WO2017022706A1 - オレフィン系積層フィルムおよびフィルムコンデンサ - Google Patents
オレフィン系積層フィルムおよびフィルムコンデンサ Download PDFInfo
- Publication number
- WO2017022706A1 WO2017022706A1 PCT/JP2016/072486 JP2016072486W WO2017022706A1 WO 2017022706 A1 WO2017022706 A1 WO 2017022706A1 JP 2016072486 W JP2016072486 W JP 2016072486W WO 2017022706 A1 WO2017022706 A1 WO 2017022706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- olefin
- laminated film
- capacitor
- resin
- Prior art date
Links
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 239000003990 capacitor Substances 0.000 title claims abstract description 95
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 81
- -1 polypropylene Polymers 0.000 claims abstract description 90
- 229920005989 resin Polymers 0.000 claims abstract description 72
- 239000011347 resin Substances 0.000 claims abstract description 72
- 239000004743 Polypropylene Substances 0.000 claims abstract description 56
- 229920001155 polypropylene Polymers 0.000 claims abstract description 56
- 230000015556 catabolic process Effects 0.000 claims abstract description 23
- 239000000470 constituent Substances 0.000 claims abstract description 11
- 238000002844 melting Methods 0.000 claims description 24
- 230000008018 melting Effects 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 229920005673 polypropylene based resin Polymers 0.000 claims description 7
- 238000003475 lamination Methods 0.000 claims description 5
- 229920005672 polyolefin resin Polymers 0.000 abstract description 10
- 125000004122 cyclic group Chemical group 0.000 abstract description 9
- 239000010408 film Substances 0.000 description 208
- 239000010410 layer Substances 0.000 description 88
- 238000000034 method Methods 0.000 description 49
- 238000010438 heat treatment Methods 0.000 description 19
- 239000002245 particle Substances 0.000 description 18
- 239000000178 monomer Substances 0.000 description 17
- 238000007740 vapor deposition Methods 0.000 description 17
- 230000009477 glass transition Effects 0.000 description 16
- 239000002344 surface layer Substances 0.000 description 16
- 238000005259 measurement Methods 0.000 description 15
- 238000005266 casting Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 10
- 239000003963 antioxidant agent Substances 0.000 description 9
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 8
- WLTSXAIICPDFKI-UHFFFAOYSA-N 3-dodecene Chemical compound CCCCCCCCC=CCC WLTSXAIICPDFKI-UHFFFAOYSA-N 0.000 description 7
- 230000003078 antioxidant effect Effects 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000012644 addition polymerization Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- WLTSXAIICPDFKI-FNORWQNLSA-N (E)-3-dodecene Chemical compound CCCCCCCC\C=C\CC WLTSXAIICPDFKI-FNORWQNLSA-N 0.000 description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 4
- 239000010954 inorganic particle Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 239000011146 organic particle Substances 0.000 description 4
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 2
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cis-cyclohexene Natural products C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- GVRWIAHBVAYKIZ-UHFFFAOYSA-N dec-3-ene Chemical compound CCCCCCC=CCC GVRWIAHBVAYKIZ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- OTTZHAVKAVGASB-UHFFFAOYSA-N hept-2-ene Chemical compound CCCCC=CC OTTZHAVKAVGASB-UHFFFAOYSA-N 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- JFNLZVQOOSMTJK-UHFFFAOYSA-N norbornene Chemical compound C1C2CCC1C=C2 JFNLZVQOOSMTJK-UHFFFAOYSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- LCSLWNXVIDKVGD-KQQUZDAGSA-N (3e,7e)-deca-3,7-diene Chemical compound CC\C=C\CC\C=C\CC LCSLWNXVIDKVGD-KQQUZDAGSA-N 0.000 description 1
- IFPMZBBHBZQTOV-UHFFFAOYSA-N 1,3,5-trinitro-2-(2,4,6-trinitrophenyl)-4-[2,4,6-trinitro-3-(2,4,6-trinitrophenyl)phenyl]benzene Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C(C=2C(=C(C=3C(=CC(=CC=3[N+]([O-])=O)[N+]([O-])=O)[N+]([O-])=O)C(=CC=2[N+]([O-])=O)[N+]([O-])=O)[N+]([O-])=O)=C1[N+]([O-])=O IFPMZBBHBZQTOV-UHFFFAOYSA-N 0.000 description 1
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- OLGHJTHQWQKJQQ-UHFFFAOYSA-N 3-ethylhex-1-ene Chemical compound CCCC(CC)C=C OLGHJTHQWQKJQQ-UHFFFAOYSA-N 0.000 description 1
- YPVPQMCSLFDIKA-UHFFFAOYSA-N 3-ethylpent-1-ene Chemical compound CCC(CC)C=C YPVPQMCSLFDIKA-UHFFFAOYSA-N 0.000 description 1
- SUJVAMIXNUAJEY-UHFFFAOYSA-N 4,4-dimethylhex-1-ene Chemical compound CCC(C)(C)CC=C SUJVAMIXNUAJEY-UHFFFAOYSA-N 0.000 description 1
- KLCNJIQZXOQYTE-UHFFFAOYSA-N 4,4-dimethylpent-1-ene Chemical compound CC(C)(C)CC=C KLCNJIQZXOQYTE-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- OPMUAJRVOWSBTP-UHFFFAOYSA-N 4-ethyl-1-hexene Chemical compound CCC(CC)CC=C OPMUAJRVOWSBTP-UHFFFAOYSA-N 0.000 description 1
- SUWJESCICIOQHO-UHFFFAOYSA-N 4-methylhex-1-ene Chemical compound CCC(C)CC=C SUWJESCICIOQHO-UHFFFAOYSA-N 0.000 description 1
- YRIYXMAKROEVBQ-UHFFFAOYSA-N 5,5-dimethylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)(C)CC1C=C2 YRIYXMAKROEVBQ-UHFFFAOYSA-N 0.000 description 1
- JGLIHSMBVDZMSA-UHFFFAOYSA-N 5-(cyclohexen-1-yl)bicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1=CCCCC1 JGLIHSMBVDZMSA-UHFFFAOYSA-N 0.000 description 1
- YSWATWCBYRBYBO-UHFFFAOYSA-N 5-butylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCC)CC1C=C2 YSWATWCBYRBYBO-UHFFFAOYSA-N 0.000 description 1
- LVXDMUDXBUNBQY-UHFFFAOYSA-N 5-cyclohexylbicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1CCCCC1 LVXDMUDXBUNBQY-UHFFFAOYSA-N 0.000 description 1
- DGBJYYFKBCUCNY-UHFFFAOYSA-N 5-cyclopentylbicyclo[2.2.1]hept-2-ene Chemical compound C1CCCC1C1C(C=C2)CC2C1 DGBJYYFKBCUCNY-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- QHJIJNGGGLNBNJ-UHFFFAOYSA-N 5-ethylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CC)CC1C=C2 QHJIJNGGGLNBNJ-UHFFFAOYSA-N 0.000 description 1
- OJOWICOBYCXEKR-UHFFFAOYSA-N 5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=CC)CC1C=C2 OJOWICOBYCXEKR-UHFFFAOYSA-N 0.000 description 1
- WMWDGZLDLRCDRG-UHFFFAOYSA-N 5-hexylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCCCC)CC1C=C2 WMWDGZLDLRCDRG-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- MDLZXSCRAIESJZ-UHFFFAOYSA-N 5-octadecylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCCCCCCCCCCCCCCCC)CC1C=C2 MDLZXSCRAIESJZ-UHFFFAOYSA-N 0.000 description 1
- GOLQZWYZZWIBCA-UHFFFAOYSA-N 5-octylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCCCCCC)CC1C=C2 GOLQZWYZZWIBCA-UHFFFAOYSA-N 0.000 description 1
- JRLTTZUODKEYDH-UHFFFAOYSA-N 8-methylquinoline Chemical group C1=CN=C2C(C)=CC=CC2=C1 JRLTTZUODKEYDH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical compound C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- MNBIQZQDQOPSKO-UHFFFAOYSA-N pentadeca-1,3,5,10-tetraene Chemical compound CCCCC=CCCCC=CC=CC=C MNBIQZQDQOPSKO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 1
- OUZWXMBUAMCJMH-UHFFFAOYSA-N tetradeca-1,3,5,10-tetraene Chemical compound CCCC=CCCCC=CC=CC=C OUZWXMBUAMCJMH-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- SDTYFWAQLSIEBH-UHFFFAOYSA-N undec-3-ene Chemical compound CCCCCCCC=CCC SDTYFWAQLSIEBH-UHFFFAOYSA-N 0.000 description 1
- LMISWUPDWKMCIH-UHFFFAOYSA-N undeca-3,7-diene Chemical compound CCCC=CCCC=CCC LMISWUPDWKMCIH-UHFFFAOYSA-N 0.000 description 1
- AZGPUOZQDCSPRB-UHFFFAOYSA-N undeca-3,8-diene Chemical compound CCC=CCCCC=CCC AZGPUOZQDCSPRB-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/085—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/325—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/204—Di-electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
- B32B2307/736—Shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/08—Dimensions, e.g. volume
- B32B2309/10—Dimensions, e.g. volume linear, e.g. length, distance, width
- B32B2309/105—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/16—Capacitors
Definitions
- the present invention relates to an olefin-based laminated film suitable for packaging, industrial use, and the like. More specifically, the present invention has suitability for capacitor element creation in high voltage capacitor applications, and has high voltage resistance and reliability at high temperatures.
- the present invention relates to an olefin-based laminated film having excellent properties, having a breaking elongation suitable for such capacitor use and the like, dimensional stability in a high temperature region, and insulating performance, and a method for producing the same.
- Non-Patent Document 1 a capacitor using a polypropylene film is said to have an upper limit of use temperature of about 110 ° C., and it is extremely difficult to stably maintain a withstand voltage in such a high temperature environment. It has become.
- a film having a glass transition temperature exceeding the capacitor use environment temperature range using a film with a thin film and a high relative dielectric constant,
- a film with a thin film and a high relative dielectric constant For example, it is a laminated structure in which two kinds of films having different relative dielectric constants are alternately laminated, and one film uses a cycloolefin polymer whose glass transition temperature exceeds 130 ° C., and the other uses a polypropylene film.
- a proposal has been made of a laminate that can maintain a large capacitance while having heat resistance and voltage resistance for example, Patent Document 1).
- the film of Patent Document 1 is not a co-extrusion lamination, but a laminate in which a cycloolefin polymer layer is formed on a base polypropylene film by a coating method.
- the use of a polypropylene resin with low properties results in insufficient voltage resistance, and unstretched mechanical properties, in particular, insufficient elongation at break and easy breakage when processing capacitor elements. Reliability was not enough.
- a highly rigid film obtained by coextrusion and stretching of a cycloolefin polymer and polypropylene has been proposed (for example, Patent Document 2).
- the film of Patent Document 2 is not subjected to heat treatment after stretching, cannot obtain dimensional stability in a high-temperature environment, and lacks withstand voltage. It was hard to say.
- the inventors of the present invention have arrived at the present invention as a result of intensive studies in order to solve the above problems.
- the present invention has processing suitability for capacitor element creation, particularly in high voltage capacitor applications, has excellent withstand voltage and reliability at high temperatures, and is suitable for such capacitor applications.
- Provided is an olefin-based laminated film having stability and insulating performance.
- olefin-based laminated film in which a constituent layer containing a polypropylene-based resin is laminated on at least one surface of a base layer portion containing a cyclic olefin-based resin, and a dielectric breakdown voltage at 135 ° C. is 280 V / ⁇ m or more. is there.
- the olefin-based laminated film of the present invention is an olefin-based laminated film in which a base layer portion includes a cyclic olefin-based resin and a constituent layer including a polypropylene-based resin is provided on at least one side thereof.
- the inventors have intensively studied that the laminated film has high heat resistance and dimensional stability in a high temperature environment, and the base layer portion of the cyclic olefin-based resin bears a component layer including at least one side of the polypropylene-based resin.
- the present inventors have found that it is possible to express the workability at the time of creation and the high withstand voltage performance required for the capacitor.
- Examples of the method for laminating the olefin-based laminated film of the present invention include a co-extrusion feed block method, a multi-manifold method, and a coating method. From the viewpoint of production efficiency and cost, coextrusion (for example, melt coextrusion) is used. A lamination method is preferred. Further, the lamination is preferably a construction in which two or more layers are laminated in the film thickness direction. Specifically, it is a construction of two or more layers in which at least one surface layer is an A layer, for example, a two-layer constitution of A layer / B layer.
- the film is a three-layer structure of A layer / B layer / A layer and a structure of four layers or more with the A layer as the outermost layer on both surfaces of the film.
- the ratio of the thickness of the A layer located in the surface layer with respect to the total thickness of the film is preferably 10% to 90%, more preferably 20% to 70%, from the viewpoint of controlling the film formability and the surface shape. If the proportion of the A layer is too large, the voltage resistance in a high temperature environment may be lowered. On the other hand, if the proportion of the A layer is too small, the film may be easily broken during film formation.
- the A layer is defined as a constituent layer containing a polypropylene resin, and the content of the polypropylene resin is preferably 95% by mass or more, more preferably 96% by mass or more, and still more preferably 97% by mass or more.
- the B layer is defined as a constituent layer containing a cyclic olefin resin, and the content ratio of the cyclic olefin resin is preferably 95% by mass or more, more preferably 96% by mass or more, and further preferably 97% by mass or more. .
- the olefin-based laminated film of the present invention has a film dielectric breakdown voltage at 135 ° C. (hereinafter sometimes simply referred to as dielectric breakdown voltage) of 280 V / ⁇ m or more.
- dielectric breakdown voltage a film dielectric breakdown voltage at 135 ° C.
- it is more preferably 310 V / ⁇ m or more, further preferably 330 V / ⁇ m or more.
- the upper limit is not particularly limited, but is 700 V / ⁇ m.
- the cyclic olefin-based resin used for the olefin-based laminated film of the present invention will be described.
- the cyclic olefin resin is a resin having an alicyclic structure in the main chain of a polymer obtained by polymerization from a cyclic olefin as a monomer, and is derived from the cyclic olefin monomer in 100% by mass of the polymer of the cyclic olefin resin.
- the polymer of the aspect whose total amount of a component (structural unit) exceeds 50 mass% and is 100 mass% or less is meant.
- Cyclic olefin monomers include monocyclic olefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, cyclopentadiene, 1,3-cyclohexadiene, bicyclo [2,2,1] hept-2-ene, 5-methyl-bicyclo [ 2,2,1] hept-2-ene, 5,5-dimethyl-bicyclo [2,2,1] hept-2-ene, 5-ethyl-bicyclo [2,2,1] hept-2-ene, 5-butyl-bicyclo [2,2,1] hept-2-ene, 5-ethylidene-bicyclo [2,2,1] hept-2-ene, 5-hexyl-bicyclo [2,2,1] hept- 2-ene, 5-octyl-bicyclo [2,2,1] hept-2-ene, 5-octadecyl-bicyclo [
- bicyclo [2,2,1] hept-2-ene (hereinafter referred to as norbornene), tricyclo [4,3,0,12. 5)
- Tricyclic olefins having 10 carbon atoms such as deca-3-ene (hereinafter referred to as tricyclodecene), tetracyclo [4,4,0,12.5,17.10] dodec-3-ene, etc.
- a tetracyclic olefin having 12 carbon atoms hereinafter referred to as tetracyclododecene
- cyclopentadiene or 1,3-cyclohexadiene is preferably used.
- the cyclic olefin-based resin polymerized only the cyclic olefin monomer when the total of the components derived from the cyclic olefin monomer exceeds 50% by mass and 100% by mass or less in 100% by mass of the polymer of the cyclic olefin-based resin.
- Any resin such as a resin (hereinafter sometimes referred to as COP) or a resin obtained by copolymerizing the cyclic olefin monomer and the chain olefin monomer (hereinafter also referred to as COC) may be used.
- Examples of the method for producing COP include known methods such as addition polymerization of cyclic olefin monomers or ring-opening polymerization. For example, after ring-opening metathesis polymerization of norbornene, tricyclodecene, tetracyclodecene, and derivatives thereof. Examples thereof include a method of hydrogenation, a method of addition polymerization of norbornene and its derivatives, a method of hydrogenation after 1,2- and 1,4-addition polymerization of cyclopentadiene and cyclohexadiene.
- a resin obtained by hydrogenating norbornene, tricyclodecene, tetracyclodecene, and derivatives thereof after ring-opening metathesis polymerization is most preferable.
- preferred chain olefin monomers include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1 -Pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3 -Ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like.
- ethylene can be particularly preferably used from the viewpoint of productivity and cost.
- the method for producing a resin obtained by copolymerizing a cyclic olefin monomer and a chain olefin monomer include known methods such as addition polymerization of a cyclic olefin monomer and a chain olefin monomer.
- norbornene and its derivatives examples include a method of addition polymerization of ethylene.
- a copolymer of norbornene and ethylene is most preferable.
- the glass transition temperature of the cyclic olefin-based resin used in the olefin-based laminated film of the present invention is preferably 125 ° C. or higher, more preferably 130, from the viewpoint of having dimensional stability and insulation performance in a high temperature region suitable for capacitor applications and the like. More than 135 degreeC, More preferably, it is 135 degreeC or more. When the glass transition temperature is lower than 125 ° C., the thermal dimensional stability and the breakdown voltage at high temperatures may be reduced. Although an upper limit is not specifically limited, it will be 200 degreeC from a viewpoint of film forming property.
- the olefin-based laminated film of the present invention is capable of biaxial stretching of the cyclic olefin-based resin in the inner layer portion, by laminating a constituent layer containing a polypropylene-based resin on both surfaces of the base layer portion including the cyclic olefin-based resin, It is more preferable from the viewpoint of forming a surface (roughened surface) for imparting processability at the time of producing a capacitor element.
- the olefin-based laminated film of the present invention preferentially forms ⁇ -crystal spherulites by setting the temperature of solidification on the cooling drum after melt extrusion in the film production process to less than 60 ° C., preferably less than 40 ° C.
- the surface can be given surface irregularities by particles without relying on the crystal transformation from ⁇ crystal to ⁇ crystal in the stretching process, and it is excellent in processability for capacitor element creation even in a thin film, and exhibits high voltage resistance even in a high temperature environment. be able to.
- the olefin-based laminated film of the present invention may have a structure containing particles in the surface layer, and the ⁇ -crystal spherulite is formed by increasing the temperature of solidification on the cooling drum after melt extrusion in the film production process to 60 ° C. or higher.
- a method of forming irregularities on the film surface by transforming ⁇ crystals into ⁇ crystals in the stretching step can be preferably used.
- the olefin-based laminated film of the present invention has a surface that utilizes a domain structure formed by the resins by blending a surface layer with a polypropylene resin and a polypropylene-incompatible thermoplastic resin. Unevenness may be imparted to the surface layer.
- a polymethylpentene resin or the like can be preferably used as a thermoplastic resin incompatible with polypropylene.
- the polypropylene preferable as the polypropylene resin contained in the constituent layer located in the surface layer portion of the olefin-based laminated film of the present invention is usually used for packaging materials and capacitors, but preferably is a cold xylene soluble portion ( Hereinafter, CXS) is preferably 4% by mass or less. If these conditions are not satisfied, the film-forming stability may be inferior, or when a biaxially stretched film is produced, voids may be formed in the film, which may increase the breakdown voltage.
- CXS cold xylene soluble portion
- the cold xylene-soluble part refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, and has low stereoregularity. It is considered that it corresponds to a component that is difficult to crystallize due to low molecular weight. When such a component is contained in a large amount of resin, problems such as a decrease in the voltage resistance of the film may occur. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. In order to obtain such polypropylene having CXS, methods such as a method for increasing the catalytic activity in obtaining a resin and a method for washing the obtained resin with a solvent or propylene monomer itself can be used.
- the polypropylene preferably has a melt flow rate (MFR) in the range of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N load). Is preferable from the viewpoint of film forming property.
- MFR melt flow rate
- a method of controlling the average molecular weight or the molecular weight distribution is employed.
- Polypropylene is mainly composed of a homopolymer of propylene, but may contain other unsaturated hydrocarbon copolymerization components or the like, as long as the object of the present invention is not impaired. May be blended.
- the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 10 mass% in terms
- additives such as a crystal nucleating agent, an antioxidant, a heat stabilizer, a slipping agent, an antistatic agent, an antiblocking agent, a filler, and a viscosity modifier are added to polypropylene as long as the object of the present invention is not impaired. Further, a coloring inhibitor, a resin other than polypropylene, and the like can also be contained.
- the selection of the type and amount of antioxidant is important from the viewpoint of long-term heat resistance. That is, the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
- BHT 2,6-di-t-butyl-p-cresol
- 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene
- Irganox® 1330 manufactured by BASF molecular weight 775.2
- tetrakis [methylene-3 (3,5-di-t -Butyl-4-hydroxyphenyl) propionate] methane for example, Irganox (registered trademark) 1010: molecular weight 1,177.7 manufactured by BASF
- Irganox registered trademark
- the total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene. If the amount of the antioxidant is too small, the long-term heat resistance may be poor. If the amount of the antioxidant is too large, the capacitor element may be adversely affected by blocking at a high temperature due to bleeding out of these antioxidants.
- a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
- the mesopentad fraction of the polypropylene-based resin contained in the constituent layer located in the surface layer portion is 0.95 or more and the melting point exceeds 160 ° C.
- the mesopentad fraction is more preferably 0.97 or more, and further preferably 0.98 or more.
- the mesopentad fraction is an index indicating the stereoregularity of the crystalline phase of polypropylene measured by nuclear magnetic resonance (NMR) method. The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. This is preferable because the dielectric breakdown voltage can be improved.
- the upper limit of the mesopentad fraction is not particularly specified.
- a method of appropriately selecting an electron donating component in a so-called Ziegler-Natta catalyst is preferably employed.
- the mesopentad fraction of the polypropylene resin is less than 0.95, the regularity of the polypropylene is low, leading to a decrease in strength and dielectric breakdown voltage of the film in a high temperature environment, a process of forming a metal film by vapor deposition, and winding of a capacitor element In the processing, film breakage may occur during film conveyance.
- the melting point of the polypropylene resin is more preferably 163 ° C. or higher, and further preferably 165 ° C. or higher.
- the melting point is 160 ° C. or lower, since the crystallinity is low, the dielectric breakdown voltage in the high temperature environment of the film is lowered, or the film is broken during film transport in the process of forming a metal film by vapor deposition or winding the capacitor element. There is a case.
- inorganic particles and organic particles are preferably used.
- inorganic particles include metal oxides such as silica, alumina, titania, zirconia, barium sulfate, calcium carbonate, aluminum silicate, calcium phosphate, mica, kaolin, and clay.
- metal oxides such as silica, alumina, titania, zirconia, and calcium carbonate are preferable.
- Organic particles include polymethoxysilane-based compound crosslinked particles, polystyrene-based compound crosslinked particles, acrylic-based compound crosslinked particles, polyurethane-based compound crosslinked particles, polyester-based compound crosslinked particles, fluorine-based compound-crosslinked particles, or Mention may be made of these mixtures.
- the average particle size of the inorganic particles and organic particles is preferably in the range of 0.03 to 10 ⁇ m.
- the average particle diameter is more preferably 0.05 to 6 ⁇ m, still more preferably 0.07 to 4 ⁇ m, and most preferably 0.1 to 2 ⁇ m.
- the average particle size is less than 0.03 ⁇ m, the surface roughness becomes small, and the handling property may be insufficient and the reliability of the capacitor may be lowered.
- it exceeds 10 ⁇ m the film tends to be broken or falls off from the thin film, which easily causes an insulation defect.
- a weight average diameter obtained by image processing is calculated from a transmission electron micrograph of the particles, and the weight average diameter is calculated and adopted.
- the content of the particles is preferably 0.01 to 1 part by mass when the entire constituent layer including the polypropylene resin is 100 parts by mass. If the content is less than 0.01 parts by mass, the handling property may be insufficient and the reliability of the capacitor may be reduced. When it exceeds 1 part by mass, the film is easily broken or falls off from the thin film, which easily causes an insulation defect.
- the olefin-based laminated film of the present invention preferably has a breaking elongation of 20% or more in the longitudinal direction and the width direction of the film. More preferably, both are 30% or more, and further preferably both are 40% or more. When the elongation at break is less than 20% in the longitudinal direction and the width direction of the film, the film may be broken without being able to withstand the stress during transportation in the vapor deposition process and the element processing process when forming the capacitor. .
- the upper limit of the elongation at break is not particularly limited, but both are 200%.
- At least one surface layer is composed of two or more layers, the biaxial stretching described below is performed, and the temperature of the heat treatment and relaxation treatment after stretching is set. This can be achieved by controlling the temperature at 140 ° C. or higher and the melting point of the polypropylene resin at ⁇ 5 ° C. or lower.
- the olefin-based laminated film of the present invention preferably has a thermal shrinkage rate at 135 ° C. of 2% or less in the longitudinal direction and the width direction of the film. More preferably, both are 1.2% or less, and further preferably both are 0.8% or less.
- the lower limit is not particularly limited. However, since the winding state of the element may be loosened due to heat in the capacitor manufacturing process or use process, both are set to -2%. When the thermal shrinkage rate exceeds 2%, the film itself shrinks due to heat in the capacitor manufacturing process and use process, and the withstand voltage decreases due to poor contact with the element end metallicon, or the element is wound. May cause capacity reduction or short circuit breakdown.
- the temperature of the above-described structure of two or more layers having at least one surface layer as the A layer, a heat treatment after biaxial stretching described later and a relaxation treatment step is 140 ° C. or more, This can be achieved by controlling the melting point of the polypropylene resin at a temperature of ⁇ 5 ° C. or lower.
- the center line average roughness SRa on both surfaces is all from the viewpoint of obtaining uniformity between film interlayer gaps, ease of sliding between films or transport rolls, and reliability as a capacitor. It is preferable that the 10-point average roughness SRz of both surfaces is 200 nm or more, more preferably the center line average roughness SRa of both surfaces is 40 nm or more, and the 10-point average roughness of both surfaces is preferably 20 nm or more.
- the thickness SRz is 350 nm or more, more preferably the center line average roughness SRa of both surfaces is 60 nm or more, and the 10-point average roughness SRz of both surfaces is 500 nm or more.
- the center line average roughness SRa is less than 20 nm and the 10-point average roughness SRz is less than 200 nm, the slip of the film is extremely lowered, the handling property is inferior, wrinkles are easily generated, and the capacitor is used continuously. Capacitance changes due to wrinkles, etc., or when a capacitor with laminated films is used, there is no appropriate gap between film layers, so the self-healing function (self-healing) is difficult to operate and the reliability of the capacitor may decrease. is there.
- the upper limit is not particularly limited, the center line average roughness SRa is 500 nm on both surfaces, and the 10-point average roughness SRz is 1,500 nm on both surfaces.
- the center line average roughness SRa of the olefin-based laminated film of the present invention within a preferable range, for example, the structure of two or more layers having at least one surface layer as described above as the A layer, the particle type and the addition amount, This can be achieved by controlling the conditions such as the cooling temperature at the time of cooling and solidifying the molten sheet within a preferable range.
- the glossiness of both surfaces of the laminated film is preferably 110% or more and less than 145%, more preferably both surfaces are 115% or more and less than 140%, more preferably both. All of the surfaces are 120% or more and less than 135%.
- Making the glossiness less than 110%, that is, reducing the glossiness means increasing the density of light scattering on the film surface, and the surface becomes rough, so there is a decrease in dielectric breakdown voltage and variations. It may be likely to occur.
- it exceeds 145% it means that the film surface is smooth, the slipperiness of the film itself is extremely lowered, the handling property is inferior, wrinkles are likely to occur, and it is used continuously as a capacitor.
- the self-healing function (self-healing) is difficult to operate and the reliability of the capacitor decreases.
- a preferable range for example, the structure of two or more layers having at least one surface layer as the A layer, the particle type and the addition amount, and further cooling of the molten sheet This can be achieved by controlling the conditions such as the cooling temperature during solidification within a preferable range.
- the volume resistivity at 135 ° C. of the olefin-based laminated film of the present invention is preferably 1 ⁇ 10 14 ⁇ ⁇ cm or more, more preferably 3 ⁇ 10 14 ⁇ ⁇ cm or more, and further preferably 5 ⁇ 10 14. ⁇ ⁇ cm or more.
- the upper limit is not particularly limited, but it is 1 ⁇ 10 17 ⁇ ⁇ cm.
- a preferable range of conditions such as a structure of two or more layers in which at least one surface layer is the A layer, and a cooling temperature at the time of solidification by cooling and melting the molten sheet It is possible to achieve this by controlling the temperature in the heat treatment and relaxation treatment step after biaxial stretching, which will be described later, at a temperature of 140 ° C. or higher and the melting point of the polypropylene resin of ⁇ 5 ° C. or lower.
- the olefin-based laminated film of the present invention is excellent in transparency, slipperiness and high temperature characteristics, it is suitably used for general industrial applications and packaging applications. It is of course useful for general capacitors of 30 ⁇ m or less, but is particularly suitable for thin film heat-resistant film capacitors required for automobile applications (including hybrid car applications) used in high temperature environments.
- the film thickness is preferably in the range of 0.5 ⁇ m to less than 15 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m, and still more preferably 0.8 ⁇ m to 5.0 ⁇ m.
- At least one surface layer as described above is an A layer, and the structure of two or more layers, preferably three or more layers of A / B / A is co-extruded. It can be achieved by laminating and performing biaxial stretching described later.
- the olefin-based laminated film of the present invention is preferably used as a dielectric film for capacitors, but is not limited to the type of capacitor.
- a foil wound capacitor or a metal vapor deposition film capacitor may be used, and it is also preferably used for an oil immersion type capacitor impregnated with insulating oil or a dry type capacitor not using insulating oil at all. It is done.
- it may be a winding type or a laminated type.
- it is particularly preferably used as a metal vapor deposition film capacitor because of the characteristics of the film of the present invention.
- the olefin-based laminated film since the olefin-based laminated film usually has low surface energy and it is difficult to stably perform metal vapor deposition, it is preferable to perform surface treatment before vapor deposition for the purpose of improving metal adhesion.
- Specific examples of the surface treatment include corona discharge treatment, plasma treatment, glow treatment, and flame treatment.
- the wetting tension on the surface of the polypropylene resin film is about 30 mN / m.
- the wetting tension should be about 37 to 50 mN / m, preferably about 39 to 48 mN / m. It is preferable because of excellent adhesiveness and good safety.
- the olefin-based laminated film of the present invention is obtained by biaxially stretching using a raw material that can give the above-described characteristics.
- the biaxial stretching method it can be obtained by any of the inflation simultaneous biaxial stretching method, the tenter simultaneous biaxial stretching method, and the tenter sequential biaxial stretching method, among them, film formation stability, thickness uniformity, It is preferable to employ a tenter sequential biaxial stretching method in terms of controlling the surface unevenness forming property.
- a laminated film of cyclic olefin resin and polypropylene resin is melt-extruded onto a support to form an olefin resin laminated sheet, which is subjected to heat treatment and relaxation treatment after longitudinally and transversely stretching sequentially biaxially stretching.
- heat treatment and relaxation treatment after longitudinally and transversely stretching sequentially biaxially stretching.
- a polypropylene resin raw material A having a mesopentad fraction of 0.95 or more and a melting point exceeding 160 ° C. is supplied to a single-screw extruder for layer A, and a cyclic olefin-based resin raw material B is single-screw extruded for layer B.
- the resin is laminated in a three-layer structure of A layer / B layer / A layer by a feed block method by melt coextrusion at 200 to 260 ° C., or laminated in a two-layer structure of A layer / B layer.
- Two or more layers of laminated resin such as a resin are extruded from a slit die and solidified on a cooling drum (casting drum) controlled at a temperature of 20 to 100 ° C. to obtain an unstretched sheet.
- a cooling drum controlled at a temperature of 20 to 100 ° C.
- an adhesion method to the casting drum any of an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, or the like may be used.
- the surface of the B layer side is smoothed by extruding from the slit-shaped base so that the B layer of the melt-laminated polymer is in contact with the casting drum surface. Can do.
- the adhesive strength at the resin interface between the A layer and the B layer is insufficient, and the film peels off in the film deposition process and capacitor processing process.
- the withstand voltage performance at high temperatures may decrease.
- the withstand voltage performance in high temperature may fall under the influence of an adhesive agent.
- this unstretched sheet is biaxially stretched.
- the unstretched sheet is preheated through a roll maintained at 60 to 160 ° C., then the sheet is maintained at a temperature of 60 to 160 ° C., stretched 1.5 to 10 times in the longitudinal direction, and then cooled to room temperature. And a longitudinally uniaxially stretched film is obtained.
- a more preferable stretching ratio in the longitudinal direction is 2 to 9 times, preferably 2.5 to 8 times.
- the stretching method and the stretching ratio are not particularly limited and are appropriately selected depending on the polymer characteristics to be used.
- the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is held with a clip, and the transverse stretching is performed at a temperature of 140 to 175 ° C. in the width direction 5.1 to 15 times, more preferably 6 to 12 times.
- the draw ratio in the width direction is less than 5.1 times, the mechanical strength in the width direction of the olefin-based laminated film is lowered, or thickness unevenness is deteriorated, so that the voltage resistance may be lowered.
- the draw ratio in the width direction exceeds 15 times, film breakage tends to occur and productivity may be reduced.
- the polypropylene resin of the A layer and the cyclic olefin-based resin of the B layer are peeled off or the elongation at break cannot be sufficiently obtained.
- the material cannot break the stress during transportation and breaks.
- heat treatment is performed at a temperature of 130 ° C. or more and a melting point of the polypropylene resin or less while giving a relaxation of 2 to 20% in the width direction with the clip held in tension.
- the heat treatment temperature in the heat treatment step is preferably 140 ° C. or higher and the melting point of polypropylene resin is ⁇ 5 ° C. or lower, more preferably 145 ° C. or higher and the melting point of polypropylene resin ⁇ 10 ° C. or lower.
- the thermal dimensional stability cannot be obtained, and the capacity may be reduced or a short circuit breakdown may occur in a high temperature use environment when a capacitor is used.
- the heat treatment temperature exceeds the melting point of the polypropylene resin, film breakage may occur during film formation.
- the relaxation rate in the relaxation treatment step is preferably 5 to 18%, more preferably 8 to 15%. If it exceeds 18%, the film may be too slack inside the tenter and wrinkles may occur in the product, causing unevenness during vapor deposition. On the other hand, if the relaxation rate is less than 5%, thermal dimensional stability cannot be obtained, and a capacitor is obtained. In some high temperature usage environments, capacity reduction and short circuit damage may occur.
- the clip After passing through the heat treatment and relaxation treatment steps described above, the clip is guided to the outside of the tenter through a cooling step at 50 to 140 ° C. with the clip held in tension in the width direction, the clip at the end of the film is released, and the film is wound in the winder step.
- the edge part is slit and the film product roll is wound up.
- a corona discharge treatment in air, nitrogen, carbon dioxide or a mixed gas thereof.
- a metal film laminated film by providing a metal film on the surface of the olefin-based laminated film, but the method is not particularly limited.
- a method in which aluminum is deposited on at least one surface of the olefin-based laminated film to provide a metal film such as an aluminum deposited film that serves as an internal electrode of the film capacitor is preferably used.
- other metal components such as nickel, copper, gold, silver, chromium, and zinc can be deposited simultaneously or sequentially with aluminum.
- a protective layer can be provided on the deposited film with oil or the like.
- the metal film laminated film can be annealed at a specific temperature or heat-treated.
- a coating of polyphenylene oxide or the like can be applied to at least one surface of the metal film laminated film.
- the metal film laminated film thus obtained can be laminated or wound by various methods to obtain a film capacitor.
- An example of a preferred method for producing a wound film capacitor is as follows.
- Aluminum is vapor-deposited on one side of the olefin-based laminated film under reduced pressure. In that case, it vapor-deposits in the stripe form which has the margin part which runs in a film longitudinal direction.
- a tape-shaped take-up reel having a margin on one side is prepared by inserting a blade into the center of each vapor deposition section on the surface and the center of each margin section. Two tape-shaped take-up reels with margins on the left or right are wound on each other so that the vapor deposition part protrudes from the margin part in the width direction. Get.
- the vapor deposition is performed in a stripe shape having a margin portion that runs in the longitudinal direction of one surface, and the other surface is striped so that the longitudinal margin portion is located at the center of the vapor deposition portion on the back side.
- Vapor deposition Next, a tape-like take-up reel having a margin on one side (for example, a margin on the right side of the front surface and a margin on the left side of the back surface) is prepared on both sides of the front and back margins with a blade. Two each of the obtained reel and undeposited laminated film are overlapped and wound so that the metallized film protrudes from the laminated film in the width direction, and a wound body is obtained.
- the core material can be removed from the wound body produced as described above and pressed, and the metallicon is sprayed on both end faces to form external electrodes, and lead wires are welded to the metallicon to obtain a wound film capacitor.
- film capacitors such as those for railway vehicles, automobiles (hybrid cars, electric vehicles), solar power generation / wind power generation, and general household appliances.
- the film capacitor of the present invention is also suitable for these applications. Can be used. In addition, it can be used in various applications such as packaging films, release films, process films, sanitary products, agricultural products, building products, and medical products.
- the characteristic value measuring method and the effect evaluating method in the present invention are as follows.
- Peak splitting is performed using WINIT software (manufactured by Bruker). At that time, peak splitting is performed as follows from the peak on the high magnetic field side, soft automatic fitting is performed, peak splitting is optimized, and mmmm and ss (mmmm spinning sideband peak) The sum of the peak fractions is defined as the mesopentad fraction (mmmm). (1) mrrm (2) (3) rrrm (divided as two peaks) (4) rrrr (5) mrmm + rmrr (6) mmrr (7) mmr (8) ss (mmmm spinning sideband peak) (9) mmmm (10) rmmr.
- Glass transition temperature (extrapolated glass transition start temperature + extrapolated glass transition end temperature) / 2
- the extrapolated glass transition start temperature is the intersection of the straight line obtained by extending the base line on the low temperature side to the high temperature side and the tangent line drawn at the point where the slope of the step-like change part of the glass transition is maximized. Let it be temperature.
- the extrapolated glass transition end temperature is the temperature at the intersection of a straight line obtained by extending the base line on the high temperature side to the low temperature side and the tangent line drawn at the point where the slope of the step change part of the glass transition is maximized. To do.
- Measuring device ULTRA HIGH RESISTANCE METER R8340A (made by ADC), TEST FIXTURE TR43C (manufactured by ADVANTEST) Film sample piece dimensions: 40 mm x 40 mm Electrode shape: Main electrode; ⁇ 10mm Annular electrode; inner diameter ⁇ 13mm outer diameter ⁇ 26mm Counter electrode; ⁇ 28mm Electrode material: Both main and counter electrodes are conductive paste ring electrodes; metal electrodes (gold-plated products) Applied voltage: 100 V / 1 minute value Pretreatment: Temperature and humidity in an atmosphere of 22 ⁇ 1 ° C. and 60 ⁇ 5% RH for 90 hours Test temperature: Room temperature 135 ° C.
- Capability of capacitor element processing and capacitor characteristics in 125 ° C. atmosphere The film obtained in each of Examples and Comparative Examples described later (on the contact surface of the casting drum) is made of aluminum with a film resistance of 8 ⁇ using a ULVAC vacuum vapor deposition machine.
- the capacitor element was wound up with an element winding machine (KAW-4NHB) manufactured by Minato Seisakusho, and after metallization, heat treatment was performed at 135 ° C. for 10 hours under reduced pressure, and the lead wires were connected. The mounting capacitor element was finished.
- KAW-4NHB element winding machine
- a voltage of 200 VDC was applied to the capacitor element at a high temperature of 125 ° C., and after 10 minutes, the voltage was gradually applied at a step-up rate of 50 VDC / 1 minute in steps of 50 VDC.
- a so-called step-up test was repeated in which the voltage increase was repeated. In each step, the holding time was 10 minutes.
- a capacitor element was prepared in the same manner as described above, and the shape of the element was confirmed visually. Judgment was made based on the following criteria.
- A Level at which there is no displacement or deformation of the film of the capacitor element and there is no hindrance to the subsequent process
- B Level at which there is a slight displacement or deformation of the film of the capacitor element but no problem at the subsequent process
- D Film of the capacitor element Levels A and B, which are largely displaced and deformed and interfere with subsequent processes, can be used. In D, practical use is difficult.
- a and B can be used.
- C and D are inferior in practical performance.
- A can be used without problems, and B can be used depending on conditions. C and D are inferior in practical performance.
- Example 1 Basepolymer's polypropylene resin (high melt tension polypropylene Profax PF) has a Mesopentad fraction of 0.98, a melting point of 167 ° C. and a melt flow rate (MFR) of 2.6 g / 10 min. -814) was blended at 1.0% by mass and fed to a single-screw melt extruder A for layer A having a temperature of 260 ° C.
- the cyclic olefin-based resin is 99.7 parts by mass of “TOPAS” (registered trademark) 6013F-04 (a resin obtained by copolymerizing ethylene and norbornene, having a glass transition temperature of 138 ° C.) made of Polyplastics as COC.
- TOPAS registered trademark
- 6013F-04 a resin obtained by copolymerizing ethylene and norbornene, having a glass transition temperature of 138 ° C.
- IRGANOX 1010 manufactured by Ciba Specialty Chemicals, which is an antioxidant, was mixed in an amount of 0.3 parts by mass and supplied to a uniaxial melt extruder B for layer B having a temperature of 260 ° C. Melt extrusion is performed with an extruder for layer A and layer B, foreign matter is removed with a 80 ⁇ m cut sintered filter, and a layer thickness ratio is 1/1/1 in a three-layer stack of A / B / A using a feed block. (The total ratio of both surface layers A to the total thickness of the film is 66.7%) The amount of extrusion is adjusted, the molten laminated polymer is discharged from a T-die, and the molten sheet is kept at 70 ° C.
- the drum On the drum, it was brought into close contact by electrostatic application and solidified by cooling to obtain an unstretched sheet. Subsequently, the sheet was gradually preheated to 145 ° C. by a plurality of roll groups, and subsequently passed through rolls having a peripheral speed difference maintained at a temperature of 145 ° C., and stretched 2.8 times in the longitudinal direction. Subsequently, the film was guided to a tenter, stretched 9.8 times in the width direction at a temperature of 165 ° C., then heat-treated at 155 ° C. while giving 10% relaxation in the width direction as a heat treatment and relaxation treatment, and further with a clip. The film is guided to the outside of the tenter through a cooling process at 100 ° C.
- Example 5 Conditions shown in Table 1 for changing the casting drum temperature and lamination ratio (Example 2), changing the casting drum temperature, changing the total thickness of the laminated film (Examples 3 and 4), and changing the casting drum temperature (Example 5)
- An olefin-based laminated film was obtained in the same manner as in Example 1 except that.
- Table 1 shows the characteristics and capacitor characteristics of the olefin-based laminated film of each example.
- the film of Example 2 was excellent in processability of the capacitor element and inferior in withstand voltage and reliability, but at a level causing no problem in actual use.
- the film of Example 3 was of a level where the processability of the capacitor element and the withstand voltage and reliability were very excellent.
- the film of Example 4 was excellent in capacitor element processing suitability and reliability, and had a withstand voltage that was slightly inferior, but was at a level causing no problem in practical use.
- the film of Example 5 was of such a level that there was no problem in practical use in terms of workability, withstand voltage, and reliability of the capacitor element.
- Example 6 As a polypropylene resin for layer A, 100 parts by mass of a polypropylene resin manufactured by Prime Polymer Co., Ltd. having a mesopentad fraction of 0.98, a melting point of 167 ° C., and a melt flow rate (MFR) of 2.6 g / 10 min. Tokuyama Co., Ltd. average particle size 0.1 ⁇ m silica particles: Sunseal SSP-M01 was kneaded and extruded with an extruder set at 240 ° C.
- Example 1 An olefin-based laminated film was obtained in the same manner as in Example 1 except that it was fed to a uniaxial melt extruder for layer A and formed under the conditions shown in Table 1.
- the characteristics and capacitor characteristics of the olefin-based laminated film of this example are as shown in Table 1.
- the capacitor element has very good processability and withstand voltage, and is inferior in reliability, but at a level where there is no problem in practical use. It was.
- Example 7 As a polypropylene resin for the A layer, 95 parts by mass of a polypropylene resin manufactured by Prime Polymer Co., Ltd. having a mesopentad fraction of 0.98, a melting point of 167 ° C., and a melt flow rate (MFR) of 2.6 g / 10 min, Mitsui Chemicals, Inc. “TPX” (registered trademark) MX002 (polymethylpentene resin having a melting point of 224 ° C.) blended at a blending ratio of 5 parts by mass, kneaded and extruded by an extruder set at 240 ° C.
- TPX registered trademark
- MX002 polymethylpentene resin having a melting point of 224 ° C.
- the olefin-based laminated film was prepared in the same manner as in Example 1 except that the polypropylene resin raw material (A-2) was supplied to a uniaxial melt extruder for the A layer and formed into a film under the conditions shown in Table 1. Obtained.
- the characteristics and capacitor characteristics of the olefin-based laminated film of this example were as shown in Table 1, and the processability, withstand voltage, and reliability of the capacitor element were very excellent.
- Example 8 The cyclic olefin-based resin for the B layer is formed by using “ZEONOR” (registered trademark) 1420R (cyclic olefin resin having a glass transition temperature of 135 ° C.) manufactured by Nippon Zeon as COP instead of COC, under the conditions shown in Table 2.
- ZONOR registered trademark
- 1420R cyclic olefin resin having a glass transition temperature of 135 ° C.
- An olefin-based laminated film was obtained in the same manner as in Example 1 except that.
- the characteristics and capacitor characteristics of the olefin-based laminated film of this example were as shown in Table 2, and the processability, withstand voltage, and reliability of the capacitor element were very excellent.
- Example 9 As the polypropylene resin for the A layer, a polypropylene resin manufactured by Prime Polymer Co., Ltd. having a mesopentad fraction of 0.94, a melting point of 161 ° C., and a melt flow rate (MFR) of 3.0 g / 10 min was used. An olefin-based laminated film was obtained in the same manner as in Example 1 except that the film was formed under the conditions shown in. As shown in Table 2, the characteristics and the capacitor characteristics of the olefin-based laminated film of this example were excellent in processability of the capacitor element and inferior in the withstand voltage and reliability, but at a level causing no problem in practical use.
- MFR melt flow rate
- Comparative Example 1 A polypropylene resin made by Prime Polymer Co., Ltd. having a mesopentad fraction of 0.98, a melting point of 167 ° C., and a melt flow rate (MFR) of 2.6 g / 10 min as a polypropylene resin is shown in Table 2.
- An olefin-based single film was obtained in the same manner as in Example 1 except that the film was formed under the above conditions.
- the characteristics and capacitor characteristics of the olefin-based single film of this comparative example are as shown in Table 2, and the capacitor element is excellent in workability, but the breakdown voltage and reliability are very inferior, causing problems in practical use. Met.
- Comparative Example 2 99.7 parts by mass of “TOPAS” (registered trademark) 6013F-04 (a resin obtained by copolymerizing ethylene and norbornene, having a glass transition temperature of 138 ° C.) as a COC of a cyclic olefin resin, Although 0.3 mass part each of IRGANOX1010 made by Ciba Specialty Chemicals, which is an antioxidant, was mixed to form a single film, a film was formed in the same manner as in Example 1 except that the film was formed under the conditions shown in Table 2. A film could not be obtained due to frequent tearing.
- TOPAS registered trademark
- 6013F-04 a resin obtained by copolymerizing ethylene and norbornene, having a glass transition temperature of 138 ° C.
- Comparative Example 3 An olefin-based film was obtained in the same manner as in Example 1 except that the film was formed under the conditions shown in Table 2 without performing heat treatment and relaxation treatment.
- the characteristics of the olefinic film and the capacitor characteristics of this comparative example are as shown in Table 2, and the processability of the capacitor element is very inferior and the withstand voltage is slightly insufficient, but the reliability is very inferior and problems in practical use It was the level which occurs.
- Example 4 An A / B / A three-layer unstretched film (thickness: 12 ⁇ m) was obtained in the same manner as in Example 1 except that biaxial stretching, heat treatment and relaxation treatment were not performed.
- the characteristics of the olefin-based film and the capacitor characteristics of this comparative example are as shown in Table 2.
- the A layer and the B layer are peeled off at the time of measuring the elongation at break and cannot be measured as a laminated film. The aptitude was very inferior, the withstand voltage and the reliability were very inferior, and it was at a level that would cause problems in actual use.
- E power source A ammeter X sample a main electrode b counter electrode c guard electrode
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
オレフィン系積層フィルムの任意の場所の合計10箇所の厚みを23℃65%RHの雰囲気下で接触式のアンリツ(株)製電子マイクロメータ(K-312A型)を用いて測定し、その平均値をオレフィン系積層フィルムのフィルム厚みとした。
135℃に保温されたオーブン内で、フィルムを1分間加熱した後に、その雰囲気中でJIS C2330(2001)7.4.11.2 B法(平板電極法)に準じた絶縁破壊電圧試験を30回行い、得られた値をフィルムの厚み(上記(1))で除し、(V/μm)に換算し、計30点の測定値(算出値)のうち破壊電圧が最も大きい方から5点と最も小さい方から5点をそれぞれ除いた20点の平均値を135℃でのフィルム絶縁破壊電圧とした。
オレフィン系積層フィルムより幅方向および長手方向に、それぞれ、幅10mm、長さ50mm(測定方向)の試料を5本切り出し、両端から15mmの位置にそれぞれ印を付けて試長20mmとした。。次に、矩形のサンプルを引張試験機(オリエンテック製テンシロンUCT-100)に、初期チャック間距離20mmでセットし、23℃雰囲気下で引張速度を300mm/分としてフィルムの引張試験を行い、サンプルが破断した時点の伸度(単位:%)を得た。測定はフィルム長手方向および幅方向にそれぞれ各5回ずつ行い、それぞれの平均値を算出し、破断伸度を求めた。
JIS K7105(1981)に準じ、スガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件でキャスティングドラム接触面側の表面を測定した5点のデータの平均値をドラム面の光沢度とし、キャスティングドラム非接触面側の表面を測定した5点のデータの平均値を反対面の光沢度とした。
小坂研究所製のsurf-corder ET-4000Aを用い、JIS B0601(1982)に準じ、3次元表面粗さを測定した。測定条件の詳細は下記の通りである。サンプルセットは、視野測定のX方向がオレフィン系積層フィルムの幅方向になるようにし、上面が測定面として試料台にセットした。下記条件にて場所を変えて10回測定し、それぞれの中心線平均粗さの平均値を算出し、中心線平均粗さSRaとし、また、それぞれの10点平均粗さの平均値を算出し、10点平均粗さSRzとした。なお測定はフィルムの表裏両面にて行い、キャスティングドラム接触面側の表面をドラム面とし、キャスティングドラム非接触面側の表面を反対面とした。
解析ソフト:i-Face model TDA31
触針先端半径:0.5μm
測定視野 :X方向:1000μm ピッチ:5μm
Y方向:250μm ピッチ:10μm
針圧 :50μN
測定速度 :0.1mm/s
カットオフ値:低域0.2mm、高域-なし
レベリング :全域
フィルター :ガウシアンフィルタ(空間型)
倍率 :2万倍 。
オレフィン系積層フィルムより幅方向および長手方向に、それぞれ、幅10mm、長さ50mm(測定方向)の試料を5本切り出し、両端から5mmの位置にそれぞれ印を付けて試長40mm(l0)とした。次に、試験片を紙に挟み込み、水平に保持した状態で135℃に保温されたオーブン内で、10分間加熱後に取り出して、室温で冷却後、寸法(l1)を測定して下記式にて求め、5本の平均値を各方向の熱収縮率とした。
フィルムのポリプロピレンを60℃のn-ヘプタンで2時間抽出し、ポリプロピレン中の不純物・添加物を除去した後、130℃で2時間以上減圧乾燥したものをサンプルとした。該サンプルを溶媒に溶解し、13C-NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)を求めた。
・装置:Bruker製DRX-500
・測定核:13C核(共鳴周波数:125.8MHz)
・測定濃度:10質量%
・溶媒: ベンゼン:重オルトジクロロベンゼン=1:3混合溶液(体積比)
・測定温度:130℃
・スピン回転数:12Hz
・NMR試料管:5mm管
・パルス幅:45°(4.5μs)
・パルス繰り返し時間:10秒
・データポイント:64K
・積算回数:10,000回
・測定モード:complete decoupling
解析条件
LB(ラインブロードニングファクター)を1としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下のようにピーク分割を行い、更にソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とする。
(1)mrrm
(2)(3)rrrm(2つのピークとして分割)
(4)rrrr
(5)mrmm+rmrr
(6)mmrr
(7)mmmr
(8)ss(mmmmのスピニングサイドバンドピーク)
(9)mmmm
(10)rmmr。
示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのポリプロピレン樹脂を30℃から260℃まで40℃/minの条件で昇温する。次いで、260℃で5min保持した後、40℃/minの条件で30℃まで降温する。さらに、30℃で5min保持した後、30℃から260℃まで40℃/minの条件で昇温する。この昇温時に得られる吸熱カーブのピーク温度をポリプロピレン樹脂の融点とした。
示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgの環状オレフィン系樹脂を30℃から260℃まで40℃/minの条件で昇温する。次いで、260℃で5min保持した後、40℃/minの条件で30℃まで降温する。さらに、30℃で5min保持した後、30℃から260℃まで40℃/minの条件で昇温する。この昇温時に得られるガラス転移温度を下記式により算出した。
ここで補外ガラス転移開始温度は、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度とする。補外ガラス転移終了温度は、高温側のベースラインを低温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度とする。
JIS K6911(2006)に準じ、図1に示すように接続し、試験片を110℃雰囲気で30分保持後、電圧100Vで1分間充電して体積抵抗Rv(Ω)を測定した。得られた体積抵抗から数式(1)を用いて体積抵抗率ρv(Ω・cm)を算出した。ここで、d は主電極の直径(cm)、t はフィルム試料厚み(cm)である。フィルム試料厚みはミツトヨ製レーザーホロゲージにより被測定試料内任意5ヶ所の厚みを測定し、その相加平均値を試料厚みとした。すべて室温での測定値を用いて計算した。
測定装置:ULTRA HIGH RESISTANCE METER R8340A(エーディーシー製)、
TEST FIXTURE TR43C(ADVANTEST製)
フィルム試料片寸法:40mm×40mm
電極の形状:主電極;φ10mm
環状電極;内径 φ13mm 外径 φ26mm
対向電極;φ28mm
電極の材質:主電極および対向電極ともに導電性ペースト
環状電極;金属電極(金メッキ品)
印加電圧 :100V/1分値
前処理 :恒温恒湿槽に22±1℃、60±5%RHの雰囲気で90時間
試験温度 :室温135℃
後述する各実施例および比較例で得られたフィルム(キャスティングドラム接触面側)に、ULVAC製真空蒸着機でアルミニウムを膜抵抗が8Ω/sqで長手方向に垂直な方向にマージン部を設けた所謂T型マージンパターンを有する蒸着パターンを施し、幅50mmの蒸着リールを得た。
上記と同様にしてコンデンサ素子を作成し、目視により素子の形状を確認した。下記基準で判断した。
B:コンデンサ素子のフィルムのずれ、変形は若干あるが後の工程で問題がないレベル
D:コンデンサ素子のフィルムのずれ、変形が大きく、後の工程に支障を来すレベル
A、Bは使用可能である。Dでは実用が困難である。
この際の静電容量変化を測定しグラフ上にプロットして、該容量が初期値の70%になった電圧をフィルムの厚み(上記(1))で割り返して耐電圧評価とし、以下の通り評価した。
B:320V/μm以上350V/μm未満
C:300V/μm以上320V/μm未満
D:300V/μm未満。
静電容量が初期値に対して10%以下に減少するまで電圧を上昇させた後に、コンデンサ素子を解体し破壊の状態を調べて、信頼性を以下の通り評価した。
メソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂にBasell社製ポリプロピレン樹脂(高溶融張力ポリプロピレンProfax PF-814)を1.0質量%ブレンドし温度260℃のA層用の単軸の溶融押出機Aに供給した。環状オレフィン系樹脂はCOCとして、ポリプラスチックス製“TOPAS”(登録商標)6013F-04(エチレンとノルボルネンを共重合させた樹脂であり、ガラス転移温度が138℃)を99.7質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010を0.3質量部それぞれ混合させ温度260℃のB層用の単軸の溶融押出機Bに供給した。A層およびB層の押出機で溶融押出を行い、80μmカットの焼結フィルターで異物を除去後、フィードブロックを用いてA/B/Aの3層積層で積層厚み比が1/1/1(フィルム全厚みに対する両表面層A層の合計割合は66.7%)となるよう押出量を調節し、その溶融積層ポリマーをTダイより吐出させ、該溶融シートを70℃に保持されたキャスティングドラム上で、静電印加により密着させ冷却固化し未延伸シートを得た。次いで、該シートを複数のロール群にて徐々に145℃に予熱し、引き続き145℃の温度に保ち周速差を設けたロール間に通し、長手方向に2.8倍に延伸した。引き続き該フィルムをテンターに導き、165℃の温度で幅方向に9.8倍延伸し、次いで熱処理および弛緩処理として幅方向に10%の弛緩を与えながら155℃で熱処理を行ない、さらにクリップで幅方向把持したまま100℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、次いでフィルム表面(キャスティングドラム接触面側)に25W・min/m2の処理強度で大気中でコロナ放電処理を行い、フィルム厚み4.5μmのフィルムをフィルムロールとして巻き取った。本実施例のオレフィン系積層フィルムの特性およびコンデンサ特性は表1に示す通りでコンデンサ素子の加工適性および耐電圧、信頼性ともに非常に優れるレベルのものであった。
キャスティングドラム温度、積層比の変更(実施例2)、キャスティングドラム温度、積層フィルム全層厚みの変更(実施例3および4)、キャスティングドラム温度の変更(実施例5)を表1に示した条件とした以外は実施例1と同様にして、オレフィン系積層フィルムを得た。各実施例のオレフィン系積層フィルムの特性およびコンデンサ特性は表1に示す。実施例2のフィルムは、コンデンサ素子の加工適性に優れ、耐電圧、信頼性ともに劣るが実使用上問題のないレベルのものであった。実施例3のフィルムはコンデンサ素子の加工適性および耐電圧、信頼性ともに非常に優れるレベルのものであった。実施例4のフィルムは、コンデンサ素子加工適性および信頼性に優れ、耐電圧はやや劣るが実使用上問題のないレベルのものであった。実施例5のフィルムはコンデンサ素子の加工適性、耐電圧、信頼性ともに実使用上問題のないレベルのものであった。
A層用のポリプロピレン樹脂としてメソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂100質量部に対し、株式会社トクヤマ製 平均粒子径0.1μmシリカ粒子:サンシールSSP-M01を0.25質量部となるように240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(A-1)とし、A層用の単軸の溶融押出機に供給し、表1に示した条件で製膜した以外は実施例1と同様にして、オレフィン系積層フィルムを得た。本実施例のオレフィン系積層フィルムの特性およびコンデンサ特性は表1に示す通りでコンデンサ素子の加工適性および耐電圧が非常に優れ、信頼性は劣るが、実使用上問題のないレベルのものであった。
A層用のポリプロピレン樹脂としてメソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂95質量部、三井化学製“TPX”(登録商標) MX002(融点が224℃の、ポリメチルペンテン系樹脂)を5質量部の配合比でブレンドし、240℃に設定した押出機で混練押出し、ストランドを水冷後チップ化し、ポリプロピレン樹脂原料(A-2)とし、A層用の単軸の溶融押出機に供給し、表1に示した条件で製膜した以外は実施例1と同様にして、オレフィン系積層フィルムを得た。本実施例のオレフィン系積層フィルムの特性およびコンデンサ特性は表1に示す通りでコンデンサ素子の加工適性および耐電圧、信頼性ともに非常に優れるレベルのものであった。
B層用の環状オレフィン系樹脂はCOCの代わりにCOPとして、日本ゼオン製“ZEONOR”(登録商標)1420R(ガラス転移温度135℃の環状オレフィン樹脂)を用い、表2に示した条件で製膜した以外は実施例1と同様にして、オレフィン系積層フィルムを得た。本実施例のオレフィン系積層フィルムの特性およびコンデンサ特性は表2に示す通りでコンデンサ素子の加工適性および耐電圧、信頼性ともに非常に優れるレベルのものであった。
A層用のポリプロピレン樹脂として、メソペンタッド分率が0.94、融点が161℃で、メルトフローレイト(MFR)が3.0g/10分であるプライムポリマー(株)製ポリプロピレン樹脂を用い、表2に示した条件で製膜した以外は実施例1と同様にして、オレフィン系積層フィルムを得た。本実施例のオレフィン系積層フィルムの特性およびコンデンサ特性は表2に示す通り、コンデンサ素子の加工適性に優れ、耐電圧、信頼性ともに劣るが実使用上問題のないレベルのものであった。
ポリプロピレン樹脂としてメソペンタッド分率が0.98、融点が167℃で、メルトフローレイト(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂を単膜構成とし、表2に示した条件で製膜した以外は実施例1と同様にして、オレフィン系単膜フィルムを得た。本比較例のオレフィン系単膜フィルムの特性およびコンデンサ特性は表2に示す通りでコンデンサ素子の加工適性は優れるが、耐電圧、信頼性ともに非常に劣っており実使用上問題が生じるレベルのものであった。
環状オレフィン系樹脂のCOCとして、ポリプラスチックス製“TOPAS”(登録商標)6013F-04(エチレンとノルボルネンを共重合させた樹脂であり、ガラス転移温度が138℃)を99.7質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010を0.3質量部それぞれ混合させ単膜構成とし、表2に示した条件で製膜した以外は実施例1と同様にして製膜したが、破れが頻発したためフィルムを得ることができなかった。
熱処理および弛緩処理を施さず、表2に示した条件で製膜した以外は実施例1と同様にして、オレフィン系フィルムを得た。本比較例のオレフィン系フィルムの特性およびコンデンサ特性は表2に示す通りでコンデンサ素子の加工適性が非常に劣り、耐電圧がやや不足のレベルだが、信頼性が非常に劣っており実使用上問題が生じるレベルのものであった。
二軸延伸、熱処理および弛緩処理を施さないこと以外は実施例1と同様にしてA/B/Aの3層積層の未延伸フィルム(厚み12μm)を得た。本比較例のオレフィン系フィルムの特性およびコンデンサ特性は表2に示すとおりで、破断伸度の測定時にA層とB層が剥離し積層フィルムとしての測定不可であり、コンデンサ特性ではコンデンサ素子の加工適性が非常に劣り、耐電圧、信頼性ともに非常に劣っており実使用上問題が生じるレベルのものであった。
A 電流計
X 試料
a 主電極
b 対電極
c ガード電極
Claims (12)
- 環状オレフィン系樹脂を含む基層部の少なくとも片面にポリプロピレン系樹脂を含む構成層が積層され、135℃における絶縁破壊電圧が280V/μm以上である、オレフィン系積層フィルム。
- フィルムの長手方向および幅方向において、破断伸度がともに20%以上である、請求項1に記載のオレフィン系積層フィルム。
- フィルムの長手方向および幅方向において、135℃における熱収縮率がともに2%以下である、請求項1または2に記載のオレフィン系積層フィルム。
- 前記ポリプロピレン系樹脂のメソペンタッド分率が0.95以上であり、かつ、融点が160℃を超える、請求項1~3のいずれかに記載のオレフィン系積層フィルム。
- 基層部の両面にポリプロピレン系樹脂を含む構成層を積層してなる、請求項1~4のいずれかに記載のオレフィン系積層フィルム。
- 前記両表面の中心線平均粗さSRaがいずれも20nm以上であり、かつ前記両表面の10点平均粗さSRzがいずれも200nm以上である、請求項5に記載のオレフィン系積層フィルム。
- 前記両表面の光沢度がいずれも110%以上145%未満である、請求項5または6に記載のオレフィン系積層フィルム。
- 135℃での体積抵抗率が1×1014Ω・cm以上である、請求項1~7のいずれに記載のオレフィン系積層フィルム
- オレフィン系積層フィルムが共押出により積層されたものである、請求項1~8のいずれかに記載のオレフィン系積層フィルム。
- オレフィン系積層フィルムが、積層後に二軸延伸されたものである、請求項1~9のいずれかに記載のオレフィン系積層フィルム。
- 請求項1~10のいずれかに記載のオレフィン系積層フィルムの少なくとも片面に金属膜が設けられてなる金属膜積層フィルム。
- 請求項11に記載の金属膜積層フィルムを用いてなるフィルムコンデンサ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016557345A JP6160782B2 (ja) | 2015-08-03 | 2016-08-01 | オレフィン系積層フィルムおよびフィルムコンデンサ |
EP16832985.2A EP3332961B1 (en) | 2015-08-03 | 2016-08-01 | Olefin multilayer film and film capacitor |
CN201680044654.1A CN107848282B (zh) | 2015-08-03 | 2016-08-01 | 烯烃系叠层膜及膜电容器 |
KR1020187001633A KR102525861B1 (ko) | 2015-08-03 | 2016-08-01 | 올레핀계 적층 필름 및 필름 콘덴서 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-153118 | 2015-08-03 | ||
JP2015153118 | 2015-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022706A1 true WO2017022706A1 (ja) | 2017-02-09 |
Family
ID=57943204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072486 WO2017022706A1 (ja) | 2015-08-03 | 2016-08-01 | オレフィン系積層フィルムおよびフィルムコンデンサ |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3332961B1 (ja) |
JP (1) | JP6160782B2 (ja) |
KR (1) | KR102525861B1 (ja) |
CN (1) | CN107848282B (ja) |
WO (1) | WO2017022706A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045482A1 (ja) * | 2018-08-29 | 2020-03-05 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法 |
JP2020520127A (ja) * | 2017-05-15 | 2020-07-02 | ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag | フィルムコンデンサ |
JP2020124905A (ja) * | 2018-09-05 | 2020-08-20 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法 |
JP2020124906A (ja) * | 2018-08-29 | 2020-08-20 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法 |
WO2022153785A1 (ja) * | 2021-01-15 | 2022-07-21 | コニカミノルタ株式会社 | フィルムロール及びフィルムロールの製造方法 |
WO2022270577A1 (ja) | 2021-06-25 | 2022-12-29 | 東レ株式会社 | ポリオレフィン系フィルム、それを用いた金属膜積層フィルム、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機 |
WO2023188598A1 (ja) | 2022-03-30 | 2023-10-05 | 東レ株式会社 | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108802496A (zh) * | 2018-06-11 | 2018-11-13 | 泰州隆基乐叶光伏科技有限公司 | 一种光伏组件胶膜体积电阻率的测试方法 |
KR20210047870A (ko) * | 2018-08-29 | 2021-04-30 | 오지 홀딩스 가부시키가이샤 | 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서, 및 금속층 일체형 폴리프로필렌 필름의 제조 방법 |
WO2020171163A1 (ja) * | 2019-02-21 | 2020-08-27 | 東レ株式会社 | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ |
CN114987023B (zh) * | 2022-06-23 | 2023-08-29 | 常州百佳年代薄膜科技股份有限公司 | 一种高绝缘pet合金膜及制备工艺 |
US12119180B2 (en) * | 2023-02-03 | 2024-10-15 | Peak Nano Films, LLC | Multilayered high-temperature dielectric film |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09148176A (ja) * | 1995-11-29 | 1997-06-06 | Toray Ind Inc | 耐熱性コンデンサ用ポリプロピレンフィルム |
JP2000208360A (ja) * | 1998-11-11 | 2000-07-28 | Oji Paper Co Ltd | 保安機構付金属蒸着フィルムコンデンサ |
JP2007290380A (ja) * | 2006-03-28 | 2007-11-08 | Toray Ind Inc | 金属化二軸配向ポリプロピレンフィルム及びこれからなるコンデンサ |
WO2009060944A1 (ja) * | 2007-11-07 | 2009-05-14 | Oji Paper Co., Ltd. | コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー |
WO2012099167A1 (ja) * | 2011-01-19 | 2012-07-26 | 王子製紙株式会社 | コンデンサー用ポリプロピレンフィルム |
JP2015012076A (ja) * | 2013-06-27 | 2015-01-19 | 京セラ株式会社 | フィルムコンデンサ |
JP5660261B1 (ja) * | 2013-03-22 | 2015-01-28 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0620869A (ja) * | 1991-06-28 | 1994-01-28 | Diafoil Co Ltd | フィルムコンデンサ |
DE4304308A1 (de) | 1993-02-12 | 1994-08-18 | Hoechst Ag | Steife Cycloolefincopolymer-Folie |
DE19539093A1 (de) | 1995-10-20 | 1997-04-24 | Hoechst Ag | Metallisierte Polyolefinfolie |
DE19917790A1 (de) | 1999-04-20 | 2000-11-02 | Hoechst Trespaphan Gmbh | Biaxial orientierte Folie für die Herstellung von Keramikkondensatoren |
CN103503094B (zh) * | 2011-04-19 | 2016-05-25 | 东丽株式会社 | 电容器用双轴拉伸聚丙烯膜、金属化膜和膜电容器 |
US9649829B2 (en) * | 2011-08-25 | 2017-05-16 | Isao Manabe | Film for forming and forming transfer foil using same |
KR102044577B1 (ko) * | 2012-03-28 | 2019-11-13 | 도레이 카부시키가이샤 | 콘덴서용 2축 연신 폴리프로필렌 필름, 금속화 필름 및 필름 콘덴서 |
WO2014061403A1 (ja) * | 2012-10-17 | 2014-04-24 | 東レ株式会社 | 積層フィルム |
JP2015016569A (ja) | 2013-07-09 | 2015-01-29 | アキレス株式会社 | 離型フィルム |
EP3168259B1 (en) * | 2014-07-07 | 2020-11-04 | Toray Industries, Inc. | Molding film and molding transfer foil using same |
-
2016
- 2016-08-01 WO PCT/JP2016/072486 patent/WO2017022706A1/ja active Application Filing
- 2016-08-01 KR KR1020187001633A patent/KR102525861B1/ko active IP Right Grant
- 2016-08-01 CN CN201680044654.1A patent/CN107848282B/zh active Active
- 2016-08-01 EP EP16832985.2A patent/EP3332961B1/en active Active
- 2016-08-01 JP JP2016557345A patent/JP6160782B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09148176A (ja) * | 1995-11-29 | 1997-06-06 | Toray Ind Inc | 耐熱性コンデンサ用ポリプロピレンフィルム |
JP2000208360A (ja) * | 1998-11-11 | 2000-07-28 | Oji Paper Co Ltd | 保安機構付金属蒸着フィルムコンデンサ |
JP2007290380A (ja) * | 2006-03-28 | 2007-11-08 | Toray Ind Inc | 金属化二軸配向ポリプロピレンフィルム及びこれからなるコンデンサ |
WO2009060944A1 (ja) * | 2007-11-07 | 2009-05-14 | Oji Paper Co., Ltd. | コンデンサー用二軸延伸ポリプロピレンフィルムおよびそれを用いた蒸着フィルム並びにコンデンサー |
WO2012099167A1 (ja) * | 2011-01-19 | 2012-07-26 | 王子製紙株式会社 | コンデンサー用ポリプロピレンフィルム |
JP5660261B1 (ja) * | 2013-03-22 | 2015-01-28 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
JP2015012076A (ja) * | 2013-06-27 | 2015-01-19 | 京セラ株式会社 | フィルムコンデンサ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3332961A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020520127A (ja) * | 2017-05-15 | 2020-07-02 | ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag | フィルムコンデンサ |
EP3625811B1 (en) | 2017-05-15 | 2022-04-06 | TDK Electronics AG | Film capacitor |
WO2020045482A1 (ja) * | 2018-08-29 | 2020-03-05 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法 |
JP2020124906A (ja) * | 2018-08-29 | 2020-08-20 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法 |
JP7256960B2 (ja) | 2018-08-29 | 2023-04-13 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルムの製造方法 |
JP2020124905A (ja) * | 2018-09-05 | 2020-08-20 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法 |
JP7228132B2 (ja) | 2018-09-05 | 2023-02-24 | 王子ホールディングス株式会社 | 金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、金属層一体型ポリプロピレンフィルムの製造方法 |
WO2022153785A1 (ja) * | 2021-01-15 | 2022-07-21 | コニカミノルタ株式会社 | フィルムロール及びフィルムロールの製造方法 |
WO2022270577A1 (ja) | 2021-06-25 | 2022-12-29 | 東レ株式会社 | ポリオレフィン系フィルム、それを用いた金属膜積層フィルム、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機 |
KR20240026890A (ko) | 2021-06-25 | 2024-02-29 | 도레이 카부시키가이샤 | 폴리올레핀계 필름, 그것을 사용한 금속막 적층 필름, 필름 콘덴서, 파워 컨트롤 유닛, 전동 자동차 및 전동 항공기 |
WO2023188598A1 (ja) | 2022-03-30 | 2023-10-05 | 東レ株式会社 | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ |
Also Published As
Publication number | Publication date |
---|---|
EP3332961A1 (en) | 2018-06-13 |
CN107848282B (zh) | 2020-01-07 |
CN107848282A (zh) | 2018-03-27 |
KR20180036956A (ko) | 2018-04-10 |
EP3332961B1 (en) | 2020-02-19 |
JP6160782B2 (ja) | 2017-07-12 |
JPWO2017022706A1 (ja) | 2017-08-03 |
EP3332961A4 (en) | 2018-12-26 |
KR102525861B1 (ko) | 2023-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6160782B2 (ja) | オレフィン系積層フィルムおよびフィルムコンデンサ | |
JP7173202B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法 | |
JP7135320B2 (ja) | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
JP6926827B2 (ja) | オレフィン系積層フィルムおよびフィルムコンデンサ | |
JP6070864B2 (ja) | ポリプロピレンフィルムおよびフィルムコンデンサ | |
JPWO2016043217A1 (ja) | ポリプロピレンフィルムおよびフィルムコンデンサ | |
US11795282B2 (en) | Polypropylene film, metal film laminated film using same, and film capacitor | |
WO2022270577A1 (ja) | ポリオレフィン系フィルム、それを用いた金属膜積層フィルム、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機 | |
JP6992929B1 (ja) | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ | |
JP7424517B1 (ja) | ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ | |
JP6885484B2 (ja) | ポリプロピレンフィルムおよびこれを用いた金属膜積層フィルム、フィルムコンデンサ | |
JP7318187B2 (ja) | ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ | |
WO2024135552A1 (ja) | ポリプロピレンフィルム | |
JP7347699B1 (ja) | ポリオレフィン系フィルム、積層体、包装材、及び梱包体 | |
CN117480202A (zh) | 聚烯烃系膜、使用其的金属膜叠层膜、膜电容器、动力控制单元、电动车及电动航空器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016557345 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16832985 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187001633 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016832985 Country of ref document: EP |