WO2023153180A1 - Antistatic film - Google Patents

Antistatic film Download PDF

Info

Publication number
WO2023153180A1
WO2023153180A1 PCT/JP2023/001766 JP2023001766W WO2023153180A1 WO 2023153180 A1 WO2023153180 A1 WO 2023153180A1 JP 2023001766 W JP2023001766 W JP 2023001766W WO 2023153180 A1 WO2023153180 A1 WO 2023153180A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
antistatic layer
antistatic
less
polyester film
Prior art date
Application number
PCT/JP2023/001766
Other languages
French (fr)
Japanese (ja)
Inventor
由佳 杉本
充晴 中谷
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023153180A1 publication Critical patent/WO2023153180A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms

Definitions

  • the present invention relates to an antistatic film and a protective film obtained by laminating an adhesive layer on an antistatic film, and particularly to protective films such as optical members (for example, constituent members of organic EL and liquid crystal displays).
  • protective films such as optical members (for example, constituent members of organic EL and liquid crystal displays).
  • a film in which an adhesive layer is laminated on a base film is used as a protective film for each component in the manufacturing process of optical components.
  • the protective film is attached to each member, which is an adherend, via an adhesive layer, and functions to suppress scratches and adhesion of dirt during processing and transportation of each member.
  • An antistatic film having an antistatic layer laminated on at least one side thereof is used as the base film used for these protective films.
  • the purpose of laminating the antistatic layer is to prevent foreign matter such as dirt and dust from adhering to the protective film and to suppress static electricity generated when the protective film is peeled off from the adherend.
  • a protective film with an antistatic layer is used as a protective film for optical members and the like, and is particularly used in the process of processing constituent members of displays. In recent years, it has been increasingly used in the process of processing members for organic EL displays (especially OLED displays).
  • An adhesive layer is provided on at least one side of the protective film in order to bond the protective film to the optical member, and the step of laminating the adhesive layer includes a heat drying step.
  • the heating and drying process may precipitate oligomers, increase haze, and deteriorate the appearance of the film. If the visibility decreases as the haze of the protective film increases, it becomes difficult to inspect the appearance of the protective film bonded to the adherend, which has been a problem.
  • the present invention provides an antistatic film and a protective film that suppress the increase in haze even after the heat drying process and have a low surface resistivity in response to the above problems of the protective film, even if the thickness of the antistatic layer is thin.
  • the weight average degree of polymerization of the melamine-based cross-linking agent is 2.5 or less.
  • the laminated polyester film has a haze of 3% or less after heating at 140° C. for 10 minutes.
  • the antistatic layer has a surface resistivity of 2 to 7 [log ⁇ / ⁇ ].
  • the antistatic layer contains an acetylenic surfactant.
  • a protective film obtained by laminating an adhesive layer on at least one surface of a polyester film.
  • a protective film obtained by laminating an adhesive layer on the antistatic film is attached to an adherend. Even when they are combined, it is possible to perform an appearance inspection, and it is possible to provide a protective film that suppresses separation electrification and adhesion of foreign matter when peeled.
  • the laminated polyester film of the present invention (sometimes simply referred to as an antistatic film) is a polyester film having an antistatic layer laminated on at least one side thereof.
  • an adhesive layer can be laminated on one side of the antistatic film and used as a protective film.
  • the laminated polyester film of the present invention is heat-dried in the adhesive layer lamination step, it is possible to suppress the haze of the protective film from increasing, and it is possible to perform a visual inspection even when the protective film is attached to the adherend. made it possible.
  • polyester film used as a substrate in the present invention is a film mainly composed of a polyester resin.
  • a film mainly composed of a polyester resin is a film formed from a resin composition containing 50% by mass or more of a polyester resin, and when blended with another polymer, the polyester resin is 50% by mass. % or more, and when other monomers are copolymerized, it means that 50 mol % or more of repeating structural units of polyester are contained.
  • the polyester film contains 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass of the polyester resin in the resin composition constituting the film.
  • the material is not particularly limited, but a copolymer formed by polycondensation of a dicarboxylic acid component and a diol component, or a blend resin thereof can be used.
  • dicarboxylic acid components include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenyl Carboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydro isophthalic acid
  • diol component constituting the polyester resin examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3- propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis(4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfone and the like.
  • the dicarboxylic acid component and the diol component that constitute the polyester resin may be used alone or in combination of two or more. Further, other acid components such as trimellitic acid and other hydroxyl group components such as trimethylolpropane may be appropriately added.
  • polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • polyethylene terephthalate is preferred from the viewpoint of the balance between physical properties and cost.
  • the film may contain inert particles. preferably not included.
  • the polyester film does not contain particles, it is preferable to contain particles in the coat layer provided by in-line coating. It is preferable that the polyester film does not contain particles and the coating layer contains particles, because the transparency is improved and the appearance inspection and the like are facilitated.
  • the haze of the polyester film used in the present invention is preferably 3% or less. It is more preferably 2.5% or less, still more preferably 2.0% or less. 1.5% or less is highly preferred. If it is 3% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the area average surface roughness (Sa) of the surface of the polyester film used in the present invention is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm.
  • the maximum protrusion height (P) on the surface of the polyester film used in the present invention is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less. More preferably, it is 0.8 ⁇ m or less. If Sa is 40 nm or less and P is 2 ⁇ m or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
  • the thickness of the polyester film is not particularly limited in the present invention, it is preferably in the range of 12 to 188 ⁇ m. 18 to 125 ⁇ m is more preferable, and 25 to 100 ⁇ m is even more preferable. When the thickness is 12 ⁇ m or more, wrinkles are less likely to occur when the protective film is attached to an adherend, and when the thickness is 188 ⁇ m or less, it is advantageous in terms of cost.
  • the polyester film that serves as the base material may be a single layer or a laminate of two or more layers.
  • various additives can be incorporated into the film as long as the effects of the present invention are achieved.
  • additives include antioxidants, light stabilizers, anti-gelling agents, organic wetting agents, antistatic agents, ultraviolet absorbers, and surfactants.
  • the film has a laminated structure, it is also preferable to contain additives depending on the function of each layer, if necessary.
  • a polyester film can be obtained, for example, by melt-extruding the above-mentioned polyester resin into a film, and cooling and solidifying it with a casting drum to form a film.
  • the polyester film of the present invention both a non-stretched film and a stretched film can be used, but a stretched film is preferable from the viewpoint of durability such as mechanical strength and chemical resistance.
  • the stretching method is not particularly limited, and a vertical uniaxial stretching method, a horizontal uniaxial stretching method, a vertical and horizontal successive biaxial stretching method, a vertical and horizontal simultaneous biaxial stretching method, and the like can be employed.
  • the surface layer of the polyester film can be subjected to surface treatments such as an anchor coat layer, corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer.
  • surface treatments such as an anchor coat layer, corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer.
  • an anchor coat layer corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer.
  • in-line coating is preferable from the viewpoint of cost.
  • Antistatic layer In the antistatic film of the present invention, it is necessary to laminate an antistatic layer on at least one side of the polyester film.
  • the antistatic layer may be on one side only or may be laminated on both sides.
  • the antistatic layer is a cured layer containing a conductive polymer and a melamine-based cross-linking agent. Such a composition may be referred to as an antistatic layer-forming composition.
  • the means for laminating the antistatic layer is not particularly limited, and known methods such as a coating method, a vacuum deposition method, and lamination can be used. is preferable from the viewpoint of
  • the conductive polymer in the present invention is a polymer capable of imparting antistatic properties, and may be a polymer utilizing ion conduction such as a cationic compound, a ⁇ -electron conjugated conductive polymer, or the like. It is preferable to use a ⁇ -electron conjugated conductive polymer from the viewpoint of antistatic properties under low humidity. In addition, since the ⁇ -electron conjugated conductive polymer can maintain a high level of antistatic performance without depending on the moisture in the air, it has good antistatic performance in various usage environments of the protective film. Therefore, it is preferable.
  • an antistatic agent can be used in combination within a range that does not impair the effects of the conductive polymer according to the present invention.
  • the antistatic agent may be, other than the conductive polymer in the present invention, a polymer utilizing ion conduction such as a cationic compound, a ⁇ -electron conjugated conductive polymer, a surfactant, a silicon oxide compound. , a conductive metal compound, or the like can be used.
  • Examples of ⁇ -electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as structural units, pyrrole polymers containing pyrrole or its derivatives as structural units, and acetylene polymers containing acetylene or its derivatives as structural units. Polymers, thiophene-based polymers containing thiophene or a derivative thereof as a structural unit, and the like can be mentioned. In order to obtain high transparency, the ⁇ -electron conjugated conductive polymer preferably does not have a nitrogen atom. Among them, a thiophene-based polymer containing thiophene or its derivative as a structural unit is excellent in terms of transparency.
  • Polyalkylenedioxythiophenes include polyethylenedioxythiophene, polypropylenedioxythiophene, poly(ethylene/propylene)dioxythiophene, and the like.
  • a doping agent is added, for example, to 100 parts by mass of the polymer containing thiophene or a derivative thereof as a structural unit. 0.1 parts by mass or more and 500 parts by mass or less can be blended. If the amount is too large, the electron transfer becomes difficult, resulting in a problem of deterioration in antistatic performance.
  • Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , Tetraethylammonium, I2 , BF3Na , BF4Na , HClO4 , CF3SO3H , FeCl3 , Tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrenesulfonic acid/styrenesulf
  • the conductive polymer contained in the antistatic layer is preferably contained in an amount of 5% by mass or more, more preferably 10% by mass or more, based on 100% by mass of the total solid content in the antistatic layer.
  • the content of the ⁇ -electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
  • the conductive polymer contained in the antistatic layer is preferably 50% by mass or less, more preferably 40% by mass or less, based on 100% by mass of the total solid content in the antistatic layer.
  • the content of the ⁇ -electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
  • the antistatic layer contains a melamine cross-linking agent to form a crosslinked structure in the antistatic layer.
  • a melamine-based cross-linking agent is preferable because it improves durability and suppresses deterioration of antistatic performance even when treated under high-temperature and high-humidity conditions.
  • a highly reactive melamine-based cross-linking agent will be described later.
  • a catalyst or the like can be appropriately used as necessary in order to accelerate the cross-linking reaction.
  • a methylolmelamine derivative obtained by condensing melamine and formaldehyde is preferably etherified by dehydration condensation reaction with a lower alcohol such as methyl alcohol, ethyl alcohol, isopropyl alcohol, or butyl alcohol.
  • methylolated melamine derivatives include monomethylolmelamine, dimethylolmelamine, trimethylolmelamine, tetramethylolmelamine, pentamethylolmelamine, and hexamethylolmelamine.
  • One type may be used, or two or more types may be used.
  • methylol-type methylated melamine or hexaalkoxymethyl melamine having more cross-linking points in one molecule.
  • Hexaalkoxymethylmelamine is more preferred because of its superior properties, and hexamethoxymethylmelamine is particularly preferred.
  • hexamethylolmelamine is one in which X is a methylol group (-CH2-OH) in the following formula (a).
  • Hexaalkoxymethylmelamine is obtained by subjecting a methylolmelamine derivative to a dehydration condensation reaction using an alcohol, and X is (-CH2-OR, R is an alkyl group having 1 to 4 carbon atoms). Hexamethoxymethylmelamine is one in which X is (-CH2-OMe).
  • the Xs in (a) above may be the same or different. Moreover, the above Rs may be the same or different. Also, X may be (-H).
  • a full ether type and a methylol type more preferably a full ether type, and among the full ether type, hexamethoxymethyl melamine (CAS number 3089-11) in which R is a methyl group -0) is most preferred.
  • hexamethoxymethylmelamine CAS number 3089-11
  • R is a methyl group -0
  • the melamine-based crosslinking agent used in the antistatic layer of the invention preferably has a weight average degree of polymerization of 2.5 or less, more preferably 2.3 or less, and even more preferably 2.0 or less. .
  • the weight average degree of polymerization is 2.5 or less, the compatibility with the conductive polymer can be improved, aggregation of the coating liquid can be suppressed, and a film with few defects can be formed.
  • the weight average degree of polymerization when the weight average degree of polymerization is 2.5 or less, the mononuclear content contained in the melamine-based cross-linking agent is increased, resulting in excellent reactivity, improved cross-linking density, and improved oligomerization. is preferable because it can form an antistatic layer that is difficult to deposit.
  • the weight average degree of polymerization may be 1.1 or more, or may exceed 1.5.
  • Melamine-based cross-linking agents may contain imino groups (-NH2-) or polynuclear substances during the synthesis process. Even if these melamine derivatives are mixed, if the weight-average degree of polymerization of the melamine-based cross-linking agent is within the above range, the reactivity is excellent and each of them can be preferably used.
  • the antistatic layer in the present invention preferably contains 50% by mass or more and 95% by mass or less, more preferably 55% by mass or more and 95% by mass of the melamine-based cross-linking agent based on 100% by mass of the total solid content in the antistatic layer. % by mass or less, more preferably 60% by mass or more and 95% by mass or less.
  • the antistatic layer can obtain a high crosslink density due to self-crosslinking of the melamine compound, and the antistatic layer becomes a dense antistatic layer, thereby suppressing the precipitation of oligomers, which is preferable.
  • the total solid content of the antistatic layer is regarded as the sum of the solid content of the melamine cross-linking agent and the conductive polymer, since a considerable portion of the solvent and acid catalyst evaporate during the drying process. I don't mind.
  • a surfactant may be used in the antistatic layer in the invention to improve the appearance.
  • the surfactant is not particularly limited, and may be a silicone-based surfactant, a fluorine-based surfactant having a perfluoroalkyl group, or a hydrocarbon-based surfactant such as an acetylene-based surfactant.
  • the antistatic layer may contain a binder resin.
  • the binder resin is not particularly limited, it is desirable that the antistatic layer of the present invention can sufficiently exhibit the functions of the binder resin.
  • surfactants that may be used in the antistatic layer so as not to contaminate the manufacturing process include: , it is preferable to use a hydrocarbon-based acetylenic surfactant.
  • acetylenic surfactants include Surfynol series and Olphine series (Nissin Kagaku Kogyo Co., Ltd.).
  • the antistatic layer may contain lubricants, pigments, ultraviolet absorbers, silane coupling agents, etc., if necessary, as long as the objects of the present invention are not hindered.
  • the antistatic layer is substantially free of silicone compounds.
  • substantially free of silicone compounds is defined as being 50 ppm or less, preferably 10 ppm or less, most preferably detection limit or less when Si element is quantified by fluorescence X-ray analysis. content. "Even if you don't actively add a silicone component to the antistatic layer, contaminants derived from foreign substances and stains attached to the lines and equipment in the raw material resin or film manufacturing process will peel off and prevent static electricity. This is because they may be mixed in the layer. By substantially not containing a silicone compound in the antistatic layer, even when the present antistatic film is used as a protective film, it is possible to avoid migration of silicone to the protected product, and it is possible to prevent the transfer of silicone to the final product. adverse effects can be reduced.
  • the film thickness of the antistatic layer of the present invention is preferably 0.005 ⁇ m or more and 1 ⁇ m or less. It is more preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less, and still more preferably 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the film thickness of the antistatic layer is 0.005 ⁇ m or more, an antistatic effect can be obtained, which is preferable.
  • the thickness is 1 ⁇ m or less, coloring is less and transparency is improved, which is preferable.
  • the melamine-based cross-linking agent is selected from an imino-type methylated melamine resin, a methylol-type methylated melamine resin, a full-ether-type methylated melamine resin, or an imino-methylol-type methylated melamine resin. characterized by including at least one By containing any of these melamine-based cross-linking agents, the cross-linking density of the antistatic layer is increased, and even if the thickness of the antistatic layer is thin, the increase in haze is small even after heating, and the antistatic film is adhered. Appearance inspection is possible even when a protective film having laminated layers is attached to an adherend, and a protective film that suppresses separation electrification and adherence of foreign matter during separation can be provided.
  • the haze of the laminated polyester film of the present invention is preferably 3.0% or less. It is more preferably 2.0% or less, still more preferably 1.5% or less. 1.0% or less is extremely preferable. If it is 3.0% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the haze may be 0, and may be 0.1% or more, for example.
  • the haze of the laminated polyester film of the present invention after heating at 140°C for 10 minutes is preferably 3.0% or less. It is more preferably 2.7% or less, still more preferably 2.4% or less. If it is 3.0% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the haze after heating at 140° C. for 10 minutes may be 0 or, for example, 0.1% or more.
  • the antistatic layer according to the present invention it is possible to obtain an antistatic layer that has excellent reactivity, improves crosslink density, and makes it difficult for oligomers to precipitate. . As a result, it is presumed that a significant increase in haze after heating at 140° C. for 10 minutes can be suppressed.
  • the ⁇ haze value obtained by subtracting the haze of the laminated polyester film before heating from the haze of the laminated polyester film after heating at 140° C. for 10 minutes may be ⁇ 0.2 or more and 2.5 or less. 0.2 or more and 1.6 or less may be sufficient.
  • the ⁇ haze value is within such a range, an antistatic layer in which oligomers are difficult to deposit can be obtained.
  • an antistatic layer that makes it difficult for oligomers to precipitate the visibility of the protective film does not easily decrease even after heat drying in the adhesive layer lamination process. It can lead to the effect that it can be done.
  • the surface resistivity of the antistatic layer of the present invention is 7 [log ⁇ / ⁇ ] or less. It is more preferably 6.5 [log ⁇ / ⁇ ] or less, and still more preferably 6 [log ⁇ / ⁇ ] or less.
  • the surface resistivity is 7 [log ⁇ /square] or less, it is possible to suppress the charging of the protective film and prevent the adhesion of foreign matter during the process. Electrical adverse effects can be suppressed.
  • the lower limit of the surface resistivity of the antistatic film does not have to be specified, it is preferably 2 [log ⁇ / ⁇ ] or more. If the surface resistivity of the antistatic film is less than 2 [log ⁇ / ⁇ ], the processing cost of the antistatic layer increases, which is not preferable.
  • the total light transmittance of the antistatic film used in the present invention is preferably 80% or more. It is more preferably 85% or more, still more preferably 88% or more. 90% or more is highly preferred. If it is 80% or more, it is preferable because the appearance inspection can be performed in a state where the protective film is attached to the adherend, and it is particularly preferable when the adherend is a member for optical use.
  • the antistatic layer preferably has a surface resistivity change of 1.3 times or less even after wiping with alcohol. It is more preferably 1.2 times or less, still more preferably 1.1 times or less. If it is 1.3 times or less, it is preferable because the initial surface resistivity is maintained when the protective film is formed even if alcohol is used in the process of adhesion processing.
  • the area average surface roughness (Sa) of the surface of the antistatic layer is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm.
  • the maximum projection height (P) on the surface of the antistatic film used in the present invention is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less. More preferably, it is 0.8 ⁇ m or less. If Sa is 40 nm or less and P is 2 ⁇ m or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
  • a coating liquid in which the above-mentioned antistatic agent or binder resin is dispersed or dissolved in a solvent is applied by a gravure roll coating method, a reverse roll coating method, a knife coater method,
  • a gravure roll coating method a reverse roll coating method
  • a knife coater method a coating method suitable for the conductive composition is not particularly limited.
  • it can be provided by an in-line coating method in which a coating layer is provided in the film production process, or an off-line coating method in which a coating layer is provided after film production.
  • the drying temperature for forming the antistatic layer by the above method is usually 60°C or higher and 150°C or lower, preferably 90°C or higher and 140°C or lower.
  • this temperature is 60° C. or higher, the treatment can be performed in a short period of time, which is preferable from the viewpoint of improving productivity.
  • a crosslinking reaction progresses sufficiently when a crosslinking agent is included, it is preferable.
  • this temperature is 150° C. or lower, the flatness of the film is maintained, which is preferable.
  • An adhesive layer can be laminated on the laminated polyester film of the present invention by applying and curing an adhesive.
  • the adhesive is not particularly limited and can be used, and the laminated film obtained is used as a protective film.
  • Either side of the antistatic film may be the surface on which the adhesive layer is laminated.
  • the antistatic layer is provided on the side opposite to the side on which the adhesive layer is laminated.
  • a ceramic green sheet, a resin film, or the like may be laminated on the antistatic layer in the laminated polyester film of the present invention.
  • the surface resistivity of the surface of the antistatic film of the present invention was determined by measuring the surface resistivity of the antistatic layer surface after adjusting the humidity for 24 hours under conditions of a temperature of 23° C. and a humidity of 55%. (manufactured by Loresta AX MCP-370), and evaluated according to the following criteria. When the surface resistivity exceeded 6 [log ⁇ / ⁇ ], it was measured using a surface resistance measuring device (Shimco Japan Co., Ltd., Work Surface Tester ST-3).
  • Surface resistivity is 2 or more and 4 or less [log ⁇ / ⁇ ]
  • Surface resistivity is more than 4 and 7 or less [log ⁇ / ⁇ ]
  • Surface resistivity is over 7 [log ⁇ / ⁇ ]
  • total light transmittance, haze The total light transmittance and haze of the film of the present invention were measured in accordance with JIS K 7136 using a turbidity meter (NDH7000II, manufactured by Nippon Denshoku Co., Ltd.) before and after heat treatment at 140°C for 10 minutes.
  • Example 1 An antistatic layer coating solution was obtained with the blending amounts shown in Table 2.
  • (Antistatic layer coating liquid) Water 23.06 parts by mass Isopropyl alcohol 34.59 parts by mass Conductive polymer 37.5 parts by mass Crosslinking agent A (manufactured by Nippon Carbide Industry Co., Ltd., imino type methylated melamine resin, solid content concentration 80% by mass) 0.86 parts by mass Conductive agent 3.0 parts by mass Surfactant (manufactured by Nissin Chemical Industry Co., Ltd., EXP.4200, solid content concentration 75% by mass) 0.53 parts by mass
  • the obtained antistatic layer coating solution was coated on one side of A4360 (Cosmo Shine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 75 ⁇ m using a gravure coater so that the wet film thickness was 7.5 ⁇ m. It was dried and cured in a hot air drying oven at 140° C. for 30 seconds to obtain a polyester film with an antistatic layer.
  • A4360 Cosmo Shine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 75 ⁇ m using a gravure coater so that the wet film thickness was 7.5 ⁇ m. It was dried and cured in a hot air drying oven at 140° C. for 30 seconds to obtain a polyester film with an antistatic layer.
  • Example 2 An antistatic layer was formed in the same procedure as in Example 1, except that the composition was changed to that shown in Table 2.
  • Example 3 An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent B (manufactured by Nippon Carbide Kogyo Co., Ltd., methylol-type methylated melamine resin, solid content concentration 70% by mass) was used with the composition shown in Table 2. .
  • the cross-linking agent B manufactured by Nippon Carbide Kogyo Co., Ltd., methylol-type methylated melamine resin, solid content concentration 70% by mass
  • Example 5 An antistatic layer was formed in the same manner as in Example 1 except that the composition shown in Table 2 was used as a cross-linking agent C (manufactured by Nippon Carbide Industry Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass). did.
  • a cross-linking agent C manufactured by Nippon Carbide Industry Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass. did.
  • Example 7 Crosslinking agent C (manufactured by Nippon Carbide Kogyo Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass), surfactant Dynol 604 (manufactured by Nisshin Chemical Industry Co., Ltd., solid content concentration 100% by mass), an antistatic layer was formed in the same manner as in Example 1.
  • Example 8 Crosslinking agent C (manufactured by Nippon Carbide Industry Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass) and surfactant Surfynol SE-F (manufactured by Nisshin Chemical Industry Co., Ltd., An antistatic layer was formed in the same procedure as in Example 1, except that the solid content concentration was 81% by mass).
  • Example 9 Crosslinking agent C (manufactured by Nippon Carbide Industries Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass) and surfactant 67additive (manufactured by Dow Toray Industries, Inc., solid content concentration 100 mass%) with the composition shown in Table 2 %), an antistatic layer was formed in the same manner as in Example 1.
  • Example 10 (Examples 10 and 11)
  • Crosslinking agent C manufactured by Nippon Carbide Kogyo Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass
  • MD1200 as a binder resin manufactured by Toyobo Co., Ltd., solid content concentration 35% by mass
  • An antistatic layer was formed in the same manner as in Example 1, except that Dynol 604 was used as the surfactant.
  • Example 12 An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent D (imino-methylol-type methylated melamine resin manufactured by Nippon Carbide Industry Co., Ltd., solid content concentration 70% by mass) was used with the composition shown in Table 2. formed.
  • the cross-linking agent D imino-methylol-type methylated melamine resin manufactured by Nippon Carbide Industry Co., Ltd., solid content concentration 70% by mass
  • Example 2 An antistatic layer was formed in the same manner as in Example 10 except that the composition shown in Table 2 was used as a cross-linking agent E (Carbodiimide manufactured by Nisshinbo Chemical Co., Ltd., solid content concentration 40% by mass).
  • a cross-linking agent E Carbodiimide manufactured by Nisshinbo Chemical Co., Ltd., solid content concentration 40% by mass.
  • Example 3 An antistatic layer was formed in the same manner as in Example 10 except that the composition shown in Table 2 was changed to a cross-linking agent F (Baxenden, blocked isocyanate, solid content concentration: 40% by mass).
  • a cross-linking agent F Boxenden, blocked isocyanate, solid content concentration: 40% by mass
  • the laminated polyester film of the present invention obtained in Examples provides an antistatic film in which an antistatic layer having a low haze even after heating is laminated on at least one side of the polyester film, and an adhesive layer is laminated on the antistatic film.
  • an antistatic film in which an antistatic layer having a low haze even after heating is laminated on at least one side of the polyester film, and an adhesive layer is laminated on the antistatic film.
  • Comparative Examples 1 and 2 do not contain a melamine-based cross-linking agent, the post-heating haze is out of the range of the present invention, and more oligomers are precipitated during the heat-drying process when processing the adhesive layer on the opposite side of the antistatic layer. A film was obtained.
  • the present invention relates to an antistatic film and an adhesive film obtained by laminating an adhesive layer on an antistatic film, and more particularly to a protective film for optical members (for example, constituent members of organic EL and liquid crystal displays).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide: an antistatic film that has low surface resistance and suppresses an increase in haze after a heat-drying step, even if the antistatic layer is thin; and a protective film. [Solution] A multilayer polyester film having an antistatic layer on at least one surface of a substrate, said multilayer polyester film being characterized in that the antistatic layer includes at least a conductive polymer and a melamine-based crosslinking agent, and the melamine-based crosslinking agent comprises an imino-type methylated melamine resin, a methylol-type methylated melamine resin, a full ether-type methylated melamine resin or an imino-methylol-type methylated melamine resin.

Description

帯電防止フィルムantistatic film
 本発明は、帯電防止フィルムおよび帯電防止フィルムに粘着層を積層した保護フィルムに関するものであり、特に光学部材(例えば、有機ELや液晶ディスプレイの構成部材)などの保護フィルムに関するものである。 The present invention relates to an antistatic film and a protective film obtained by laminating an adhesive layer on an antistatic film, and particularly to protective films such as optical members (for example, constituent members of organic EL and liquid crystal displays).
 基材フィルムに粘着層を積層したフィルムは光学部材などの製造工程で各部材の保護フィルムとして使用されている。保護フィルムは、粘着層と介して被着体である各部材と貼り合わされ各部材の加工や搬送時にキズや汚れの付着を抑制する働きをしている。これら保護フィルムに用いられる基材フィルムには、少なくとも片面に帯電防止層を積層した帯電防止フィルムが用いられる。帯電防止層を積層する目的は、保護フィルムにゴミや埃などの異物の付着を防止することや保護フィルムを被着体から剥離するときに発生する静電気を抑制することにある。(特許文献1参照) A film in which an adhesive layer is laminated on a base film is used as a protective film for each component in the manufacturing process of optical components. The protective film is attached to each member, which is an adherend, via an adhesive layer, and functions to suppress scratches and adhesion of dirt during processing and transportation of each member. An antistatic film having an antistatic layer laminated on at least one side thereof is used as the base film used for these protective films. The purpose of laminating the antistatic layer is to prevent foreign matter such as dirt and dust from adhering to the protective film and to suppress static electricity generated when the protective film is peeled off from the adherend. (See Patent Document 1)
 帯電防止フィルムとしては、帯電防止剤としてPEDOT:PSSを含む帯電防止フィルムが提案されている。(特許文献2参照) As an antistatic film, an antistatic film containing PEDOT:PSS as an antistatic agent has been proposed. (See Patent Document 2)
国際公開2018/012545WO2018/012545 特開2018-172473号公報JP 2018-172473 A
 帯電防止層を有する保護フィルムは、光学部材などの保護フィルムとして使用されるが、特にディスプレイの構成部材の加工工程で使用されている。近年は、有機ELディスプレイ(特にOLEDディスプレイ)の部材の加工工程でも使われることが多くなってきている。保護フィルムを光学部材に貼り合わせるために、保護フィルムの少なくとも片面には粘着層が設けられており、この粘着層を積層する工程には、加熱乾燥工程が含まれている。 A protective film with an antistatic layer is used as a protective film for optical members and the like, and is particularly used in the process of processing constituent members of displays. In recent years, it has been increasingly used in the process of processing members for organic EL displays (especially OLED displays). An adhesive layer is provided on at least one side of the protective film in order to bond the protective film to the optical member, and the step of laminating the adhesive layer includes a heat drying step.
 例えば、このように保護フィルムに粘着層を積層する場合、加熱乾燥工程によりオリゴマーが析出、ヘイズが上昇しフィルム外観が悪化する場合があった。保護フィルムのヘイズ上昇に伴い、視認性が低下してしまうと、保護フィルムを被着体と貼り合わせた状態での外観検査が困難であり、課題となっていた。 For example, when laminating an adhesive layer on a protective film in this way, the heating and drying process may precipitate oligomers, increase haze, and deteriorate the appearance of the film. If the visibility decreases as the haze of the protective film increases, it becomes difficult to inspect the appearance of the protective film bonded to the adherend, which has been a problem.
 本発明では上記、保護フィルムの課題に対し、帯電防止層の膜厚が薄くても、加熱乾燥工程後でもヘイズの上昇を抑え、かつ表面抵抗率の低い帯電防止フィルムおよび保護フィルムを提供する。 The present invention provides an antistatic film and a protective film that suppress the increase in haze even after the heat drying process and have a low surface resistivity in response to the above problems of the protective film, even if the thickness of the antistatic layer is thin.
 即ち、本発明は、以下の構成よりなる。
[1]基材の少なくとも片面に帯電防止層を有する積層ポリエステルフィルムであって、 前記帯電防止層は、導電性高分子とメラミン系架橋剤を少なくとも含み、前記メラミン系架橋剤が、イミノ型メチル化メラミン樹脂、メチロール型メチル化メラミン樹脂、フルエーテル型メチル化メラミン樹脂またはイミノ・メチロール型メチル化メラミン樹脂から選択される少なくとも1つを含む、積層ポリエステルフィルム。
[2]一態様において、前記メラミン系架橋剤の重量平均重合度が2.5以下である。
[3]一態様において、前記積層ポリエステルフィルムの140℃、10分加熱後のヘイズが、3%以下である。
[4]一態様において、前記帯電防止層の表面抵抗率が2~7[logΩ/□]である。
[5]一態様において、前記帯電防止層中にアセチレン系界面活性剤を含む。
[5]一態様において、ポリエステルフィルムの少なくとも片面に粘着層を積層した保護フィルム。
That is, the present invention consists of the following configurations.
[1] A laminated polyester film having an antistatic layer on at least one side of a substrate, wherein the antistatic layer contains at least a conductive polymer and a melamine-based cross-linking agent, and the melamine-based cross-linking agent is an imino-type methyl A laminated polyester film containing at least one selected from a methylol-type methylated melamine resin, a methylol-type methylated melamine resin, a full-ether-type methylated melamine resin, and an imino-methylol-type methylated melamine resin.
[2] In one aspect, the weight average degree of polymerization of the melamine-based cross-linking agent is 2.5 or less.
[3] In one aspect, the laminated polyester film has a haze of 3% or less after heating at 140° C. for 10 minutes.
[4] In one aspect, the antistatic layer has a surface resistivity of 2 to 7 [logΩ/□].
[5] In one aspect, the antistatic layer contains an acetylenic surfactant.
[5] In one aspect, a protective film obtained by laminating an adhesive layer on at least one surface of a polyester film.
 本発明によれば、ポリエステルフィルムの少なくとも片面にオリゴマーブロック性のある帯電防止層を積層した帯電防止フィルムを提供することで、本帯電防止フィルムに粘着層を積層した保護フィルムを被着体と貼り合わせた場合にも、外観検査が可能であり、剥離時に剥離帯電や異物付着を抑制した保護フィルムを提供することができる。 According to the present invention, by providing an antistatic film obtained by laminating an antistatic layer having oligomer blocking properties on at least one side of a polyester film, a protective film obtained by laminating an adhesive layer on the antistatic film is attached to an adherend. Even when they are combined, it is possible to perform an appearance inspection, and it is possible to provide a protective film that suppresses separation electrification and adhesion of foreign matter when peeled.
 本発明の積層ポリエステルフィルム(単に、帯電防止フィルムと称する場合もある)は、ポリエステルフィルムの少なくとも片面に帯電防止層が積層されたものである。また、帯電防止フィルムの片面に粘着層を積層することもでき保護フィルムとして使用することができる。
 例えば、本発明の積層ポリエステルフィルムは、粘着層積層工程で加熱乾燥する場合、保護フィルムのヘイズが上昇することを抑制でき、保護フィルムを被着体に貼り合わせ場合にも外観検査を行うことを可能にした。
The laminated polyester film of the present invention (sometimes simply referred to as an antistatic film) is a polyester film having an antistatic layer laminated on at least one side thereof. Also, an adhesive layer can be laminated on one side of the antistatic film and used as a protective film.
For example, when the laminated polyester film of the present invention is heat-dried in the adhesive layer lamination step, it is possible to suppress the haze of the protective film from increasing, and it is possible to perform a visual inspection even when the protective film is attached to the adherend. made it possible.
 以下、本発明について詳細に説明する。 The present invention will be described in detail below.
(ポリエステルフィルム)
 本発明で基材として用いるポリエステルフィルムは、主としてポリエステル樹脂より構成されるフィルムである。ここで、「主としてポリエステル樹脂より構成されるフィルム」とは、ポリエステル樹脂を50質量%以上含有する樹脂組成物から形成されるフィルムであり、他のポリマーとブレンドする場合は、ポリエステル樹脂が50質量%以上含有していることを意味し、他のモノマーが共重合されている場合は、ポリエステルの繰り返し構造単位を50モル%以上含有することを意味する。好ましくは、ポリエステルフィルムは、フィルムを構成する樹脂組成物中において、ポリエステル樹脂を90質量%以上、より好ましくは95質量%以上、更に好ましくは100質量%含有する。
(polyester film)
The polyester film used as a substrate in the present invention is a film mainly composed of a polyester resin. Here, "a film mainly composed of a polyester resin" is a film formed from a resin composition containing 50% by mass or more of a polyester resin, and when blended with another polymer, the polyester resin is 50% by mass. % or more, and when other monomers are copolymerized, it means that 50 mol % or more of repeating structural units of polyester are contained. Preferably, the polyester film contains 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass of the polyester resin in the resin composition constituting the film.
 ポリエステル樹脂としては、材料は特に限定されないが、ジカルボン酸成分とジオール成分とが重縮合して形成される共重合体、又は、そのブレンド樹脂を用いることができる。ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等が挙げられる。 As the polyester resin, the material is not particularly limited, but a copolymer formed by polycondensation of a dicarboxylic acid component and a diol component, or a blend resin thereof can be used. Examples of dicarboxylic acid components include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, diphenyl Carboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydro isophthalic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid , dimer acid, sebacic acid, suberic acid, dodecadicarboxylic acid and the like.
 ポリエステル樹脂を構成するジオール成分としては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等が挙げられる。 Examples of the diol component constituting the polyester resin include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3- propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis(4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfone and the like.
 ポリエステル樹脂を構成するジカルボン酸成分とジオール成分はそれぞれ1種又は2種以上を用いても良い。また、トリメリット酸などのその他の酸成分やトリメチロールプロパンなどのその他の水酸基成分を適宜添加しても良い。  The dicarboxylic acid component and the diol component that constitute the polyester resin may be used alone or in combination of two or more. Further, other acid components such as trimellitic acid and other hydroxyl group components such as trimethylolpropane may be appropriately added.
 ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどが挙げられ、これらの中でも物性とコストのバランスからポリエチレンテレフタレートが好ましい。 Specific examples of polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Among these, polyethylene terephthalate is preferred from the viewpoint of the balance between physical properties and cost.
 ポリエステルフィルムの滑り性、巻き性などのハンドリング性を改善するために、フィルム中に不活性粒子を含有させてもよいが、光学用途などに用いる場合、ポリエステルフィルム中には、実質的に粒子を含まないことが好ましい。ポリエステルフィルムに粒子を含まない場合は、インラインコートで設けるコート層中に粒子を含有することが好ましい。ポリエステルフィルムに粒子を含まず、コート層に粒子を含むことで透明性が向上し外観検査などを行いやすくなるため好ましい。 In order to improve handling properties such as slipperiness and winding properties of the polyester film, the film may contain inert particles. preferably not included. When the polyester film does not contain particles, it is preferable to contain particles in the coat layer provided by in-line coating. It is preferable that the polyester film does not contain particles and the coating layer contains particles, because the transparency is improved and the appearance inspection and the like are facilitated.
 本発明に用いるポリエステルフィルムのヘイズは、3%以下であることが好ましい。より好ましくは2.5%以下であり、さらに好ましくは2.0%以下である。1.5%以下であれば、極めて好ましい。3%以下であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。 The haze of the polyester film used in the present invention is preferably 3% or less. It is more preferably 2.5% or less, still more preferably 2.0% or less. 1.5% or less is highly preferred. If it is 3% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use.
 本発明に用いるポリエステルフィルムの表面の領域表面平均粗さ(Sa)は、1~40nmの範囲にあることが好ましく、より好ましくは1~30nmである。さらに好ましくは1~10nmである。本発明に用いるポリエステルフィルムの表面の最大突起高さ(P)は、2μm以下であることが好ましく、より好ましくは1.5μm以下である。さらに好ましくは0.8μm以下である。Saが40nm以下であり、Pが2μm以下であれば、粘着層を積層しロール状に巻き取った際に粘着性の表面を荒らす恐れがなく好ましい。 The area average surface roughness (Sa) of the surface of the polyester film used in the present invention is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm. The maximum protrusion height (P) on the surface of the polyester film used in the present invention is preferably 2 μm or less, more preferably 1.5 μm or less. More preferably, it is 0.8 μm or less. If Sa is 40 nm or less and P is 2 μm or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
 本発明においてポリエステルフィルムの厚みは特に限定されないが、12~188μmの範囲であることが好ましい。18~125μmがより好ましく、25~100μmがさらに好ましい。12μm以上であると保護フィルムとして被着体と貼り合わせる際にシワが入るおそれが少なく、188μm以下であるとコスト的に有利である。 Although the thickness of the polyester film is not particularly limited in the present invention, it is preferably in the range of 12 to 188 μm. 18 to 125 μm is more preferable, and 25 to 100 μm is even more preferable. When the thickness is 12 μm or more, wrinkles are less likely to occur when the protective film is attached to an adherend, and when the thickness is 188 μm or less, it is advantageous in terms of cost.
 基材となるポリエステルフィルムは、単層であっても、2種以上の層が積層されたものであってもよい。また、本発明の効果を奏する範囲内であれば、必要に応じて、フィルム中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤、界面活性剤などが挙げられる。フィルムが積層構成を有する場合は、必要に応じて各層の機能に応じて添加剤を含有させることも好ましい。 The polyester film that serves as the base material may be a single layer or a laminate of two or more layers. In addition, if necessary, various additives can be incorporated into the film as long as the effects of the present invention are achieved. Examples of additives include antioxidants, light stabilizers, anti-gelling agents, organic wetting agents, antistatic agents, ultraviolet absorbers, and surfactants. When the film has a laminated structure, it is also preferable to contain additives depending on the function of each layer, if necessary.
 ポリエステルフィルムは、例えば上記のポリエステル樹脂をフィルム状に溶融押出、キャスティングドラムで冷却固化させてフィルムを形成させる方法等によって得られる。本発明のポリエステルフィルムとしては、無延伸フィルム、延伸フィルムのいずれも用いることができるが、機械強度や耐薬品性といった耐久性の点からは延伸フィルムであることが好ましい。ポリエステルフィルムが延伸フィルムである場合、その延伸方法は特に限定されず、縦一軸延伸法、横一軸延伸法、縦横逐次二軸延伸法、縦横同時二軸延伸法等を採用することができる。 A polyester film can be obtained, for example, by melt-extruding the above-mentioned polyester resin into a film, and cooling and solidifying it with a casting drum to form a film. As the polyester film of the present invention, both a non-stretched film and a stretched film can be used, but a stretched film is preferable from the viewpoint of durability such as mechanical strength and chemical resistance. When the polyester film is a stretched film, the stretching method is not particularly limited, and a vertical uniaxial stretching method, a horizontal uniaxial stretching method, a vertical and horizontal successive biaxial stretching method, a vertical and horizontal simultaneous biaxial stretching method, and the like can be employed.
 ポリエステルフィルムの表層には、密着向上層との密着性を向上させるため、アンカーコート層、コロナ処理、プラズマ処理、火炎処理などの表面処理を行うこともできる。アンカーコート層を設ける場合は、コストなどの観点からインラインコーティングで行うことが好ましい。 The surface layer of the polyester film can be subjected to surface treatments such as an anchor coat layer, corona treatment, plasma treatment, and flame treatment in order to improve adhesion with the adhesion improving layer. When providing an anchor coat layer, in-line coating is preferable from the viewpoint of cost.
(帯電防止層)
 本発明の帯電防止フィルムは、ポリエステルフィルムの少なくとも片面に帯電防止層を積層することが必要である。帯電防止層は片面だけでもよいし両面に積層してもよい。帯電防止層を積層することで、粘着層を積層し保護フィルムとして用いた場合にも被着体との剥離帯電を抑えたり、異物の付着を抑えることができるため好ましい。
(Antistatic layer)
In the antistatic film of the present invention, it is necessary to laminate an antistatic layer on at least one side of the polyester film. The antistatic layer may be on one side only or may be laminated on both sides. By laminating an antistatic layer, even when an adhesive layer is laminated and used as a protective film, separation electrification from the adherend can be suppressed and adhesion of foreign matter can be suppressed, which is preferable.
 帯電防止層は、導電性高分子とメラミン系架橋剤を含み硬化されてなる層である。このような組成物を、帯電防止層形成用組成物と称する場合がある。 The antistatic layer is a cured layer containing a conductive polymer and a melamine-based cross-linking agent. Such a composition may be referred to as an antistatic layer-forming composition.
 帯電防止層の積層する手段については特に限定されず、塗布法、真空蒸着法、貼り合せなど、既知の方法を使用することができるが、帯電防止剤を含む塗液を塗布により設けることがコストの観点より好ましい。 The means for laminating the antistatic layer is not particularly limited, and known methods such as a coating method, a vacuum deposition method, and lamination can be used. is preferable from the viewpoint of
(導電性高分子)
 本発明における導電性高分子は、帯電防止性を付与できる高分子であり、カチオン性化合物などのイオン伝導を利用した高分子、π電子共役系導電性高分子などを用いることができる。低湿度下での帯電防止性の点からπ電子共役系導電性高分子を用いることが好ましい。また、π電子共役系導電性高分子は、空気中の水分に依存することなく帯電防止性能を高水準で維持することができるため、保護フィルムの様々な使用環境で良好な帯電防止性能を有するため好ましい。
 また、本発明に係る導電性高分子の奏する効果を損なわない範囲で、帯電防止剤を併用できる。帯電防止剤としては、本発明における導電性高分子以外の、カチオン性化合物などのイオン伝導を利用した高分子、π電子共役系導電性高分子であってもよく、界面活性剤、酸化ケイ素化合物、導電性の金属化合物などを用いることができる。
(Conductive polymer)
The conductive polymer in the present invention is a polymer capable of imparting antistatic properties, and may be a polymer utilizing ion conduction such as a cationic compound, a π-electron conjugated conductive polymer, or the like. It is preferable to use a π-electron conjugated conductive polymer from the viewpoint of antistatic properties under low humidity. In addition, since the π-electron conjugated conductive polymer can maintain a high level of antistatic performance without depending on the moisture in the air, it has good antistatic performance in various usage environments of the protective film. Therefore, it is preferable.
Moreover, an antistatic agent can be used in combination within a range that does not impair the effects of the conductive polymer according to the present invention. The antistatic agent may be, other than the conductive polymer in the present invention, a polymer utilizing ion conduction such as a cationic compound, a π-electron conjugated conductive polymer, a surfactant, a silicon oxide compound. , a conductive metal compound, or the like can be used.
 π電子共役系導電性高分子としては、アニリンあるいはその誘導体を構成単位として含むアニリン系高分子、ピロールあるいはその誘導体を構成単位として含むピロール系高分子、アセチレンあるいはその誘導体を構成単位として含むアセチレン系高分子、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子等が挙げられる。高い透明性を得ようとするならば、π電子共役系導電性高分子としては窒素原子を有さないものが好ましく、中でもチオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子は透明性の点から好適であり、特にポリアルキレンジオキシチオフェンが好適である。ポリアルキレンジオキシチオフェンとしては、ポリエチレンジオキシチオフェン、ポリプロピレンジオキシチオフェン、ポリ(エチレン/プロピレン)ジオキシチオフェンなどが挙げられる。 Examples of π-electron conjugated conductive polymers include aniline polymers containing aniline or its derivatives as structural units, pyrrole polymers containing pyrrole or its derivatives as structural units, and acetylene polymers containing acetylene or its derivatives as structural units. Polymers, thiophene-based polymers containing thiophene or a derivative thereof as a structural unit, and the like can be mentioned. In order to obtain high transparency, the π-electron conjugated conductive polymer preferably does not have a nitrogen atom. Among them, a thiophene-based polymer containing thiophene or its derivative as a structural unit is excellent in terms of transparency. are preferred, and polyalkylenedioxythiophenes are particularly preferred. Polyalkylenedioxythiophenes include polyethylenedioxythiophene, polypropylenedioxythiophene, poly(ethylene/propylene)dioxythiophene, and the like.
 なお、チオフェンあるいはその誘導体を構成単位として含むチオフェン系高分子には、帯電防止性を更に良好なものとするためドーピング剤を、例えばチオフェンあるいはその誘導体を構成単位として含む高分子100質量部に対し0.1質量部以上500質量部以下配合することができる。多い場合には、電子移動が困難となるため帯電防止性能の低下の問題があり、逆に少ない場合には、溶媒に対する分散性低下の問題がある。このドーピング剤としては、LiCl、R1‐30COOLi(R1‐30:炭素数1以上30以下の飽和炭化水素基)、R1‐30SOLi、R1‐30COONa、R1‐30SONa、R1‐30COOK、R1‐30SOK、テトラエチルアンモニウム、I、BFNa、BFNa、HClO、CFSOH、FeCl、テトラシアノキノリン(TCNQ)、Na10Cl10、フタロシアニン、ポルフィリン、グルタミン酸、アルキルスルホン酸塩、ポリスチレンスルホン酸Na(K、Li)塩、スチレン・スチレンスルホン酸Na(K、Li)塩共重合体、ポリスチレンスルホン酸アニオン、スチレンスルホン酸・スチレンスルホン酸アニオン共重合体等を挙げることができる。 In order to further improve the antistatic properties of the thiophene-based polymer containing thiophene or a derivative thereof as a structural unit, a doping agent is added, for example, to 100 parts by mass of the polymer containing thiophene or a derivative thereof as a structural unit. 0.1 parts by mass or more and 500 parts by mass or less can be blended. If the amount is too large, the electron transfer becomes difficult, resulting in a problem of deterioration in antistatic performance. Examples of the doping agent include LiCl, R 1-30 COOLi (R 1-30 : saturated hydrocarbon group having 1 to 30 carbon atoms), R 1-30 SO 3 Li, R 1-30 COONa, R 1-30 SO3Na , R1-30COOK , R1-30SO3K , Tetraethylammonium, I2 , BF3Na , BF4Na , HClO4 , CF3SO3H , FeCl3 , Tetracyanoquinoline (TCNQ) , Na 2 B 10 Cl 10 , phthalocyanine, porphyrin, glutamic acid, alkyl sulfonate, polystyrene sulfonate Na (K, Li) salt, styrene/styrene sulfonate Na (K, Li) salt copolymer, polystyrene sulfonate anion , styrenesulfonic acid/styrenesulfonic acid anion copolymers, and the like.
 本発明において帯電防止層中に含まれる導電性高分子は、帯電防止層における全固形分100質量%に対し、5質量%以上含まれることが好ましく、より好ましくは10質量%以上である。なお、帯電防止剤としてπ電子共役系導電性高分子を用いる場合において、前記ドーピング剤を用いる場合は、本願に規定するπ電子共役系導電性高分子の帯電防止層中の含有量には、導電性高分子と前記ドーピング剤の合計量のことである。
このような量で帯電防止剤を含むことで、良好な帯電防止性を付与できる。
In the present invention, the conductive polymer contained in the antistatic layer is preferably contained in an amount of 5% by mass or more, more preferably 10% by mass or more, based on 100% by mass of the total solid content in the antistatic layer. In the case of using a π-electron conjugated conductive polymer as an antistatic agent, when using the doping agent, the content of the π-electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
By including the antistatic agent in such an amount, good antistatic properties can be imparted.
 本発明において帯電防止層中に含まれる導電性高分子は、帯電防止層における全固形分100質量%に対し、50質量%以下であることが好ましく、より好ましくは40質量%以下である。なお、帯電防止剤としてπ電子共役系導電性高分子を用いる場合において、前記ドーピング剤を用いる場合は、本願に規定するπ電子共役系導電性高分子の帯電防止層中の含有量には、導電性高分子と前記ドーピング剤の合計量のことである。
このような量で帯電防止剤を含むことで、メラミン系架橋剤と相互作用を引き起こさず、塗液が凝集しにくく、帯電防止層の欠点が少なく高い透明性を保持できる。
In the present invention, the conductive polymer contained in the antistatic layer is preferably 50% by mass or less, more preferably 40% by mass or less, based on 100% by mass of the total solid content in the antistatic layer. In the case of using a π-electron conjugated conductive polymer as an antistatic agent, when using the doping agent, the content of the π-electron conjugated conductive polymer in the antistatic layer specified in the present application is It is the total amount of the conductive polymer and the doping agent.
By including the antistatic agent in such an amount, it does not interact with the melamine-based cross-linking agent, the coating liquid is less likely to aggregate, and the antistatic layer has few defects and can maintain high transparency.
(メラミン系架橋剤)
本発明において、帯電防止層に架橋構造を形成させるために、帯電防止層はメラミン系架橋剤が含まれて形成される。メラミン系架橋剤を含有させることにより、耐久性が向上し高温高湿度条件で処理した場合にも帯電防止性能の低下が抑制されるため好ましい。帯電防止層の架橋密度を高めるためには、メラミン系架橋剤の反応性を高めることが好ましい。反応性の高いメラミン系架橋剤について後述する。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(melamine cross-linking agent)
In the present invention, the antistatic layer contains a melamine cross-linking agent to form a crosslinked structure in the antistatic layer. Inclusion of a melamine-based cross-linking agent is preferable because it improves durability and suppresses deterioration of antistatic performance even when treated under high-temperature and high-humidity conditions. In order to increase the crosslink density of the antistatic layer, it is preferable to increase the reactivity of the melamine crosslinker. A highly reactive melamine-based cross-linking agent will be described later. In addition, a catalyst or the like can be appropriately used as necessary in order to accelerate the cross-linking reaction.
本発明における帯電防止層に用いるメラミン系架橋剤としては、一般的なものを使用でき特に限定されないが、メラミンとホルムアルデヒドを縮合して得られ、1分子中にトリアジン環、及びメチロール基及び/又はアルコキシメチル基をそれぞれ1つ以上有していることが好ましい。具体的には、メラミンとホルムアルデヒドを縮合して得られるメチロールメラミン誘導体に、低級アルコールとしてメチルアルコール、エチルアルコール、イソプロピルアルコール、ブチルアルコール等を脱水縮合反応させてエーテル化した化合物などが好ましい。メチロール化メラミン誘導体としては、例えばモノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミンを挙げることができる。1種類を用いても2種類以上も用いても構わない。 As the melamine-based cross-linking agent used in the antistatic layer in the present invention, a general one can be used and there is no particular limitation. Each preferably has one or more alkoxymethyl groups. Specifically, a methylolmelamine derivative obtained by condensing melamine and formaldehyde is preferably etherified by dehydration condensation reaction with a lower alcohol such as methyl alcohol, ethyl alcohol, isopropyl alcohol, or butyl alcohol. Examples of methylolated melamine derivatives include monomethylolmelamine, dimethylolmelamine, trimethylolmelamine, tetramethylolmelamine, pentamethylolmelamine, and hexamethylolmelamine. One type may be used, or two or more types may be used.
メラミン系架橋剤の反応性を高め、帯電防止層の架橋密度を高めるためには、1分子中により多くの架橋点をもつメチロール型メチル化メラミンやヘキサアルコキシメチルメラミンを用いることが好ましいが、反応性により優れるヘキサアルコキシメチルメラミンがより好ましく、特にヘキサメトキシメチルメラミンを用いることが好ましい。この時、ヘキサメチロールメラミンとは、下記式(a)中、Xがメチロール基(-CH2-OH)であるものである。ヘキサアルコキシメチルメラミンとは、メチロールメラミン誘導体にアルコールを用いて脱水縮合反応させたものであり、Xが(-CH2-OR、Rは炭素数1~4のアルキル基)であるものである。ヘキサメトキシメチルメラミンとは、Xが(-CH2-OMe)であるものである。 In order to increase the reactivity of the melamine-based cross-linking agent and increase the cross-linking density of the antistatic layer, it is preferable to use methylol-type methylated melamine or hexaalkoxymethyl melamine having more cross-linking points in one molecule. Hexaalkoxymethylmelamine is more preferred because of its superior properties, and hexamethoxymethylmelamine is particularly preferred. At this time, hexamethylolmelamine is one in which X is a methylol group (-CH2-OH) in the following formula (a). Hexaalkoxymethylmelamine is obtained by subjecting a methylolmelamine derivative to a dehydration condensation reaction using an alcohol, and X is (-CH2-OR, R is an alkyl group having 1 to 4 carbon atoms). Hexamethoxymethylmelamine is one in which X is (-CH2-OMe).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記(a)中のXはそれぞれ同じであってもよいし、異なっていても良い。また上記Rは、それぞれ同じであっても良く、異なっていても良い。また、Xは(-H)でも良い。 The Xs in (a) above may be the same or different. Moreover, the above Rs may be the same or different. Also, X may be (-H).
 本発明で用いるメラミン系架橋剤は、単一の化合物ではなく、複数の化合物の混合体であることが好ましい。メラミン系化合物中の主成分となる化合物の構造から、イミノ型(X=-H)、メチロール型(X=-CH2-OH)、フルエーテル型(X=-CH2-OR、Rは炭素数1~4のアルキル基)、イミノ・メチロール型に大別することができる。
 一態様において、反応性の観点から、フルエーテル型、メチロール型を用いることが好ましく、フルエーテル型がより好ましく、フルエーテル型の中でもRがメチル基であるヘキサメトキシメチルメラミン(CAS番号3089-11-0)を用いることが最も好ましい。このヘキサメトキシメチルメラミンの含有率が高いメラミン系化合物を用いるほど、反応性が高く架橋密度の高い帯電防止層とすることができる。
The melamine-based cross-linking agent used in the present invention is preferably a mixture of multiple compounds rather than a single compound. From the structure of the compound that is the main component in the melamine compound, imino type (X = -H), methylol type (X = -CH2-OH), full ether type (X = -CH2-OR, R is carbon number 1 to 4 alkyl groups), imino-methylol type.
In one aspect, from the viewpoint of reactivity, it is preferable to use a full ether type and a methylol type, more preferably a full ether type, and among the full ether type, hexamethoxymethyl melamine (CAS number 3089-11) in which R is a methyl group -0) is most preferred. The higher the hexamethoxymethylmelamine content of the melamine-based compound, the higher the reactivity and the higher the crosslinking density of the antistatic layer.
 本発明における帯電防止層に用いるメラミン系架橋剤において、重量平均重合度が2.5以下であることが好ましく、2.3以下であることがより好ましく、2.0以下であることが更に好ましい。重量平均重合度が2.5以下であると、導電性高分子との相溶性を良好にでき、また、塗液の凝集を抑制でき、欠点の少ないフィルムを形成できる。
更に、本発明においては、重量平均重合度が2.5以下であると、メラミン系架橋剤に含まれる単核体の含有量が多くなることで反応性に優れ、架橋密度が向上し、オリゴマーが析出しにくい帯電防止層とすることができるため好ましい。
 例えば、重量平均重合度は1.1以上であってもよく、1.5を超えてもよい。
The melamine-based crosslinking agent used in the antistatic layer of the invention preferably has a weight average degree of polymerization of 2.5 or less, more preferably 2.3 or less, and even more preferably 2.0 or less. . When the weight average degree of polymerization is 2.5 or less, the compatibility with the conductive polymer can be improved, aggregation of the coating liquid can be suppressed, and a film with few defects can be formed.
Furthermore, in the present invention, when the weight average degree of polymerization is 2.5 or less, the mononuclear content contained in the melamine-based cross-linking agent is increased, resulting in excellent reactivity, improved cross-linking density, and improved oligomerization. is preferable because it can form an antistatic layer that is difficult to deposit.
For example, the weight average degree of polymerization may be 1.1 or more, or may exceed 1.5.
 メラミン系架橋剤はその合成過程において、イミノ基(-NH2-)を含有するものや、多核体が混入することがある。これらメラミン誘導体が混合していても、メラミン系架橋剤の重量平均重合度が上記範囲内であれば反応性に優れ、それぞれ好適に用いることができる。 Melamine-based cross-linking agents may contain imino groups (-NH2-) or polynuclear substances during the synthesis process. Even if these melamine derivatives are mixed, if the weight-average degree of polymerization of the melamine-based cross-linking agent is within the above range, the reactivity is excellent and each of them can be preferably used.
本発明における帯電防止層には、メラミン系架橋剤が帯電防止層における全固形分100質量%に対して、50質量%以上95質量%以下含まれることが好ましく、より好ましくは55質量%以上95質量%以下であり、さらに好ましくは60質量%以上95質量%以下である。メラミン系化合物を50質量%以上含むことで帯電防止層がメラミン系化合物の自己架橋により、高い架橋密度を得ることができ、緻密な帯電防止層となるためオリゴマー析出を抑制でき、好ましい。このとき、帯電防止層の全固形分とは、溶媒や酸触媒は乾燥過程で相当部分蒸発してしまうため、実質的にメラミン系架橋剤と導電性高分子の固形分の合計した値とみなして差し支えない。 The antistatic layer in the present invention preferably contains 50% by mass or more and 95% by mass or less, more preferably 55% by mass or more and 95% by mass of the melamine-based cross-linking agent based on 100% by mass of the total solid content in the antistatic layer. % by mass or less, more preferably 60% by mass or more and 95% by mass or less. When the melamine compound is contained in an amount of 50% by mass or more, the antistatic layer can obtain a high crosslink density due to self-crosslinking of the melamine compound, and the antistatic layer becomes a dense antistatic layer, thereby suppressing the precipitation of oligomers, which is preferable. At this time, the total solid content of the antistatic layer is regarded as the sum of the solid content of the melamine cross-linking agent and the conductive polymer, since a considerable portion of the solvent and acid catalyst evaporate during the drying process. I don't mind.
 本発明における帯電防止層には、外観向上のために界面活性剤を用いてもかまわない。界面活性剤としては、特に限定されず、シリコーン系界面活性剤や、パーフルオロアルキル基を有するフッ素系界面活性剤、アセチレン系界面活性剤などの炭化水素系などを用いることができる。
 特に、アセチレン系界面活性剤を含むことが望ましい。アセチレン系界面活性剤を含むことで、本帯電防止フィルムを保護フィルムとして用いた場合でも、保護した製品への移行を回避することができ、最終製品への悪影響を減らすことができる。
 例えば、帯電防止層はバインダー樹脂を含んでもよい。バインダー樹脂は特に限定されないが、本発明の帯電防止層が有する機能を十分に発揮できるものが望ましい。
A surfactant may be used in the antistatic layer in the invention to improve the appearance. The surfactant is not particularly limited, and may be a silicone-based surfactant, a fluorine-based surfactant having a perfluoroalkyl group, or a hydrocarbon-based surfactant such as an acetylene-based surfactant.
In particular, it is desirable to contain an acetylenic surfactant. By containing the acetylenic surfactant, even when the present antistatic film is used as a protective film, migration to the protected product can be avoided, and adverse effects on the final product can be reduced.
For example, the antistatic layer may contain a binder resin. Although the binder resin is not particularly limited, it is desirable that the antistatic layer of the present invention can sufficiently exhibit the functions of the binder resin.
 本発明の帯電防止フィルムに粘着層を積層した保護フィルムは、光学部材などの製造工程で使用されるため、製造工程を汚染しないように、帯電防止層に用いても構わない界面活性剤としては、炭化水素系であるアセチレン系界面活性剤を用いることが好ましい。市販されているアセチレン系界面活性剤の例としては、サーフィノールシリーズやオルフィンシリーズ(日信化学工業社)が挙げられる。 Since the protective film obtained by laminating the adhesive layer on the antistatic film of the present invention is used in the manufacturing process of optical members and the like, surfactants that may be used in the antistatic layer so as not to contaminate the manufacturing process include: , it is preferable to use a hydrocarbon-based acetylenic surfactant. Examples of commercially available acetylenic surfactants include Surfynol series and Olphine series (Nissin Kagaku Kogyo Co., Ltd.).
 帯電防止層には、前述のほか、本発明の目的を阻害しない範囲で必要に応じて、滑剤、色素、紫外線吸収剤、シランカップリング剤、等を混合しても良い。 In addition to the above, the antistatic layer may contain lubricants, pigments, ultraviolet absorbers, silane coupling agents, etc., if necessary, as long as the objects of the present invention are not hindered.
帯電防止層には実質的にシリコーン化合物を含まない。
 本発明において「シリコーン化合物を実質的に含有しない」とは、ケイ光X線分析でSi元素を定量した場合に50ppm以下であることにより定義され、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量である。「これは積極的に帯電防止層中にシリコーン成分を添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、帯電防止層中に混入する場合があるためである。
 帯電防止層中には、実質的にシリコーン化合物を含まないことにより、本帯電防止フィルムを保護フィルムとして用いた場合でも、保護した製品へのシリコーンの移行を回避することができ、最終製品への悪影響を減らすことができる。
The antistatic layer is substantially free of silicone compounds.
In the present invention, "substantially free of silicone compounds" is defined as being 50 ppm or less, preferably 10 ppm or less, most preferably detection limit or less when Si element is quantified by fluorescence X-ray analysis. content. "Even if you don't actively add a silicone component to the antistatic layer, contaminants derived from foreign substances and stains attached to the lines and equipment in the raw material resin or film manufacturing process will peel off and prevent static electricity. This is because they may be mixed in the layer.
By substantially not containing a silicone compound in the antistatic layer, even when the present antistatic film is used as a protective film, it is possible to avoid migration of silicone to the protected product, and it is possible to prevent the transfer of silicone to the final product. adverse effects can be reduced.
 本発明の帯電防止層の膜厚は、0.005μm以上1μm以下が好ましい。より好ましくは、0.01μm以上0.5μm以下であり、さらに好ましくは、0.01μm以上0.2μm以下である。帯電防止層の膜厚が0.005μm以上であると、帯電防止効果が得られ好ましい。一方、1μm以下であると、着色が少なく透明性が高くなるため好ましい。  The film thickness of the antistatic layer of the present invention is preferably 0.005 µm or more and 1 µm or less. It is more preferably 0.01 μm or more and 0.5 μm or less, and still more preferably 0.01 μm or more and 0.2 μm or less. When the film thickness of the antistatic layer is 0.005 μm or more, an antistatic effect can be obtained, which is preferable. On the other hand, when the thickness is 1 μm or less, coloring is less and transparency is improved, which is preferable. 
 ここで、本発明の積層ポリエステルフィルムは、メラミン系架橋剤が、イミノ型メチル化メラミン樹脂、メチロール型メチル化メラミン樹脂、フルエーテル型メチル化メラミン樹脂またはイミノ・メチロール型メチル化メラミン樹脂から選択される少なくとも1つを含むことを特徴とする。これらいずれかのメラミン系架橋剤を含有することにより、本帯電防止層の架橋密度が高くなり、帯電防止層の膜厚が薄くても、加熱後でもヘイズ上昇が少なく、本帯電防止フィルムに粘着層を積層した保護フィルムを被着体と貼り合わせた場合にも、外観検査が可能であり、剥離時に剥離帯電や異物付着を抑制した保護フィルムを提供することができる。 Here, in the laminated polyester film of the present invention, the melamine-based cross-linking agent is selected from an imino-type methylated melamine resin, a methylol-type methylated melamine resin, a full-ether-type methylated melamine resin, or an imino-methylol-type methylated melamine resin. characterized by including at least one By containing any of these melamine-based cross-linking agents, the cross-linking density of the antistatic layer is increased, and even if the thickness of the antistatic layer is thin, the increase in haze is small even after heating, and the antistatic film is adhered. Appearance inspection is possible even when a protective film having laminated layers is attached to an adherend, and a protective film that suppresses separation electrification and adherence of foreign matter during separation can be provided.
 本発明の積層ポリエステルフィルムのヘイズは、3.0%以下であることが好ましい。より好ましくは2.0%以下であり、さらに好ましくは1.5%以下である。1.0%以下であれば、極めて好ましい。3.0%以下であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。ヘイズは0であってもよく、例えば、0.1%以上であってもよい。 The haze of the laminated polyester film of the present invention is preferably 3.0% or less. It is more preferably 2.0% or less, still more preferably 1.5% or less. 1.0% or less is extremely preferable. If it is 3.0% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use. The haze may be 0, and may be 0.1% or more, for example.
 本発明の積層ポリエステルフィルムの140℃、10分加熱後のヘイズは、3.0%以下であることが好ましい。より好ましくは2.7%以下であり、さらに好ましくは2.4%以下である。3.0%以下であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。140℃、10分加熱後のヘイズは、0であってもよく、例えば、0.1%以上であってもよい。特定の理論に限定して解釈すべきではないが、本発明に係る帯電防止層を有することで、反応性に優れ、架橋密度が向上し、オリゴマーが析出しにくい帯電防止層を得ることができる。その結果、140℃、10分加熱後のヘイズの大幅な上昇を抑制できるものと推測される。 The haze of the laminated polyester film of the present invention after heating at 140°C for 10 minutes is preferably 3.0% or less. It is more preferably 2.7% or less, still more preferably 2.4% or less. If it is 3.0% or less, it is preferable because the appearance inspection can be performed in a state where the protective film is adhered to the adherend, and it is particularly preferable when the adherend is a member for optical use. The haze after heating at 140° C. for 10 minutes may be 0 or, for example, 0.1% or more. Although it should not be interpreted as being limited to a specific theory, by having the antistatic layer according to the present invention, it is possible to obtain an antistatic layer that has excellent reactivity, improves crosslink density, and makes it difficult for oligomers to precipitate. . As a result, it is presumed that a significant increase in haze after heating at 140° C. for 10 minutes can be suppressed.
 例えば、積層ポリエステルフィルムの140℃、10分加熱後のヘイズから、加熱前の積層ポリエステルフィルムのヘイズを差し引いたΔヘイズ値は、-0.2以上2.5以下であってよく、例えば、-0.2以上1.6以下であってもよい。Δヘイズ値がこのような範囲内であることにより、オリゴマーが析出しにくい帯電防止層を得ることができる。
オリゴマーが析出しにくい帯電防止層を形成することで、粘着層積層工程で加熱乾燥を経ても、保護フィルムの視認性は低下しにくく、保護フィルムを被着体に貼り合わせ場合にも外観検査を行うことができる、という効果を導くことができる。
For example, the Δhaze value obtained by subtracting the haze of the laminated polyester film before heating from the haze of the laminated polyester film after heating at 140° C. for 10 minutes may be −0.2 or more and 2.5 or less. 0.2 or more and 1.6 or less may be sufficient. When the Δhaze value is within such a range, an antistatic layer in which oligomers are difficult to deposit can be obtained.
By forming an antistatic layer that makes it difficult for oligomers to precipitate, the visibility of the protective film does not easily decrease even after heat drying in the adhesive layer lamination process. It can lead to the effect that it can be done.
本発明の帯電防止層の表面抵抗率は、7[logΩ/□]以下である。より好ましくは、6.5[logΩ/□]以下であり、さらに好ましくは、6[logΩ/□]以下である。表面抵抗率を7[logΩ/□]以下にすることで保護フィルムへの帯電を抑制することができ、工程中の異物付着を防ぐことができ、さらには保護フィルムの帯電が保護した製品への電気的な悪影響を抑えることができる。 The surface resistivity of the antistatic layer of the present invention is 7 [logΩ/□] or less. It is more preferably 6.5 [logΩ/□] or less, and still more preferably 6 [logΩ/□] or less. By setting the surface resistivity to 7 [logΩ/square] or less, it is possible to suppress the charging of the protective film and prevent the adhesion of foreign matter during the process. Electrical adverse effects can be suppressed.
 また、帯電防止フィルムの表面抵抗率の下限は特に定めなくてもよいが、2[logΩ/□]以上であることが好ましい。帯電防止フィルムの表面抵抗率が2[logΩ/□]未満であると、帯電防止層の加工コストが増大してしまうため好ましくない。 Although the lower limit of the surface resistivity of the antistatic film does not have to be specified, it is preferably 2 [logΩ/□] or more. If the surface resistivity of the antistatic film is less than 2 [logΩ/□], the processing cost of the antistatic layer increases, which is not preferable.
 本発明に用いる帯電防止フィルムの全光線透過率は、80%以上であることが好ましい。より好ましくは85%以上であり、さらに好ましくは88%以上である。90%以上であれば、極めて好ましい。80%以上であれば、保護フィルムを被着体と貼り合わせた状態で外観検査などが可能なため好ましく、光学用途の部材が被着体の場合に特に好ましい。 The total light transmittance of the antistatic film used in the present invention is preferably 80% or more. It is more preferably 85% or more, still more preferably 88% or more. 90% or more is highly preferred. If it is 80% or more, it is preferable because the appearance inspection can be performed in a state where the protective film is attached to the adherend, and it is particularly preferable when the adherend is a member for optical use.
 帯電防止層は、アルコールで拭き取り後でも表面抵抗率変化が1.3倍以下であることが好ましい。より好ましくは1.2倍以下であり、さらに好ましくは1.1倍以下である。1.3倍以下であれば、粘着加工などの工程でアルコールを使用しても、保護フィルムになったときに初期の表面抵抗率を維持するため好ましい。 The antistatic layer preferably has a surface resistivity change of 1.3 times or less even after wiping with alcohol. It is more preferably 1.2 times or less, still more preferably 1.1 times or less. If it is 1.3 times or less, it is preferable because the initial surface resistivity is maintained when the protective film is formed even if alcohol is used in the process of adhesion processing.
 帯電防止層の表面の領域表面平均粗さ(Sa)は、1~40nmの範囲にあることが好ましく、より好ましくは1~30nmである。さらに好ましくは1~10nmである。本発明に用いる帯電防止フィルムの表面の最大突起高さ(P)は、2μm以下であることが好ましく、より好ましくは1.5μm以下である。さらに好ましくは0.8μm以下である。Saが40nm以下であり、Pが2μm以下であれば、粘着層を積層しロール状に巻き取った際に粘着性の表面を荒らす恐れがなく好ましい。 The area average surface roughness (Sa) of the surface of the antistatic layer is preferably in the range of 1 to 40 nm, more preferably 1 to 30 nm. More preferably, it is 1 to 10 nm. The maximum projection height (P) on the surface of the antistatic film used in the present invention is preferably 2 μm or less, more preferably 1.5 μm or less. More preferably, it is 0.8 μm or less. If Sa is 40 nm or less and P is 2 μm or less, it is preferable because there is no risk of roughening the adhesive surface when the adhesive layer is laminated and wound into a roll.
 基材フィルム表面に帯電防止層を塗布積層する方法としては、前述の帯電防止剤やバインダー樹脂などを、溶媒に分散・溶解させた塗液をグラビアロールコーティング法、リバースロールコーティング法、ナイフコータ法、ディップコート法、バーコート法、スピンコート法などで塗布する方法があるが、導電性組成物に適したコート法は特に制限はない。また、フィルムの製造工程で塗布層を設けるインラインコート方式、フィルム製造後に塗布層を設けるオフラインコート方式により設けることができる。 As a method for coating and laminating an antistatic layer on the substrate film surface, a coating liquid in which the above-mentioned antistatic agent or binder resin is dispersed or dissolved in a solvent is applied by a gravure roll coating method, a reverse roll coating method, a knife coater method, There are coating methods such as dip coating, bar coating, and spin coating, but the coating method suitable for the conductive composition is not particularly limited. Moreover, it can be provided by an in-line coating method in which a coating layer is provided in the film production process, or an off-line coating method in which a coating layer is provided after film production.
 帯電防止層は、前記方法で帯電防止層を形成する乾燥温度としては、通常60℃以上150℃以下であり、好ましくは90℃以上140℃以下である。この温度が60℃以上であると、短時間の処理でよく、生産性向上の観点から好ましい。また、架橋剤を含む場合は架橋反応が十分進行するため好ましい。一方、この温度が150℃以下であると、フィルムの平面性が保たれるため好ましい。 The drying temperature for forming the antistatic layer by the above method is usually 60°C or higher and 150°C or lower, preferably 90°C or higher and 140°C or lower. When this temperature is 60° C. or higher, the treatment can be performed in a short period of time, which is preferable from the viewpoint of improving productivity. Moreover, since a crosslinking reaction progresses sufficiently when a crosslinking agent is included, it is preferable. On the other hand, when this temperature is 150° C. or lower, the flatness of the film is maintained, which is preferable.
本発明の積層ポリエステルフィルムには、粘着剤を塗布し硬化させることで粘着層を積層することができる。粘着剤は、特に限定されず、使用することができ、得られた積層フィルムは、保護フィルムとして使用される。粘着層を積層する面は、帯電防止フィルムのどちらの側でも構わない。片面のみに帯電防止層を有する帯電防止フィルムを用いる場合は、帯電防止フィルムの粘着層を積層した面とは反対面には、帯電防止層がある方が好ましい。
 また、本発明の積層ポリエステルフィルムにおける帯電防止層に、セラミックグリーンシート、樹脂フィルム等を積層してもよい。
An adhesive layer can be laminated on the laminated polyester film of the present invention by applying and curing an adhesive. The adhesive is not particularly limited and can be used, and the laminated film obtained is used as a protective film. Either side of the antistatic film may be the surface on which the adhesive layer is laminated. When using an antistatic film having an antistatic layer only on one side, it is preferable that the antistatic layer is provided on the side opposite to the side on which the adhesive layer is laminated.
Moreover, a ceramic green sheet, a resin film, or the like may be laminated on the antistatic layer in the laminated polyester film of the present invention.
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、もちろん本発明はこれらの実施例に限定されるものではない。なお、本発明に用いた評価方法は以下の通りである。 In order to describe the present invention in detail, examples will be given below, but of course the present invention is not limited to these examples. The evaluation methods used in the present invention are as follows.
(表面抵抗率)
本発明の帯電防止フィルム表面の表面抵抗率は、温度23℃、湿度55%の条件下で24時間調湿後、帯電防止層表面の表面抵抗率を簡易型低抵抗率計(日東精工アナリテック(株)製、ロレスタAX MCP-370)を用いて測定し、下記の判定基準で評価した。表面抵抗率が6[logΩ/□]を超える場合は、表面抵抗測定器(シムコジャパン(株)製、ワークサーフェイステスター ST-3)を用いて測定した。
 ◎:表面抵抗率が2以上4以下[logΩ/□]
 ○:表面抵抗率が4超7以下[logΩ/□]
 △:表面抵抗率が7超[logΩ/□]
(Surface resistivity)
The surface resistivity of the surface of the antistatic film of the present invention was determined by measuring the surface resistivity of the antistatic layer surface after adjusting the humidity for 24 hours under conditions of a temperature of 23° C. and a humidity of 55%. (manufactured by Loresta AX MCP-370), and evaluated according to the following criteria. When the surface resistivity exceeded 6 [logΩ/□], it was measured using a surface resistance measuring device (Shimco Japan Co., Ltd., Work Surface Tester ST-3).
◎: Surface resistivity is 2 or more and 4 or less [logΩ/□]
○: Surface resistivity is more than 4 and 7 or less [logΩ/□]
△: Surface resistivity is over 7 [logΩ/□]
(全光線透過率、ヘイズ)
 本発明のフィルムの全光線透過率およびヘイズはJIS K 7136に準拠し、濁度計(日本電色製、NDH7000II)を用いて、140℃、10分加熱処理前後のフィルムを測定した。
(total light transmittance, haze)
The total light transmittance and haze of the film of the present invention were measured in accordance with JIS K 7136 using a turbidity meter (NDH7000II, manufactured by Nippon Denshoku Co., Ltd.) before and after heat treatment at 140°C for 10 minutes.
(耐アルコール性)
 エタノールを染み込ませたキムワイプを用いて、本発明のフィルムを10往復拭き取る処理前後の表面抵抗値を測定した。また、上記処理後の外観変化を下記の判定基準で評価した。
 ◎:ほとんど変化なし
〇:少し変化有り
 △:変化有り
 ×:帯電防止層が染み落ちるほど変化あり
(Alcohol resistance)
A Kimwipe impregnated with ethanol was used to measure the surface resistance value before and after the film of the present invention was wiped back and forth 10 times. In addition, changes in appearance after the above treatment were evaluated according to the following criteria.
◎: Almost no change 〇: Slight change △: Change ×: Change to the extent that the antistatic layer permeates
(実施例1)
 表2に記載の配合量で帯電防止層塗工液を得た。
(帯電防止層塗工液)
水   23.06質量部
イソプロピルアルコール  34.59質量部
導電性ポリマー  37.5質量部
架橋剤A(日本カーバイド工業社製、イミノ型メチル化メラミン樹脂、固形分濃度80質量%)                             0.86質量部
導電助剤   3.0質量部
界面活性剤(日信化学工業社製、EXP.4200、固形分濃度75質量%) 0.53質量部
(Example 1)
An antistatic layer coating solution was obtained with the blending amounts shown in Table 2.
(Antistatic layer coating liquid)
Water 23.06 parts by mass Isopropyl alcohol 34.59 parts by mass Conductive polymer 37.5 parts by mass Crosslinking agent A (manufactured by Nippon Carbide Industry Co., Ltd., imino type methylated melamine resin, solid content concentration 80% by mass) 0.86 parts by mass Conductive agent 3.0 parts by mass Surfactant (manufactured by Nissin Chemical Industry Co., Ltd., EXP.4200, solid content concentration 75% by mass) 0.53 parts by mass
(帯電防止層の形成)
得られた帯電防止層塗工液を厚み75μmのA4360(コスモシャイン(登録商標)、東洋紡社製)の片面に、wet膜厚が7.5μmになるようにグラビアコーターを用いて塗工し、熱風乾燥炉で140℃30秒乾燥・硬化させて帯電防止層付きのポリエステルフィルムを得た。
(Formation of antistatic layer)
The obtained antistatic layer coating solution was coated on one side of A4360 (Cosmo Shine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 75 μm using a gravure coater so that the wet film thickness was 7.5 μm. It was dried and cured in a hot air drying oven at 140° C. for 30 seconds to obtain a polyester film with an antistatic layer.
(実施例2)
 組成を表2のものに変更した以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 2)
An antistatic layer was formed in the same procedure as in Example 1, except that the composition was changed to that shown in Table 2.
(実施例3、4)
 表2のような組成で架橋剤B(日本カーバイド工業社製、メチロール型メチル化メラミン樹脂、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Examples 3 and 4)
An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent B (manufactured by Nippon Carbide Kogyo Co., Ltd., methylol-type methylated melamine resin, solid content concentration 70% by mass) was used with the composition shown in Table 2. .
(実施例5、6)
 表2のような組成で架橋剤C(日本カーバイド工業社製、フルエーテル型メチル化メラミン樹脂、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Examples 5 and 6)
An antistatic layer was formed in the same manner as in Example 1 except that the composition shown in Table 2 was used as a cross-linking agent C (manufactured by Nippon Carbide Industry Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass). did.
(実施例7)
 表2のような組成で架橋剤C(日本カーバイド工業社製、フルエーテル型メチル化メラミン樹脂、固形分濃度70質量%)、界面活性剤をダイノール604(日信化学工業社製、固形分濃度100質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 7)
Crosslinking agent C (manufactured by Nippon Carbide Kogyo Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass), surfactant Dynol 604 (manufactured by Nisshin Chemical Industry Co., Ltd., solid content concentration 100% by mass), an antistatic layer was formed in the same manner as in Example 1.
(実施例8)
 表2のような組成で架橋剤C(日本カーバイド工業社製、フルエーテル型メチル化メラミン樹脂、固形分濃度70質量%)、界面活性剤をサーフィノールSE-F(日信化学工業社製、固形分濃度81質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 8)
Crosslinking agent C (manufactured by Nippon Carbide Industry Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass) and surfactant Surfynol SE-F (manufactured by Nisshin Chemical Industry Co., Ltd., An antistatic layer was formed in the same procedure as in Example 1, except that the solid content concentration was 81% by mass).
(実施例9)
 表2のような組成で架橋剤C(日本カーバイド工業社製、フルエーテル型メチル化メラミン樹脂、固形分濃度70質量%)、界面活性剤を67additive(ダウ・東レ社製、固形分濃度100質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 9)
Crosslinking agent C (manufactured by Nippon Carbide Industries Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass) and surfactant 67additive (manufactured by Dow Toray Industries, Inc., solid content concentration 100 mass%) with the composition shown in Table 2 %), an antistatic layer was formed in the same manner as in Example 1.
(実施例10、11)
 表2のような組成で架橋剤C(日本カーバイド工業社製、フルエーテル型メチル化メラミン樹脂、固形分濃度70質量%)、バインダー樹脂としてMD1200(東洋紡社製、固形分濃度35質量%)、界面活性剤をダイノール604にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Examples 10 and 11)
Crosslinking agent C (manufactured by Nippon Carbide Kogyo Co., Ltd., full ether type methylated melamine resin, solid content concentration 70% by mass), MD1200 as a binder resin (manufactured by Toyobo Co., Ltd., solid content concentration 35% by mass), An antistatic layer was formed in the same manner as in Example 1, except that Dynol 604 was used as the surfactant.
(実施例12)
 表2のような組成で架橋剤D(日本カーバイド工業社製、イミノ・メチロール型メチル化メラミン樹脂、固形分濃度70質量%)にした以外は、実施例1と同様の手順で帯電防止層を形成した。
(Example 12)
An antistatic layer was formed in the same manner as in Example 1 except that the cross-linking agent D (imino-methylol-type methylated melamine resin manufactured by Nippon Carbide Industry Co., Ltd., solid content concentration 70% by mass) was used with the composition shown in Table 2. formed.
(比較例2)
 表2のような組成で架橋剤E(日清紡ケミカル社製、カルボジイミド、固形分濃度40質量%)にした以外は、実施例10と同様の手順で帯電防止層を形成した。
(Comparative example 2)
An antistatic layer was formed in the same manner as in Example 10 except that the composition shown in Table 2 was used as a cross-linking agent E (Carbodiimide manufactured by Nisshinbo Chemical Co., Ltd., solid content concentration 40% by mass).
(比較例3)
 表2のような組成で架橋剤F(Baxenden社製、ブロックイソシアネート、固形分濃度40質量%)にした以外は、実施例10と同様の手順で帯電防止層を形成した。
(Comparative Example 3)
An antistatic layer was formed in the same manner as in Example 10 except that the composition shown in Table 2 was changed to a cross-linking agent F (Baxenden, blocked isocyanate, solid content concentration: 40% by mass).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-described embodiments, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 実施例で得られた本発明の積層ポリエステルフィルムは、ポリエステルフィルムの少なくとも片面に加熱後もヘイズが低い帯電防止層を積層した帯電防止フィルムを提供することで、本帯電防止フィルムに粘着層を積層し保護フィルムとして用いた場合にも、外観検査が可能であり、剥離時に剥離帯電や異物付着を抑制した保護フィルムを提供することができる。 The laminated polyester film of the present invention obtained in Examples provides an antistatic film in which an antistatic layer having a low haze even after heating is laminated on at least one side of the polyester film, and an adhesive layer is laminated on the antistatic film. However, even when it is used as a protective film, it is possible to perform an appearance inspection, and it is possible to provide a protective film that suppresses separation electrification and adhesion of foreign matter during separation.
  比較例1、2は、メラミン系架橋剤を含まないため、加熱後ヘイズが本発明の範囲から外れ、帯電防止層の反対面に粘着層を加工するときの加熱乾燥工程でオリゴマーがより析出するフィルムが得られた。 Since Comparative Examples 1 and 2 do not contain a melamine-based cross-linking agent, the post-heating haze is out of the range of the present invention, and more oligomers are precipitated during the heat-drying process when processing the adhesive layer on the opposite side of the antistatic layer. A film was obtained.
 本発明は、帯電防止フィルムおよび帯電防止フィルムに粘着層を積層した粘着フィルムに関するものであり、特に光学部材(例えば、有機ELや液晶ディスプレイの構成部材)などの保護フィルム関する。
 
 
TECHNICAL FIELD The present invention relates to an antistatic film and an adhesive film obtained by laminating an adhesive layer on an antistatic film, and more particularly to a protective film for optical members (for example, constituent members of organic EL and liquid crystal displays).

Claims (6)

  1.  基材の少なくとも片面に帯電防止層を有する積層ポリエステルフィルムであって、
     前記帯電防止層は、導電性高分子とメラミン系架橋剤を含み、
     前記メラミン系架橋剤が、イミノ型メチル化メラミン樹脂、メチロール型メチル化メラミン樹脂、フルエーテル型メチル化メラミン樹脂、またはイミノ・メチロール型メチル化メラミン樹脂から選択される少なくとも1つを含む、
    積層ポリエステルフィルム。
    A laminated polyester film having an antistatic layer on at least one side of the substrate,
    The antistatic layer contains a conductive polymer and a melamine-based cross-linking agent,
    The melamine-based cross-linking agent contains at least one selected from an imino-type methylated melamine resin, a methylol-type methylated melamine resin, a full-ether-type methylated melamine resin, or an imino-methylol-type methylated melamine resin,
    Laminated polyester film.
  2.  前記メラミン系架橋剤の重量平均重合度が2.5以下である請求項1記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the melamine-based cross-linking agent has a weight average degree of polymerization of 2.5 or less.
  3.  前記積層ポリエステルフィルムの140℃、10分加熱後のヘイズが3%以下である請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the laminated polyester film has a haze of 3% or less after heating at 140°C for 10 minutes.
  4.  帯電防止層の表面抵抗率が2~7[logΩ/□]である請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the antistatic layer has a surface resistivity of 2 to 7 [logΩ/□].
  5.  帯電防止層中にアセチレン系界面活性剤を含む請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, which contains an acetylenic surfactant in the antistatic layer.
  6.  請求項1~5の何れかに記載のポリエステルフィルムの少なくとも片面に粘着層を積層した保護フィルム。
     
     
    A protective film obtained by laminating an adhesive layer on at least one side of the polyester film according to any one of claims 1 to 5.

PCT/JP2023/001766 2022-02-09 2023-01-20 Antistatic film WO2023153180A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022018922 2022-02-09
JP2022-018922 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153180A1 true WO2023153180A1 (en) 2023-08-17

Family

ID=87564099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001766 WO2023153180A1 (en) 2022-02-09 2023-01-20 Antistatic film

Country Status (2)

Country Link
TW (1) TW202339965A (en)
WO (1) WO2023153180A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031174A1 (en) * 2007-09-07 2009-03-12 Kiian S.P.A. Photosensitive compositions container polyvinyl alchool and their use in printing processes
JP2009083456A (en) * 2007-09-28 2009-04-23 Toray Saehan Inc Manufacturing method for antistatic polyester film
WO2014136776A1 (en) * 2013-03-08 2014-09-12 コニカミノルタ株式会社 Resin particles for fluorescent labels
JP2018172473A (en) * 2017-03-31 2018-11-08 リンテック株式会社 Adhesive film for display protection
JP2020023690A (en) * 2018-08-03 2020-02-13 荒川化学工業株式会社 Aqueous antistatic release coating agent composition and antistatic release film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031174A1 (en) * 2007-09-07 2009-03-12 Kiian S.P.A. Photosensitive compositions container polyvinyl alchool and their use in printing processes
JP2009083456A (en) * 2007-09-28 2009-04-23 Toray Saehan Inc Manufacturing method for antistatic polyester film
WO2014136776A1 (en) * 2013-03-08 2014-09-12 コニカミノルタ株式会社 Resin particles for fluorescent labels
JP2018172473A (en) * 2017-03-31 2018-11-08 リンテック株式会社 Adhesive film for display protection
JP2020023690A (en) * 2018-08-03 2020-02-13 荒川化学工業株式会社 Aqueous antistatic release coating agent composition and antistatic release film

Also Published As

Publication number Publication date
TW202339965A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
JP4971703B2 (en) Polyester film for organic EL display substrate and gas barrier laminated polyester film for organic EL display substrate comprising the same
US7678455B2 (en) Layered film and process for producing layered film
JP2004058648A (en) Laminated film and manufacturing process thereof
KR101894758B1 (en) Polyester film
WO2013146155A1 (en) Coated film
JP5151007B2 (en) Polyester film for transfer foil
JP5264009B2 (en) Polyester film with coating layer
JP5385502B2 (en) Polyester film having antistatic coating layer
CN107405909B (en) Mold release film
JP2012000993A (en) Polyester film having antistatic coated layer
JP5625556B2 (en) Antistatic film
TWI398498B (en) Anti-static polyester film containing acetylene diol surfactant and manufacturing method thereof
WO2023153180A1 (en) Antistatic film
WO2023153181A1 (en) Antistatic film
TW200401707A (en) Laminated film
JP2018062079A (en) Release film
JP2016064625A (en) Laminate film
JP4003258B2 (en) Antistatic polyester film
JP5818260B2 (en) Laminated polyester film
JP6191239B2 (en) Release film
WO2023282232A1 (en) Antistatic film and protective film
JP7375499B2 (en) Laminated polyester film and its manufacturing method
JP4259192B2 (en) Circuit material spacer and manufacturing method thereof
CN112724807A (en) Resin composition, optical coating liquid, optical coating layer, and optical polyester protective film
JP5376769B2 (en) Antistatic film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752648

Country of ref document: EP

Kind code of ref document: A1