WO2017026057A1 - 透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品 - Google Patents

透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品 Download PDF

Info

Publication number
WO2017026057A1
WO2017026057A1 PCT/JP2015/072794 JP2015072794W WO2017026057A1 WO 2017026057 A1 WO2017026057 A1 WO 2017026057A1 JP 2015072794 W JP2015072794 W JP 2015072794W WO 2017026057 A1 WO2017026057 A1 WO 2017026057A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
transparent resin
dimples
dimple
surface treatment
Prior art date
Application number
PCT/JP2015/072794
Other languages
English (en)
French (fr)
Inventor
間瀬 恵二
正三 石橋
祐介 近藤
Original Assignee
株式会社不二製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二製作所 filed Critical 株式会社不二製作所
Priority to US15/750,676 priority Critical patent/US20180222089A1/en
Priority to JP2017534077A priority patent/JP6556846B2/ja
Priority to CN201580081733.5A priority patent/CN107848154B/zh
Priority to PCT/JP2015/072794 priority patent/WO2017026057A1/ja
Priority to KR1020187001158A priority patent/KR102034154B1/ko
Publication of WO2017026057A1 publication Critical patent/WO2017026057A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/18Finishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/442Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with mechanical ejector or drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent

Definitions

  • the present invention relates to a surface treatment method for a transparent resin molding die, a transparent resin molding die surface-treated by the method, and a transparent resin molded product molded by the die, and more specifically, a transparent resin.
  • the present invention relates to a mold surface treatment method applicable to the surface treatment of a mold for manufacturing a molded product, a mold surface-treated by the method, and a transparent resin molded product molded using the mold.
  • the surface of the mold to be treated refers to the surface of the mold that comes into contact with the molding material.
  • Transparent resin molded products obtained by molding molding materials made of transparent resin are widely used in various fields such as optical products, medical instruments, electrical appliances, daily necessities, toys, and others.
  • the mold used for molding the transparent resin is finished with a mirror surface with high accuracy by manual polishing so that the surface of the transparent resin molded product is not uneven.
  • the surface of the molded product can be smoothened to provide transparency to the obtained resin molded product.
  • the mold surface is polished to a mirror surface, the contact resistance between the surface of the molded product and the mold surface increases at the time of mold release, and the mold release property may deteriorate.
  • the angle of the draft angle provided in the cavity of the mold is increased, and surface treatment for improving the slip on the mold surface, for example, fluorine coating or DLC. It has also been proposed to form a (Diamond Like Carbon) coating.
  • the method of increasing the angle of the draft angle can be applied to a mold for transparent resin molding. It is necessary to design the shape of the molded product so that the angle becomes large, and the design of the molded product is restricted.
  • the contact area between the surface of the molded product and the mold surface is reduced by the formation of the dimples, and the dimple is separated in the dimple. Since mold release and air build up improves mold releasability, it exhibits mold releasability while dimples are present on the mold surface, compared to a surface coating that loses its effect due to wear and delamination. , It can exhibit releasability for a longer period of time.
  • the surface treatment of the mold by a relatively simple operation of injecting and colliding the spherical injection particles onto the surface of the mold using a blast processing apparatus.
  • the mold surface can be finished with a smooth surface by polishing or the like, or the mold can be produced at a lower cost and with a shorter delivery time than when the surface coating is further performed.
  • the surface treatment method described above in which the dimples are formed on the surface of the mold by the injection of the spherical injection particles, provides a mold surface that exhibits releasability by a relatively simple method. However, it cannot be applied as a surface treatment for a mold for transparent resin molding.
  • the inventors of the present invention have examined the reason why a transparent resin molded product cannot be obtained by the above-described surface treatment method for forming dimples on the mold surface, and as a result, formed dimples on the mold surface. Even when surface treatment is performed, if the diameter and depth of the dimples to be formed are limited to a predetermined range so as to form relatively small and shallow dimples, a transparent resin molded product can be obtained. I came to think that it could be manufactured.
  • the diameter and depth of the dimples to be formed are increased by injecting the injection particles having a relatively large particle diameter of 100 to 1000 ⁇ m. As a result, the unevenness formed on the surface of the resin molded product becomes large.
  • a mold base material in an amount corresponding to the diameter and depth of the dimple formed as shown in FIG.
  • the extruded mold base material forms a raised protrusion on the periphery of the dimple.
  • this protrusion bites into the molding dough and is transferred to the surface of the molded product, and when the molded product is pulled out, this protrusion forms numerous scratches on the surface of the molded product, thereby forming the molded product. Further irregularities are formed on the surface of the material, resulting in loss of transparency.
  • reducing the diameter and depth of the dimples formed on the mold surface can not only reduce the unevenness formed on the surface of the molded product due to the transfer of the dimples,
  • the amount of mold base material extruded by plastic flow can be reduced, and as a result, the occurrence of the above-mentioned raised protrusions can be suppressed, the occurrence of irregularities accompanying the transfer of the protrusions, and the scratches caused by the protrusions.
  • the present invention was made based on the knowledge obtained as a result of the above-mentioned experiment by the inventors of the present invention.
  • the surface treatment method for forming dimples on the surface of a mold by injection of spherical injection particles By clarifying the formation conditions of the dimples that can impart transparency to a resin molded product molded using the surface-treated mold, it has conventionally been indispensable for a transparent resin molding mold.
  • a surface treatment method that eliminates the need for mirror polishing, can provide a transparent resin molding die with a short delivery time and at a low cost, and can improve the releasability of the transparent resin molding die. The purpose is to provide.
  • the surface treatment method of the transparent resin molding die of the present invention is as follows: Injecting and colliding a substantially spherical injection particle onto the surface of the mold used for molding the transparent resin, The following formula, 1 + 3.3e -H / 230 ⁇ W ⁇ 1.5 + 8.9e -H / 630 ... (Formula 1) here, W is the equivalent diameter of the dimple ( ⁇ m) H is the mold base metal hardness (Hv) A dimple having a diameter (equivalent diameter W) in a range satisfying the condition defined in (1) is formed.
  • the “equivalent diameter” means the circular diameter when the projected area of the dimple formed on the mold surface is converted into a circular projected area.
  • the dimple further has the following formula: 0.01 + 0.2e -H / 230 ⁇ D ⁇ 0.05 + 0.4e -H / 320 ...
  • D is the depth of the dimple ( ⁇ m)
  • H is the mold base metal hardness (Hv)
  • it is formed with a depth (D) in a range satisfying the conditions specified in (Claim 2).
  • the injection particles having a median diameter of 20 ⁇ m or less are injected at an injection pressure of 0.01 MPa to 0.6 MPa, and the formation area of the dimples is the surface of the mold. This can be done by forming the dimple so as to be 50% or more of the area.
  • the “median diameter” is a diameter at which the accumulated particle amount of the larger particle group and the accumulated particle amount of the smaller particle group are equal when the particle group is divided into two from a certain particle diameter.
  • the spray particles are sprayed on the surface of the mold adjusted to a surface roughness of Ra 0.3 ⁇ m or less (Claim 4).
  • the transparent resin molding die of the present invention is a transparent resin molding die that has been surface-treated by any of the methods described above (Claim 5).
  • the transparent resin molded product of the present invention is a transparent resin molded product molded by a transparent resin molding die that has been surface-treated by any of the methods described above (Claim 6).
  • Forming dimples having a predetermined diameter and a predetermined depth by injecting and colliding substantially spherical injection particles onto the surface of a mold used for molding a transparent resin.
  • dimples that are relatively small in diameter and depth in this way, not only the unevenness formed by dimple transfer on the surface of the transparent resin molded product during molding is reduced, but also the formation of relatively small dimples. Can prevent the formation of raised protrusions on the periphery of the dimple as a result of reducing the amount of the mold base material pushed out from the collision position of the injection particles by plastic flow. It is considered that transparency can be imparted to the resin molded product to be manufactured, though the structure is formed.
  • the surface finish of the mold for transparent resin molding can be performed by a relatively simple process of injecting the spray particles, so that it is conventionally required as a process for the mold for transparent resin molding.
  • the time and manufacturing cost required for manufacturing a transparent resin molding die can be greatly reduced.
  • the mold with the dimples described above exhibits excellent mold release properties compared to a mirror-polished mold, so there is no need to apply a large force to the molded product at the time of mold release. Deformation and damage were prevented, and the defect rate could be reduced.
  • the dimples are formed by injecting spray particles having a median diameter of 20 ⁇ m or less at an injection pressure of 0.01 MPa to 0.6 MPa so that the formation area of the dimples is 50% or more of the area of the mold surface.
  • the stress concentration that can occur when the protrusions are generated does not occur, and the surface hardness of the mold is improved, so that the transparency and releasability of the obtained transparent resin molding are only improved.
  • the dimples formed on the mold surface can be maintained at an ideal diameter and depth over a long period of time, thereby exhibiting transparency and releasability. It is possible to exert the effect of surface treatment for a longer period.
  • FIG. 3 is a dispersion diagram of the dimple depths of samples 1 to 22 and the base metal hardness of the mold.
  • the surface treatment method of the present invention is directed to a mold for transparent resin molding. If such a mold is used, an injection mold, an extrusion mold, a blow mold, etc. It can be applied to various molds regardless of the type, and if the material of the transparent resin molding material to be molded by these molds is also transparent resin, acrylic, nylon, vinyl chloride, polycarbonate , PET, POM, and other molds for molding various molding materials can be targeted.
  • the surface of the part that comes into contact with the molding material is treated as a treatment surface
  • the mold is composed of a combination of a cavity (concave mold) and a core (convex mold).
  • both the cavity (concave) side surface and the core (convex) side surface can be treated by the method of the present invention.
  • the material of the mold is not particularly limited, and it is possible to target various materials that can be used as the material of the mold.
  • molds of non-ferrous metals such as aluminum alloys can be used. It can also be targeted.
  • the surface of the mold it is preferable to adjust the surface of the mold to a surface roughness of 0.3 ⁇ m or less in advance with arithmetic mean roughness (Ra) before injecting spherical injection particles to be described later.
  • Spray particles “substantially spherical” in the substantially spherical spray particles used in the method of the present invention does not have to be strictly a “sphere”, and is generally used as a “shot” and has no corners.
  • shape of the granular material is, for example, an elliptical shape or a bowl shape, it is included in the “substantially spherical injection granular material” used in the present invention.
  • the materials of the metal spray particles include alloy steel, cast iron, high-speed tool steel (high-speed steel (SKH)), tungsten (W), stainless steel (SUS) and the like, and as the material of the ceramic-based spray particles, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), zircon ( ZrSiO 4 ), hard glass, glass, silicon carbide (SiC) and the like. It is preferable to use the spray particles made of a material having a hardness equal to or higher than that of the base metal of the mold to be processed.
  • the particle size of the spray particles to be used can be a median diameter (D 50 ) in the range of 1 to 20 ⁇ m. From these spray particle sizes, the material of the mold to be processed, etc. Depending on the above, a material capable of forming a dimple with a diameter and a depth described later is selected and used.
  • D 50 median diameter
  • injection device for injecting the above-mentioned injection particles toward the surface of the mold
  • a known blasting device for injecting abrasive together with compressed gas can be used.
  • a suction-type blasting apparatus that injects an abrasive using negative pressure generated by the injection of compressed gas, and an abrasive that has fallen from an abrasive tank is placed on the compressed gas and injected.
  • Gravity-type blasting machine introducing compressed gas into a tank filled with abrasives, merging the abrasive flow from the abrasive tank into a compressed gas flow from a separately supplied compressed gas supply and injecting it
  • Direct pressure type blasting equipment and blower type blasting equipment that jets the direct pressure type compressed gas flow on the gas flow generated by the blower unit are commercially available. It can be used for spraying spray particles.
  • the spraying of the spray particles performed using the blast processing apparatus described above can be performed within a spray pressure range of 0.01 MPa to 0.6 MPa, preferably 0.05 to 0.2 MPa.
  • the dimple formation area (projected area) is 50% or more of the area of the mold surface of the part to be processed.
  • the injection of the injection granule is performed so that the dimple having the equivalent diameter (W) determined by the following formula 1 can be formed in relation to the material of the mold to be processed. This is done by selecting a combination of the particle size, the type of blasting device to be used and the injection pressure. 1 + 3.3e -H / 230 ⁇ W ⁇ 1.5 + 8.9e -H / 630 ... (Formula 1) In Equation 1 above, W is the equivalent diameter of the dimple ( ⁇ m) H is the base metal hardness (Hv) of the mold.
  • the spraying of the spray particles is preferably performed as a combination of conditions capable of forming dimples at a depth (D) obtained by the following equation (2). 0.01 + 0.2e -H / 230 ⁇ D ⁇ 0.05 + 0.4e -H / 320 ... (Formula 2)
  • D is the depth of the dimple ( ⁇ m)
  • H is the base metal hardness (Hv) of the mold.
  • Such an improvement in transparency is that the dimples formed by the method of the present invention are smaller in size and depth than the dimples formed by the conventional surface treatment method in which dimples are formed on the mold surface.
  • the unevenness formed on the surface of the transparent resin molded product by the transfer of the dimple becomes small and shallow, and in the formation of such a small and shallow dimple, it is pushed out by the plastic flow generated at the time of the collision of the spray particles
  • the amount of base material of the mold is small, and no protrusions are formed on the peripheral edge of the dimple, or even if formed, it does not become a raised shape. Since the scratches formed by rubbing are not formed on the surface of the transparent resin molded product, the formation of dimples on the surface of the mold, It was believed that it was possible to impart transparency to the transparent resin molded article.
  • the mold subjected to the surface treatment by the method of the present invention can greatly improve the releasability and the durability in comparison with the polished product.
  • Such improved mold releasability is the same as in the conventional surface treatment method for forming dimples on the mold surface.
  • the mold release agent is held in the dimples or the air is held in the molding material and the mold.
  • the contact area with the surface be reduced to improve the releasability, but also because the dimples that are formed are small and shallow, the surface pressure applied to the dimples increases, and as a result the reaction force increases,
  • the ability to retain the mold release agent and air is improved, the mold release is improved, and the protrusion of the raised shape is not formed. This is considered to be one of the improved factors.
  • a spherical particle having a relatively small median diameter of 1 to 20 ⁇ m is used as a spherical spray particle to be used.
  • the increased surface hardness after treatment also contributes to the significant improvement in releasability and durability. it is conceivable that.
  • Fig. 2 shows the results of the above test performed on a mold made of NAK80 (Hv430).
  • injection particles material: high-speed steel
  • the dynamic hardness of the mold surface is increased. It can be seen that the height is increased.
  • the difference in the effect due to the difference in the particle size of the spray particles used is that when a small particle size is used as the spray particles, the flying speed of the spray particles increases and collides with the mold surface. It is considered that the higher forging effect was obtained even when injected with low-pressure compressed gas by increasing the collision energy at the time of collision and increasing the collision energy per unit area at the collision position. As a result of this increase in hardness, the dimples formed on the mold surface are less likely to be worn and deformed, and the ideal diameter and depth are maintained over a long period of time. The obtained effects such as imparting transparency and improving releasability can be maintained over a long period of time.
  • “Dynamic hardness” means the hardness obtained from the test force and the indentation depth in the process of indenting the triangular pyramid indenter.
  • is the indenter shape factor.
  • Shimadzu Corporation Shimadzu Dynamic Ultra-Hardness Tester DUH-W201
  • 3.88584 using a 115 ° triangular pyramid indenter.
  • Test purpose Dimple formation conditions (diameter and depth) that can impart transparency to a resin molded product and improve mold releasability are obtained.
  • Test method (2-1) Outline The combination of the material and particle size of the injection particles used and the injection method (injection device, injection pressure, etc.) for multiple types of dies with different base material materials. The dimples were formed by changing the diameter, and the diameter and depth of the formed dimples were measured.
  • the mold of transparent resin is molded using each mold after dimple formation, and the transparency of the transparent resin molded product molded with a mold whose surface is smoothed by polishing (hereinafter referred to as “polished product”) is visually observed.
  • polish product a mold whose surface is smoothed by polishing
  • X indicates that the transparency is inferior to the polished product
  • indicates that the transparency is equivalent to that of the polished product.
  • the releasability was compared, and those having a releasability equal to or less than that of the polished product were evaluated as “X”, and those having a releasability exceeding the polished product were evaluated as “ ⁇ ”.
  • a polished product for each mold was prepared for comparison.
  • the surface roughness after polishing is “STAAVAX” (cavity) and NAK80 with Ra 0.1 ⁇ m or less, S50C (core pin), S55C (rubber mold) with Ra 0.2 ⁇ m or less, and A7075 (plastic mold).
  • Ra is 0.2 ⁇ m or less.
  • the surface of the mold can be measured directly, if it cannot be measured directly, drop methyl acetate onto the acetylcellulose film to adjust to the surface of the mold, and after drying, peel off and peel off the acetylcellulose film. Measured based on the dimples reversely transferred to.
  • multi-file analysis application refers to measurement / analysis of surface roughness, line roughness, height and width, equivalent circle diameter and depth, reference plane setting, etc. using data measured with a laser microscope. This is an application that can perform image processing such as height inversion processing.
  • the reference surface For measurement, first set the reference surface using the “image processing” function (however, if the surface shape is a curved surface, use the surface shape correction to correct the curved surface to a flat surface, then set the reference surface). , Set the measurement mode to the concave from the function of "volume / area measurement” of the application, measure the concave against the set “reference plane”, and from the measurement result of the concave, "average depth", "equivalent diameter” The average value of the results was defined as the dimple depth and diameter.
  • the above-mentioned reference plane was calculated from the height data using the least square method.
  • the above-mentioned “circle equivalent diameter” or “equivalent diameter” was measured as the diameter of the circle when the projected area measured as a concave portion (dimple) was converted into a circular projected area.
  • the above-mentioned “reference plane” refers to a plane as a zero point (reference) of measurement in height data, and is mainly used for measurement in the vertical direction such as depth and height.
  • Tables 3 and 4 show the measurement results of the dimple diameter and the dimple depth in each of the above samples and the evaluation results of the releasability, and scatter charts of the dimple diameter and the base metal hardness of the mold in each sample.
  • FIG. 3 shows a scatter diagram of the dimple depth and the base metal hardness of the mold, respectively.
  • the sample that was able to impart transparency to both the dimple diameter and depth could not impart transparency to the lower side of the scatter diagram.
  • the sample was found to be concentrated on the upper side of the scatter diagram, and it was confirmed that transparency could be obtained by reducing the diameter and depth of the dimples formed.
  • the curve indicated as “boundary (upper limit)” in the scatter diagrams of FIGS. 3 and 4 is an approximate curve fitted to the upper limit of the sample group from which transparency was obtained. Approximate representation of how the upper limit of the equivalent diameter and depth of the dimples that can improve transparency changes with changes in the base metal hardness of the mold.
  • the mathematical formula [W 1.5 + 8.9e ⁇ H] representing the curve of “boundary (upper limit)” described in FIG. 3 which is a dispersion diagram of the equivalent dimple diameter (W) and the base metal hardness (H) of the mold. / 630 ], the dimple is formed with a diameter equal to or smaller than the equivalent diameter (W), and more preferably, in a dispersion diagram of the dimple depth (D) and the mold base metal hardness (H).
  • the mathematical expression [D 0.05 + 0.4e ⁇ H / 320 ] representing the “boundary (upper limit)” curve described in FIG.
  • This phenomenon is considered to be because the surface state of the mold after the dimple formation approaches the mirror surface as the dimple to be formed becomes smaller.
  • the curves displayed as “boundary (lower limit)” in the scatter diagrams of FIG. 3 and FIG. 4 are the sample group in which the improvement in the release property was confirmed and the sample group in which the improvement in the release property was not confirmed.
  • This curve shows how the lower limit values of the dimple diameter and depth at which mold release improvement can be obtained vary with changes in the mold base metal hardness. Is approximately expressed.
  • FIG. 3 which is a dispersion diagram of the dimple diameter (W) and the base metal hardness (H) of the mold.
  • FIG. 4 which is a dispersion diagram of the dimple depth (D) and the mold base material hardness (H)
  • the dimple is formed with a diameter larger than the required diameter (W).
  • Such dimples are formed by forming the dimples at a depth equal to or greater than the depth (W) determined by the mathematical expression [D ⁇ 0.01 + 0.2e ⁇ H / 230 ] representing the approximate curve of the lower limit value described.
  • mold release can be improved.
  • the equivalent dimple diameter (W) is expressed as follows: 1 + 3.3e -H / 230 ⁇ W ⁇ 1.5 + 8.9e (-H / 630) (Equation 1) Within the range specified in More preferably, the depth (D) of the dimple is further expressed by the following formula: 0.01 + 0.2e ⁇ H / 230 ⁇ D ⁇ 0.05 + 0.4e ( ⁇ H / 320) (Formula 2) By making it within the range specified in (2), it is possible to improve the releasability, which may be lowered with a mirror-polished mold, and at the same time obtain transparency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

鏡面研磨を行うことなく,透明な樹脂成型品を成型することのできる透明樹脂成型用金型の表面処理方法を提供する。本発明は,透明樹脂の成型に使用する金型の表面に対し略球状でメディアン径が20μm以下の噴射粒体を噴射圧力0.01MPa~0.6MPaで噴射すると共に衝突させて,後掲の(式1)で規定する相当径W及び(式2)で規定する深さDのディンプルを,金型表面の面積に対し50%以上の形成面積となるように形成する。 1+3.3e-H/230 ≦ W ≦ 1.5+8.9e-H/630・・・(式1) 0.01+0.2e-H/230≦ D ≦ 0.05+0.4e-H/320 ・・・(式2) ここで,Wはディンプルの相当径(μm),Dはディンプルの深さ(μm),Hは金型の母材硬度(Hv)。

Description

透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品
  本発明は透明樹脂成型用金型の表面処理方法,及び前記方法で表面処理された透明樹脂成型用金型,並びに前記金型で成型された透明樹脂成型品に関し,より詳細には,透明樹脂成型品の製造用金型の表面処理に適用可能な金型の表面処理方法,前記方法で表面処理された金型,及び前記金型を使用して成型された透明樹脂成型品に関する。
 なお,本発明において処理対象とする金型の表面とは,金型のうち成型材料と接触する部分の表面をいう。
  透明樹脂から成る成型材料を成型して得られる透明樹脂成型品は,光学製品,医療器具,電化製品,日用品,おもちゃ,その他の各種分野において広く使用されている。
 このような透明樹脂の成型では,透明度の高い成型材料を使用して成型を行ったとしても,成型品の表面に微細な凹凸が形成されて平滑性が失われると,成型品の表面で光が乱反射するため透明性を失う。
 そのため,透明樹脂成型品の表面に凹凸が形成されることがないよう,透明樹脂の成型に使用する金型に対しては,手作業による研磨等によってその表面は高い精度で鏡面に仕上げられており,これにより成型品の表面を平滑に仕上げることで,得られた樹脂成型品に対し透明性を付与することができるものとなっている。
  しかし,複雑な形状の金型が増加すると共に,金型の短納期化が求められる今日において,多大な労力と時間が費やされる手作業による金型表面の鏡面研磨は,前記要求に応えるための障害となっていると共に,金型の製作費を高める原因となっている。
  しかも,金型表面を鏡面に研磨すると,離型時に成型品の表面と金型表面間の接触抵抗が大きくなり,離型性が低下する場合もある。
 このようにして離型性が低下すると,形成された成型品を金型から外す際に大きな力を掛けることが必要で,変形や破損が生じる成型品が増加する結果,不良率が上昇する。
 なお,金型の離型性を向上させる方法としては,例えば金型のキャビティに設ける抜け勾配の角度を大きくし,また,金型表面に滑りを良くするための表面処理,例えばフッ素コーティングやDLC(Diamond Like Carbon)被膜の形成を行うことも提案されている。
  また,その他の離型性向上のための処理としては,金型表面を平滑面にするのとは反対に所定形状の凹凸を形成することも提案されており,一例として,良好な剥離性を維持しつつ湯流れ性を向上させることを目的として,鋳造用金型のキャビティ面に対し鋳造用金型の硬度以上の硬度を有する100~1000μmの球状の噴射粒体を噴射して,金型のキャビティ面に半球状のディンプルを形成する「鋳造用金型のキャビティ面の加工方法」も提案されている(特許文献1の請求項1及び請求項2)。
日本国特許第4655169号公報
  離型性を向上させるための前述した方法のうち,抜け勾配の角度を大きくする方法は,透明樹脂成型用の金型に対しても採用可能な構成であるが,この構成では,抜け勾配の角度が大きくなるよう成型品の形状を設計することが必要となり,成型品のデザインが制約を受ける。
 一方,フッ素コーティングやDLC被膜の形成等の表面コーティングによって離型性を向上させる方法では,抜け勾配を大きくする場合のようなデザインの制約という問題は生じないが,摩耗や剥離によってコーティング層が失われると離型性も失われてしまうため,金型の耐用年数が比較的短いという欠点がある。
 これに対し,前掲の特許文献1に記載の方法でディンプルを形成した金型では,ディンプルが形成されることにより成型品の表面と金型表面との接触面積が減少すると共に,ディンプル内に離型剤や空気が溜まることで離型性が向上するものであることから,金型表面にディンプルが存在する間は離型性を発揮し,摩耗や剥離によって効果を失う表面コーティングに比較して,より長期に亘り離型性を発揮し得る。
 しかも,この方法では,ブラスト加工装置を使用して球状の噴射粒体を金型の表面に噴射,衝突させるという比較的簡単な作業によって金型の表面処理を行うことが可能であることから,金型表面を研磨等によって平滑な面に仕上げ,あるいは,その後,更に表面コーティング等を行う場合に比較して低コストかつ短納期での金型制作が可能となる。
 しかしながら,特許文献1の方法で表面にディンプルを形成した金型によって透明樹脂を成型しても,得られた樹脂成型品の表面には金型に形成したディンプルが転写されることにより凹凸が形成されてしまい,透明な樹脂成形品を得ることができない。
 その結果,前述したように球状の噴射粒体の噴射によって金型の表面にディンプルを形成する前述の表面処理方法は,離型性を発揮する金型表面を,比較的簡単な方法によって得ることができる表面処理方法でありながら,透明樹脂成型用の金型に対する表面処理としては適用することができないものとなっていた。
 しかし,このような表面処理が行われた金型によって透明な樹脂成型品を得ることができれば,透明樹脂成型用金型の製造に必須であった鏡面研磨を工程中より外すことができ,透明樹脂成型用金型を短納期かつ低コストで製造することが可能となる。
 そこで,本発明の発明者らは,金型表面にディンプルを形成する前述した表面処理方法によって透明な樹脂成型品を得ることができない理由を再度詳細に検討した結果,金型表面にディンプルを形成する表面処理を行う場合であっても,形成するディンプルの径と深さを所定の範囲に限定して,比較的小さく,且つ,浅いディンプルを形成するようにすれば,透明な樹脂成型品を製造することができるのではないかと考えるに至った。
 すなわち,前述した特許文献1に記載の方法では,100~1000μmという比較的粒径の大きな噴射粒体を噴射することで,形成されるディンプルの径及び深さも大きくなり,その結果,ディンプルの転写によって樹脂成型品の表面に形成される凹凸も大きなものとなる。
 しかも,ディンプルの形成時,噴射粒体の衝突位置の金型表面では,図1に示すように形成されるディンプルの径と深さに応じた量の金型母材が塑性流動によって押し出され,この押し出された金型母材がディンプルの周縁部に盛り上がった形状の突起を形成する。
 そのため,成型時,この突起が成型生地内に食い込んで,成型品の表面に転写されると共に,成型品の引き抜き時にこの突起が成型品の表面に無数の引っ掻き傷を形成することで,成型品の表面には更なる凹凸が形成され,その結果,透明性が失われる。
 従って,金型表面に形成するディンプルの径と深さを小さくすることは,ディンプルの転写によって成型品の表面に形成される凹凸を小さなものとすることができるだけでなく,噴射粒体の衝突時に塑性流動によって押し出される金型母材の量を少なくすることができ,その結果,前述した盛り上がった突起の発生を抑制し,前記突起が転写されることに伴う凹凸の発生や,突起による引っ掻き傷の発生を防止して,得られる成型品の透明性を向上させることができるのではないかと予想した。
 そして,上記予測の下,処理対象とする金型の材質,使用する噴射粒体の材質,粒径,並びに使用するブラスト加工装置の種類及び噴射圧力等の組み合わせを変化させ,異なる径と深さのディンプルが表面に形成された金型を多数製造すると共に,これらの金型を使用して透明樹脂の成型を行った結果,形成されるディンプルを所定径,所定深さ以下の比較的小さく且つ浅いものとする場合,得られた樹脂成型品に,研磨によって平滑に調整された金型と同等の透明性を付与することができることを確認した。
 しかも,前述の実験結果は,このような透明性を付与することができるディンプルの径と深さは,金型の母材硬度の変化に伴って変化するという,予想していなかった関係の存在を示しており,その結果,ディンプルの径と深さを単に小さくしたというだけでは透明性を付与することができず,金型の母材硬度との関係に基づいて適切な径と深さでディンプルを形成しなければならないことが確認されている。
 本発明は,本発明の発明者らによる上記実験の結果得られた知見に基づき為されたものであり,球状の噴射粒体の噴射によって金型の表面にディンプルを形成する表面処理方法において,該表面処理後の金型を使用して成型された樹脂成形品に対し透明性を付与することができる前記ディンプルの形成条件を明らかにすることで,従来,透明樹脂成型用金型に対する必須の処理であった鏡面研磨を不要とし,短納期かつ低コストで透明樹脂成型用金型を提供することができると共に,透明樹脂成形用金型の離型性を向上させることのできる表面処理方法を提供することを目的とする。
 上記目的を達成するための,本発明の透明樹脂成型用金型の表面処理方法は,
 透明樹脂の成型に使用する金型の表面に略球状の噴射粒体を噴射すると共に衝突させて,
 次式,
 1+3.3e-H/230 ≦ W ≦ 1.5+8.9e-H/630・・・(式1)
ここで,
    Wは,ディンプルの相当径(μm)
    Hは,金型の母材硬度(Hv)
で規定する条件を満たす範囲の径(相当径W)を有するディンプルを形成することを特徴とする(請求項1)。
 ここで,「相当径」とは,金型表面に形成されたディンプルの投影面積を,円形の投影面積に換算して測定したときの前記円形の径をいう。
 前記ディンプルは,更に次式,
  0.01+0.2e-H/230≦ D ≦ 0.05+0.4e-H/320・・・(式2)
ここで,
    Dは,ディンプルの深さ(μm)
    Hは,金型の母材硬度(Hv)
で規定する条件を満たす範囲の深さ(D)で形成することが好ましい(請求項2)。
 前述した透明樹脂成型用金型の表面処理方法は,メディアン径が20μm以下の前記噴射粒体を,噴射圧力0.01MPa~0.6MPaで噴射して,前記ディンプルの形成面積が金型表面の面積に対し50%以上となるよう前記ディンプルを形成することにより行うことができる(請求項3)。
 なお,「メディアン径」とは,粒子群をある粒子径から2つに分けたとき,大きい側の粒子群の積算粒子量と,小さい側の粒子群の積算粒子量が等量となる径をいう。
 好ましくは,前記噴射粒体の噴射を,Ra0.3μm以下の表面粗さに調整された金型の表面に対して行う(請求項4)。
 なお,本発明の透明樹脂成型用金型は,前述したいずれかの方法で表面処理が行われた透明樹脂成型用金型を対象とする(請求項5)。
 また,本発明の透明樹脂成型品は,前述したいずれかの方法で表面処理が行われた透明樹脂成型用金型によって成型された透明樹脂成型品を対象とする(請求項6)。
 以上で説明した本発明の構成により,本発明の表面処理方法で表面処理が行われた透明樹脂成型用金型では,以下の顕著な効果を得ることができた。
 透明樹脂の成型に使用する金型の表面に対し略球状の噴射粒体を噴射すると共に衝突させて,所定径のディンプルを形成し,又は,所定径,且つ,所定深さのディンプルを形成する,という比較的簡単な構成により,このような表面処理が行われた金型を使用して得られた樹脂成型品に透明性を付与することができた。
 すなわち,このように径及び深さ共に比較的小さいディンプルを形成することで,成型時に透明樹脂成型品の表面にディンプルの転写によって形成される凹凸が小さくなるだけでなく,比較的小さなディンプルの形成は,塑性流動によって噴射粒体の衝突位置より押し出される金型母材の量を少なくする結果,ディンプルの周縁部に盛り上がった突起が形成されることを防止でき,これにより,金型表面にディンプルを形成する構成でありながら,製造される樹脂成型品に透明性を付与することができるものとなったものと考えられる。
 このように,噴射粒体を噴射するという比較的簡単な処理によって透明樹脂成型用の金型の表面仕上げを行うことが可能となったことで,透明樹脂の成型用金型に対する処理として従来必須であった鏡面研磨が不要となり,その結果,透明樹脂成型用金型の製造に要する時間と製造コストの大幅な低減を図ることができた。
 しかも,前述のディンプルが形成された金型は,鏡面研磨された金型に比較して優れた離型性を発揮することから,離型時に成型品に大きな力を掛ける必要がなく成型品の変形や破損が防止され,不良率を低減することもできた。
 前記ディンプルの形成は,メディアン径が20μm以下の噴射粒体を噴射圧力0.01MPa~0.6MPaで噴射して,前記ディンプルの形成面積が金型表面の面積に対し50%以上となるよう前記ディンプルを形成することにより行うことで,金型の表面に対する前述した突起の形成が好適に抑制できると共に,ディンプル形成後の金型の表面硬度を比較的大径の噴射粒体を使用してディンプルを形成する場合に比較して上昇させることができた(図2参照)。
 その結果,前記突起が生じた場合に起こり得る応力集中が生じないこと,及び,金型の表面硬度が向上することで,得られた透明樹脂成型品の透明性や離型性が向上するだけでなく,金型の耐久性や耐摩耗性も向上する結果,金型の表面に形成されたディンプルを長期に亘り理想的な径及び深さに維持できることで,透明性や離型性を発揮する表面処理の効果を,より長期に亘って発揮させることが可能である。
 更に,前述した表面処理を,Ra0.3μm以下の表面粗さに調整された金型の表面に対し行うことで,金型に対しより好ましい表面状態を付与することができた。
ディンプルの形成に伴い金型表面に生じる突起の説明図。 ダイナミック硬さと噴射圧力の相関図。 試料1~22のディンプル相当径と金型の母材硬度の分散図。 試料1~22のディンプルの深さと金型の母材硬度の分散図。
 次に,本発明の実施形態につき添付図面を参照しながら以下説明する。
〔処理対象〕
 本発明の表面処理方法は,透明樹脂成型用の金型を対象とし,このような金型であれば,射出成型用金型,押出成型用金型,ブロー成型用金型等,その成型方式の別を問わず各種の金型に対し適用可能であり,また,これらの金型によって成型対象とする透明樹脂成型材の材質についても透明な樹脂であれば,アクリル,ナイロン,塩化ビニル,ポリカーボネイト,PET,POM等,各種の成型材の成型を行う金型を対象とすることができる。
 このような金型のうち,本発明の表面処理方法では,成型材料と接触する部分の表面を処理対象とする処理面とし,金型がキャビティ(凹型)とコア(凸型)の組み合わせによって構成されている場合,キャビティ(凹型)側の表面,コア(凸型)側の表面のいずれとも本発明の方法による処理対象とすることができる。
 金型の材質は特に限定されず,金型の材質として使用され得る各種の材質のものを対象とすることが可能であり,鉄系金属の他,アルミニウム合金等の非鉄系金属の金型を対象とすることもできる。
 なお,金型の表面は,後述する球状の噴射粒体の噴射を行う前に予め算術平均粗さ(Ra)で0.3μm以下の表面粗さに調整しておくことが好ましい。
〔ディンプルの形成〕
 前述した金型の表面に対するディンプルの形成は,金型の表面に略球状の噴射粒体を噴射して衝突させることにより行う。
 このようなディンプルの形成に使用する噴射粒体,噴射装置,噴射条件を一例として以下に示す。
(1)噴射粒体
 本発明の方法で使用する略球状の噴射粒体における「略球状」とは,厳密に「球」である必要はなく,一般に「ショット」として使用される,角のない形状の粒体であれば,例えば楕円形や俵型等の形状のものであっても本発明で使用する「略球状の噴射粒体」に含まれる。
 噴射粒体の材質としては,金属系,セラミックス系のいずれのものも使用可能であり,一例として,金属系の噴射粒体の材質としては,合金鋼、鋳鉄、高速度工具鋼(ハイス鋼(SKH)),タングステン(W)、ステンレス鋼(SUS)等を挙げることができ,また,セラミックス系の噴射粒体の材質としては,アルミナ(Al),ジルコニア(ZrO),ジルコン(ZrSiO),硬質ガラス、ガラス、炭化ケイ素(SiC)等を挙げることができる。これらの噴射粒体は,処理対象とする金型の母材に対し同等以上の硬度を有する材質の噴射粒体を使用することが好ましい。
 使用する噴射粒体の粒径は,メディアン径(D50)で1~20μmの範囲のものが使用可能で,これらの粒径の噴射粒体の中から,処理対象とする金型の材質等に応じて後述する径及び深さでディンプルを形成し得るものを選択して使用する。
(2)噴射装置
 前述した噴射粒体を金型の表面に向けて噴射する噴射装置としては,圧縮気体と共に研磨材の噴射を行う既知のブラスト加工装置を使用することができる。
 このようなブラスト加工装置としては,圧縮気体の噴射により生じた負圧を利用して研磨材を噴射するサクション式のブラスト加工装置,研磨材タンクから落下した研磨材を圧縮気体に乗せて噴射する重力式のブラスト加工装置,研磨材が投入されたタンク内に圧縮気体を導入し,別途与えられた圧縮気体供給源からの圧縮気体流に研磨材タンクからの研磨材流を合流させて噴射する直圧式のブラスト加工装置,及び,上記直圧式の圧縮気体流を,ブロワーユニットで発生させた気体流に乗せて噴射するブロワー式ブラスト加工装置等が市販されているが,これらはいずれも前述した噴射粒体の噴射に使用可能である。
(3)処理条件
 前述したブラスト加工装置を使用して行う噴射粒体の噴射は,一例として噴射圧力0.01MPa~0.6MPa,好ましくは0.05~0.2MPaの範囲で行うことができ,処理を行う部分の金型表面の面積に対し,ディンプルの形成面積(投影面積)が50%以上となるように行う。
 噴射粒体の噴射は,処理対象とする金型の材質等との関係で,後掲の式1によって求められる相当径(W)のディンプルを形成することができるよう,噴射粒体の材質や粒径と,使用するブラスト加工装置の種類や噴射圧力等の組み合わせを選択して行う。
 1+3.3e-H/230 ≦ W ≦ 1.5+8.9e-H/630・・・(式1)
 なお,上記の式1において,
    Wは,ディンプルの相当径(μm)
    Hは,金型の母材硬度(Hv)  である。
 噴射粒体の噴射は,好ましくは更に後掲の式2によって求められる深さ(D)でディンプルを形成可能な条件の組み合わせとして行う。
  0.01+0.2e-H/230≦ D ≦ 0.05+0.4e-H/320 ・・・(式2)
 なお,上記の式2において,
    Dは,ディンプルの深さ(μm)
    Hは,金型の母材硬度(Hv)  である。
(4)作用等
 以上で説明した本発明の表面処理方法で表面処理が行われた金型では,得られた透明樹脂成型品に透明性を付与することができることが確認されており,後述する実施例において,一例として研磨によって平坦に仕上げた金型(研磨品)と同等程度の透明性を付与することができることが確認されている。
 このような透明性の向上は,本発明の方法で形成するディンプルは相当径及び深さ共に,金型表面にディンプルを形成する従来の表面処理方法で形成されるディンプルに比較して小型のものとなることで,ディンプルの転写によって透明樹脂成型品の表面に形成される凹凸が小さく浅いものになると共に,このような小さく浅いディンプルの形成では,噴射粒体の衝突時に生じる塑性流動によって押し出される金型の母材量も少なく,ディンプルの周縁部に突起が形成されず,又は形成されたとしても盛り上がった形状とはならないことで,このような突起の転写によって形成される凹凸や,突起の擦過によって形成される擦り傷が透明樹脂成型品の表面に形成されなくなることにより,金型の表面に対するディンプルの形成によっても,得られた透明樹脂成型品に透明性を付与することができたものと考えられる。
 また,本発明の方法で表面処理を行った金型では,研磨品との比較において大幅な離型性の向上と耐久性の向上が得られることも確認されている。
 このような離型性の向上は,金型表面にディンプルを形成する従来の表面処理方法と同様,ディンプル内に離型剤が保持され,または,空気が保持されることで成型材料と金型表面との接触面積が減少して離型性の向上が得られるだけでなく,形成されるディンプルが小さく浅いことで,ディンプルにかかる面圧が大きくなる結果,反力も大きくなることで,ディンプル内に離型剤や空気を保持する能力が向上して,離型性が向上すること,及び盛り上がった形状の突起が形成されないことで,離型時における引き抜き抵抗が減少したことも離型性が向上した要因の一つであると考えられる。
 しかも,前述したように比較的小さなディンプルを形成するために,使用する球状の噴射粒体としてメディアン径で1~20μmという比較的小さな粒径のものを使用することで,これよりも大きな粒径の噴射粒体を使用する従来の表面処理方法に比較して,処理後の表面硬度が上昇していることも大幅な離型性と耐久性の向上が得られた一因となっているものと考えられる。
 ここで,処理対象とする金属製品の表面にショットを噴射して衝突させるショットピーニングを行うと,ワークの表面組織が微細化して硬度が上昇することは公知であり,この原理による金型の表面硬度の上昇は,本発明の表面処理方法のみならず,同様に球状の噴射粒体を金型表面に噴射する処理を行っている従来の金型の表面処理方法においても得られているものと考えられる。
 しかし,金型の表面に粒径の異なる噴射粒体を噴射する処理を行った後の被加工物の表面硬度を測定する試験を行ったところ,比較的低い噴射圧力の範囲では,粒径の小さな噴射粒体を使用した方がより高い硬度上昇が得られることが確認されている。
 図2は,NAK80製の金型(Hv430)に対する上記試験を行った結果を示したもので,噴射圧力0.5MPa以下の範囲では,メディアン径40μmの噴射粒体(材質:ハイス鋼)を噴射した場合(図2中の破線参照)に比較して,メディアン径20μmの噴射粒体(材質:合金鋼)を噴射した場合(図2中の実線参照)の方が,金型表面のダイナミック硬さがより高められていることが判る。
 このように,使用する噴射粒体の粒径の相違に伴う効果の相違は,噴射粒体として粒径の小さなものを使用すると,噴射粒体の飛翔速度が上昇し,金型表面に衝突した際の衝突エネルギーが上昇すると共に,衝突位置における単位面積あたりの衝突エネルギーの上昇をもたらすことで,低圧の圧縮気体で噴射した場合であっても,より高い鍛造効果が得られたものと考えられ,このような硬度上昇が得られることで,金型表面に形成されたディンプルの摩耗や変形が生じ難く,理想的な径及び深さを長期に亘り維持する結果,本発明の表面処理方法によって得られた透明性の付与や離型性の向上等の効果を長期に亘り維持できるものとなっている。
 なお,「ダイナミック硬さ」とは,三角錐の圧子を押し込んでいく過程の試験力と押し込み深さから得られる硬さのことで,試験力P[mN],圧子の押し込み深さD[μm]に対するダイナミック硬さは,次式
 DH=α×P÷(D
によって求めることができる。
 ここで,αは圧子形状係数で,上記の測定では,「島津ダイナミック超微小硬度計DUH-W201」(島津製作所製)を使用し,115°三角錐圧子を使用してα=3.8584として測定した。
 以下に,樹脂成型品に透明性を付与すると共に,金型の離型性を向上させるために必要なディンプルの形成条件(径と深さ)を導き出すために行った試験の内容について説明する。
(1)試験目的
 樹脂成型品に透明性を付与すると共に,金型の離型性を向上させることのできるディンプルの形成条件(径と深さ)を求める。
(2)試験方法
 (2-1) 概要
 母材の材質が異なる複数種類の金型に対し,使用する噴射粒体の材質及び粒径と,噴射方法(噴射装置,噴射圧力等)の組み合わせを変化させてディンプルを形成し,形成されたディンプルの径と深さを測定した。
 ディンプル形成後の金型をそれぞれ使用して透明樹脂の成型を行い,研磨により表面を平滑に仕上げた金型(以下,「研磨品」という。)で成型した透明樹脂成型品の透明度を目視により比較し,研磨品に対し透明性が劣るものを「×」,研磨品と同等の透明性を示したものを「○」と,それぞれ評価した。
 また,離型性の比較を行い,研磨品と同等以下の離型性のものを「×」,研磨品を超える離型性を示したものを「○」と,それぞれ評価した。
 上記の試験結果から,得られた樹脂成型品に透明性を付与することができるディンプルの径と深さの範囲を求めた。
 (2-2) 金型の種類と処理条件
 処理対象とした金型の材質と,各金型に対して行った表面処理の処理条件を下記の表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較対象として各金型の研磨品を用意した。なお,研磨後の表面粗さは,「STAVAX」(キャビティ)及びNAK80でRa0.1μm以下,S50C(コアピン),S55C(ゴム用金型)においてRa0.2μm以下,A7075(プラスチック用金型)においてRa0.2μm以下である。
(2-3) ディンプルの径と深さの測定方法
 ディンプルの径と深さは,形状解析レーザー顕微鏡(キーエンス社製「VK-X250」)を使用して測定した。
 金型の表面を直接測定可能な場合には直接,直接測定できない場合には,アセチルセルロースフィルムに酢酸メチルを滴下して金型の表面に馴染ませた後,乾燥後剥離して,アセチルセルロースフィルムに反転転写させたディンプルに基づいて測定した。
 測定は,形状解析レーザー顕微鏡で撮影した表面画像のデータ(但し,アセチルセルロースフィルムを使用した測定では撮影した画像を反転処理した画像データ)を「マルチファイル解析アプリケーション(キーエンス社製 VK-H1XM)」を使用して解析することにより行った。
 ここで,「マルチファイル解析アプリケーション」とは,レーザー顕微鏡で測定したデータを用いて、表面粗さ、線粗さ、高さや幅、円相当径や深さなどの計測・解析や基準面設定、高さ反転処理などの画像処理を行うことのできるアプリケーションである。
 測定は,先ず「画像処理」機能を使用して基準面設定を行い(但し,表面形状が曲面の場合には面形状補正を用いて曲面を平面に補正した後に基準面設定を行う),次いで,アプリケーションの「体積・面積計測」の機能から計測モードを凹部に設定して,設定された「基準面」に対する凹部を計測させ,凹部の計測結果から「平均深さ」,「円相当径」の結果の平均値をディンプルの深さ,及び径とした。
 なお,前述の基準面は,高さデータから最小二乗法を用いて算出した。
 また,前述の「円相当径」又は「相当径」は,凹部(ディンプル)として測定された投影面積を,円形の投影面積に換算して測定したときの前記円形の径として測定した。
 なお,前述の「基準面」とは,高さデータの中で、計測のゼロ点(基準)とする平面を指し,深さや高さなど主に垂直方向の計測に使用される。
(3)測定結果
 上記各試料におけるディンプル径とディンプル深さの測定結果,及び離型性の評価結果を表3及び表4に,各試料におけるディンプル径と金型の母材硬度の散布図を図3に,ディンプル深さと金型の母材硬度の散布図を図4にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(4)考察
 図3及び図4に示す散布図において,プロットに添えた数字はそれぞれ試料番号を示し,プロット中,「◎」は,透明性と離型性向上の双方共得られたもの,「○」は,透明性は得られたが離型性の向上は得られなかったもの,「□」は,離型性は向上したが透明性が得られなかったもの,「●」は,透明性,離型性の向上のいずれ共に得られなかったものをそれぞれ示す。
 図3及び図4に示した散布図より明らかなように,ディンプルの径及び深さのいずれ共に,透明性を付与することができた試料は散布図の下側に,透明性を付与できなかった試料は散布図の上側に集中していることが判り,形成するディンプルの径及び深さを小さくすることにより,透明性が得られることが確認された。
 ここで,図3及び図4の散布図中に「境界(上限)」と表示した曲線は,透明性が得られた試料群の上限に当てはめた近似曲線であることから,この曲線は,金型の母材硬度の変化に対し,透明性の向上が得られるディンプルの相当径及び深さの上限値がどのように変化するかを近似的に表している。
 従って,ディンプル相当径(W)と金型の母材硬度(H)の分散図である図3中に記載した,「境界(上限)」の曲線を表す数式〔W=1.5+8.9e-H/630〕によって求められる相当径(W)以下の径でディンプルを形成することにより,より好適には,更に,ディンプルの深さ(D)と金型の母材硬度(H)の分散図である図4中に記載した,「境界(上限)」の曲線を表す数式〔D=0.05+0.4e-H/320〕によって求められる深さ(W)以下の深さでディンプルを形成することにより,このようなディンプルが形成された金型を使用することで,得られた樹脂成型品に透明性を付与することが可能である。
 一方,鏡面に研磨された金型によっても透明樹脂成型品を製造することができることから,透明性という観点のみに着目すると,透明性を付与するためのディンプルの径と深さに下限値は存在しない。
 しかし,ディンプルの形成が,離型性の向上に貢献するものであることは前述した通りであるところ,試料21,試料13,試料17のように,形成するディンプルの径及び深さが小さなものでは,樹脂成型品に対する透明性の付与は行い得るものの,離型性の向上が確認できなくなった。
 このような現象は,形成するディンプルが小さくなるに従い,ディンプル形成後の金型の表面状態は,鏡面に近付くためであると考えられる。
 ここで,図3及び図4の散布図中に「境界(下限)」として表示した曲線は,離型性の向上が確認された試料群と,離型性の向上が確認できなかった試料群との境界に引いた曲線であるから,この曲線は,金型の母材硬度の変化に対し,離型性の向上が得られるディンプルの径及び深さの下限値がどのように変化するかを近似的に表している。
 従って,ディンプル径(W)と金型の母材硬度(H)の分散図である図3中に記載した,下限値の近似曲線を表す数式〔W ≧ 1+3.3e-H/230〕によって求められる径(W)以上の径でディンプルを形成することで,より好適には,更に,ディンプルの深さ(D)と金型の母材硬度(H)の分散図である図4中に記載した,下限値の近似曲線を表す数式〔D≧ 0.01+0.2e-H/230〕によって求められる深さ(W)以上の深さでディンプルを形成することにより,このようなディンプルが形成された金型では,離型性の向上を得ることが可能となる。
 従って,ディンプル相当径(W)を,次式
 1+3.3e-H/230 ≦ W ≦ 1.5+8.9e(-H/630)・・・(式1)
で規定される範囲内のものとし,
 より好ましくは,更に,ディンプルの深さ(D)を,次式
  0.01+0.2e-H/230 ≦ D ≦ 0.05+0.4e(-H/320) ・・・(式2)
で規定される範囲内のものとすることで,鏡面研磨された金型では低下することがある離型性を向上させながら,更に,透明性と同時に得ることが可能となる。

 

Claims (6)

  1.  透明樹脂の成型に使用する金型の表面に略球状の噴射粒体を噴射すると共に衝突させて,次式,
     1+3.3e-H/230 ≦ W ≦ 1.5+8.9e-H/630・・・(式1)
    ここで,
        Wは,ディンプルの相当径(μm)
        Hは,金型の母材硬度(Hv)
    で規定する条件を満たす範囲の相当径を有するディンプルを形成したことを特徴とする透明樹脂成型用金型の表面処理方法。
  2.  前記ディンプルを,更に次式,
      0.01+0.2e-H/230 ≦ D ≦ 0.05+0.4e-H/320   ・・・(式2)
    ここで,
        Dは,ディンプルの深さ(μm)
        Hは,金型の母材硬度(Hv)
    で規定する条件を満たす範囲の深さに形成したことを特徴とする,請求項1記載の透明樹脂成型用金型の表面処理方法。
  3.  メディアン径が20μm以下の前記噴射粒体を,噴射圧力0.01MPa~0.6MPaで噴射して,前記ディンプルの形成面積が金型表面の面積に対し50%以上となるよう前記ディンプルを形成することを特徴とする請求項1又は2記載の透明樹脂成型用金型の表面処理方法。
  4.  前記噴射粒体の噴射を,Ra0.3μm以下の表面粗さに調整された金型の表面に対して行うことを特徴とする請求項1~3いずれか1項記載の透明樹脂成型用金型の表面処理方法。
  5.  請求項1~4いずれか1項記載の透明樹脂成型用金型の表面処理方法によって表面処理が行われた透明樹脂成型用金型。
  6.  請求項1~4いずれか1項記載の透明樹脂成型用金型の表面処理方法によって表面処理が行われた金型によって成型された透明樹脂成型品。
PCT/JP2015/072794 2015-08-11 2015-08-11 透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品 WO2017026057A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/750,676 US20180222089A1 (en) 2015-08-11 2015-08-11 Surface treatment method for transparent resin forming mold, transparent resin forming mold, and transparent resin formed article
JP2017534077A JP6556846B2 (ja) 2015-08-11 2015-08-11 透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品の製造方法
CN201580081733.5A CN107848154B (zh) 2015-08-11 2015-08-11 透明树脂成型用模具及其表面处理方法和透明树脂成型品的制造方法
PCT/JP2015/072794 WO2017026057A1 (ja) 2015-08-11 2015-08-11 透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品
KR1020187001158A KR102034154B1 (ko) 2015-08-11 2015-08-11 투명수지 성형용 금형의 표면처리 방법 및 투명수지 성형용 금형, 그리고 투명수지 성형품의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072794 WO2017026057A1 (ja) 2015-08-11 2015-08-11 透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品

Publications (1)

Publication Number Publication Date
WO2017026057A1 true WO2017026057A1 (ja) 2017-02-16

Family

ID=57984192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072794 WO2017026057A1 (ja) 2015-08-11 2015-08-11 透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品

Country Status (5)

Country Link
US (1) US20180222089A1 (ja)
JP (1) JP6556846B2 (ja)
KR (1) KR102034154B1 (ja)
CN (1) CN107848154B (ja)
WO (1) WO2017026057A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199843A (ja) * 2017-05-25 2018-12-20 株式会社不二製作所 鉄鋼成品の表面処理方法
JP6487586B1 (ja) * 2018-04-25 2019-03-20 株式会社Ihiインフラ建設 透明ボルトナットキャップ
JP2020142322A (ja) * 2019-03-06 2020-09-10 株式会社不二製作所 Dlc被覆部材の表面処理方法
CN112203820A (zh) * 2018-06-07 2021-01-08 株式会社不二机贩 金属模具成型面的表面材料及金属模具成型面的表面处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570581B2 (ja) * 2017-07-13 2019-09-04 株式会社不二製作所 セラミックスの表面処理方法及びセラミックス成品
JP6840637B2 (ja) * 2017-07-28 2021-03-10 株式会社不二製作所 硬脆性材料表面に対する微小ディンプルの形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246638A (ja) * 1994-03-08 1995-09-26 Nishikawa Rubber Co Ltd 金型表面処理方法
JP2000037732A (ja) * 1998-07-23 2000-02-08 Nok Corp 成形型の表面処理方法及びゴム成形型
JP2005014567A (ja) * 2003-06-30 2005-01-20 Mino Kanagata:Kk 樹脂成形金型と該樹脂成形金型の製造方法
JP2008238610A (ja) * 2007-03-28 2008-10-09 Nippon Zeon Co Ltd 金型部品および光拡散板
JP2011062975A (ja) * 2009-09-18 2011-03-31 Japan Aviation Electronics Industry Ltd 成形用金型及びその金型表面の加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100569754B1 (ko) * 2003-03-25 2006-04-11 주식회사 엘지화학 자외선 경화형 하드 코팅제 조성물
JP2007187952A (ja) * 2006-01-16 2007-07-26 Sumitomo Chemical Co Ltd 防眩フィルム、その製造方法、そのための金型の製造方法、及び表示装置
WO2010104032A1 (ja) 2009-03-11 2010-09-16 新東工業株式会社 鋳造用金型のキャビティ面の加工方法
JP5606824B2 (ja) * 2010-08-18 2014-10-15 株式会社不二製作所 金型の表面処理方法及び前記方法で表面処理された金型

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246638A (ja) * 1994-03-08 1995-09-26 Nishikawa Rubber Co Ltd 金型表面処理方法
JP2000037732A (ja) * 1998-07-23 2000-02-08 Nok Corp 成形型の表面処理方法及びゴム成形型
JP2005014567A (ja) * 2003-06-30 2005-01-20 Mino Kanagata:Kk 樹脂成形金型と該樹脂成形金型の製造方法
JP2008238610A (ja) * 2007-03-28 2008-10-09 Nippon Zeon Co Ltd 金型部品および光拡散板
JP2011062975A (ja) * 2009-09-18 2011-03-31 Japan Aviation Electronics Industry Ltd 成形用金型及びその金型表面の加工方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199843A (ja) * 2017-05-25 2018-12-20 株式会社不二製作所 鉄鋼成品の表面処理方法
JP6487586B1 (ja) * 2018-04-25 2019-03-20 株式会社Ihiインフラ建設 透明ボルトナットキャップ
JP2019190568A (ja) * 2018-04-25 2019-10-31 株式会社Ihiインフラ建設 透明ボルトナットキャップ
CN112203820A (zh) * 2018-06-07 2021-01-08 株式会社不二机贩 金属模具成型面的表面材料及金属模具成型面的表面处理方法
US11745393B2 (en) 2018-06-07 2023-09-05 Fuji Kihan Co., Ltd. Method of using mold subjected to surface treatment of molding surface of said mold
JP2020142322A (ja) * 2019-03-06 2020-09-10 株式会社不二製作所 Dlc被覆部材の表面処理方法
KR20200107737A (ko) * 2019-03-06 2020-09-16 후지 세이사쿠쇼 가부시키가이샤 Dlc코팅부재의 표면처리방법
KR102308453B1 (ko) 2019-03-06 2021-10-06 후지 세이사쿠쇼 가부시키가이샤 Dlc코팅부재의 표면처리방법

Also Published As

Publication number Publication date
JP6556846B2 (ja) 2019-08-07
US20180222089A1 (en) 2018-08-09
CN107848154B (zh) 2019-10-18
CN107848154A (zh) 2018-03-27
JPWO2017026057A1 (ja) 2018-06-07
KR20180019164A (ko) 2018-02-23
KR102034154B1 (ko) 2019-11-29

Similar Documents

Publication Publication Date Title
JP6556846B2 (ja) 透明樹脂成型用金型の表面処理方法及び透明樹脂成型用金型,並びに透明樹脂成型品の製造方法
US9156131B2 (en) Method of treating surface of mold
US9364894B2 (en) Method of treating the surface of a cavity of a die used for casting
JP7303535B2 (ja) 粉体接触部材および粉体接触部材の表面処理方法
WO2017030945A3 (en) Molds and methods to control mold surface quality
JP6556845B2 (ja) 金型の表面処理方法及び前記方法で処理された金型
JP6307109B2 (ja) 金属成品の表面処理方法及び金属成品
TWI681086B (zh) 金屬製品表面構件及其拋光加工方法
JP2019025584A (ja) 硬脆性材料表面に対する微小ディンプルの形成方法
JP6773342B2 (ja) Dlc被覆部材の表面処理方法
JP2022034600A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187001158

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017534077

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15750676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901011

Country of ref document: EP

Kind code of ref document: A1