子標識400の個数または濃度として表示させる。第二の磁場印加機構160がコイルである場合、コイルへ電流を印加することにより、第二の磁場印加機構160による磁場が印加される。第二の磁場印加機構160が永久磁石である場合、磁気センサー220の表面へ永久磁石を近づけることにより、第二の磁場印加機構160による磁場が印加される。
このように、第2実施形態の検出システム301、検出装置101および検出システム301の動作方法によれば、第一の磁場印加機構150が印加する磁場により、バイオ分子標識400に結合していない、磁気センサー220の表面に非特異吸着した非特異吸着磁気ビーズ412を、磁気センサー220の表面から遠ざけることで、磁気センサー220による磁気ビーズ検出において、非特異吸着磁気ビーズ412の影響を抑え、バイオ分子標識400と結合した結合磁気ビーズ411の高精度な検出を行なうことができる。
さらに、第2実施形態の検出システム301および検出装置101は、磁気センサー220による磁気ビーズ検出時にバイオ分子標識400と結合した結合磁気ビーズ411に磁場を印加する第二の磁場印加機構160を有するので、第二の磁場印加機構160を用いることで、磁気センサー220による磁気ビーズ検出のために適切な磁場印加ができるため、バイオ分子標識400と結合した結合磁気ビーズ411の高感度検出が可能になる。
さらに、第2実施形態の検出システム301の動作方法は、磁気センサー220の表面がその壁面の一部を構成するウェル空間500に、バイオ分子標識400を含む液体を導入して磁気センサー220の表面にバイオ分子標識400を固定させ、ウェル空間500に磁気ビーズ410を含む液体を導入して、磁気ビーズ410の少なくとも一部を、磁気センサー220の表面に固定されるバイオ分子標識400または磁気センサー220の表面に固定されるバイオ分子標識400の近傍の分子に結合させ、磁場を印加して磁場を印加する第一の磁場印加機構150に磁気ビーズ410(非特異吸着磁気ビーズ412)を付着させ、その後、磁気センサー220により磁気検出を行う。これによれば、第一の磁場印加機構150に非特異吸着磁気ビーズ412を付着させることによって、磁気センサー220の表面より遠ざけられた非特異吸着していた磁気ビーズ410を、磁気センサー220の近傍から取り除くことができるので、より高精度な検出が行える。
上記で説明した第2実施形態の検出システム301および検出装置101は、第二の磁場印加機構160を有しているが、磁気センサー220による磁気検出時に、第一の磁場印加機構150により、バイオ分子標識400と結合した結合磁気ビーズ411に磁場を印加するようにすることもできる。このような場合には、第二の磁場印加機構160は無くても良い。
また、上記で説明した第2実施形態の検出システム301の動作方法では、第一の磁場印加機構150に非特異吸着磁気ビーズ412を付着させて除去する例で説明したが、図26に示すように、第一の磁場印加機構150による磁場を印加した状態で、ウェル空間500の上部からスポイト600等を用いて非特異吸着磁気ビーズ412を除去するようにしてもよい。また、第一の磁場印加機構150による磁場の印加を止めた後、磁気センサー220の表面から遠ざけられた非特異吸着磁気ビーズ412が再び磁気センサー220の表面上に沈降する前に、ウェル空間500の上部からスポイト600等を用いて非特異吸着磁気ビーズ412を除去するようにしても良い。
第2実施形態の検出デバイス201の変形例として図27から図29に示す構成例が挙げられる。図27は、ウェル部材510がウェル空間500の側壁面および底面の一部の壁面を構成し、ウェル部材510の底部上に磁気センサー220が設置されている例を示す図である。図28は、ウェル部材510の一部が保護層212の側面と対向するように設置されている例を示す図である。図29は、ウェル部材510の一部がウェル空間500の底面の壁面の一部を構成する例を示す図である。
なお、バイオ分子標識400の磁気センサー220の表面への固定を、第2実施形態で説明したようにウェル空間500で行い、その後、ウェル部材510から分離した磁気センサー220と、第1実施形態で説明した流路部材214と組み合わせて流路空間230を形成し、磁気ビーズ410のバイオ分子標識400またはバイオ分子標識400の近傍の分子への結合を、第1実施形態で説明したように流路空間230で行ってもよい。つまり、この場合は、流路空間230は磁気ビーズ410を含む液体が導入される空間となり、流路空間230を形成する壁面の一部を構成する磁気センサー220の表面にバイオ分子標識400が固定されていることになる。
また、バイオ分子標識400の磁気センサー220の表面への固定を、第1実施形態で説明したように流路空間230で行い、その後、流路部材214から分離した磁気センサー220と、第2実施形態で説明したウェル部材510とを組み合わせてウェル空間500を形成し、磁気ビーズ410のバイオ分子標識400またはバイオ分子標識400の近傍の分子への結合を、第2実施形態で説明したようにウェル空間500で行ってもよい。つまり、この場合は、ウェル空間500は磁気ビーズ410を含む液体が導入される空間となり、ウェル空間500を形成する壁面の一部を構成する磁気センサー220の表面にバイオ分子標識400が固定されていることになる。
100、101 検出装置
110 生体由来液体投入口
120 磁気ビーズ含有液体投入口
130 体液化学処理部
140 液体排出部
150 第一の磁場印加機構
160 第二の磁場印加機構
170 電気信号変換部
180 表示部
190 検出デバイス挿入口
200、201 検出デバイス
210 支持体
211 磁気検出素子
212 保護層
213 有機層
214 流路部材
220 磁気センサー
230 流路空間
300、301 検出システム
400 バイオ分子標識
410 磁気ビーズ
411 結合磁気ビーズ
412 非特異吸着磁気ビーズ
420 磁気ビーズ支持分子
500 ウェル空間
510 ウェル部材
600 スポイト

Claims (14)

  1.  磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成し、その表面にバイオ分子標識が固定される磁気センサーとを有し、前記バイオ分子標識または前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスと、
     前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする検出システム。
  2.  バイオ分子標識を含む液体と磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成する磁気センサーとを有し、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスと、
     前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする検出システム。
  3.  前記磁気センサーによる磁気検出時に前記バイオ分子標識または前記バイオ分子標識の近傍の分子と結合した前記磁気ビーズに磁場を印加する第二の磁場印加機構をさらに有することを特徴とする請求項1または2に記載の検出システム。
  4.  前記空間は、前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする請求項1に記載の検出システム。
  5.  前記空間は、前記バイオ分子標識を含む前記液体と前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする請求項2に記載の検出システム。
  6.  磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成し、その表面にバイオ分子標識が固定される磁気センサーとを有し、前記バイオ分子標識または前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスが挿入される挿入部と、
     前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする検出装置。
  7.  バイオ分子標識を含む液体と磁気ビーズを含む液体が導入される、壁面により形成される空間と、その表面が前記壁面の一部を構成する磁気センサーとを有し、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に前記磁気ビーズの少なくとも一部が結合する検出デバイスが挿入される挿入部と、
     前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加する第一の磁場印加機構とを有することを特徴とする検出装置。
  8.  前記磁気センサーによる磁気検出時に前記バイオ分子標識または前記バイオ分子標識の近傍の分子と結合した前記磁気ビーズに磁場を印加する第二の磁場印加機構をさらに有することを特徴とする請求項6または7に記載の検出装置。
  9.  前記空間は、前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする請求項6に記載の検出装置。
  10.  前記空間は、前記バイオ分子標識を含む前記液体と前記磁気ビーズを含む前記液体が流れる流路空間であり、前記磁気センサーの表面が前記流路空間を形成する流路壁面の一部を構成することを特徴とする請求項7に記載の検出装置。
  11.  バイオ分子標識を含む液体を磁気センサーの表面に接触させて前記バイオ分子標識を前記磁気センサーの表面に固定させ、磁気ビーズを含む液体を前記磁気センサーの表面に接触させて、前記磁気ビーズの少なくとも一部を、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に結合させ、前記磁気ビーズを前記磁気センサーの表面から遠ざける方向の磁場を印加し、その後、前記磁気センサーにより磁気検出を行うことを特徴とする検出方法。
  12.  前記磁気センサーの表面がその流路壁面の一部を構成する流路空間に、前記バイオ分子標識を含む液体を流して前記磁気センサーの表面に前記バイオ分子標識を固定させ、前記流路空間に前記磁気ビーズを含む液体を流して、前記磁気ビーズの少なくとも一部を、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に結合させることを特徴とする請求項11に記載の検出方法。
  13.  前記磁場を印加した状態、または前記磁場の印加を止めた後で前記流路空間に前記磁気ビーズを含まない液体を流し、その後、前記磁気センサーにより磁気検出を行うことを特徴とする請求項12に記載の検出方法。
  14.  前記磁気センサーの表面がその壁面の一部を構成するウェル空間に、前記バイオ分子標識を含む液体を導入して前記磁気センサーの表面に前記バイオ分子標識を固定させ、前記ウェル空間に前記磁気ビーズを含む液体を導入して、前記磁気ビーズの少なくとも一部を、前記磁気センサーの表面に固定される前記バイオ分子標識または前記磁気センサーの表面に固定される前記バイオ分子標識の近傍の分子に結合させ、前記磁場を印加して前記磁場を印加する磁場印加機構に前記磁気ビーズを付着させ、その後、前記磁気センサーにより磁気検出を行うことを特徴とする請求項11に記載の検出方法。
PCT/JP2016/071528 2015-08-19 2016-07-22 検出システム、検出装置および検出方法 WO2017029943A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680047634.XA CN107923910A (zh) 2015-08-19 2016-07-22 检测系统、检测装置及检测方法
JP2017535303A JP6673357B2 (ja) 2015-08-19 2016-07-22 検出システム、検出装置および検出方法
US15/752,210 US20190154676A1 (en) 2015-08-19 2016-07-22 Detection system, detection apparatus, and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161526 2015-08-19
JP2015-161526 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017029943A1 true WO2017029943A1 (ja) 2017-02-23

Family

ID=58052134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071528 WO2017029943A1 (ja) 2015-08-19 2016-07-22 検出システム、検出装置および検出方法

Country Status (4)

Country Link
US (1) US20190154676A1 (ja)
JP (1) JP6673357B2 (ja)
CN (1) CN107923910A (ja)
WO (1) WO2017029943A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021117186A (ja) * 2020-01-29 2021-08-10 Tdk株式会社 磁気センサ、磁気検出装置及び磁気検出システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905822B (zh) * 2019-04-12 2023-09-22 西部数据技术公司 使用磁传感器阵列边合成边核酸测序
US11208682B2 (en) 2019-09-13 2021-12-28 Western Digital Technologies, Inc. Enhanced optical detection for nucleic acid sequencing using thermally-dependent fluorophore tags
CN113466325A (zh) * 2020-03-31 2021-10-01 Tdk株式会社 磁信号检测芯片、检测卡及核酸检测装置
CN113040069B (zh) * 2021-03-22 2022-10-18 浙江海洋大学 金属线码加磁及检测一体机
WO2023107137A1 (en) * 2021-12-09 2023-06-15 Hitachi High-Tech Corporation Immunological measurement method, and immunological measurement apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022154A1 (ja) * 2003-08-29 2005-03-10 Asahi Kasei Kabushiki Kaisha バイオセンサ及び測定対象物測定方法
JP2006226887A (ja) * 2005-02-18 2006-08-31 Casio Comput Co Ltd 生体高分子分析チップ、分析支援装置及び生体高分子分析方法
JP2009042104A (ja) * 2007-08-09 2009-02-26 Canon Inc 物質固定装置、物質検出装置および物質固定方法
WO2011155489A1 (ja) * 2010-06-09 2011-12-15 株式会社日立ハイテクノロジーズ 試料分析装置及び試料分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010110A1 (en) * 2006-07-17 2008-01-24 Koninklijke Philips Electronics N. V. Attraction and repulsion of magnetic of magnetizable objects to and from a sensor surface
WO2012019108A1 (en) * 2010-08-05 2012-02-09 Abbott Point Of Care Inc. Magnetic immunosensor with trench configuration and method of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022154A1 (ja) * 2003-08-29 2005-03-10 Asahi Kasei Kabushiki Kaisha バイオセンサ及び測定対象物測定方法
JP2006226887A (ja) * 2005-02-18 2006-08-31 Casio Comput Co Ltd 生体高分子分析チップ、分析支援装置及び生体高分子分析方法
JP2009042104A (ja) * 2007-08-09 2009-02-26 Canon Inc 物質固定装置、物質検出装置および物質固定方法
WO2011155489A1 (ja) * 2010-06-09 2011-12-15 株式会社日立ハイテクノロジーズ 試料分析装置及び試料分析方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021117186A (ja) * 2020-01-29 2021-08-10 Tdk株式会社 磁気センサ、磁気検出装置及び磁気検出システム
JP7136137B2 (ja) 2020-01-29 2022-09-13 Tdk株式会社 磁気センサ、磁気検出装置及び磁気検出システム
US11662401B2 (en) 2020-01-29 2023-05-30 Tdk Corporation Magnetic sensor, magnetic detection device and magnetic detection system

Also Published As

Publication number Publication date
US20190154676A1 (en) 2019-05-23
JPWO2017029943A1 (ja) 2018-06-07
JP6673357B2 (ja) 2020-03-25
CN107923910A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6673357B2 (ja) 検出システム、検出装置および検出方法
US20100194386A1 (en) Magnetic sensor device
JP5311445B2 (ja) 高速かつ高感度バイオセンシング
US10151750B2 (en) Magnetic and/or electric label assisted detection system and method
Dittmer et al. Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation
JP2008544246A (ja) 正確な磁気バイオセンサー
JP2008544246A5 (ja)
JP5401724B2 (ja) 被覆磁性微粒子を用いたバイオセンシング方法及び該方法に用いるバイオセンシング装置
JP2009544033A (ja) センサ表面に対する磁性物体又は磁化可能物体の引き付け及び引き離し
EP2579988A2 (en) Non-linear magnetophoretic separation device, system and method
US20130122485A1 (en) Method of analyzing biomaterials using a magnetic bead
JP2010540888A (ja) センサカートリッジ
WO2009115951A1 (en) Cartridge for assays with magnetic particles
US20090309588A1 (en) System and methods for actuation on magnetoresistive sensors
WO2009083856A2 (en) Concentrated unbound magnetic particle assay for biosensors
US20080309323A1 (en) Method for biochemical analysis
EP1801594A1 (en) Sensing device and method for determination of the amount of target molecule in an analyte
WO2010086772A1 (en) System and method for assay
KR101135419B1 (ko) 자성 나노 입자를 이용한 생체분자의 정량적 분석장치 및 방법
US20100003678A1 (en) Sensitive magnetic assay through amplication of a label signal
Morozova et al. Force differentiation in recognition of cross-reactive antigens by magnetic beads
JP2009128233A (ja) 標的物質の検出方法
JP2008249422A (ja) サンプル液の濃縮方法、検出対象物質の検出方法及びバイオチップ
Mak et al. Electro-magnetic biosensor for binding force measurements on ligand–receptor complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535303

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836934

Country of ref document: EP

Kind code of ref document: A1