WO2017022637A1 - Antistatic resin composition - Google Patents

Antistatic resin composition Download PDF

Info

Publication number
WO2017022637A1
WO2017022637A1 PCT/JP2016/072211 JP2016072211W WO2017022637A1 WO 2017022637 A1 WO2017022637 A1 WO 2017022637A1 JP 2016072211 W JP2016072211 W JP 2016072211W WO 2017022637 A1 WO2017022637 A1 WO 2017022637A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
structural unit
mol
unit derived
structural units
Prior art date
Application number
PCT/JP2016/072211
Other languages
French (fr)
Japanese (ja)
Inventor
さゆり 猪俣
和香子 小林
Original Assignee
リケンテクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社 filed Critical リケンテクノス株式会社
Priority to KR1020187005460A priority Critical patent/KR102513777B1/en
Priority to JP2017532555A priority patent/JP6656253B2/en
Priority to CN201680044661.1A priority patent/CN107849340B/en
Publication of WO2017022637A1 publication Critical patent/WO2017022637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic

Definitions

  • the present invention relates to an antistatic resin composition. More specifically, the present invention relates to a polyester resin composition having antistatic properties.
  • the material used for the tool and the exterior member is required to have a volume resistance value of 10 9 to 10 10 ⁇ ⁇ cm.
  • the packaging material is often transparent (at a haze value of 50% or less) so that at least the presence of the contents can be visually recognized.
  • the product is visually inspected, or an identification mark attached to the contents. Transparency that can be confirmed (haze value of 15% or less) is required.
  • heat applied during the drying process during the manufacture of precision electronic components heat applied during the drying process during manufacture of articles incorporating precision electronic components; precision electronic equipment (articles incorporating precision electronic components), for example, It must be able to withstand the environmental temperature during transportation, storage, and actual use of in-vehicle equipment such as acoustic equipment and information communication equipment; and heat generated during operation of the equipment. It is required to withstand °C.
  • Thermoplastic resins have various properties, so that although they are generally highly electrical insulating materials, their volume resistance value is set to 10-9 so that they can be used in the field of precision electronic components. Many techniques for increasing the power to 10 to the 10th power ⁇ ⁇ cm have been proposed and put into practical use.
  • a resin composition of a thermoplastic resin and an ionic surfactant such as an alkyl sulfonate and an alkyl benzene sulfonate, particularly an alkyl (aryl) sulfonate surfactant is proposed.
  • an ionic surfactant such as an alkyl sulfonate and an alkyl benzene sulfonate, particularly an alkyl (aryl) sulfonate surfactant.
  • Examples of the technique include an antistatic thermoplastic resin (for example, polyether ester amide (Patent Document 3), a backbone polymer made of polyamide, a branch polymer made of a block polymer of a polyalkylene ether and a thermoplastic polyester. Graft polymer (Patent Document 4), specific polyamideimide elastomer (Patent Document 5), and reaction product of specific polyethylene glycol, specific non-hindered diisocyanate, and specific aliphatic chain extender glycol (Patent Document) 6) etc.)) is proposed.
  • an antistatic thermoplastic resin for example, polyether ester amide (Patent Document 3), a backbone polymer made of polyamide, a branch polymer made of a block polymer of a polyalkylene ether and a thermoplastic polyester.
  • Graft polymer Patent Document 4
  • specific polyamideimide elastomer Patent Document 5
  • these antistatic thermoplastic resins have the property of accelerating deterioration / lower molecular weight of the polyester resin, and the resin composition of the polyester resin and these antistatic thermoplastic resins is For example, there is a problem that molding defects such as burrs and sink marks are likely to occur in an injection molded product.
  • polyether ester for example, poly (alkylene oxide) glycol having a specific molecular weight, glycol having 2 to 8 carbon atoms, polyvalent carboxylic acid having 4 to 20 carbon atoms, etc.
  • Patent Document 7 a poly (alkylene oxide) glycol having a specific molecular weight such as an aromatic dicarboxylic acid having 4 to 20 carbon atoms, and a glycol having 4 to 10 carbon atoms.
  • Patent Document 8 The resulting polyether ester (Patent Document 8), an aromatic dicarboxylic acid having a specific amount of an aromatic dicarboxylic acid substituted with a specific sulfonate group, a poly (alkylene oxide) glycol having a specific molecular weight, and Polyether ester obtained by polycondensation of glycol having 2 to 10 carbon atoms (Patent Document 9), and charcoal Polyetheresters obtained by polycondensation of poly (alkylene oxide) glycols having a specific molecular weight such as aromatic dicarboxylic acids having 4 to 20 carbon atoms and glycols having 4 to 10 carbon atoms (Patent Document 10) are used. It has been proposed. However, the polyether ester alone is not sufficient in antistatic properties.
  • Patent Document 12 it is proposed to use a polyester-based resin as a base resin for a crystallization half time from a molten state of at least 5 minutes. However, if the base resin has such characteristics, it does not have high heat resistance.
  • An antistatic resin composition that has excellent antistatic properties, particularly antistatic durability, heat resistance, and transparency, and has no problem of outgassing has not yet been proposed.
  • An object of the present invention is to provide an antistatic resin composition which is excellent in antistatic properties, particularly antistatic durability, heat resistance, and transparency, and has no problem of outgassing.
  • a further problem of the present invention is that the volume resistivity is 10 9 to 10 10 ⁇ ⁇ cm, and the antistatic property is maintained even when washed with water or wiped, and is heat resistant and transparent. It is an object to provide an antistatic resin composition which is excellent in properties and moldability and has no problem of outgassing.
  • the present invention (A) 100 parts by mass of a polyester-based resin having the following characteristics (a1) and (a2); and (B) 7 to 25 parts by mass of a polyetherester resin having a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group; Is an antistatic resin composition.
  • A1 The total of structural units derived from polyvalent carboxylic acid is 100 mol%, and includes 90 to 100 mol% of structural units derived from terephthalic acid and 10 to 0 mol% of structural units derived from isophthalic acid.
  • (A2) 50 to 90 mol% of structural units derived from 1,4-cyclohexanedimethanol, and 2,2,4,4, -tetramethyl- when the total of structural units derived from polyvalent ol is 100 mol% It contains 50 to 10 mol% of structural units derived from 1,3-cyclobutanediol.
  • the component (B) is (B1) one or more selected from the group consisting of terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, and ester-forming derivatives thereof Structural units derived from aromatic dicarboxylic acids; (B2) a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or an ester-forming derivative thereof, represented by the following formula (1); (B3) a structural unit derived from a polyalkylene glycol having a number average molecular weight of 200 to 50,000; (B4) a structural unit derived from a glycol having 2 to 10 carbon atoms; Including Here, assuming that the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%, 98 to 70
  • Ar is a group having an aromatic ring structure in which at least three hydrogen atoms are substituted;
  • R1 and R2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms;
  • M + represents a metal ion, a tetraalkylphosphonium ion or a tetraalkylammonium ion.
  • the (C) ionic surfactant is further contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the component (A).
  • An antistatic resin composition is further contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the component (A).
  • a fourth invention is the antistatic resin composition according to any one of the first to third inventions, wherein the volume resistivity is 10 9 to 10 10 ⁇ ⁇ cm.
  • the fifth invention is an article comprising the antistatic resin composition according to any one of the first to fourth inventions.
  • the sixth invention is a precision electronic device comprising the antistatic resin composition according to any one of the first to fourth inventions.
  • the antistatic resin composition of the present invention has excellent antistatic properties, particularly antistatic durability, heat resistance, and transparency, and has no problem of outgassing.
  • a preferred antistatic resin composition of the present invention has a volume resistivity of 10 9 to 10 10 ⁇ ⁇ cm, and the antistatic property is maintained even when washed with water or wiped off, and is heat resistant. It has excellent properties, transparency, and moldability, and there is no problem of outgassing.
  • Precision electronic parts for example, exterior members of precision electronic devices in which precision electronic parts are incorporated as materials such as transport trays, packaging materials, storage and storage equipment, and exterior members for semiconductor wafers, semiconductor elements, and integrated circuits Can be suitably used.
  • the antistatic resin composition of the present invention comprises (A) 100 parts by mass of a polyester resin having the following characteristics (a1) and (a2); and (B) an aromatic polyvalent carboxylic acid substituted with a sulfonate group. 7 to 25 parts by mass of a polyetherester resin having a structural unit derived from an acid.
  • A1 The total of structural units derived from polyvalent carboxylic acid is 100 mol%, and includes 90 to 100 mol% of structural units derived from terephthalic acid and 10 to 0 mol% of structural units derived from isophthalic acid.
  • (A2) 50 to 90 mol% of structural units derived from 1,4-cyclohexanedimethanol, and 2,2,4,4, -tetramethyl- when the total of structural units derived from polyvalent ol is 100 mol% It contains 50 to 10 mol% of structural units derived from 1,3-cyclobutanediol.
  • the component (A) includes (a1) 90 to 100 mol% of structural units derived from terephthalic acid, and 10 to 10 structural units derived from isophthalic acid, where the total of structural units derived from polyvalent carboxylic acid is 100 mol%. (A2) 50 to 90 mol%, preferably 55 to 85 mol, of structural units derived from 1,4-cyclohexanedimethanol, where the total of structural units derived from polyvalent ol is 100 mol%.
  • the polyvalent carboxylic acid includes its ester-forming derivative. That is, terephthalic acid includes its ester-forming derivatives. Similarly, isophthalic acid includes its ester-forming derivatives.
  • the polyvalent ol includes an ester-forming derivative thereof. That is, 1,4-cyclohexanedimethanol includes its ester-forming derivative.
  • 2,2,4,4, -tetramethyl-1,3-cyclobutanediol includes its ester-forming derivatives.
  • the component (A) may contain structural units derived from other polyvalent carboxylic acids other than terephthalic acid and isophthalic acid, as long as the object of the present invention is not adversely affected.
  • the other polyvalent carboxylic acid include orthophthalic acid, naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyl-3,3′-dicarboxylic acid, diphenyl-4,4 Aromatic polycarboxylic acids such as' -dicarboxylic acid and anthracene dicarboxylic acid; alicyclic polycarboxylic acids such as 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid Examples include acids; aliphatic polycarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic
  • the above component (A) is a polyvalent ol other than 1,4-cyclohexanedimethanol and 2,2,4,4, -tetramethyl-1,3-cyclobutanediol, as long as the object of the present invention is not adversely affected.
  • the structural unit derived from may be included.
  • Examples of the other polyols include ethylene glycol, diethylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol, polyethylene glycol, 1,2-propanediol, 1,3-propanediol, polypropylene glycol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, 3-methyl-1,5-pentane Aliphatic polyhydric alcohols such as diol, 2-methyl-1,3-propanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, glycerin, and trimethylolpropane; xylylene glycol, 4,4′- Aromatic polyols such as dihydroxybiphenyl
  • the antistatic resin composition of the present invention Since the component (A) has a high glass transition temperature (usually 90 ° C. or higher, preferably 100 ° C. or higher, more preferably 110 ° C. or higher), the antistatic resin composition of the present invention has excellent heat resistance. Clearly, since the component (A) is highly transparent, amorphous or low crystalline, and has good miscibility with the component (B), the antistatic resin composition of the present invention is transparent. It will be excellent.
  • the glass transition temperature is a Diamond DSC type differential scanning calorimeter manufactured by PerkinElmer Japan Co., Ltd., and the sample is heated to 200 ° C. at a heating rate of 50 ° C./min, and at 200 ° C. for 10 minutes. After the temperature is maintained, the temperature is lowered to 50 ° C. at a rate of temperature decrease of 20 ° C./min, held at 50 ° C. for 10 minutes, and then heated to 200 ° C. at a rate of temperature increase of 20 ° C./min.
  • the glass transition temperature appearing in the curve measured in Fig. 2 is the midpoint glass transition temperature calculated by drawing according to FIG. 2 of ASTM D3418.
  • the proportion of the structural unit derived from each component in the polyester resin can be determined using 13 C-NMR or 1 H-NMR. An example of 1 H-NMR measurement is shown in FIG.
  • the 13 C-NMR spectrum can be measured, for example, by dissolving 20 mg of a sample in 0.6 mL of chloroform-d 1 solvent and using a 125 MHz nuclear magnetic resonance apparatus under the following conditions.
  • Chemical shift standard Chloroform-d 1 77 ppm
  • Measurement mode Single pulse proton broadband decoupling Pulse width 45 ° (5.00 ⁇ s)
  • 64K points Observation range 250ppm (-25 to 225ppm)
  • the 1 H-NMR spectrum can be measured, for example, by dissolving 20 mg of a sample in 0.6 mL of chloroform-d 1 solvent and using a 400 MHz nuclear magnetic resonance apparatus under the following conditions.
  • the attribution of the peak is “Polymer Analysis Handbook (first edition of September 20, 2008, first edition, edited by Japan Analytical Chemistry Society, Polymer Analysis Research Meeting, Asakura Shoten Co., Ltd.), especially pages 496-503” and “ The NMR database (http://polymer.nims.go.jp/NMR/) of the National Institute for Materials Science, National Institute for Materials Science, is used as a reference, and the peak area ratio of each component in the above component (a) is determined. The percentage can be calculated. Note that 13 C-NMR and 1 H-NMR measurements can also be carried out in an analysis organization such as Mitsui Chemical Analysis Center.
  • the component (B) is a polyether ester resin having a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group.
  • the component (B) is preferably from the viewpoint of antistatic properties and transparency, (B1) one or more selected from the group consisting of terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, and ester-forming derivatives thereof Structural units derived from aromatic dicarboxylic acids;
  • (B2) a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or an ester-forming derivative thereof, represented by the following formula (1);
  • (B3) a structural unit derived from a polyalkylene glycol having a number average molecular weight of 200 to 50,000;
  • (B4) a structural unit derived from a glycol having 2
  • the content of the derived structural unit is 10 to 60% by mass; a polyetherester resin.
  • Ar is a group having an aromatic ring structure in which at least three hydrogen atoms are substituted;
  • R1 and R2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms Group;
  • M + represents a metal ion, a tetraalkylphosphonium ion or a tetraalkylammonium ion.
  • the component (B) is composed of (b1) terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, and ester-forming derivatives thereof. It is preferable that it contains a structural unit derived from one or more aromatic dicarboxylic acids selected from the above because the heat resistance is further improved.
  • the component (B) contains a structural unit derived from (b2) an aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or an ester-forming derivative thereof represented by the following formula (1). It is preferable because the antistatic property is further improved.
  • Ar in the above formula (1) is a group having an aromatic ring structure in which at least three hydrogen atoms are substituted.
  • Examples of Ar in the above formula (1) include a group having a benzene ring structure in which at least three hydrogen atoms are substituted, and a group having a naphthalene ring structure in which at least three hydrogen atoms are substituted. These not only replace three hydrogen atoms with three substituents specified by the above formula (1), but also one or more hydrogen atoms such as an alkyl group, a phenyl group, a halogen group, and an alkoxy group. It may be substituted with a substituent. The substitution position is not limited and can be arbitrarily selected.
  • Ar in the formula (1) is preferably a group having a benzene ring structure in which three hydrogen atoms are substituted from the viewpoints of polymerizability, mechanical properties, and color tone.
  • R1 in the above formula (1) is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Preferred are alkyl groups having 1 to 3 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, and a propyl group. In these, as R1 in the said Formula (1), a methyl group and an ethyl group are preferable from a viewpoint of polymerizability, mechanical characteristics, and color tone.
  • R2 in the above formula (1) is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • alkyl groups having 1 to 3 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, and a propyl group.
  • R2 in the above formula (1) a methyl group and an ethyl group are preferable from the viewpoints of polymerizability, mechanical properties, and color tone.
  • R1 and R2 may have the same structure or different structures.
  • R1 and R2 in the formula (1) can independently take an arbitrary structure within the above range.
  • M + in the above formula (1) is a metal ion, a tetraalkylphosphonium ion or a tetraalkylammonium ion.
  • M ⁇ +> in the said Formula (1) is multivalent, the number of sulfonic acid groups (part other than M ⁇ +> in the said Formula (1)) corresponding to this correspond.
  • M + in the above formula (1) is a divalent metal ion, two sulfonic acid groups (parts other than M + in the above formula (1)) per one metal ion ) Corresponds.
  • Examples of the metal ions include alkali metal ions such as sodium ion, potassium ion, and lithium ion; alkaline earth metal ions such as calcium ion and magnesium ion; and zinc ion.
  • alkali metal ions such as sodium ion, potassium ion, and lithium ion
  • alkaline earth metal ions such as calcium ion and magnesium ion
  • zinc ion examples of the tetraalkylphosphonium ion.
  • Examples of the tetraalkylphosphonium ion include tetrabutylphosphonium ion and tetramethylphosphonium ion.
  • Examples of the tetraalkylammonium ion include tetrabutylammonium ion and tetramethylammonium ion.
  • alkali metal ions, tetrabutylammonium ions, and tetrabutylphosphonium ions are preferable from the viewpoints of polymerizability, mechanical properties, antistatic properties, and color tone. More preferred are alkali metal ions and tetrabutylphosphonium ions.
  • Examples of the component (b2) that is, the aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or its ester-forming derivative represented by the above formula (1) include 4-sodium sulfo-isophthalic acid.
  • the component (b2) includes 4-sodium sulfo-isophthalate dimethyl, 5-sodium sulfo-isophthalate dimethyl, 4-potassium sulfo-isophthalate dimethyl from the viewpoints of polymerizability, mechanical properties, and color tone.
  • 4-sodium sulfo-dimethyl isophthalate, 2-sodium sulfo-dimethyl terephthalate, and 2-potassium sulfo-dimethyl terephthalate are preferred.
  • the component (B) is derived from the component (b1), where the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%.
  • a structural unit derived from the above component (b2) in an amount of 98 to 70 mol%, preferably 97 to 71 mol%, more preferably 95 to 73 mol%, still more preferably 91 to 75 mol%. It is preferable that the unit is contained in an amount of 2 to 30 mol%, preferably 3 to 29 mol%, more preferably 5 to 27 mol%, still more preferably 9 to 25 mol%.
  • the antistatic resin composition of the present invention is The antistatic property is further improved. Moreover, even if washed with water or wiped off, good antistatic properties can be maintained. In addition, it has sufficient molecular weight and crystallinity, and is easy to handle.
  • the component (B) contains (b3) a structural unit derived from a polyalkylene glycol having a number average molecular weight of 200 to 50,000, since the antistatic property is further improved.
  • Examples of the component (b3) that is, a polyalkylene glycol having a number average molecular weight of 200 to 50,000 include propylene glycol using polyethylene glycol, polypropylene glycol, and ethylene glycol as main monomers (usually 60 mol% or more, preferably 80 mol% or more).
  • a small amount (usually 10 mol% or less, preferably 5 mol% or less, more preferably 1 mol% or less) of a polyaromatic copolymer having ethylene as a comonomer and alkylene glycol such as ethylene glycol or propylene glycol as a main monomer.
  • Examples thereof include a copolymer having a valence ol as a comonomer, and a mixture thereof.
  • the number average molecular weight of the component (b3) is 200 to 50000, preferably 500 to 30000, more preferably 1000 to 20000 from the viewpoints of antistatic properties, dispersibility, and heat resistance.
  • the content of the structural unit derived from the component (b3) in the component (B) is from 10 to 60% by mass, preferably from 15 to 55% by mass, from the viewpoint of antistatic properties, handleability, and heat resistance.
  • the amount is preferably 20 to 50% by mass.
  • the content of the structural unit derived from the component (b1), the content of the structural unit derived from the component (b2), the content of the structural unit derived from the component (b3), and the component (b4) The sum of the content of structural units derived from is 100% by mass.
  • the component (B) contains (b4) a structural unit derived from a glycol having 2 to 10 carbon atoms because the antistatic property, handleability and heat resistance are further improved.
  • Examples of the component (b4) that is, a glycol having 2 to 10 carbon atoms, include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexanediol.
  • Aliphatic glycols such as 3-methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, 1,2-cyclohexanediol, and 1,4-cyclohexanediol; having an ether bond such as diethylene glycol
  • glycols having a thioether bond such as thiodiethanol.
  • 1,6-hexanediol, ethylene glycol, and diethylene glycol are preferable from the viewpoint of antistatic properties, crystallinity, and handleability.
  • ethylene glycol, and diethylene glycol are preferable from the viewpoint of antistatic properties, crystallinity, and handleability.
  • One or more of these can be used as the component (b4).
  • a DIN Ubbelohde viscometer capillary diameter 0.63 mm
  • a mixed solvent of phenol / tetrachloroethane mass ratio 60/40
  • the reduced viscosity measured under conditions of a concentration of 1.2 g / dl and a temperature of 35 ° C. is preferably 0.2 cm 3 / g or more, more preferably 0.25 cm, from the viewpoint of antistatic properties, heat resistance, and mechanical properties.
  • the method for obtaining the component (B) using the components (b1) to (b4) is not particularly limited, and can be performed by any method.
  • the component (B) can be obtained by heat-melting the components (b1) to (b4) at 150 to 300 ° C. in the presence of a transesterification catalyst to cause a polycondensation reaction.
  • the transesterification catalyst is not particularly limited, and any transesterification catalyst can be used.
  • the transesterification catalyst include antimony compounds such as antimony trioxide; tin compounds such as stannous acetate, dibutyltin oxide, and dibutyltin diacetate; titanium compounds such as tetrabutyl titanate; zinc compounds such as zinc acetate.
  • a calcium compound such as calcium acetate; and alkali metal salts such as sodium carbonate and potassium carbonate. Of these, tetrabutyl titanate is preferred. One or more of these can be used as the transesterification catalyst.
  • the amount of the transesterification catalyst used is not particularly limited, but is usually 0.01 to 0.5 mol%, preferably 0.03 to 0.3 mol%, relative to 1 mol of the component (b1).
  • the polycondensation reaction is carried out at 150 to 250 ° C., preferably 150 to 200 ° C. for about 1 to 20 hours while distilling off the distillate, and then the temperature is 180 to 300 ° C., preferably 200 to 280 ° C.
  • the temperature is preferably raised to 220 to 260 ° C. and further for about 1 to 20 hours.
  • the component (B) can have a reduced viscosity within a preferred range.
  • the blending amount of the component (B) is 7 parts by mass or more, preferably 9 parts by mass or more, more preferably 12 parts by mass or more, from the viewpoint of antistatic properties with respect to 100 parts by mass of the component (A). .
  • it is 25 parts by mass or less, preferably 22 parts by mass or less, more preferably 20 parts by mass or less.
  • Ionic surfactant (optional component):
  • the antistatic resin composition of the present invention expresses sufficient antistaticity without using an ionic surfactant, but it is necessary to use an ionic surfactant. It is not excluded.
  • the antistatic resin composition of the present invention is used when the antistatic resin composition is used for, for example, an application in which the initial antistatic property is particularly important, or an application in which the necessity of considering outgas and bleedout problems is low.
  • the composition may comprise an ionic surfactant.
  • the amount of the component (C) ionic surfactant used is not particularly limited because it is an optional component, but may be 0.5 to 5 parts by mass with respect to 100 parts by mass of the component (A). .
  • component (C) examples include an organic sulfonic acid type surfactant composed of an organic sulfonic acid and a base.
  • organic sulfonic acid examples include alkyl benzene sulfonic acids having 6 to 18 carbon atoms in the alkyl group such as octyl benzene sulfonic acid, dodecyl benzene sulfonic acid, dibutyl benzene sulfonic acid, and dinonyl benzene sulfonic acid; and dimethylnaphthalene And alkylnaphthalenesulfonic acid having 2 to 18 carbon atoms in the alkyl group such as sulfonic acid, diisopropylnaphthalenesulfonic acid, and dibutylnaphthalenesulfonic acid. Among these, dodecylbenzenesulfonic acid and dimethylnaphthalenesulfonic acid are preferable. One or more of these organic sulfonic acids can be used.
  • Examples of the base include alkali metals such as lithium, sodium, and potassium; phosphonium compounds such as tetrabutylphosphonium, tributylbenzylphosphonium, triethylhexadecylphosphonium, and tetraphenylphosphonium; and tetrabutylammonium, tributylbenzylammonium, And ammonium compounds such as triphenylbenzylammonium.
  • alkali metals such as lithium, sodium, and potassium
  • phosphonium compounds such as tetrabutylphosphonium, tributylbenzylphosphonium, triethylhexadecylphosphonium, and tetraphenylphosphonium
  • tetrabutylammonium tributylbenzylammonium
  • ammonium compounds such as triphenylbenzylammonium.
  • sodium, potassium, tetramethylphosphonium, tetraethylphosphonium, tetrahexylphosphonium, tetraoctylphosphonium, tetrabutylphosphonium, tributylbenzylphosphonium, triethylhexadecylphosphonium, and tetraphenylphosphonium are preferred.
  • One or more of these can be used as the base.
  • Preferred examples of the component (C) include those in which the base is a phosphonium compound, for example, tetrabutylphosphonium dodecylbenzenesulfonate, from the viewpoint of suppressing outgas and antistatic properties.
  • the base is a phosphonium compound, for example, tetrabutylphosphonium dodecylbenzenesulfonate, from the viewpoint of suppressing outgas and antistatic properties.
  • the volume resistivity of the antistatic resin composition of the present invention is preferably 10 10 ⁇ ⁇ cm or less, more preferably 10 9 to 10 10 ⁇ ⁇ cm. More preferably, the volume resistivity is 10 9 to 10 10 ⁇ ⁇ cm, and the antistatic property is maintained even after washing with water or wiping.
  • the volume resistivity is a value measured according to the following test (2).
  • the outgas amount of the antistatic resin composition of the present invention is preferably 2 ⁇ g / g or less, more preferably 1 ⁇ g / g or less. If it is a normal use, it can be preferably used when the outgas amount is 2 ⁇ g / g or less. Even applications that require a particularly low outgas amount, such as precision electronic equipment, can be preferably used when the outgas amount is 1 ⁇ g / g or less. In this specification, the amount of outgas is the amount ( ⁇ g) of outgas generated from 1 g of the sample, measured according to the following test (5).
  • the antistatic resin composition of the present invention may further include a thermoplastic resin other than the component (A) and the component (B), and an interface other than the component (C).
  • Activators, heat stabilizers, antioxidants, hydrolysis inhibitors, metal deactivators, UV absorbers, antistatic agents, lubricants, colorants, and the like can be included.
  • the antistatic resin composition of the present invention contains a heat stabilizer or an antioxidant. Even when molding a large molded product, molding troubles such as coloring and burning can be prevented. It is preferable to include a metal deactivator in the antistatic resin composition of the present invention. Even when used in parts that come into contact with metal, corrosion and discoloration of the contact portion can be prevented.
  • antioxidants examples include 2,6-di-tert-p-butyl-p-cresol, 2,6-di-tert-butylphenol, 2,4-dimethyl-6-tert-butylphenol, 4,4 Phenolic antioxidants such as 2-dihydroxydiphenyl and tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane; phosphite antioxidants; and thioether antioxidants it can. Of these, phenolic antioxidants and phosphite antioxidants are preferred.
  • the antistatic resin composition of the present invention can be produced by melt-kneading the component (A), the component (B), and an optional component in an arbitrary order or simultaneously.
  • the method of melt kneading is not particularly limited, and a known method can be used.
  • a single screw extruder, a twin screw extruder, a roll, a mixer, or various kneaders can be used.
  • a mixer or kneader for example, it is preferable to perform melt-kneading under conditions of a discharge temperature of 240 to 260 ° C.
  • melt kneading at a screw rotation speed of 50 to 500 rpm and a kneading temperature of 240 to 260 ° C., for example.
  • the antistatic resin composition of the present invention can be molded into an arbitrary molded product using a known molding method.
  • the molding method include a general injection molding method, insert molding method, two-color molding method, sandwich molding method, gas injection method, profile extrusion molding method, two-color extrusion molding method, coating molding method, and sheet
  • a film extrusion method can be used.
  • Measuring method (1) Formability: Using an injection molding machine with a clamping force of 120 tons, an injection molded plate with a length of 64.4 mm, a width of 64.4 mm, and a thickness of 3 mm is obtained under the conditions of a cylinder temperature of 240 to 260 ° C., a mold temperature of 50 ° C., and a cooling time of 5 minutes. Molded. The obtained plate was visually observed and evaluated according to the following criteria. ⁇ : Sink and warp are not recognized. X: Sink or warp, or sink and warp
  • Outgas amount For the measurement, a heat desorption gas chromatograph mass spectrometer manufactured by PerkinElmer was used.
  • Collection of outgas by thermal desorption method The resin composition is frozen and pulverized to obtain a pulverized product of 2 mm square or less, and 0.1 g of the pulverized product obtained above is placed in a sample holder of the collection unit of the above apparatus and heated at 120 ° C. for 10 minutes to generate generated volatilization. The substance was collected in a cold trap tube maintained at 5 ° C. using helium gas as the carrier gas.
  • Thermal deformation temperature (heat resistance): In accordance with ASTM D648-07, using an injection molding machine with a clamping force of 120 ton, a cylinder temperature of 240 to 260 ° C, a mold temperature of 50 ° C, a cooling time of 5 minutes, a length of 127mm, a height of 13mm, A test piece having a thickness of 6 mm was used, and measurement was performed under the conditions of a fulcrum distance of 100.0 mm (Method B), a load of 1.82 MPa, and a temperature increase rate of 2 ° C.
  • Polyester resin (A-1) The sum of structural units derived from polyvalent carboxylic acid is defined as 100 mol%, the structural unit derived from terephthalic acid is defined as 100 mol%, and the sum of structural units derived from polyvalent ol is defined as 100 mol%.
  • (A-2) The sum of the structural units derived from polyvalent carboxylic acid is defined as 100 mol%, the structural unit derived from terephthalic acid is defined as 100 mol%, and the sum of structural units derived from polyvalent ol is defined as 100 mol%.
  • (B) Polyetherester resin (B-1) A polyetherester resin obtained in accordance with the description in paragraph 0063 and Reference Example 1 of JP-A-8-283548.
  • the component (b1) is dimethyl terephthalate
  • the component (b2) is dimethyl 5-sodium sulfoisophthalate
  • the component (b3) is polyethylene glycol (number average molecular weight 20000)
  • the component (b4) is 1,4-butanediol. .
  • the structural unit derived from the component (b1) is 75 mol%, 25 mol% of structural units derived from the component (b2).
  • the content of the structural unit derived from the component (b3) is 11% by mass, where the sum of the content of the structural unit is 100% by mass.
  • the component (b1) is dimethyl terephthalate
  • the component (b2) is dimethyl 5-sodium sulfoisophthalate
  • the component (b3) is polyethylene glycol (number average molecular weight 20000)
  • the component (b4) is 1,4-butanediol.
  • the structural unit derived from the component (b1) is 85 mol%, 15 mol% of structural units derived from the component (b2).
  • the content of the structural unit derived from the component (b3) is 20% by mass, where the sum of the content of the structural unit is 100% by mass.
  • (B-3) A polyetherester resin obtained according to the description in paragraph 0065 and Reference Example 3 of JP-A-8-283548.
  • the component (b1) is dimethyl terephthalate
  • the component (b2) is dimethyl 5-sodium sulfoisophthalate
  • the component (b3) is polyethylene glycol (number average molecular weight 20000)
  • the component (b4) is 1,4-butanediol. .
  • the structural unit derived from the component (b1) is 75 mol%, 25 mol% of structural units derived from the component (b2).
  • Content of structural unit derived from component (b1), content of structural unit derived from component (b2), content of structural unit derived from component (b3), and derived from component (b4) The content of the structural unit derived from the component (b3) is 20% by mass, where the sum of the content of the structural unit is 100% by mass.
  • the component (b1) is dimethyl terephthalate
  • the component (b2) is dimethyl 5-sodium sulfoisophthalate
  • the component (b3) is polyethylene glycol (number average molecular weight 4000)
  • the component (b4) is 1,4-butanediol.
  • the structural unit derived from the component (b1) is 75 mol%, 25 mol% of structural units derived from the component (b2).
  • the content of the structural unit derived from the component (b3) is 20% by mass, where the sum of the content of the structural unit is 100% by mass.
  • C Ionic surfactant (C-1) Sodium dodecylbenzenesulfonate from Kanto Chemical Co., Inc.
  • Examples 1-11, Examples 1C-7C Using a 20 mm ⁇ same-direction biaxial kneader, a blend having a blending ratio shown in any one of Tables 1 to 3 was melt-kneaded at a preset temperature of 240 to 260 ° C. to obtain a resin composition. The above tests (1) to (7) were conducted. The results are shown in any one of Tables 1 to 3.
  • the resin composition of the present invention is excellent in moldability, antistatic properties, antistatic durability, low outgas properties, transparency, and heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

[Problem] To provide an antistatic resin composition which has excellent transparency, heat resistance and antistatic properties, especially excellent sustainability of antistatic properties, while being free from problems of outgas. [Solution] An antistatic resin composition which contains 100 parts by mass of (A) a polyester resin having the characteristics (a1) and (a2) described below and 7-25 parts by mass of (B) a polyether ester resin having a structural unit derived from an aromatic polyvalent carboxylic acid substituted by a sulfonate group. (a1) When the sum of the structural units derived from polyvalent carboxylic acids is taken as 100% by mole, 90-100% by mole of a structural unit derived from terephthalic acid and 10-0% by mole of a structural unit derived from isophthalic acid are contained. (a2) When the sum of the structural units derived from polyhydric alcohols is taken as 100% by mole, 50-90% by mole of a structural unit derived from 1, 4-cyclohexane dimethanol and 50-10% by mole of a structural unit derived from 2, 2, 4, 4-tetramethyl-1, 3-cyclobutane diol are contained.

Description

制電性樹脂組成物Antistatic resin composition
 本発明は、制電性樹脂組成物に関する。更に詳しくは、制電性を有するポリエステル系樹脂組成物に関する。 The present invention relates to an antistatic resin composition. More specifically, the present invention relates to a polyester resin composition having antistatic properties.
 精密電子部品、例えば、半導体ウエハー、半導体素子、及び集積回路などは、僅かな帯電で機能が損なわれる(所謂、静電破壊。)おそれがあるため、これらの運搬用トレイ、包装資材、収納保管具、及び外装部材などに用いる材料は、体積抵抗値が10の9乗~10の10乗Ω・cmであることが要求される。また上記包装資材には、しばしば少なくとも内容物の存在が視認できる程度の透明性(ヘーズ値で50%以下)、好ましくは目視により製品検査を行ったり、内容物に添付されている識別マーク等を確認したりできる程度の透明性(ヘーズ値で15%以下)が要求される。更に精密電子部品の製造時における乾燥工程等でかかる熱;精密電子部品の組み込まれた物品を製造する際の乾燥工程等でかかる熱;精密電子機器(精密電子部品の組み込まれた物品)、例えば、音響機器、情報通信機器などの車載用機器の輸送、保管、及び実使用時の環境温度;及び上記機器の動作時に発生する熱;に耐えられることが必要であり、そのためには少なくとも温度80℃に耐えることが要求される。 Since precision electronic components such as semiconductor wafers, semiconductor elements, and integrated circuits may be damaged by a slight charge (so-called electrostatic breakdown), their transport trays, packaging materials, and storage The material used for the tool and the exterior member is required to have a volume resistance value of 10 9 to 10 10 Ω · cm. In addition, the packaging material is often transparent (at a haze value of 50% or less) so that at least the presence of the contents can be visually recognized. Preferably, the product is visually inspected, or an identification mark attached to the contents. Transparency that can be confirmed (haze value of 15% or less) is required. Furthermore, heat applied during the drying process during the manufacture of precision electronic components; heat applied during the drying process during manufacture of articles incorporating precision electronic components; precision electronic equipment (articles incorporating precision electronic components), for example, It must be able to withstand the environmental temperature during transportation, storage, and actual use of in-vehicle equipment such as acoustic equipment and information communication equipment; and heat generated during operation of the equipment. It is required to withstand ℃.
 熱可塑性樹脂は優れた諸特性を有するため、一般的には電気絶縁性の高い材料であるにも係わらず、精密電子部品に関する分野においてもこれを使用するべく、その体積抵抗値を10の9乗~10の10乗Ω・cmにするための技術が数多く提案され、実用にも供されている。 Thermoplastic resins have various properties, so that although they are generally highly electrical insulating materials, their volume resistance value is set to 10-9 so that they can be used in the field of precision electronic components. Many techniques for increasing the power to 10 to the 10th power Ω · cm have been proposed and put into practical use.
 上記技術としては、例えば、熱可塑性樹脂と;アルキルスルホン酸塩、及びアルキルベンゼンスルホン酸塩などのイオン性界面活性剤、特にアルキル(アリール)スルホン酸塩系の界面活性剤との樹脂組成物が提案されている(例えば、特許文献1及び2)。しかし、これらの技術は、低分子量の界面活性剤を成形品の表面に染み出させることにより電気抵抗値を低くするものであるため、表面の界面活性剤が拭取られたり、洗浄されたりすることにより制電性が低下(電気抵抗値が上昇)するという問題やアウトガスが発生するという問題がある。 As the above technology, for example, a resin composition of a thermoplastic resin and an ionic surfactant such as an alkyl sulfonate and an alkyl benzene sulfonate, particularly an alkyl (aryl) sulfonate surfactant is proposed. (For example, Patent Documents 1 and 2). However, since these technologies lower the electrical resistance value by causing a low molecular weight surfactant to ooze out on the surface of the molded article, the surface surfactant is wiped off or washed. As a result, there is a problem that the antistatic property is lowered (an electric resistance value is increased) and that outgas is generated.
 上記技術としては、例えば、制電性を有する熱可塑性樹脂(例えば、ポリエーテルエステルアミド(特許文献3)、幹ポリマーがポリアミド、枝ポリマーがポリアルキレンエーテルと熱可塑性ポリエステルとのブロックポリマーから構成されるグラフトポリマー(特許文献4)、特定のポリアミドイミドエラストマー(特許文献5)、及び、特定のポリエチレングリコール、特定の非ヒンダードジイソシアネート、及び特定の脂肪族連鎖延長剤グリコールの反応生成物(特許文献6)など。)を含む樹脂組成物が提案されている。しかし、これらの技術では、十分な制電性を得るために制電性を有する熱可塑性樹脂を多量に配合する必要がある。またその耐熱性や透明性は満足できるものではない。またこれらの制電性を有する熱可塑性樹脂には、ポリエステル系樹脂の劣化/低分子量化を促進する性質があり、ポリエステル系樹脂とこれらの制電性を有する熱可塑性樹脂との樹脂組成物は、例えば射出成型品にバリやヒケなどの成型不良が発生し易いという問題がある。 Examples of the technique include an antistatic thermoplastic resin (for example, polyether ester amide (Patent Document 3), a backbone polymer made of polyamide, a branch polymer made of a block polymer of a polyalkylene ether and a thermoplastic polyester. Graft polymer (Patent Document 4), specific polyamideimide elastomer (Patent Document 5), and reaction product of specific polyethylene glycol, specific non-hindered diisocyanate, and specific aliphatic chain extender glycol (Patent Document) 6) etc.)) is proposed. However, in these techniques, it is necessary to blend a large amount of thermoplastic resin having antistatic properties in order to obtain sufficient antistatic properties. Moreover, the heat resistance and transparency are not satisfactory. In addition, these antistatic thermoplastic resins have the property of accelerating deterioration / lower molecular weight of the polyester resin, and the resin composition of the polyester resin and these antistatic thermoplastic resins is For example, there is a problem that molding defects such as burrs and sink marks are likely to occur in an injection molded product.
 また、上記制電性を有する熱可塑性樹脂としてポリエーテルエステル(例えば、特定分子量のポリ(アルキレンオキシド)グリコール、炭素原子数2~8のグリコール、及び炭素原子数4~20の多価カルボン酸等を縮合して得られるポリエーテルエステル(特許文献7)、炭素数4~20の芳香族ジカルボン酸等、特定分子量のポリ(アルキレンオキシド)グリコール、及び炭素数4~10のグリコールを重縮合して得られるポリエーテルエステル(特許文献8)、特定スルホン酸塩基で置換された芳香族ジカルボン酸を特定量含有する炭素数6~20の芳香族ジカルボン酸、特定分子量のポリ(アルキレンオキシド)グリコール、及び炭素数2~10のグリコール、を重縮合して得られるポリエーテルエステル(特許文献9)、及び炭素数4~20の芳香族ジカルボン酸等、特定分子量のポリ(アルキレンオキシド)グリコール、及び炭素数4~10のグリコール、を重縮合して得られるポリエーテルエステル(特許文献10)など。)を用いることが提案されている。しかしポリエーテルエステル単独では制電性が十分ではない。 Further, as the above-mentioned antistatic thermoplastic resin, polyether ester (for example, poly (alkylene oxide) glycol having a specific molecular weight, glycol having 2 to 8 carbon atoms, polyvalent carboxylic acid having 4 to 20 carbon atoms, etc.) By polycondensing a polyether ester obtained by condensing (Patent Document 7), a poly (alkylene oxide) glycol having a specific molecular weight such as an aromatic dicarboxylic acid having 4 to 20 carbon atoms, and a glycol having 4 to 10 carbon atoms. The resulting polyether ester (Patent Document 8), an aromatic dicarboxylic acid having a specific amount of an aromatic dicarboxylic acid substituted with a specific sulfonate group, a poly (alkylene oxide) glycol having a specific molecular weight, and Polyether ester obtained by polycondensation of glycol having 2 to 10 carbon atoms (Patent Document 9), and charcoal Polyetheresters obtained by polycondensation of poly (alkylene oxide) glycols having a specific molecular weight such as aromatic dicarboxylic acids having 4 to 20 carbon atoms and glycols having 4 to 10 carbon atoms (Patent Document 10) are used. It has been proposed. However, the polyether ester alone is not sufficient in antistatic properties.
 そこでイオン性界面活性剤を併用すること(例えば、特許文献7の段落0031、特許文献11)が提案されているが、これらの技術では、水洗や拭取りによる制電性の低下や、アウトガス発生の問題がある。 Therefore, it has been proposed to use an ionic surfactant in combination (for example, paragraph 0031 of Patent Document 7 and Patent Document 11). However, in these techniques, reduction of antistatic property due to washing and wiping, generation of outgas, and the like. There is a problem.
 そこで特許文献12には、ベース樹脂として、溶融状態からの結晶化半時間が少なくとも5分のポリエステル系樹脂を用いることが提案されている。しかし、ベース樹脂がこのような特性のものでは、耐熱性の高いものにはならない。 Therefore, in Patent Document 12, it is proposed to use a polyester-based resin as a base resin for a crystallization half time from a molten state of at least 5 minutes. However, if the base resin has such characteristics, it does not have high heat resistance.
 制電性、特に制電性の持続性、耐熱性、及び透明性に優れ、かつアウトガスの問題のない制電性樹脂組成物は未だ提案されていない。 An antistatic resin composition that has excellent antistatic properties, particularly antistatic durability, heat resistance, and transparency, and has no problem of outgassing has not yet been proposed.
特開平5-222241号公報Japanese Patent Laid-Open No. 5-222241 特開昭62-230835号公報JP-A-62-230835 特開昭62-273252号公報JP-A-62-273252 特開平5-97984号公報JP-A-5-97984 特開平3-255161号公報Japanese Patent Laid-Open No. 3-255161 特開平5-222289号公報JP-A-5-222289 特開平6-57153号公報JP-A-6-57153 特開平8-283548号公報JP-A-8-283548 特開平10-219095号公報Japanese Patent Laid-Open No. 10-219095 特開2006-022232号公報JP 2006-022232 A 特開平8-283548号公報JP-A-8-283548 特開2009-001618号公報JP 2009-001618 A
 本発明の課題は、制電性、特に制電性の持続性、耐熱性、及び透明性に優れ、かつアウトガスの問題のない制電性樹脂組成物を提供することにある。本発明の更なる課題は、体積抵抗率が10の9乗~10の10乗Ω・cmであり、水洗いしたり拭取りを行ったりしても上記制電性が維持され、耐熱性、透明性、及び成形性に優れ、かつアウトガスの問題のない制電性樹脂組成物を提供することにある。 An object of the present invention is to provide an antistatic resin composition which is excellent in antistatic properties, particularly antistatic durability, heat resistance, and transparency, and has no problem of outgassing. A further problem of the present invention is that the volume resistivity is 10 9 to 10 10 Ω · cm, and the antistatic property is maintained even when washed with water or wiped, and is heat resistant and transparent. It is an object to provide an antistatic resin composition which is excellent in properties and moldability and has no problem of outgassing.
 本発明者は、鋭意研究した結果、特定のポリエステル系樹脂と特定のポリエーテルエステルとの樹脂組成物により、上記課題を達成できることを見出した。 As a result of intensive studies, the present inventor has found that the above-described problems can be achieved by a resin composition of a specific polyester resin and a specific polyether ester.
 すなわち、本発明は、
(A)下記特性(a1)、及び(a2)を有するポリエステル系樹脂 100質量部;及び、
(B)スルホン酸塩基で置換された芳香族多価カルボン酸に由来する構造単位を有するポリエーテルエステル樹脂 7~25質量部;
を含む制電性樹脂組成物である。
(a1)多価カルボン酸に由来する構造単位の総和を100モル%として、テレフタル酸に由来する構造単位90~100モル%、及びイソフタル酸に由来する構造単位10~0モル%を含む。
(a2)多価オールに由来する構造単位の総和を100モル%として、1,4-シクロヘキサンジメタノールに由来する構造単位50~90モル%、及び2,2,4,4,-テトラメチル-1,3-シクロブタンジオールに由来する構造単位50~10モル%を含む。
That is, the present invention
(A) 100 parts by mass of a polyester-based resin having the following characteristics (a1) and (a2); and
(B) 7 to 25 parts by mass of a polyetherester resin having a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group;
Is an antistatic resin composition.
(A1) The total of structural units derived from polyvalent carboxylic acid is 100 mol%, and includes 90 to 100 mol% of structural units derived from terephthalic acid and 10 to 0 mol% of structural units derived from isophthalic acid.
(A2) 50 to 90 mol% of structural units derived from 1,4-cyclohexanedimethanol, and 2,2,4,4, -tetramethyl- when the total of structural units derived from polyvalent ol is 100 mol% It contains 50 to 10 mol% of structural units derived from 1,3-cyclobutanediol.
 第2の発明は、上記成分(B)が、
(b1)テレフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビフェニル-4,4’-ジカルボン酸、及びこれらのエステル形成性誘導体からなる群から選択される1種以上の芳香族ジカルボン酸に由来する構造単位;
(b2)下記式(1)で表される、スルホン酸塩基で置換された芳香族多価カルボン酸及び/又はそのエステル形成性誘導体に由来する構造単位;
(b3)数平均分子量200~50000のポリアルキレングリコールに由来する構造単位;及び、
(b4)炭素数2~10のグリコールに由来する構造単位;
を含み、
 ここで上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、
 上記成分(b1)に由来する構造単位を98~70モル%、
 上記成分(b2)に由来する構造単位を2~30モル%となる量で含み;
 上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、 上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和を100質量%として、
 上記成分(b3)に由来する構造単位の含有量が10~60質量%である;
ポリエーテルエステル樹脂である
第1の発明に記載の制電性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、
 Arは少なくとも3つの水素原子が置換された芳香環構造を有する基;
 R1及びR2はそれぞれ独立に水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基;
 Mは金属イオン、テトラアルキルホスホニウムイオン又はテトラアルキルアンモニウムイオンを表す。
In a second invention, the component (B) is
(B1) one or more selected from the group consisting of terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, and ester-forming derivatives thereof Structural units derived from aromatic dicarboxylic acids;
(B2) a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or an ester-forming derivative thereof, represented by the following formula (1);
(B3) a structural unit derived from a polyalkylene glycol having a number average molecular weight of 200 to 50,000;
(B4) a structural unit derived from a glycol having 2 to 10 carbon atoms;
Including
Here, assuming that the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%,
98 to 70 mol% of structural units derived from the component (b1),
Containing structural units derived from the component (b2) in an amount of 2 to 30 mol%;
Content of structural unit derived from component (b1), content of structural unit derived from component (b2), content of structural unit derived from component (b3), and derived from component (b4) The sum of the content of structural units to be 100% by mass
The content of structural units derived from the component (b3) is 10 to 60% by mass;
The antistatic resin composition according to the first invention, which is a polyetherester resin.
Figure JPOXMLDOC01-appb-C000002
In formula (1),
Ar is a group having an aromatic ring structure in which at least three hydrogen atoms are substituted;
R1 and R2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms;
M + represents a metal ion, a tetraalkylphosphonium ion or a tetraalkylammonium ion.
 第3の発明は、更に(C)イオン性界面活性剤を、上記成分(A)100質量部に対して、0.5~5質量部含有する第1の発明又は第2の発明に記載の制電性樹脂組成物である。 According to a third aspect of the present invention, the (C) ionic surfactant is further contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the component (A). An antistatic resin composition.
 第4の発明は、体積抵抗率が10の9乗~10の10乗Ω・cmである第1~3の発明の何れか1に記載の制電性樹脂組成物である。 A fourth invention is the antistatic resin composition according to any one of the first to third inventions, wherein the volume resistivity is 10 9 to 10 10 Ω · cm.
 第5の発明は、第1~4の発明の何れか1に記載の制電性樹脂組成物を含む物品である。 The fifth invention is an article comprising the antistatic resin composition according to any one of the first to fourth inventions.
 第6の発明は、第1~4の発明の何れか1に記載の制電性樹脂組成物を含む精密電子機器である。 The sixth invention is a precision electronic device comprising the antistatic resin composition according to any one of the first to fourth inventions.
 本発明の制電性樹脂組成物は制電性、特に制電性の持続性、耐熱性、及び透明性に優れ、かつアウトガスの問題がない。本発明の好ましい制電性樹脂組成物は体積抵抗率が10の9乗~10の10乗Ω・cmであり、水洗いしたり拭取りを行ったりしても上記制電性が維持され、耐熱性、透明性、及び成形性に優れ、かつアウトガスの問題がない。精密電子部品、例えば、半導体ウエハー、半導体素子、及び集積回路などの運搬用トレイ、包装資材、収納保管具、及び外装部材などの材料として、精密電子部品の組み込まれた精密電子機器の外装部材などとして好適に用いることができる。 The antistatic resin composition of the present invention has excellent antistatic properties, particularly antistatic durability, heat resistance, and transparency, and has no problem of outgassing. A preferred antistatic resin composition of the present invention has a volume resistivity of 10 9 to 10 10 Ω · cm, and the antistatic property is maintained even when washed with water or wiped off, and is heat resistant. It has excellent properties, transparency, and moldability, and there is no problem of outgassing. Precision electronic parts, for example, exterior members of precision electronic devices in which precision electronic parts are incorporated as materials such as transport trays, packaging materials, storage and storage equipment, and exterior members for semiconductor wafers, semiconductor elements, and integrated circuits Can be suitably used.
ポリエステル系樹脂のH-NMRの測定例である。This is a measurement example of 1 H-NMR of a polyester resin.
 本発明の制電性樹脂組成物は、(A)下記特性(a1)、及び(a2)を有するポリエステル系樹脂 100質量部;及び、(B)スルホン酸塩基で置換された芳香族多価カルボン酸に由来する構造単位を有するポリエーテルエステル樹脂 7~25質量部;を含む。
(a1)多価カルボン酸に由来する構造単位の総和を100モル%として、テレフタル酸に由来する構造単位90~100モル%、及びイソフタル酸に由来する構造単位10~0モル%を含む。
(a2)多価オールに由来する構造単位の総和を100モル%として、1,4-シクロヘキサンジメタノールに由来する構造単位50~90モル%、及び2,2,4,4,-テトラメチル-1,3-シクロブタンジオールに由来する構造単位50~10モル%を含む。
The antistatic resin composition of the present invention comprises (A) 100 parts by mass of a polyester resin having the following characteristics (a1) and (a2); and (B) an aromatic polyvalent carboxylic acid substituted with a sulfonate group. 7 to 25 parts by mass of a polyetherester resin having a structural unit derived from an acid.
(A1) The total of structural units derived from polyvalent carboxylic acid is 100 mol%, and includes 90 to 100 mol% of structural units derived from terephthalic acid and 10 to 0 mol% of structural units derived from isophthalic acid.
(A2) 50 to 90 mol% of structural units derived from 1,4-cyclohexanedimethanol, and 2,2,4,4, -tetramethyl- when the total of structural units derived from polyvalent ol is 100 mol% It contains 50 to 10 mol% of structural units derived from 1,3-cyclobutanediol.
(A)ポリエステル系樹脂:
 上記成分(A)は、(a1)多価カルボン酸に由来する構造単位の総和を100モル%として、テレフタル酸に由来する構造単位90~100モル%、及びイソフタル酸に由来する構造単位10~0モル%;を含み、(a2)多価オールに由来する構造単位の総和を100モル%として、1,4-シクロヘキサンジメタノールに由来する構造単位50~90モル%、好ましくは55~85モル%、より好ましくは60~80モル%、及び2,2,4,4,-テトラメチル-1,3-シクロブタンジオールに由来する構造単位50~10モル%、好ましくは45~15モル%、より好ましくは40~20モル%;を含むポリエステル系樹脂である。ここで多価カルボン酸は、そのエステル形成性誘導体を含む。即ち、テレフタル酸は、そのエステル形成性誘導体を含む。同様にイソフタル酸は、そのエステル形成性誘導体を含む。ここで多価オールは、そのエステル形成性誘導体を含む。即ち、1,4-シクロヘキサンジメタノールは、そのエステル形成性誘導体を含む。同様に2,2,4,4,-テトラメチル-1,3-シクロブタンジオールは、そのエステル形成性誘導体を含む。
(A) Polyester resin:
The component (A) includes (a1) 90 to 100 mol% of structural units derived from terephthalic acid, and 10 to 10 structural units derived from isophthalic acid, where the total of structural units derived from polyvalent carboxylic acid is 100 mol%. (A2) 50 to 90 mol%, preferably 55 to 85 mol, of structural units derived from 1,4-cyclohexanedimethanol, where the total of structural units derived from polyvalent ol is 100 mol%. %, More preferably 60 to 80 mol%, and 50 to 10 mol%, preferably 45 to 15 mol% of structural units derived from 2,2,4,4, -tetramethyl-1,3-cyclobutanediol, and more A polyester-based resin containing 40 to 20 mol% is preferable. Here, the polyvalent carboxylic acid includes its ester-forming derivative. That is, terephthalic acid includes its ester-forming derivatives. Similarly, isophthalic acid includes its ester-forming derivatives. Here, the polyvalent ol includes an ester-forming derivative thereof. That is, 1,4-cyclohexanedimethanol includes its ester-forming derivative. Similarly, 2,2,4,4, -tetramethyl-1,3-cyclobutanediol includes its ester-forming derivatives.
 上記成分(A)は、本発明の目的に反しない限度において、テレフタル酸及びイソフタル酸以外のその他の多価カルボン酸に由来する構造単位を含んでいてもよい。上記その他の多価カルボン酸としては、例えば、オルソフタル酸、ナフタレンジカルボン酸、ジフェニル-4、4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニル-3、3’-ジカルボン酸、ジフェニル-4、4’-ジカルボン酸、及びアントラセンジカルボン酸などの芳香族多価カルボン酸;1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、及び1,4-シクロヘキサンジカルボン酸などの脂環式多価カルボン酸;マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、及びセバシン酸などの脂肪族多価カルボン酸;及びこれらのエステル形成性誘導体などをあげることができる。上記その他の多価カルボン酸としてはこれらの1種以上を用いることができる。 The component (A) may contain structural units derived from other polyvalent carboxylic acids other than terephthalic acid and isophthalic acid, as long as the object of the present invention is not adversely affected. Examples of the other polyvalent carboxylic acid include orthophthalic acid, naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyl-3,3′-dicarboxylic acid, diphenyl-4,4 Aromatic polycarboxylic acids such as' -dicarboxylic acid and anthracene dicarboxylic acid; alicyclic polycarboxylic acids such as 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,4-cyclohexanedicarboxylic acid Examples include acids; aliphatic polycarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid; and ester-forming derivatives thereof. One or more of these may be used as the other polycarboxylic acid.
 上記成分(A)は、本発明の目的に反しない限度において、1,4-シクロヘキサンジメタノール及び2,2,4,4,-テトラメチル-1,3-シクロブタンジオール以外のその他の多価オールに由来する構造単位を含んでいてもよい。上記その他の多価オールとしては、例えば、エチレングリコール、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ポリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、デカメチレングリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、グリセリン、及びトリメチロールプロパンなどの脂肪族多価アルコール;キシリレングリコール、4,4'-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物などの芳香族多価オール;及びこれらのエステル形成性誘導体などをあげることができる。上記多価オールとしてはこれらの1種以上を用いることができる。 The above component (A) is a polyvalent ol other than 1,4-cyclohexanedimethanol and 2,2,4,4, -tetramethyl-1,3-cyclobutanediol, as long as the object of the present invention is not adversely affected. The structural unit derived from may be included. Examples of the other polyols include ethylene glycol, diethylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol, polyethylene glycol, 1,2-propanediol, 1,3-propanediol, polypropylene glycol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, 3-methyl-1,5-pentane Aliphatic polyhydric alcohols such as diol, 2-methyl-1,3-propanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, glycerin, and trimethylolpropane; xylylene glycol, 4,4′- Aromatic polyols such as dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, bisphenol A, alkylene oxide adducts of bisphenol A; and ester-forming derivatives thereof Etc. One or more of these can be used as the polyvalent ol.
 上記成分(A)はガラス転移温度が高い(通常90℃以上、好ましくは100℃以上、より好ましくは110℃以上。)ため、本発明の制電性樹脂組成物は耐熱性に優れたものになる。また上記成分(A)は高度に透明であり、かつ非晶性又は低結晶性であり、上記成分(B)との混和性が良好であるため、本発明の制電性樹脂組成物は透明性に優れたものになる。 Since the component (A) has a high glass transition temperature (usually 90 ° C. or higher, preferably 100 ° C. or higher, more preferably 110 ° C. or higher), the antistatic resin composition of the present invention has excellent heat resistance. Become. In addition, since the component (A) is highly transparent, amorphous or low crystalline, and has good miscibility with the component (B), the antistatic resin composition of the present invention is transparent. It will be excellent.
 本明細書では、株式会社パーキンエルマージャパンのDiamond DSC型示差走査熱量計を使用し、試料を320℃で5分間保持した後、20℃/分の降温速度で-50℃まで冷却し、-50℃で5分間保持した後、20℃/分の昇温速度で320℃まで加熱するという温度プログラムで測定されるセカンド融解曲線(最後の昇温過程において測定される融解曲線)の融解熱量が、10J/g以下のポリエステル系樹脂を非結晶性、10J/gを超えて60J/g以下のポリエステル系樹脂を低結晶性と定義した。 In this specification, a Diamond DSC type differential scanning calorimeter manufactured by PerkinElmer Japan Co., Ltd. is used, and the sample is held at 320 ° C. for 5 minutes, then cooled to −50 ° C. at a temperature decrease rate of 20 ° C./min, and −50 The second melting curve (melting curve measured in the last heating step) measured by a temperature program of holding at 5 ° C. for 5 minutes and then heating to 320 ° C. at a heating rate of 20 ° C./min, A polyester resin of 10 J / g or less was defined as non-crystalline, and a polyester resin of more than 10 J / g and 60 J / g or less was defined as low crystallinity.
 本明細書において、ガラス転移温度は、株式会社パーキンエルマージャパンのDiamond DSC型示差走査熱量計を使用し、試料を50℃/分の昇温速度で200℃まで昇温し、200℃で10分間保持した後、20℃/分の降温速度で50℃まで冷却し、50℃で10分間保持した後、20℃/分の昇温速度で200℃まで加熱するという温度プログラムにおける最後の昇温過程において測定される曲線に現れるガラス転移について、ASTM D3418の図2に従い作図して算出した中間点ガラス転移温度である。 In this specification, the glass transition temperature is a Diamond DSC type differential scanning calorimeter manufactured by PerkinElmer Japan Co., Ltd., and the sample is heated to 200 ° C. at a heating rate of 50 ° C./min, and at 200 ° C. for 10 minutes. After the temperature is maintained, the temperature is lowered to 50 ° C. at a rate of temperature decrease of 20 ° C./min, held at 50 ° C. for 10 minutes, and then heated to 200 ° C. at a rate of temperature increase of 20 ° C./min. The glass transition temperature appearing in the curve measured in Fig. 2 is the midpoint glass transition temperature calculated by drawing according to FIG. 2 of ASTM D3418.
 上記ポリエステル系樹脂中の各成分に由来する構成単位の割合は13C-NMRやH-NMRを使用して求めることができる。H-NMRの測定例を図1に示す。 The proportion of the structural unit derived from each component in the polyester resin can be determined using 13 C-NMR or 1 H-NMR. An example of 1 H-NMR measurement is shown in FIG.
 13C-NMRスペクトルは、例えば、試料20mgをクロロホルム-d溶媒0.6mLに溶解し、125MHzの核磁気共鳴装置を使用し、以下の条件で測定することができる。
 ケミカルシフト基準 クロロホルム-d:77ppm
 測定モード シングルパルスプロトンブロードバンドデカップリング
 パルス幅 45°(5.00μ秒)
 ポイント数 64K
 観測範囲 250ppm(-25~225ppm)
 繰り返し時間 5.5秒
 積算回数 256回
 測定温度 23℃
 ウインドウ関数 exponential(BF:1.0Hz)
The 13 C-NMR spectrum can be measured, for example, by dissolving 20 mg of a sample in 0.6 mL of chloroform-d 1 solvent and using a 125 MHz nuclear magnetic resonance apparatus under the following conditions.
Chemical shift standard Chloroform-d 1 : 77 ppm
Measurement mode Single pulse proton broadband decoupling Pulse width 45 ° (5.00 μs)
64K points
Observation range 250ppm (-25 to 225ppm)
Repeat time 5.5 seconds Accumulation 256 times Measurement temperature 23 ° C
Window function exponential (BF: 1.0Hz)
 H-NMRスペクトルは、例えば、試料20mgをクロロホルム-d溶媒0.6mLに溶解し、400MHzの核磁気共鳴装置を使用し、以下の条件で測定することができる。
 ケミカルシフト基準 クロロホルム:7.24ppm
 測定モード シングルパルス
 パルス幅 45°(5.14μ秒)
 ポイント数 16k
 測定範囲 15ppm(-2.5~12.5ppm)
 繰り返し時間 7.8秒
 積算回数 64回
 測定温度 23℃
 ウインドウ関数 exponential(BF:0.18Hz)
The 1 H-NMR spectrum can be measured, for example, by dissolving 20 mg of a sample in 0.6 mL of chloroform-d 1 solvent and using a 400 MHz nuclear magnetic resonance apparatus under the following conditions.
Chemical Shift Standard Chloroform: 7.24ppm
Measurement mode Single pulse Pulse width 45 ° (5.14 μs)
Number of points 16k
Measurement range 15ppm (-2.5 to 12.5ppm)
Repetition time 7.8 seconds Integration count 64 times Measurement temperature 23 ° C
Window function exponential (BF: 0.18Hz)
 ピークの帰属は、「高分子分析ハンドブック(2008年9月20日初版第1刷、社団法人日本分析化学会高分子分析研究懇談会編、株式会社朝倉書店)の特に496~503頁」や「独立行政法人物質・材料研究機構材料情報ステーションのNMRデータベース(http://polymer.nims.go.jp/NMR/)」を参考に行い、ピーク面積比から上記成分(a)中の各成分の割合を算出することができる。なお13C-NMRやH-NMRの測定は、株式会社三井化学分析センターなどの分析機関において行うこともできる。 The attribution of the peak is “Polymer Analysis Handbook (first edition of September 20, 2008, first edition, edited by Japan Analytical Chemistry Society, Polymer Analysis Research Meeting, Asakura Shoten Co., Ltd.), especially pages 496-503” and “ The NMR database (http://polymer.nims.go.jp/NMR/) of the National Institute for Materials Science, National Institute for Materials Science, is used as a reference, and the peak area ratio of each component in the above component (a) is determined. The percentage can be calculated. Note that 13 C-NMR and 1 H-NMR measurements can also be carried out in an analysis organization such as Mitsui Chemical Analysis Center.
(B)ポリエーテルエステル樹脂:
 上記成分(B)は、スルホン酸塩基で置換された芳香族多価カルボン酸に由来する構造単位を有するポリエーテルエステル樹脂である。上記成分(B)は、制電性、及び透明性の観点から、好ましくは、
(b1)テレフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビフェニル-4,4’-ジカルボン酸、及びこれらのエステル形成性誘導体からなる群から選択される1種以上の芳香族ジカルボン酸に由来する構造単位;
(b2)下記式(1)で表される、スルホン酸塩基で置換された芳香族多価カルボン酸及び/又はそのエステル形成性誘導体に由来する構造単位;
(b3)数平均分子量200~50000のポリアルキレングリコールに由来する構造単位;及び、
(b4)炭素数2~10のグリコールに由来する構造単位;
を含み、ここで上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、上記成分(b1)に由来する構造単位を98~70モル%、上記成分(b2)に由来する構造単位を2~30モル%となる量で含み;上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和を100質量%として、上記成分(b3)に由来する構造単位の含有量が10~60質量%である;ポリエーテルエステル樹脂である。
(B) Polyetherester resin:
The component (B) is a polyether ester resin having a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group. The component (B) is preferably from the viewpoint of antistatic properties and transparency,
(B1) one or more selected from the group consisting of terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, and ester-forming derivatives thereof Structural units derived from aromatic dicarboxylic acids;
(B2) a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or an ester-forming derivative thereof, represented by the following formula (1);
(B3) a structural unit derived from a polyalkylene glycol having a number average molecular weight of 200 to 50,000;
(B4) a structural unit derived from a glycol having 2 to 10 carbon atoms;
Wherein the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%, and the structure derived from the component (b1). Containing 98 to 70 mol% of units and 2 to 30 mol% of structural units derived from the component (b2); content of structural units derived from the component (b1); The sum of the content of the structural unit derived from the content of the structural unit derived from the component (b3) and the content of the structural unit derived from the component (b4) is 100% by mass. The content of the derived structural unit is 10 to 60% by mass; a polyetherester resin.
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Arは少なくとも3つの水素原子が置換された芳香環構造を有する基;R1及びR2はそれぞれ独立に水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基;Mは金属イオン、テトラアルキルホスホニウムイオン又はテトラアルキルアンモニウムイオンを表す。
Figure JPOXMLDOC01-appb-C000003
In the formula (1), Ar is a group having an aromatic ring structure in which at least three hydrogen atoms are substituted; R1 and R2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms Group; M + represents a metal ion, a tetraalkylphosphonium ion or a tetraalkylammonium ion.
 上記成分(B)が、上記(b1)テレフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビフェニル-4,4’-ジカルボン酸、及びこれらのエステル形成性誘導体からなる群から選択される1種以上の芳香族ジカルボン酸に由来する構造単位を含むものであると、耐熱性が更に良好になるため好ましい。 The component (B) is composed of (b1) terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, and ester-forming derivatives thereof. It is preferable that it contains a structural unit derived from one or more aromatic dicarboxylic acids selected from the above because the heat resistance is further improved.
 上記成分(B)が、上記(b2)下記式(1)で表される、スルホン酸塩基で置換された芳香族多価カルボン酸及び/又はそのエステル形成性誘導体に由来する構造単位を含むものであると、制電性が更に良好になるため好ましい。 The component (B) contains a structural unit derived from (b2) an aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or an ester-forming derivative thereof represented by the following formula (1). It is preferable because the antistatic property is further improved.
 上記式(1)中のArは、Arは少なくとも3つの水素原子が置換された芳香環構造を有する基である。上記式(1)中のArとしては例えば、少なくとも3つの水素原子が置換されたベンゼン環構造を有する基、及び少なくとも3つの水素原子が置換されたナフタレン環構造を有する基をあげることができる。これらは3つの水素原子が上記式(1)により特定される3つの置換基により置換されるだけでなく、更に1つ以上の水素原子がアルキル基、フェニル基、ハロゲン基、及びアルコキシ基などの置換基により置換されたものであってよい。置換位置は制限されず、任意に選択することができる。上記式(1)中のArは好ましくは、重合性、機械特性、及び色調の観点から、水素原子3つが置換されたベンゼン環構造を有する基である。 Ar in the above formula (1) is a group having an aromatic ring structure in which at least three hydrogen atoms are substituted. Examples of Ar in the above formula (1) include a group having a benzene ring structure in which at least three hydrogen atoms are substituted, and a group having a naphthalene ring structure in which at least three hydrogen atoms are substituted. These not only replace three hydrogen atoms with three substituents specified by the above formula (1), but also one or more hydrogen atoms such as an alkyl group, a phenyl group, a halogen group, and an alkoxy group. It may be substituted with a substituent. The substitution position is not limited and can be arbitrarily selected. Ar in the formula (1) is preferably a group having a benzene ring structure in which three hydrogen atoms are substituted from the viewpoints of polymerizability, mechanical properties, and color tone.
 上記式(1)中のR1は水素原子、炭素数1~6のアルキル基、又は炭素数6~12のアリール基である。好ましくは水素原子、メチル基、エチル基、及びプロピル基などの炭素数1~3のアルキル基である。これらの中で、上記式(1)中のR1としては、重合性、機械特性、及び色調の観点から、メチル基及びエチル基が好ましい。 R1 in the above formula (1) is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Preferred are alkyl groups having 1 to 3 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, and a propyl group. In these, as R1 in the said Formula (1), a methyl group and an ethyl group are preferable from a viewpoint of polymerizability, mechanical characteristics, and color tone.
 上記式(1)中のR2は水素原子、炭素数1~6のアルキル基、又は炭素数6~12のアリール基である。好ましくは水素原子、メチル基、エチル基、及びプロピル基などの炭素数1~3のアルキル基である。これらの中で上記式(1)中のR2としては、重合性、機械特性、及び色調の観点から、メチル基及びエチル基が好ましい。 R2 in the above formula (1) is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Preferred are alkyl groups having 1 to 3 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, and a propyl group. Among these, as R2 in the above formula (1), a methyl group and an ethyl group are preferable from the viewpoints of polymerizability, mechanical properties, and color tone.
 上記式(1)中のR1とR2とは同じ構造であってもよく、違う構造であってもよい。上記式(1)中のR1とR2とは、それぞれ独立して、上記範囲内において任意の構造を取り得る。 In the above formula (1), R1 and R2 may have the same structure or different structures. R1 and R2 in the formula (1) can independently take an arbitrary structure within the above range.
 上記式(1)中のMは金属イオン、テトラアルキルホスホニウムイオン又はテトラアルキルアンモニウムイオンである。なお上記式(1)中のMが多価である場合には、これに対応する数のスルホン酸基(上記式(1)中のM以外の部分)が対応する。例えば、上記式(1)中のMが2価の金属イオンである場合には、1個の金属イオンに対して2個のスルホン酸基(上記式(1)中のM以外の部分)が対応する。 M + in the above formula (1) is a metal ion, a tetraalkylphosphonium ion or a tetraalkylammonium ion. In addition, when M <+> in the said Formula (1) is multivalent, the number of sulfonic acid groups (part other than M <+> in the said Formula (1)) corresponding to this correspond. For example, when M + in the above formula (1) is a divalent metal ion, two sulfonic acid groups (parts other than M + in the above formula (1)) per one metal ion ) Corresponds.
 上記金属イオンとしては、例えば、ナトリウムイオン、カリウムイオン、及びリチウムイオンなどのアルカリ金属イオン;カルシウムイオン、及びマグネシウムイオンなどのアルカリ土類金属イオン;及び亜鉛イオンなどをあげることができる。上記テトラアルキルホスホニウムイオンとしては、テトラブチルホスホニウムイオン、及びテトラメチルホスホニウムイオンなどをあげることができる。上記テトラアルキルアンモニウムイオンとしては、テトラブチルアンモニウムイオン、及びテトラメチルアンモニウムイオンなどをあげることができる。これらの中で上記式(1)中のMとしては、重合性、機械特性、制電性及び色調の観点から、アルカリ金属イオン、テトラブチルアンモニウムイオン、及びテトラブチルホスホニウムイオンが好ましい。より好ましくはアルカリ金属イオン及びテトラブチルホスホニウムイオンである。 Examples of the metal ions include alkali metal ions such as sodium ion, potassium ion, and lithium ion; alkaline earth metal ions such as calcium ion and magnesium ion; and zinc ion. Examples of the tetraalkylphosphonium ion include tetrabutylphosphonium ion and tetramethylphosphonium ion. Examples of the tetraalkylammonium ion include tetrabutylammonium ion and tetramethylammonium ion. Among these, as M + in the above formula (1), alkali metal ions, tetrabutylammonium ions, and tetrabutylphosphonium ions are preferable from the viewpoints of polymerizability, mechanical properties, antistatic properties, and color tone. More preferred are alkali metal ions and tetrabutylphosphonium ions.
 上記成分(b2)、即ち上記式(1)で表される、スルホン酸塩基で置換された芳香族多価カルボン酸及び/又はそのエステル形成性誘導体としては、例えば、4-ナトリウムスルホ-イソフタル酸、5-ナトリウムスルホ-イソフタル酸、4-カリウムスルホ-イソフタル酸、5-カリウムスルホ-イソフタル酸、2-ナトリウムスルホ-テレフタル酸、2-カリウムスルホ-テレフタル酸、4-スルホ-イソフタル酸亜鉛、5-スルホ-イソフタル酸亜鉛、2-スルホ-テレフタル酸亜鉛、4-スルホ-イソフタル酸テトラアルキルホスホニウム塩、5-スルホ-イソフタル酸テトラアルキルホスホニウム塩、4-スルホ-イソフタル酸テトラアルキルアンモニウム塩、5-スルホ-イソフタル酸テトラアルキルアンモニウム塩、2-スルホ-テレフタル酸テトラアルキルホスホニウム塩、2-スルホ-テレフタル酸テトラアルキルアンモニウム塩、4-ナトリウムスルホ-2、6-ナフタレンジカルボン酸、4-ナトリウムスルホ-2、7-ナフタレンジカルボン酸、4-カリウムスルホ-2、6-ナフタレンジカルボン酸、4-スルホ-2、6-ナフタレンジカルボン酸亜鉛塩、4-スルホ-2、6-ナフタレンジカルボン酸テトラアルキルホスホニウム塩、4-スルホ-2、7-ナフタレンジカルボン酸テトラアルキルホスホニウム塩、これらのジメチルエステル、及びこれらのジエチルエステルなどをあげることができる。 Examples of the component (b2), that is, the aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or its ester-forming derivative represented by the above formula (1) include 4-sodium sulfo-isophthalic acid. 5-sodium sulfo-isophthalic acid, 4-potassium sulfo-isophthalic acid, 5-potassium sulfo-isophthalic acid, 2-sodium sulfo-terephthalic acid, 2-potassium sulfo-terephthalic acid, zinc 4-sulfo-isophthalic acid, 5 -Zinc sulfo-isophthalate, zinc 2-sulfo-terephthalate, 4-sulfo-isophthalic acid tetraalkylphosphonium salt, 5-sulfo-isophthalic acid tetraalkylphosphonium salt, 4-sulfo-isophthalic acid tetraalkylammonium salt, 5- Sulfo-isophthalic acid tetraalkylammonium salt, 2- Rufo-terephthalic acid tetraalkylphosphonium salt, 2-sulfo-terephthalic acid tetraalkylammonium salt, 4-sodium sulfo-2,6-naphthalenedicarboxylic acid, 4-sodium sulfo-2,7-naphthalenedicarboxylic acid, 4-potassium sulfone -2,6-naphthalenedicarboxylic acid, 4-sulfo-2,6-naphthalenedicarboxylic acid zinc salt, 4-sulfo-2,6-naphthalenedicarboxylic acid tetraalkylphosphonium salt, 4-sulfo-2,7-naphthalenedicarboxylic acid Examples thereof include tetraalkylphosphonium salts, dimethyl esters thereof, and diethyl esters thereof.
 これらの中で上記成分(b2)としては、重合性、機械特性、及び色調の観点から、4-ナトリウムスルホ-イソフタル酸ジメチル、5-ナトリウムスルホ-イソフタル酸ジメチル、4-カリウムスルホ-イソフタル酸ジメチル、5-カリウムスルホ-イソフタル酸ジメチル、2-ナトリウムスルホ-テレフタル酸ジメチル、及び2-カリウムスルホ-テレフタル酸ジメチルが好ましい。 Among them, the component (b2) includes 4-sodium sulfo-isophthalate dimethyl, 5-sodium sulfo-isophthalate dimethyl, 4-potassium sulfo-isophthalate dimethyl from the viewpoints of polymerizability, mechanical properties, and color tone. , 5-potassium sulfo-dimethyl isophthalate, 2-sodium sulfo-dimethyl terephthalate, and 2-potassium sulfo-dimethyl terephthalate are preferred.
 上記成分(B)が、上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、上記成分(b1)に由来する構造単位を98~70モル%、好ましくは97~71モル%、より好ましくは95~73モル%、更に好ましくは91~75モル%となる量で含み、上記成分(b2)に由来する構造単位を2~30モル%、好ましくは3~29モル%、より好ましくは5~27モル%、更に好ましくは9~25モル%となる量で含むものであることは好ましい。 The component (B) is derived from the component (b1), where the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%. A structural unit derived from the above component (b2), in an amount of 98 to 70 mol%, preferably 97 to 71 mol%, more preferably 95 to 73 mol%, still more preferably 91 to 75 mol%. It is preferable that the unit is contained in an amount of 2 to 30 mol%, preferably 3 to 29 mol%, more preferably 5 to 27 mol%, still more preferably 9 to 25 mol%.
 上記成分(B)が、上記成分(b1)に由来する構造単位と上記成分(b2)に由来する構造単位を、上記範囲内となるように含むと、本発明の制電性樹脂組成物は、制電性が更に良好なものになる。また水洗いしたり拭取りを行ったりしても、良好な制電性を維持することができる。また十分な分子量と結晶性を有し、取扱性の良好なものになる。 When the component (B) includes the structural unit derived from the component (b1) and the structural unit derived from the component (b2) so as to fall within the above range, the antistatic resin composition of the present invention is The antistatic property is further improved. Moreover, even if washed with water or wiped off, good antistatic properties can be maintained. In addition, it has sufficient molecular weight and crystallinity, and is easy to handle.
 上記成分(B)が、(b3)数平均分子量200~50000のポリアルキレングリコールに由来する構造単位を含むと、制電特性が更に良好になるため好ましい。 It is preferable that the component (B) contains (b3) a structural unit derived from a polyalkylene glycol having a number average molecular weight of 200 to 50,000, since the antistatic property is further improved.
 上記成分(b3)、即ち数平均分子量200~50000のポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、エチレングリコールを主モノマー(通常60モル%以上、好ましくは80モル%以上)としてプロピレングリコールなどをコモノマーとする共重合体、エチレングリコール、プロピレングリコールなどのアルキレングリコールを主モノマーとして少量(通常10モル%以下、好ましくは5モル%以下、より好ましくは1モル%以下。)の芳香族多価オールをコモノマーとする共重合体、及びこれらの混合物などをあげることができる。 Examples of the component (b3), that is, a polyalkylene glycol having a number average molecular weight of 200 to 50,000 include propylene glycol using polyethylene glycol, polypropylene glycol, and ethylene glycol as main monomers (usually 60 mol% or more, preferably 80 mol% or more). A small amount (usually 10 mol% or less, preferably 5 mol% or less, more preferably 1 mol% or less) of a polyaromatic copolymer having ethylene as a comonomer and alkylene glycol such as ethylene glycol or propylene glycol as a main monomer. Examples thereof include a copolymer having a valence ol as a comonomer, and a mixture thereof.
 上記成分(b3)の数平均分子量は、制電性、分散性、及び耐熱性の観点から、200~50000、好ましくは500~30000、より好ましくは1000~20000である。 The number average molecular weight of the component (b3) is 200 to 50000, preferably 500 to 30000, more preferably 1000 to 20000 from the viewpoints of antistatic properties, dispersibility, and heat resistance.
 上記成分(B)の上記成分(b3)に由来する構造単位の含有量は、制電性、取扱性、及び耐熱性の観点から、10~60質量%、好ましくは15~55質量%、より好ましくは20~50質量%である。ここで上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和は100質量%である。 The content of the structural unit derived from the component (b3) in the component (B) is from 10 to 60% by mass, preferably from 15 to 55% by mass, from the viewpoint of antistatic properties, handleability, and heat resistance. The amount is preferably 20 to 50% by mass. Here, the content of the structural unit derived from the component (b1), the content of the structural unit derived from the component (b2), the content of the structural unit derived from the component (b3), and the component (b4) The sum of the content of structural units derived from is 100% by mass.
 上記成分(B)が、(b4)炭素数2~10のグリコールに由来する構造単位を含むと、制電性、取扱性、及び耐熱性が更に良好になるため好ましい。 It is preferable that the component (B) contains (b4) a structural unit derived from a glycol having 2 to 10 carbon atoms because the antistatic property, handleability and heat resistance are further improved.
 上記成分(b4)、即ち炭素数2~10のグリコールとしては、エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、1,2-シクロヘキサンジオール、及び1,4-シクロヘキサンジオールなどの脂肪族グリコール;ジエチレングリコールなどのエーテル結合を有するグリコール;及びチオジエタノールなどのチオエーテル結合を有するグリコールなどをあげることができる。上記成分(b4)としては、制電性、結晶性、及び取扱性の観点から、1,6-ヘキサンジオール、エチレングリコール、及びジエチレングリコールが好ましい。上記成分(b4)としてはこれらの1種以上を用いることができる。 Examples of the component (b4), that is, a glycol having 2 to 10 carbon atoms, include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexanediol. , Aliphatic glycols such as 3-methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, 1,2-cyclohexanediol, and 1,4-cyclohexanediol; having an ether bond such as diethylene glycol And glycols having a thioether bond such as thiodiethanol. As the component (b4), 1,6-hexanediol, ethylene glycol, and diethylene glycol are preferable from the viewpoint of antistatic properties, crystallinity, and handleability. One or more of these can be used as the component (b4).
 上記成分(B)のJIS K7367-1:2002に準拠し、当該規格図2のDINウベローデ形粘度計(毛細管直径0.63mm)、フェノール/テトラクロロエタン(質量比60/40)の混合溶媒を用い、濃度1.2g/dl、温度35℃の条件で測定した還元粘度は、制電性、耐熱性、及び機械物性の観点から、好ましくは0.2cm/g以上、より好ましくは0.25cm/g以上、更に好ましくは0.3cm/g以上、一方、制電性の観点から、1.8cm/g以下であってよい。 In accordance with JIS K7367-1: 2002 of the above component (B), a DIN Ubbelohde viscometer (capillary diameter 0.63 mm) and a mixed solvent of phenol / tetrachloroethane (mass ratio 60/40) shown in FIG. The reduced viscosity measured under conditions of a concentration of 1.2 g / dl and a temperature of 35 ° C. is preferably 0.2 cm 3 / g or more, more preferably 0.25 cm, from the viewpoint of antistatic properties, heat resistance, and mechanical properties. 3 / g or more, more preferably 0.3 cm 3 / g or more, and from the viewpoint of antistatic properties, it may be 1.8 cm 3 / g or less.
 上記成分(B)を、上記成分(b1)~(b4)を用いて得る方法は特に制限されず、任意の方法で行うことができる。例えば、上記成分(B)は、上記成分(b1)~(b4)をエステル交換触媒の存在下、150~300℃に加熱溶融し、重縮合反応させることにより得ることができる。 The method for obtaining the component (B) using the components (b1) to (b4) is not particularly limited, and can be performed by any method. For example, the component (B) can be obtained by heat-melting the components (b1) to (b4) at 150 to 300 ° C. in the presence of a transesterification catalyst to cause a polycondensation reaction.
 上記エステル交換触媒としては、特に制限されず、任意のエステル交換触媒を用いることができる。上記エステル交換触媒としては、例えば、三酸化ニアンチモンなどアンチモン化合物;酢酸第一錫、ジブチル錫オキサイド、及びジブチル錫ジアセテートなどの錫化合物;テトラブチルチタネートなどのチタン化合物;酢酸亜鉛などの亜鉛化合物;酢酸カルシウムなどのカルシウム化合物;炭酸ナトリウム、及び炭酸カリウムなどのアルカリ金属塩などをあげることができる。これら中でテトラブチルチタネートが好ましい。上記エステル交換触媒としては、これらの1種以上を用いることができる。 The transesterification catalyst is not particularly limited, and any transesterification catalyst can be used. Examples of the transesterification catalyst include antimony compounds such as antimony trioxide; tin compounds such as stannous acetate, dibutyltin oxide, and dibutyltin diacetate; titanium compounds such as tetrabutyl titanate; zinc compounds such as zinc acetate. A calcium compound such as calcium acetate; and alkali metal salts such as sodium carbonate and potassium carbonate. Of these, tetrabutyl titanate is preferred. One or more of these can be used as the transesterification catalyst.
 上記エステル交換触媒の使用量は、特に制限されないが、上記成分(b1)1モルに対し、通常0.01~0.5モル%、好ましくは0.03~0.3モル%である。 The amount of the transesterification catalyst used is not particularly limited, but is usually 0.01 to 0.5 mol%, preferably 0.03 to 0.3 mol%, relative to 1 mol of the component (b1).
 また、上記重縮合反応時に酸化防止剤などの各種安定剤を併用することは好ましい。 In addition, it is preferable to use various stabilizers such as an antioxidant in the polycondensation reaction.
 上記重縮合反応は、留出物を留去しながら150~250℃、好ましくは150~200℃で1~20時間程度行った後、温度を180~300℃、好ましくは200~280℃、より好ましくは220~260℃に上げて更に1~20時間程度行うことが好ましい。上記成分(B)を、好ましい範囲の還元粘度を有するものにすることができる。 The polycondensation reaction is carried out at 150 to 250 ° C., preferably 150 to 200 ° C. for about 1 to 20 hours while distilling off the distillate, and then the temperature is 180 to 300 ° C., preferably 200 to 280 ° C. The temperature is preferably raised to 220 to 260 ° C. and further for about 1 to 20 hours. The component (B) can have a reduced viscosity within a preferred range.
 上記成分(B)の市販例としては、竹本油脂株式会社の「エレカットR02(商品名)」等をあげることができる。 As a commercial example of the above component (B), “Elecut R02 (trade name)” by Takemoto Yushi Co., Ltd. can be exemplified.
 上記成分(B)の配合量は、上記成分(A)100質量部に対して、制電性の観点から、7質量部以上、好ましくは9質量部以上、より好ましくは12質量部以上である。一方、耐アウトガス性、及び透明性の観点から25質量部以下、好ましくは22質量部以下、より好ましくは20質量部以下である。 The blending amount of the component (B) is 7 parts by mass or more, preferably 9 parts by mass or more, more preferably 12 parts by mass or more, from the viewpoint of antistatic properties with respect to 100 parts by mass of the component (A). . On the other hand, from the viewpoint of outgas resistance and transparency, it is 25 parts by mass or less, preferably 22 parts by mass or less, more preferably 20 parts by mass or less.
(C)イオン性界面活性剤(任意成分):
 本発明の制電性樹脂組成物は、上述したように、イオン性界面活性剤を使用しなくても十分な制電性を発現するものであるが、イオン性界面活性剤を使用することを排除するものではない。制電性樹脂組成物を、例えば、初期の制電性が特に重視される用途や、アウトガスやブリードアウトの問題を考慮する必要性が低い用途に用いる場合には、本発明の制電性樹脂組成物はイオン性界面活性剤を含むものであってよい。
(C) Ionic surfactant (optional component):
As described above, the antistatic resin composition of the present invention expresses sufficient antistaticity without using an ionic surfactant, but it is necessary to use an ionic surfactant. It is not excluded. The antistatic resin composition of the present invention is used when the antistatic resin composition is used for, for example, an application in which the initial antistatic property is particularly important, or an application in which the necessity of considering outgas and bleedout problems is low. The composition may comprise an ionic surfactant.
 成分(C)イオン性界面活性剤を用いる場合の配合量は、任意成分で有るから特に制限されないが、上記成分(A)100質量部に対して、0.5~5質量部であってよい。 The amount of the component (C) ionic surfactant used is not particularly limited because it is an optional component, but may be 0.5 to 5 parts by mass with respect to 100 parts by mass of the component (A). .
 上記成分(C)としては、例えば、有機スルホン酸と塩基からなる有機スルホン酸型界面活性剤をあげることができる。 Examples of the component (C) include an organic sulfonic acid type surfactant composed of an organic sulfonic acid and a base.
 上記有機スルホン酸としては、例えば、オクチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ジブチルベンゼンスルホン酸、及びジノニルベンゼンスルホン酸等のアルキル基の炭素数が6~18のアルキルベンゼンスルホン酸;及び、ジメチルナフタレンスルホン酸、ジイソプロピルナフタレンスルホン酸、及びジブチルナフタレンスルホン酸等のアルキル基の炭素数が2~18のアルキルナフタレンスルホン酸;などをあげることができる。これらの中で、ドデシルベンゼンスルホン酸、及びジメチルナフタレンスルホン酸が好ましい。上記有機スルホン酸としてはこれらの1種以上を用いることができる。 Examples of the organic sulfonic acid include alkyl benzene sulfonic acids having 6 to 18 carbon atoms in the alkyl group such as octyl benzene sulfonic acid, dodecyl benzene sulfonic acid, dibutyl benzene sulfonic acid, and dinonyl benzene sulfonic acid; and dimethylnaphthalene And alkylnaphthalenesulfonic acid having 2 to 18 carbon atoms in the alkyl group such as sulfonic acid, diisopropylnaphthalenesulfonic acid, and dibutylnaphthalenesulfonic acid. Among these, dodecylbenzenesulfonic acid and dimethylnaphthalenesulfonic acid are preferable. One or more of these organic sulfonic acids can be used.
 上記塩基としては、例えば、リチウム、ナトリウム、及びカリウム等のアルカリ金属;テトラブチルホスホニウム、トリブチルベンジルホスホニウム、トリエチルヘキサデシルホスホニウム、及びテトラフェニルホスホニウム等のホスホニウム化合物;及び、テトラブチルアンモニウム、トリブチルベンジルアンモニウム、及びトリフェニルベンジルアンモニウム等のアンモニウム化合物などをあげることができる。これらの中で、ナトリウム、カリウム、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラヘキシルホスホニウム、テトラオクチルホスホニウム、テトラブチルホスホニウム、トリブチルベンジルホスホニウム、トリエチルヘキサデシルホスホニウム、及びテトラフェニルホスホニウムが好ましい。上記塩基としてはこれらの1種以上を用いることができる。 Examples of the base include alkali metals such as lithium, sodium, and potassium; phosphonium compounds such as tetrabutylphosphonium, tributylbenzylphosphonium, triethylhexadecylphosphonium, and tetraphenylphosphonium; and tetrabutylammonium, tributylbenzylammonium, And ammonium compounds such as triphenylbenzylammonium. Of these, sodium, potassium, tetramethylphosphonium, tetraethylphosphonium, tetrahexylphosphonium, tetraoctylphosphonium, tetrabutylphosphonium, tributylbenzylphosphonium, triethylhexadecylphosphonium, and tetraphenylphosphonium are preferred. One or more of these can be used as the base.
 上記成分(C)の好ましいものとしては、アウトガスの抑制効果と制電性の観点から、上記塩基がホスホニウム化合物であるもの、例えば、ドデシルベンゼンスルホン酸テトラブチルホスホニウムなどをあげることができる。 Preferred examples of the component (C) include those in which the base is a phosphonium compound, for example, tetrabutylphosphonium dodecylbenzenesulfonate, from the viewpoint of suppressing outgas and antistatic properties.
 本発明の制電性樹脂組成物の体積抵抗率は、好ましくは10の10乗Ω・cm以下であり、より好ましくは10の9乗~10の10乗Ω・cmである。更に好ましくは、体積抵抗率が10の9乗~10の10乗Ω・cmであり、水洗いしたり拭取りを行ったりしても上記制電性が維持される。 The volume resistivity of the antistatic resin composition of the present invention is preferably 10 10 Ω · cm or less, more preferably 10 9 to 10 10 Ω · cm. More preferably, the volume resistivity is 10 9 to 10 10 Ω · cm, and the antistatic property is maintained even after washing with water or wiping.
 本明細書において、体積抵抗率は、下記試験(2)に従い測定した値である。 In this specification, the volume resistivity is a value measured according to the following test (2).
 本発明の制電性樹脂組成物のアウトガス量は、好ましくは2μg/g以下、より好ましくは1μg/g以下である。通常の用途であれば、アウトガス量が2μg/g以下であることにより、好ましく用いることができる。精密電子機器など特にアウトガス量の低いことが求められる用途であっても、アウトガス量が1μg/g以下であることにより、好ましく用いることができる。本明細書においてアウトガス量は、下記試験(5)に従い測定した、試料1gから発生するアウトガスの量(μg)である。 The outgas amount of the antistatic resin composition of the present invention is preferably 2 μg / g or less, more preferably 1 μg / g or less. If it is a normal use, it can be preferably used when the outgas amount is 2 μg / g or less. Even applications that require a particularly low outgas amount, such as precision electronic equipment, can be preferably used when the outgas amount is 1 μg / g or less. In this specification, the amount of outgas is the amount (μg) of outgas generated from 1 g of the sample, measured according to the following test (5).
 本発明の制電性樹脂組成物には、所望に応じて、上記の成分の他に、更に上記成分(A)及び上記成分(B)以外の熱可塑性樹脂、上記成分(C)以外の界面活性剤、熱安定剤、酸化防止剤、加水分解防止剤、金属不活性剤、紫外線吸収剤、帯電防止剤、滑剤、及び着色剤などを含ませることができる。 In addition to the above components, the antistatic resin composition of the present invention may further include a thermoplastic resin other than the component (A) and the component (B), and an interface other than the component (C). Activators, heat stabilizers, antioxidants, hydrolysis inhibitors, metal deactivators, UV absorbers, antistatic agents, lubricants, colorants, and the like can be included.
 本発明の制電性樹脂組成物に、熱安定剤類や酸化防止剤を含ませることは好ましい。大きな成形品を成形する際にも着色や焼けなどの成形トラブルを防止することができる。本発明の制電性樹脂組成物に、金属不活性剤を含ませることは好ましい。金属と接触する部品に用いられた場合でも、当該接触部分の腐食・変色を防止することができる。 It is preferable that the antistatic resin composition of the present invention contains a heat stabilizer or an antioxidant. Even when molding a large molded product, molding troubles such as coloring and burning can be prevented. It is preferable to include a metal deactivator in the antistatic resin composition of the present invention. Even when used in parts that come into contact with metal, corrosion and discoloration of the contact portion can be prevented.
 上記酸化防止剤としては、例えば、2,6‐ジ‐tert‐p‐ブチル‐p‐クレゾール、2,6‐ジ‐tert‐ブチルフェノール、2,4‐ジメチル‐6‐tert‐ブチルフェノール、4,4‐ジヒドロキシジフェニル、及びトリス(2‐メチル‐4‐ヒドロキシ‐5‐tert‐ブチルフェニル)ブタンなどのフェノール系酸化防止剤;ホスファイト系酸化防止剤;及び、チオエーテル系酸化防止剤などをあげることができる。これらの中で、フェノール系酸化防止剤、及びホスファイト系酸化防止剤が好ましい。 Examples of the antioxidant include 2,6-di-tert-p-butyl-p-cresol, 2,6-di-tert-butylphenol, 2,4-dimethyl-6-tert-butylphenol, 4,4 Phenolic antioxidants such as 2-dihydroxydiphenyl and tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane; phosphite antioxidants; and thioether antioxidants it can. Of these, phenolic antioxidants and phosphite antioxidants are preferred.
 本発明の制電性樹脂組成物は、上記成分(A)、上記成分(B)、及び任意成分を、任意の順序で、又は同時に、溶融混練することにより製造することができる。溶融混練の方法は特に制限はなく、公知の方法を使用し得る。例えば、単軸押出機、二軸押出機、ロール、ミキサー又は各種のニーダー等を使用し得る。ミキサーやニーダーを使用する場合には、例えば、排出温度240~260℃の条件で溶融混練を行うことが好ましい。二軸混練機を使用する場合には、例えば、スクリュー回転数50~500rpm、混練温度240~260℃で溶融混練を行うことが好ましい。 The antistatic resin composition of the present invention can be produced by melt-kneading the component (A), the component (B), and an optional component in an arbitrary order or simultaneously. The method of melt kneading is not particularly limited, and a known method can be used. For example, a single screw extruder, a twin screw extruder, a roll, a mixer, or various kneaders can be used. When using a mixer or kneader, for example, it is preferable to perform melt-kneading under conditions of a discharge temperature of 240 to 260 ° C. When a biaxial kneader is used, it is preferable to perform melt kneading at a screw rotation speed of 50 to 500 rpm and a kneading temperature of 240 to 260 ° C., for example.
 本発明の制電性樹脂組成物は、公知の成形方法を使用して、任意の成形品に成形加工することができる。上記成形方法としては、例えば、一般的な射出成形法、インサート成形法、二色成形法、サンドイッチ成形法、ガスインジェクション法、異型押出成形法、二色押出成形法、被覆成形法、及びシート・フイルム押出成形法などをあげることができる。 The antistatic resin composition of the present invention can be molded into an arbitrary molded product using a known molding method. Examples of the molding method include a general injection molding method, insert molding method, two-color molding method, sandwich molding method, gas injection method, profile extrusion molding method, two-color extrusion molding method, coating molding method, and sheet For example, a film extrusion method can be used.
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example explains the present invention, the present invention is not limited to these.
測定方法
(1)成形性:
 型締め力120tonの射出成形機を使用し、縦64.4mmm、横64.4mm、厚み3mmの射出成形プレートを、シリンダー温度240~260℃、金型温度50℃、冷却時間5分の条件で成形した。得られたプレートを目視観察し、以下の基準で評価した。
  ○:ヒケ及び反りは認められない。
  ×:ヒケ若しくは反り、又はヒケ及び反りが認められる
Measuring method (1) Formability:
Using an injection molding machine with a clamping force of 120 tons, an injection molded plate with a length of 64.4 mm, a width of 64.4 mm, and a thickness of 3 mm is obtained under the conditions of a cylinder temperature of 240 to 260 ° C., a mold temperature of 50 ° C., and a cooling time of 5 minutes. Molded. The obtained plate was visually observed and evaluated according to the following criteria.
○: Sink and warp are not recognized.
X: Sink or warp, or sink and warp
(2)体積抵抗率(制電性):
 ASTM D257規格(1987年版)に準拠し、二重リングプローブ法(リングプローブ法)により測定した。即ち、上記試験(1)の方法で得た射出成形プレートを試験片とし、温度23±2 ℃、相対湿度50±5%の試験室において40時間以上状態調整を行った後、株式会社三菱化学アナリテックの抵抗率計「ハイレスタ UP MCP-HT450型(商品名)」、株式会社三菱化学アナリテックの二重リングプローブ(リング形状は、主電極外径0.59cm、ガード電極内径1.1cm。)「URSプローブ(商品名)」、及び株式会社三菱化学アナリテックのレジテーブル「UFL(商品名」を使用し、印加電圧500V、測定時間60秒の条件で測定した。測定は1つの試験片について2箇所の測定位置において行い、これを3つの試験片について行い、合計6個の測定値の平均値を、このサンプルの体積抵抗率とした。
 なお電気抵抗率測定方法及びその理論については、株式会社三菱化学アナリテックのホームページ(http://www.mccat.co.jp/3seihin/genri/ghlup2.htm)などを参照することができる。
(2) Volume resistivity (antistatic):
In accordance with the ASTM D257 standard (1987 version), the measurement was performed by the double ring probe method (ring probe method). That is, the injection molded plate obtained by the method of the above test (1) was used as a test piece, and after conditioning for 40 hours or more in a test room at a temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5%, Mitsubishi Chemical Corporation Analitech's resistivity meter “HIRESTA UP MCP-HT450 (trade name)”, Mitsubishi Chemical Analitech's double ring probe (ring shape: main electrode outer diameter 0.59 cm, guard electrode inner diameter 1.1 cm). ) Measured under the conditions of an applied voltage of 500 V and a measurement time of 60 seconds using a “URS probe (trade name)” and a register table “UFL (trade name)” of Mitsubishi Chemical Analytech Co., Ltd. Measurement was performed on one test piece. This was performed at two measurement positions, and this was performed for three test pieces. The average value of a total of six measurement values was taken as the volume resistivity of this sample.
In addition, about the electrical resistivity measurement method and its theory, the homepage (http://www.mccat.co.jp/3seihin/genri/ghlup2.html) of Mitsubishi Chemical Analytech Co., Ltd. can be referred.
(3)水洗浄後の体積抵抗率(制電性の耐久性1):
 上記試験(1)の方法で得た射出成形プレートを、25℃の蒸留水を充填した水槽中で、プレートの表面をガーゼ(川本産業株式会社の医療用タイプ1ガーゼ)で10分間洗浄し、清浄な紙で水分を拭き取った後、温度23±2 ℃、相対湿度50±5%の試験室にて24時間以上乾燥し、上記試験(2)の方法に従い体積抵抗率を測定した。
(3) Volume resistivity after washing with water (antistatic durability 1):
In the water tank filled with distilled water at 25 ° C., the surface of the injection molded plate obtained by the test (1) was washed with gauze (medical type 1 gauze from Kawamoto Sangyo Co., Ltd.) for 10 minutes, After wiping off moisture with clean paper, it was dried in a test room at a temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5% for 24 hours or more, and the volume resistivity was measured according to the method of test (2).
(4)払拭後の体積抵抗率(制電性の耐久性2):
 上記試験(1)の方法で得た射出成形プレートを、JIS L 0849の学振試験機に置き、学振試験機の摩擦端子に、4枚重ねのガーゼ(川本産業株式会社の医療用タイプ1ガーゼ)で覆ったステンレス板(縦10mm、横10mm、厚み1mm)を取付け、該ステンレス板の縦横面が試験片と接触するようにセットし、350g荷重を載せ、試験片を、摩擦端子の移動距離60mm、速度1往復/秒の条件で往復300回払拭した後、上記試験(2)の方法に従い、試験片の払拭箇所の体積抵抗率を測定した。
(4) Volume resistivity after wiping (anti-static durability 2):
The injection-molded plate obtained by the method of the above test (1) is placed on a Gakushin tester of JIS L 0849, and four layers of gauze (medical type 1 of Kawamoto Sangyo Co., Ltd.) is placed on the friction terminal of the Gakushin tester. Attach a stainless steel plate (length 10 mm, width 10 mm, thickness 1 mm) covered with gauze), set the stainless steel plate so that the vertical and horizontal surfaces are in contact with the test piece, place a 350 g load, and move the test piece to the friction terminal After wiping 300 times under the conditions of a distance of 60 mm and a speed of 1 reciprocation / second, the volume resistivity of the wiping location of the test piece was measured according to the method of test (2).
(5)アウトガス量:
 測定には、パーキンエルマー社の加熱脱着式ガスクロマトグラフ質量分析装置を使用した。
 (5-1)加熱脱着法によるアウトガスの捕集:
 樹脂組成物を冷凍粉砕して2mm角以下の粉砕物とし、上記で得た粉砕物0.1gを、上記装置の捕集ユニットのサンプルホルダに入れ、120℃で10分間加熱し、発生した揮発性物質を、キャリアガスとしてヘリウムガスを使用して、5℃に保たれた冷却トラップ管に捕集した。
 (5-2)揮発性物質(アウトガス)の定量:
 上記(5-1)で揮発性物質をトラップした冷却トラップ管を昇温速度40℃/秒で300℃まで加熱し、離脱するガスを上記装置のガスクロマトグラフ質量分析ユニットに供給し、その発生量を定量した。このとき標準サンプル(所定量のn-デカンを、ジーエルサイエンス株式会社の2,6‐ジフェニル‐パラ‐フェニレンオキサイドをベースにした弱極性のポーラスポリマービーズ吸着剤「TenaxTA(商品名)」に含浸させたもの)を用いて、上記の方法と同様に測定して作成した検量線を使用した。
(5) Outgas amount:
For the measurement, a heat desorption gas chromatograph mass spectrometer manufactured by PerkinElmer was used.
(5-1) Collection of outgas by thermal desorption method:
The resin composition is frozen and pulverized to obtain a pulverized product of 2 mm square or less, and 0.1 g of the pulverized product obtained above is placed in a sample holder of the collection unit of the above apparatus and heated at 120 ° C. for 10 minutes to generate generated volatilization. The substance was collected in a cold trap tube maintained at 5 ° C. using helium gas as the carrier gas.
(5-2) Determination of volatile substances (outgas):
The cooled trap tube trapped with the volatile substance in (5-1) above is heated to 300 ° C. at a heating rate of 40 ° C./sec, and the released gas is supplied to the gas chromatograph mass spectrometric unit of the above apparatus. Was quantified. At this time, a standard sample (a predetermined amount of n-decane was impregnated with “TenaxTA” (trade name), a weakly polar porous polymer bead adsorbent based on 2,6-diphenyl-para-phenylene oxide of GL Sciences Inc. And a calibration curve prepared by measurement in the same manner as described above was used.
(6)ヘーズ(透明性):
 型締め力120tonの射出成形機を使用し、縦60mm、横60mm、厚み0.5mmの射出成形シートを、シリンダー温度240~260℃、金型温度50℃、冷却時間5分の条件で成形し、得られた射出成形シートのヘーズを、JIS K 7136:2000に従い、日本電色工業株式会社の濁度計「NDH2000(商品名)」を用いて測定した。以下の基準で評価した。
  ◎:5%未満
  ○:5%以上50%未満 
  ×:50%超
(6) Haze (transparency):
Using an injection molding machine with a clamping force of 120 tons, an injection molded sheet with a length of 60 mm, a width of 60 mm, and a thickness of 0.5 mm was molded under conditions of a cylinder temperature of 240 to 260 ° C, a mold temperature of 50 ° C, and a cooling time of 5 minutes. The haze of the obtained injection-molded sheet was measured according to JIS K 7136: 2000 using a turbidimeter “NDH2000 (trade name)” manufactured by Nippon Denshoku Industries Co., Ltd. Evaluation was made according to the following criteria.
◎: Less than 5% ○: 5% or more and less than 50%
×: Over 50%
(7)熱変形温度(耐熱性):
 ASTM D648-07に準拠し、型締め力120tonの射出成形機を使用し、シリンダー温度240~260℃、金型温度50℃、冷却時間5分の条件で成形した長さ127mm、高さ13mm、厚み6mmの試験片を用い、支点間距離100.0mm(B法)、荷重1.82MPa 、昇温速度2℃の条件で測定した。
(7) Thermal deformation temperature (heat resistance):
In accordance with ASTM D648-07, using an injection molding machine with a clamping force of 120 ton, a cylinder temperature of 240 to 260 ° C, a mold temperature of 50 ° C, a cooling time of 5 minutes, a length of 127mm, a height of 13mm, A test piece having a thickness of 6 mm was used, and measurement was performed under the conditions of a fulcrum distance of 100.0 mm (Method B), a load of 1.82 MPa, and a temperature increase rate of 2 ° C.
使用した原材料
(A)ポリエステル系樹脂:
 (A-1)多価カルボン酸に由来する構造単位の総和を100モル%として、テレフタル酸に由来する構造単位100モル%、多価オールに由来する構造単位の総和を100モル%として、1,4-シクロヘキサンジメタノールに由来する構造単位77モル%、及び2,2,4,4,-テトラメチル-1,3-シクロブタンジオールに由来する構造単位23モル%を含むポリエステル系樹脂。ガラス転移温度108℃、融解熱量0J/g(DSCセカンド融解曲線に明瞭な融解ピークなし)。
 (A-2)多価カルボン酸に由来する構造単位の総和を100モル%として、テレフタル酸に由来する構造単位100モル%、多価オールに由来する構造単位の総和を100モル%として、1,4-シクロヘキサンジメタノールに由来する構成単位64モル%、及び2,2,4,4,-テトラメチル-1,3-シクロブタンジオールに由来する構成単位36モル%を含むポリエステル系樹脂。ガラス転移温度119℃、融解熱量0J/g(DSCセカンド融解曲線に明瞭な融解ピークなし)。
Raw material used (A) Polyester resin:
(A-1) The sum of structural units derived from polyvalent carboxylic acid is defined as 100 mol%, the structural unit derived from terephthalic acid is defined as 100 mol%, and the sum of structural units derived from polyvalent ol is defined as 100 mol%. Polyester resin containing 77 mol% of structural units derived from 1,4-cyclohexanedimethanol and 23 mol% of structural units derived from 2,2,4,4, -tetramethyl-1,3-cyclobutanediol. Glass transition temperature 108 ° C., heat of fusion 0 J / g (no clear melting peak in DSC second melting curve).
(A-2) The sum of the structural units derived from polyvalent carboxylic acid is defined as 100 mol%, the structural unit derived from terephthalic acid is defined as 100 mol%, and the sum of structural units derived from polyvalent ol is defined as 100 mol%. Polyester resin containing 64 mol% of structural units derived from 1,4-cyclohexanedimethanol and 36 mol% of structural units derived from 2,2,4,4, -tetramethyl-1,3-cyclobutanediol. Glass transition temperature 119 ° C., heat of fusion 0 J / g (no clear melting peak in DSC second melting curve).
(A’)比較樹脂:
 (A’-1)多価カルボン酸に由来する構造単位の総和を100モル%として、テレフタル酸に由来する構造単位100モル%、多価オールに由来する構造単位の総和を100モル%として、1,4-シクロヘキサンジメタノールに由来する構造単位34モル%、及びエチレングリコールに由来する構造単位66モル%を含むポリエステル系樹脂。ガラス転移温度81℃、融解熱量0J/g(DSCセカンド融解曲線に明瞭な融解ピークなし)。
 (A’-2)三菱エンジニアリングプラスチックス株式会社のポリカーボネート系樹脂「ユーピロン3000(商品名)」。ガラス転移温度143℃。
(A ′) Comparative resin:
(A′-1) The sum of structural units derived from polyvalent carboxylic acid is 100 mol%, the structural unit derived from terephthalic acid is 100 mol%, the sum of structural units derived from polyvalent ol is 100 mol%, A polyester resin comprising 34 mol% of structural units derived from 1,4-cyclohexanedimethanol and 66 mol% of structural units derived from ethylene glycol. Glass transition temperature 81 ° C., heat of fusion 0 J / g (no clear melting peak in DSC second melting curve).
(A'-2) Polycarbonate resin “Iupilon 3000 (trade name)” manufactured by Mitsubishi Engineering Plastics Co., Ltd. Glass transition temperature 143 ° C.
(B)ポリエーテルエステル樹脂:
 (B-1)特開平8-283548号公報の段落0063、参考例1の記載に従い、得たポリエーテルエステル樹脂。上記成分(b1)はジメチルテレフタレート、上記成分(b2)は5-ナトリウムスルホイソフタル酸ジメチル、上記成分(b3)はポリエチレングリコール(数平均分子量20000)、上記成分(b4)は1,4-ブタンジオール。上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、上記成分(b1)に由来する構造単位75モル%、上記成分(b2)に由来する構造単位を25モル%。上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和を100質量%として、上記成分(b3)に由来する構造単位の含有量が11質量%。
 (B-2)特開平8-283548号公報の段落0064、参考例2の記載に従い、得たポリエーテルエステル樹脂。上記成分(b1)はジメチルテレフタレート、上記成分(b2)は5-ナトリウムスルホイソフタル酸ジメチル、上記成分(b3)はポリエチレングリコール(数平均分子量20000)、上記成分(b4)は1,4-ブタンジオール。上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、上記成分(b1)に由来する構造単位85モル%、上記成分(b2)に由来する構造単位を15モル%。上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和を100質量%として、上記成分(b3)に由来する構造単位の含有量20質量%。
 (B-3)特開平8-283548号公報の段落0065、参考例3の記載に従い、得たポリエーテルエステル樹脂。上記成分(b1)はジメチルテレフタレート、上記成分(b2)は5-ナトリウムスルホイソフタル酸ジメチル、上記成分(b3)はポリエチレングリコール(数平均分子量20000)、上記成分(b4)は1,4-ブタンジオール。上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、上記成分(b1)に由来する構造単位75モル%、上記成分(b2)に由来する構造単位を25モル%。上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和を100質量%として、上記成分(b3)に由来する構造単位の含有量20質量%。
 (B-4)特開平8-283548号公報の段落0066、参考例4の記載に従い、得たポリエーテルエステル樹脂。上記成分(b1)はジメチルテレフタレート、上記成分(b2)は5-ナトリウムスルホイソフタル酸ジメチル、上記成分(b3)はポリエチレングリコール(数平均分子量4000)、上記成分(b4)は1,4-ブタンジオール。上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、上記成分(b1)に由来する構造単位75モル%、上記成分(b2)に由来する構造単位を25モル%。上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和を100質量%として、上記成分(b3)に由来する構造単位の含有量20質量%。
(B) Polyetherester resin:
(B-1) A polyetherester resin obtained in accordance with the description in paragraph 0063 and Reference Example 1 of JP-A-8-283548. The component (b1) is dimethyl terephthalate, the component (b2) is dimethyl 5-sodium sulfoisophthalate, the component (b3) is polyethylene glycol (number average molecular weight 20000), and the component (b4) is 1,4-butanediol. . When the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%, the structural unit derived from the component (b1) is 75 mol%, 25 mol% of structural units derived from the component (b2). Content of structural unit derived from component (b1), content of structural unit derived from component (b2), content of structural unit derived from component (b3), and derived from component (b4) The content of the structural unit derived from the component (b3) is 11% by mass, where the sum of the content of the structural unit is 100% by mass.
(B-2) A polyetherester resin obtained in accordance with the description in paragraph 0064 and Reference Example 2 of JP-A-8-283548. The component (b1) is dimethyl terephthalate, the component (b2) is dimethyl 5-sodium sulfoisophthalate, the component (b3) is polyethylene glycol (number average molecular weight 20000), and the component (b4) is 1,4-butanediol. . When the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%, the structural unit derived from the component (b1) is 85 mol%, 15 mol% of structural units derived from the component (b2). Content of structural unit derived from component (b1), content of structural unit derived from component (b2), content of structural unit derived from component (b3), and derived from component (b4) The content of the structural unit derived from the component (b3) is 20% by mass, where the sum of the content of the structural unit is 100% by mass.
(B-3) A polyetherester resin obtained according to the description in paragraph 0065 and Reference Example 3 of JP-A-8-283548. The component (b1) is dimethyl terephthalate, the component (b2) is dimethyl 5-sodium sulfoisophthalate, the component (b3) is polyethylene glycol (number average molecular weight 20000), and the component (b4) is 1,4-butanediol. . When the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%, the structural unit derived from the component (b1) is 75 mol%, 25 mol% of structural units derived from the component (b2). Content of structural unit derived from component (b1), content of structural unit derived from component (b2), content of structural unit derived from component (b3), and derived from component (b4) The content of the structural unit derived from the component (b3) is 20% by mass, where the sum of the content of the structural unit is 100% by mass.
(B-4) A polyetherester resin obtained in accordance with the description in paragraph 0066 and Reference Example 4 of JP-A-8-283548. The component (b1) is dimethyl terephthalate, the component (b2) is dimethyl 5-sodium sulfoisophthalate, the component (b3) is polyethylene glycol (number average molecular weight 4000), and the component (b4) is 1,4-butanediol. . When the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%, the structural unit derived from the component (b1) is 75 mol%, 25 mol% of structural units derived from the component (b2). Content of structural unit derived from component (b1), content of structural unit derived from component (b2), content of structural unit derived from component (b3), and derived from component (b4) The content of the structural unit derived from the component (b3) is 20% by mass, where the sum of the content of the structural unit is 100% by mass.
(B’)比較ポリエーテルエステル樹脂:
 (B’-1)三洋化成株式会社のポリエーテルエステルアミド樹脂「ペレスタット6321NC(商品名)」。スルホン酸塩基で置換された芳香族多価カルボン酸に由来する構造単位を有しない。
(B ′) Comparative polyetherester resin:
(B′-1) A polyether ester amide resin “Pelestat 6321NC (trade name)” manufactured by Sanyo Chemical Co., Ltd. There is no structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group.
(C)イオン性界面活性剤
 (C-1)関東化学株式会社のドデシルベンゼンスルホン酸ナトリウム。
(C) Ionic surfactant (C-1) Sodium dodecylbenzenesulfonate from Kanto Chemical Co., Inc.
例1~11、例1C~7C
 20mmφの同方向二軸混練機を使用し、表1~3の何れか1に示す配合比の配合物を、設定温度240~260℃で溶融混練し、樹脂組成物を得た。上記試験(1)~(7)を行った。結果を表1~3の何れか1に示す。
Examples 1-11, Examples 1C-7C
Using a 20 mmφ same-direction biaxial kneader, a blend having a blending ratio shown in any one of Tables 1 to 3 was melt-kneaded at a preset temperature of 240 to 260 ° C. to obtain a resin composition. The above tests (1) to (7) were conducted. The results are shown in any one of Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の樹脂組成物は、成形性、制電性、制電性の耐久性、低アウトガス性、透明性、及び耐熱性に優れている。 The resin composition of the present invention is excellent in moldability, antistatic properties, antistatic durability, low outgas properties, transparency, and heat resistance.

Claims (6)

  1. (A)下記特性(a1)、及び(a2)を有するポリエステル系樹脂 100質量部;及び、
    (B)スルホン酸塩基で置換された芳香族多価カルボン酸に由来する構造単位を有するポリエーテルエステル樹脂 7~25質量部;
    を含む制電性樹脂組成物。
    (a1)多価カルボン酸に由来する構造単位の総和を100モル%として、テレフタル酸に由来する構造単位90~100モル%、及びイソフタル酸に由来する構造単位10~0モル%を含む。
    (a2)多価オールに由来する構造単位の総和を100モル%として、1,4-シクロヘキサンジメタノールに由来する構造単位50~90モル%、及び2,2,4,4,-テトラメチル-1,3-シクロブタンジオールに由来する構造単位50~10モル%を含む。
    (A) 100 parts by mass of a polyester-based resin having the following characteristics (a1) and (a2); and
    (B) 7 to 25 parts by mass of a polyetherester resin having a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group;
    An antistatic resin composition comprising:
    (A1) The total of structural units derived from polyvalent carboxylic acid is 100 mol%, and includes 90 to 100 mol% of structural units derived from terephthalic acid and 10 to 0 mol% of structural units derived from isophthalic acid.
    (A2) 50 to 90 mol% of structural units derived from 1,4-cyclohexanedimethanol, and 2,2,4,4, -tetramethyl- when the total of structural units derived from polyvalent ol is 100 mol% It contains 50 to 10 mol% of structural units derived from 1,3-cyclobutanediol.
  2.  上記成分(B)が、
    (b1)テレフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビフェニル-4,4’-ジカルボン酸、及びこれらのエステル形成性誘導体からなる群から選択される1種以上の芳香族ジカルボン酸に由来する構造単位;
    (b2)下記式(1)で表される、スルホン酸塩基で置換された芳香族多価カルボン酸及び/又はそのエステル形成性誘導体に由来する構造単位;
    (b3)数平均分子量200~50000のポリアルキレングリコールに由来する構造単位;及び、
    (b4)炭素数2~10のグリコールに由来する構造単位;
    を含み、
     ここで上記成分(b1)に由来する構造単位の含有量と上記成分(b2)に由来する構造単位の含有量との和を100モル%として、
     上記成分(b1)に由来する構造単位を98~70モル%、
     上記成分(b2)に由来する構造単位を2~30モル%となる量で含み;
     上記成分(b1)に由来する構造単位の含有量、上記成分(b2)に由来する構造単位の含有量、上記成分(b3)に由来する構造単位の含有量、及び上記成分(b4)に由来する構造単位の含有量の和を100質量%として、
     上記成分(b3)に由来する構造単位の含有量が10~60質量%である;
    ポリエーテルエステル樹脂である
    請求項1に記載の制電性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、
     Arは少なくとも3つの水素原子が置換された芳香環構造を有する基;
     R1及びR2はそれぞれ独立に水素原子、炭素数1~6のアルキル基又は炭素数6~12のアリール基;
     Mは金属イオン、テトラアルキルホスホニウムイオン又はテトラアルキルアンモニウムイオンを表す。
    The component (B) is
    (B1) one or more selected from the group consisting of terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, and ester-forming derivatives thereof Structural units derived from aromatic dicarboxylic acids;
    (B2) a structural unit derived from an aromatic polyvalent carboxylic acid substituted with a sulfonate group and / or an ester-forming derivative thereof, represented by the following formula (1);
    (B3) a structural unit derived from a polyalkylene glycol having a number average molecular weight of 200 to 50,000;
    (B4) a structural unit derived from a glycol having 2 to 10 carbon atoms;
    Including
    Here, assuming that the sum of the content of the structural unit derived from the component (b1) and the content of the structural unit derived from the component (b2) is 100 mol%,
    98 to 70 mol% of structural units derived from the component (b1),
    Containing structural units derived from the component (b2) in an amount of 2 to 30 mol%;
    Content of structural unit derived from component (b1), content of structural unit derived from component (b2), content of structural unit derived from component (b3), and derived from component (b4) The sum of the content of structural units to be 100% by mass
    The content of structural units derived from the component (b3) is 10 to 60% by mass;
    The antistatic resin composition according to claim 1, which is a polyether ester resin.
    Figure JPOXMLDOC01-appb-C000001
    In formula (1),
    Ar is a group having an aromatic ring structure in which at least three hydrogen atoms are substituted;
    R1 and R2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms;
    M + represents a metal ion, a tetraalkylphosphonium ion or a tetraalkylammonium ion.
  3.  更に(C)イオン性界面活性剤を、上記成分(A)100質量部に対して、0.5~5質量部含有する請求項1又は2に記載の制電性樹脂組成物。 The antistatic resin composition according to claim 1 or 2, further comprising (C) 0.5 to 5 parts by mass of an ionic surfactant with respect to 100 parts by mass of the component (A).
  4.  体積抵抗率が10の9乗~10の10乗Ω・cmである請求項1~3の何れか1項に記載の制電性樹脂組成物。 4. The antistatic resin composition according to claim 1, having a volume resistivity of 10 9 to 10 10 Ω · cm.
  5.  請求項1~4の何れか1項に記載の制電性樹脂組成物を含む物品。 An article comprising the antistatic resin composition according to any one of claims 1 to 4.
  6.  請求項1~4の何れか1項に記載の制電性樹脂組成物を含む精密電子機器。 A precision electronic device comprising the antistatic resin composition according to any one of claims 1 to 4.
PCT/JP2016/072211 2015-08-05 2016-07-28 Antistatic resin composition WO2017022637A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187005460A KR102513777B1 (en) 2015-08-05 2016-07-28 antistatic resin composition
JP2017532555A JP6656253B2 (en) 2015-08-05 2016-07-28 Antistatic resin composition
CN201680044661.1A CN107849340B (en) 2015-08-05 2016-07-28 Antistatic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-154830 2015-08-05
JP2015154830 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022637A1 true WO2017022637A1 (en) 2017-02-09

Family

ID=57943028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072211 WO2017022637A1 (en) 2015-08-05 2016-07-28 Antistatic resin composition

Country Status (5)

Country Link
JP (1) JP6656253B2 (en)
KR (1) KR102513777B1 (en)
CN (1) CN107849340B (en)
TW (1) TWI715604B (en)
WO (1) WO2017022637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019322A (en) * 2017-07-14 2019-02-07 花王株式会社 Manufacturing method of thermoplastic resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230071116A (en) * 2020-09-24 2023-05-23 리껭테크노스 가부시키가이샤 Antistatic resin composition, resin film, and base film for antistatic dicing tape
CN114437518B (en) * 2021-12-29 2023-11-24 金发科技股份有限公司 Low-warpage glass fiber reinforced PBT composition and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127831A1 (en) * 2005-05-26 2006-11-30 Eastman Chemical Company Miscible high tg polyester/polymer blend compositions and films formed therefrom
JP2009001618A (en) * 2007-06-19 2009-01-08 Riken Technos Corp Antistatic polyester resin composition
WO2014061429A1 (en) * 2012-10-15 2014-04-24 旭化成ケミカルズ株式会社 Thermoplastic resin composition and molded product thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230835A (en) 1986-03-31 1987-10-09 Takemoto Oil & Fat Co Ltd Antistatic agent for synthetic polymer
JPH0745612B2 (en) 1986-05-20 1995-05-17 東レ株式会社 Thermoplastic resin composition
JPH078954B2 (en) 1990-03-05 1995-02-01 旭化成工業株式会社 Thermoplastic resin composition and antistatic molding using the same
ES2099766T3 (en) 1991-06-20 1997-06-01 Goodrich Co B F LOW MOLECULAR WEIGHT POLYETHYLENE GLYCOLS THAT HAVE EXPERIENCED A CHAIN EXTENSION AS ANTI-STATISTICAL AGENTS IN THE COMPOSITIONS OF POLYMERS.
JP3132854B2 (en) 1991-10-08 2001-02-05 ダイセル化学工業株式会社 Polymeric antistatic agent
JPH0715025B2 (en) 1992-02-12 1995-02-22 日鉱石油化学株式会社 Antistatic agent for synthetic resin
JPH0657153A (en) 1992-08-10 1994-03-01 Daicel Chem Ind Ltd Antistatic resin composition
JPH0789720A (en) * 1993-06-30 1995-04-04 Asahi Glass Co Ltd Coating liquid for colored film forming, colored film, colored antistatic film and colored low reflective antistatic film
JP3621757B2 (en) 1994-07-13 2005-02-16 帝人化成株式会社 Permanent antistatic resin composition
JPH08112866A (en) * 1994-10-17 1996-05-07 Sony Chem Corp Hard coat film and manufacture thereof
JP3399767B2 (en) 1997-02-13 2003-04-21 帝人株式会社 Permanent antistatic polycarbonate film or sheet and method for producing them
BR9916355A (en) * 1998-12-18 2001-09-11 Eastman Chem Co Copolyester composition, shaped article, and process for the manufacture of a polyester composition
US7235623B2 (en) * 2003-11-26 2007-06-26 Eastman Chemical Company Polyester compositions for calendering
JP4565622B2 (en) 2004-07-09 2010-10-20 帝人化成株式会社 Polyester composition
JP2006077217A (en) * 2004-09-13 2006-03-23 Sanyo Chem Ind Ltd Reactive antistatic agent
US20060287496A1 (en) * 2005-06-17 2006-12-21 Crawford Emmett D Polyester compositions comprising minimal amounts of cyclobutanediol
CN101555636A (en) * 2008-04-09 2009-10-14 东丽纤维研究所(中国)有限公司 Antistatic polyester fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127831A1 (en) * 2005-05-26 2006-11-30 Eastman Chemical Company Miscible high tg polyester/polymer blend compositions and films formed therefrom
JP2009001618A (en) * 2007-06-19 2009-01-08 Riken Technos Corp Antistatic polyester resin composition
WO2014061429A1 (en) * 2012-10-15 2014-04-24 旭化成ケミカルズ株式会社 Thermoplastic resin composition and molded product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019322A (en) * 2017-07-14 2019-02-07 花王株式会社 Manufacturing method of thermoplastic resin composition
JP7148301B2 (en) 2017-07-14 2022-10-05 花王株式会社 Method for producing thermoplastic resin composition
US11603434B2 (en) 2017-07-14 2023-03-14 Kao Corporation Method for manufacturing thermoplastic resin composition

Also Published As

Publication number Publication date
TW201718760A (en) 2017-06-01
JPWO2017022637A1 (en) 2018-06-07
CN107849340A (en) 2018-03-27
TWI715604B (en) 2021-01-11
KR20180037214A (en) 2018-04-11
CN107849340B (en) 2020-08-04
KR102513777B1 (en) 2023-03-24
JP6656253B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US20050075466A1 (en) Thermoplastic resin composition
WO2017022637A1 (en) Antistatic resin composition
US20120128984A1 (en) Polyester resin composition
US8030388B2 (en) Vibration-damping material
JP2019131726A (en) Antistatic resin composition
JP4631134B2 (en) Flame-retardant polyester resin for adhesive and adhesive
US11814476B2 (en) Polyester elastomer resin composition
JP2009001618A (en) Antistatic polyester resin composition
JP3399767B2 (en) Permanent antistatic polycarbonate film or sheet and method for producing them
JP2008150442A (en) Coating composition, laminate and flexible flat cable
JP2000072960A (en) Polyester copolymer composition for housing
JPH08283548A (en) Permanently antistatic resin composition
JPH09194714A (en) Silicon wafer carrier having permanent antistatic property
JP6866234B2 (en) Polycarbonate resin composition
JP2000072959A (en) Polyester resin composition for housing
JP2000044778A (en) Resin composition and component for upset-detecting switch made of the same
JP3592834B2 (en) Resin composition imparting permanent antistatic properties and thermoplastic resin composition containing the same
JP5322409B2 (en) Method for preparing antistatic thermoplastic resin composition, antistatic thermoplastic resin composition, and antistatic thermoplastic resin molded article
JP2001089750A (en) Antistatic agent and transparent antistatic resin composition
JP3574705B2 (en) Permanent antistatic resin composition and method for producing the same
WO2023153181A1 (en) Antistatic film
WO2023153180A1 (en) Antistatic film
TWI627228B (en) Resin composition for packaging electric and electronic parts, manufacturing method of electric and electronic part package, and electric and electronic part package
JPH08245869A (en) Polycarbonate resin composition
JP5027394B2 (en) Heat resistant antistatic polycarbonate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187005460

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16832916

Country of ref document: EP

Kind code of ref document: A1