WO2017026080A1 - Procédé de conception d'itinéraire pour véhicule autonome - Google Patents

Procédé de conception d'itinéraire pour véhicule autonome Download PDF

Info

Publication number
WO2017026080A1
WO2017026080A1 PCT/JP2015/084337 JP2015084337W WO2017026080A1 WO 2017026080 A1 WO2017026080 A1 WO 2017026080A1 JP 2015084337 W JP2015084337 W JP 2015084337W WO 2017026080 A1 WO2017026080 A1 WO 2017026080A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
path
route
autonomous vehicle
tractor
Prior art date
Application number
PCT/JP2015/084337
Other languages
English (en)
Japanese (ja)
Inventor
丹生 秀和
康平 小倉
マノジュ シャルマ
ガウラヴ チャウダリー
パラシャント ボラ
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2017026080A1 publication Critical patent/WO2017026080A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track

Definitions

  • the present invention relates to a system for controlling a traveling vehicle (automated traveling vehicle), and more particularly, to a method for designing an optimum route for an autonomous traveling work vehicle such as an autonomous traveling robot tractor.
  • Patent Document 1 discloses a technique for performing autonomous traveling by generating a path so as to repeatedly perform straight traveling, turning near a boundary, and restarting straight traveling following a turn in order to efficiently and easily perform farm work on farmland. Are listed.
  • Patent Document 1 Since the technique described in Patent Document 1 is not sufficiently considered for cases where there are obstacles or the like in the field of the field, the shape of the field cannot be easily divided into rectangular shapes, etc. There were restrictions on the fields to be applied.
  • the present invention provides a method for designing a route by generating a path that enables smooth traveling of an autonomous vehicle by giving information on boundary points of the region and information on obstacles in the region.
  • the issue is to provide.
  • the route design method for an autonomous vehicle is a method for designing a route in the region for an autonomous vehicle that performs work while traveling in the region, and includes a boundary point and a region in the region.
  • the boundary point of the obstacle existing in the area is acquired, the representative point selected from the acquired boundary point is used to approximate the area to a polygon, and the area approximated to the polygon is a plurality of trapezoidal shapes or Dividing as a triangular area, merging areas other than the area where the obstacle exists among the plurality of divided areas, passing between the merged areas, and between the merged areas
  • a traveling path of the autonomous traveling vehicle is designed by generating a connecting path and connecting a path in the region and a path between the regions.
  • the autonomous vehicle passes the path in the area a plurality of times, it is set so that the work is performed only at the last pass and is not performed at the previous pass.
  • the path connecting the merged areas is generated by a depth-first search using an adjacent list.
  • the present invention designs an optimum route for a work vehicle. More specifically, the present invention relates to an autonomous work vehicle that passes a path generated based on information about boundary points of regions and boundary points of obstacles.
  • a robot tractor will be described as an example of an autonomously traveling work vehicle.
  • the path design method of the present invention provides a trajectory (path) for performing various agricultural operations such as tillage, drainage pipe laying, fertilization, plow work, mowing, etc. in the path, using computational geometry and graph theory.
  • an algorithm that provides various patterns for farm work is executed.
  • the inputs to the path design algorithm / module are region boundary points and obstacle boundary points. These points can be obtained by driving an autonomous vehicle in manual mode. These points can also be recorded in advance in the route design algorithm / module. After acquisition, a representative point indicating the boundary point between the region and the obstacle is selected, and the selected representative point is used as an input to the path design algorithm / module.
  • the following two graphs are created from the input data by the route design algorithm.
  • Traveling graph showing the traveling route and turning vertex of a traveling vehicle performing farm work
  • (2) Created by dividing the polygon showing the entire farm field into a plurality of small polygons that are individually farmed Graphs
  • the algorithm for setting the shortest path is used when the robot tractor travels between areas.
  • FIG. 1 is a diagram showing an area created by the route design module, and various farming operations such as tillage, drainage pipe laying, fertilization, plowing, and mowing are performed in this area.
  • the region created here includes one region or a plurality of merged regions as shown in FIG.
  • FIG. 3 shows an example of a template for a field design route.
  • FIG. 4 shows an example of the finally designed route.
  • a path for causing the unmanned traveling tractor to travel is generated by an algorithm for route design of the robot tractor.
  • the generated path includes the entire field but excludes the area after work.
  • the field coordinate data recorded by actually running the robot tractor is recorded in a file as a set of points having latitude-longitude information.
  • the representative points related to these field areas (that is, the boundary points of the areas and the boundary points of the obstacles) are automatically selected so as to approximate the shape of the field where the tilling work is performed.
  • representative points including the following areas are selected and used as field data by setting a start point and an end point.
  • the coordinate data of the field is acquired using a positioning device.
  • coordinate data registered as field map data may be used instead of the positioning data. That is, it is also possible to acquire the field coordinate data and the boundary point of the area and the boundary point of the obstacle without actually performing manual travel. In this case as well, the shape of the field can be approximated to a polygon using coordinate data and positioning data.
  • Headland area The range of the end of the field where the robot tractor can turn, and is an area where no tilling work is performed.
  • Work area In the range selected as the work area, the traveling direction of the robot tractor is also selected at the same time.
  • Obstacle area When an obstacle exists in the field, these boundary points are recorded, and the surrounding area is recognized as a non-working area where no work is performed. The path is designed not to pass obstacles.
  • Start point and end point Set by the operator as the start point and end point of the robot tractor.
  • Step S01 The whole field is approximated to a polygon using representative points extracted from the boundary points of the region and the points acquired as the boundary points of the obstacle. As shown in FIG. 6, a point that is a predetermined distance from the outer periphery of the field is a boundary point of the region, and a point that is a predetermined distance from the outer periphery of the obstacle is a boundary point of the obstacle. A representative point indicating the shape is extracted. By connecting the representative points, the entire field is approximated to a polygon, and the obstacle is surrounded by the polygon.
  • Step S02 A plurality of trapezoidal or triangular regions are created. As shown in FIG. 6, the inside of the field approximated by a polygon is divided into trapezoidal or triangular regions using parallel straight lines. In addition, the area
  • Step S03 Merge the divided areas other than the non-working area where the obstacle exists in order to create the traveling area.
  • the trapezoidal area and the triangular area excluding the periphery of the area where the obstacle exists are merged.
  • the trapezoidal area and the triangular area merged here are areas where work can be performed by normal traveling, and conversely, the area around the obstacle passes through the route a plurality of times or the order of passage. Is an area to be optimized.
  • Step S04 Create an adjacency list for the merged area. As illustrated in FIG. 7, an adjacent list is created for the areas A1, A2, A3, A4, A5... And a path that optimally passes through these areas is designed by the following steps.
  • Step S05 A path is designed for the merged area.
  • An optimal path is designed by executing a depth-first search (DFS) algorithm on the neighbor list created in step S04.
  • DFS depth-first search
  • Step S06 A travel graph is created for the entire area. As shown in FIG. 8, a running graph in the region is created by drawing parallel straight lines with a predetermined interval inside the field indicated by polygons.
  • Step S07 A path within the region and between the regions is generated for the travel graph. As shown in FIG. 8, paths between regions are generated so as to pass the paths designed in step S05, that is, pass the paths in an optimal order. At this time, the traveling direction is also determined at the same time. In the next step, a turning path in the headland area is generated, and a travel graph for the entire area is completed. Step S08: A turning path is generated in the headland area (non-work area).
  • the path generation satisfies the following requirements.
  • a path is generated using the generated travel graph.
  • Paths are designed within and between areas.
  • Various patterns corresponding to the type of farm work (cultivation, drain pipe laying, fertilization, plow work, mowing, etc.) are generated for the paths in the region.
  • the path is generated so that the work is always performed only at the time of the last passage when it is necessary to pass twice or more.
  • the generated path is designed so that unmanned tractors do not collide with manned tractors. For example, this is possible by not including the fish tail turn in the path of the unmanned tractor.
  • the final design path is generated by a path design algorithm / module as shown in FIG.
  • This algorithm has robustness, uses graph theory for path generation, and can provide a complete path from the start point to the end point even when an obstacle exists, not a partial path.
  • An optimized path can be provided by applying the DFS algorithm to the field.
  • a robot tractor (hereinafter simply referred to as “tractor”) 1 which is an embodiment of the autonomous vehicle according to the present invention, and a guidance control system for performing guidance control of the tractor 1. 2 will be described.
  • the tractor 1 is unmanned and autonomously capable of traveling and working. Specifically, the tractor 1 receives the control by the guidance control system 2 and moves along a predetermined route while performing work at a predetermined location on the route.
  • a route design module is incorporated in the guidance control system 2, and a path designed by the route design method of this embodiment is input, and the tractor 1 travels autonomously by the guidance control system 2 according to the path.
  • the tractor 1 includes a bonnet 4 that houses the engine 3 and a cabin 5 that is arranged behind the bonnet 4.
  • a driver's seat 6 and a dashboard 7 disposed in front of the driver's seat 6 are provided.
  • a steering handle 8, a main transmission lever 9, and a forward / reverse switching lever 10 are provided around the driver's seat 6 and on the dashboard 7. Further, operating tools such as an elevating lever 11 and a PTO speed change lever 12 are provided. That is, the tractor 1 has a configuration that can be operated by an operator. In this way, the operator can acquire points necessary for route design by driving the tractor 1 and traveling once in the field.
  • a mission case 15 is arranged below the driver's seat 6.
  • the power of the engine 3 is shifted by the transmission 16 in the transmission case 15 and transmitted to the front wheels 18 supported by the front axle 17 and the rear wheels 20 supported by the rear axle 19 and the PTO shaft that drives the work implement 21.
  • the work machine 21 is attached to the rear part of the machine body via a three-point link mechanism 22, and the work machine 21 can be moved up and down and tilted left and right by the operation (hitch operation) of the three-point link mechanism 22. It is configured.
  • a tiller is illustrated, but is not limited thereto, and can be selected according to a desired work, such as a plow, a fertilizer machine, or a mower, and can be attached to the tractor 1. If applicable.
  • the robot tractor 1 is equipped with an electronic control unit (ECU) 30 for controlling its operation.
  • the ECU 30 includes a rotation speed sensor 31 that detects the rotation speed of the engine 3, a vehicle speed sensor 32 that detects the rotation speed of the rear wheel 20, and a steering wheel that detects the rotation angle of the steering handle 8 (that is, the rotation angle of the front wheel 18).
  • Sensors such as an angle sensor 33 and a position sensor 34 for detecting the operation position of the forward / reverse switching lever 10 are connected, and detection values by these sensors are converted into detection signals and transmitted to the ECU 30.
  • the ECU 30 includes a governor device 40 that controls the rotational speed of the engine 3, a transmission device 16 that controls the speed of the tractor 1, a steering device 41 that controls the traveling direction (steering angle) of the tractor 1, and a three-point link mechanism.
  • Each actuator such as an elevating device 42 for controlling 22 is connected.
  • the ECU 30 can automatically control the operation of the tractor 1 by controlling the operation of these actuators.
  • the ECU 30 includes the guidance control system 2 to enable autonomous operation of the tractor 1 based on the guidance control system 2.
  • a GNSS antenna 50 that receives a signal from the GNSS that is a satellite positioning system is disposed on the upper surface of the bonnet 4 of the tractor 1.
  • the GNSS antenna 50 measures the position of the tractor 1 by receiving a signal from a positioning satellite.
  • the GNSS antenna 50 simultaneously detects the head angle of the tractor 1 by incorporating a heading sensor.
  • the GNSS antenna 50 is connected to the ECU 30 and transmits a detection signal from the positioning satellite to the ECU 30. That is, the position and the head angle of the tractor 1 are acquired by the ECU 30.
  • a typical example of a GNSS system that uses positioning satellites is a satellite positioning system that uses GPS technology.
  • a system using other satellites such as a quasi-zenith satellite and a Glonus satellite can be used.
  • GPS positioning independent positioning, relative positioning, DGPS Positioning, RTK-GPS positioning, etc. can be employed.
  • the boundary point of the field area is detected in the ECU 30, the representative point is selected, and the obstacle point is detected by inputting the obstacle data on the positioning data. By selecting, it is possible to acquire points necessary for route design without actually traveling the tractor 1 manually.
  • the tractor 1 is provided with an obstacle sensor 51 that detects whether there is an obstacle ahead, side, or rear.
  • the obstacle sensor 51 is constituted by a laser sensor, an ultrasonic sensor, or the like, recognizes obstacles existing in front, side, and rear of the tractor 1 and generates a detection signal.
  • the tractor 1 is attached with a camera 52 for photographing the front, side, and rear.
  • the obstacle sensor 51 and the camera 52 are connected to the ECU 30 and transmit a detection result to the ECU 30. An unexpected obstacle or the like can be detected while the tractor 1 is autonomously traveling. In such a case, it is possible to take measures such as stopping the tractor 1.
  • a wireless device such as a tablet 55 is used.
  • a control signal from the tablet 55 is received by the antenna 56 disposed on the upper surface of the cabin 5 of the tractor 1.
  • the antenna 56 is connected to the ECU 30 and transmits a control signal to the ECU 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

La présente invention aborde le problème de mise en œuvre d'un procédé de génération d'un chemin qui permet à un véhicule autonome de voyager sans heurts, en diffusant des informations concernant un point limite d'une zone et des informations concernant un obstacle dans la zone, et concevant ainsi un itinéraire. Le procédé de conception d'un itinéraire dans une zone, pour un véhicule autonome qui effectue un travail pendant son trajet dans la zone, est caractérisé en ce que les étapes de la conception d'un itinéraire de déplacement pour le véhicule consistent : à acquérir un point limite de la zone et un point limite d'un obstacle existant dans la zone ; à approcher la zone sous une forme polygonale au moyen d'un point représentatif sélectionné parmi les points limites acquis ; à diviser la zone approchée sous forme polygonale en une pluralité de formes trapézoïdales ou triangulaires ; à fusionner des zones autres que la zone dans laquelle existe l'obstacle, parmi la pluralité de zones divisées ; à générer des chemins dans les zones fusionnées et des chemins reliant les zones fusionnées entre elles ; et à relier les chemins dans les zones et les chemins entre les zones entre eux.
PCT/JP2015/084337 2015-08-13 2015-12-07 Procédé de conception d'itinéraire pour véhicule autonome WO2017026080A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN4215CH2015 2015-08-13
IN4215/CHE/2015 2015-08-13

Publications (1)

Publication Number Publication Date
WO2017026080A1 true WO2017026080A1 (fr) 2017-02-16

Family

ID=57983678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084337 WO2017026080A1 (fr) 2015-08-13 2015-12-07 Procédé de conception d'itinéraire pour véhicule autonome

Country Status (1)

Country Link
WO (1) WO2017026080A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3403487A1 (fr) * 2017-05-15 2018-11-21 CLAAS KGaA mbH Procédé de compactage d'un produit récolté se trouvant dans un silo
JP2019004792A (ja) * 2017-06-26 2019-01-17 株式会社クボタ 作業場の走行管理システム
EP3491904A1 (fr) * 2017-11-30 2019-06-05 Iseki & Co., Ltd. Véhicule de travail
WO2020085240A1 (fr) * 2018-10-22 2020-04-30 株式会社ナイルワークス Système de génération d'itinéraire d'opération, procédé de génération d'itinéraire d'opération, programme de génération d'itinéraire d'opération, système de relevé de coordonnées et drone
JP2020086876A (ja) * 2018-11-22 2020-06-04 井関農機株式会社 農作業支援システム
CN112997129A (zh) * 2018-10-03 2021-06-18 株式会社尼罗沃克 行驶路径生成装置、行驶路径生成方法、行驶路径生成程序以及无人机
CN113593340A (zh) * 2021-08-02 2021-11-02 北京华云智联科技有限公司 一种北斗教学互动系统
WO2022102366A1 (fr) * 2020-11-12 2022-05-19 ヤンマーホールディングス株式会社 Système, procédé, et programme d'établissement de zone d'opération
WO2022222678A1 (fr) * 2021-04-23 2022-10-27 南京泉峰科技有限公司 Système de fauchage intelligent et dispositif de fauchage intelligent
EP4099121A1 (fr) * 2021-05-24 2022-12-07 Trimble Inc. Planificateur de couverture de zone
US11874665B2 (en) 2021-05-24 2024-01-16 Trimble Inc. Area coverage planner with replenishment planner
EP4119304A4 (fr) * 2020-03-10 2024-04-24 LG Electronics, Inc. Robot mobile

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138708A (ja) * 1989-10-25 1991-06-13 Honda Motor Co Ltd 自走車の走行コース設定装置
JPH09128045A (ja) * 1995-11-02 1997-05-16 Hitachi Ltd 自動走行機械の経路生成方式
JP2003345437A (ja) * 2002-05-22 2003-12-05 Toshiba Tec Corp 自律走行ロボット
JP2005078415A (ja) * 2003-09-01 2005-03-24 Fuji Heavy Ind Ltd 走行経路生成方法、走行経路生成装置およびコンピュータプログラム
JP2008004078A (ja) * 2006-06-20 2008-01-10 Samsung Electronics Co Ltd 移動ロボットの格子マップ作成方法及び装置及び媒体とこれを利用した領域分離方法及び装置及び媒体
JP2008047095A (ja) * 2006-08-18 2008-02-28 Samsung Electronics Co Ltd 移動ロボットの領域分離方法および装置
JP2011254704A (ja) * 2010-06-04 2011-12-22 Chugoku Electric Power Co Inc:The 自動耕作方法、及び自動耕作システム
US20130041526A1 (en) * 2011-08-11 2013-02-14 Chien Ouyang Robotic Lawn Mower with Network Sensors
JP2013228821A (ja) * 2012-04-24 2013-11-07 Mamiya-Op Nequos Co Ltd 作業機械及びその構成装置、コンピュータプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138708A (ja) * 1989-10-25 1991-06-13 Honda Motor Co Ltd 自走車の走行コース設定装置
JPH09128045A (ja) * 1995-11-02 1997-05-16 Hitachi Ltd 自動走行機械の経路生成方式
JP2003345437A (ja) * 2002-05-22 2003-12-05 Toshiba Tec Corp 自律走行ロボット
JP2005078415A (ja) * 2003-09-01 2005-03-24 Fuji Heavy Ind Ltd 走行経路生成方法、走行経路生成装置およびコンピュータプログラム
JP2008004078A (ja) * 2006-06-20 2008-01-10 Samsung Electronics Co Ltd 移動ロボットの格子マップ作成方法及び装置及び媒体とこれを利用した領域分離方法及び装置及び媒体
JP2008047095A (ja) * 2006-08-18 2008-02-28 Samsung Electronics Co Ltd 移動ロボットの領域分離方法および装置
JP2011254704A (ja) * 2010-06-04 2011-12-22 Chugoku Electric Power Co Inc:The 自動耕作方法、及び自動耕作システム
US20130041526A1 (en) * 2011-08-11 2013-02-14 Chien Ouyang Robotic Lawn Mower with Network Sensors
JP2013228821A (ja) * 2012-04-24 2013-11-07 Mamiya-Op Nequos Co Ltd 作業機械及びその構成装置、コンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOSET, HOWIE ET AL.: "Exact Cellular Decompositions in Terms of Critical Points of Morse Functions", PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS & AUTOMATION, vol. 3, 24 April 2000 (2000-04-24), pages 2270 - 2277, XP002674566 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3403487A1 (fr) * 2017-05-15 2018-11-21 CLAAS KGaA mbH Procédé de compactage d'un produit récolté se trouvant dans un silo
JP2019004792A (ja) * 2017-06-26 2019-01-17 株式会社クボタ 作業場の走行管理システム
EP3491904A1 (fr) * 2017-11-30 2019-06-05 Iseki & Co., Ltd. Véhicule de travail
CN112997129A (zh) * 2018-10-03 2021-06-18 株式会社尼罗沃克 行驶路径生成装置、行驶路径生成方法、行驶路径生成程序以及无人机
CN112997129B (zh) * 2018-10-03 2024-03-26 株式会社尼罗沃克 行驶路径生成装置、行驶路径生成方法、计算机可读取存储介质以及无人机
CN112912808A (zh) * 2018-10-22 2021-06-04 株式会社尼罗沃克 行驶路径生成系统、行驶路径生成方法、行驶路径生成程序、座标测量系统以及无人机
JPWO2020085240A1 (ja) * 2018-10-22 2021-02-15 株式会社ナイルワークス 運転経路生成システム、運転経路生成方法、運転経路生成プログラム、座標測量システム、およびドローン
JP7062314B2 (ja) 2018-10-22 2022-05-06 株式会社ナイルワークス 運転経路生成システム、運転経路生成方法、運転経路生成プログラム、座標測量システム、およびドローン
WO2020085240A1 (fr) * 2018-10-22 2020-04-30 株式会社ナイルワークス Système de génération d'itinéraire d'opération, procédé de génération d'itinéraire d'opération, programme de génération d'itinéraire d'opération, système de relevé de coordonnées et drone
CN112912808B (zh) * 2018-10-22 2023-12-26 株式会社尼罗沃克 行驶路径生成系统、行驶路径生成方法、计算机可读取记录介质、坐标测量系统以及无人机
JP7265348B2 (ja) 2018-11-22 2023-04-26 井関農機株式会社 農作業支援システム
JP2020086876A (ja) * 2018-11-22 2020-06-04 井関農機株式会社 農作業支援システム
EP4119304A4 (fr) * 2020-03-10 2024-04-24 LG Electronics, Inc. Robot mobile
WO2022102366A1 (fr) * 2020-11-12 2022-05-19 ヤンマーホールディングス株式会社 Système, procédé, et programme d'établissement de zone d'opération
JP7485586B2 (ja) 2020-11-12 2024-05-16 ヤンマーホールディングス株式会社 作業領域設定システム、作業領域設定方法、及び作業領域設定プログラム
WO2022222678A1 (fr) * 2021-04-23 2022-10-27 南京泉峰科技有限公司 Système de fauchage intelligent et dispositif de fauchage intelligent
EP4099121A1 (fr) * 2021-05-24 2022-12-07 Trimble Inc. Planificateur de couverture de zone
US11860635B2 (en) 2021-05-24 2024-01-02 Trimble Inc. Area coverage planner
US11874665B2 (en) 2021-05-24 2024-01-16 Trimble Inc. Area coverage planner with replenishment planner
CN113593340A (zh) * 2021-08-02 2021-11-02 北京华云智联科技有限公司 一种北斗教学互动系统

Similar Documents

Publication Publication Date Title
WO2017026080A1 (fr) Procédé de conception d'itinéraire pour véhicule autonome
JP6189779B2 (ja) 作業車協調システム
EP3254548B1 (fr) Planification et commande des opérations agricoles autonomes
EP2784617B1 (fr) Système de coordination de véhicules de travail
EP3468335B1 (fr) Système et procédé de contrôle agricole
JP6682354B2 (ja) 自律走行経路生成システム
JP6219790B2 (ja) 作業車協調システム
KR102144244B1 (ko) 경로 생성 장치
WO2015146777A1 (fr) Système de coopération de véhicules de travail
JP6557622B2 (ja) 経路生成装置
JP6557621B2 (ja) 経路生成装置
JP6385412B2 (ja) 作業車協調システム
Baillie et al. A review of the state of the art in agricultural automation. Part III: Agricultural machinery navigation systems
JP2017204061A (ja) 自律走行経路生成システム
JP2023101605A (ja) 自動走行制御システム及び自律走行制御方法
JP6635844B2 (ja) 経路生成装置
JP2024053067A (ja) 自動走行システム及び自動走行方法
JP6659630B2 (ja) 作業車協調システム
JP2020120655A (ja) 作業車協調システム
JP6533260B2 (ja) 作業車協調システム
JP2018088931A (ja) 作業車協調システム
WO2024142659A1 (fr) Véhicule de travail
WO2024143107A1 (fr) Dispositif de génération d'itinéraire et programme informatique
EP3901722B1 (fr) Dispositif d'affichage d'état de déplacement et système de déplacement automatisé
JP7094832B2 (ja) 協調作業システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15901031

Country of ref document: EP

Kind code of ref document: A1