WO2017028477A1 - 射线探测器 - Google Patents

射线探测器 Download PDF

Info

Publication number
WO2017028477A1
WO2017028477A1 PCT/CN2016/070006 CN2016070006W WO2017028477A1 WO 2017028477 A1 WO2017028477 A1 WO 2017028477A1 CN 2016070006 W CN2016070006 W CN 2016070006W WO 2017028477 A1 WO2017028477 A1 WO 2017028477A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion layer
photoelectric conversion
pixel
substrate
radiation detector
Prior art date
Application number
PCT/CN2016/070006
Other languages
English (en)
French (fr)
Inventor
江峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/518,576 priority Critical patent/US9869776B2/en
Publication of WO2017028477A1 publication Critical patent/WO2017028477A1/zh
Priority to US15/834,598 priority patent/US10365384B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20183Arrangements for preventing or correcting crosstalk, e.g. optical or electrical arrangements for correcting crosstalk
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing

Definitions

  • the present invention relates to the field of radiographic detection technologies, and in particular, to a radiation detector.
  • Radiographic techniques have a wide range of applications in the fields of medicine, industrial production and manufacturing, such as physical examination and workpiece flaw detection. Modern radiographic techniques have been able to convert a ray signal to be detected into an image or photo that can be displayed directly on the screen.
  • existing radiation detectors typically employ a silicon-based PIN diode as the photosensitive element, which lacks toughness.
  • the carrier mobility of the silicon-based PIN diode is not high enough, and the sensitivity of the radiation detector thus formed is not high enough, often resulting in the need for a very high intensity radiation source, making the use of the radiation detector more expensive.
  • Embodiments of the present invention provide a radiation detector that is different from the prior art to alleviate or alleviate the above mentioned problems.
  • a radiation detector may include: a radiation conversion layer for converting radiation incident to the radiation detector into visible light; and a photoelectric conversion layer for receiving the visible light and Converting visible light into a charge signal; a pixel array having a plurality of pixels for detecting the charge signal; and a substrate located below the photoelectric conversion layer, at least for directly or indirectly carrying the photoelectric conversion layer, wherein
  • the photoelectric conversion layer is formed of a two-dimensional semiconductor material.
  • two-dimensional semiconductor materials Compared to conventional silicon-based PIN diodes, two-dimensional semiconductor materials have higher carrier mobility, which means that electron-hole pairs can be excited more easily, making external signal processing systems easier to detect.
  • the charge signal allows for the detection of radiation with a lower energy source. Therefore, the sensitivity of the radiation detector provided by the embodiment is high, so that the use cost of the radiation detector is low, and the energy is saved.
  • Two-dimensional semiconductor materials have good photoelectric properties and are only a few atomic layers thick. Therefore, the thickness of the photoelectric conversion layer formed by using a two-dimensional semiconductor material is much smaller than that of a conventional silicon-based PIN diode. Moreover, the photoelectric conversion layer thus formed also has good toughness and is not easily changed in characteristics when bent, so that the photoelectric conversion layer formed of a two-dimensional semiconductor material provides a possibility of realizing a bendable radiation detector.
  • a flexible flexible substrate is used instead of a conventional hard material substrate, and the formed radiation detector can be bent as a whole, so that the detecting device can be bent according to the shape of the object to be scanned, and better. Contact with the object to be scanned makes the result of the radiation detection more accurate, and at the same time makes the detection device lighter and easier to use and maintain.
  • the transmittance of the two-dimensional semiconductor material is high, and therefore, the radiation detector including the photoelectric conversion layer formed of the two-dimensional semiconductor material provided by the embodiment of the present invention is not limited to receiving radiation from a single direction. Instead, it is possible to design a radiation detector having a different structure.
  • the radiation detector can be designed to receive radiation from above, or it can be designed to receive radiation from below to achieve upper and lower double-sided sensing of the light source. Therefore, the use of two-dimensional semiconductor materials to form a photoelectric conversion layer provides a large space for the structural design of the radiation detector.
  • each pixel in the pixel array may include a pixel switch, a pixel electrode, and a common electrode, and the pixel electrode may be electrically connected to a source or a drain of the pixel switch
  • the common electrode and the pixel electrode may be in contact with the photoelectric conversion layer.
  • the radiation conversion layer can convert the radiation incident on the surface of the radiation detector into visible light
  • the photoelectric conversion layer can convert the visible light into a charge signal
  • the pixel electrode can collect the charge signal generated by the photoelectric conversion layer.
  • the pixel switch electrically coupled to the pixel electrode is turned on, the pixel switch can transmit a charge signal to the signal processing system to further process the charge signal to form an image or picture.
  • the ray detector may further include a first intermediate layer adjacent to the ray conversion layer, the first intermediate layer including a light blocking matrix and a first passivation layer.
  • the first passivation layer may be formed in the same layer as the light blocking matrix and formed between the light blocking matrix to provide protection for the photoelectric conversion layer.
  • the first passivation layer may also cover the light blocking matrix. Light blocking moment
  • the array can define the photosensitive area of the radiation detector, and can reduce the mutual crosstalk of the light emitted by the ray conversion layer corresponding to the adjacent pixels, thereby improving the resolution of the radiation detector, thereby improving the accuracy of the radiation detection.
  • the pixel array, the photoelectric conversion layer, the first intermediate layer, and the ray conversion layer may be sequentially formed on the flexible substrate from bottom to top, thereby realizing a ray receiving from above Ray detector.
  • the radiation detector can include a second intermediate layer adjacent the radiation conversion layer, the second intermediate layer can include only a light blocking matrix.
  • the ray detector may further include a third intermediate layer for protecting the photoelectric conversion layer, the third intermediate layer being located above the photoelectric conversion layer and with the photoelectric conversion layer In contact, each of the pixel electrodes is electrically connected to a source or a drain of each of the pixel switches via a via in the third intermediate layer.
  • the photoelectric conversion layer, the third intermediate layer, and the pixel array may be sequentially formed on the first surface of the flexible substrate from bottom to top, the second intermediate layer, and the The ray conversion layer may be sequentially formed from the top to the bottom on the second surface of the flexible substrate opposite to the first surface, thereby realizing a ray detector that can receive radiation from below.
  • the third intermediate layer may be formed of silicon oxynitride.
  • the two-dimensional semiconductor material for forming the photoelectric conversion layer may include molybdenum disulfide or indium selenide.
  • the flexible substrate may be formed of one or more of the following materials: polyethylene naphthalate, polyethylene terephthalate, polytetrafluoroethylene.
  • a photoelectric conversion layer capable of receiving visible light and converting the visible light into a charge signal, the method comprising the steps of:
  • the friction substrate to which the two-dimensional semiconductor material is attached is rubbed with the target substrate to form the photoelectric conversion layer on the target substrate.
  • the method of forming the photoelectric conversion layer may further include: after rubbing the friction substrate using the first flexible board, using the second flexible board to attach the two-dimensional semiconductor material Friction of the substrate for friction. In this way, a two-dimensional layer of semiconductor material with better adhesion and a flatter surface can be obtained on the friction substrate.
  • the friction substrate may include a sandpaper or a polishing disk.
  • Embodiments of the present invention also provide a method of fabricating a radiation detector, the method comprising: forming a pixel array including a plurality of pixels and a photoelectric conversion layer over a substrate; forming a radiation conversion layer, the radiation conversion layer being used for Converting the radiation incident to the radiation detector into visible light; wherein the photoelectric conversion layer is formed by the method of forming a photoelectric conversion layer mentioned in the above embodiment, and the photoelectric conversion layer is for receiving the visible light The visible light is converted into a charge signal.
  • Using such a method to fabricate a radiation detector can reduce the temperature requirements of the process and improve the efficiency of the fabrication process, and at the same time, help to improve the sensitivity of the fabricated radiation detector and reduce the radiation detection produced. The cost of using the device.
  • the substrate is a flexible substrate.
  • the radiation detector can be flexibly adjusted according to the shape of the object to be scanned, and better with the object to be scanned.
  • the contact makes the result of the radiation detection more accurate, and at the same time makes the detection device lighter and easier to use and maintain.
  • the target substrate on which the photoelectric conversion layer is formed is a flexible substrate on which the pixel array has been formed, and the above-described pixel array is sequentially formed over the pixel array a photoelectric conversion layer and the ray conversion layer.
  • the step of forming the pixel array includes: fabricating a common electrode and a pixel electrode corresponding to each pixel, the common electrode and the pixel electrode being in contact with the photoelectric conversion layer.
  • the method of fabricating a radiation detector further includes the steps of: forming a first intermediate layer on the photoelectric conversion layer after forming the photoelectric conversion layer, the first intermediate layer including a light blocking matrix and a passivation layer .
  • the target substrate may be the flexible substrate on which the photoelectric conversion layer and the pixel array are sequentially formed, and the ray conversion layer is formed under the flexible substrate.
  • the step of forming the pixel array includes: forming a common electrode and a pixel electrode corresponding to each pixel on the formed photoelectric conversion layer.
  • the method of fabricating a radiation detector may further include the steps of: forming a third intermediate layer protecting the photoelectric conversion layer after forming the pixel electrode and the common electrode, each of the pixel electrodes via the third The vias in the intermediate layer are electrically connected to the source or drain of the pixel switches in each pixel.
  • the method of fabricating a radiation detector may further include the step of forming a second intermediate layer below the flexible substrate before the fabrication of the radiation conversion layer, the second intermediate layer comprising a light blocking matrix.
  • the sensitivity of the ray detector is improved, and the external signal processing system can be provided. It is easier to detect the charge signal so that the radiation can be detected with a lower energy source. Therefore, the sensitivity of the radiation detector provided by the embodiment is high, so that the use cost of the radiation detector is low, and the energy is saved.
  • Figure 1 schematically illustrates a cross-sectional view of a radiation detector receiving radiation from an upper surface, in accordance with one embodiment of the present invention
  • Figure 3 schematically illustrates a cross-sectional view of a radiation detector in accordance with another embodiment of the present invention
  • FIG. 4 schematically illustrates a case where a light blocking matrix in a radiation detector defines a photosensitive region according to another embodiment of the present invention
  • Figure 5 schematically illustrates a cross-sectional view of a radiation detector in accordance with yet another embodiment of the present invention
  • the radiation detector provided by the embodiment of the present invention can also detect other rays, such as gamma rays.
  • the radiation conversion layer can be formed of different materials capable of converting different rays into visible light. Since the two-dimensional semiconductor material has good photoelectric performance, when the radiation detector operates, the photoelectric conversion layer formed of the two-dimensional semiconductor material can receive the visible light emitted by the radiation conversion layer, and can convert the received visible light into a charge signal. . Also, the pixel electrode in the pixel can concentrate the charge signal so that the generated charge signal can be detected. The charge signal can then be transmitted by a pixel switch in the pixel to a signal processing system external to the ray detector and converted to an image signal by a signal processing system.
  • the substrate located under the photoelectric conversion layer can be used at least for directly or indirectly carrying the photoelectric conversion layer to support the respective layer structures disposed thereon.
  • the external signal processing system can more easily detect the charge signal, so that the radiation source can be detected by the lower energy source. Therefore, the sensitivity of the radiation detector provided by the embodiment is high, so that the use cost of the radiation detector is low, and the energy is saved.
  • the substrate may be a flexible substrate, and since a flexible substrate is used instead of a conventional glass substrate, the weight of the overall radiation detector is reduced, which facilitates use or maintenance.
  • the two-dimensional semiconductor material is only a few atomic layers thick, and the photoelectric conversion layer formed by using the two-dimensional semiconductor material is much smaller than the thickness of the conventional silicon-based PIN diode, and the photoelectric conversion layer thus formed has better Toughness, it is not easy to change characteristics when bending. Therefore, the overall bending of the radiation detector can be realized, so that the detecting device can perform bending adjustment according to the shape of the object to be scanned, and better contact with the object to be scanned, so that the result of the radiation detection is more accurate.
  • the flexible substrate can be formed from a polyester material including, but not limited to, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polytetrafluoroethylene (PTEF), and the like.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PTEF polytetrafluoroethylene
  • the two-dimensional semiconductor material forming the photoelectric conversion layer includes, but is not limited to, molybdenum disulfide (MoS2), indium selenide (InSe), and the like.
  • Figure 1 schematically illustrates a cross-sectional view of a radiation detector in accordance with one embodiment of the present invention.
  • the ray detector may include a ray conversion layer 1, a photoelectric conversion layer 2, a pixel array 3 having a plurality of pixels a, and a substrate 4 located below the photoelectric conversion layer 2.
  • the photoelectric conversion layer 2 can be formed of a two-dimensional semiconductor material.
  • the substrate 4 is below the photoelectric conversion layer 2, but does not directly carry the photoelectric conversion layer 2, and the pixel array 3 is formed between the photoelectric conversion layer 2 and the substrate 4. At this time, the substrate 4 serves as a substrate.
  • the radiation conversion layer 1, the photoelectric conversion layer 2, and the pixel array 3 can be simultaneously supported. In the embodiment shown in FIG.
  • the substrate 4 is located below the photoelectric conversion layer 2, and may directly carry the photoelectric conversion layer 2, and the pixel array 3 including a plurality of pixels a may be formed in photoelectric conversion On the layer 2, and the ray conversion layer 1 may be disposed under the flexible substrate 4. As indicated by the arrows in Fig. 2, at this time, the rays may be incident on the radiation detector from below, or the back surface of the radiation detector may serve as a surface for receiving the radiation.
  • the pixel a shown schematically in FIG. 2 is not a cross-sectional view of the actual pixel structure, and the plurality of pixels a shown are only used to represent the pixel array and the photoelectric The structural relationship of the conversion layer 2.
  • a single pixel electrode 31 corresponds to a single pixel switch 33, while all pixels in the pixel array may share one common electrode 32, and the common electrode 32 may be a planar electrode.
  • the pixel electrode 31 may be electrically connected to the source 332 of the pixel switch, and the common electrode 32 and the pixel electrode 31 may be in contact with the photoelectric conversion layer 2.
  • the photoelectric conversion layer 2 converts visible light from the radiation conversion layer 1 into a charge signal, and under the action of an electric field between the pixel electrode 31 and the common electrode 32, charges can be concentrated on the pixel electrode 31.
  • the accumulated charge can be transferred to the source 332 of the pixel switch 33, and the pixel switch 33 detects the charge signal, so that when the pixel switch 33 is turned on, the charge signal is transmitted to the external signal processing system, and further Convert to an image or picture signal.
  • the pixel electrode 31 can be electrically connected to the drain 333 of the pixel switch. Pick up.
  • the pixel switch 33 may also include other structures well known to those skilled in the art, such as a gate electrode, a gate insulating layer 331, and the like, which are not described herein. In the embodiment shown in FIG.
  • the ray detector may further include a first intermediate layer adjacent to the ray conversion layer, the first intermediate layer may include a light blocking matrix and a first passivation layer.
  • the radiation detector according to this embodiment can be specifically explained with the aid of FIG.
  • the first intermediate layer adjacent to the ray conversion layer 1 may include a light blocking matrix 51 and a first passivation layer 52, and the light blocking matrix 51 may be a pattern formed of a material capable of reflecting or absorbing light.
  • the photosensitive area of the radiation detector can be defined.
  • the light blocking matrix 51 can be a black matrix.
  • the black matrix can be formed of a polymer material, and can be patterned by an inkjet printing process to complete the fabrication of the black matrix. Compared with the conventional photolithography process, the etchant used in the photolithography process can be avoided. Adverse effects of semiconductor materials.
  • the photoelectric conversion layer 2, the third intermediate layer 5, and the pixel array 3 may be sequentially formed on the first surface of the flexible substrate 4 from the bottom to the top, the second intermediate The layer and the ray conversion layer 1 may be sequentially formed from the top to the bottom on the second surface of the flexible substrate 4 opposite to the first surface.
  • the curvature detection accuracy can be further improved by bending according to the object to be scanned, and since the crosstalk phenomenon is alleviated or suppressed so that the resolution is improved.
  • the photoelectric conversion layer 2 in the radiation detector of each of the above embodiments can be prepared by a different method or process.
  • a conventional method may employ a direct chemical vapor deposition (CVD) process in which a two-dimensional semiconductor material is deposited directly on a target substrate by a chemical vapor deposition (CVD) process.
  • CVD chemical vapor deposition
  • the process has a high temperature requirement, the temperature can reach 600-800 degrees Celsius, and the flexible substrate may be difficult to withstand such high temperature, and the process is not suitable for fabricating the photoelectric conversion layer in the radiation detector of the present invention.
  • the photoelectric conversion layer can be prepared by a flexible board transfer method.
  • a two-dimensional semiconductor material may be deposited on the metal foil by a chemical vapor deposition (CVD) process, and then the metal foil is etched to obtain a separate two-dimensional semiconductor material film, and the two-dimensional semiconductor material is transferred onto the flexible board. Then, the flexible board can be flipped over on the surface of the target substrate (for example, the surface of the pixel array 3 on which the common electrode 32 and the pixel electrode 31 are formed as shown in FIG. 3), and at this time, the flexible board can also serve as two A water-oxygen barrier layer of a semiconductor material.
  • this method of preparing a photoelectric conversion layer has certain limitations, and is suitable for preparation of a small-area two-dimensional semiconductor material layer, and is not suitable for preparation of a large-area two-dimensional semiconductor material layer.
  • Another method of fabricating the photoelectric conversion layer may employ a friction transfer deposition process, which may include the steps of uniformly sprinkling a powder of a two-dimensional semiconductor material on a friction substrate; and rubbing the friction substrate using the first flexible board, A friction substrate to which a two-dimensional semiconductor material is attached is obtained; a friction substrate to which the two-dimensional semiconductor material is attached is rubbed with the target substrate to form a photoelectric conversion layer on the target substrate.
  • the formed photoelectric conversion layer is capable of receiving visible light and converting the visible light into a charge signal.
  • the selection of the target substrate is not unique and may correspond to the appropriate structure that has been formed in the radiation detector.
  • the target substrate may be a substrate of the radiation detector, or when the photoelectric conversion layer 2 in the radiation detector shown in FIG. 3 is prepared.
  • the target substrate may be a substrate on which the pixel array is formed.
  • the above-mentioned friction substrate may be a rigid substrate such as a sandpaper, a polishing disk, and the first flexible plate and the second flexible plate may be smooth flexible films.
  • Another embodiment of the present invention provides a method of fabricating a radiation detector, the method comprising: forming a pixel array including a plurality of pixels and a photoelectric conversion layer over a substrate; forming a radiation conversion layer, the radiation conversion layer for The radiation incident on the radiation detector is converted into visible light; the method of forming a photoelectric conversion layer provided by any of the foregoing embodiments may be used to form the photoelectric conversion layer, and the photoelectric conversion layer is configured to receive the visible light and The visible light is converted into a charge signal.
  • Using such a method to fabricate a radiation detector can reduce the temperature requirements of the process and improve the efficiency of the fabrication process.
  • the use of a two-dimensional semiconductor material to fabricate the photoelectric conversion layer contributes to the improvement of the produced radiation detection.
  • the sensitivity of the device reduces the cost of using the produced radiation detector.
  • the substrate can be a flexible substrate.
  • the radiation detector can be flexibly adjusted according to the shape of the object to be scanned, and better with the object to be scanned. The contact makes the result of the radiation detection more accurate, and at the same time makes the detection device lighter and easier to use and maintain.
  • the target substrate on which the photoelectric conversion layer is formed may be a flexible substrate on which the pixel array has been formed, and the photoelectric conversion layer and the ray conversion are sequentially formed over the pixel array Floor.
  • a radiation detector that receives radiation from above can be realized.
  • the sensitivity of the radiation detector is high, and the bending can be performed according to the object to be scanned, which can further improve the accuracy of the radiation detection.
  • the step of forming the pixel array may include: forming a common electrode and a pixel electrode corresponding to each pixel, the common electrode and the pixel electrode being in contact with the photoelectric conversion layer.
  • the method of fabricating a radiation detector further includes the steps of: forming a first intermediate layer on the photoelectric conversion layer after forming the photoelectric conversion layer, the first The interlayer includes a light blocking matrix and a passivation layer.
  • the target substrate may be the flexible substrate on which the photoelectric conversion layer and the pixel array are sequentially formed, and the ray conversion layer is formed under the flexible substrate.
  • a radiation detector that receives radiation from below can be realized. The sensitivity of the radiation detector is high, and the bending can be performed according to the object to be scanned, which can further improve the accuracy of the radiation detection.
  • the step of forming the pixel array includes: forming a common electrode and a pixel electrode corresponding to each pixel on the formed photoelectric conversion layer.
  • the method of fabricating a radiation detector may further include the steps of: forming a third intermediate layer protecting the photoelectric conversion layer after forming the pixel electrode and the common electrode, each of the pixel electrodes via the third The vias in the intermediate layer are electrically connected to the source or drain of the pixel switches in each pixel.
  • the method of fabricating a radiation detector may further include the step of forming a second intermediate layer below the flexible substrate before the fabrication of the radiation conversion layer, the second intermediate layer comprising a light blocking matrix.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种射线探测器,该射线探测器可包括:射线转换层(1),用于将入射到所述射线探测器的射线转换为可见光;光电转换层(2),用于接收所述可见光并将所述可见光转换为电荷信号;具有多个像素(a)的像素阵列(3),用于检测所述电荷信号;以及位于所述光电转换层(2)的下方的基板(4),至少用于直接或者间接承载所述光电转换层(2),所述光电转换层(2)由二维半导体材料形成。由于二维半导体材料的载流子迁移率较高,可以让外部的信号处理系统更容易地检测出电荷信号,从而可以用能量较低的射线源进行射线探测。因此,可提供灵敏度较高的射线探测器,使得射线探测器的使用成本较低,并有利于节约能源。

Description

射线探测器 技术领域
本发明涉及射线探测技术领域,尤其涉及一种射线探测器。
背景技术
射线探测器在医学、工业生产与制造等领域中有着广泛的应用,例如可用于身体检查、工件探伤等。现代的射线探测技术已经能够将待探测的射线信号转换为能够直接显示在屏幕上的图像或照片。
然而,现有的射线探测器通常采用硅基PIN二极管作为感光元件,这种硅基PIN二极管材料缺乏韧性。而且,硅基PIN二极管的载流子迁移率不够高,这样形成的射线探测器的灵敏度不够高,往往导致需要强度非常高的射线源,使得使用射线探测器的成本较高。
发明内容
本发明的实施例提供一种与现有技术不同的射线探测器,以减轻或缓解以上所提及的问题。
根据本发明的实施例提供的一种射线探测器,可包括:射线转换层,用于将入射到所述射线探测器的射线转换为可见光;光电转换层,用于接收所述可见光并将所述可见光转换为电荷信号;具有多个像素的像素阵列,用于检测所述电荷信号;以及位于所述光电转换层的下方的基板,至少用于直接或者间接承载所述光电转换层,其中所述光电转换层由二维半导体材料形成。
与常规的硅基PIN二极管相比,二维半导体材料的载流子迁移率较高,这意味着电子-空穴对能够更容易地被激发,能够让外部的信号处理系统更容易地检测出电荷信号,从而可以用能量较低的射线源进行射线探测。因此,本实施例提供的射线探测器灵敏度较高,使得射线探测器的使用成本较低,并有利于节约能源。
在一个实施例中,射线探测器中的基板可以是柔性基板。在常规的射线探测器设计中,常采用玻璃基板等硬质材料作为探测设备的基础,这样的射线探测设备比较笨重,给使用和维护带来了不便;而且,由于采用硬质材料作为基础,探测设备不容易根据待扫描的对象的形 状进行弯曲调节,使得射线探测的结果欠准确性。另外,由于现有的射线探测器采用硅基PIN二极管作为感光元件,这种硅基PIN二极管材料缺乏韧性,不能适应弯曲,这妨碍了形状能够调节的射线探测器的实现。
二维半导体材料具有良好的光电性能,并且只有几个原子层厚,因此,与常规的硅基PIN二极管等感光元件相比,采用二维半导体材料所形成的光电转换层的厚度小得多,而且,这样形成的光电转换层也具有较好的韧性,在弯曲时不易改变特性,所以,用二维半导体材料形成的光电转换层为实现可弯曲的射线探测器提供了可能。同时,采用可弯曲的柔性基板替代常规的硬质材料制成的基板,所形成的射线探测器整体上可以弯曲,这样,可以让探测设备根据待扫描的对象的形状进行弯曲调节,更好地与需要扫描的对象接触,使得射线探测的结果更加准确,同时,也使得探测设备更加轻便,便于使用和维护。
此外,二维半导体材料的透过率较高,所以,本发明的实施例所提供的包括由二维半导体材料形成的光电转换层的射线探测器并不局限于从单个的方向上接收射线,而是可以设计出具有不同结构的射线探测器,例如,射线探测器可以被设计为从上方接收射线,也可以被设计为从下方接收射线,实现光源的上下双面感应。因此,利用二维半导体材料来形成光电转换层为射线探测器的结构设计提供了较大的变化空间。
在根据本发明的一个实施例的射线探测器中,像素阵列中的每个像素可包括像素开关、像素电极和公共电极,所述像素电极可以与所述像素开关的源极或漏极电连接,所述公共电极和所述像素电极可以与所述光电转换层接触。在射线探测器工作时,射线转换层可将入射到射线探测器的表面的射线转换为可见光,光电转换层可以将可见光转换为电荷信号,像素电极可以聚集光电转换层所生成的电荷信号,当与像素电极电连接的像素开关接通时,像素开关可以将电荷信号传输至信号处理系统以对电荷信号进一步处理形成图像或图片。
在另一实施例中,射线探测器还可包括与所述射线转换层相邻的第一中间层,所述第一中间层包括挡光矩阵和第一钝化层。第一钝化层可以与挡光矩阵形成于同一层并且形成在挡光矩阵之间,为光电转换层提供保护。替代性地,第一钝化层也可以覆盖挡光矩阵。挡光矩 阵可以定义射线探测器的感光区域,并且可减轻由相邻的像素所对应的射线转换层发出的光的相互串扰,提高射线探测器的分辨率,从而提高射线探测的准确性。
在实施例中,所述像素阵列、所述光电转换层、所述第一中间层以及所述射线转换层可以从下至上依次形成在所述柔性基板上,从而实现一种可以从上方接收射线的射线探测器。
替代性地,在另外的实施例中,射线探测器可包括与所述射线转换层相邻的第二中间层,所述第二中间层可仅包括挡光矩阵。
进一步地,在另一实施例中,射线探测器还可包括用于保护所述光电转换层的第三中间层,所述第三中间层位于所述光电转换层上方并与所述光电转换层接触,每个像素电极经由所述第三中间层中的过孔与每个所述像素开关的源极或漏极电连接。
在这样的实施例中,所述光电转换层、所述第三中间层以及所述像素阵列可以从下至上依次形成在所述柔性基板的第一表面上,所述第二中间层以及所述射线转换层可以从上至下依次形成在所述柔性基板的与第一表面相对的第二表面上,从而实现一种可以从下面接收射线的射线探测器。
在一个实施例中,所述的第三中间层可以由氮氧化硅形成。
在本发明的各实施例提供的射线探测器中,用于形成光电转换层的二维半导体材料可以包括二硫化钼或者硒化铟。
另外,通过利用能够将不同的射线转换为可见光的不同材料来形成相应的射线转换层,本发明的各实施例提供的射线探测器可以用于探测不同的射线,射线可以包括X射线。
在各种实施例提供的射线探测器中,柔性基板可以由以下材料中的一种或多种形成:聚萘二甲酸乙二醇酯、聚对酞酸乙二酯、聚四氟乙烯。
根据本发明的另一方面,提供了一种制作光电转换层的方法,所述光电转换层能够接收可见光并将所述可见光转换为电荷信号,该方法可包括如下步骤:
将二维半导体材料的粉末均匀地洒在摩擦基板上;
使用第一柔性板对所述摩擦基板进行摩擦,以得到附着有所述二维半导体材料的摩擦基板;
将所述附着有二维半导体材料的摩擦基板与目标基板进行摩擦,以在所述目标基板上形成所述光电转换层。
以上提到的形成光电转换层的方法在本文中可以被称作“摩擦转印沉积工艺”。如上所述,采用二维半导体材料来形成射线探测器中的光电转换层,可提高射线探测器的灵敏度,降低射线探测器的使用成本。另外,由于该方法无需高温条件,而且,所沉积的二维半导体材料的沉积面积可以取决于摩擦的区域大小,所以利用该工艺,可以在较低的温度下进行大面积的光电转换层的制备。因此,这样的制作射线探测器的方法降低了对工艺的温度条件的要求,并可提高制作工艺的效率。
进一步地,在另一实施例中,形成光电转换层的方法还可包括:在使用第一柔性板对所述摩擦基板进行摩擦之后,使用第二柔性板对所述附着有二维半导体材料的摩擦基板进行摩擦。这样,可以在摩擦基板上获得粘附性更好、表面更平整的二维半导体材料层。
在以上所述的制作光电转换层的方法中,摩擦基板可包括砂纸或者抛光盘。
本发明的实施例还提供了一种制作射线探测器的方法,该方法可包括:在基板上方形成包括多个像素的像素阵列以及光电转换层;形成射线转换层,所述射线转换层用于将入射到所述射线探测器的射线转换为可见光;其中采用上述实施例中提到的形成光电转换层的方法来形成所述光电转换层,并且所述光电转换层用于接收所述可见光并将所述可见光转换为电荷信号。采用这样的方法来制作射线探测器,可以降低对工艺的温度条件的要求,并可提高制作工艺的效率,同时,有助于提高所制作的射线探测器的灵敏度,降低所制作出的射线探测器的使用成本。
进一步地,所述基板是柔性基板。利用柔性基板可弯曲的特性,并结合用二维半导体材料所形成的光电转换层的特性,可以让射线探测器根据待扫描的对象的形状整体上可弯曲调节,更好地与需要扫描的对象接触,使得射线探测的结果更加准确,同时,也使得探测设备更加轻便,便于使用和维护。
在一个实施例中,光电转换层被形成于其上的目标基板是其上已形成有所述像素阵列的柔性基板,在所述像素阵列上方依次形成所述 光电转换层和所述射线转换层。
进一步地,形成所述像素阵列的步骤包括:制作公共电极和对应于每个像素的像素电极,所述公共电极和所述像素电极与所述光电转换层接触。
进一步地,制作射线探测器的方法还包括以下步骤:在形成所述光电转换层之后,在所述光电转换层上制作第一中间层,所述第一中间层包括挡光矩阵和钝化层。
替代性地,所述目标基板可以是所述柔性基板,在所述柔性基板上依次形成所述光电转换层和所述像素阵列,所述射线转换层形成在所述柔性基板的下方。
进一步地,形成所述像素阵列的步骤包括:在所形成的光电转换层上制作公共电极和对应于每个像素的像素电极。
进一步地,所述制作射线探测器的方法还可包括以下步骤:在形成所述像素电极和公共电极之后,形成保护所述光电转换层的第三中间层,每个像素电极经由所述第三中间层中的过孔与每个像素中的像素开关的源极或漏极电连接。
进一步地,所述制作射线探测器的方法还可包括以下步骤:在制作所述射线转换层之前,在所述柔性基板的下方形成第二中间层,所述第二中间层包括挡光矩阵。
根据本发明的各实施例提供的射线探测器,或者利用本发明的各实施例提供的制作射线探测器的方法形成的射线探测器,射线探测器的灵敏度得以提高,能够让外部的信号处理系统更容易地检测出电荷信号,从而可以用能量较低的射线源进行射线探测。因此,本实施例提供的射线探测器灵敏度较高,使得射线探测器的使用成本较低,并有利于节约能源。
附图说明
参考附图更详细地并且通过非限制性的示例方式描述本发明的实施例,其中:
图1示意性地图示根据本发明的一个实施例的从上表面接收射线的射线探测器的横截面图;
图2示意性地图示根据本发明的另一实施例的从下表面接收射线 的射线探测器的横截面图;
图3示意性地图示根据本发明的另一实施例的射线探测器的横截面图;
图4示意性地图示根据本发明的另一实施例的射线探测器中的挡光矩阵定义感光区域的情形;
图5示意性地图示根据本发明的又一实施例的射线探测器的横截面图;
图6示意性地图示形成本发明的各实施例提供的射线探测器中的光电转换层的方法的一个实施例。
具体实施方式
下面,通过举例的方式来详细说明本发明的具体实施例。应当理解的是,本发明的实施例不局限于以下所列举的示例,本领域技术人员利用本发明的原理或精神可以对所示出的各实施例进行修改和变型,得到形式不同的其它实施例,显然,这些实施例都落入本发明要求保护的范围。
根据本发明的一个实施例的射线探测器可包括:射线转换层,用于将入射到射线探测器的射线转换为可见光;光电转换层,用于接收可见光并将可见光转换为电荷信号;具有多个像素的像素阵列,用于检测电荷信号;以及位于光电转换层的下方的基板,至少用于直接或者间接承载光电转换层,其中光电转换层由二维半导体材料形成。
射线转换层可以是接收入射到射线探测器的射线并将所接收到的射线转换为可见光的薄膜。例如,该薄膜可将照射到其上的X射线转换为可见光,此时,薄膜可以由磷光体或者碘化铯(CsI)材料形成。或者,也可以采用其它具有相似功能的材料形成这样的薄膜,例如,硫氧化钆荧光粉(Gd2O2S:Tb)、硫化锡(ZnS)、钨酸镉(CdWO4)等。如果X射线入射到该薄膜上,该层薄膜可发出荧光。当然,能够理解的是,本发明的实施例提供的射线探测器也可以探测其它的射线,例如γ射线,相应地,射线转换层可以由能够将不同的射线转换为可见光的不同材料形成。由于二维半导体材料具有良好的光电性能,所以在射线探测器工作时,由二维半导体材料形成的光电转换层可接收射线转换层发出的可见光,并可将所接收到的可见光转换为电荷信号。 并且,像素中的像素电极可以聚集电荷信号,从而可以对生成的电荷信号进行检测。然后,电荷信号可由像素中的像素开关传输至射线探测器外部的信号处理系统,并由信号处理系统转换为图像信号。位于光电转换层的下方的基板至少可以用于直接或者间接承载光电转换层,支撑设置在其上的各层结构。
由于二维半导体材料具有较高的载流子迁移率,能够让外部的信号处理系统更容易地检测出电荷信号,从而可以用能量较低的射线源进行射线探测。因此,本实施例提供的射线探测器灵敏度较高,使得射线探测器的使用成本较低,并有利于节约能源。
在另一实施例中,基板可以是柔性基板,由于采用柔性基板而并非常规的玻璃基板,所以整体的射线探测器的重量得以减小,给使用或维护带来了方便。同时,二维半导体材料只有几个原子层厚,采用二维半导体材料所形成的光电转换层作为感光元件比常规的硅基PIN二极管的厚度小得多,这样形成的光电转换层具有较好的韧性,在弯曲时不易改变特性。因此,可以实现射线探测器的整体弯曲,这样,可以让探测设备根据待扫描的对象的形状进行弯曲调节,更好地与需要扫描的对象接触,使得射线探测的结果更加准确。
在本发明的各实施例中,可以采用任何适当的材料来形成各层结构。例如,柔性基板可以采用聚酯材料形成,包括但不限于聚萘二甲酸乙二醇酯(PEN)、聚对酞酸乙二酯(PET)、聚四氟乙烯(PTEF)等。形成光电转换层的二维半导体材料包括但不限于二硫化钼(MoS2)、硒化铟(InSe)等。
可以通过示意图的方式更清楚地说明本发明的射线探测器的实施例。
例如,图1示意性地示出了根据本发明的一个实施例的射线探测器的横截面图。该射线探测器可包括射线转换层1、光电转换层2、具有多个像素a的像素阵列3以及位于光电转换层2的下方的基板4。同样地,光电转换层2可由二维半导体材料形成。在该实施例中,基板4是在光电转换层2的下方,但不是直接地承载光电转换层2,在光电转换层2和基板4之间形成有像素阵列3,此时,基板4作为底板,可同时支撑射线转换层1、光电转换层2以及像素阵列3。在图1所示的实施例中,如图1中的箭头所示,射线可从上方入射到射线探测器,或 者,射线探测器的正面可以作为接收射线的表面。另外,本领域技术人员能够理解的是,图1中的示意性地示出的像素a并非实际的像素结构的横截面图,这里示出的多个像素a只是用来表示像素阵列与光电转换层2以及基板4之间的结构关系。
替代性地,在另一实施例中,如图2所示,基板4位于光电转换层2的下方,而且可以直接承载光电转换层2,包括多个像素a的像素阵列3可以形成在光电转换层2上,并且射线转换层1可以被设置在柔性基板4的下方。如图2中的箭头所示,此时,射线可从下方入射到射线探测器,或者,射线探测器的背面可以作为接收射线的表面。同样地,本领域技术人员能够理解的是,图2中的示意性地示出的像素a并非实际的像素结构的横截面图,所示出的多个像素a只是用来表示像素阵列与光电转换层2的结构关系。
二维半导体材料的透过率较高,所以在根据本发明的不同的实施例中,射线探测器既可以被设计为从上方接收射线,也可以被设计为从下方接收射线,可以实现光源的上下双面感应,射线探测器的结构设计具有较大的变化空间。
射线探测器的像素阵列中的每个像素可包括像素开关、像素电极和公共电极,像素电极可以与像素开关的漏极或源极电连接,公共电极和像素电极可以与光电转换层接触。例如,图3示意性地示出了根据本发明的另一实施例的射线探测器的横截面图,并且在图3中,示出了像素阵列中的单个的像素的示意性结构图。像素阵列中的每个像素可包括像素开关33、像素电极31和公共电极32。可以理解的是,单个的像素电极31对应于单个的像素开关33,而像素阵列中的所有像素可以共享一个公共电极32,公共电极32可以是一个平面电极。在该实施例中,像素电极31可以与像素开关的源极332电连接,公共电极32和像素电极31可以与光电转换层2接触。当射线转换器工作时,光电转换层2将来自于射线转换层1的可见光转换为电荷信号,在像素电极31与公共电极32之间的电场的作用下,电荷可以被聚集到像素电极31上,并且所聚集的电荷可以传输到像素开关33的源极332,像素开关33检测到电荷信号,从而可以在像素开关33被接通时,将电荷信号传输至外部的信号处理系统,并进一步被转换为图像或图片信号。在其它的实施例中,像素电极31可以与像素开关的漏极333电连 接。当然,像素开关33还可以包括其它的本领域技术人员熟知的结构,例如栅极、栅极绝缘层331等,在此不再赘述。在图3所示的实施例中,像素开关可以采用薄膜晶体管(TFT),并且可以与柔性基板4一起制作像素阵列,得到所谓的TFT阵列基板。本领域技术人员应能理解的是,除了图3中所示出的刻蚀阻挡层结构(ESL)形式的像素开关外,像素开关33可以被形成为背沟道刻蚀结构(BCE)。在图3的实施例中,像素阵列3还包括覆盖每个像素的像素开关33的钝化层34,钝化层34可以对像素开关33进行保护,并且可以使得各个像素形成的像素阵列3平坦化。
在本发明的各实施例中,可以采用钼铝合金作为制作像素电极或公共电极的材料,这种材料的电阻率较低,元素扩散的程度较小,有利于所制成的开关器件的稳定性。
在另一实施例中,射线探测器还可包括与射线转换层相邻的第一中间层,该第一中间层可包括挡光矩阵和第一钝化层。可再次借助图3来具体说明根据该实施例的射线探测器。如图3所示,与射线转换层1相邻的第一中间层可包括挡光矩阵51和第一钝化层52,挡光矩阵51可以是能够反射或吸收光的材料形成的图案,其可定义射线探测器的感光区域,例如,挡光矩阵51可以是黑矩阵。黑矩阵可以由聚合物材料形成,并且可以采用喷墨打印工艺进行图案沉积来完成黑矩阵的制作,相比于常规的光刻工艺,可以避免光刻工艺中用到的刻蚀剂对二维半导体材料的不良影响。
图4示意性地示出了定义了两个感光区域AA1和AA2的挡光矩阵51,每个感光区域可包含一个像素。在射线探测器工作时,射线转换层1在射线的照射下发出的可见光可能从各个方向发出,因此,非常可能的是,从与每个或若干个像素相对应的射线转换层发出的光到达与相邻的像素相对应的光电转换层,这部分的光同样被与相邻像素相对应的光电转换层转换为电荷,并且该电荷在相邻像素的像素电极上聚集,因此,这样可能导致分辨率降低,影响射线探测的准确性。所以,通过设置挡光矩阵51,可以减轻由相邻的像素所对应的射线转换层发出的光的相互串扰,提高射线探测器的分辨率,从而提高射线探测的准确性。第一钝化层52可以是由氮氧化硅材料形成的透明的保护层,其可以对光电转换层2进行水氧阻隔以保护光电转换层2。第一钝 化层52可以如图3所示的那样对应于由挡光矩阵51所定义的感光区域,在其它的实施例中,第一钝化层52也可以覆盖挡光矩阵51。
因此,根据本发明的另一实施例的射线探测器,像素阵列3、光电转换层2、第一中间层以及射线转换层1可以从下至上依次形成在基板4上。这样,可以实现一种从上方接收射线的射线探测器,这种射线探测器的灵敏度较高,同时可以根据待扫描的对象进行弯曲,并且由于串扰现象得到减轻或抑制使得分辨率得以提高,能够进一步提高射线探测准确性。
图5示意性地示出了根据本发明的又一实施例的射线探测器的横截面图。在该实施例中,射线探测器还可包括与射线转换层1相邻的第二中间层,第二中间层可包括挡光矩阵51。挡光矩阵51可以定义射线探测器的感光区域,并具有与前述实施例中的挡光矩阵相同的作用或效果,在此不再重复。同样地,像素阵列3中的每个像素可包括像素开关33、像素电极31和公共电极32,像素电极31可以与像素开关33的源极或漏极电连接,公共电极32和像素电极31可与光电转换层2接触。像素阵列3也可包括覆盖每个像素的像素开关33的钝化层34,以对像素开关33进行保护,并且使得各个像素形成的像素阵列3平坦化。
进一步地,在又一实施例中,射线探测器还可包括用于保护所述光电转换层的第三中间层,该第三中间层位于光电转换层上方并与光电转换层接触,每个像素的像素电极可经由第三中间层中的过孔与像素开关的源极或漏极电连接。在这里,可以再次借助图5来说明该实施例。如图5所示,第三中间层5位于光电转换层2上方并与光电转换层2接触,每个像素的像素电极31可经由第三中间层5中的过孔与像素开关33的源极332电连接。在该实施例中,第三中间层5可以由具有水氧阻隔性能的有机或无机材料形成以保护光电转换层2,这样的材料包括但不限于氮氧化硅。
因此,在根据本发明的射线探测器的另一实施例中,光电转换层2、第三中间层5以及像素阵列3可以从下至上依次形成在柔性基板4的第一表面上,第二中间层以及射线转换层1可以从上至下依次形成在柔性基板4的与第一表面相对的第二表面上。这样,可以实现一种从下方接收射线的射线探测器,这种射线探测器的灵敏度较高,同时可 以根据待扫描的对象进行弯曲,并且由于串扰现象得到减轻或抑制使得分辨率得以提高,能够进一步提高射线探测准确性。
在射线探测器的实际制造过程中,可以用不同的方法或工艺来制备上述各个实施例的射线探测器中的光电转换层2。常规的方法可能采用直接的化学气相沉积(CVD)工艺,即直接在目标基板上用化学气相沉积(CVD)工艺沉积二维半导体材料。然而,该工艺对温度的要求较高,温度可达到600-800摄氏度,柔性基板可能难以承受这种高温,该工艺并不适合于制作本发明的射线探测器中的光电转换层。可以采用柔性板转印方法来制备光电转换层。具体地,可以采用化学气相沉积(CVD)工艺在金属箔上沉积二维半导体材料,然后腐蚀金属箔得到独立的二维半导体材料薄膜,再将二维半导体材料转印到柔性板上。然后,可以将柔性板翻转贴合在目标基板的表面(例如,图3中所示的制作完公共电极32和像素电极31的像素阵列3的表面)上,此时,柔性板还可以充当二维半导体材料的水氧阻隔层。但是,这种制备光电转换层的方法具有一定的局限性,其适用于小面积的二维半导体材料层的制备,对于大面积的二维半导体材料层的制备并不太适合。
另一种制作光电转换层的方法可以采用摩擦转印沉积工艺,该方法可包括如下步骤:将二维半导体材料的粉末均匀地洒在摩擦基板上;使用第一柔性板对摩擦基板进行摩擦,以得到附着有二维半导体材料的摩擦基板;将附着有二维半导体材料的摩擦基板与目标基板进行摩擦,以在目标基板上形成光电转换层。所形成的光电转换层能够接收可见光并可将所述可见光转换为电荷信号。目标基板的选择不是唯一的,其可对应于射线探测器中的已形成的适当的结构。例如,当制备如图5所示的射线探测器中的光电转换层2时,目标基板可以是射线探测器的基板,或者,当制备如图3所示的射线探测器中的光电转换层2时,目标基板可以是其上形成有像素阵列的基板。
如前所述,采用二维半导体材料来形成射线探测器中的光电转换层,可提高射线探测器的灵敏度,降低射线探测器的使用成本。另外,这种摩擦转印沉积工艺无需高温条件,而且,所沉积的二维半导体材料的沉积面积可以取决于摩擦的区域大小,所以利用该工艺,可以在较低的温度下进行大面积的光电转换层的制备。
在另一实施例中,形成光电转换层的方法可进一步包括以下步骤: 在使用第一柔性板对摩擦基板进行摩擦之后,使用第二柔性板对附着有二维半导体材料的摩擦基板进行摩擦,这样可以在摩擦基板上获得粘附性更好、表面更平整的二维半导体材料层。在此之后,再将附着有二维半导体材料的摩擦基板与目标基板进行摩擦,以在目标基板上形成光电转换层。这样的光电转换层的形成过程可以示意性地图示在图6中。
以上提到的摩擦基板可以是诸如砂纸、抛光盘之类的硬质基板,第一柔性板和第二柔性板可以是平滑的柔性薄膜。
本发明的另一实施例提供了一种制作射线探测器的方法,该方法可包括:在基板上方形成包括多个像素的像素阵列以及光电转换层;形成射线转换层,射线转换层用于将入射到所述射线探测器的射线转换为可见光;可采用前述实施例中的任意实施例提供的形成光电转换层的方法来形成光电转换层,并且光电转换层用于接收所述可见光并将所述可见光转换为电荷信号。采用这样的方法来制作射线探测器,可以降低对工艺的温度条件的要求,并可提高制作工艺的效率,同时,采用二维半导体材料来制作光电转换层,有助于提高所制作的射线探测器的灵敏度,降低所制作出的射线探测器的使用成本。
在另一实施例中,所述基板可以是柔性基板。利用柔性基板可弯曲的特性,并结合用二维半导体材料所形成的光电转换层的特性,可以让射线探测器根据待扫描的对象的形状整体上可弯曲调节,更好地与需要扫描的对象接触,使得射线探测的结果更加准确,同时,也使得探测设备更加轻便,便于使用和维护。
在一个实施例中,光电转换层被形成于其上的目标基板可以是其上已形成有所述像素阵列的柔性基板,在所述像素阵列上方依次形成所述光电转换层和所述射线转换层。这样,可以实现一种从上方接收射线的射线探测器,这种射线探测器的灵敏度较高,同时可以根据待扫描的对象进行弯曲,能够进一步提高射线探测准确性。
进一步地,形成所述像素阵列的步骤可包括:制作公共电极和对应于每个像素的像素电极,所述公共电极和所述像素电极与所述光电转换层接触。
进一步地,制作射线探测器的方法还包括以下步骤:在形成所述光电转换层之后,在所述光电转换层上制作第一中间层,所述第一中 间层包括挡光矩阵和钝化层。
替代性地,所述目标基板可以是所述柔性基板,在所述柔性基板上依次形成所述光电转换层和所述像素阵列,所述射线转换层形成在所述柔性基板的下方。同样地,可以实现一种从下方接收射线的射线探测器,这种射线探测器的灵敏度较高,同时可以根据待扫描的对象进行弯曲,能够进一步提高射线探测准确性。进一步地,形成所述像素阵列的步骤包括:在所形成的光电转换层上制作公共电极和对应于每个像素的像素电极。
进一步地,所述制作射线探测器的方法还可包括以下步骤:在形成所述像素电极和公共电极之后,形成保护所述光电转换层的第三中间层,每个像素电极经由所述第三中间层中的过孔与每个像素中的像素开关的源极或漏极电连接。
进一步地,所述制作射线探测器的方法还可包括以下步骤:在制作所述射线转换层之前,在所述柔性基板的下方形成第二中间层,所述第二中间层包括挡光矩阵。以上提到的各方法实施例具有与前述的射线探测器的实施例相似的技术效果,在此不再详述。
应该注意的是,上述实施例用来举例说明而不是限制本发明,并且本领域技术人员将能够设计许多替代性实施例而并未脱离所附权利要求的范围。在权利要求中,词语“包括”并未排除除了权利要求中所列举的那些之外的元件或步骤的存在。元件之前的词语“一”或“一个”并未排除多个这样的元件的存在。某些特征被记载在相互不同从属权利要求中这一纯粹事实并不意味着这些特征的组合不能被有利地使用。

Claims (25)

  1. 一种射线探测器,包括:
    射线转换层,用于将入射到所述射线探测器的射线转换为可见光;
    光电转换层,用于接收所述可见光并将所述可见光转换为电荷信号;
    具有多个像素的像素阵列,用于检测所述电荷信号;以及
    位于所述光电转换层的下方的基板,至少用于直接或者间接承载所述光电转换层,其中所述光电转换层由二维半导体材料形成。
  2. 如权利要求1所述的射线探测器,其中所述基板是柔性基板。
  3. 如权利要求2所述的射线探测器,其中所述像素阵列中的每个像素包括像素开关、像素电极和公共电极,所述像素电极与所述像素开关的源极或漏极电连接,所述公共电极和所述像素电极与所述光电转换层接触。
  4. 如权利要求3所述的射线探测器,其中所述射线探测器还包括与所述射线转换层相邻的第一中间层,所述第一中间层包括挡光矩阵和第一钝化层。
  5. 如权利要求4所述的射线探测器,其中所述像素阵列、所述光电转换层、所述第一中间层以及所述射线转换层从下至上依次形成在所述柔性基板上。
  6. 如权利要求3所述的射线探测器,其中所述射线探测器还包括与所述射线转换层相邻的第二中间层,所述第二中间层包括挡光矩阵。
  7. 如权利要求6所述的射线探测器,其中所述射线探测器还包括用于保护所述光电转换层的第三中间层,所述第三中间层位于所述光电转换层上方并与所述光电转换层接触,每个像素电极经由所述第三中间层中的过孔与每个像素开关的源极或漏极电连接。
  8. 如权利要求7所述的射线探测器,其中所述光电转换层、所述第三中间层以及所述像素阵列从下至上依次形成在所述柔性基板的第一表面上,所述第二中间层以及所述射线转换层从上至下依次形成在所述柔性基板的与所述第一表面相对的第二表面上。
  9. 如权利要求7所述的射线探测器,其中所述第三中间层由氮氧化硅形成。
  10. 如权利要求1-9中的任一项所述的射线探测器,其中所述二维半导体材料包括二硫化钼或者硒化铟。
  11. 如权利要求1-9中的任一项所述的射线探测器,其中所述射线是X射线。
  12. 如权利要求2-9中的任一项所述的射线探测器,其中所述柔性基板由以下材料中的一种或多种形成:聚萘二甲酸乙二醇酯、聚对酞酸乙二酯、聚四氟乙烯。
  13. 如权利要求4或6所述的射线探测器,其中所述挡光矩阵是黑矩阵。
  14. 一种制作光电转换层的方法,所述光电转换层能够接收可见光并将所述可见光转换为电荷信号,其中所述方法包括:
    将二维半导体材料的粉末均匀地洒在摩擦基板上;
    使用第一柔性板对所述摩擦基板进行摩擦,以得到附着有所述二维半导体材料的摩擦基板;
    将所述附着有二维半导体材料的摩擦基板与目标基板进行摩擦,以在所述目标基板上形成所述光电转换层。
  15. 如权利要求14所述的方法,其中所述方法还包括:在使用第一柔性板对所述摩擦基板进行摩擦之后,使用第二柔性板对所述附着有二维半导体材料的摩擦基板进行摩擦。
  16. 如权利要求15所述的方法,所述摩擦基板包括砂纸或者抛光盘。
  17. 一种制作射线探测器的方法,其中该方法包括:
    在基板上方形成包括多个像素的像素阵列以及光电转换层;
    形成射线转换层,所述射线转换层用于将入射到所述射线探测器的射线转换为可见光;
    其中采用如权利要求14-16中的任一项所述的方法形成所述光电转换层,并且所述光电转换层用于接收所述可见光并将所述可见光转换为电荷信号。
  18. 如权利要求17所述的制作射线探测器的方法,其中所述基板是柔性基板。
  19. 如权利要求18所述的制作射线探测器的方法,其中,所述目标基板是其上已形成有所述像素阵列的柔性基板,在所述像素阵列上 方依次形成所述光电转换层和所述射线转换层。
  20. 如权利要求19所述的制作射线探测器的方法,其中形成所述像素阵列的步骤包括:制作公共电极和对应于每个像素的像素电极,所述公共电极和所述像素电极与所述光电转换层接触。
  21. 如权利要求20所述的制作射线探测器的方法,其中所述方法还包括以下步骤:在形成所述光电转换层之后,在所述光电转换层上制作第一中间层,所述第一中间层包括挡光矩阵和钝化层。
  22. 如权利要求18所述的制作射线探测器的方法,其中所述目标基板是所述柔性基板,在所述柔性基板上依次形成所述光电转换层和所述像素阵列,所述射线转换层形成在所述柔性基板的下方。
  23. 如权利要求22所述的制作射线探测器方法,其中形成所述像素阵列的步骤包括:在所形成的光电转换层上制作公共电极和对应于每个像素的像素电极。
  24. 如权利要求23所述的制作射线探测器的方法,其中所述方法还包括以下步骤:
    在形成所述像素电极和公共电极之后,形成保护所述光电转换层的第三中间层,每个像素电极经由所述第三中间层中的过孔与每个像素中的像素开关的源极或漏极电连接。
  25. 如权利要求24所述的制作射线探测器的方法,其中所述方法还包括以下步骤:
    在制作所述射线转换层之前,在所述柔性基板的下方形成第二中间层,所述第二中间层包括挡光矩阵。
PCT/CN2016/070006 2015-08-14 2016-01-04 射线探测器 WO2017028477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/518,576 US9869776B2 (en) 2015-08-14 2016-01-04 Ray detector
US15/834,598 US10365384B2 (en) 2015-08-14 2017-12-07 Ray detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510498841.4A CN105093259B (zh) 2015-08-14 2015-08-14 射线探测器
CN201510498841.4 2015-08-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/518,576 A-371-Of-International US9869776B2 (en) 2015-08-14 2016-01-04 Ray detector
US15/834,598 Division US10365384B2 (en) 2015-08-14 2017-12-07 Ray detector

Publications (1)

Publication Number Publication Date
WO2017028477A1 true WO2017028477A1 (zh) 2017-02-23

Family

ID=54574114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070006 WO2017028477A1 (zh) 2015-08-14 2016-01-04 射线探测器

Country Status (3)

Country Link
US (2) US9869776B2 (zh)
CN (1) CN105093259B (zh)
WO (1) WO2017028477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771385B (zh) * 2017-03-22 2022-07-21 日商富士軟片股份有限公司 放射線檢測器以及放射線圖像攝影裝置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093259B (zh) 2015-08-14 2018-12-18 京东方科技集团股份有限公司 射线探测器
CN106324649B (zh) * 2016-08-31 2023-09-15 同方威视技术股份有限公司 半导体探测器
CN106783904B (zh) * 2017-01-03 2019-07-05 京东方科技集团股份有限公司 光电检测器件和光电检测装置
KR102432252B1 (ko) * 2017-06-13 2022-08-16 삼성전자주식회사 엑스선 검출기, 이를 포함한 엑스선 촬영 장치 및 그 제조 방법
EP3474339A1 (en) * 2017-10-20 2019-04-24 Siemens Healthcare GmbH X-ray image sensor with adhesion promotive interlayer and soft-sintered perovskite active layer
CN108962928B (zh) * 2018-07-13 2021-08-27 京东方科技集团股份有限公司 一种探测面板及探测装置
CN109407141A (zh) 2018-10-18 2019-03-01 京东方科技集团股份有限公司 Msm型x射线探测器、电子设备
CN109782328B (zh) * 2019-01-11 2021-03-26 惠科股份有限公司 射线转换器和射线探测平板装置
CN109801935B (zh) 2019-01-31 2021-01-26 京东方科技集团股份有限公司 光探测面板及其制作方法、显示装置
CN112614867B (zh) * 2020-12-11 2023-06-02 联合微电子中心有限责任公司 一种堆叠式彩色图像传感器及其单片集成方法
US20240170505A1 (en) * 2021-05-31 2024-05-23 Beijing Boe Technology Development Co., Ltd. X-ray detector and method for forming the same
CN113437164B (zh) * 2021-06-15 2023-02-17 南京理工大学泰州科技学院 光导型全硅基日盲紫外探测器及其制作方法
CN116031271B (zh) * 2023-03-28 2023-07-28 上海奕瑞光电子科技股份有限公司 一种伪三能探测器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447395A (zh) * 2002-03-27 2003-10-08 大日本屏影象制造株式会社 基板处理装置
US20040262497A1 (en) * 2003-06-24 2004-12-30 Shimadzu Corporation Two-dimensional semiconductor detector and two-dimensional imaging device
CN102623466A (zh) * 2011-01-31 2012-08-01 索尼公司 放射线图像拾取装置和放射线图像拾取/显示系统
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN103296035A (zh) * 2012-02-29 2013-09-11 中国科学院微电子研究所 X射线平板探测器及其制造方法
CN103803651A (zh) * 2014-03-11 2014-05-21 新疆大学 一种制备二硫化钼纳米片的方法
CN104078508A (zh) * 2014-06-13 2014-10-01 上海交通大学 一种基于二维半导体晶体的栅控pn结
CN105093259A (zh) * 2015-08-14 2015-11-25 京东方科技集团股份有限公司 射线探测器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838849B2 (ja) 2000-03-28 2006-10-25 株式会社東芝 X線平面検出器
US6885028B2 (en) 2002-03-25 2005-04-26 Sharp Kabushiki Kaisha Transistor array and active-matrix substrate
US7214945B2 (en) * 2002-06-11 2007-05-08 Canon Kabushiki Kaisha Radiation detecting apparatus, manufacturing method therefor, and radiation image pickup system
JP2004015000A (ja) * 2002-06-11 2004-01-15 Canon Inc 放射線検出装置及び放射線撮像システム
KR100965176B1 (ko) * 2003-04-07 2010-06-24 삼성전자주식회사 디지털 엑스레이 디텍터용 어레이 패널 및 이의 제조 방법
JP2005116543A (ja) * 2003-10-02 2005-04-28 Canon Inc 撮像装置とその製造方法、放射線撮像装置及び放射線撮像システム
JP2008171871A (ja) 2007-01-09 2008-07-24 Hitachi Displays Ltd 高感度光センサ素子及びそれを用いた光センサ装置
US8443840B2 (en) * 2007-03-09 2013-05-21 Asahi Rubber Inc. Excessive pressure release valve and release valve unit having the release valve
CN101159283A (zh) * 2007-11-22 2008-04-09 德润特数字影像科技(北京)有限公司 X射线平板探测器
CN101494256B (zh) * 2009-02-26 2011-01-05 友达光电股份有限公司 X射线感测器及其制作方法
US8836069B2 (en) 2009-04-23 2014-09-16 Karim S. Karim Method and apparatus for a lateral radiation detector
KR101819757B1 (ko) * 2009-06-17 2018-01-17 더 리젠츠 오브 더 유니버시티 오브 미시간 평판 x-선 영상기에서의 포토다이오드 및 기타 센서 구조물, 및 박막 전자 회로에 기초하여 평판 x-선 영상기에서의 포토다이오드 및 기타 센서 구조물의 토폴로지적 균일성을 향상시키는 방법
US9427616B2 (en) * 2012-03-12 2016-08-30 Daniel D. Natee Portable elastic resistance device for exercising the skeletal muscles
CN102664184B (zh) * 2012-03-27 2014-08-06 北京京东方光电科技有限公司 一种x射线检测装置的阵列基板的制造方法
CN104218045A (zh) * 2013-06-05 2014-12-17 朱兴华 碘化铅光电导层基数字x射线平板探测器
CN103762251B (zh) * 2014-01-22 2016-03-30 中山大学 一种双栅极光电薄膜晶体管、像素电路及像素阵列
JP6451059B2 (ja) * 2014-02-28 2019-01-16 セイコーエプソン株式会社 光電変換装置、光電変換装置の製造方法及び電子機器
CN104637970B (zh) * 2015-03-03 2018-03-06 京东方科技集团股份有限公司 阵列基板及其制作方法、x射线平板探测器、摄像系统
CN104795419B (zh) 2015-05-11 2018-05-08 京东方科技集团股份有限公司 X射线平板探测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447395A (zh) * 2002-03-27 2003-10-08 大日本屏影象制造株式会社 基板处理装置
US20040262497A1 (en) * 2003-06-24 2004-12-30 Shimadzu Corporation Two-dimensional semiconductor detector and two-dimensional imaging device
CN102623466A (zh) * 2011-01-31 2012-08-01 索尼公司 放射线图像拾取装置和放射线图像拾取/显示系统
CN103296035A (zh) * 2012-02-29 2013-09-11 中国科学院微电子研究所 X射线平板探测器及其制造方法
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN103803651A (zh) * 2014-03-11 2014-05-21 新疆大学 一种制备二硫化钼纳米片的方法
CN104078508A (zh) * 2014-06-13 2014-10-01 上海交通大学 一种基于二维半导体晶体的栅控pn结
CN105093259A (zh) * 2015-08-14 2015-11-25 京东方科技集团股份有限公司 射线探测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771385B (zh) * 2017-03-22 2022-07-21 日商富士軟片股份有限公司 放射線檢測器以及放射線圖像攝影裝置

Also Published As

Publication number Publication date
US9869776B2 (en) 2018-01-16
US10365384B2 (en) 2019-07-30
CN105093259B (zh) 2018-12-18
US20180188390A1 (en) 2018-07-05
CN105093259A (zh) 2015-11-25
US20170285185A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2017028477A1 (zh) 射线探测器
US10890669B2 (en) Flexible X-ray detector and methods for fabricating the same
US9520437B2 (en) Flexible APS X-ray imager with MOTFT pixel readout and a pin diode sensing element
EP3507621B1 (en) Radiation detector and fabricating method thereof
CN111244119B (zh) 一种探测基板、其制作方法及平板探测器
JP2010056396A (ja) X線検出素子
US11698468B2 (en) Radiation detector, method of operating radiation detector, and method of fabricating radiation detector
CN102401906A (zh) 辐射探测器及其成像装置、电极结构和获取图像的方法
JP2013127371A (ja) 放射線検出装置
CN201852941U (zh) 辐射探测器及其成像装置和电极结构
JP2013044723A (ja) 放射線検出器、放射線検出器の製造方法、及び放射線画像撮影装置
CN107658361A (zh) 主动矩阵式影像感测装置
US20220050218A1 (en) Dual-sensor subpixel radiation detector
US9923021B2 (en) Image sensor
CN113330567B (zh) 一种探测基板、其制作方法及平板探测器
US10222487B2 (en) X-ray detector, X-ray imaging device using same, and driving method therefor
KR20150006185A (ko) 이미지센서와 그 제조방법
JP2007093257A (ja) 放射線検出器
US20140198900A1 (en) High resolution x-ray imaging with thin, flexible digital sensors
KR101858356B1 (ko) 수소침투가 방지된 디지털 엑스레이 검출장치
JP2010003849A (ja) 電磁波検出素子
KR20150064960A (ko) 엑스선 디텍터 및 이의 제조방법
EP3690489A1 (en) Dual-sensor subpixel radiation detector
JPWO2020053174A5 (zh)
WO2020103583A1 (zh) 射线探测器及其制造方法、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15518576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836346

Country of ref document: EP

Kind code of ref document: A1